at v5.15 48 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/wait.h> 11#include <linux/bitops.h> 12#include <linux/cache.h> 13#include <linux/threads.h> 14#include <linux/numa.h> 15#include <linux/init.h> 16#include <linux/seqlock.h> 17#include <linux/nodemask.h> 18#include <linux/pageblock-flags.h> 19#include <linux/page-flags-layout.h> 20#include <linux/atomic.h> 21#include <linux/mm_types.h> 22#include <linux/page-flags.h> 23#include <linux/local_lock.h> 24#include <asm/page.h> 25 26/* Free memory management - zoned buddy allocator. */ 27#ifndef CONFIG_FORCE_MAX_ZONEORDER 28#define MAX_ORDER 11 29#else 30#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER 31#endif 32#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1)) 33 34/* 35 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 36 * costly to service. That is between allocation orders which should 37 * coalesce naturally under reasonable reclaim pressure and those which 38 * will not. 39 */ 40#define PAGE_ALLOC_COSTLY_ORDER 3 41 42enum migratetype { 43 MIGRATE_UNMOVABLE, 44 MIGRATE_MOVABLE, 45 MIGRATE_RECLAIMABLE, 46 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 47 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 48#ifdef CONFIG_CMA 49 /* 50 * MIGRATE_CMA migration type is designed to mimic the way 51 * ZONE_MOVABLE works. Only movable pages can be allocated 52 * from MIGRATE_CMA pageblocks and page allocator never 53 * implicitly change migration type of MIGRATE_CMA pageblock. 54 * 55 * The way to use it is to change migratetype of a range of 56 * pageblocks to MIGRATE_CMA which can be done by 57 * __free_pageblock_cma() function. What is important though 58 * is that a range of pageblocks must be aligned to 59 * MAX_ORDER_NR_PAGES should biggest page be bigger than 60 * a single pageblock. 61 */ 62 MIGRATE_CMA, 63#endif 64#ifdef CONFIG_MEMORY_ISOLATION 65 MIGRATE_ISOLATE, /* can't allocate from here */ 66#endif 67 MIGRATE_TYPES 68}; 69 70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 71extern const char * const migratetype_names[MIGRATE_TYPES]; 72 73#ifdef CONFIG_CMA 74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 76#else 77# define is_migrate_cma(migratetype) false 78# define is_migrate_cma_page(_page) false 79#endif 80 81static inline bool is_migrate_movable(int mt) 82{ 83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 84} 85 86#define for_each_migratetype_order(order, type) \ 87 for (order = 0; order < MAX_ORDER; order++) \ 88 for (type = 0; type < MIGRATE_TYPES; type++) 89 90extern int page_group_by_mobility_disabled; 91 92#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 93 94#define get_pageblock_migratetype(page) \ 95 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 96 97struct free_area { 98 struct list_head free_list[MIGRATE_TYPES]; 99 unsigned long nr_free; 100}; 101 102static inline struct page *get_page_from_free_area(struct free_area *area, 103 int migratetype) 104{ 105 return list_first_entry_or_null(&area->free_list[migratetype], 106 struct page, lru); 107} 108 109static inline bool free_area_empty(struct free_area *area, int migratetype) 110{ 111 return list_empty(&area->free_list[migratetype]); 112} 113 114struct pglist_data; 115 116/* 117 * Add a wild amount of padding here to ensure data fall into separate 118 * cachelines. There are very few zone structures in the machine, so space 119 * consumption is not a concern here. 120 */ 121#if defined(CONFIG_SMP) 122struct zone_padding { 123 char x[0]; 124} ____cacheline_internodealigned_in_smp; 125#define ZONE_PADDING(name) struct zone_padding name; 126#else 127#define ZONE_PADDING(name) 128#endif 129 130#ifdef CONFIG_NUMA 131enum numa_stat_item { 132 NUMA_HIT, /* allocated in intended node */ 133 NUMA_MISS, /* allocated in non intended node */ 134 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 135 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 136 NUMA_LOCAL, /* allocation from local node */ 137 NUMA_OTHER, /* allocation from other node */ 138 NR_VM_NUMA_EVENT_ITEMS 139}; 140#else 141#define NR_VM_NUMA_EVENT_ITEMS 0 142#endif 143 144enum zone_stat_item { 145 /* First 128 byte cacheline (assuming 64 bit words) */ 146 NR_FREE_PAGES, 147 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 148 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 149 NR_ZONE_ACTIVE_ANON, 150 NR_ZONE_INACTIVE_FILE, 151 NR_ZONE_ACTIVE_FILE, 152 NR_ZONE_UNEVICTABLE, 153 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 154 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 155 /* Second 128 byte cacheline */ 156 NR_BOUNCE, 157#if IS_ENABLED(CONFIG_ZSMALLOC) 158 NR_ZSPAGES, /* allocated in zsmalloc */ 159#endif 160 NR_FREE_CMA_PAGES, 161 NR_VM_ZONE_STAT_ITEMS }; 162 163enum node_stat_item { 164 NR_LRU_BASE, 165 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 166 NR_ACTIVE_ANON, /* " " " " " */ 167 NR_INACTIVE_FILE, /* " " " " " */ 168 NR_ACTIVE_FILE, /* " " " " " */ 169 NR_UNEVICTABLE, /* " " " " " */ 170 NR_SLAB_RECLAIMABLE_B, 171 NR_SLAB_UNRECLAIMABLE_B, 172 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 173 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 174 WORKINGSET_NODES, 175 WORKINGSET_REFAULT_BASE, 176 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 177 WORKINGSET_REFAULT_FILE, 178 WORKINGSET_ACTIVATE_BASE, 179 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 180 WORKINGSET_ACTIVATE_FILE, 181 WORKINGSET_RESTORE_BASE, 182 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 183 WORKINGSET_RESTORE_FILE, 184 WORKINGSET_NODERECLAIM, 185 NR_ANON_MAPPED, /* Mapped anonymous pages */ 186 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 187 only modified from process context */ 188 NR_FILE_PAGES, 189 NR_FILE_DIRTY, 190 NR_WRITEBACK, 191 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 192 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 193 NR_SHMEM_THPS, 194 NR_SHMEM_PMDMAPPED, 195 NR_FILE_THPS, 196 NR_FILE_PMDMAPPED, 197 NR_ANON_THPS, 198 NR_VMSCAN_WRITE, 199 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 200 NR_DIRTIED, /* page dirtyings since bootup */ 201 NR_WRITTEN, /* page writings since bootup */ 202 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 203 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 204 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 205 NR_KERNEL_STACK_KB, /* measured in KiB */ 206#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 207 NR_KERNEL_SCS_KB, /* measured in KiB */ 208#endif 209 NR_PAGETABLE, /* used for pagetables */ 210#ifdef CONFIG_SWAP 211 NR_SWAPCACHE, 212#endif 213 NR_VM_NODE_STAT_ITEMS 214}; 215 216/* 217 * Returns true if the item should be printed in THPs (/proc/vmstat 218 * currently prints number of anon, file and shmem THPs. But the item 219 * is charged in pages). 