at v5.15 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37}; 38 39enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49}; 50 51struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54}; 55 56#ifdef CONFIG_MEMCG 57 58#define MEM_CGROUP_ID_SHIFT 16 59#define MEM_CGROUP_ID_MAX USHRT_MAX 60 61struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64}; 65 66/* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76}; 77 78struct memcg_vmstats_percpu { 79 /* Local (CPU and cgroup) page state & events */ 80 long state[MEMCG_NR_STAT]; 81 unsigned long events[NR_VM_EVENT_ITEMS]; 82 83 /* Delta calculation for lockless upward propagation */ 84 long state_prev[MEMCG_NR_STAT]; 85 unsigned long events_prev[NR_VM_EVENT_ITEMS]; 86 87 /* Cgroup1: threshold notifications & softlimit tree updates */ 88 unsigned long nr_page_events; 89 unsigned long targets[MEM_CGROUP_NTARGETS]; 90}; 91 92struct memcg_vmstats { 93 /* Aggregated (CPU and subtree) page state & events */ 94 long state[MEMCG_NR_STAT]; 95 unsigned long events[NR_VM_EVENT_ITEMS]; 96 97 /* Pending child counts during tree propagation */ 98 long state_pending[MEMCG_NR_STAT]; 99 unsigned long events_pending[NR_VM_EVENT_ITEMS]; 100}; 101 102struct mem_cgroup_reclaim_iter { 103 struct mem_cgroup *position; 104 /* scan generation, increased every round-trip */ 105 unsigned int generation; 106}; 107 108/* 109 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 110 * shrinkers, which have elements charged to this memcg. 111 */ 112struct shrinker_info { 113 struct rcu_head rcu; 114 atomic_long_t *nr_deferred; 115 unsigned long *map; 116}; 117 118struct lruvec_stats_percpu { 119 /* Local (CPU and cgroup) state */ 120 long state[NR_VM_NODE_STAT_ITEMS]; 121 122 /* Delta calculation for lockless upward propagation */ 123 long state_prev[NR_VM_NODE_STAT_ITEMS]; 124}; 125 126struct lruvec_stats { 127 /* Aggregated (CPU and subtree) state */ 128 long state[NR_VM_NODE_STAT_ITEMS]; 129 130 /* Pending child counts during tree propagation */ 131 long state_pending[NR_VM_NODE_STAT_ITEMS]; 132}; 133 134/* 135 * per-node information in memory controller. 136 */ 137struct mem_cgroup_per_node { 138 struct lruvec lruvec; 139 140 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 141 struct lruvec_stats lruvec_stats; 142 143 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 144 145 struct mem_cgroup_reclaim_iter iter; 146 147 struct shrinker_info __rcu *shrinker_info; 148 149 struct rb_node tree_node; /* RB tree node */ 150 unsigned long usage_in_excess;/* Set to the value by which */ 151 /* the soft limit is exceeded*/ 152 bool on_tree; 153 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 154 /* use container_of */ 155}; 156 157struct mem_cgroup_threshold { 158 struct eventfd_ctx *eventfd; 159 unsigned long threshold; 160}; 161 162/* For threshold */ 163struct mem_cgroup_threshold_ary { 164 /* An array index points to threshold just below or equal to usage. */ 165 int current_threshold; 166 /* Size of entries[] */ 167 unsigned int size; 168 /* Array of thresholds */ 169 struct mem_cgroup_threshold entries[]; 170}; 171 172struct mem_cgroup_thresholds { 173 /* Primary thresholds array */ 174 struct mem_cgroup_threshold_ary *primary; 175 /* 176 * Spare threshold array. 177 * This is needed to make mem_cgroup_unregister_event() "never fail". 178 * It must be able to store at least primary->size - 1 entries. 179 */ 180 struct mem_cgroup_threshold_ary *spare; 181}; 182 183enum memcg_kmem_state { 184 KMEM_NONE, 185 KMEM_ALLOCATED, 186 KMEM_ONLINE, 187}; 188 189#if defined(CONFIG_SMP) 190struct memcg_padding { 191 char x[0]; 192} ____cacheline_internodealigned_in_smp; 193#define MEMCG_PADDING(name) struct memcg_padding name 194#else 195#define MEMCG_PADDING(name) 196#endif 197 198/* 199 * Remember four most recent foreign writebacks with dirty pages in this 200 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 201 * one in a given round, we're likely to catch it later if it keeps 202 * foreign-dirtying, so a fairly low count should be enough. 203 * 204 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 205 */ 206#define MEMCG_CGWB_FRN_CNT 4 207 208struct memcg_cgwb_frn { 209 u64 bdi_id; /* bdi->id of the foreign inode */ 210 int memcg_id; /* memcg->css.id of foreign inode */ 211 u64 at; /* jiffies_64 at the time of dirtying */ 212 struct wb_completion done; /* tracks in-flight foreign writebacks */ 213}; 214 215/* 216 * Bucket for arbitrarily byte-sized objects charged to a memory 217 * cgroup. The bucket can be reparented in one piece when the cgroup 218 * is destroyed, without having to round up the individual references 219 * of all live memory objects in the wild. 220 */ 221struct obj_cgroup { 222 struct percpu_ref refcnt; 223 struct mem_cgroup *memcg; 224 atomic_t nr_charged_bytes; 225 union { 226 struct list_head list; 227 struct rcu_head rcu; 228 }; 229}; 230 231/* 232 * The memory controller data structure. The memory controller controls both 233 * page cache and RSS per cgroup. We would eventually like to provide 234 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 235 * to help the administrator determine what knobs to tune. 236 */ 237struct mem_cgroup { 238 struct cgroup_subsys_state css; 239 240 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 241 struct mem_cgroup_id id; 242 243 /* Accounted resources */ 244 struct page_counter memory; /* Both v1 & v2 */ 245 246 union { 247 struct page_counter swap; /* v2 only */ 248 struct page_counter memsw; /* v1 only */ 249 }; 250 251 /* Legacy consumer-oriented counters */ 252 struct page_counter kmem; /* v1 only */ 253 struct page_counter tcpmem; /* v1 only */ 254 255 /* Range enforcement for interrupt charges */ 256 struct work_struct high_work; 257 258 unsigned