at v5.15 56 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <asm/signal.h> 33 34#include <linux/kvm.h> 35#include <linux/kvm_para.h> 36 37#include <linux/kvm_types.h> 38 39#include <asm/kvm_host.h> 40#include <linux/kvm_dirty_ring.h> 41 42#ifndef KVM_MAX_VCPU_ID 43#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 44#endif 45 46/* 47 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 48 * in kvm, other bits are visible for userspace which are defined in 49 * include/linux/kvm_h. 50 */ 51#define KVM_MEMSLOT_INVALID (1UL << 16) 52 53/* 54 * Bit 63 of the memslot generation number is an "update in-progress flag", 55 * e.g. is temporarily set for the duration of install_new_memslots(). 56 * This flag effectively creates a unique generation number that is used to 57 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 58 * i.e. may (or may not) have come from the previous memslots generation. 59 * 60 * This is necessary because the actual memslots update is not atomic with 61 * respect to the generation number update. Updating the generation number 62 * first would allow a vCPU to cache a spte from the old memslots using the 63 * new generation number, and updating the generation number after switching 64 * to the new memslots would allow cache hits using the old generation number 65 * to reference the defunct memslots. 66 * 67 * This mechanism is used to prevent getting hits in KVM's caches while a 68 * memslot update is in-progress, and to prevent cache hits *after* updating 69 * the actual generation number against accesses that were inserted into the 70 * cache *before* the memslots were updated. 71 */ 72#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 73 74/* Two fragments for cross MMIO pages. */ 75#define KVM_MAX_MMIO_FRAGMENTS 2 76 77#ifndef KVM_ADDRESS_SPACE_NUM 78#define KVM_ADDRESS_SPACE_NUM 1 79#endif 80 81/* 82 * For the normal pfn, the highest 12 bits should be zero, 83 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 84 * mask bit 63 to indicate the noslot pfn. 85 */ 86#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 87#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 88#define KVM_PFN_NOSLOT (0x1ULL << 63) 89 90#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 91#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 92#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 93 94/* 95 * error pfns indicate that the gfn is in slot but faild to 96 * translate it to pfn on host. 97 */ 98static inline bool is_error_pfn(kvm_pfn_t pfn) 99{ 100 return !!(pfn & KVM_PFN_ERR_MASK); 101} 102 103/* 104 * error_noslot pfns indicate that the gfn can not be 105 * translated to pfn - it is not in slot or failed to 106 * translate it to pfn. 107 */ 108static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 109{ 110 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 111} 112 113/* noslot pfn indicates that the gfn is not in slot. */ 114static inline bool is_noslot_pfn(kvm_pfn_t pfn) 115{ 116 return pfn == KVM_PFN_NOSLOT; 117} 118 119/* 120 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 121 * provide own defines and kvm_is_error_hva 122 */ 123#ifndef KVM_HVA_ERR_BAD 124 125#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 126#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 127 128static inline bool kvm_is_error_hva(unsigned long addr) 129{ 130 return addr >= PAGE_OFFSET; 131} 132 133#endif 134 135#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 136 137static inline bool is_error_page(struct page *page) 138{ 139 return IS_ERR(page); 140} 141 142#define KVM_REQUEST_MASK GENMASK(7,0) 143#define KVM_REQUEST_NO_WAKEUP BIT(8) 144#define KVM_REQUEST_WAIT BIT(9) 145/* 146 * Architecture-independent vcpu->requests bit members 147 * Bits 4-7 are reserved for more arch-independent bits. 148 */ 149#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 151#define KVM_REQ_UNBLOCK 2 152#define KVM_REQ_UNHALT 3 153#define KVM_REQ_VM_BUGGED (4 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 154#define KVM_REQUEST_ARCH_BASE 8 155 156#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 157 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 158 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 159}) 160#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 161 162bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 163 struct kvm_vcpu *except, 164 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 165bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 166bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 167 struct kvm_vcpu *except); 168bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 169 unsigned long *vcpu_bitmap); 170 171#define KVM_USERSPACE_IRQ_SOURCE_ID 0 172#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 173 174extern struct mutex kvm_lock; 175extern struct list_head vm_list; 176 177struct kvm_io_range { 178 gpa_t addr; 179 int len; 180 struct kvm_io_device *dev; 181}; 182 183#define NR_IOBUS_DEVS 1000 184 185struct kvm_io_bus { 186 int dev_count; 187 int ioeventfd_count; 188 struct kvm_io_range range[]; 189}; 190 191enum kvm_bus { 192 KVM_MMIO_BUS, 193 KVM_PIO_BUS, 194 KVM_VIRTIO_CCW_NOTIFY_BUS, 195 KVM_FAST_MMIO_BUS, 196 KVM_NR_BUSES 197}; 198 199int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 200 int len, const void *val); 201int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 202 gpa_t addr, int len, const void *val, long cookie); 203int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 204 int len, void *val); 205int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 206 int len, struct kvm_io_device *dev); 207int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 208 struct kvm_io_device *dev); 209struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 210 gpa_t addr); 211 212#ifdef CONFIG_KVM_ASYNC_PF 213struct kvm_async_pf { 214 struct work_struct work; 215 struct list_head link; 216 struct list_head queue; 217 struct kvm_vcpu *vcpu; 218 struct mm_struct *mm; 219 gpa_t cr2_or_gpa; 220 unsigned long addr; 221 struct kvm_arch_async_pf arch; 222 bool wakeup_all; 223 bool notpresent_injected; 224}; 225 226void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 227void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 228bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 229 unsigned long hva, struct kvm_arch_async_pf *arch); 230int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 231#endif 232 233#ifdef KVM_ARCH_WANT_MMU_NOTIFIER 234struct kvm_gfn_range { 235 struct kvm_memory_slot *slot; 236 gfn_t start; 237 gfn_t end; 238 pte_t pte; 239 bool may_block; 240}; 241bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 242bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 243bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 244bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 245#endif 246 247enum { 248 OUTSIDE_GUEST_MODE, 249 IN_GUEST_MODE, 250 EXITING_GUEST_MODE, 251 READING_SHADOW_PAGE_TABLES, 252}; 253 254#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 255 256struct kvm_host_map { 257 /* 258 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 259 * a 'struct page' for it. When using mem= kernel parameter some memory 260 * can be used as guest memory but they are not managed by host 261 * kernel). 