220 */ 221static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 222{ 223 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 224 return false; 225 226 return item == NR_ANON_THPS || 227 item == NR_FILE_THPS || 228 item == NR_SHMEM_THPS || 229 item == NR_SHMEM_PMDMAPPED || 230 item == NR_FILE_PMDMAPPED; 231} 232 233/* 234 * Returns true if the value is measured in bytes (most vmstat values are 235 * measured in pages). This defines the API part, the internal representation 236 * might be different. 237 */ 238static __always_inline bool vmstat_item_in_bytes(int idx) 239{ 240 /* 241 * Global and per-node slab counters track slab pages. 242 * It's expected that changes are multiples of PAGE_SIZE. 243 * Internally values are stored in pages. 244 * 245 * Per-memcg and per-lruvec counters track memory, consumed 246 * by individual slab objects. These counters are actually 247 * byte-precise. 248 */ 249 return (idx == NR_SLAB_RECLAIMABLE_B || 250 idx == NR_SLAB_UNRECLAIMABLE_B); 251} 252 253/* 254 * We do arithmetic on the LRU lists in various places in the code, 255 * so it is important to keep the active lists LRU_ACTIVE higher in 256 * the array than the corresponding inactive lists, and to keep 257 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 258 * 259 * This has to be kept in sync with the statistics in zone_stat_item 260 * above and the descriptions in vmstat_text in mm/vmstat.c 261 */ 262#define LRU_BASE 0 263#define LRU_ACTIVE 1 264#define LRU_FILE 2 265 266enum lru_list { 267 LRU_INACTIVE_ANON = LRU_BASE, 268 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 269 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 270 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 271 LRU_UNEVICTABLE, 272 NR_LRU_LISTS 273}; 274 275#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 276 277#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 278 279static inline bool is_file_lru(enum lru_list lru) 280{ 281 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 282} 283 284static inline bool is_active_lru(enum lru_list lru) 285{ 286 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 287} 288 289#define ANON_AND_FILE 2 290 291enum lruvec_flags { 292 LRUVEC_CONGESTED, /* lruvec has many dirty pages 293 * backed by a congested BDI 294 */ 295}; 296 297struct lruvec { 298 struct list_head lists[NR_LRU_LISTS]; 299 /* per lruvec lru_lock for memcg */ 300 spinlock_t lru_lock; 301 /* 302 * These track the cost of reclaiming one LRU - file or anon - 303 * over the other. As the observed cost of reclaiming one LRU 304 * increases, the reclaim scan balance tips toward the other. 305 */ 306 unsigned long anon_cost; 307 unsigned long file_cost; 308 /* Non-resident age, driven by LRU movement */ 309 atomic_long_t nonresident_age; 310 /* Refaults at the time of last reclaim cycle */ 311 unsigned long refaults[ANON_AND_FILE]; 312 /* Various lruvec state flags (enum lruvec_flags) */ 313 unsigned long flags; 314#ifdef CONFIG_MEMCG 315 struct pglist_data *pgdat; 316#endif 317}; 318 319/* Isolate unmapped pages */ 320#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 321/* Isolate for asynchronous migration */ 322#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 323/* Isolate unevictable pages */ 324#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 325 326/* LRU Isolation modes. */ 327typedef unsigned __bitwise isolate_mode_t; 328 329enum zone_watermarks { 330 WMARK_MIN, 331 WMARK_LOW, 332 WMARK_HIGH, 333 NR_WMARK 334}; 335 336/* 337 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER plus one additional 338 * for pageblock size for THP if configured. 339 */ 340#ifdef CONFIG_TRANSPARENT_HUGEPAGE 341#define NR_PCP_THP 1 342#else 343#define NR_PCP_THP 0 344#endif 345#define NR_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1 + NR_PCP_THP)) 346 347/* 348 * Shift to encode migratetype and order in the same integer, with order 349 * in the least significant bits. 350 */ 351#define NR_PCP_ORDER_WIDTH 8 352#define NR_PCP_ORDER_MASK ((1<<NR_PCP_ORDER_WIDTH) - 1) 353 354#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 355#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 356#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 357#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 358 359/* Fields and list protected by pagesets local_lock in page_alloc.c */ 360struct per_cpu_pages { 361 int count; /* number of pages in the list */ 362 int high; /* high watermark, emptying needed */ 363 int batch; /* chunk size for buddy add/remove */ 364 short free_factor; /* batch scaling factor during free */ 365#ifdef CONFIG_NUMA 366 short expire; /* When 0, remote pagesets are drained */ 367#endif 368 369 /* Lists of pages, one per migrate type stored on the pcp-lists */ 370 struct list_head lists[NR_PCP_LISTS]; 371}; 372 373struct per_cpu_zonestat { 374#ifdef CONFIG_SMP 375 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 376 s8 stat_threshold; 377#endif 378#ifdef CONFIG_NUMA 379 /* 380 * Low priority inaccurate counters that are only folded 381 * on demand. Use a large type to avoid the overhead of 382 * folding during refresh_cpu_vm_stats. 383 */ 384 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 385#endif 386}; 387 388struct per_cpu_nodestat { 389 s8 stat_threshold; 390 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 391}; 392 393#endif /* !__GENERATING_BOUNDS.H */ 394 395enum zone_type { 396 /* 397 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 398 * to DMA to all of the addressable memory (ZONE_NORMAL). 