at v5.15 106 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page-flags.h> 28#include <linux/page_ref.h> 29#include <linux/memremap.h> 30#include <linux/overflow.h> 31#include <linux/sizes.h> 32#include <linux/sched.h> 33#include <linux/pgtable.h> 34#include <linux/kasan.h> 35 36struct mempolicy; 37struct anon_vma; 38struct anon_vma_chain; 39struct file_ra_state; 40struct user_struct; 41struct writeback_control; 42struct bdi_writeback; 43struct pt_regs; 44 45extern int sysctl_page_lock_unfairness; 46 47void init_mm_internals(void); 48 49#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 50extern unsigned long max_mapnr; 51 52static inline void set_max_mapnr(unsigned long limit) 53{ 54 max_mapnr = limit; 55} 56#else 57static inline void set_max_mapnr(unsigned long limit) { } 58#endif 59 60extern atomic_long_t _totalram_pages; 61static inline unsigned long totalram_pages(void) 62{ 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64} 65 66static inline void totalram_pages_inc(void) 67{ 68 atomic_long_inc(&_totalram_pages); 69} 70 71static inline void totalram_pages_dec(void) 72{ 73 atomic_long_dec(&_totalram_pages); 74} 75 76static inline void totalram_pages_add(long count) 77{ 78 atomic_long_add(count, &_totalram_pages); 79} 80 81extern void * high_memory; 82extern int page_cluster; 83 84#ifdef CONFIG_SYSCTL 85extern int sysctl_legacy_va_layout; 86#else 87#define sysctl_legacy_va_layout 0 88#endif 89 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91extern const int mmap_rnd_bits_min; 92extern const int mmap_rnd_bits_max; 93extern int mmap_rnd_bits __read_mostly; 94#endif 95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96extern const int mmap_rnd_compat_bits_min; 97extern const int mmap_rnd_compat_bits_max; 98extern int mmap_rnd_compat_bits __read_mostly; 99#endif 100 101#include <asm/page.h> 102#include <asm/processor.h> 103 104/* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for architectures that don't support memory tagging. 110 */ 111#ifndef untagged_addr 112#define untagged_addr(addr) (addr) 113#endif 114 115#ifndef __pa_symbol 116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117#endif 118 119#ifndef page_to_virt 120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121#endif 122 123#ifndef lm_alias 124#define lm_alias(x) __va(__pa_symbol(x)) 125#endif 126 127/* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134#ifndef mm_forbids_zeropage 135#define mm_forbids_zeropage(X) (0) 136#endif 137 138/* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144#if BITS_PER_LONG == 64 145/* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statements if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152static inline void __mm_zero_struct_page(struct page *page) 153{ 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180} 181#else 182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183#endif 184 185/* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201#define MAPCOUNT_ELF_CORE_MARGIN (5) 202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204extern int sysctl_max_map_count; 205 206extern unsigned long sysctl_user_reserve_kbytes; 207extern unsigned long sysctl_admin_reserve_kbytes; 208 209extern int sysctl_overcommit_memory; 210extern int sysctl_overcommit_ratio; 211extern unsigned long sysctl_overcommit_kbytes; 212 213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219/* 220 * Any attempt to mark this function as static leads to build failure 221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 222 * is referred to by BPF code. This must be visible for error injection. 223 */ 224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 225 pgoff_t index, gfp_t gfp, void **shadowp); 226 227#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 228#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 229#else 230#define nth_page(page,n) ((page) + (n)) 231#endif 232 233/* to align the pointer to the (next) page boundary */ 234#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 235 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 239#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 240 241void setup_initial_init_mm(void *start_code, void *end_code, 242 void *end_data, void *brk); 243 244/* 245 * Linux kernel virtual memory manager primitives. 246 * The idea being to have a "virtual" mm in the same way 247 * we have a virtual fs - giving a cleaner interface to the 248 * mm details, and allowing different kinds of memory mappings 249 * (from shared memory to executable loading to arbitrary 250 * mmap() functions). 251 */ 252 253struct vm_area_struct *vm_area_alloc(struct mm_struct *); 254struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 255void vm_area_free(struct vm_area_struct *); 256 257#ifndef CONFIG_MMU 258extern struct rb_root nommu_region_tree; 259extern struct rw_semaphore nommu_region_sem; 260 261extern unsigned int kobjsize(const void *objp); 262#endif 263 264/* 265 * vm_flags in vm_area_struct, see mm_types.h. 266 * When changing, update also include/trace/events/mmflags.h 267 */ 268#define VM_NONE 0x00000000 269 270#define VM_READ 0x00000001 /* currently active flags */ 271#define VM_WRITE 0x00000002 272#define VM_EXEC 0x00000004 273#define VM_SHARED 0x00000008 274 275/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 276#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 277#define VM_MAYWRITE 0x00000020 278#define VM_MAYEXEC 0x00000040 279#define VM_MAYSHARE 0x00000080 280 281#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 282#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 283#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 284#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 285 286#define VM_LOCKED 0x00002000 287#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 288 289 /* Used by sys_madvise() */ 290#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 291#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 292 293#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 294#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 295#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 296#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 297#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 298#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 299#define VM_SYNC 0x00800000 /* Synchronous page faults */ 300#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 301#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 302#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 303 304#ifdef CONFIG_MEM_SOFT_DIRTY 305# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 306#else 307# define VM_SOFTDIRTY 0 308#endif 309 310#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 311#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 312#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 313#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 314 315#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 316#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 317#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 318#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 319#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 320#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 321#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 322#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 323#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 324#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 325#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 326#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 327 328#ifdef CONFIG_ARCH_HAS_PKEYS 329# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 330# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 331# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 332# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 333# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 334#ifdef CONFIG_PPC 335# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 336#else 337# define VM_PKEY_BIT4 0 338#endif 339#endif /* CONFIG_ARCH_HAS_PKEYS */ 340 341#if defined(CONFIG_X86) 342# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 343#elif defined(CONFIG_PPC) 344# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 345#elif defined(CONFIG_PARISC) 346# define VM_GROWSUP VM_ARCH_1 347#elif defined(CONFIG_IA64) 348# define VM_GROWSUP VM_ARCH_1 349#elif defined(CONFIG_SPARC64) 350# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 351# define VM_ARCH_CLEAR VM_SPARC_ADI 352#elif defined(CONFIG_ARM64) 353# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 354# define VM_ARCH_CLEAR VM_ARM64_BTI 355#elif !defined(CONFIG_MMU) 356# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 357#endif 358 359#if defined(CONFIG_ARM64_MTE) 360# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 361# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 362#else 363# define VM_MTE VM_NONE 364# define VM_MTE_ALLOWED VM_NONE 365#endif 366 367#ifndef VM_GROWSUP 368# define VM_GROWSUP VM_NONE 369#endif 370 371#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 372# define VM_UFFD_MINOR_BIT 37 373# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 374#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 375# define VM_UFFD_MINOR VM_NONE 376#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 377 378/* Bits set in the VMA until the stack is in its final location */ 379#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 380 381#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 382 383/* Common data flag combinations */ 384#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 386#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 387 VM_MAYWRITE | VM_MAYEXEC) 388#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 390 391#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 392#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 393#endif 394 395#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 396#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 397#endif 398 399#ifdef CONFIG_STACK_GROWSUP 400#define VM_STACK VM_GROWSUP 401#else 402#define VM_STACK VM_GROWSDOWN 403#endif 404 405#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 406 407/* VMA basic access permission flags */ 408#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 409 410 411/* 412 * Special vmas that are non-mergable, non-mlock()able. 413 */ 414#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 415 416/* This mask prevents VMA from being scanned with khugepaged */ 417#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 418 419/* This mask defines which mm->def_flags a process can inherit its parent */ 420#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 421 422/* This mask is used to clear all the VMA flags used by mlock */ 423#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 424 425/* Arch-specific flags to clear when updating VM flags on protection change */ 426#ifndef VM_ARCH_CLEAR 427# define VM_ARCH_CLEAR VM_NONE 428#endif 429#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 430 431/* 432 * mapping from the currently active vm_flags protection bits (the 433 * low four bits) to a page protection mask.. 434 */ 435extern pgprot_t protection_map[16]; 436 437/** 438 * enum fault_flag - Fault flag definitions. 439 * @FAULT_FLAG_WRITE: Fault was a write fault. 440 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 441 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 442 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 443 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 444 * @FAULT_FLAG_TRIED: The fault has been tried once. 445 * @FAULT_FLAG_USER: The fault originated in userspace. 446 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 447 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 448 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 449 * 450 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 451 * whether we would allow page faults to retry by specifying these two 452 * fault flags correctly. Currently there can be three legal combinations: 453 * 454 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 455 * this is the first try 456 * 457 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 458 * we've already tried at least once 459 * 460 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 461 * 462 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 463 * be used. Note that page faults can be allowed to retry for multiple times, 464 * in which case we'll have an initial fault with flags (a) then later on 465 * continuous faults with flags (b). We should always try to detect pending 466 * signals before a retry to make sure the continuous page faults can still be 467 * interrupted if necessary. 468 */ 469enum fault_flag { 470 FAULT_FLAG_WRITE = 1 << 0, 471 FAULT_FLAG_MKWRITE = 1 << 1, 472 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 473 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 474 FAULT_FLAG_KILLABLE = 1 << 4, 475 FAULT_FLAG_TRIED = 1 << 5, 476 FAULT_FLAG_USER = 1 << 6, 477 FAULT_FLAG_REMOTE = 1 << 7, 478 FAULT_FLAG_INSTRUCTION = 1 << 8, 479 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 480}; 481 482/* 483 * The default fault flags that should be used by most of the 484 * arch-specific page fault handlers. 