long soft_limit; 259 260 /* vmpressure notifications */ 261 struct vmpressure vmpressure; 262 263 /* 264 * Should the OOM killer kill all belonging tasks, had it kill one? 265 */ 266 bool oom_group; 267 268 /* protected by memcg_oom_lock */ 269 bool oom_lock; 270 int under_oom; 271 272 int swappiness; 273 /* OOM-Killer disable */ 274 int oom_kill_disable; 275 276 /* memory.events and memory.events.local */ 277 struct cgroup_file events_file; 278 struct cgroup_file events_local_file; 279 280 /* handle for "memory.swap.events" */ 281 struct cgroup_file swap_events_file; 282 283 /* protect arrays of thresholds */ 284 struct mutex thresholds_lock; 285 286 /* thresholds for memory usage. RCU-protected */ 287 struct mem_cgroup_thresholds thresholds; 288 289 /* thresholds for mem+swap usage. RCU-protected */ 290 struct mem_cgroup_thresholds memsw_thresholds; 291 292 /* For oom notifier event fd */ 293 struct list_head oom_notify; 294 295 /* 296 * Should we move charges of a task when a task is moved into this 297 * mem_cgroup ? And what type of charges should we move ? 298 */ 299 unsigned long move_charge_at_immigrate; 300 /* taken only while moving_account > 0 */ 301 spinlock_t move_lock; 302 unsigned long move_lock_flags; 303 304 MEMCG_PADDING(_pad1_); 305 306 /* memory.stat */ 307 struct memcg_vmstats vmstats; 308 309 /* memory.events */ 310 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 311 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 312 313 unsigned long socket_pressure; 314 315 /* Legacy tcp memory accounting */ 316 bool tcpmem_active; 317 int tcpmem_pressure; 318 319#ifdef CONFIG_MEMCG_KMEM 320 int kmemcg_id; 321 enum memcg_kmem_state kmem_state; 322 struct obj_cgroup __rcu *objcg; 323 struct list_head objcg_list; /* list of inherited objcgs */ 324#endif 325 326 MEMCG_PADDING(_pad2_); 327 328 /* 329 * set > 0 if pages under this cgroup are moving to other cgroup. 330 */ 331 atomic_t moving_account; 332 struct task_struct *move_lock_task; 333 334 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 335 336#ifdef CONFIG_CGROUP_WRITEBACK 337 struct list_head cgwb_list; 338 struct wb_domain cgwb_domain; 339 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 340#endif 341 342 /* List of events which userspace want to receive */ 343 struct list_head event_list; 344 spinlock_t event_list_lock; 345 346#ifdef CONFIG_TRANSPARENT_HUGEPAGE 347 struct deferred_split deferred_split_queue; 348#endif 349 350 struct mem_cgroup_per_node *nodeinfo[]; 351}; 352 353/* 354 * size of first charge trial. "32" comes from vmscan.c's magic value. 355 * TODO: maybe necessary to use big numbers in big irons. 356 */ 357#define MEMCG_CHARGE_BATCH 32U 358 359extern struct mem_cgroup *root_mem_cgroup; 360 361enum page_memcg_data_flags { 362 /* page->memcg_data is a pointer to an objcgs vector */ 363 MEMCG_DATA_OBJCGS = (1UL << 0), 364 /* page has been accounted as a non-slab kernel page */ 365 MEMCG_DATA_KMEM = (1UL << 1), 366 /* the next bit after the last actual flag */ 367 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 368}; 369 370#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 371 372static inline bool PageMemcgKmem(struct page *page); 373 374/* 375 * After the initialization objcg->memcg is always pointing at 376 * a valid memcg, but can be atomically swapped to the parent memcg. 377 * 378 * The caller must ensure that the returned memcg won't be released: 379 * e.g. acquire the rcu_read_lock or css_set_lock. 380 */ 381static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 382{ 383 return READ_ONCE(objcg->memcg); 384} 385 386/* 387 * __page_memcg - get the memory cgroup associated with a non-kmem page 388 * @page: a pointer to the page struct 389 * 390 * Returns a pointer to the memory cgroup associated with the page, 391 * or NULL. This function assumes that the page is known to have a 392 * proper memory cgroup pointer. It's not safe to call this function 393 * against some type of pages, e.g. slab pages or ex-slab pages or 394 * kmem pages. 395 */ 396static inline struct mem_cgroup *__page_memcg(struct page *page) 397{ 398 unsigned long memcg_data = page->memcg_data; 399 400 VM_BUG_ON_PAGE(PageSlab(page), page); 401 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 402 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 403 404 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 405} 406 407/* 408 * __page_objcg - get the object cgroup associated with a kmem page 409 * @page: a pointer to the page struct 410 * 411 * Returns a pointer to the object cgroup associated with the page, 412 * or NULL. This function assumes that the page is known to have a 413 * proper object cgroup pointer. It's not safe to call this function 414 * against some type of pages, e.g. slab pages or ex-slab pages or 415 * LRU pages. 416 */ 417static inline struct obj_cgroup *__page_objcg(struct page *page) 418{ 419 unsigned long memcg_data = page->memcg_data; 420 421 VM_BUG_ON_PAGE(PageSlab(page), page); 422 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 423 VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page); 424 425 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 426} 427 428/* 429 * page_memcg - get the memory cgroup associated with a page 430 * @page: a pointer to the page struct 431 * 432 * Returns a pointer to the memory cgroup associated with the page, 433 * or NULL. This function assumes that the page is known to have a 434 * proper memory cgroup pointer. It's not safe to call this function 435 * against some type of pages, e.g. slab pages or ex-slab pages. 436 * 437 * For a non-kmem page any of the following ensures page and memcg binding 438 * stability: 439 * 440 * - the page lock 441 * - LRU isolation 442 * - lock_page_memcg() 443 * - exclusive reference 444 * 445 * For a kmem page a caller should hold an rcu read lock to protect memcg 446 * associated with a kmem page from being released. 