399 * On architectures where this area covers the whole 32 bit address 400 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 401 * DMA addressing constraints. This distinction is important as a 32bit 402 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 403 * platforms may need both zones as they support peripherals with 404 * different DMA addressing limitations. 405 */ 406#ifdef CONFIG_ZONE_DMA 407 ZONE_DMA, 408#endif 409#ifdef CONFIG_ZONE_DMA32 410 ZONE_DMA32, 411#endif 412 /* 413 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 414 * performed on pages in ZONE_NORMAL if the DMA devices support 415 * transfers to all addressable memory. 416 */ 417 ZONE_NORMAL, 418#ifdef CONFIG_HIGHMEM 419 /* 420 * A memory area that is only addressable by the kernel through 421 * mapping portions into its own address space. This is for example 422 * used by i386 to allow the kernel to address the memory beyond 423 * 900MB. The kernel will set up special mappings (page 424 * table entries on i386) for each page that the kernel needs to 425 * access. 426 */ 427 ZONE_HIGHMEM, 428#endif 429 /* 430 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 431 * movable pages with few exceptional cases described below. Main use 432 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 433 * likely to succeed, and to locally limit unmovable allocations - e.g., 434 * to increase the number of THP/huge pages. Notable special cases are: 435 * 436 * 1. Pinned pages: (long-term) pinning of movable pages might 437 * essentially turn such pages unmovable. Therefore, we do not allow 438 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 439 * faulted, they come from the right zone right away. However, it is 440 * still possible that address space already has pages in 441 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 442 * touches that memory before pinning). In such case we migrate them 443 * to a different zone. When migration fails - pinning fails. 444 * 2. memblock allocations: kernelcore/movablecore setups might create 445 * situations where ZONE_MOVABLE contains unmovable allocations 446 * after boot. Memory offlining and allocations fail early. 447 * 3. Memory holes: kernelcore/movablecore setups might create very rare 448 * situations where ZONE_MOVABLE contains memory holes after boot, 449 * for example, if we have sections that are only partially 450 * populated. Memory offlining and allocations fail early. 451 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 452 * memory offlining, such pages cannot be allocated. 453 * 5. Unmovable PG_offline pages: in paravirtualized environments, 454 * hotplugged memory blocks might only partially be managed by the 455 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 456 * parts not manged by the buddy are unmovable PG_offline pages. In 457 * some cases (virtio-mem), such pages can be skipped during 458 * memory offlining, however, cannot be moved/allocated. These 459 * techniques might use alloc_contig_range() to hide previously 460 * exposed pages from the buddy again (e.g., to implement some sort 461 * of memory unplug in virtio-mem). 462 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 463 * situations where ZERO_PAGE(0) which is allocated differently 464 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 465 * cannot be migrated. 466 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 467 * memory to the MOVABLE zone, the vmemmap pages are also placed in 468 * such zone. Such pages cannot be really moved around as they are 469 * self-stored in the range, but they are treated as movable when 470 * the range they describe is about to be offlined. 471 * 472 * In general, no unmovable allocations that degrade memory offlining 473 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 474 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 475 * if has_unmovable_pages() states that there are no unmovable pages, 476 * there can be false negatives). 477 */ 478 ZONE_MOVABLE, 479#ifdef CONFIG_ZONE_DEVICE 480 ZONE_DEVICE, 481#endif 482 __MAX_NR_ZONES 483 484}; 485 486#ifndef __GENERATING_BOUNDS_H 487 488#define ASYNC_AND_SYNC 2 489 490struct zone { 491 /* Read-mostly fields */ 492 493 /* zone watermarks, access with *_wmark_pages(zone) macros */ 494 unsigned long _watermark[NR_WMARK]; 495 unsigned long watermark_boost; 496 497 unsigned long nr_reserved_highatomic; 498 499 /* 500 * We don't know if the memory that we're going to allocate will be 501 * freeable or/and it will be released eventually, so to avoid totally 502 * wasting several GB of ram we must reserve some of the lower zone 503 * memory (otherwise we risk to run OOM on the lower zones despite 504 * there being tons of freeable ram on the higher zones). This array is 505 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 506 * changes. 507 */ 508 long lowmem_reserve[MAX_NR_ZONES]; 509 510#ifdef CONFIG_NUMA 511 int node; 512#endif 513 struct pglist_data *zone_pgdat; 514 struct per_cpu_pages __percpu *per_cpu_pageset; 515 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 516 /* 517 * the high and batch values are copied to individual pagesets for 518 * faster access 519 */ 520 int pageset_high; 521 int pageset_batch; 522 523#ifndef CONFIG_SPARSEMEM 524 /* 525 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 526 * In SPARSEMEM, this map is stored in struct mem_section 527 */ 528 unsigned long *pageblock_flags; 529#endif /* CONFIG_SPARSEMEM */ 530 531 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 532 unsigned long zone_start_pfn; 533 534 /* 535 * spanned_pages is the total pages spanned by the zone, including 536 * holes, which is calculated as: 537 * spanned_pages = zone_end_pfn - zone_start_pfn; 538 * 539 * present_pages is physical pages existing within the zone, which 540 * is calculated as: 541 * present_pages = spanned_pages - absent_pages(pages in holes); 542 * 543 * present_early_pages is present pages existing within the zone 544 * located on memory available since early boot, excluding hotplugged 545 * memory. 546 * 547 * managed_pages is present pages managed by the buddy system, which 548 * is calculated as (reserved_pages includes pages allocated by the 549 * bootmem allocator): 550 * managed_pages = present_pages - reserved_pages; 551 * 552 * cma pages is present pages that are assigned for CMA use 553 * (MIGRATE_CMA). 