485 */ 486#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 487 FAULT_FLAG_KILLABLE | \ 488 FAULT_FLAG_INTERRUPTIBLE) 489 490/** 491 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 492 * @flags: Fault flags. 493 * 494 * This is mostly used for places where we want to try to avoid taking 495 * the mmap_lock for too long a time when waiting for another condition 496 * to change, in which case we can try to be polite to release the 497 * mmap_lock in the first round to avoid potential starvation of other 498 * processes that would also want the mmap_lock. 499 * 500 * Return: true if the page fault allows retry and this is the first 501 * attempt of the fault handling; false otherwise. 502 */ 503static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 504{ 505 return (flags & FAULT_FLAG_ALLOW_RETRY) && 506 (!(flags & FAULT_FLAG_TRIED)); 507} 508 509#define FAULT_FLAG_TRACE \ 510 { FAULT_FLAG_WRITE, "WRITE" }, \ 511 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 512 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 513 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 514 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 515 { FAULT_FLAG_TRIED, "TRIED" }, \ 516 { FAULT_FLAG_USER, "USER" }, \ 517 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 518 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 519 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 520 521/* 522 * vm_fault is filled by the pagefault handler and passed to the vma's 523 * ->fault function. The vma's ->fault is responsible for returning a bitmask 524 * of VM_FAULT_xxx flags that give details about how the fault was handled. 525 * 526 * MM layer fills up gfp_mask for page allocations but fault handler might 527 * alter it if its implementation requires a different allocation context. 528 * 529 * pgoff should be used in favour of virtual_address, if possible. 530 */ 531struct vm_fault { 532 const struct { 533 struct vm_area_struct *vma; /* Target VMA */ 534 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 535 pgoff_t pgoff; /* Logical page offset based on vma */ 536 unsigned long address; /* Faulting virtual address */ 537 }; 538 enum fault_flag flags; /* FAULT_FLAG_xxx flags 539 * XXX: should really be 'const' */ 540 pmd_t *pmd; /* Pointer to pmd entry matching 541 * the 'address' */ 542 pud_t *pud; /* Pointer to pud entry matching 543 * the 'address' 544 */ 545 union { 546 pte_t orig_pte; /* Value of PTE at the time of fault */ 547 pmd_t orig_pmd; /* Value of PMD at the time of fault, 548 * used by PMD fault only. 549 */ 550 }; 551 552 struct page *cow_page; /* Page handler may use for COW fault */ 553 struct page *page; /* ->fault handlers should return a 554 * page here, unless VM_FAULT_NOPAGE 555 * is set (which is also implied by 556 * VM_FAULT_ERROR). 557 */ 558 /* These three entries are valid only while holding ptl lock */ 559 pte_t *pte; /* Pointer to pte entry matching 560 * the 'address'. NULL if the page 561 * table hasn't been allocated. 562 */ 563 spinlock_t *ptl; /* Page table lock. 564 * Protects pte page table if 'pte' 565 * is not NULL, otherwise pmd. 566 */ 567 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 568 * vm_ops->map_pages() sets up a page 569 * table from atomic context. 570 * do_fault_around() pre-allocates 571 * page table to avoid allocation from 572 * atomic context. 573 */ 574}; 575 576/* page entry size for vm->huge_fault() */ 577enum page_entry_size { 578 PE_SIZE_PTE = 0, 579 PE_SIZE_PMD, 580 PE_SIZE_PUD, 581}; 582 583/* 584 * These are the virtual MM functions - opening of an area, closing and 585 * unmapping it (needed to keep files on disk up-to-date etc), pointer 586 * to the functions called when a no-page or a wp-page exception occurs. 587 */ 588struct vm_operations_struct { 589 void (*open)(struct vm_area_struct * area); 590 void (*close)(struct vm_area_struct * area); 591 /* Called any time before splitting to check if it's allowed */ 592 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 593 int (*mremap)(struct vm_area_struct *area); 594 /* 595 * Called by mprotect() to make driver-specific permission 596 * checks before mprotect() is finalised. The VMA must not 597 * be modified. Returns 0 if eprotect() can proceed. 598 */ 599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 600 unsigned long end, unsigned long newflags); 601 vm_fault_t (*fault)(struct vm_fault *vmf); 602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 603 enum page_entry_size pe_size); 604 vm_fault_t (*map_pages)(struct vm_fault *vmf, 605 pgoff_t start_pgoff, pgoff_t end_pgoff); 606 unsigned long (*pagesize)(struct vm_area_struct * area); 607 608 /* notification that a previously read-only page is about to become 609 * writable, if an error is returned it will cause a SIGBUS */ 610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 611 612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 614 615 /* called by access_process_vm when get_user_pages() fails, typically 616 * for use by special VMAs. See also generic_access_phys() for a generic 617 * implementation useful for any iomem mapping. 618 */ 619 int (*access)(struct vm_area_struct *vma, unsigned long addr, 620 void *buf, int len, int write); 621 622 /* Called by the /proc/PID/maps code to ask the vma whether it 623 * has a special name. Returning non-NULL will also cause this 624 * vma to be dumped unconditionally. */ 625 const char *(*name)(struct vm_area_struct *vma); 626 627#ifdef CONFIG_NUMA 628 /* 629 * set_policy() op must add a reference to any non-NULL @new mempolicy 630 * to hold the policy upon return. Caller should pass NULL @new to 631 * remove a policy and fall back to surrounding context--i.e. do not 632 * install a MPOL_DEFAULT policy, nor the task or system default 633 * mempolicy. 634 */ 635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 636 637 /* 638 * get_policy() op must add reference [mpol_get()] to any policy at 639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 640 * in mm/mempolicy.c will do this automatically. 641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 644 * must return NULL--i.e., do not "fallback" to task or system default 645 * policy. 646 */ 647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 648 unsigned long addr); 649#endif 650 /* 651 * Called by vm_normal_page() for special PTEs to find the 652 * page for @addr. This is useful if the default behavior 653 * (using pte_page()) would not find the correct page. 654 */ 655 struct page *(*find_special_page)(struct vm_area_struct *vma, 656 unsigned long addr); 657}; 658 659static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 660{ 661 static const struct vm_operations_struct dummy_vm_ops = {}; 662 663 memset(vma, 0, sizeof(*vma)); 664 vma->vm_mm = mm; 665 vma->vm_ops = &dummy_vm_ops; 666 INIT_LIST_HEAD(&vma->anon_vma_chain); 667} 668 669static inline void vma_set_anonymous(struct vm_area_struct *vma) 670{ 671 vma->vm_ops = NULL; 672} 673 674static inline bool vma_is_anonymous(struct vm_area_struct *vma) 675{ 676 return !vma->vm_ops; 677} 678 679static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 680{ 681 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 682 683 if (!maybe_stack) 684 return false; 685 686 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 687 VM_STACK_INCOMPLETE_SETUP) 688 return true; 689 690 return false; 691} 692 693static inline bool vma_is_foreign(struct vm_area_struct *vma) 694{ 695 if (!current->mm) 696 return true; 697 698 if (current->mm != vma->vm_mm) 699 return true; 700 701 return false; 702} 703 704static inline bool vma_is_accessible(struct vm_area_struct *vma) 705{ 706 return vma->vm_flags & VM_ACCESS_FLAGS; 707} 708 709#ifdef CONFIG_SHMEM 710/* 711 * The vma_is_shmem is not inline because it is used only by slow 712 * paths in userfault. 713 */ 714bool vma_is_shmem(struct vm_area_struct *vma); 715#else 716static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 717#endif 718 719int vma_is_stack_for_current(struct vm_area_struct *vma); 720 721/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 722#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 723 724struct mmu_gather; 725struct inode; 726 727#include <linux/huge_mm.h> 728 729/* 730 * Methods to modify the page usage count. 731 * 732 * What counts for a page usage: 733 * - cache mapping (page->mapping) 734 * - private data (page->private) 735 * - page mapped in a task's page tables, each mapping 736 * is counted separately 737 * 738 * Also, many kernel routines increase the page count before a critical 739 * routine so they can be sure the page doesn't go away from under them. 740 */ 741 742/* 743 * Drop a ref, return true if the refcount fell to zero (the page has no users) 744 */ 745static inline int put_page_testzero(struct page *page) 746{ 747 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 748 return page_ref_dec_and_test(page); 749} 750 751/* 752 * Try to grab a ref unless the page has a refcount of zero, return false if 753 * that is the case. 754 * This can be called when MMU is off so it must not access 755 * any of the virtual mappings. 756 */ 757static inline int get_page_unless_zero(struct page *page) 758{ 759 return page_ref_add_unless(page, 1, 0); 760} 761 762extern int page_is_ram(unsigned long pfn); 763 764enum { 765 REGION_INTERSECTS, 766 REGION_DISJOINT, 767 REGION_MIXED, 768}; 769 770int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 771 unsigned long desc); 772 773/* Support for virtually mapped pages */ 774struct page *vmalloc_to_page(const void *addr); 775unsigned long vmalloc_to_pfn(const void *addr); 776 777/* 778 * Determine if an address is within the vmalloc range 779 * 780 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 781 * is no special casing required. 782 */ 783 784#ifndef is_ioremap_addr 785#define is_ioremap_addr(x) is_vmalloc_addr(x) 786#endif 787 788#ifdef CONFIG_MMU 789extern bool is_vmalloc_addr(const void *x); 790extern int is_vmalloc_or_module_addr(const void *x); 791#else 792static inline bool is_vmalloc_addr(const void *x) 793{ 794 return false; 795} 796static inline int is_vmalloc_or_module_addr(const void *x) 797{ 798 return 0; 799} 800#endif 801 802extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 803static inline void *kvmalloc(size_t size, gfp_t flags) 804{ 805 return kvmalloc_node(size, flags, NUMA_NO_NODE); 806} 807static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 808{ 809 return kvmalloc_node(size, flags | __GFP_ZERO, node); 810} 811static inline void *kvzalloc(size_t size, gfp_t flags) 812{ 813 return kvmalloc(size, flags | __GFP_ZERO); 814} 815 816static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 817{ 818 size_t bytes; 819 820 if (unlikely(check_mul_overflow(n, size, &bytes))) 821 return NULL; 822 823 return kvmalloc(bytes, flags); 824} 825 826static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 827{ 828 return kvmalloc_array(n, size, flags | __GFP_ZERO); 829} 830 831extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, 832 gfp_t flags); 833extern void kvfree(const void *addr); 834extern void kvfree_sensitive(const void *addr, size_t len); 835 836static inline int head_compound_mapcount(struct page *head) 837{ 838 return atomic_read(compound_mapcount_ptr(head)) + 1; 839} 840 841/* 842 * Mapcount of compound page as a whole, does not include mapped sub-pages. 843 * 844 * Must be called only for compound pages or any their tail sub-pages. 845 */ 846static inline int compound_mapcount(struct page *page) 847{ 848 VM_BUG_ON_PAGE(!PageCompound(page), page); 849 page = compound_head(page); 850 return head_compound_mapcount(page); 851} 852 853/* 854 * The atomic page->_mapcount, starts from -1: so that transitions 855 * both from it and to it can be tracked, using atomic_inc_and_test 856 * and atomic_add_negative(-1). 857 */ 858static inline void page_mapcount_reset(struct page *page) 859{ 860 atomic_set(&(page)->_mapcount, -1); 861} 862 863int __page_mapcount(struct page *page); 864 865/* 866 * Mapcount of 0-order page; when compound sub-page, includes 867 * compound_mapcount(). 868 * 869 * Result is undefined for pages which cannot be mapped into userspace. 870 * For example SLAB or special types of pages. See function page_has_type(). 871 * They use this place in struct page differently. 872 */ 873static inline int page_mapcount(struct page *page) 874{ 875 if (unlikely(PageCompound(page))) 876 return __page_mapcount(page); 877 return atomic_read(&page->_mapcount) + 1; 878} 879 880#ifdef CONFIG_TRANSPARENT_HUGEPAGE 881int total_mapcount(struct page *page); 882int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 883#else 884static inline int total_mapcount(struct page *page) 885{ 886 return page_mapcount(page); 887} 888static inline int page_trans_huge_mapcount(struct page *page, 889 int *total_mapcount) 890{ 891 int mapcount = page_mapcount(page); 892 if (total_mapcount) 893 *total_mapcount = mapcount; 894 return mapcount; 895} 896#endif 897 898static inline struct page *virt_to_head_page(const void *x) 899{ 900 struct page *page = virt_to_page(x); 901 902 return compound_head(page); 903} 904 905void __put_page(struct page *page); 906 907void put_pages_list(struct list_head *pages); 908 909void split_page(struct page *page, unsigned int order); 910void copy_huge_page(struct page *dst, struct page *src); 911 912/* 913 * Compound pages have a destructor function. Provide a 914 * prototype for that function and accessor functions. 