at v5.15 6.4 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PID_H 3#define _LINUX_PID_H 4 5#include <linux/rculist.h> 6#include <linux/wait.h> 7#include <linux/refcount.h> 8 9enum pid_type 10{ 11 PIDTYPE_PID, 12 PIDTYPE_TGID, 13 PIDTYPE_PGID, 14 PIDTYPE_SID, 15 PIDTYPE_MAX, 16}; 17 18/* 19 * What is struct pid? 20 * 21 * A struct pid is the kernel's internal notion of a process identifier. 22 * It refers to individual tasks, process groups, and sessions. While 23 * there are processes attached to it the struct pid lives in a hash 24 * table, so it and then the processes that it refers to can be found 25 * quickly from the numeric pid value. The attached processes may be 26 * quickly accessed by following pointers from struct pid. 27 * 28 * Storing pid_t values in the kernel and referring to them later has a 29 * problem. The process originally with that pid may have exited and the 30 * pid allocator wrapped, and another process could have come along 31 * and been assigned that pid. 32 * 33 * Referring to user space processes by holding a reference to struct 34 * task_struct has a problem. When the user space process exits 35 * the now useless task_struct is still kept. A task_struct plus a 36 * stack consumes around 10K of low kernel memory. More precisely 37 * this is THREAD_SIZE + sizeof(struct task_struct). By comparison 38 * a struct pid is about 64 bytes. 39 * 40 * Holding a reference to struct pid solves both of these problems. 41 * It is small so holding a reference does not consume a lot of 42 * resources, and since a new struct pid is allocated when the numeric pid 43 * value is reused (when pids wrap around) we don't mistakenly refer to new 44 * processes. 45 */ 46 47 48/* 49 * struct upid is used to get the id of the struct pid, as it is 50 * seen in particular namespace. Later the struct pid is found with 51 * find_pid_ns() using the int nr and struct pid_namespace *ns. 52 */ 53 54struct upid { 55 int nr; 56 struct pid_namespace *ns; 57}; 58 59struct pid 60{ 61 refcount_t count; 62 unsigned int level; 63 spinlock_t lock; 64 /* lists of tasks that use this pid */ 65 struct hlist_head tasks[PIDTYPE_MAX]; 66 struct hlist_head inodes; 67 /* wait queue for pidfd notifications */ 68 wait_queue_head_t wait_pidfd; 69 struct rcu_head rcu; 70 struct upid numbers[1]; 71}; 72 73extern struct pid init_struct_pid; 74 75extern const struct file_operations pidfd_fops; 76 77struct file; 78 79extern struct pid *pidfd_pid(const struct file *file); 80struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags); 81int pidfd_create(struct pid *pid, unsigned int flags); 82 83static inline struct pid *get_pid(struct pid *pid) 84{ 85 if (pid) 86 refcount_inc(&pid->count); 87 return pid; 88} 89 90extern void put_pid(struct pid *pid); 91extern struct task_struct *pid_task(struct pid *pid, enum pid_type); 92static inline bool pid_has_task(struct pid *pid, enum pid_type type) 93{ 94 return !hlist_empty(&pid->tasks[type]); 95} 96extern struct task_struct *get_pid_task(struct pid *pid, enum pid_type); 97 98extern struct pid *get_task_pid(struct task_struct *task, enum pid_type type); 99 100/* 101 * these helpers must be called with the tasklist_lock write-held. 102 */ 103extern void attach_pid(struct task_struct *task, enum pid_type); 104extern void detach_pid(struct task_struct *task, enum pid_type); 105extern void change_pid(struct task_struct *task, enum pid_type, 106 struct pid *pid); 107extern void exchange_tids(struct task_struct *task, struct task_struct *old); 108extern void transfer_pid(struct task_struct *old, struct task_struct *new, 109 enum pid_type); 110 111struct pid_namespace; 112extern struct pid_namespace init_pid_ns; 113 114extern int pid_max; 115extern int pid_max_min, pid_max_max; 116 117/* 118 * look up a PID in the hash table. Must be called with the tasklist_lock 119 * or rcu_read_lock() held. 120 * 121 * find_pid_ns() finds the pid in the namespace specified 122 * find_vpid() finds the pid by its virtual id, i.e. in the current namespace 123 * 124 * see also find_task_by_vpid() set in include/linux/sched.h 125 */ 126extern struct pid *find_pid_ns(int nr, struct pid_namespace *ns); 127extern struct pid *find_vpid(int nr); 128 129/* 130 * Lookup a PID in the hash table, and return with it's count elevated. 131 */ 132extern struct pid *find_get_pid(int nr); 133extern struct pid *find_ge_pid(int nr, struct pid_namespace *); 134 135extern struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 136 size_t set_tid_size); 137extern void free_pid(struct pid *pid); 138extern void disable_pid_allocation(struct pid_namespace *ns); 139 140/* 141 * ns_of_pid() returns the pid namespace in which the specified pid was 142 * allocated. 143 * 144 * NOTE: 145 * ns_of_pid() is expected to be called for a process (task) that has 146 * an attached 'struct pid' (see attach_pid(), detach_pid()) i.e @pid 147 * is expected to be non-NULL. If @pid is NULL, caller should handle 148 * the resulting NULL pid-ns. 149 */ 150static inline struct pid_namespace *ns_of_pid(struct pid *pid) 151{ 152 struct pid_namespace *ns = NULL; 153 if (pid) 154 ns = pid->numbers[pid->level].ns; 155 return ns; 156} 157 158/* 159 * is_child_reaper returns true if the pid is the init process 160 * of the current namespace. As this one could be checked before 161 * pid_ns->child_reaper is assigned in copy_process, we check 162 * with the pid number. 163 */ 164static inline bool is_child_reaper(struct pid *pid) 165{ 166 return pid->numbers[pid->level].nr == 1; 167} 168 169/* 170 * the helpers to get the pid's id seen from different namespaces 171 * 172 * pid_nr() : global id, i.e. the id seen from the init namespace; 173 * pid_vnr() : virtual id, i.e. the id seen from the pid namespace of 174 * current. 175 * pid_nr_ns() : id seen from the ns specified. 176 * 177 * see also task_xid_nr() etc in include/linux/sched.h 178 */ 179 180static inline pid_t pid_nr(struct pid *pid) 181{ 182 pid_t nr = 0; 183 if (pid) 184 nr = pid->numbers[0].nr; 185 return nr; 186} 187 188pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns); 189pid_t pid_vnr(struct pid *pid); 190 191#define do_each_pid_task(pid, type, task) \ 192 do { \ 193 if ((pid) != NULL) \ 194 hlist_for_each_entry_rcu((task), \ 195 &(pid)->tasks[type], pid_links[type]) { 196 197 /* 198 * Both old and new leaders may be attached to 199 * the same pid in the middle of de_thread(). 200 */ 201#define while_each_pid_task(pid, type, task) \ 202 if (type == PIDTYPE_PID) \ 203 break; \ 204 } \ 205 } while (0) 206 207#define do_each_pid_thread(pid, type, task) \ 208 do_each_pid_task(pid, type, task) { \ 209 struct task_struct *tg___ = task; \ 210 for_each_thread(tg___, task) { 211 212#define while_each_pid_thread(pid, type, task) \ 213 } \ 214 task = tg___; \ 215 } while_each_pid_task(pid, type, task) 216#endif /* _LINUX_PID_H */