554 * 555 * So present_pages may be used by memory hotplug or memory power 556 * management logic to figure out unmanaged pages by checking 557 * (present_pages - managed_pages). And managed_pages should be used 558 * by page allocator and vm scanner to calculate all kinds of watermarks 559 * and thresholds. 560 * 561 * Locking rules: 562 * 563 * zone_start_pfn and spanned_pages are protected by span_seqlock. 564 * It is a seqlock because it has to be read outside of zone->lock, 565 * and it is done in the main allocator path. But, it is written 566 * quite infrequently. 567 * 568 * The span_seq lock is declared along with zone->lock because it is 569 * frequently read in proximity to zone->lock. It's good to 570 * give them a chance of being in the same cacheline. 571 * 572 * Write access to present_pages at runtime should be protected by 573 * mem_hotplug_begin/end(). Any reader who can't tolerant drift of 574 * present_pages should get_online_mems() to get a stable value. 575 */ 576 atomic_long_t managed_pages; 577 unsigned long spanned_pages; 578 unsigned long present_pages; 579#if defined(CONFIG_MEMORY_HOTPLUG) 580 unsigned long present_early_pages; 581#endif 582#ifdef CONFIG_CMA 583 unsigned long cma_pages; 584#endif 585 586 const char *name; 587 588#ifdef CONFIG_MEMORY_ISOLATION 589 /* 590 * Number of isolated pageblock. It is used to solve incorrect 591 * freepage counting problem due to racy retrieving migratetype 592 * of pageblock. Protected by zone->lock. 593 */ 594 unsigned long nr_isolate_pageblock; 595#endif 596 597#ifdef CONFIG_MEMORY_HOTPLUG 598 /* see spanned/present_pages for more description */ 599 seqlock_t span_seqlock; 600#endif 601 602 int initialized; 603 604 /* Write-intensive fields used from the page allocator */ 605 ZONE_PADDING(_pad1_) 606 607 /* free areas of different sizes */ 608 struct free_area free_area[MAX_ORDER]; 609 610 /* zone flags, see below */ 611 unsigned long flags; 612 613 /* Primarily protects free_area */ 614 spinlock_t lock; 615 616 /* Write-intensive fields used by compaction and vmstats. */ 617 ZONE_PADDING(_pad2_) 618 619 /* 620 * When free pages are below this point, additional steps are taken 621 * when reading the number of free pages to avoid per-cpu counter 622 * drift allowing watermarks to be breached 623 */ 624 unsigned long percpu_drift_mark; 625 626#if defined CONFIG_COMPACTION || defined CONFIG_CMA 627 /* pfn where compaction free scanner should start */ 628 unsigned long compact_cached_free_pfn; 629 /* pfn where compaction migration scanner should start */ 630 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 631 unsigned long compact_init_migrate_pfn; 632 unsigned long compact_init_free_pfn; 633#endif 634 635#ifdef CONFIG_COMPACTION 636 /* 637 * On compaction failure, 1<<compact_defer_shift compactions 638 * are skipped before trying again. The number attempted since 639 * last failure is tracked with compact_considered. 640 * compact_order_failed is the minimum compaction failed order. 641 */ 642 unsigned int compact_considered; 643 unsigned int compact_defer_shift; 644 int compact_order_failed; 645#endif 646 647#if defined CONFIG_COMPACTION || defined CONFIG_CMA 648 /* Set to true when the PG_migrate_skip bits should be cleared */ 649 bool compact_blockskip_flush; 650#endif 651 652 bool contiguous; 653 654 ZONE_PADDING(_pad3_) 655 /* Zone statistics */ 656 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 657 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 658} ____cacheline_internodealigned_in_smp; 659 660enum pgdat_flags { 661 PGDAT_DIRTY, /* reclaim scanning has recently found 662 * many dirty file pages at the tail 663 * of the LRU. 664 */ 665 PGDAT_WRITEBACK, /* reclaim scanning has recently found 666 * many pages under writeback 667 */ 668 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 669}; 670 671enum zone_flags { 672 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 673 * Cleared when kswapd is woken. 674 */ 675 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 676}; 677 678static inline unsigned long zone_managed_pages(struct zone *zone) 679{ 680 return (unsigned long)atomic_long_read(&zone->managed_pages); 681} 682 683static inline unsigned long zone_cma_pages(struct zone *zone) 684{ 685#ifdef CONFIG_CMA 686 return zone->cma_pages; 687#else 688 return 0; 689#endif 690} 691 692static inline unsigned long zone_end_pfn(const struct zone *zone) 693{ 694 return zone->zone_start_pfn + zone->spanned_pages; 695} 696 697static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 698{ 699 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 700} 701 702static inline bool zone_is_initialized(struct zone *zone) 703{ 704 return zone->initialized; 705} 706 707static inline bool zone_is_empty(struct zone *zone) 708{ 709 return zone->spanned_pages == 0; 710} 711 712/* 713 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 714 * intersection with the given zone 715 */ 716static inline bool zone_intersects(struct zone *zone, 717 unsigned long start_pfn, unsigned long nr_pages) 718{ 719 if (zone_is_empty(zone)) 720 return false; 721 if (start_pfn >= zone_end_pfn(zone) || 722 start_pfn + nr_pages <= zone->zone_start_pfn) 723 return false; 724 725 return true; 726} 727 728/* 729 * The "priority" of VM scanning is how much of the queues we will scan in one 730 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 731 * queues ("queue_length >> 12") during an aging round. 732 */ 733#define DEF_PRIORITY 12 734 735/* Maximum number of zones on a zonelist */ 736#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 737 738enum { 739 ZONELIST_FALLBACK, /* zonelist with fallback */ 740#ifdef CONFIG_NUMA 741 /* 742 * The NUMA zonelists are doubled because we need zonelists that 743 * restrict the allocations to a single node for __GFP_THISNODE. 744 */ 745 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 746#endif 747 MAX_ZONELISTS 748}; 749 750/* 751 * This struct contains information about a zone in a zonelist. It is stored 752 * here to avoid dereferences into large structures and lookups of tables 753 */ 754struct zoneref { 755 struct zone *zone; /* Pointer to actual zone */ 756 int zone_idx; /* zone_idx(zoneref->zone) */ 757}; 758 759/* 760 * One allocation request operates on a zonelist. A zonelist 761 * is a list of zones, the first one is the 'goal' of the 762 * allocation, the other zones are fallback zones, in decreasing 763 * priority. 