915 * These are _only_ valid on the head of a compound page. 916 */ 917typedef void compound_page_dtor(struct page *); 918 919/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 920enum compound_dtor_id { 921 NULL_COMPOUND_DTOR, 922 COMPOUND_PAGE_DTOR, 923#ifdef CONFIG_HUGETLB_PAGE 924 HUGETLB_PAGE_DTOR, 925#endif 926#ifdef CONFIG_TRANSPARENT_HUGEPAGE 927 TRANSHUGE_PAGE_DTOR, 928#endif 929 NR_COMPOUND_DTORS, 930}; 931extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 932 933static inline void set_compound_page_dtor(struct page *page, 934 enum compound_dtor_id compound_dtor) 935{ 936 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 937 page[1].compound_dtor = compound_dtor; 938} 939 940static inline void destroy_compound_page(struct page *page) 941{ 942 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 943 compound_page_dtors[page[1].compound_dtor](page); 944} 945 946static inline unsigned int compound_order(struct page *page) 947{ 948 if (!PageHead(page)) 949 return 0; 950 return page[1].compound_order; 951} 952 953static inline bool hpage_pincount_available(struct page *page) 954{ 955 /* 956 * Can the page->hpage_pinned_refcount field be used? That field is in 957 * the 3rd page of the compound page, so the smallest (2-page) compound 958 * pages cannot support it. 959 */ 960 page = compound_head(page); 961 return PageCompound(page) && compound_order(page) > 1; 962} 963 964static inline int head_compound_pincount(struct page *head) 965{ 966 return atomic_read(compound_pincount_ptr(head)); 967} 968 969static inline int compound_pincount(struct page *page) 970{ 971 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 972 page = compound_head(page); 973 return head_compound_pincount(page); 974} 975 976static inline void set_compound_order(struct page *page, unsigned int order) 977{ 978 page[1].compound_order = order; 979 page[1].compound_nr = 1U << order; 980} 981 982/* Returns the number of pages in this potentially compound page. */ 983static inline unsigned long compound_nr(struct page *page) 984{ 985 if (!PageHead(page)) 986 return 1; 987 return page[1].compound_nr; 988} 989 990/* Returns the number of bytes in this potentially compound page. */ 991static inline unsigned long page_size(struct page *page) 992{ 993 return PAGE_SIZE << compound_order(page); 994} 995 996/* Returns the number of bits needed for the number of bytes in a page */ 997static inline unsigned int page_shift(struct page *page) 998{ 999 return PAGE_SHIFT + compound_order(page); 1000} 1001 1002void free_compound_page(struct page *page); 1003 1004#ifdef CONFIG_MMU 1005/* 1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1007 * servicing faults for write access. In the normal case, do always want 1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1009 * that do not have writing enabled, when used by access_process_vm. 1010 */ 1011static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1012{ 1013 if (likely(vma->vm_flags & VM_WRITE)) 1014 pte = pte_mkwrite(pte); 1015 return pte; 1016} 1017 1018vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1019void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1020 1021vm_fault_t finish_fault(struct vm_fault *vmf); 1022vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1023#endif 1024 1025/* 1026 * Multiple processes may "see" the same page. E.g. for untouched 1027 * mappings of /dev/null, all processes see the same page full of 1028 * zeroes, and text pages of executables and shared libraries have 1029 * only one copy in memory, at most, normally. 1030 * 1031 * For the non-reserved pages, page_count(page) denotes a reference count. 1032 * page_count() == 0 means the page is free. page->lru is then used for 1033 * freelist management in the buddy allocator. 1034 * page_count() > 0 means the page has been allocated. 1035 * 1036 * Pages are allocated by the slab allocator in order to provide memory 1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1039 * unless a particular usage is carefully commented. (the responsibility of 1040 * freeing the kmalloc memory is the caller's, of course). 1041 * 1042 * A page may be used by anyone else who does a __get_free_page(). 1043 * In this case, page_count still tracks the references, and should only 1044 * be used through the normal accessor functions. The top bits of page->flags 1045 * and page->virtual store page management information, but all other fields 1046 * are unused and could be used privately, carefully. The management of this 1047 * page is the responsibility of the one who allocated it, and those who have 1048 * subsequently been given references to it. 1049 * 1050 * The other pages (we may call them "pagecache pages") are completely 1051 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1052 * The following discussion applies only to them. 1053 * 1054 * A pagecache page contains an opaque `private' member, which belongs to the 1055 * page's address_space. Usually, this is the address of a circular list of 1056 * the page's disk buffers. PG_private must be set to tell the VM to call 1057 * into the filesystem to release these pages. 1058 * 1059 * A page may belong to an inode's memory mapping. In this case, page->mapping 1060 * is the pointer to the inode, and page->index is the file offset of the page, 1061 * in units of PAGE_SIZE. 1062 * 1063 * If pagecache pages are not associated with an inode, they are said to be 1064 * anonymous pages. These may become associated with the swapcache, and in that 1065 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1066 * 1067 * In either case (swapcache or inode backed), the pagecache itself holds one 1068 * reference to the page. Setting PG_private should also increment the 1069 * refcount. The each user mapping also has a reference to the page. 1070 * 1071 * The pagecache pages are stored in a per-mapping radix tree, which is 1072 * rooted at mapping->i_pages, and indexed by offset. 1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1074 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1075 * 1076 * All pagecache pages may be subject to I/O: 1077 * - inode pages may need to be read from disk, 1078 * - inode pages which have been modified and are MAP_SHARED may need 1079 * to be written back to the inode on disk, 1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1081 * modified may need to be swapped out to swap space and (later) to be read 1082 * back into memory. 1083 */ 1084 1085/* 1086 * The zone field is never updated after free_area_init_core() 1087 * sets it, so none of the operations on it need to be atomic. 1088 */ 1089 1090/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1091#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1092#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1093#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1094#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1095#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1096 1097/* 1098 * Define the bit shifts to access each section. For non-existent 1099 * sections we define the shift as 0; that plus a 0 mask ensures 1100 * the compiler will optimise away reference to them. 1101 */ 1102#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1103#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1104#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1105#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1106#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1107 1108/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1109#ifdef NODE_NOT_IN_PAGE_FLAGS 1110#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1111#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1112 SECTIONS_PGOFF : ZONES_PGOFF) 1113#else 1114#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1115#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1116 NODES_PGOFF : ZONES_PGOFF) 1117#endif 1118 1119#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1120 1121#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1122#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1123#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1124#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1125#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1126#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1127 1128static inline enum zone_type page_zonenum(const struct page *page) 1129{ 1130 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1131 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1132} 1133 1134#ifdef CONFIG_ZONE_DEVICE 1135static inline bool is_zone_device_page(const struct page *page) 1136{ 1137 return page_zonenum(page) == ZONE_DEVICE; 1138} 1139extern void memmap_init_zone_device(struct zone *, unsigned long, 1140 unsigned long, struct dev_pagemap *); 1141#else 1142static inline bool is_zone_device_page(const struct page *page) 1143{ 1144 return false; 1145} 1146#endif 1147 1148static inline bool is_zone_movable_page(const struct page *page) 1149{ 1150 return page_zonenum(page) == ZONE_MOVABLE; 1151} 1152 1153#ifdef CONFIG_DEV_PAGEMAP_OPS 1154void free_devmap_managed_page(struct page *page); 1155DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1156 1157static inline bool page_is_devmap_managed(struct page *page) 1158{ 1159 if (!static_branch_unlikely(&devmap_managed_key)) 1160 return false; 1161 if (!is_zone_device_page(page)) 1162 return false; 1163 switch (page->pgmap->type) { 1164 case MEMORY_DEVICE_PRIVATE: 1165 case MEMORY_DEVICE_FS_DAX: 1166 return true; 1167 default: 1168 break; 1169 } 1170 return false; 1171} 1172 1173void put_devmap_managed_page(struct page *page); 1174 1175#else /* CONFIG_DEV_PAGEMAP_OPS */ 1176static inline bool page_is_devmap_managed(struct page *page) 1177{ 1178 return false; 1179} 1180 1181static inline void put_devmap_managed_page(struct page *page) 1182{ 1183} 1184#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1185 1186static inline bool is_device_private_page(const struct page *page) 1187{ 1188 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1189 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1190 is_zone_device_page(page) && 1191 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1192} 1193 1194static inline bool is_pci_p2pdma_page(const struct page *page) 1195{ 1196 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1197 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1198 is_zone_device_page(page) && 1199 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1200} 1201 1202/* 127: arbitrary random number, small enough to assemble well */ 1203#define page_ref_zero_or_close_to_overflow(page) \ 1204 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1205 1206static inline void get_page(struct page *page) 1207{ 1208 page = compound_head(page); 1209 /* 1210 * Getting a normal page or the head of a compound page 1211 * requires to already have an elevated page->_refcount. 1212 */ 1213 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1214 page_ref_inc(page); 1215} 1216 1217bool __must_check try_grab_page(struct page *page, unsigned int flags); 1218struct page *try_grab_compound_head(struct page *page, int refs, 1219 unsigned int flags); 1220 1221 1222static inline __must_check bool try_get_page(struct page *page) 1223{ 1224 page = compound_head(page); 1225 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1226 return false; 1227 page_ref_inc(page); 1228 return true; 1229} 1230 1231static inline void put_page(struct page *page) 1232{ 1233 page = compound_head(page); 1234 1235 /* 1236 * For devmap managed pages we need to catch refcount transition from 1237 * 2 to 1, when refcount reach one it means the page is free and we 1238 * need to inform the device driver through callback. See 1239 * include/linux/memremap.h and HMM for details. 1240 */ 1241 if (page_is_devmap_managed(page)) { 1242 put_devmap_managed_page(page); 1243 return; 1244 } 1245 1246 if (put_page_testzero(page)) 1247 __put_page(page); 1248} 1249 1250/* 1251 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1252 * the page's refcount so that two separate items are tracked: the original page 1253 * reference count, and also a new count of how many pin_user_pages() calls were 1254 * made against the page. ("gup-pinned" is another term for the latter). 1255 * 1256 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1257 * distinct from normal pages. As such, the unpin_user_page() call (and its 1258 * variants) must be used in order to release gup-pinned pages. 1259 * 1260 * Choice of value: 1261 * 1262 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1263 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1264 * simpler, due to the fact that adding an even power of two to the page 1265 * refcount has the effect of using only the upper N bits, for the code that 1266 * counts up using the bias value. This means that the lower bits are left for 1267 * the exclusive use of the original code that increments and decrements by one 1268 * (or at least, by much smaller values than the bias value). 1269 * 1270 * Of course, once the lower bits overflow into the upper bits (and this is 1271 * OK, because subtraction recovers the original values), then visual inspection 1272 * no longer suffices to directly view the separate counts. However, for normal 1273 * applications that don't have huge page reference counts, this won't be an 1274 * issue. 