at v5.15 43 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Linux Socket Filter Data Structures 4 */ 5#ifndef __LINUX_FILTER_H__ 6#define __LINUX_FILTER_H__ 7 8#include <linux/atomic.h> 9#include <linux/refcount.h> 10#include <linux/compat.h> 11#include <linux/skbuff.h> 12#include <linux/linkage.h> 13#include <linux/printk.h> 14#include <linux/workqueue.h> 15#include <linux/sched.h> 16#include <linux/capability.h> 17#include <linux/set_memory.h> 18#include <linux/kallsyms.h> 19#include <linux/if_vlan.h> 20#include <linux/vmalloc.h> 21#include <linux/sockptr.h> 22#include <crypto/sha1.h> 23#include <linux/u64_stats_sync.h> 24 25#include <net/sch_generic.h> 26 27#include <asm/byteorder.h> 28#include <uapi/linux/filter.h> 29#include <uapi/linux/bpf.h> 30 31struct sk_buff; 32struct sock; 33struct seccomp_data; 34struct bpf_prog_aux; 35struct xdp_rxq_info; 36struct xdp_buff; 37struct sock_reuseport; 38struct ctl_table; 39struct ctl_table_header; 40 41/* ArgX, context and stack frame pointer register positions. Note, 42 * Arg1, Arg2, Arg3, etc are used as argument mappings of function 43 * calls in BPF_CALL instruction. 44 */ 45#define BPF_REG_ARG1 BPF_REG_1 46#define BPF_REG_ARG2 BPF_REG_2 47#define BPF_REG_ARG3 BPF_REG_3 48#define BPF_REG_ARG4 BPF_REG_4 49#define BPF_REG_ARG5 BPF_REG_5 50#define BPF_REG_CTX BPF_REG_6 51#define BPF_REG_FP BPF_REG_10 52 53/* Additional register mappings for converted user programs. */ 54#define BPF_REG_A BPF_REG_0 55#define BPF_REG_X BPF_REG_7 56#define BPF_REG_TMP BPF_REG_2 /* scratch reg */ 57#define BPF_REG_D BPF_REG_8 /* data, callee-saved */ 58#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */ 59 60/* Kernel hidden auxiliary/helper register. */ 61#define BPF_REG_AX MAX_BPF_REG 62#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1) 63#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG 64 65/* unused opcode to mark special call to bpf_tail_call() helper */ 66#define BPF_TAIL_CALL 0xf0 67 68/* unused opcode to mark special load instruction. Same as BPF_ABS */ 69#define BPF_PROBE_MEM 0x20 70 71/* unused opcode to mark call to interpreter with arguments */ 72#define BPF_CALL_ARGS 0xe0 73 74/* unused opcode to mark speculation barrier for mitigating 75 * Speculative Store Bypass 76 */ 77#define BPF_NOSPEC 0xc0 78 79/* As per nm, we expose JITed images as text (code) section for 80 * kallsyms. That way, tools like perf can find it to match 81 * addresses. 82 */ 83#define BPF_SYM_ELF_TYPE 't' 84 85/* BPF program can access up to 512 bytes of stack space. */ 86#define MAX_BPF_STACK 512 87 88/* Helper macros for filter block array initializers. */ 89 90/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */ 91 92#define BPF_ALU64_REG(OP, DST, SRC) \ 93 ((struct bpf_insn) { \ 94 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \ 95 .dst_reg = DST, \ 96 .src_reg = SRC, \ 97 .off = 0, \ 98 .imm = 0 }) 99 100#define BPF_ALU32_REG(OP, DST, SRC) \ 101 ((struct bpf_insn) { \ 102 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \ 103 .dst_reg = DST, \ 104 .src_reg = SRC, \ 105 .off = 0, \ 106 .imm = 0 }) 107 108/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */ 109 110#define BPF_ALU64_IMM(OP, DST, IMM) \ 111 ((struct bpf_insn) { \ 112 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \ 113 .dst_reg = DST, \ 114 .src_reg = 0, \ 115 .off = 0, \ 116 .imm = IMM }) 117 118#define BPF_ALU32_IMM(OP, DST, IMM) \ 119 ((struct bpf_insn) { \ 120 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \ 121 .dst_reg = DST, \ 122 .src_reg = 0, \ 123 .off = 0, \ 124 .imm = IMM }) 125 126/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */ 127 128#define BPF_ENDIAN(TYPE, DST, LEN) \ 129 ((struct bpf_insn) { \ 130 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \ 131 .dst_reg = DST, \ 132 .src_reg = 0, \ 133 .off = 0, \ 134 .imm = LEN }) 135 136/* Short form of mov, dst_reg = src_reg */ 137 138#define BPF_MOV64_REG(DST, SRC) \ 139 ((struct bpf_insn) { \ 140 .code = BPF_ALU64 | BPF_MOV | BPF_X, \ 141 .dst_reg = DST, \ 142 .src_reg = SRC, \ 143 .off = 0, \ 144 .imm = 0 }) 145 146#define BPF_MOV32_REG(DST, SRC) \ 147 ((struct bpf_insn) { \ 148 .code = BPF_ALU | BPF_MOV | BPF_X, \ 149 .dst_reg = DST, \ 150 .src_reg = SRC, \ 151 .off = 0, \ 152 .imm = 0 }) 153 154/* Short form of mov, dst_reg = imm32 */ 155 