262 * If 'pfn' is not managed by the host kernel, this field is 263 * initialized to KVM_UNMAPPED_PAGE. 264 */ 265 struct page *page; 266 void *hva; 267 kvm_pfn_t pfn; 268 kvm_pfn_t gfn; 269}; 270 271/* 272 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 273 * directly to check for that. 274 */ 275static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 276{ 277 return !!map->hva; 278} 279 280static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 281{ 282 return single_task_running() && !need_resched() && ktime_before(cur, stop); 283} 284 285/* 286 * Sometimes a large or cross-page mmio needs to be broken up into separate 287 * exits for userspace servicing. 288 */ 289struct kvm_mmio_fragment { 290 gpa_t gpa; 291 void *data; 292 unsigned len; 293}; 294 295struct kvm_vcpu { 296 struct kvm *kvm; 297#ifdef CONFIG_PREEMPT_NOTIFIERS 298 struct preempt_notifier preempt_notifier; 299#endif 300 int cpu; 301 int vcpu_id; /* id given by userspace at creation */ 302 int vcpu_idx; /* index in kvm->vcpus array */ 303 int srcu_idx; 304 int mode; 305 u64 requests; 306 unsigned long guest_debug; 307 308 int pre_pcpu; 309 struct list_head blocked_vcpu_list; 310 311 struct mutex mutex; 312 struct kvm_run *run; 313 314 struct rcuwait wait; 315 struct pid __rcu *pid; 316 int sigset_active; 317 sigset_t sigset; 318 unsigned int halt_poll_ns; 319 bool valid_wakeup; 320 321#ifdef CONFIG_HAS_IOMEM 322 int mmio_needed; 323 int mmio_read_completed; 324 int mmio_is_write; 325 int mmio_cur_fragment; 326 int mmio_nr_fragments; 327 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 328#endif 329 330#ifdef CONFIG_KVM_ASYNC_PF 331 struct { 332 u32 queued; 333 struct list_head queue; 334 struct list_head done; 335 spinlock_t lock; 336 } async_pf; 337#endif 338 339#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 340 /* 341 * Cpu relax intercept or pause loop exit optimization 342 * in_spin_loop: set when a vcpu does a pause loop exit 343 * or cpu relax intercepted. 344 * dy_eligible: indicates whether vcpu is eligible for directed yield. 345 */ 346 struct { 347 bool in_spin_loop; 348 bool dy_eligible; 349 } spin_loop; 350#endif 351 bool preempted; 352 bool ready; 353 struct kvm_vcpu_arch arch; 354 struct kvm_vcpu_stat stat; 355 char stats_id[KVM_STATS_NAME_SIZE]; 356 struct kvm_dirty_ring dirty_ring; 357 358 /* 359 * The index of the most recently used memslot by this vCPU. It's ok 360 * if this becomes stale due to memslot changes since we always check 361 * it is a valid slot. 362 */ 363 int last_used_slot; 364}; 365 366/* must be called with irqs disabled */ 367static __always_inline void guest_enter_irqoff(void) 368{ 369 /* 370 * This is running in ioctl context so its safe to assume that it's the 371 * stime pending cputime to flush. 372 */ 373 instrumentation_begin(); 374 vtime_account_guest_enter(); 375 instrumentation_end(); 376 377 /* 378 * KVM does not hold any references to rcu protected data when it 379 * switches CPU into a guest mode. In fact switching to a guest mode 380 * is very similar to exiting to userspace from rcu point of view. In 381 * addition CPU may stay in a guest mode for quite a long time (up to 382 * one time slice). Lets treat guest mode as quiescent state, just like 383 * we do with user-mode execution. 384 */ 385 if (!context_tracking_guest_enter()) { 386 instrumentation_begin(); 387 rcu_virt_note_context_switch(smp_processor_id()); 388 instrumentation_end(); 389 } 390} 391 392static __always_inline void guest_exit_irqoff(void) 393{ 394 context_tracking_guest_exit(); 395 396 instrumentation_begin(); 397 /* Flush the guest cputime we spent on the guest */ 398 vtime_account_guest_exit(); 399 instrumentation_end(); 400} 401 402static inline void guest_exit(void) 403{ 404 unsigned long flags; 405 406 local_irq_save(flags); 407 guest_exit_irqoff(); 408 local_irq_restore(flags); 409} 410 411static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 412{ 413 /* 414 * The memory barrier ensures a previous write to vcpu->requests cannot 415 * be reordered with the read of vcpu->mode. It pairs with the general 416 * memory barrier following the write of vcpu->mode in VCPU RUN. 417 */ 418 smp_mb__before_atomic(); 419 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 420} 421 422/* 423 * Some of the bitops functions do not support too long bitmaps. 424 * This number must be determined not to exceed such limits. 425 */ 426#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 427 428struct kvm_memory_slot { 429 gfn_t base_gfn; 430 unsigned long npages; 431 unsigned long *dirty_bitmap; 432 struct kvm_arch_memory_slot arch; 433 unsigned long userspace_addr; 434 u32 flags; 435 short id; 436 u16 as_id; 437}; 438 439static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 440{ 441 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 442} 443 444static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 445{ 446 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 447} 448 449static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 450{ 451 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 452 453 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 454} 455 456#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 457#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 458#endif 459 460struct kvm_s390_adapter_int { 461 u64 ind_addr; 462 u64 summary_addr; 463 u64 ind_offset; 464 u32 summary_offset; 465 u32 adapter_id; 466}; 467 468struct kvm_hv_sint { 469 u32 vcpu; 470 u32 sint; 471}; 472 473struct kvm_kernel_irq_routing_entry { 474 u32 gsi; 475 u32 type; 476 int (*set)(struct kvm_kernel_irq_routing_entry *e, 477 struct kvm *kvm, int irq_source_id, int level, 478 bool line_status); 479 union { 480 struct { 481 unsigned irqchip; 482 unsigned pin; 483 } irqchip; 484 struct { 485 u32 address_lo; 486 u32 address_hi; 487 u32 data; 488 u32 flags; 489 u32 devid; 490 } msi; 491 struct kvm_s390_adapter_int adapter; 492 struct kvm_hv_sint hv_sint; 493 }; 494 struct hlist_node link; 495}; 496 497#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 498struct kvm_irq_routing_table { 499 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 500 u32 nr_rt_entries; 501 /* 502 * Array indexed by gsi. Each entry contains list of irq chips 503 * the gsi is connected to. 504 */ 505 struct hlist_head map[]; 506}; 507#endif 508 509#ifndef KVM_PRIVATE_MEM_SLOTS 510#define KVM_PRIVATE_MEM_SLOTS 0 511#endif 512 513#define KVM_MEM_SLOTS_NUM SHRT_MAX 514#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 515 516#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 517static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 518{ 519 return 0; 520} 521#endif 522 523/* 524 * Note: 525 * memslots are not sorted by id anymore, please use id_to_memslot() 526 * to get the memslot by its id. 527 */ 528struct kvm_memslots { 529 u64 generation; 530 /* The mapping table from slot id to the index in memslots[]. */ 531 short id_to_index[KVM_MEM_SLOTS_NUM]; 532 atomic_t last_used_slot; 533 int used_slots; 534 struct kvm_memory_slot memslots[]; 535}; 536 537struct kvm { 538#ifdef KVM_HAVE_MMU_RWLOCK 539 rwlock_t mmu_lock; 540#else 541 spinlock_t mmu_lock; 542#endif /* KVM_HAVE_MMU_RWLOCK */ 543 544 struct mutex slots_lock; 545 546 /* 547 * Protects the arch-specific fields of struct kvm_memory_slots in 548 * use by the VM. To be used under the slots_lock (above) or in a 549 * kvm->srcu critical section where acquiring the slots_lock would 550 * lead to deadlock with the synchronize_srcu in 551 * install_new_memslots. 