1275 * 1276 * Locking: the lockless algorithm described in page_cache_get_speculative() 1277 * and page_cache_gup_pin_speculative() provides safe operation for 1278 * get_user_pages and page_mkclean and other calls that race to set up page 1279 * table entries. 1280 */ 1281#define GUP_PIN_COUNTING_BIAS (1U << 10) 1282 1283void unpin_user_page(struct page *page); 1284void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1285 bool make_dirty); 1286void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1287 bool make_dirty); 1288void unpin_user_pages(struct page **pages, unsigned long npages); 1289 1290/** 1291 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1292 * @page: The page. 1293 * 1294 * This function checks if a page has been pinned via a call to 1295 * a function in the pin_user_pages() family. 1296 * 1297 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1298 * because it means "definitely not pinned for DMA", but true means "probably 1299 * pinned for DMA, but possibly a false positive due to having at least 1300 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1301 * 1302 * False positives are OK, because: a) it's unlikely for a page to get that many 1303 * refcounts, and b) all the callers of this routine are expected to be able to 1304 * deal gracefully with a false positive. 1305 * 1306 * For huge pages, the result will be exactly correct. That's because we have 1307 * more tracking data available: the 3rd struct page in the compound page is 1308 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1309 * scheme). 1310 * 1311 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1312 * 1313 * Return: True, if it is likely that the page has been "dma-pinned". 1314 * False, if the page is definitely not dma-pinned. 1315 */ 1316static inline bool page_maybe_dma_pinned(struct page *page) 1317{ 1318 if (hpage_pincount_available(page)) 1319 return compound_pincount(page) > 0; 1320 1321 /* 1322 * page_ref_count() is signed. If that refcount overflows, then 1323 * page_ref_count() returns a negative value, and callers will avoid 1324 * further incrementing the refcount. 1325 * 1326 * Here, for that overflow case, use the signed bit to count a little 1327 * bit higher via unsigned math, and thus still get an accurate result. 1328 */ 1329 return ((unsigned int)page_ref_count(compound_head(page))) >= 1330 GUP_PIN_COUNTING_BIAS; 1331} 1332 1333static inline bool is_cow_mapping(vm_flags_t flags) 1334{ 1335 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1336} 1337 1338/* 1339 * This should most likely only be called during fork() to see whether we 1340 * should break the cow immediately for a page on the src mm. 1341 */ 1342static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1343 struct page *page) 1344{ 1345 if (!is_cow_mapping(vma->vm_flags)) 1346 return false; 1347 1348 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1349 return false; 1350 1351 return page_maybe_dma_pinned(page); 1352} 1353 1354#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1355#define SECTION_IN_PAGE_FLAGS 1356#endif 1357 1358/* 1359 * The identification function is mainly used by the buddy allocator for 1360 * determining if two pages could be buddies. We are not really identifying 1361 * the zone since we could be using the section number id if we do not have 1362 * node id available in page flags. 1363 * We only guarantee that it will return the same value for two combinable 1364 * pages in a zone. 1365 */ 1366static inline int page_zone_id(struct page *page) 1367{ 1368 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1369} 1370 1371#ifdef NODE_NOT_IN_PAGE_FLAGS 1372extern int page_to_nid(const struct page *page); 1373#else 1374static inline int page_to_nid(const struct page *page) 1375{ 1376 struct page *p = (struct page *)page; 1377 1378 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1379} 1380#endif 1381 1382#ifdef CONFIG_NUMA_BALANCING 1383static inline int cpu_pid_to_cpupid(int cpu, int pid) 1384{ 1385 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1386} 1387 1388static inline int cpupid_to_pid(int cpupid) 1389{ 1390 return cpupid & LAST__PID_MASK; 1391} 1392 1393static inline int cpupid_to_cpu(int cpupid) 1394{ 1395 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1396} 1397 1398static inline int cpupid_to_nid(int cpupid) 1399{ 1400 return cpu_to_node(cpupid_to_cpu(cpupid)); 1401} 1402 1403static inline bool cpupid_pid_unset(int cpupid) 1404{ 1405 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1406} 1407 1408static inline bool cpupid_cpu_unset(int cpupid) 1409{ 1410 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1411} 1412 1413static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1414{ 1415 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1416} 1417 1418#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1419#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1420static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1421{ 1422 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1423} 1424 1425static inline int page_cpupid_last(struct page *page) 1426{ 1427 return page->_last_cpupid; 1428} 1429static inline void page_cpupid_reset_last(struct page *page) 1430{ 1431 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1432} 1433#else 1434static inline int page_cpupid_last(struct page *page) 1435{ 1436 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1437} 1438 1439extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1440 1441static inline void page_cpupid_reset_last(struct page *page) 1442{ 1443 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1444} 1445#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1446#else /* !CONFIG_NUMA_BALANCING */ 1447static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1448{ 1449 return page_to_nid(page); /* XXX */ 1450} 1451 1452static inline int page_cpupid_last(struct page *page) 1453{ 1454 return page_to_nid(page); /* XXX */ 1455} 1456 1457static inline int cpupid_to_nid(int cpupid) 1458{ 1459 return -1; 1460} 1461 1462static inline int cpupid_to_pid(int cpupid) 1463{ 1464 return -1; 1465} 1466 1467static inline int cpupid_to_cpu(int cpupid) 1468{ 1469 return -1; 1470} 1471 1472static inline int cpu_pid_to_cpupid(int nid, int pid) 1473{ 1474 return -1; 1475} 1476 1477static inline bool cpupid_pid_unset(int cpupid) 1478{ 1479 return true; 1480} 1481 1482static inline void page_cpupid_reset_last(struct page *page) 1483{ 1484} 1485 1486static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1487{ 1488 return false; 1489} 1490#endif /* CONFIG_NUMA_BALANCING */ 1491 1492#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1493 1494/* 1495 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1496 * setting tags for all pages to native kernel tag value 0xff, as the default 1497 * value 0x00 maps to 0xff. 1498 */ 1499 1500static inline u8 page_kasan_tag(const struct page *page) 1501{ 1502 u8 tag = 0xff; 1503 1504 if (kasan_enabled()) { 1505 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1506 tag ^= 0xff; 1507 } 1508 1509 return tag; 1510} 1511 1512static inline void page_kasan_tag_set(struct page *page, u8 tag) 1513{ 1514 if (kasan_enabled()) { 1515 tag ^= 0xff; 1516 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1517 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1518 } 1519} 1520 1521static inline void page_kasan_tag_reset(struct page *page) 1522{ 1523 if (kasan_enabled()) 1524 page_kasan_tag_set(page, 0xff); 1525} 1526 1527#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1528 1529static inline u8 page_kasan_tag(const struct page *page) 1530{ 1531 return 0xff; 1532} 1533 1534static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1535static inline void page_kasan_tag_reset(struct page *page) { } 1536 1537#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1538 1539static inline struct zone *page_zone(const struct page *page) 1540{ 1541 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1542} 1543 1544static inline pg_data_t *page_pgdat(const struct page *page) 1545{ 1546 return NODE_DATA(page_to_nid(page)); 1547} 1548 1549#ifdef SECTION_IN_PAGE_FLAGS 1550static inline void set_page_section(struct page *page, unsigned long section) 1551{ 1552 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1553 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1554} 1555 1556static inline unsigned long page_to_section(const struct page *page) 1557{ 1558 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1559} 1560#endif 1561 1562/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1563#ifdef CONFIG_MIGRATION 1564static inline bool is_pinnable_page(struct page *page) 1565{ 1566 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1567 is_zero_pfn(page_to_pfn(page)); 1568} 1569#else 1570static inline bool is_pinnable_page(struct page *page) 1571{ 1572 return true; 1573} 1574#endif 1575 1576static inline void set_page_zone(struct page *page, enum zone_type zone) 1577{ 1578 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1579 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1580} 1581 1582static inline void set_page_node(struct page *page, unsigned long node) 1583{ 1584 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1585 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1586} 1587 1588static inline void set_page_links(struct page *page, enum zone_type zone, 1589 unsigned long node, unsigned long pfn) 1590{ 1591 set_page_zone(page, zone); 1592 set_page_node(page, node); 1593#ifdef SECTION_IN_PAGE_FLAGS 1594 set_page_section(page, pfn_to_section_nr(pfn)); 1595#endif 1596} 1597 1598/* 1599 * Some inline functions in vmstat.h depend on page_zone() 1600 */ 1601#include <linux/vmstat.h> 1602 1603static __always_inline void *lowmem_page_address(const struct page *page) 1604{ 1605 return page_to_virt(page); 1606} 1607 1608#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1609#define HASHED_PAGE_VIRTUAL 1610#endif 1611 1612#if defined(WANT_PAGE_VIRTUAL) 1613static inline void *page_address(const struct page *page) 1614{ 1615 return page->virtual; 1616} 1617static inline void set_page_address(struct page *page, void *address) 1618{ 1619 page->virtual = address; 1620} 1621#define page_address_init() do { } while(0) 1622#endif 1623 1624#if defined(HASHED_PAGE_VIRTUAL) 1625void *page_address(const struct page *page); 1626void set_page_address(struct page *page, void *virtual); 1627void page_address_init(void); 1628#endif 1629 1630#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1631#define page_address(page) lowmem_page_address(page) 1632#define set_page_address(page, address) do { } while(0) 1633#define page_address_init() do { } while(0) 1634#endif 1635 1636extern void *page_rmapping(struct page *page); 1637extern struct anon_vma *page_anon_vma(struct page *page); 1638extern struct address_space *page_mapping(struct page *page); 1639 1640extern struct address_space *__page_file_mapping(struct page *); 1641 1642static inline 1643struct address_space *page_file_mapping(struct page *page) 1644{ 1645 if (unlikely(PageSwapCache(page))) 1646 return __page_file_mapping(page); 1647 1648 return page->mapping; 1649} 1650 1651extern pgoff_t __page_file_index(struct page *page); 1652 1653/* 1654 * Return the pagecache index of the passed page. Regular pagecache pages 1655 * use ->index whereas swapcache pages use swp_offset(->private) 1656 */ 1657static inline pgoff_t page_index(struct page *page) 1658{ 1659 if (unlikely(PageSwapCache(page))) 1660 return __page_file_index(page); 1661 return page->index; 1662} 1663 1664bool page_mapped(struct page *page); 1665struct address_space *page_mapping(struct page *page); 1666 1667/* 1668 * Return true only if the page has been allocated with 1669 * ALLOC_NO_WATERMARKS and the low watermark was not 1670 * met implying that the system is under some pressure. 1671 */ 1672static inline bool page_is_pfmemalloc(const struct page *page) 1673{ 1674 /* 1675 * lru.next has bit 1 set if the page is allocated from the 1676 * pfmemalloc reserves. Callers may simply overwrite it if 1677 * they do not need to preserve that information. 1678 */ 1679 return (uintptr_t)page->lru.next & BIT(1); 1680} 1681 1682/* 1683 * Only to be called by the page allocator on a freshly allocated 1684 * page. 1685 */ 1686static inline void set_page_pfmemalloc(struct page *page) 1687{ 1688 page->lru.next = (void *)BIT(1); 1689} 1690 1691static inline void clear_page_pfmemalloc(struct page *page) 1692{ 1693 page->lru.next = NULL; 1694} 1695 1696/* 1697 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1698 */ 1699extern void pagefault_out_of_memory(void); 1700 1701#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1702#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1703 1704/* 1705 * Flags passed to show_mem() and show_free_areas() to suppress output in 1706 * various contexts. 1707 */ 1708#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1709 1710extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1711 1712#ifdef CONFIG_MMU 1713extern bool can_do_mlock(void); 1714#else 1715static inline bool can_do_mlock(void) { return false; } 1716#endif 1717extern int user_shm_lock(size_t, struct ucounts *); 1718extern void user_shm_unlock(size_t, struct ucounts *); 1719 1720/* 1721 * Parameter block passed down to zap_pte_range in exceptional cases. 