764 * 765 * To speed the reading of the zonelist, the zonerefs contain the zone index 766 * of the entry being read. Helper functions to access information given 767 * a struct zoneref are 768 * 769 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 770 * zonelist_zone_idx() - Return the index of the zone for an entry 771 * zonelist_node_idx() - Return the index of the node for an entry 772 */ 773struct zonelist { 774 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 775}; 776 777/* 778 * The array of struct pages for flatmem. 779 * It must be declared for SPARSEMEM as well because there are configurations 780 * that rely on that. 781 */ 782extern struct page *mem_map; 783 784#ifdef CONFIG_TRANSPARENT_HUGEPAGE 785struct deferred_split { 786 spinlock_t split_queue_lock; 787 struct list_head split_queue; 788 unsigned long split_queue_len; 789}; 790#endif 791 792/* 793 * On NUMA machines, each NUMA node would have a pg_data_t to describe 794 * it's memory layout. On UMA machines there is a single pglist_data which 795 * describes the whole memory. 796 * 797 * Memory statistics and page replacement data structures are maintained on a 798 * per-zone basis. 799 */ 800typedef struct pglist_data { 801 /* 802 * node_zones contains just the zones for THIS node. Not all of the 803 * zones may be populated, but it is the full list. It is referenced by 804 * this node's node_zonelists as well as other node's node_zonelists. 805 */ 806 struct zone node_zones[MAX_NR_ZONES]; 807 808 /* 809 * node_zonelists contains references to all zones in all nodes. 810 * Generally the first zones will be references to this node's 811 * node_zones. 812 */ 813 struct zonelist node_zonelists[MAX_ZONELISTS]; 814 815 int nr_zones; /* number of populated zones in this node */ 816#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 817 struct page *node_mem_map; 818#ifdef CONFIG_PAGE_EXTENSION 819 struct page_ext *node_page_ext; 820#endif 821#endif 822#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 823 /* 824 * Must be held any time you expect node_start_pfn, 825 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 826 * Also synchronizes pgdat->first_deferred_pfn during deferred page 827 * init. 828 * 829 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 830 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 831 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 832 * 833 * Nests above zone->lock and zone->span_seqlock 834 */ 835 spinlock_t node_size_lock; 836#endif 837 unsigned long node_start_pfn; 838 unsigned long node_present_pages; /* total number of physical pages */ 839 unsigned long node_spanned_pages; /* total size of physical page 840 range, including holes */ 841 int node_id; 842 wait_queue_head_t kswapd_wait; 843 wait_queue_head_t pfmemalloc_wait; 844 struct task_struct *kswapd; /* Protected by 845 mem_hotplug_begin/end() */ 846 int kswapd_order; 847 enum zone_type kswapd_highest_zoneidx; 848 849 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 850 851#ifdef CONFIG_COMPACTION 852 int kcompactd_max_order; 853 enum zone_type kcompactd_highest_zoneidx; 854 wait_queue_head_t kcompactd_wait; 855 struct task_struct *kcompactd; 856 bool proactive_compact_trigger; 857#endif 858 /* 859 * This is a per-node reserve of pages that are not available 860 * to userspace allocations. 861 */ 862 unsigned long totalreserve_pages; 863 864#ifdef CONFIG_NUMA 865 /* 866 * node reclaim becomes active if more unmapped pages exist. 867 */ 868 unsigned long min_unmapped_pages; 869 unsigned long min_slab_pages; 870#endif /* CONFIG_NUMA */ 871 872 /* Write-intensive fields used by page reclaim */ 873 ZONE_PADDING(_pad1_) 874 875#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 876 /* 877 * If memory initialisation on large machines is deferred then this 878 * is the first PFN that needs to be initialised. 879 */ 880 unsigned long first_deferred_pfn; 881#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 882 883#ifdef CONFIG_TRANSPARENT_HUGEPAGE 884 struct deferred_split deferred_split_queue; 885#endif 886 887 /* Fields commonly accessed by the page reclaim scanner */ 888 889 /* 890 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 891 * 892 * Use mem_cgroup_lruvec() to look up lruvecs. 893 */ 894 struct lruvec __lruvec; 895 896 unsigned long flags; 897 898 ZONE_PADDING(_pad2_) 899 900 /* Per-node vmstats */ 901 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 902 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 903} pg_data_t; 904 905#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 906#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 907#ifdef CONFIG_FLATMEM 908#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr)) 909#else 910#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr)) 911#endif 912#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr)) 913 914#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 915#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 916 917static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 918{ 919 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 920} 921 922static inline bool pgdat_is_empty(pg_data_t *pgdat) 923{ 924 return !pgdat->node_start_pfn && !pgdat->node_spanned_pages; 925} 926 927#include <linux/memory_hotplug.h> 928 929void build_all_zonelists(pg_data_t *pgdat); 930void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 931 enum zone_type highest_zoneidx); 932bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 933 int highest_zoneidx, unsigned int alloc_flags, 934 long free_pages); 935bool zone_watermark_ok(struct zone *z, unsigned int order, 936 unsigned long mark, int highest_zoneidx, 937 unsigned int alloc_flags); 938bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 939 unsigned long mark, int highest_zoneidx); 940/* 941 * Memory initialization context, use to differentiate memory added by 942 * the platform statically or via memory hotplug interface. 