552 */ 553 struct mutex slots_arch_lock; 554 struct mm_struct *mm; /* userspace tied to this vm */ 555 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 556 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 557 558 /* Used to wait for completion of MMU notifiers. */ 559 spinlock_t mn_invalidate_lock; 560 unsigned long mn_active_invalidate_count; 561 struct rcuwait mn_memslots_update_rcuwait; 562 563 /* 564 * created_vcpus is protected by kvm->lock, and is incremented 565 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 566 * incremented after storing the kvm_vcpu pointer in vcpus, 567 * and is accessed atomically. 568 */ 569 atomic_t online_vcpus; 570 int created_vcpus; 571 int last_boosted_vcpu; 572 struct list_head vm_list; 573 struct mutex lock; 574 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 575#ifdef CONFIG_HAVE_KVM_EVENTFD 576 struct { 577 spinlock_t lock; 578 struct list_head items; 579 struct list_head resampler_list; 580 struct mutex resampler_lock; 581 } irqfds; 582 struct list_head ioeventfds; 583#endif 584 struct kvm_vm_stat stat; 585 struct kvm_arch arch; 586 refcount_t users_count; 587#ifdef CONFIG_KVM_MMIO 588 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 589 spinlock_t ring_lock; 590 struct list_head coalesced_zones; 591#endif 592 593 struct mutex irq_lock; 594#ifdef CONFIG_HAVE_KVM_IRQCHIP 595 /* 596 * Update side is protected by irq_lock. 597 */ 598 struct kvm_irq_routing_table __rcu *irq_routing; 599#endif 600#ifdef CONFIG_HAVE_KVM_IRQFD 601 struct hlist_head irq_ack_notifier_list; 602#endif 603 604#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 605 struct mmu_notifier mmu_notifier; 606 unsigned long mmu_notifier_seq; 607 long mmu_notifier_count; 608 unsigned long mmu_notifier_range_start; 609 unsigned long mmu_notifier_range_end; 610#endif 611 struct list_head devices; 612 u64 manual_dirty_log_protect; 613 struct dentry *debugfs_dentry; 614 struct kvm_stat_data **debugfs_stat_data; 615 struct srcu_struct srcu; 616 struct srcu_struct irq_srcu; 617 pid_t userspace_pid; 618 unsigned int max_halt_poll_ns; 619 u32 dirty_ring_size; 620 bool vm_bugged; 621 622#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 623 struct notifier_block pm_notifier; 624#endif 625 char stats_id[KVM_STATS_NAME_SIZE]; 626}; 627 628#define kvm_err(fmt, ...) \ 629 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 630#define kvm_info(fmt, ...) \ 631 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 632#define kvm_debug(fmt, ...) \ 633 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 634#define kvm_debug_ratelimited(fmt, ...) \ 635 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 636 ## __VA_ARGS__) 637#define kvm_pr_unimpl(fmt, ...) \ 638 pr_err_ratelimited("kvm [%i]: " fmt, \ 639 task_tgid_nr(current), ## __VA_ARGS__) 640 641/* The guest did something we don't support. */ 642#define vcpu_unimpl(vcpu, fmt, ...) \ 643 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 644 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 645 646#define vcpu_debug(vcpu, fmt, ...) \ 647 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 648#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 649 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 650 ## __VA_ARGS__) 651#define vcpu_err(vcpu, fmt, ...) \ 652 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 653 654static inline void kvm_vm_bugged(struct kvm *kvm) 655{ 656 kvm->vm_bugged = true; 657 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_BUGGED); 658} 659 660#define KVM_BUG(cond, kvm, fmt...) \ 661({ \ 662 int __ret = (cond); \ 663 \ 664 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \ 665 kvm_vm_bugged(kvm); \ 666 unlikely(__ret); \ 667}) 668 669#define KVM_BUG_ON(cond, kvm) \ 670({ \ 671 int __ret = (cond); \ 672 \ 673 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \ 674 kvm_vm_bugged(kvm); \ 675 unlikely(__ret); \ 676}) 677 678static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 679{ 680 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 681} 682 683static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 684{ 685 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 686 lockdep_is_held(&kvm->slots_lock) || 687 !refcount_read(&kvm->users_count)); 688} 689 690static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 691{ 692 int num_vcpus = atomic_read(&kvm->online_vcpus); 693 i = array_index_nospec(i, num_vcpus); 694 695 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 696 smp_rmb(); 697 return kvm->vcpus[i]; 698} 699 700#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 701 for (idx = 0; \ 702 idx < atomic_read(&kvm->online_vcpus) && \ 703 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 704 idx++) 705 706static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 707{ 708 struct kvm_vcpu *vcpu = NULL; 709 int i; 710 711 if (id < 0) 712 return NULL; 713 if (id < KVM_MAX_VCPUS) 714 vcpu = kvm_get_vcpu(kvm, id); 715 if (vcpu && vcpu->vcpu_id == id) 716 return vcpu; 717 kvm_for_each_vcpu(i, vcpu, kvm) 718 if (vcpu->vcpu_id == id) 719 return vcpu; 720 return NULL; 721} 722 723#define kvm_for_each_memslot(memslot, slots) \ 724 for (memslot = &slots->memslots[0]; \ 725 memslot < slots->memslots + slots->used_slots; memslot++) \ 726 if (WARN_ON_ONCE(!memslot->npages)) { \ 727 } else 728 729void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 730 731void vcpu_load(struct kvm_vcpu *vcpu); 732void vcpu_put(struct kvm_vcpu *vcpu); 733 734#ifdef __KVM_HAVE_IOAPIC 735void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 736void kvm_arch_post_irq_routing_update(struct kvm *kvm); 737#else 738static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 739{ 740} 741static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 742{ 743} 744#endif 745 746#ifdef CONFIG_HAVE_KVM_IRQFD 747int kvm_irqfd_init(void); 748void kvm_irqfd_exit(void); 749#else 750static inline int kvm_irqfd_init(void) 751{ 752 return 0; 753} 754 755static inline void kvm_irqfd_exit(void) 756{ 757} 758#endif 759int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 760 struct module *module); 761void kvm_exit(void); 762 763void kvm_get_kvm(struct kvm *kvm); 764bool kvm_get_kvm_safe(struct kvm *kvm); 765void kvm_put_kvm(struct kvm *kvm); 766bool file_is_kvm(struct file *file); 767void kvm_put_kvm_no_destroy(struct kvm *kvm); 768 769static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 770{ 771 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 772 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 773 lockdep_is_held(&kvm->slots_lock) || 774 !refcount_read(&kvm->users_count)); 775} 776 777static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 778{ 779 return __kvm_memslots(kvm, 0); 780} 781 782static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 783{ 784 