1722 */ 1723struct zap_details { 1724 struct address_space *check_mapping; /* Check page->mapping if set */ 1725 pgoff_t first_index; /* Lowest page->index to unmap */ 1726 pgoff_t last_index; /* Highest page->index to unmap */ 1727 struct page *single_page; /* Locked page to be unmapped */ 1728}; 1729 1730struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1731 pte_t pte); 1732struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1733 pmd_t pmd); 1734 1735void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1736 unsigned long size); 1737void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1738 unsigned long size); 1739void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1740 unsigned long start, unsigned long end); 1741 1742struct mmu_notifier_range; 1743 1744void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1745 unsigned long end, unsigned long floor, unsigned long ceiling); 1746int 1747copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1748int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1749 struct mmu_notifier_range *range, pte_t **ptepp, 1750 pmd_t **pmdpp, spinlock_t **ptlp); 1751int follow_pte(struct mm_struct *mm, unsigned long address, 1752 pte_t **ptepp, spinlock_t **ptlp); 1753int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1754 unsigned long *pfn); 1755int follow_phys(struct vm_area_struct *vma, unsigned long address, 1756 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1757int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1758 void *buf, int len, int write); 1759 1760extern void truncate_pagecache(struct inode *inode, loff_t new); 1761extern void truncate_setsize(struct inode *inode, loff_t newsize); 1762void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1763void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1764int truncate_inode_page(struct address_space *mapping, struct page *page); 1765int generic_error_remove_page(struct address_space *mapping, struct page *page); 1766int invalidate_inode_page(struct page *page); 1767 1768#ifdef CONFIG_MMU 1769extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1770 unsigned long address, unsigned int flags, 1771 struct pt_regs *regs); 1772extern int fixup_user_fault(struct mm_struct *mm, 1773 unsigned long address, unsigned int fault_flags, 1774 bool *unlocked); 1775void unmap_mapping_page(struct page *page); 1776void unmap_mapping_pages(struct address_space *mapping, 1777 pgoff_t start, pgoff_t nr, bool even_cows); 1778void unmap_mapping_range(struct address_space *mapping, 1779 loff_t const holebegin, loff_t const holelen, int even_cows); 1780#else 1781static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1782 unsigned long address, unsigned int flags, 1783 struct pt_regs *regs) 1784{ 1785 /* should never happen if there's no MMU */ 1786 BUG(); 1787 return VM_FAULT_SIGBUS; 1788} 1789static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1790 unsigned int fault_flags, bool *unlocked) 1791{ 1792 /* should never happen if there's no MMU */ 1793 BUG(); 1794 return -EFAULT; 1795} 1796static inline void unmap_mapping_page(struct page *page) { } 1797static inline void unmap_mapping_pages(struct address_space *mapping, 1798 pgoff_t start, pgoff_t nr, bool even_cows) { } 1799static inline void unmap_mapping_range(struct address_space *mapping, 1800 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1801#endif 1802 1803static inline void unmap_shared_mapping_range(struct address_space *mapping, 1804 loff_t const holebegin, loff_t const holelen) 1805{ 1806 unmap_mapping_range(mapping, holebegin, holelen, 0); 1807} 1808 1809extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1810 void *buf, int len, unsigned int gup_flags); 1811extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1812 void *buf, int len, unsigned int gup_flags); 1813extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1814 void *buf, int len, unsigned int gup_flags); 1815 1816long get_user_pages_remote(struct mm_struct *mm, 1817 unsigned long start, unsigned long nr_pages, 1818 unsigned int gup_flags, struct page **pages, 1819 struct vm_area_struct **vmas, int *locked); 1820long pin_user_pages_remote(struct mm_struct *mm, 1821 unsigned long start, unsigned long nr_pages, 1822 unsigned int gup_flags, struct page **pages, 1823 struct vm_area_struct **vmas, int *locked); 1824long get_user_pages(unsigned long start, unsigned long nr_pages, 1825 unsigned int gup_flags, struct page **pages, 1826 struct vm_area_struct **vmas); 1827long pin_user_pages(unsigned long start, unsigned long nr_pages, 1828 unsigned int gup_flags, struct page **pages, 1829 struct vm_area_struct **vmas); 1830long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1831 unsigned int gup_flags, struct page **pages, int *locked); 1832long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1833 unsigned int gup_flags, struct page **pages, int *locked); 1834long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1835 struct page **pages, unsigned int gup_flags); 1836long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1837 struct page **pages, unsigned int gup_flags); 1838 1839int get_user_pages_fast(unsigned long start, int nr_pages, 1840 unsigned int gup_flags, struct page **pages); 1841int pin_user_pages_fast(unsigned long start, int nr_pages, 1842 unsigned int gup_flags, struct page **pages); 1843 1844int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1845int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1846 struct task_struct *task, bool bypass_rlim); 1847 1848struct kvec; 1849int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1850 struct page **pages); 1851struct page *get_dump_page(unsigned long addr); 1852 1853extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1854extern void do_invalidatepage(struct page *page, unsigned int offset, 1855 unsigned int length); 1856 1857int redirty_page_for_writepage(struct writeback_control *wbc, 1858 struct page *page); 1859void account_page_cleaned(struct page *page, struct address_space *mapping, 1860 struct bdi_writeback *wb); 1861int set_page_dirty(struct page *page); 1862int set_page_dirty_lock(struct page *page); 1863void __cancel_dirty_page(struct page *page); 1864static inline void cancel_dirty_page(struct page *page) 1865{ 1866 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1867 if (PageDirty(page)) 1868 __cancel_dirty_page(page); 1869} 1870int clear_page_dirty_for_io(struct page *page); 1871 1872int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1873 1874extern unsigned long move_page_tables(struct vm_area_struct *vma, 1875 unsigned long old_addr, struct vm_area_struct *new_vma, 1876 unsigned long new_addr, unsigned long len, 1877 bool need_rmap_locks); 1878 1879/* 1880 * Flags used by change_protection(). For now we make it a bitmap so 1881 * that we can pass in multiple flags just like parameters. However 1882 * for now all the callers are only use one of the flags at the same 1883 * time. 1884 */ 1885/* Whether we should allow dirty bit accounting */ 1886#define MM_CP_DIRTY_ACCT (1UL << 0) 1887/* Whether this protection change is for NUMA hints */ 1888#define MM_CP_PROT_NUMA (1UL << 1) 1889/* Whether this change is for write protecting */ 1890#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1891#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1892#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1893 MM_CP_UFFD_WP_RESOLVE) 1894 1895extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1896 unsigned long end, pgprot_t newprot, 1897 unsigned long cp_flags); 1898extern int mprotect_fixup(struct vm_area_struct *vma, 1899 struct vm_area_struct **pprev, unsigned long start, 1900 unsigned long end, unsigned long newflags); 1901 1902/* 1903 * doesn't attempt to fault and will return short. 1904 */ 1905int get_user_pages_fast_only(unsigned long start, int nr_pages, 1906 unsigned int gup_flags, struct page **pages); 1907int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1908 unsigned int gup_flags, struct page **pages); 1909 1910static inline bool get_user_page_fast_only(unsigned long addr, 1911 unsigned int gup_flags, struct page **pagep) 1912{ 1913 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1914} 1915/* 1916 * per-process(per-mm_struct) statistics. 1917 */ 1918static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1919{ 1920 long val = atomic_long_read(&mm->rss_stat.count[member]); 1921 1922#ifdef SPLIT_RSS_COUNTING 1923 /* 1924 * counter is updated in asynchronous manner and may go to minus. 1925 * But it's never be expected number for users. 1926 */ 1927 if (val < 0) 1928 val = 0; 1929#endif 1930 return (unsigned long)val; 1931} 1932 1933void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1934 1935static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1936{ 1937 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1938 1939 mm_trace_rss_stat(mm, member, count); 1940} 1941 1942static inline void inc_mm_counter(struct mm_struct *mm, int member) 1943{ 1944 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1945 1946 mm_trace_rss_stat(mm, member, count); 1947} 1948 1949static inline void dec_mm_counter(struct mm_struct *mm, int member) 1950{ 1951 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1952 1953 mm_trace_rss_stat(mm, member, count); 1954} 1955 1956/* Optimized variant when page is already known not to be PageAnon */ 1957static inline int mm_counter_file(struct page *page) 1958{ 1959 if (PageSwapBacked(page)) 1960 return MM_SHMEMPAGES; 1961 return MM_FILEPAGES; 1962} 1963 1964static inline int mm_counter(struct page *page) 1965{ 1966 if (PageAnon(page)) 1967 return MM_ANONPAGES; 1968 return mm_counter_file(page); 1969} 1970 1971static inline unsigned long get_mm_rss(struct mm_struct *mm) 1972{ 1973 return get_mm_counter(mm, MM_FILEPAGES) + 1974 get_mm_counter(mm, MM_ANONPAGES) + 1975 get_mm_counter(mm, MM_SHMEMPAGES); 1976} 1977 1978static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1979{ 1980 return max(mm->hiwater_rss, get_mm_rss(mm)); 1981} 1982 1983static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1984{ 1985 return max(mm->hiwater_vm, mm->total_vm); 1986} 1987 1988static inline void update_hiwater_rss(struct mm_struct *mm) 1989{ 1990 unsigned long _rss = get_mm_rss(mm); 1991 1992 if ((mm)->hiwater_rss < _rss) 1993 (mm)->hiwater_rss = _rss; 1994} 1995 1996static inline void update_hiwater_vm(struct mm_struct *mm) 1997{ 1998 if (mm->hiwater_vm < mm->total_vm) 1999 mm->hiwater_vm = mm->total_vm; 2000} 2001 2002static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2003{ 2004 mm->hiwater_rss = get_mm_rss(mm); 2005} 2006 2007static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2008 struct mm_struct *mm) 2009{ 2010 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2011 2012 if (*maxrss < hiwater_rss) 2013 *maxrss = hiwater_rss; 2014} 2015 2016#if defined(SPLIT_RSS_COUNTING) 2017void sync_mm_rss(struct mm_struct *mm); 2018#else 2019static inline void sync_mm_rss(struct mm_struct *mm) 2020{ 2021} 2022#endif 2023 2024#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2025static inline int pte_special(pte_t pte) 2026{ 2027 return 0; 2028} 2029 2030static inline pte_t pte_mkspecial(pte_t pte) 2031{ 2032 return pte; 2033} 2034#endif 2035 2036#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2037static inline int pte_devmap(pte_t pte) 2038{ 2039 return 0; 2040} 2041#endif 2042 2043int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2044 2045extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2046 spinlock_t **ptl); 2047static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2048 spinlock_t **ptl) 2049{ 2050 pte_t *ptep; 2051 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2052 return ptep; 2053} 2054 2055#ifdef __PAGETABLE_P4D_FOLDED 2056static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2057 unsigned long address) 2058{ 2059 return 0; 2060} 2061#else 2062int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2063#endif 2064 2065#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2066static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2067 unsigned long address) 2068{ 2069 return 0; 2070} 2071static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2072static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2073 2074#else 2075int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2076 2077static inline void mm_inc_nr_puds(struct mm_struct *mm) 2078{ 2079 if (mm_pud_folded(mm)) 2080 return; 2081 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2082} 2083 2084static inline void mm_dec_nr_puds(struct mm_struct *mm) 2085{ 2086 if (mm_pud_folded(mm)) 2087 return; 2088 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2089} 2090#endif 2091 2092#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2093static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2094 unsigned long address) 2095{ 2096 return 0; 2097} 2098 2099static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2100static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2101 2102#else 2103int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2104 2105static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2106{ 2107 if (mm_pmd_folded(mm)) 2108 return; 2109 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2110} 2111 2112static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2113{ 