943 */ 944enum meminit_context { 945 MEMINIT_EARLY, 946 MEMINIT_HOTPLUG, 947}; 948 949extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 950 unsigned long size); 951 952extern void lruvec_init(struct lruvec *lruvec); 953 954static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 955{ 956#ifdef CONFIG_MEMCG 957 return lruvec->pgdat; 958#else 959 return container_of(lruvec, struct pglist_data, __lruvec); 960#endif 961} 962 963#ifdef CONFIG_HAVE_MEMORYLESS_NODES 964int local_memory_node(int node_id); 965#else 966static inline int local_memory_node(int node_id) { return node_id; }; 967#endif 968 969/* 970 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 971 */ 972#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 973 974#ifdef CONFIG_ZONE_DEVICE 975static inline bool zone_is_zone_device(struct zone *zone) 976{ 977 return zone_idx(zone) == ZONE_DEVICE; 978} 979#else 980static inline bool zone_is_zone_device(struct zone *zone) 981{ 982 return false; 983} 984#endif 985 986/* 987 * Returns true if a zone has pages managed by the buddy allocator. 988 * All the reclaim decisions have to use this function rather than 989 * populated_zone(). If the whole zone is reserved then we can easily 990 * end up with populated_zone() && !managed_zone(). 991 */ 992static inline bool managed_zone(struct zone *zone) 993{ 994 return zone_managed_pages(zone); 995} 996 997/* Returns true if a zone has memory */ 998static inline bool populated_zone(struct zone *zone) 999{ 1000 return zone->present_pages; 1001} 1002 1003#ifdef CONFIG_NUMA 1004static inline int zone_to_nid(struct zone *zone) 1005{ 1006 return zone->node; 1007} 1008 1009static inline void zone_set_nid(struct zone *zone, int nid) 1010{ 1011 zone->node = nid; 1012} 1013#else 1014static inline int zone_to_nid(struct zone *zone) 1015{ 1016 return 0; 1017} 1018 1019static inline void zone_set_nid(struct zone *zone, int nid) {} 1020#endif 1021 1022extern int movable_zone; 1023 1024static inline int is_highmem_idx(enum zone_type idx) 1025{ 1026#ifdef CONFIG_HIGHMEM 1027 return (idx == ZONE_HIGHMEM || 1028 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1029#else 1030 return 0; 1031#endif 1032} 1033 1034/** 1035 * is_highmem - helper function to quickly check if a struct zone is a 1036 * highmem zone or not. This is an attempt to keep references 1037 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1038 * @zone: pointer to struct zone variable 1039 * Return: 1 for a highmem zone, 0 otherwise 1040 */ 1041static inline int is_highmem(struct zone *zone) 1042{ 1043#ifdef CONFIG_HIGHMEM 1044 return is_highmem_idx(zone_idx(zone)); 1045#else 1046 return 0; 1047#endif 1048} 1049 1050/* These two functions are used to setup the per zone pages min values */ 1051struct ctl_table; 1052 1053int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1054 loff_t *); 1055int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1056 size_t *, loff_t *); 1057extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1058int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1059 size_t *, loff_t *); 1060int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1061 void *, size_t *, loff_t *); 1062int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1063 void *, size_t *, loff_t *); 1064int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1065 void *, size_t *, loff_t *); 1066int numa_zonelist_order_handler(struct ctl_table *, int, 1067 void *, size_t *, loff_t *); 1068extern int percpu_pagelist_high_fraction; 1069extern char numa_zonelist_order[]; 1070#define NUMA_ZONELIST_ORDER_LEN 16 1071 1072#ifndef CONFIG_NUMA 1073 1074extern struct pglist_data contig_page_data; 1075static inline struct pglist_data *NODE_DATA(int nid) 1076{ 1077 return &contig_page_data; 1078} 1079#define NODE_MEM_MAP(nid) mem_map 1080 1081#else /* CONFIG_NUMA */ 1082 1083#include <asm/mmzone.h> 1084 1085#endif /* !CONFIG_NUMA */ 1086 1087extern struct pglist_data *first_online_pgdat(void); 1088extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1089extern struct zone *next_zone(struct zone *zone); 1090 1091/** 1092 * for_each_online_pgdat - helper macro to iterate over all online nodes 1093 * @pgdat: pointer to a pg_data_t variable 1094 */ 1095#define for_each_online_pgdat(pgdat) \ 1096 for (pgdat = first_online_pgdat(); \ 1097 pgdat; \ 1098 pgdat = next_online_pgdat(pgdat)) 1099/** 1100 * for_each_zone - helper macro to iterate over all memory zones 1101 * @zone: pointer to struct zone variable 1102 * 1103 * The user only needs to declare the zone variable, for_each_zone 1104 * fills it in. 1105 */ 1106#define for_each_zone(zone) \ 1107 for (zone = (first_online_pgdat())->node_zones; \ 1108 zone; \ 1109 zone = next_zone(zone)) 1110 1111#define for_each_populated_zone(zone) \ 1112 for (zone = (first_online_pgdat())->node_zones; \ 1113 zone; \ 1114 zone = next_zone(zone)) \ 1115 if (!populated_zone(zone)) \ 1116 ; /* do nothing */ \ 1117 else 1118 1119static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1120{ 1121 return zoneref->zone; 1122} 1123 1124static inline int zonelist_zone_idx(struct zoneref *zoneref) 1125{ 1126 return zoneref->zone_idx; 1127} 1128 1129static inline int zonelist_node_idx(struct zoneref *zoneref) 1130{ 1131 return zone_to_nid(zoneref->zone); 1132} 1133 1134struct zoneref *__next_zones_zonelist(struct zoneref *z, 1135 enum zone_type highest_zoneidx, 1136 nodemask_t *nodes); 1137 1138/** 1139 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1140 * @z: The cursor used as a starting point for the search 1141 * @highest_zoneidx: The zone index of the highest zone to return 1142 * @nodes: An optional nodemask to filter the zonelist with 1143 * 1144 * This function returns the next zone at or below a given zone index that is 1145 * within the allowed nodemask using a cursor as the starting point for the 1146 * search. The zoneref returned is a cursor that represents the current zone 1147 * being examined. It should be advanced by one before calling 1148 * next_zones_zonelist again. 