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 785 786 return __kvm_memslots(vcpu->kvm, as_id); 787} 788 789static inline 790struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 791{ 792 int index = slots->id_to_index[id]; 793 struct kvm_memory_slot *slot; 794 795 if (index < 0) 796 return NULL; 797 798 slot = &slots->memslots[index]; 799 800 WARN_ON(slot->id != id); 801 return slot; 802} 803 804/* 805 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 806 * - create a new memory slot 807 * - delete an existing memory slot 808 * - modify an existing memory slot 809 * -- move it in the guest physical memory space 810 * -- just change its flags 811 * 812 * Since flags can be changed by some of these operations, the following 813 * differentiation is the best we can do for __kvm_set_memory_region(): 814 */ 815enum kvm_mr_change { 816 KVM_MR_CREATE, 817 KVM_MR_DELETE, 818 KVM_MR_MOVE, 819 KVM_MR_FLAGS_ONLY, 820}; 821 822int kvm_set_memory_region(struct kvm *kvm, 823 const struct kvm_userspace_memory_region *mem); 824int __kvm_set_memory_region(struct kvm *kvm, 825 const struct kvm_userspace_memory_region *mem); 826void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 827void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 828int kvm_arch_prepare_memory_region(struct kvm *kvm, 829 struct kvm_memory_slot *memslot, 830 const struct kvm_userspace_memory_region *mem, 831 enum kvm_mr_change change); 832void kvm_arch_commit_memory_region(struct kvm *kvm, 833 const struct kvm_userspace_memory_region *mem, 834 struct kvm_memory_slot *old, 835 const struct kvm_memory_slot *new, 836 enum kvm_mr_change change); 837/* flush all memory translations */ 838void kvm_arch_flush_shadow_all(struct kvm *kvm); 839/* flush memory translations pointing to 'slot' */ 840void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 841 struct kvm_memory_slot *slot); 842 843int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 844 struct page **pages, int nr_pages); 845 846struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 847unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 848unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 849unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 850unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 851 bool *writable); 852void kvm_release_page_clean(struct page *page); 853void kvm_release_page_dirty(struct page *page); 854void kvm_set_page_accessed(struct page *page); 855 856kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 857kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 858 bool *writable); 859kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 860kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 861kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 862 bool atomic, bool *async, bool write_fault, 863 bool *writable, hva_t *hva); 864 865void kvm_release_pfn_clean(kvm_pfn_t pfn); 866void kvm_release_pfn_dirty(kvm_pfn_t pfn); 867void kvm_set_pfn_dirty(kvm_pfn_t pfn); 868void kvm_set_pfn_accessed(kvm_pfn_t pfn); 869 870void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 871int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 872 int len); 873int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 874int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 875 void *data, unsigned long len); 876int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 877 void *data, unsigned int offset, 878 unsigned long len); 879int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 880 int offset, int len); 881int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 882 unsigned long len); 883int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 884 void *data, unsigned long len); 885int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 886 void *data, unsigned int offset, 887 unsigned long len); 888int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 889 gpa_t gpa, unsigned long len); 890 891#define __kvm_get_guest(kvm, gfn, offset, v) \ 892({ \ 893 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 894 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 895 int __ret = -EFAULT; \ 896 \ 897 if (!kvm_is_error_hva(__addr)) \ 898 __ret = get_user(v, __uaddr); \ 899 __ret; \ 900}) 901 902#define kvm_get_guest(kvm, gpa, v) \ 903({ \ 904 gpa_t __gpa = gpa; \ 905 struct kvm *__kvm = kvm; \ 906 \ 907 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 908 offset_in_page(__gpa), v); \ 909}) 910 911#define __kvm_put_guest(kvm, gfn, offset, v) \ 912({ \ 913 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 914 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 915 int __ret = -EFAULT; \ 916 \ 917 if (!kvm_is_error_hva(__addr)) \ 918 __ret = put_user(v, __uaddr); \ 919 if (!__ret) \ 920 mark_page_dirty(kvm, gfn); \ 921 __ret; \ 922}) 923 924#define kvm_put_guest(kvm, gpa, v) \ 925({ \ 926 gpa_t __gpa = gpa; \ 927 struct kvm *__kvm = kvm; \ 928 \ 929 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 930 offset_in_page(__gpa), v); \ 931}) 932 933int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 934struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 935bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 936bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 937unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 938void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 939void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 940 941struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 942struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 943kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 944kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 945int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 946int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 947 struct gfn_to_pfn_cache *cache, bool atomic); 948struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 949void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 950int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 951 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 952unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 953unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 954int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 955 int len); 956int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 957 unsigned long len); 958int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 959 unsigned long len); 960int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 961 int offset, int len); 962int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 963 unsigned long len); 964void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 965 966void kvm_sigset_activate(struct kvm_vcpu *vcpu); 967void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 968 969void kvm_vcpu_block(struct kvm_vcpu *vcpu); 970void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 971void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 972bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 973void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 974int kvm_vcpu_yield_to(struct kvm_vcpu *target); 975void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 976 977void kvm_flush_remote_tlbs(struct