2114 if (mm_pmd_folded(mm)) 2115 return; 2116 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2117} 2118#endif 2119 2120#ifdef CONFIG_MMU 2121static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2122{ 2123 atomic_long_set(&mm->pgtables_bytes, 0); 2124} 2125 2126static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2127{ 2128 return atomic_long_read(&mm->pgtables_bytes); 2129} 2130 2131static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2132{ 2133 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2134} 2135 2136static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2137{ 2138 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2139} 2140#else 2141 2142static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2143static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2144{ 2145 return 0; 2146} 2147 2148static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2149static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2150#endif 2151 2152int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2153int __pte_alloc_kernel(pmd_t *pmd); 2154 2155#if defined(CONFIG_MMU) 2156 2157static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2158 unsigned long address) 2159{ 2160 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2161 NULL : p4d_offset(pgd, address); 2162} 2163 2164static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2165 unsigned long address) 2166{ 2167 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2168 NULL : pud_offset(p4d, address); 2169} 2170 2171static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2172{ 2173 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2174 NULL: pmd_offset(pud, address); 2175} 2176#endif /* CONFIG_MMU */ 2177 2178#if USE_SPLIT_PTE_PTLOCKS 2179#if ALLOC_SPLIT_PTLOCKS 2180void __init ptlock_cache_init(void); 2181extern bool ptlock_alloc(struct page *page); 2182extern void ptlock_free(struct page *page); 2183 2184static inline spinlock_t *ptlock_ptr(struct page *page) 2185{ 2186 return page->ptl; 2187} 2188#else /* ALLOC_SPLIT_PTLOCKS */ 2189static inline void ptlock_cache_init(void) 2190{ 2191} 2192 2193static inline bool ptlock_alloc(struct page *page) 2194{ 2195 return true; 2196} 2197 2198static inline void ptlock_free(struct page *page) 2199{ 2200} 2201 2202static inline spinlock_t *ptlock_ptr(struct page *page) 2203{ 2204 return &page->ptl; 2205} 2206#endif /* ALLOC_SPLIT_PTLOCKS */ 2207 2208static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2209{ 2210 return ptlock_ptr(pmd_page(*pmd)); 2211} 2212 2213static inline bool ptlock_init(struct page *page) 2214{ 2215 /* 2216 * prep_new_page() initialize page->private (and therefore page->ptl) 2217 * with 0. Make sure nobody took it in use in between. 2218 * 2219 * It can happen if arch try to use slab for page table allocation: 2220 * slab code uses page->slab_cache, which share storage with page->ptl. 2221 */ 2222 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2223 if (!ptlock_alloc(page)) 2224 return false; 2225 spin_lock_init(ptlock_ptr(page)); 2226 return true; 2227} 2228 2229#else /* !USE_SPLIT_PTE_PTLOCKS */ 2230/* 2231 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2232 */ 2233static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2234{ 2235 return &mm->page_table_lock; 2236} 2237static inline void ptlock_cache_init(void) {} 2238static inline bool ptlock_init(struct page *page) { return true; } 2239static inline void ptlock_free(struct page *page) {} 2240#endif /* USE_SPLIT_PTE_PTLOCKS */ 2241 2242static inline void pgtable_init(void) 2243{ 2244 ptlock_cache_init(); 2245 pgtable_cache_init(); 2246} 2247 2248static inline bool pgtable_pte_page_ctor(struct page *page) 2249{ 2250 if (!ptlock_init(page)) 2251 return false; 2252 __SetPageTable(page); 2253 inc_lruvec_page_state(page, NR_PAGETABLE); 2254 return true; 2255} 2256 2257static inline void pgtable_pte_page_dtor(struct page *page) 2258{ 2259 ptlock_free(page); 2260 __ClearPageTable(page); 2261 dec_lruvec_page_state(page, NR_PAGETABLE); 2262} 2263 2264#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2265({ \ 2266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2267 pte_t *__pte = pte_offset_map(pmd, address); \ 2268 *(ptlp) = __ptl; \ 2269 spin_lock(__ptl); \ 2270 __pte; \ 2271}) 2272 2273#define pte_unmap_unlock(pte, ptl) do { \ 2274 spin_unlock(ptl); \ 2275 pte_unmap(pte); \ 2276} while (0) 2277 2278#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2279 2280#define pte_alloc_map(mm, pmd, address) \ 2281 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2282 2283#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2284 (pte_alloc(mm, pmd) ? \ 2285 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2286 2287#define pte_alloc_kernel(pmd, address) \ 2288 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2289 NULL: pte_offset_kernel(pmd, address)) 2290 2291#if USE_SPLIT_PMD_PTLOCKS 2292 2293static struct page *pmd_to_page(pmd_t *pmd) 2294{ 2295 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2296 return virt_to_page((void *)((unsigned long) pmd & mask)); 2297} 2298 2299static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2300{ 2301 return ptlock_ptr(pmd_to_page(pmd)); 2302} 2303 2304static inline bool pmd_ptlock_init(struct page *page) 2305{ 2306#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2307 page->pmd_huge_pte = NULL; 2308#endif 2309 return ptlock_init(page); 2310} 2311 2312static inline void pmd_ptlock_free(struct page *page) 2313{ 2314#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2315 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2316#endif 2317 ptlock_free(page); 2318} 2319 2320#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2321 2322#else 2323 2324static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2325{ 2326 return &mm->page_table_lock; 2327} 2328 2329static inline bool pmd_ptlock_init(struct page *page) { return true; } 2330static inline void pmd_ptlock_free(struct page *page) {} 2331 2332#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2333 2334#endif 2335 2336static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2337{ 2338 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2339 spin_lock(ptl); 2340 return ptl; 2341} 2342 2343static inline bool pgtable_pmd_page_ctor(struct page *page) 2344{ 2345 if (!pmd_ptlock_init(page)) 2346 return false; 2347 __SetPageTable(page); 2348 inc_lruvec_page_state(page, NR_PAGETABLE); 2349 return true; 2350} 2351 2352static inline void pgtable_pmd_page_dtor(struct page *page) 2353{ 2354 pmd_ptlock_free(page); 2355 __ClearPageTable(page); 2356 dec_lruvec_page_state(page, NR_PAGETABLE); 2357} 2358 2359/* 2360 * No scalability reason to split PUD locks yet, but follow the same pattern 2361 * as the PMD locks to make it easier if we decide to. The VM should not be 2362 * considered ready to switch to split PUD locks yet; there may be places 2363 * which need to be converted from page_table_lock. 2364 */ 2365static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2366{ 2367 return &mm->page_table_lock; 2368} 2369 2370static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2371{ 2372 spinlock_t *ptl = pud_lockptr(mm, pud); 2373 2374 spin_lock(ptl); 2375 return ptl; 2376} 2377 2378extern void __init pagecache_init(void); 2379extern void __init free_area_init_memoryless_node(int nid); 2380extern void free_initmem(void); 2381 2382/* 2383 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2384 * into the buddy system. The freed pages will be poisoned with pattern 2385 * "poison" if it's within range [0, UCHAR_MAX]. 2386 * Return pages freed into the buddy system. 2387 */ 2388extern unsigned long free_reserved_area(void *start, void *end, 2389 int poison, const char *s); 2390 2391extern void adjust_managed_page_count(struct page *page, long count); 2392extern void mem_init_print_info(void); 2393 2394extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2395 2396/* Free the reserved page into the buddy system, so it gets managed. */ 2397static inline void free_reserved_page(struct page *page) 2398{ 2399 ClearPageReserved(page); 2400 init_page_count(page); 2401 __free_page(page); 2402 adjust_managed_page_count(page, 1); 2403} 2404#define free_highmem_page(page) free_reserved_page(page) 2405 2406static inline void mark_page_reserved(struct page *page) 2407{ 2408 SetPageReserved(page); 2409 adjust_managed_page_count(page, -1); 2410} 2411 2412/* 2413 * Default method to free all the __init memory into the buddy system. 2414 * The freed pages will be poisoned with pattern "poison" if it's within 2415 * range [0, UCHAR_MAX]. 2416 * Return pages freed into the buddy system. 2417 */ 2418static inline unsigned long free_initmem_default(int poison) 2419{ 2420 extern char __init_begin[], __init_end[]; 2421 2422 return free_reserved_area(&__init_begin, &__init_end, 2423 poison, "unused kernel image (initmem)"); 2424} 2425 2426static inline unsigned long get_num_physpages(void) 2427{ 2428 int nid; 2429 unsigned long phys_pages = 0; 2430 2431 for_each_online_node(nid) 2432 phys_pages += node_present_pages(nid); 2433 2434 return phys_pages; 2435} 2436 2437/* 2438 * Using memblock node mappings, an architecture may initialise its 2439 * zones, allocate the backing mem_map and account for memory holes in an 2440 * architecture independent manner. 2441 * 2442 * An architecture is expected to register range of page frames backed by 2443 * physical memory with memblock_add[_node]() before calling 2444 * free_area_init() passing in the PFN each zone ends at. At a basic 2445 * usage, an architecture is expected to do something like 2446 * 2447 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2448 * max_highmem_pfn}; 2449 * for_each_valid_physical_page_range() 2450 * memblock_add_node(base, size, nid) 2451 * free_area_init(max_zone_pfns); 2452 */ 2453void free_area_init(unsigned long *max_zone_pfn); 2454unsigned long node_map_pfn_alignment(void); 2455unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2456 unsigned long end_pfn); 2457extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2458 unsigned long end_pfn); 2459extern void get_pfn_range_for_nid(unsigned int nid, 2460 unsigned long *start_pfn, unsigned long *end_pfn); 2461extern unsigned long find_min_pfn_with_active_regions(void); 2462 2463#ifndef CONFIG_NUMA 2464static inline int early_pfn_to_nid(unsigned long pfn) 2465{ 2466 return 0; 2467} 2468#else 2469/* please see mm/page_alloc.c */ 2470extern int __meminit early_pfn_to_nid(unsigned long pfn); 2471#endif 2472 2473extern void set_dma_reserve(unsigned long new_dma_reserve); 2474extern void memmap_init_range(unsigned long, int, unsigned long, 2475 unsigned long, unsigned long, enum meminit_context, 2476 struct vmem_altmap *, int migratetype); 2477extern void setup_per_zone_wmarks(void); 2478extern int __meminit init_per_zone_wmark_min(void); 2479extern void mem_init(void); 2480extern void __init mmap_init(void); 2481extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2482extern long si_mem_available(void); 2483extern void si_meminfo(struct sysinfo * val); 2484extern void si_meminfo_node(struct sysinfo *val, int nid); 2485#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2486extern unsigned long arch_reserved_kernel_pages(void); 2487#endif 2488 2489extern __printf(3, 4) 2490void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2491 2492extern void setup_per_cpu_pageset(void); 2493 2494/* page_alloc.c */ 2495extern int min_free_kbytes; 2496extern int watermark_boost_factor; 2497extern int watermark_scale_factor; 2498extern bool arch_has_descending_max_zone_pfns(void); 2499 2500/* nommu.c */ 2501extern atomic_long_t mmap_pages_allocated; 2502extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2503 2504/* interval_tree.c */ 2505void vma_interval_tree_insert(struct vm_area_struct *node, 2506 struct rb_root_cached *root); 2507void vma_interval_tree_insert_after(struct vm_area_struct *node, 2508 struct vm_area_struct *prev, 2509 struct rb_root_cached *root); 2510void vma_interval_tree_remove(struct vm_area_struct *node, 2511 struct rb_root_cached *root); 2512struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2513 unsigned long start, unsigned long last); 2514struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2515 unsigned long start, unsigned long last); 2516 2517#define vma_interval_tree_foreach(vma, root, start, last) \ 2518 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2519 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2520 2521void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2522 struct rb_root_cached *root); 2523void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2524 struct rb_root_cached *root); 2525struct anon_vma_chain * 2526anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2527 unsigned long start, unsigned long last); 2528struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2529 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2530#ifdef CONFIG_DEBUG_VM_RB 2531void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2532#endif 2533 2534#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2535 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2536 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2537 2538/* mmap.c */ 2539extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2540extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2541 