1149 * 1150 * Return: the next zone at or below highest_zoneidx within the allowed 1151 * nodemask using a cursor within a zonelist as a starting point 1152 */ 1153static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1154 enum zone_type highest_zoneidx, 1155 nodemask_t *nodes) 1156{ 1157 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1158 return z; 1159 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1160} 1161 1162/** 1163 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1164 * @zonelist: The zonelist to search for a suitable zone 1165 * @highest_zoneidx: The zone index of the highest zone to return 1166 * @nodes: An optional nodemask to filter the zonelist with 1167 * 1168 * This function returns the first zone at or below a given zone index that is 1169 * within the allowed nodemask. The zoneref returned is a cursor that can be 1170 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1171 * one before calling. 1172 * 1173 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1174 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1175 * update due to cpuset modification. 1176 * 1177 * Return: Zoneref pointer for the first suitable zone found 1178 */ 1179static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1180 enum zone_type highest_zoneidx, 1181 nodemask_t *nodes) 1182{ 1183 return next_zones_zonelist(zonelist->_zonerefs, 1184 highest_zoneidx, nodes); 1185} 1186 1187/** 1188 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1189 * @zone: The current zone in the iterator 1190 * @z: The current pointer within zonelist->_zonerefs being iterated 1191 * @zlist: The zonelist being iterated 1192 * @highidx: The zone index of the highest zone to return 1193 * @nodemask: Nodemask allowed by the allocator 1194 * 1195 * This iterator iterates though all zones at or below a given zone index and 1196 * within a given nodemask 1197 */ 1198#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1199 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1200 zone; \ 1201 z = next_zones_zonelist(++z, highidx, nodemask), \ 1202 zone = zonelist_zone(z)) 1203 1204#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1205 for (zone = z->zone; \ 1206 zone; \ 1207 z = next_zones_zonelist(++z, highidx, nodemask), \ 1208 zone = zonelist_zone(z)) 1209 1210 1211/** 1212 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1213 * @zone: The current zone in the iterator 1214 * @z: The current pointer within zonelist->zones being iterated 1215 * @zlist: The zonelist being iterated 1216 * @highidx: The zone index of the highest zone to return 1217 * 1218 * This iterator iterates though all zones at or below a given zone index. 1219 */ 1220#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1221 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1222 1223#ifdef CONFIG_SPARSEMEM 1224#include <asm/sparsemem.h> 1225#endif 1226 1227#ifdef CONFIG_FLATMEM 1228#define pfn_to_nid(pfn) (0) 1229#endif 1230 1231#ifdef CONFIG_SPARSEMEM 1232 1233/* 1234 * PA_SECTION_SHIFT physical address to/from section number 1235 * PFN_SECTION_SHIFT pfn to/from section number 1236 */ 1237#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1238#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1239 1240#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1241 1242#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1243#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1244 1245#define SECTION_BLOCKFLAGS_BITS \ 1246 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1247 1248#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS 1249#error Allocator MAX_ORDER exceeds SECTION_SIZE 1250#endif 1251 1252static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1253{ 1254 return pfn >> PFN_SECTION_SHIFT; 1255} 1256static inline unsigned long section_nr_to_pfn(unsigned long sec) 1257{ 1258 return sec << PFN_SECTION_SHIFT; 1259} 1260 1261#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1262#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1263 1264#define SUBSECTION_SHIFT 21 1265#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1266 1267#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1268#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1269#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1270 1271#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1272#error Subsection size exceeds section size 1273#else 1274#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1275#endif 1276 1277#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1278#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1279 1280struct mem_section_usage { 1281#ifdef CONFIG_SPARSEMEM_VMEMMAP 1282 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1283#endif 1284 /* See declaration of similar field in struct zone */ 1285 unsigned long pageblock_flags[0]; 1286}; 1287 1288void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1289 1290struct page; 1291struct page_ext; 1292struct mem_section { 1293 /* 1294 * This is, logically, a pointer to an array of struct 1295 * pages. However, it is stored with some other magic. 1296 * (see sparse.c::sparse_init_one_section()) 1297 * 1298 * Additionally during early boot we encode node id of 1299 * the location of the section here to guide allocation. 1300 * (see sparse.c::memory_present()) 1301 * 1302 * Making it a UL at least makes someone do a cast 1303 * before using it wrong. 1304 */ 1305 unsigned long section_mem_map; 1306 1307 struct mem_section_usage *usage; 1308#ifdef CONFIG_PAGE_EXTENSION 1309 /* 1310 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1311 * section. (see page_ext.h about this.) 1312 */ 1313 struct page_ext *page_ext; 1314 unsigned long pad; 1315#endif 1316 /* 1317 * WARNING: mem_section must be a power-of-2 in size for the 1318 * calculation and use of SECTION_ROOT_MASK to make sense. 