kvm *kvm); 978void kvm_reload_remote_mmus(struct kvm *kvm); 979 980#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 981int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 982int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 983void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 984void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 985#endif 986 987void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start, 988 unsigned long end); 989void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start, 990 unsigned long end); 991 992long kvm_arch_dev_ioctl(struct file *filp, 993 unsigned int ioctl, unsigned long arg); 994long kvm_arch_vcpu_ioctl(struct file *filp, 995 unsigned int ioctl, unsigned long arg); 996vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 997 998int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 999 1000void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 1001 struct kvm_memory_slot *slot, 1002 gfn_t gfn_offset, 1003 unsigned long mask); 1004void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 1005 1006#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 1007void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 1008 const struct kvm_memory_slot *memslot); 1009#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 1010int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 1011int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 1012 int *is_dirty, struct kvm_memory_slot **memslot); 1013#endif 1014 1015int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 1016 bool line_status); 1017int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 1018 struct kvm_enable_cap *cap); 1019long kvm_arch_vm_ioctl(struct file *filp, 1020 unsigned int ioctl, unsigned long arg); 1021 1022int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1023int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 1024 1025int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 1026 struct kvm_translation *tr); 1027 1028int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1029int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 1030int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 1031 struct kvm_sregs *sregs); 1032int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 1033 struct kvm_sregs *sregs); 1034int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 1035 struct kvm_mp_state *mp_state); 1036int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1037 struct kvm_mp_state *mp_state); 1038int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1039 struct kvm_guest_debug *dbg); 1040int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1041 1042int kvm_arch_init(void *opaque); 1043void kvm_arch_exit(void); 1044 1045void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1046 1047void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1048void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1049int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1050int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1051void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1052void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1053 1054#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1055int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1056#endif 1057 1058#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1059void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1060#endif 1061 1062int kvm_arch_hardware_enable(void); 1063void kvm_arch_hardware_disable(void); 1064int kvm_arch_hardware_setup(void *opaque); 1065void kvm_arch_hardware_unsetup(void); 1066int kvm_arch_check_processor_compat(void *opaque); 1067int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1068bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1069int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1070bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1071bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1072int kvm_arch_post_init_vm(struct kvm *kvm); 1073void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1074int kvm_arch_create_vm_debugfs(struct kvm *kvm); 1075 1076#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1077/* 1078 * All architectures that want to use vzalloc currently also 1079 * need their own kvm_arch_alloc_vm implementation. 1080 */ 1081static inline struct kvm *kvm_arch_alloc_vm(void) 1082{ 1083 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1084} 1085 1086static inline void kvm_arch_free_vm(struct kvm *kvm) 1087{ 1088 kfree(kvm); 1089} 1090#endif 1091 1092#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1093static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1094{ 1095 return -ENOTSUPP; 1096} 1097#endif 1098 1099#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1100void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1101void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1102bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1103#else 1104static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1105{ 1106} 1107 1108static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1109{ 1110} 1111 1112static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1113{ 1114 return false; 1115} 1116#endif 1117#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1118void kvm_arch_start_assignment(struct kvm *kvm); 1119void kvm_arch_end_assignment(struct kvm *kvm); 1120bool kvm_arch_has_assigned_device(struct kvm *kvm); 1121#else 1122static inline void kvm_arch_start_assignment(struct kvm *kvm) 1123{ 1124} 1125 1126static inline void kvm_arch_end_assignment(struct kvm *kvm) 1127{ 1128} 1129 1130static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1131{ 1132 return false; 1133} 1134#endif 1135 1136static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1137{ 1138#ifdef __KVM_HAVE_ARCH_WQP 1139 return vcpu->arch.waitp; 1140#else 1141 return &vcpu->wait; 1142#endif 1143} 1144 1145#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1146/* 1147 * returns true if the virtual interrupt controller is initialized and 1148 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1149 * controller is dynamically instantiated and this is not always true. 1150 */ 1151bool kvm_arch_intc_initialized(struct kvm *kvm); 1152#else 1153static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1154{ 1155 return true; 1156} 1157#endif 1158 1159int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1160void kvm_arch_destroy_vm(struct kvm *kvm); 1161void kvm_arch_sync_events(struct kvm *kvm); 1162 1163int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1164 1165bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1166bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1167bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1168 1169struct kvm_irq_ack_notifier { 1170 struct hlist_node link; 1171 unsigned gsi; 1172 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1173}; 1174 1175int kvm_irq_map_gsi(struct kvm *kvm, 1176 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1177int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1178 1179int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1180 bool line_status); 