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2542 struct vm_area_struct *expand); 2543static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2544 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2545{ 2546 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2547} 2548extern struct vm_area_struct *vma_merge(struct mm_struct *, 2549 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2550 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2551 struct mempolicy *, struct vm_userfaultfd_ctx); 2552extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2553extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2554 unsigned long addr, int new_below); 2555extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2556 unsigned long addr, int new_below); 2557extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2558extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2559 struct rb_node **, struct rb_node *); 2560extern void unlink_file_vma(struct vm_area_struct *); 2561extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2562 unsigned long addr, unsigned long len, pgoff_t pgoff, 2563 bool *need_rmap_locks); 2564extern void exit_mmap(struct mm_struct *); 2565 2566static inline int check_data_rlimit(unsigned long rlim, 2567 unsigned long new, 2568 unsigned long start, 2569 unsigned long end_data, 2570 unsigned long start_data) 2571{ 2572 if (rlim < RLIM_INFINITY) { 2573 if (((new - start) + (end_data - start_data)) > rlim) 2574 return -ENOSPC; 2575 } 2576 2577 return 0; 2578} 2579 2580extern int mm_take_all_locks(struct mm_struct *mm); 2581extern void mm_drop_all_locks(struct mm_struct *mm); 2582 2583extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2584extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2585extern struct file *get_mm_exe_file(struct mm_struct *mm); 2586extern struct file *get_task_exe_file(struct task_struct *task); 2587 2588extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2589extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2590 2591extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2592 const struct vm_special_mapping *sm); 2593extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2594 unsigned long addr, unsigned long len, 2595 unsigned long flags, 2596 const struct vm_special_mapping *spec); 2597/* This is an obsolete alternative to _install_special_mapping. */ 2598extern int install_special_mapping(struct mm_struct *mm, 2599 unsigned long addr, unsigned long len, 2600 unsigned long flags, struct page **pages); 2601 2602unsigned long randomize_stack_top(unsigned long stack_top); 2603 2604extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2605 2606extern unsigned long mmap_region(struct file *file, unsigned long addr, 2607 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2608 struct list_head *uf); 2609extern unsigned long do_mmap(struct file *file, unsigned long addr, 2610 unsigned long len, unsigned long prot, unsigned long flags, 2611 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2612extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2613 struct list_head *uf, bool downgrade); 2614extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2615 struct list_head *uf); 2616extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2617 2618#ifdef CONFIG_MMU 2619extern int __mm_populate(unsigned long addr, unsigned long len, 2620 int ignore_errors); 2621static inline void mm_populate(unsigned long addr, unsigned long len) 2622{ 2623 /* Ignore errors */ 2624 (void) __mm_populate(addr, len, 1); 2625} 2626#else 2627static inline void mm_populate(unsigned long addr, unsigned long len) {} 2628#endif 2629 2630/* These take the mm semaphore themselves */ 2631extern int __must_check vm_brk(unsigned long, unsigned long); 2632extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2633extern int vm_munmap(unsigned long, size_t); 2634extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2635 unsigned long, unsigned long, 2636 unsigned long, unsigned long); 2637 2638struct vm_unmapped_area_info { 2639#define VM_UNMAPPED_AREA_TOPDOWN 1 2640 unsigned long flags; 2641 unsigned long length; 2642 unsigned long low_limit; 2643 unsigned long high_limit; 2644 unsigned long align_mask; 2645 unsigned long align_offset; 2646}; 2647 2648extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2649 2650/* truncate.c */ 2651extern void truncate_inode_pages(struct address_space *, loff_t); 2652extern void truncate_inode_pages_range(struct address_space *, 2653 loff_t lstart, loff_t lend); 2654extern void truncate_inode_pages_final(struct address_space *); 2655 2656/* generic vm_area_ops exported for stackable file systems */ 2657extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2658extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2659 pgoff_t start_pgoff, pgoff_t end_pgoff); 2660extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2661 2662/* mm/page-writeback.c */ 2663int __must_check write_one_page(struct page *page); 2664void task_dirty_inc(struct task_struct *tsk); 2665 2666extern unsigned long stack_guard_gap; 2667/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2668extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2669 2670/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2671extern int expand_downwards(struct vm_area_struct *vma, 2672 unsigned long address); 2673#if VM_GROWSUP 2674extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2675#else 2676 #define expand_upwards(vma, address) (0) 2677#endif 2678 2679/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2680extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2681extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2682 struct vm_area_struct **pprev); 2683 2684/** 2685 * find_vma_intersection() - Look up the first VMA which intersects the interval 2686 * @mm: The process address space. 2687 * @start_addr: The inclusive start user address. 2688 * @end_addr: The exclusive end user address. 2689 * 2690 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2691 * start_addr < end_addr. 2692 */ 2693static inline 2694struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2695 unsigned long start_addr, 2696 unsigned long end_addr) 2697{ 2698 struct vm_area_struct *vma = find_vma(mm, start_addr); 2699 2700 if (vma && end_addr <= vma->vm_start) 2701 vma = NULL; 2702 return vma; 2703} 2704 2705/** 2706 * vma_lookup() - Find a VMA at a specific address 2707 * @mm: The process address space. 2708 * @addr: The user address. 2709 * 2710 * Return: The vm_area_struct at the given address, %NULL otherwise. 2711 */ 2712static inline 2713struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2714{ 2715 struct vm_area_struct *vma = find_vma(mm, addr); 2716 2717 if (vma && addr < vma->vm_start) 2718 vma = NULL; 2719 2720 return vma; 2721} 2722 2723static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2724{ 2725 unsigned long vm_start = vma->vm_start; 2726 2727 if (vma->vm_flags & VM_GROWSDOWN) { 2728 vm_start -= stack_guard_gap; 2729 if (vm_start > vma->vm_start) 2730 vm_start = 0; 2731 } 2732 return vm_start; 2733} 2734 2735static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2736{ 2737 unsigned long vm_end = vma->vm_end; 2738 2739 if (vma->vm_flags & VM_GROWSUP) { 2740 vm_end += stack_guard_gap; 2741 if (vm_end < vma->vm_end) 2742 vm_end = -PAGE_SIZE; 2743 } 2744 return vm_end; 2745} 2746 2747static inline unsigned long vma_pages(struct vm_area_struct *vma) 2748{ 2749 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2750} 2751 2752/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2753static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2754 unsigned long vm_start, unsigned long vm_end) 2755{ 2756 struct vm_area_struct *vma = find_vma(mm, vm_start); 2757 2758 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2759 vma = NULL; 2760 2761 return vma; 2762} 2763 2764static inline bool range_in_vma(struct vm_area_struct *vma, 2765 unsigned long start, unsigned long end) 2766{ 2767 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2768} 2769 2770#ifdef CONFIG_MMU 2771pgprot_t vm_get_page_prot(unsigned long vm_flags); 2772void vma_set_page_prot(struct vm_area_struct *vma); 2773#else 2774static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2775{ 2776 return __pgprot(0); 2777} 2778static inline void vma_set_page_prot(struct vm_area_struct *vma) 2779{ 2780 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2781} 2782#endif 2783 2784void vma_set_file(struct vm_area_struct *vma, struct file *file); 2785 2786#ifdef CONFIG_NUMA_BALANCING 2787unsigned long change_prot_numa(struct vm_area_struct *vma, 2788 unsigned long start, unsigned long end); 2789#endif 2790 2791struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2792int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2793 unsigned long pfn, unsigned long size, pgprot_t); 2794int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2795 unsigned long pfn, unsigned long size, pgprot_t prot); 2796int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2797int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2798 struct page **pages, unsigned long *num); 2799int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2800 unsigned long num); 2801int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2802 unsigned long num); 2803vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2804 unsigned long pfn); 2805vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2806 unsigned long pfn, pgprot_t pgprot); 2807vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2808 pfn_t pfn); 2809vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2810 pfn_t pfn, pgprot_t pgprot); 2811vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2812 unsigned long addr, pfn_t pfn); 2813int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2814 2815static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2816 unsigned long addr, struct page *page) 2817{ 2818 int err = vm_insert_page(vma, addr, page); 2819 2820 if (err == -ENOMEM) 2821 return VM_FAULT_OOM; 2822 if (err < 0 && err != -EBUSY) 2823 return VM_FAULT_SIGBUS; 2824 2825 return VM_FAULT_NOPAGE; 2826} 2827 2828#ifndef io_remap_pfn_range 2829static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2830 unsigned long addr, unsigned long pfn, 2831 unsigned long size, pgprot_t prot) 2832{ 2833 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2834} 2835#endif 2836 2837static inline vm_fault_t vmf_error(int err) 2838{ 2839 if (err == -ENOMEM) 2840 return VM_FAULT_OOM; 2841 return VM_FAULT_SIGBUS; 2842} 2843 2844struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2845 unsigned int foll_flags); 2846 2847#define FOLL_WRITE 0x01 /* check pte is writable */ 2848#define FOLL_TOUCH 0x02 /* mark page accessed */ 2849#define FOLL_GET 0x04 /* do get_page on page */ 2850#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2851#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2852#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2853 * and return without waiting upon it */ 2854#define FOLL_POPULATE 0x40 /* fault in page */ 2855#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2856#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2857#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2858#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2859#define FOLL_MLOCK 0x1000 /* lock present pages */ 2860#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2861#define FOLL_COW 0x4000 /* internal GUP flag */ 2862#define FOLL_ANON 0x8000 /* don't do file mappings */ 2863#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2864#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2865#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2866#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2867 2868/* 2869 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2870 * other. Here is what they mean, and how to use them: 2871 * 2872 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2873 * period _often_ under userspace control. This is in contrast to 2874 * iov_iter_get_pages(), whose usages are transient. 2875 * 2876 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2877 * lifetime enforced by the filesystem and we need guarantees that longterm 2878 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2879 * the filesystem. Ideas for this coordination include revoking the longterm 2880 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2881 * added after the problem with filesystems was found FS DAX VMAs are 2882 * specifically failed. Filesystem pages are still subject to bugs and use of 2883 * FOLL_LONGTERM should be avoided on those pages. 2884 * 2885 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2886 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2887 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2888 * is due to an incompatibility with the FS DAX check and 2889 * FAULT_FLAG_ALLOW_RETRY. 2890 * 2891 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2892 * that region. And so, CMA attempts to migrate the page before pinning, when 2893 * FOLL_LONGTERM is specified. 