1319 */ 1320}; 1321 1322#ifdef CONFIG_SPARSEMEM_EXTREME 1323#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1324#else 1325#define SECTIONS_PER_ROOT 1 1326#endif 1327 1328#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1329#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1330#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1331 1332#ifdef CONFIG_SPARSEMEM_EXTREME 1333extern struct mem_section **mem_section; 1334#else 1335extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1336#endif 1337 1338static inline unsigned long *section_to_usemap(struct mem_section *ms) 1339{ 1340 return ms->usage->pageblock_flags; 1341} 1342 1343static inline struct mem_section *__nr_to_section(unsigned long nr) 1344{ 1345#ifdef CONFIG_SPARSEMEM_EXTREME 1346 if (!mem_section) 1347 return NULL; 1348#endif 1349 if (!mem_section[SECTION_NR_TO_ROOT(nr)]) 1350 return NULL; 1351 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK]; 1352} 1353extern size_t mem_section_usage_size(void); 1354 1355/* 1356 * We use the lower bits of the mem_map pointer to store 1357 * a little bit of information. The pointer is calculated 1358 * as mem_map - section_nr_to_pfn(pnum). The result is 1359 * aligned to the minimum alignment of the two values: 1360 * 1. All mem_map arrays are page-aligned. 1361 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1362 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1363 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1364 * worst combination is powerpc with 256k pages, 1365 * which results in PFN_SECTION_SHIFT equal 6. 1366 * To sum it up, at least 6 bits are available. 1367 */ 1368#define SECTION_MARKED_PRESENT (1UL<<0) 1369#define SECTION_HAS_MEM_MAP (1UL<<1) 1370#define SECTION_IS_ONLINE (1UL<<2) 1371#define SECTION_IS_EARLY (1UL<<3) 1372#define SECTION_TAINT_ZONE_DEVICE (1UL<<4) 1373#define SECTION_MAP_LAST_BIT (1UL<<5) 1374#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1)) 1375#define SECTION_NID_SHIFT 6 1376 1377static inline struct page *__section_mem_map_addr(struct mem_section *section) 1378{ 1379 unsigned long map = section->section_mem_map; 1380 map &= SECTION_MAP_MASK; 1381 return (struct page *)map; 1382} 1383 1384static inline int present_section(struct mem_section *section) 1385{ 1386 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1387} 1388 1389static inline int present_section_nr(unsigned long nr) 1390{ 1391 return present_section(__nr_to_section(nr)); 1392} 1393 1394static inline int valid_section(struct mem_section *section) 1395{ 1396 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1397} 1398 1399static inline int early_section(struct mem_section *section) 1400{ 1401 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1402} 1403 1404static inline int valid_section_nr(unsigned long nr) 1405{ 1406 return valid_section(__nr_to_section(nr)); 1407} 1408 1409static inline int online_section(struct mem_section *section) 1410{ 1411 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1412} 1413 1414static inline int online_device_section(struct mem_section *section) 1415{ 1416 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1417 1418 return section && ((section->section_mem_map & flags) == flags); 1419} 1420 1421static inline int online_section_nr(unsigned long nr) 1422{ 1423 return online_section(__nr_to_section(nr)); 1424} 1425 1426#ifdef CONFIG_MEMORY_HOTPLUG 1427void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1428void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1429#endif 1430 1431static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1432{ 1433 return __nr_to_section(pfn_to_section_nr(pfn)); 1434} 1435 1436extern unsigned long __highest_present_section_nr; 1437 1438static inline int subsection_map_index(unsigned long pfn) 1439{ 1440 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1441} 1442 1443#ifdef CONFIG_SPARSEMEM_VMEMMAP 1444static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1445{ 1446 int idx = subsection_map_index(pfn); 1447 1448 return test_bit(idx, ms->usage->subsection_map); 1449} 1450#else 1451static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1452{ 1453 return 1; 1454} 1455#endif 1456 1457#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1458/** 1459 * pfn_valid - check if there is a valid memory map entry for a PFN 1460 * @pfn: the page frame number to check 1461 * 1462 * Check if there is a valid memory map entry aka struct page for the @pfn. 1463 * Note, that availability of the memory map entry does not imply that 1464 * there is actual usable memory at that @pfn. The struct page may 1465 * represent a hole or an unusable page frame. 1466 * 1467 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1468 */ 1469static inline int pfn_valid(unsigned long pfn) 1470{ 1471 struct mem_section *ms; 1472 1473 /* 1474 * Ensure the upper PAGE_SHIFT bits are clear in the 1475 * pfn. Else it might lead to false positives when 1476 * some of the upper bits are set, but the lower bits 1477 * match a valid pfn. 1478 */ 1479 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1480 return 0; 1481 1482 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1483 return 0; 1484 ms = __nr_to_section(pfn_to_section_nr(pfn)); 1485 if (!valid_section(ms)) 1486 return 0; 1487 /* 1488 * Traditionally early sections always returned pfn_valid() for 1489 * the entire section-sized span. 1490 */ 1491 return early_section(ms) || pfn_section_valid(ms, pfn); 1492} 1493#endif 1494 1495static inline int pfn_in_present_section(unsigned long pfn) 1496{ 1497 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1498 return 0; 1499 return present_section(__nr_to_section(pfn_to_section_nr(pfn))); 1500} 1501 1502static inline unsigned long next_present_section_nr(unsigned long section_nr) 1503{ 1504 while (++section_nr <= __highest_present_section_nr) { 1505 if (present_section_nr(section_nr)) 1506 return section_nr; 1507 } 1508 1509 return -1; 1510} 1511 1512/* 1513 * These are _only_ used during initialisation, therefore they 1514 * can use __initdata ... They could have names to indicate 1515 * this restriction. 1516 */ 1517#ifdef CONFIG_NUMA 1518#define pfn_to_nid(pfn) \ 1519({ \ 1520 unsigned long __pfn_to_nid_pfn = (pfn); \ 1521 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 1522}) 1523#else 1524#define pfn_to_nid(pfn) (0) 1525#endif 1526 1527void sparse_init(void); 1528#else 1529#define sparse_init() do {} while (0) 1530#define sparse_index_init(_sec, _nid) do {} while (0) 1531#define pfn_in_present_section pfn_valid 1532#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 1533#endif /* CONFIG_SPARSEMEM */ 1534 1535#endif /* !__GENERATING_BOUNDS.H */ 1536#endif /* !__ASSEMBLY__ */ 1537#endif /* _LINUX_MMZONE_H */