447 */ 448static inline struct mem_cgroup *page_memcg(struct page *page) 449{ 450 if (PageMemcgKmem(page)) 451 return obj_cgroup_memcg(__page_objcg(page)); 452 else 453 return __page_memcg(page); 454} 455 456/* 457 * page_memcg_rcu - locklessly get the memory cgroup associated with a page 458 * @page: a pointer to the page struct 459 * 460 * Returns a pointer to the memory cgroup associated with the page, 461 * or NULL. This function assumes that the page is known to have a 462 * proper memory cgroup pointer. It's not safe to call this function 463 * against some type of pages, e.g. slab pages or ex-slab pages. 464 */ 465static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 466{ 467 unsigned long memcg_data = READ_ONCE(page->memcg_data); 468 469 VM_BUG_ON_PAGE(PageSlab(page), page); 470 WARN_ON_ONCE(!rcu_read_lock_held()); 471 472 if (memcg_data & MEMCG_DATA_KMEM) { 473 struct obj_cgroup *objcg; 474 475 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 476 return obj_cgroup_memcg(objcg); 477 } 478 479 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 480} 481 482/* 483 * page_memcg_check - get the memory cgroup associated with a page 484 * @page: a pointer to the page struct 485 * 486 * Returns a pointer to the memory cgroup associated with the page, 487 * or NULL. This function unlike page_memcg() can take any page 488 * as an argument. It has to be used in cases when it's not known if a page 489 * has an associated memory cgroup pointer or an object cgroups vector or 490 * an object cgroup. 491 * 492 * For a non-kmem page any of the following ensures page and memcg binding 493 * stability: 494 * 495 * - the page lock 496 * - LRU isolation 497 * - lock_page_memcg() 498 * - exclusive reference 499 * 500 * For a kmem page a caller should hold an rcu read lock to protect memcg 501 * associated with a kmem page from being released. 502 */ 503static inline struct mem_cgroup *page_memcg_check(struct page *page) 504{ 505 /* 506 * Because page->memcg_data might be changed asynchronously 507 * for slab pages, READ_ONCE() should be used here. 508 */ 509 unsigned long memcg_data = READ_ONCE(page->memcg_data); 510 511 if (memcg_data & MEMCG_DATA_OBJCGS) 512 return NULL; 513 514 if (memcg_data & MEMCG_DATA_KMEM) { 515 struct obj_cgroup *objcg; 516 517 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 518 return obj_cgroup_memcg(objcg); 519 } 520 521 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 522} 523 524#ifdef CONFIG_MEMCG_KMEM 525/* 526 * PageMemcgKmem - check if the page has MemcgKmem flag set 527 * @page: a pointer to the page struct 528 * 529 * Checks if the page has MemcgKmem flag set. The caller must ensure that 530 * the page has an associated memory cgroup. It's not safe to call this function 531 * against some types of pages, e.g. slab pages. 532 */ 533static inline bool PageMemcgKmem(struct page *page) 534{ 535 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page); 536 return page->memcg_data & MEMCG_DATA_KMEM; 537} 538 539/* 540 * page_objcgs - get the object cgroups vector associated with a page 541 * @page: a pointer to the page struct 542 * 543 * Returns a pointer to the object cgroups vector associated with the page, 544 * or NULL. This function assumes that the page is known to have an 545 * associated object cgroups vector. It's not safe to call this function 546 * against pages, which might have an associated memory cgroup: e.g. 547 * kernel stack pages. 548 */ 549static inline struct obj_cgroup **page_objcgs(struct page *page) 550{ 551 unsigned long memcg_data = READ_ONCE(page->memcg_data); 552 553 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page); 554 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 555 556 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 557} 558 559/* 560 * page_objcgs_check - get the object cgroups vector associated with a page 561 * @page: a pointer to the page struct 562 * 563 * Returns a pointer to the object cgroups vector associated with the page, 564 * or NULL. This function is safe to use if the page can be directly associated 565 * with a memory cgroup. 566 */ 567static inline struct obj_cgroup **page_objcgs_check(struct page *page) 568{ 569 unsigned long memcg_data = READ_ONCE(page->memcg_data); 570 571 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS)) 572 return NULL; 573 574 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 575 576 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 577} 578 579#else 580static inline bool PageMemcgKmem(struct page *page) 581{ 582 return false; 583} 584 585static inline struct obj_cgroup **page_objcgs(struct page *page) 586{ 587 return NULL; 588} 589 590static inline struct obj_cgroup **page_objcgs_check(struct page *page) 591{ 592 return NULL; 593} 594#endif 595 596static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 597{ 598 return (memcg == root_mem_cgroup); 599} 600 601static inline bool mem_cgroup_disabled(void) 602{ 603 return !cgroup_subsys_enabled(memory_cgrp_subsys); 604} 605 606static inline void mem_cgroup_protection(struct mem_cgroup *root, 607 struct mem_cgroup *memcg, 608 unsigned long *min, 609 unsigned long *low) 610{ 611 *min = *low = 0; 612 613 if (mem_cgroup_disabled()) 614 return; 615 616 /* 617 * There is no reclaim protection applied to a targeted reclaim. 618 * We are special casing this specific case here because 619 * mem_cgroup_protected calculation is not robust enough to keep 620 * the protection invariant for calculated effective values for 621 * parallel reclaimers with different reclaim target. This is 622 * especially a problem for tail memcgs (as they have pages on LRU) 623 * which would want to have effective values 0 for targeted reclaim 624 * but a different value for external reclaim. 