1181int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1182 int irq_source_id, int level, bool line_status); 1183int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1184 struct kvm *kvm, int irq_source_id, 1185 int level, bool line_status); 1186bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1187void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1188void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1189void kvm_register_irq_ack_notifier(struct kvm *kvm, 1190 struct kvm_irq_ack_notifier *kian); 1191void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1192 struct kvm_irq_ack_notifier *kian); 1193int kvm_request_irq_source_id(struct kvm *kvm); 1194void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1195bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1196 1197/* 1198 * Returns a pointer to the memslot at slot_index if it contains gfn. 1199 * Otherwise returns NULL. 1200 */ 1201static inline struct kvm_memory_slot * 1202try_get_memslot(struct kvm_memslots *slots, int slot_index, gfn_t gfn) 1203{ 1204 struct kvm_memory_slot *slot; 1205 1206 if (slot_index < 0 || slot_index >= slots->used_slots) 1207 return NULL; 1208 1209 /* 1210 * slot_index can come from vcpu->last_used_slot which is not kept 1211 * in sync with userspace-controllable memslot deletion. So use nospec 1212 * to prevent the CPU from speculating past the end of memslots[]. 1213 */ 1214 slot_index = array_index_nospec(slot_index, slots->used_slots); 1215 slot = &slots->memslots[slot_index]; 1216 1217 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages) 1218 return slot; 1219 else 1220 return NULL; 1221} 1222 1223/* 1224 * Returns a pointer to the memslot that contains gfn and records the index of 1225 * the slot in index. Otherwise returns NULL. 1226 * 1227 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1228 */ 1229static inline struct kvm_memory_slot * 1230search_memslots(struct kvm_memslots *slots, gfn_t gfn, int *index) 1231{ 1232 int start = 0, end = slots->used_slots; 1233 struct kvm_memory_slot *memslots = slots->memslots; 1234 struct kvm_memory_slot *slot; 1235 1236 if (unlikely(!slots->used_slots)) 1237 return NULL; 1238 1239 while (start < end) { 1240 int slot = start + (end - start) / 2; 1241 1242 if (gfn >= memslots[slot].base_gfn) 1243 end = slot; 1244 else 1245 start = slot + 1; 1246 } 1247 1248 slot = try_get_memslot(slots, start, gfn); 1249 if (slot) { 1250 *index = start; 1251 return slot; 1252 } 1253 1254 return NULL; 1255} 1256 1257/* 1258 * __gfn_to_memslot() and its descendants are here because it is called from 1259 * non-modular code in arch/powerpc/kvm/book3s_64_vio{,_hv}.c. gfn_to_memslot() 1260 * itself isn't here as an inline because that would bloat other code too much. 1261 */ 1262static inline struct kvm_memory_slot * 1263__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1264{ 1265 struct kvm_memory_slot *slot; 1266 int slot_index = atomic_read(&slots->last_used_slot); 1267 1268 slot = try_get_memslot(slots, slot_index, gfn); 1269 if (slot) 1270 return slot; 1271 1272 slot = search_memslots(slots, gfn, &slot_index); 1273 if (slot) { 1274 atomic_set(&slots->last_used_slot, slot_index); 1275 return slot; 1276 } 1277 1278 return NULL; 1279} 1280 1281static inline unsigned long 1282__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1283{ 1284 /* 1285 * The index was checked originally in search_memslots. To avoid 1286 * that a malicious guest builds a Spectre gadget out of e.g. page 1287 * table walks, do not let the processor speculate loads outside 1288 * the guest's registered memslots. 1289 */ 1290 unsigned long offset = gfn - slot->base_gfn; 1291 offset = array_index_nospec(offset, slot->npages); 1292 return slot->userspace_addr + offset * PAGE_SIZE; 1293} 1294 1295static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1296{ 1297 return gfn_to_memslot(kvm, gfn)->id; 1298} 1299 1300static inline gfn_t 1301hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1302{ 1303 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1304 1305 return slot->base_gfn + gfn_offset; 1306} 1307 1308static inline gpa_t gfn_to_gpa(gfn_t gfn) 1309{ 1310 return (gpa_t)gfn << PAGE_SHIFT; 1311} 1312 1313static inline gfn_t gpa_to_gfn(gpa_t gpa) 1314{ 1315 return (gfn_t)(gpa >> PAGE_SHIFT); 1316} 1317 1318static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1319{ 1320 return (hpa_t)pfn << PAGE_SHIFT; 1321} 1322 1323static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1324 gpa_t gpa) 1325{ 1326 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1327} 1328 1329static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1330{ 1331 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1332 1333 return kvm_is_error_hva(hva); 1334} 1335 1336enum kvm_stat_kind { 1337 KVM_STAT_VM, 1338 KVM_STAT_VCPU, 1339}; 1340 1341struct kvm_stat_data { 1342 struct kvm *kvm; 1343 const struct _kvm_stats_desc *desc; 1344 enum kvm_stat_kind kind; 1345}; 1346 1347struct _kvm_stats_desc { 1348 struct kvm_stats_desc desc; 1349 char name[KVM_STATS_NAME_SIZE]; 1350}; 1351 1352#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \ 1353 .flags = type | unit | base | \ 1354 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1355 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1356 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1357 .exponent = exp, \ 1358 .size = sz, \ 1359 .bucket_size = bsz 1360 1361#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1362 { \ 1363 { \ 1364 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1365 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1366 }, \ 1367 .name = #stat, \ 1368 } 1369#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1370 { \ 1371 { \ 1372 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1373 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1374 }, \ 1375 .name = #stat, \ 1376 } 1377#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1378 { \ 1379 { \ 1380 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1381 .offset = offsetof(struct kvm_vm_stat, stat) \ 1382 }, \ 1383 .name = #stat, \ 1384 } 1385#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \ 1386 { \ 1387 { \ 1388 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \ 1389 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1390 }, \ 1391 .name = #stat, \ 1392 } 1393/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1394#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \ 1395 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz) 1396 1397#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1398 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \ 1399 unit, base, exponent, 1, 0) 1400#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1401 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \ 1402 unit, base, exponent, 1, 0) 1403#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1404 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \ 1405 unit, base, exponent, 1, 0) 1406#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \ 1407 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \ 1408 unit, base, exponent, sz, bsz) 1409#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \ 1410 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \ 1411 unit, base, exponent, sz, 0) 1412 1413/* Cumulative counter, read/write */ 1414#define STATS_DESC_COUNTER(SCOPE, name) \ 1415 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1416 KVM_STATS_BASE_POW10, 0) 1417/* Instantaneous counter, read only */ 1418#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1419 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1420 KVM_STATS_BASE_POW10, 0) 1421/* Peak counter, read/write */ 1422#define STATS_DESC_PCOUNTER(SCOPE, name) \ 1423 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1424 KVM_STATS_BASE_POW10, 0) 1425 1426/* Cumulative time in nanosecond */ 1427#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1428 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1429 KVM_STATS_BASE_POW10, -9) 1430/* Linear histogram for time in nanosecond */ 1431#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \ 1432 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1433 KVM_STATS_BASE_POW10, -9, sz, bsz) 1434/* Logarithmic histogram for time in nanosecond */ 1435#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \ 1436 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1437 KVM_STATS_BASE_POW10, -9, sz) 1438 1439#define KVM_GENERIC_VM_STATS() \ 1440 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \ 1441 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests) 1442 1443#define KVM_GENERIC_VCPU_STATS() \ 1444 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1445 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1446 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1447 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1448 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1449 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \ 1450 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \ 1451 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \ 1452 HALT_POLL_HIST_COUNT), \ 1453 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \ 1454 HALT_POLL_HIST_COUNT), \ 1455 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \ 1456 HALT_POLL_HIST_COUNT) 1457 1458extern struct dentry *kvm_debugfs_dir; 1459 1460ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1461 const struct _kvm_stats_desc *desc, 1462 void *stats, size_t size_stats, 1463 char __user *user_buffer, size_t size, loff_t *offset); 1464 1465/** 1466 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram 1467 * statistics data. 1468 * 1469 * @data: start address of the stats data 1470 * @size: the number of bucket of the stats data 1471 * @value: the new value used to update the linear histogram's bucket 1472 * @bucket_size: the size (width) of a bucket 1473 */ 1474static inline void kvm_stats_linear_hist_update(u64 *data, size_t size, 1475 u64 value, size_t bucket_size) 1476{ 1477 size_t index = div64_u64(value, bucket_size); 1478 1479 index = min(index, size - 1); 1480 ++data[index]; 1481} 1482 1483/** 1484 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram 1485 * statistics data. 1486 * 1487 * @data: start address of the stats data 1488 * @size: the number of bucket of the stats data 1489 * @value: the new value used to update the logarithmic histogram's bucket 1490 */ 1491static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value) 1492{ 1493 size_t index = fls64(value); 1494 1495 index = min(index, size - 1); 1496 ++data[index]; 1497} 1498 1499#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \ 1500 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize) 1501#define KVM_STATS_LOG_HIST_UPDATE(array, value) \ 1502 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value) 1503 1504 1505extern const struct kvm_stats_header kvm_vm_stats_header; 1506extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1507extern const struct kvm_stats_header kvm_vcpu_stats_header; 1508extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1509 1510#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1511static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1512{ 1513 if (unlikely(kvm->mmu_notifier_count)) 1514 return 1; 1515 /* 1516 * Ensure the read of mmu_notifier_count happens before the read 1517 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1518 * mmu_notifier_invalidate_range_end to make sure that the caller 1519 * either sees the old (non-zero) value of mmu_notifier_count or 1520 * the new (incremented) value of mmu_notifier_seq. 1521 * PowerPC Book3s HV KVM calls this under a per-page lock 1522 * rather than under kvm->mmu_lock, for scalability, so 1523 * can't rely on kvm->mmu_lock to keep things ordered. 1524 */ 1525 smp_rmb(); 1526 if (kvm->mmu_notifier_seq != mmu_seq) 1527 return 1; 1528 return 0; 1529} 1530 1531static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1532 unsigned long mmu_seq, 1533 unsigned long hva) 1534{ 1535 lockdep_assert_held(&kvm->mmu_lock); 1536 /* 1537 * If mmu_notifier_count is non-zero, then the range maintained by 1538 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1539 * might be being invalidated. Note that it may include some false 1540 * positives, due to shortcuts when handing concurrent invalidations. 1541 */ 1542 if (unlikely(kvm->mmu_notifier_count) && 1543 hva >= kvm->mmu_notifier_range_start && 1544 hva < kvm->mmu_notifier_range_end) 1545 return 1; 1546 if (kvm->mmu_notifier_seq != mmu_seq) 1547 return 1; 1548 return 0; 1549} 1550#endif 1551 1552#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1553 1554#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1555 1556bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1557int kvm_set_irq_routing(struct kvm *kvm, 1558 const struct kvm_irq_routing_entry *entries, 1559 unsigned nr, 1560 unsigned flags); 1561int kvm_set_routing_entry(struct kvm *kvm, 1562 struct kvm_kernel_irq_routing_entry *e, 1563 const struct kvm_irq_routing_entry *ue); 1564void kvm_free_irq_routing(struct kvm *kvm); 1565 1566#else 1567 1568static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1569 1570#endif 1571 1572int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1573 1574#ifdef CONFIG_HAVE_KVM_EVENTFD 1575 1576void kvm_eventfd_init(struct kvm *kvm); 1577int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1578 1579#ifdef CONFIG_HAVE_KVM_IRQFD 1580int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1581void kvm_irqfd_release(struct kvm *kvm); 1582void kvm_irq_routing_update(struct kvm *); 1583#else 1584static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1585{ 1586 return -EINVAL; 1587} 1588 1589static inline void kvm_irqfd_release(struct kvm *kvm) {} 1590#endif 1591 1592#else 1593 1594static inline void kvm_eventfd_init(struct kvm *kvm) {} 1595 1596static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1597{ 1598 return -EINVAL; 1599} 1600 1601static inline void kvm_irqfd_release(struct kvm *kvm) {} 1602 1603#ifdef CONFIG_HAVE_KVM_IRQCHIP 1604static inline void kvm_irq_routing_update(struct kvm *kvm) 1605{ 1606} 1607#endif 1608 1609static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1610{ 1611 return -ENOSYS; 1612} 1613 1614#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1615 1616void kvm_arch_irq_routing_update(struct kvm *kvm); 1617 1618static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1619{ 1620 /* 1621 * Ensure the rest of the request is published to kvm_check_request's 1622 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1623 */ 1624 smp_wmb(); 1625 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1626} 1627 1628static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1629{ 1630 return READ_ONCE(vcpu->requests); 1631} 1632 1633static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1634{ 1635 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1636} 1637 1638static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1639{ 1640 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1641} 1642 1643static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1644{ 1645 if (kvm_test_request(req, vcpu)) { 1646 kvm_clear_request(req, vcpu); 1647 1648 /* 1649 * Ensure the rest of the request is visible to kvm_check_request's 1650 * caller. Paired with the smp_wmb in kvm_make_request. 