2894 * 2895 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2896 * but an additional pin counting system) will be invoked. This is intended for 2897 * anything that gets a page reference and then touches page data (for example, 2898 * Direct IO). This lets the filesystem know that some non-file-system entity is 2899 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2900 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2901 * a call to unpin_user_page(). 2902 * 2903 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2904 * and separate refcounting mechanisms, however, and that means that each has 2905 * its own acquire and release mechanisms: 2906 * 2907 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2908 * 2909 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2910 * 2911 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2912 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2913 * calls applied to them, and that's perfectly OK. This is a constraint on the 2914 * callers, not on the pages.) 2915 * 2916 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2917 * directly by the caller. That's in order to help avoid mismatches when 2918 * releasing pages: get_user_pages*() pages must be released via put_page(), 2919 * while pin_user_pages*() pages must be released via unpin_user_page(). 2920 * 2921 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2922 */ 2923 2924static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2925{ 2926 if (vm_fault & VM_FAULT_OOM) 2927 return -ENOMEM; 2928 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2929 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2930 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2931 return -EFAULT; 2932 return 0; 2933} 2934 2935typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2936extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2937 unsigned long size, pte_fn_t fn, void *data); 2938extern int apply_to_existing_page_range(struct mm_struct *mm, 2939 unsigned long address, unsigned long size, 2940 pte_fn_t fn, void *data); 2941 2942extern void init_mem_debugging_and_hardening(void); 2943#ifdef CONFIG_PAGE_POISONING 2944extern void __kernel_poison_pages(struct page *page, int numpages); 2945extern void __kernel_unpoison_pages(struct page *page, int numpages); 2946extern bool _page_poisoning_enabled_early; 2947DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2948static inline bool page_poisoning_enabled(void) 2949{ 2950 return _page_poisoning_enabled_early; 2951} 2952/* 2953 * For use in fast paths after init_mem_debugging() has run, or when a 2954 * false negative result is not harmful when called too early. 2955 */ 2956static inline bool page_poisoning_enabled_static(void) 2957{ 2958 return static_branch_unlikely(&_page_poisoning_enabled); 2959} 2960static inline void kernel_poison_pages(struct page *page, int numpages) 2961{ 2962 if (page_poisoning_enabled_static()) 2963 __kernel_poison_pages(page, numpages); 2964} 2965static inline void kernel_unpoison_pages(struct page *page, int numpages) 2966{ 2967 if (page_poisoning_enabled_static()) 2968 __kernel_unpoison_pages(page, numpages); 2969} 2970#else 2971static inline bool page_poisoning_enabled(void) { return false; } 2972static inline bool page_poisoning_enabled_static(void) { return false; } 2973static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2974static inline void kernel_poison_pages(struct page *page, int numpages) { } 2975static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2976#endif 2977 2978DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2979static inline bool want_init_on_alloc(gfp_t flags) 2980{ 2981 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 2982 &init_on_alloc)) 2983 return true; 2984 return flags & __GFP_ZERO; 2985} 2986 2987DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2988static inline bool want_init_on_free(void) 2989{ 2990 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 2991 &init_on_free); 2992} 2993 2994extern bool _debug_pagealloc_enabled_early; 2995DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2996 2997static inline bool debug_pagealloc_enabled(void) 2998{ 2999 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3000 _debug_pagealloc_enabled_early; 3001} 3002 3003/* 3004 * For use in fast paths after init_debug_pagealloc() has run, or when a 3005 * false negative result is not harmful when called too early. 3006 */ 3007static inline bool debug_pagealloc_enabled_static(void) 3008{ 3009 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3010 return false; 3011 3012 return static_branch_unlikely(&_debug_pagealloc_enabled); 3013} 3014 3015#ifdef CONFIG_DEBUG_PAGEALLOC 3016/* 3017 * To support DEBUG_PAGEALLOC architecture must ensure that 3018 * __kernel_map_pages() never fails 3019 */ 3020extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3021 3022static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3023{ 3024 if (debug_pagealloc_enabled_static()) 3025 __kernel_map_pages(page, numpages, 1); 3026} 3027 3028static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3029{ 3030 if (debug_pagealloc_enabled_static()) 3031 __kernel_map_pages(page, numpages, 0); 3032} 3033#else /* CONFIG_DEBUG_PAGEALLOC */ 3034static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3035static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3036#endif /* CONFIG_DEBUG_PAGEALLOC */ 3037 3038#ifdef __HAVE_ARCH_GATE_AREA 3039extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3040extern int in_gate_area_no_mm(unsigned long addr); 3041extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3042#else 3043static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3044{ 3045 return NULL; 3046} 3047static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3048static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3049{ 3050 return 0; 3051} 3052#endif /* __HAVE_ARCH_GATE_AREA */ 3053 3054extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3055 3056#ifdef CONFIG_SYSCTL 3057extern int sysctl_drop_caches; 3058int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3059 loff_t *); 3060#endif 3061 3062void drop_slab(void); 3063void drop_slab_node(int nid); 3064 3065#ifndef CONFIG_MMU 3066#define randomize_va_space 0 3067#else 3068extern int randomize_va_space; 3069#endif 3070 3071const char * arch_vma_name(struct vm_area_struct *vma); 3072#ifdef CONFIG_MMU 3073void print_vma_addr(char *prefix, unsigned long rip); 3074#else 3075static inline void print_vma_addr(char *prefix, unsigned long rip) 3076{ 3077} 3078#endif 3079 3080int vmemmap_remap_free(unsigned long start, unsigned long end, 3081 unsigned long reuse); 3082int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3083 unsigned long reuse, gfp_t gfp_mask); 3084 3085void *sparse_buffer_alloc(unsigned long size); 3086struct page * __populate_section_memmap(unsigned long pfn, 3087 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3088pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3089p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3090pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3091pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3092pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3093 struct vmem_altmap *altmap); 3094void *vmemmap_alloc_block(unsigned long size, int node); 3095struct vmem_altmap; 3096void *vmemmap_alloc_block_buf(unsigned long size, int node, 3097 struct vmem_altmap *altmap); 3098void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3099int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3100 int node, struct vmem_altmap *altmap); 3101int vmemmap_populate(unsigned long start, unsigned long end, int node, 3102 struct vmem_altmap *altmap); 3103void vmemmap_populate_print_last(void); 3104#ifdef CONFIG_MEMORY_HOTPLUG 3105void vmemmap_free(unsigned long start, unsigned long end, 3106 struct vmem_altmap *altmap); 3107#endif 3108void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3109 unsigned long nr_pages); 3110 3111enum mf_flags { 3112 MF_COUNT_INCREASED = 1 << 0, 3113 MF_ACTION_REQUIRED = 1 << 1, 3114 MF_MUST_KILL = 1 << 2, 3115 MF_SOFT_OFFLINE = 1 << 3, 3116}; 3117extern int memory_failure(unsigned long pfn, int flags); 3118extern void memory_failure_queue(unsigned long pfn, int flags); 3119extern void memory_failure_queue_kick(int cpu); 3120extern int unpoison_memory(unsigned long pfn); 3121extern int sysctl_memory_failure_early_kill; 3122extern int sysctl_memory_failure_recovery; 3123extern void shake_page(struct page *p); 3124extern atomic_long_t num_poisoned_pages __read_mostly; 3125extern int soft_offline_page(unsigned long pfn, int flags); 3126 3127 3128/* 3129 * Error handlers for various types of pages. 3130 */ 3131enum mf_result { 3132 MF_IGNORED, /* Error: cannot be handled */ 3133 MF_FAILED, /* Error: handling failed */ 3134 MF_DELAYED, /* Will be handled later */ 3135 MF_RECOVERED, /* Successfully recovered */ 3136}; 3137 3138enum mf_action_page_type { 3139 MF_MSG_KERNEL, 3140 MF_MSG_KERNEL_HIGH_ORDER, 3141 MF_MSG_SLAB, 3142 MF_MSG_DIFFERENT_COMPOUND, 3143 MF_MSG_POISONED_HUGE, 3144 MF_MSG_HUGE, 3145 MF_MSG_FREE_HUGE, 3146 MF_MSG_NON_PMD_HUGE, 3147 MF_MSG_UNMAP_FAILED, 3148 MF_MSG_DIRTY_SWAPCACHE, 3149 MF_MSG_CLEAN_SWAPCACHE, 3150 MF_MSG_DIRTY_MLOCKED_LRU, 3151 MF_MSG_CLEAN_MLOCKED_LRU, 3152 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3153 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3154 MF_MSG_DIRTY_LRU, 3155 MF_MSG_CLEAN_LRU, 3156 MF_MSG_TRUNCATED_LRU, 3157 MF_MSG_BUDDY, 3158 MF_MSG_BUDDY_2ND, 3159 MF_MSG_DAX, 3160 MF_MSG_UNSPLIT_THP, 3161 MF_MSG_UNKNOWN, 3162}; 3163 3164#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3165extern void clear_huge_page(struct page *page, 3166 unsigned long addr_hint, 3167 unsigned int pages_per_huge_page); 3168extern void copy_user_huge_page(struct page *dst, struct page *src, 3169 unsigned long addr_hint, 3170 struct vm_area_struct *vma, 3171 unsigned int pages_per_huge_page); 3172extern long copy_huge_page_from_user(struct page *dst_page, 3173 const void __user *usr_src, 3174 unsigned int pages_per_huge_page, 3175 bool allow_pagefault); 3176 3177/** 3178 * vma_is_special_huge - Are transhuge page-table entries considered special? 3179 * @vma: Pointer to the struct vm_area_struct to consider 3180 * 3181 * Whether transhuge page-table entries are considered "special" following 3182 * the definition in vm_normal_page(). 3183 * 3184 * Return: true if transhuge page-table entries should be considered special, 3185 * false otherwise. 3186 */ 3187static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3188{ 3189 return vma_is_dax(vma) || (vma->vm_file && 3190 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3191} 3192 3193#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3194 3195#ifdef CONFIG_DEBUG_PAGEALLOC 3196extern unsigned int _debug_guardpage_minorder; 3197DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3198 3199static inline unsigned int debug_guardpage_minorder(void) 3200{ 3201 return _debug_guardpage_minorder; 3202} 3203 3204static inline bool debug_guardpage_enabled(void) 3205{ 3206 return static_branch_unlikely(&_debug_guardpage_enabled); 3207} 3208 3209static inline bool page_is_guard(struct page *page) 3210{ 3211 if (!debug_guardpage_enabled()) 3212 return false; 3213 3214 return PageGuard(page); 3215} 3216#else 3217static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3218static inline bool debug_guardpage_enabled(void) { return false; } 3219static inline bool page_is_guard(struct page *page) { return false; } 3220#endif /* CONFIG_DEBUG_PAGEALLOC */ 3221 3222#if MAX_NUMNODES > 1 3223void __init setup_nr_node_ids(void); 3224#else 3225static inline void setup_nr_node_ids(void) {} 3226#endif 3227 3228extern int memcmp_pages(struct page *page1, struct page *page2); 3229 3230static inline int pages_identical(struct page *page1, struct page *page2) 3231{ 3232 return !memcmp_pages(page1, page2); 3233} 3234 3235#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3236unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3237 pgoff_t first_index, pgoff_t nr, 3238 pgoff_t bitmap_pgoff, 3239 unsigned long *bitmap, 3240 pgoff_t *start, 3241 pgoff_t *end); 3242 3243unsigned long wp_shared_mapping_range(struct address_space *mapping, 3244 pgoff_t first_index, pgoff_t nr); 3245#endif 3246 3247extern int sysctl_nr_trim_pages; 3248 3249#ifdef CONFIG_PRINTK 3250void mem_dump_obj(void *object); 3251#else 3252static inline void mem_dump_obj(void *object) {} 3253#endif 3254 3255/** 3256 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3257 * @seals: the seals to check 3258 * @vma: the vma to operate on 3259 * 3260 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3261 * the vma flags. Return 0 if check pass, or <0 for errors. 3262 */ 3263static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3264{ 3265 if (seals & F_SEAL_FUTURE_WRITE) { 3266 /* 3267 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3268 * "future write" seal active. 3269 */ 3270 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3271 return -EPERM; 3272 3273 /* 3274 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3275 * MAP_SHARED and read-only, take care to not allow mprotect to 3276 * revert protections on such mappings. Do this only for shared 3277 * mappings. For private mappings, don't need to mask 3278 * VM_MAYWRITE as we still want them to be COW-writable. 3279 */ 3280 if (vma->vm_flags & VM_SHARED) 3281 vma->vm_flags &= ~(VM_MAYWRITE); 3282 } 3283 3284 return 0; 3285} 3286 3287#endif /* __KERNEL__ */ 3288#endif /* _LINUX_MM_H */