625 * 626 * Example 627 * Let's have global and A's reclaim in parallel: 628 * | 629 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 630 * |\ 631 * | C (low = 1G, usage = 2.5G) 632 * B (low = 1G, usage = 0.5G) 633 * 634 * For the global reclaim 635 * A.elow = A.low 636 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 637 * C.elow = min(C.usage, C.low) 638 * 639 * With the effective values resetting we have A reclaim 640 * A.elow = 0 641 * B.elow = B.low 642 * C.elow = C.low 643 * 644 * If the global reclaim races with A's reclaim then 645 * B.elow = C.elow = 0 because children_low_usage > A.elow) 646 * is possible and reclaiming B would be violating the protection. 647 * 648 */ 649 if (root == memcg) 650 return; 651 652 *min = READ_ONCE(memcg->memory.emin); 653 *low = READ_ONCE(memcg->memory.elow); 654} 655 656void mem_cgroup_calculate_protection(struct mem_cgroup *root, 657 struct mem_cgroup *memcg); 658 659static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 660{ 661 /* 662 * The root memcg doesn't account charges, and doesn't support 663 * protection. 664 */ 665 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 666 667} 668 669static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 670{ 671 if (!mem_cgroup_supports_protection(memcg)) 672 return false; 673 674 return READ_ONCE(memcg->memory.elow) >= 675 page_counter_read(&memcg->memory); 676} 677 678static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 679{ 680 if (!mem_cgroup_supports_protection(memcg)) 681 return false; 682 683 return READ_ONCE(memcg->memory.emin) >= 684 page_counter_read(&memcg->memory); 685} 686 687int __mem_cgroup_charge(struct page *page, struct mm_struct *mm, 688 gfp_t gfp_mask); 689static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 690 gfp_t gfp_mask) 691{ 692 if (mem_cgroup_disabled()) 693 return 0; 694 return __mem_cgroup_charge(page, mm, gfp_mask); 695} 696 697int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 698 gfp_t gfp, swp_entry_t entry); 699void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 700 701void __mem_cgroup_uncharge(struct page *page); 702static inline void mem_cgroup_uncharge(struct page *page) 703{ 704 if (mem_cgroup_disabled()) 705 return; 706 __mem_cgroup_uncharge(page); 707} 708 709void __mem_cgroup_uncharge_list(struct list_head *page_list); 710static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 711{ 712 if (mem_cgroup_disabled()) 713 return; 714 __mem_cgroup_uncharge_list(page_list); 715} 716 717void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 718 719/** 720 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 721 * @memcg: memcg of the wanted lruvec 722 * @pgdat: pglist_data 723 * 724 * Returns the lru list vector holding pages for a given @memcg & 725 * @pgdat combination. This can be the node lruvec, if the memory 726 * controller is disabled. 727 */ 728static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 729 struct pglist_data *pgdat) 730{ 731 struct mem_cgroup_per_node *mz; 732 struct lruvec *lruvec; 733 734 if (mem_cgroup_disabled()) { 735 lruvec = &pgdat->__lruvec; 736 goto out; 737 } 738 739 if (!memcg) 740 memcg = root_mem_cgroup; 741 742 mz = memcg->nodeinfo[pgdat->node_id]; 743 lruvec = &mz->lruvec; 744out: 745 /* 746 * Since a node can be onlined after the mem_cgroup was created, 747 * we have to be prepared to initialize lruvec->pgdat here; 748 * and if offlined then reonlined, we need to reinitialize it. 749 */ 750 if (unlikely(lruvec->pgdat != pgdat)) 751 lruvec->pgdat = pgdat; 752 return lruvec; 753} 754 755/** 756 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 757 * @page: the page 758 * 759 * This function relies on page->mem_cgroup being stable. 760 */ 761static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) 762{ 763 pg_data_t *pgdat = page_pgdat(page); 764 struct mem_cgroup *memcg = page_memcg(page); 765 766 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page); 767 return mem_cgroup_lruvec(memcg, pgdat); 768} 769 770struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 771 772struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 773 774struct lruvec *lock_page_lruvec(struct page *page); 775struct lruvec *lock_page_lruvec_irq(struct page *page); 776struct lruvec *lock_page_lruvec_irqsave(struct page *page, 777 unsigned long *flags); 778 779#ifdef CONFIG_DEBUG_VM 780void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page); 781#else 782static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 783{ 784} 785#endif 786 787static inline 788struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 789 return css ? container_of(css, struct mem_cgroup, css) : NULL; 790} 791 792static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 793{ 794 return percpu_ref_tryget(&objcg->refcnt); 795} 796 797static inline void obj_cgroup_get(struct obj_cgroup *objcg) 798{ 799 percpu_ref_get(&objcg->refcnt); 800} 801 802static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 803 unsigned long nr) 804{ 805 percpu_ref_get_many(&objcg->refcnt, nr); 806} 807 808static inline void obj_cgroup_put(struct obj_cgroup *objcg) 809{ 810 percpu_ref_put(&objcg->refcnt); 811} 812 813static inline void mem_cgroup_put(struct mem_cgroup *memcg) 814{ 815 if (memcg) 816 css_put(&memcg->css); 817} 818 819#define mem_cgroup_from_counter(counter, member) \ 820 container_of(counter, struct mem_cgroup, member) 821 822struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 823 struct mem_cgroup *, 824 struct mem_cgroup_reclaim_cookie *); 825void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 826int mem_cgroup_scan_tasks(struct