156#define BPF_MOV64_IMM(DST, IMM) \ 157 ((struct bpf_insn) { \ 158 .code = BPF_ALU64 | BPF_MOV | BPF_K, \ 159 .dst_reg = DST, \ 160 .src_reg = 0, \ 161 .off = 0, \ 162 .imm = IMM }) 163 164#define BPF_MOV32_IMM(DST, IMM) \ 165 ((struct bpf_insn) { \ 166 .code = BPF_ALU | BPF_MOV | BPF_K, \ 167 .dst_reg = DST, \ 168 .src_reg = 0, \ 169 .off = 0, \ 170 .imm = IMM }) 171 172/* Special form of mov32, used for doing explicit zero extension on dst. */ 173#define BPF_ZEXT_REG(DST) \ 174 ((struct bpf_insn) { \ 175 .code = BPF_ALU | BPF_MOV | BPF_X, \ 176 .dst_reg = DST, \ 177 .src_reg = DST, \ 178 .off = 0, \ 179 .imm = 1 }) 180 181static inline bool insn_is_zext(const struct bpf_insn *insn) 182{ 183 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1; 184} 185 186/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */ 187#define BPF_LD_IMM64(DST, IMM) \ 188 BPF_LD_IMM64_RAW(DST, 0, IMM) 189 190#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \ 191 ((struct bpf_insn) { \ 192 .code = BPF_LD | BPF_DW | BPF_IMM, \ 193 .dst_reg = DST, \ 194 .src_reg = SRC, \ 195 .off = 0, \ 196 .imm = (__u32) (IMM) }), \ 197 ((struct bpf_insn) { \ 198 .code = 0, /* zero is reserved opcode */ \ 199 .dst_reg = 0, \ 200 .src_reg = 0, \ 201 .off = 0, \ 202 .imm = ((__u64) (IMM)) >> 32 }) 203 204/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */ 205#define BPF_LD_MAP_FD(DST, MAP_FD) \ 206 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD) 207 208/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */ 209 210#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \ 211 ((struct bpf_insn) { \ 212 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \ 213 .dst_reg = DST, \ 214 .src_reg = SRC, \ 215 .off = 0, \ 216 .imm = IMM }) 217 218#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \ 219 ((struct bpf_insn) { \ 220 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \ 221 .dst_reg = DST, \ 222 .src_reg = SRC, \ 223 .off = 0, \ 224 .imm = IMM }) 225 226/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */ 227 228#define BPF_LD_ABS(SIZE, IMM) \ 229 ((struct bpf_insn) { \ 230 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \ 231 .dst_reg = 0, \ 232 .src_reg = 0, \ 233 .off = 0, \ 234 .imm = IMM }) 235 236/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */ 237 238#define BPF_LD_IND(SIZE, SRC, IMM) \ 239 ((struct bpf_insn) { \ 240 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \ 241 .dst_reg = 0, \ 242 .src_reg = SRC, \ 243 .off = 0, \ 244 .imm = IMM }) 245 246/* Memory load, dst_reg = *(uint *) (src_reg + off16) */ 247 248#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \ 249 ((struct bpf_insn) { \ 250 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \ 251 .dst_reg = DST, \ 252 .src_reg = SRC, \ 253 .off = OFF, \ 254 .imm = 0 }) 255 256/* Memory store, *(uint *) (dst_reg + off16) = src_reg */ 257 258#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \ 259 ((struct bpf_insn) { \ 260 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \ 261 .dst_reg = DST, \ 262 .src_reg = SRC, \ 263 .off = OFF, \ 264 .imm = 0 }) 265 266 267/* 268 * Atomic operations: 269 * 270 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg 271 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg 272 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg 273 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg 274 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg); 275 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg); 276 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg); 277 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg); 278 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg) 279 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg) 280 */ 281 282#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \ 283 ((struct bpf_insn) { \ 284 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \ 285 .dst_reg = DST, \ 286 .src_reg = SRC, \ 287 .off = OFF, \ 288 .imm = OP }) 289 290/* Legacy alias */ 291#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF) 292 293/* Memory store, *(uint *) (dst_reg + off16) = imm32 */ 294 295#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \ 296 ((struct bpf_insn) { \ 297 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \ 298 .dst_reg = DST, \ 299 .src_reg = 0, \ 300 .off = OFF, \ 301 .imm = IMM }) 302 303/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */ 304 305#define BPF_JMP_REG(OP, DST, SRC, OFF) \ 306 ((struct bpf_insn) { \ 307 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \ 308 .dst_reg = DST, \ 309 .src_reg = SRC, \ 310 .off = OFF, \ 311 .imm = 0 }) 312 313/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */ 314 315#define BPF_JMP_IMM(OP, DST, IMM, OFF) \ 316 ((struct bpf_insn) { \ 317 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \ 318 .dst_reg = DST, \ 319 .src_reg = 0, \ 320 .off = OFF, \ 321 .imm = IMM }) 322 323/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */ 324 325#define BPF_JMP32_REG(OP, DST, SRC, OFF) \ 326 ((struct bpf_insn) { \ 327 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \ 328 .dst_reg = DST, \ 329 .src_reg = SRC, \ 330 .off = OFF, \ 331 .imm = 0 }) 332 333/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */ 334 335#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \ 336 ((struct bpf_insn) { \ 337 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \ 338 .dst_reg = DST, \ 339 .src_reg = 0, \ 340 .off = OFF, \ 341 .imm = IMM }) 342 343/* Unconditional jumps, goto pc + off16 */ 344 345#define BPF_JMP_A(OFF) \ 346 ((struct bpf_insn) { \ 347 .code = BPF_JMP | BPF_JA, \ 348 .dst_reg = 0, \ 349 .src_reg = 0, \ 350 .off = OFF, \ 351 .imm = 0 }) 352 353/* Relative call */ 354 355#define BPF_CALL_REL(TGT) \ 356 ((struct bpf_insn) { \ 357 .code = BPF_JMP | BPF_CALL, \ 358 .dst_reg = 0, \ 359 .src_reg = BPF_PSEUDO_CALL, \ 360 .off = 0, \ 361 .imm = TGT }) 362 363/* Function call */ 364 365#define BPF_CAST_CALL(x) \ 366 ((u64 (*)(u64, u64, u64, u64, u64))(x)) 367 368#define BPF_EMIT_CALL(FUNC) \ 369 ((struct bpf_insn) { \ 370 .code = BPF_JMP | BPF_CALL, \ 371 .dst_reg = 0, \ 372 .src_reg = 0, \ 373 .off = 0, \ 374 .imm = ((FUNC) - __bpf_call_base) }) 375 376/* Raw code statement block */ 377 378#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \ 379 ((struct bpf_insn) { \ 380 .code = CODE, \ 381 .dst_reg = DST, \ 382 .src_reg = SRC, \ 383 .off = OFF, \ 384 .imm = IMM }) 385 386/* Program exit */ 387 388#define BPF_EXIT_INSN() \ 389 ((struct bpf_insn) { \ 390 .code = BPF_JMP | BPF_EXIT, \ 391 .dst_reg = 0, \ 392 .src_reg = 0, \ 393 .off = 0, \ 394 .imm = 0 }) 395 396/* Speculation barrier */ 397 398#define BPF_ST_NOSPEC() \ 399 ((struct bpf_insn) { \ 400 .code = BPF_ST | BPF_NOSPEC, \ 401 .dst_reg = 0, \ 402 .src_reg = 0, \ 403 .off = 0, \ 404 .imm = 0 }) 405 406/* Internal classic blocks for direct assignment */ 407 408#define __BPF_STMT(CODE, K) \ 409 ((struct sock_filter) BPF_STMT(CODE, K)) 410 411#define __BPF_JUMP(CODE, K, JT, JF) \ 412 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF)) 413 414#define bytes_to_bpf_size(bytes) \ 415({ \ 416 int bpf_size = -EINVAL; \ 417 \ 418 if (bytes == sizeof(u8)) \ 419 bpf_size = BPF_B; \ 420 else if (bytes == sizeof(u16)) \ 421 bpf_size = BPF_H; \ 422 else if (bytes == sizeof(u32)) \ 423 bpf_size = BPF_W; \ 424 else if (bytes == sizeof(u64)) \ 425 bpf_size = BPF_DW; \ 426 \ 427 bpf_size; \ 428}) 429 430#define bpf_size_to_bytes(bpf_size) \ 431({ \ 432 int bytes = -EINVAL; \ 433 \ 434 if (bpf_size == BPF_B) \ 435 bytes = sizeof(u8); \ 436 else if (bpf_size == BPF_H) \ 437 bytes = sizeof(u16); \ 438 else if (bpf_size == BPF_W) \ 439 bytes = sizeof(u32); \ 440 else if (bpf_size == BPF_DW) \ 441 bytes = sizeof(u64); \ 442 \ 443 bytes; \ 444}) 445 446#define BPF_SIZEOF(type) \ 447 ({ \ 448 const int __size = bytes_to_bpf_size(sizeof(type)); \ 449 BUILD_BUG_ON(__size < 0); \ 450 __size; \ 451 }) 452 453#define BPF_FIELD_SIZEOF(type, field) \ 454 ({ \ 455 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \ 456 BUILD_BUG_ON(__size < 0); \ 457 __size; \ 458 }) 459 460#define BPF_LDST_BYTES(insn) \ 461 ({ \ 462 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \ 463 WARN_ON(__size < 0); \ 464 __size; \ 465 }) 466 467#define __BPF_MAP_0(m, v, ...) v 468#define __BPF_MAP_1(m, v, t, a, ...) m(t, a) 469#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__) 470#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__) 471#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__) 472#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__) 473 474#define __BPF_REG_0(...) __BPF_PAD(5) 475#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4) 