1651 */ 1652 smp_mb__after_atomic(); 1653 return true; 1654 } else { 1655 return false; 1656 } 1657} 1658 1659extern bool kvm_rebooting; 1660 1661extern unsigned int halt_poll_ns; 1662extern unsigned int halt_poll_ns_grow; 1663extern unsigned int halt_poll_ns_grow_start; 1664extern unsigned int halt_poll_ns_shrink; 1665 1666struct kvm_device { 1667 const struct kvm_device_ops *ops; 1668 struct kvm *kvm; 1669 void *private; 1670 struct list_head vm_node; 1671}; 1672 1673/* create, destroy, and name are mandatory */ 1674struct kvm_device_ops { 1675 const char *name; 1676 1677 /* 1678 * create is called holding kvm->lock and any operations not suitable 1679 * to do while holding the lock should be deferred to init (see 1680 * below). 1681 */ 1682 int (*create)(struct kvm_device *dev, u32 type); 1683 1684 /* 1685 * init is called after create if create is successful and is called 1686 * outside of holding kvm->lock. 1687 */ 1688 void (*init)(struct kvm_device *dev); 1689 1690 /* 1691 * Destroy is responsible for freeing dev. 1692 * 1693 * Destroy may be called before or after destructors are called 1694 * on emulated I/O regions, depending on whether a reference is 1695 * held by a vcpu or other kvm component that gets destroyed 1696 * after the emulated I/O. 1697 */ 1698 void (*destroy)(struct kvm_device *dev); 1699 1700 /* 1701 * Release is an alternative method to free the device. It is 1702 * called when the device file descriptor is closed. Once 1703 * release is called, the destroy method will not be called 1704 * anymore as the device is removed from the device list of 1705 * the VM. kvm->lock is held. 1706 */ 1707 void (*release)(struct kvm_device *dev); 1708 1709 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1710 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1711 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1712 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1713 unsigned long arg); 1714 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1715}; 1716 1717void kvm_device_get(struct kvm_device *dev); 1718void kvm_device_put(struct kvm_device *dev); 1719struct kvm_device *kvm_device_from_filp(struct file *filp); 1720int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1721void kvm_unregister_device_ops(u32 type); 1722 1723extern struct kvm_device_ops kvm_mpic_ops; 1724extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1725extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1726 1727#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1728 1729static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1730{ 1731 vcpu->spin_loop.in_spin_loop = val; 1732} 1733static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1734{ 1735 vcpu->spin_loop.dy_eligible = val; 1736} 1737 1738#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1739 1740static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1741{ 1742} 1743 1744static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1745{ 1746} 1747#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1748 1749static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1750{ 1751 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1752 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1753} 1754 1755struct kvm_vcpu *kvm_get_running_vcpu(void); 1756struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1757 1758#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1759bool kvm_arch_has_irq_bypass(void); 1760int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1761 struct irq_bypass_producer *); 1762void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1763 struct irq_bypass_producer *); 1764void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1765void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1766int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1767 uint32_t guest_irq, bool set); 1768#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1769 1770#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1771/* If we wakeup during the poll time, was it a sucessful poll? */ 1772static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1773{ 1774 return vcpu->valid_wakeup; 1775} 1776 1777#else 1778static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1779{ 1780 return true; 1781} 1782#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1783 1784#ifdef CONFIG_HAVE_KVM_NO_POLL 1785/* Callback that tells if we must not poll */ 1786bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1787#else 1788static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1789{ 1790 return false; 1791} 1792#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1793 1794#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1795long kvm_arch_vcpu_async_ioctl(struct file *filp, 1796 unsigned int ioctl, unsigned long arg); 1797#else 1798static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1799 unsigned int ioctl, 1800 unsigned long arg) 1801{ 1802 return -ENOIOCTLCMD; 1803} 1804#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1805 1806void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1807 unsigned long start, unsigned long end); 1808 1809#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1810int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1811#else 1812static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1813{ 1814 return 0; 1815} 1816#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1817 1818typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1819 1820int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1821 uintptr_t data, const char *name, 1822 struct task_struct **thread_ptr); 1823 1824#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1825static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1826{ 1827 vcpu->run->exit_reason = KVM_EXIT_INTR; 1828 vcpu->stat.signal_exits++; 1829} 1830#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1831 1832/* 1833 * This defines how many reserved entries we want to keep before we 1834 * kick the vcpu to the userspace to avoid dirty ring full. This 1835 * value can be tuned to higher if e.g. PML is enabled on the host. 1836 */ 1837#define KVM_DIRTY_RING_RSVD_ENTRIES 64 1838 1839/* Max number of entries allowed for each kvm dirty ring */ 1840#define KVM_DIRTY_RING_MAX_ENTRIES 65536 1841 1842#endif