mem_cgroup *, 827 int (*)(struct task_struct *, void *), void *); 828 829static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 830{ 831 if (mem_cgroup_disabled()) 832 return 0; 833 834 return memcg->id.id; 835} 836struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 837 838static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 839{ 840 return mem_cgroup_from_css(seq_css(m)); 841} 842 843static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 844{ 845 struct mem_cgroup_per_node *mz; 846 847 if (mem_cgroup_disabled()) 848 return NULL; 849 850 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 851 return mz->memcg; 852} 853 854/** 855 * parent_mem_cgroup - find the accounting parent of a memcg 856 * @memcg: memcg whose parent to find 857 * 858 * Returns the parent memcg, or NULL if this is the root or the memory 859 * controller is in legacy no-hierarchy mode. 860 */ 861static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 862{ 863 if (!memcg->memory.parent) 864 return NULL; 865 return mem_cgroup_from_counter(memcg->memory.parent, memory); 866} 867 868static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 869 struct mem_cgroup *root) 870{ 871 if (root == memcg) 872 return true; 873 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 874} 875 876static inline bool mm_match_cgroup(struct mm_struct *mm, 877 struct mem_cgroup *memcg) 878{ 879 struct mem_cgroup *task_memcg; 880 bool match = false; 881 882 rcu_read_lock(); 883 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 884 if (task_memcg) 885 match = mem_cgroup_is_descendant(task_memcg, memcg); 886 rcu_read_unlock(); 887 return match; 888} 889 890struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 891ino_t page_cgroup_ino(struct page *page); 892 893static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 894{ 895 if (mem_cgroup_disabled()) 896 return true; 897 return !!(memcg->css.flags & CSS_ONLINE); 898} 899 900void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 901 int zid, int nr_pages); 902 903static inline 904unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 905 enum lru_list lru, int zone_idx) 906{ 907 struct mem_cgroup_per_node *mz; 908 909 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 910 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 911} 912 913void mem_cgroup_handle_over_high(void); 914 915unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 916 917unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 918 919void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 920 struct task_struct *p); 921 922void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 923 924static inline void mem_cgroup_enter_user_fault(void) 925{ 926 WARN_ON(current->in_user_fault); 927 current->in_user_fault = 1; 928} 929 930static inline void mem_cgroup_exit_user_fault(void) 931{ 932 WARN_ON(!current->in_user_fault); 933 current->in_user_fault = 0; 934} 935 936static inline bool task_in_memcg_oom(struct task_struct *p) 937{ 938 return p->memcg_in_oom; 939} 940 941bool mem_cgroup_oom_synchronize(bool wait); 942struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 943 struct mem_cgroup *oom_domain); 944void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 945 946#ifdef CONFIG_MEMCG_SWAP 947extern bool cgroup_memory_noswap; 948#endif 949 950void lock_page_memcg(struct page *page); 951void unlock_page_memcg(struct page *page); 952 953void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 954 955/* idx can be of type enum memcg_stat_item or node_stat_item */ 956static inline void mod_memcg_state(struct mem_cgroup *memcg, 957 int idx, int val) 958{ 959 unsigned long flags; 960 961 local_irq_save(flags); 962 __mod_memcg_state(memcg, idx, val); 963 local_irq_restore(flags); 964} 965 966static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 967{ 968 return READ_ONCE(memcg->vmstats.state[idx]); 969} 970 971static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 972 enum node_stat_item idx) 973{ 974 struct mem_cgroup_per_node *pn; 975 976 if (mem_cgroup_disabled()) 977 return node_page_state(lruvec_pgdat(lruvec), idx); 978 979 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 980 return READ_ONCE(pn->lruvec_stats.state[idx]); 981} 982 983static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 984 enum node_stat_item idx) 985{ 986 struct mem_cgroup_per_node *pn; 987 long x = 0; 988 int cpu; 989 990 if (mem_cgroup_disabled()) 991 return node_page_state(lruvec_pgdat(lruvec), idx); 992 993 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 994 for_each_possible_cpu(cpu) 995 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); 996#ifdef CONFIG_SMP 997 if (x < 0) 998 x = 0; 999#endif 1000 return x; 1001} 1002 1003void mem_cgroup_flush_stats(void); 1004 1005void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1006 int val); 1007void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1008 1009static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1010 int val) 1011{ 1012 unsigned long flags; 1013 1014 local_irq_save(flags); 1015 __mod_lruvec_kmem_state(p, idx, val); 1016 local_irq_restore(flags); 1017} 1018 1019static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1020 enum node_stat_item idx, int val) 1021{ 1022 unsigned long flags; 1023 1024 local_irq_save(flags); 1025 __mod_memcg_lruvec_state(lruvec, idx, val); 1026 local_irq_restore(flags); 1027} 1028 1029void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1030 unsigned long count); 1031 1032static inline void count_memcg_events(struct mem_cgroup *memcg, 1033 enum vm_event_item idx, 1034 unsigned long count) 1035{ 1036 unsigned long flags; 1037 1038 local_irq_save(flags); 1039 __count_memcg_events(memcg, idx, count); 1040 local_irq_restore(flags); 1041} 1042 1043static inline void count_memcg_page_event(struct page *page, 1044 enum vm_event_item idx) 1045{ 1046 struct mem_cgroup *memcg = page_memcg(page); 1047 1048 if (memcg) 1049 count_memcg_events(memcg, idx, 1); 1050} 1051 1052static inline void count_memcg_event_mm(struct mm_struct *mm, 1053 enum vm_event_item idx) 1054{ 1055 struct mem_cgroup *memcg; 1056 1057 if (mem_cgroup_disabled()) 1058 return; 1059 1060 rcu_read_lock(); 1061 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1062 if (likely(memcg)) 1063 count_memcg_events(memcg, idx, 1); 1064 rcu_read_unlock(); 1065} 1066 1067static inline void memcg_memory_event(struct mem_cgroup *memcg, 1068 enum memcg_memory_event event) 1069{ 1070 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1071 event == MEMCG_SWAP_FAIL; 1072 1073 atomic_long_inc(&memcg->memory_events_local[event]); 1074 if (!swap_event) 1075 cgroup_file_notify(&memcg->events_local_file); 1076 1077 do { 1078 atomic_long_inc(&memcg->memory_events[event]); 1079 if (swap_event) 1080 cgroup_file_notify(&memcg->swap_events_file); 1081 else 1082 cgroup_file_notify(&memcg->events_file); 1083 1084 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1085 break; 1086 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1087 break; 1088 } while ((memcg = parent_mem_cgroup(memcg)) && 1089 !mem_cgroup_is_root(memcg)); 1090} 1091 1092static inline void memcg_memory_event_mm(struct mm_struct *mm, 1093 enum memcg_memory_event event) 1094{ 1095 struct mem_cgroup *memcg; 1096 1097 if (mem_cgroup_disabled()) 1098 return; 1099 1100 rcu_read_lock(); 1101 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1102 if (likely(memcg)) 1103 memcg_memory_event(memcg, event); 1104 rcu_read_unlock(); 1105} 1106 1107void split_page_memcg(struct page *head, unsigned int nr); 1108 1109unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1110 gfp_t gfp_mask, 1111 unsigned long *total_scanned); 1112 1113#else /* CONFIG_MEMCG */ 1114 1115#define MEM_CGROUP_ID_SHIFT 0 1116#define MEM_CGROUP_ID_MAX 0 1117 1118static inline struct mem_cgroup *page_memcg(struct page *page) 1119{ 1120 return NULL; 1121} 1122 1123static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1124{ 1125 WARN_ON_ONCE(!rcu_read_lock_held()); 1126 return NULL; 1127} 1128 1129static inline struct mem_cgroup *page_memcg_check(struct page *page) 1130{ 1131 return NULL; 1132} 1133 1134static inline bool PageMemcgKmem(struct page *page) 1135{ 1136 return false; 1137} 1138 1139static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1140{ 1141 return true; 1142} 1143 1144static inline bool mem_cgroup_disabled(void) 1145{ 1146 return true; 1147} 1148 1149static inline void memcg_memory_event(struct mem_cgroup *memcg, 1150 enum memcg_memory_event event) 1151{ 1152} 1153 1154static inline void memcg_memory_event_mm(struct mm_struct *mm, 1155 enum memcg_memory_event event) 1156{ 1157} 1158 1159static inline void mem_cgroup_protection(struct mem_cgroup *root, 1160 struct mem_cgroup *memcg, 1161 unsigned long *min, 1162 unsigned long *low) 1163{ 1164 *min = *low = 0; 1165} 1166 1167static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1168 struct mem_cgroup *memcg) 1169{ 1170} 1171 1172static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1173{ 1174 return false; 1175} 1176 1177static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1178{ 1179 return false; 1180} 1181 1182static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 1183 gfp_t gfp_mask) 1184{ 1185 return 0; 1186} 1187 1188static inline int mem_cgroup_swapin_charge_page(struct page *page, 1189 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1190{ 1191 return 0; 1192} 1193 1194static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1195{ 1196} 1197 1198static inline void mem_cgroup_uncharge(struct page *page) 1199{ 1200} 1201 1202static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1203{ 1204} 1205 1206static inline void mem_cgroup_migrate(struct page *old, struct page *new) 1207{ 1208} 1209 1210static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1211 struct pglist_data *pgdat) 1212{ 1213 return &pgdat->__lruvec; 1214} 1215 1216static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) 1217{ 1218 pg_data_t *pgdat = page_pgdat(page); 1219 1220 return &pgdat->__lruvec; 1221} 1222 1223static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1224{ 1225} 1226 1227static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1228{ 1229 return NULL; 1230} 1231 1232static inline bool mm_match_cgroup(struct mm_struct *mm, 1233 struct mem_cgroup *memcg) 1234{ 1235 return true; 1236} 1237 1238static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1239{ 1240 return NULL; 1241} 1242 1243static inline 1244struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1245{ 1246 return NULL; 1247} 1248 1249static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1250{ 1251} 1252 1253static inline struct lruvec *lock_page_lruvec(struct page *page) 1254{ 1255 struct pglist_data *pgdat = page_pgdat(page); 1256 1257 spin_lock(&pgdat->__lruvec.lru_lock); 1258 return &pgdat->__lruvec; 1259} 1260 1261static inline struct lruvec *lock_page_lruvec_irq(struct page *page) 1262{ 1263 struct pglist_data *pgdat = page_pgdat(page); 1264 1265 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1266 return &pgdat->__lruvec; 1267} 1268 1269static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page, 1270 unsigned long *flagsp) 1271{ 1272 struct pglist_data *pgdat = page_pgdat(page); 1273 1274 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1275 return &pgdat->__lruvec; 1276} 1277 1278static inline struct mem_cgroup * 1279mem_cgroup_iter(struct mem_cgroup *root, 1280 struct mem_cgroup *prev, 1281 struct mem_cgroup_reclaim_cookie *reclaim) 1282{ 1283 return NULL; 1284} 1285 1286static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1287 struct mem_cgroup *prev) 1288{ 1289} 1290 1291static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1292 int (*fn)(struct task_struct *, void *), void *arg) 1293{ 1294 return 0; 1295} 1296 1297static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1298{ 1299 return 0; 1300} 1301 1302static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1303{ 1304 WARN_ON_ONCE(id); 1305 /* XXX: This should always return root_mem_cgroup */ 1306 return NULL; 1307} 1308 1309static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1310{ 1311 return NULL; 1312} 1313 1314static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1315{ 1316 return NULL; 1317} 1318 1319static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1320{ 1321 return true; 1322} 1323 1324static inline 1325unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1326 enum lru_list lru, int zone_idx) 1327{ 1328 return 0; 1329} 1330 1331static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1332{ 1333 return 0; 1334} 1335 1336static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1337{ 1338 return 0; 1339} 1340 1341static inline void 1342mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1343{ 1344} 1345 1346static inline void 1347mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1348{ 1349} 1350 1351static inline void lock_page_memcg(struct page *page) 1352{ 1353} 1354 1355static inline void unlock_page_memcg(struct page *page) 1356{ 1357} 1358 1359static inline void mem_cgroup_handle_over_high(void) 1360{ 1361} 1362 1363static inline void mem_cgroup_enter_user_fault(void) 1364{ 1365} 1366 1367static inline void mem_cgroup_exit_user_fault(void) 1368{ 1369} 1370 1371static inline bool task_in_memcg_oom(struct task_struct *p) 1372{ 1373 return false; 1374} 1375 1376static inline bool mem_cgroup_oom_synchronize(bool wait) 1377{ 1378 return false; 1379} 1380 1381static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1382 struct task_struct *victim, struct mem_cgroup *oom_domain) 1383{ 1384 return NULL; 1385} 1386 1387static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1388{ 1389} 1390 1391static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1392 int idx, 1393 int nr) 1394{ 1395} 1396 1397static inline void mod_memcg_state(struct mem_cgroup *memcg, 1398 int idx, 1399 int nr) 1400{ 1401} 1402 1403static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1404{ 1405 return 0; 1406} 1407 1408static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1409 enum node_stat_item idx) 1410{ 1411 return node_page_state(lruvec_pgdat(lruvec), idx); 1412} 1413 1414static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1415 enum node_stat_item idx) 1416{ 1417 return node_page_state(lruvec_pgdat(lruvec), idx); 1418} 1419 1420static inline void mem_cgroup_flush_stats(void) 1421{ 1422} 1423 1424static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1425 enum node_stat_item idx, int val) 1426{ 1427} 1428 1429static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1430 int val) 1431{ 1432 struct page *page = virt_to_head_page(p); 1433 1434 __mod_node_page_state(page_pgdat(page), idx, val); 1435} 1436 1437static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1438 int val) 1439{ 1440 struct page *page = virt_to_head_page(p); 1441 1442 mod_node_page_state(page_pgdat(page), idx, val); 1443} 1444 1445static inline void count_memcg_events(struct mem_cgroup *memcg, 1446 enum vm_event_item idx, 1447 unsigned long count) 1448{ 1449} 1450 1451static inline void __count_memcg_events(struct mem_cgroup *memcg, 1452 enum vm_event_item idx, 1453 unsigned long count) 1454{ 1455} 1456 1457static inline void count_memcg_page_event(struct page *page, 1458 int idx) 1459{ 1460} 1461 1462static inline 1463void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1464{ 1465} 1466 1467static inline void split_page_memcg(struct page *head, unsigned int nr) 1468{ 1469} 1470 1471static inline 1472unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1473 gfp_t gfp_mask, 1474 unsigned long *total_scanned) 1475{ 1476 return 0; 1477} 1478#endif /* CONFIG_MEMCG */ 1479 1480static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1481{ 1482 __mod_lruvec_kmem_state(p, idx, 1); 1483} 1484 1485static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1486{ 1487 __mod_lruvec_kmem_state(p, idx, -1); 1488} 1489 1490static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1491{ 1492 struct mem_cgroup *memcg; 1493 1494 memcg = lruvec_memcg(lruvec); 1495 if (!memcg) 1496 return NULL; 1497 memcg = parent_mem_cgroup(memcg); 1498 if (!memcg) 1499 return NULL; 1500 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1501} 1502 1503static inline void unlock_page_lruvec(struct lruvec *lruvec) 1504{ 1505 spin_unlock(&lruvec->lru_lock); 1506} 1507 1508static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1509{ 1510 spin_unlock_irq(&lruvec->lru_lock); 1511} 1512 1513static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1514 unsigned long flags) 1515{ 1516 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1517} 1518 1519/* Test requires a stable page->memcg binding, see page_memcg() */ 1520static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec) 1521{ 1522 return lruvec_pgdat(lruvec) == page_pgdat(page) && 1523 lruvec_memcg(lruvec) == page_memcg(page); 1524} 1525 1526/* Don't lock again iff page's lruvec locked */ 1527static inline struct lruvec *relock_page_lruvec_irq(struct page *page, 1528 struct lruvec *locked_lruvec) 1529{ 1530 if (locked_lruvec) { 1531 if (page_matches_lruvec(page, locked_lruvec)) 1532 return locked_lruvec; 1533 1534 unlock_page_lruvec_irq(locked_lruvec); 1535 } 1536 1537 return lock_page_lruvec_irq(page); 1538} 1539 1540/* Don't lock again iff page's lruvec locked */ 1541static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page, 1542 struct lruvec *locked_lruvec, unsigned long *flags) 1543{ 1544 if (locked_lruvec) { 1545 if (page_matches_lruvec(page, locked_lruvec)) 1546 return locked_lruvec; 1547 1548 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1549 } 1550 1551 return lock_page_lruvec_irqsave(page, flags); 1552} 1553 1554#ifdef CONFIG_CGROUP_WRITEBACK 1555 1556struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1557void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1558 unsigned long *pheadroom, unsigned long *pdirty, 1559 unsigned long *pwriteback); 1560 1561void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1562 struct bdi_writeback *wb); 1563 1564static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1565 struct bdi_writeback *wb) 1566{ 1567 if (mem_cgroup_disabled()) 1568 return; 1569 1570 if (unlikely(&page_memcg(page)->css != wb->memcg_css)) 1571 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1572} 1573 1574void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1575 1576#else /* CONFIG_CGROUP_WRITEBACK */ 1577 1578static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1579{ 1580 return NULL; 1581} 1582 1583static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1584 unsigned long *pfilepages, 1585 unsigned long *pheadroom, 1586 unsigned long *pdirty, 1587 unsigned long *pwriteback) 1588{ 1589} 1590 1591static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1592 struct bdi_writeback *wb) 1593{ 1594} 1595 1596static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1597{ 1598} 1599 1600#endif /* CONFIG_CGROUP_WRITEBACK */ 1601 1602struct sock; 1603bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1604 gfp_t gfp_mask); 1605void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1606#ifdef CONFIG_MEMCG 1607extern struct static_key_false memcg_sockets_enabled_key; 1608#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1609void mem_cgroup_sk_alloc(struct sock *sk); 1610void mem_cgroup_sk_free(struct sock *sk); 1611static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1612{ 1613 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1614 return true; 1615 do { 1616 if (time_before(jiffies, memcg->socket_pressure)) 1617 return true; 1618 } while ((memcg = parent_mem_cgroup(memcg))); 1619 return false; 1620} 1621 1622int alloc_shrinker_info(struct mem_cgroup *memcg); 1623void free_shrinker_info(struct mem_cgroup *memcg); 1624void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1625void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1626#else 1627#define mem_cgroup_sockets_enabled 0 1628static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1629static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1630static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1631{ 1632 return false; 1633} 1634 1635static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1636 int nid, int shrinker_id) 1637{ 1638} 1639#endif 1640 1641#ifdef CONFIG_MEMCG_KMEM 1642bool mem_cgroup_kmem_disabled(void); 1643int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1644void __memcg_kmem_uncharge_page(struct page *page, int order); 1645 1646struct obj_cgroup *get_obj_cgroup_from_current(void); 1647 1648int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1649void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1650 1651extern struct static_key_false memcg_kmem_enabled_key; 1652 1653extern int memcg_nr_cache_ids; 1654void memcg_get_cache_ids(void); 1655void memcg_put_cache_ids(void); 1656 1657/* 1658 * Helper macro to loop through all memcg-specific caches. Callers must still 1659 * check if the cache is valid (it is either valid or NULL). 1660 * the slab_mutex must be held when looping through those caches 1661 */ 1662#define for_each_memcg_cache_index(_idx) \ 1663 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1664 1665static inline bool memcg_kmem_enabled(void) 1666{ 1667 return static_branch_likely(&memcg_kmem_enabled_key); 1668} 1669 1670static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1671 int order) 1672{ 1673 if (memcg_kmem_enabled()) 1674 return __memcg_kmem_charge_page(page, gfp, order); 1675 return 0; 1676} 1677 1678static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1679{ 1680 if (memcg_kmem_enabled()) 1681 __memcg_kmem_uncharge_page(page, order); 1682} 1683 1684/* 1685 * A helper for accessing memcg's kmem_id, used for getting 1686 * corresponding LRU lists. 1687 */ 1688static inline int memcg_cache_id(struct mem_cgroup *memcg) 1689{ 1690 return memcg ? memcg->kmemcg_id : -1; 1691} 1692 1693struct mem_cgroup *mem_cgroup_from_obj(void *p); 1694 1695#else 1696static inline bool mem_cgroup_kmem_disabled(void) 1697{ 1698 return true; 1699} 1700 1701static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1702 int order) 1703{ 1704 return 0; 1705} 1706 1707static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1708{ 1709} 1710 1711static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1712 int order) 1713{ 1714 return 0; 1715} 1716 1717static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1718{ 1719} 1720 1721#define for_each_memcg_cache_index(_idx) \ 1722 for (; NULL; ) 1723 1724static inline bool memcg_kmem_enabled(void) 1725{ 1726 return false; 1727} 1728 1729static inline int memcg_cache_id(struct mem_cgroup *memcg) 1730{ 1731 return -1; 1732} 1733 1734static inline void memcg_get_cache_ids(void) 1735{ 1736} 1737 1738static inline void memcg_put_cache_ids(void) 1739{ 1740} 1741 1742static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1743{ 1744 return NULL; 1745} 1746 1747#endif /* CONFIG_MEMCG_KMEM */ 1748 1749#endif /* _LINUX_MEMCONTROL_H */