476#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3) 477#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2) 478#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1) 479#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__) 480 481#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__) 482#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__) 483 484#define __BPF_CAST(t, a) \ 485 (__force t) \ 486 (__force \ 487 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \ 488 (unsigned long)0, (t)0))) a 489#define __BPF_V void 490#define __BPF_N 491 492#define __BPF_DECL_ARGS(t, a) t a 493#define __BPF_DECL_REGS(t, a) u64 a 494 495#define __BPF_PAD(n) \ 496 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \ 497 u64, __ur_3, u64, __ur_4, u64, __ur_5) 498 499#define BPF_CALL_x(x, name, ...) \ 500 static __always_inline \ 501 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 502 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \ 503 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \ 504 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \ 505 { \ 506 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\ 507 } \ 508 static __always_inline \ 509 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)) 510 511#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__) 512#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__) 513#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__) 514#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__) 515#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__) 516#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__) 517 518#define bpf_ctx_range(TYPE, MEMBER) \ 519 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 520#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \ 521 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1 522#if BITS_PER_LONG == 64 523# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 524 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1 525#else 526# define bpf_ctx_range_ptr(TYPE, MEMBER) \ 527 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1 528#endif /* BITS_PER_LONG == 64 */ 529 530#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \ 531 ({ \ 532 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \ 533 *(PTR_SIZE) = (SIZE); \ 534 offsetof(TYPE, MEMBER); \ 535 }) 536 537/* A struct sock_filter is architecture independent. */ 538struct compat_sock_fprog { 539 u16 len; 540 compat_uptr_t filter; /* struct sock_filter * */ 541}; 542 543struct sock_fprog_kern { 544 u16 len; 545 struct sock_filter *filter; 546}; 547 548/* Some arches need doubleword alignment for their instructions and/or data */ 549#define BPF_IMAGE_ALIGNMENT 8 550 551struct bpf_binary_header { 552 u32 pages; 553 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT); 554}; 555 556struct bpf_prog_stats { 557 u64 cnt; 558 u64 nsecs; 559 u64 misses; 560 struct u64_stats_sync syncp; 561} __aligned(2 * sizeof(u64)); 562 563struct bpf_prog { 564 u16 pages; /* Number of allocated pages */ 565 u16 jited:1, /* Is our filter JIT'ed? */ 566 jit_requested:1,/* archs need to JIT the prog */ 567 gpl_compatible:1, /* Is filter GPL compatible? */ 568 cb_access:1, /* Is control block accessed? */ 569 dst_needed:1, /* Do we need dst entry? */ 570 blinded:1, /* Was blinded */ 571 is_func:1, /* program is a bpf function */ 572 kprobe_override:1, /* Do we override a kprobe? */ 573 has_callchain_buf:1, /* callchain buffer allocated? */ 574 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */ 575 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */ 576 call_get_func_ip:1; /* Do we call get_func_ip() */ 577 enum bpf_prog_type type; /* Type of BPF program */ 578 enum bpf_attach_type expected_attach_type; /* For some prog types */ 579 u32 len; /* Number of filter blocks */ 580 u32 jited_len; /* Size of jited insns in bytes */ 581 u8 tag[BPF_TAG_SIZE]; 582 struct bpf_prog_stats __percpu *stats; 583 int __percpu *active; 584 unsigned int (*bpf_func)(const void *ctx, 585 const struct bpf_insn *insn); 586 struct bpf_prog_aux *aux; /* Auxiliary fields */ 587 struct sock_fprog_kern *orig_prog; /* Original BPF program */ 588 /* Instructions for interpreter */ 589 struct sock_filter insns[0]; 590 struct bpf_insn insnsi[]; 591}; 592 593struct sk_filter { 594 refcount_t refcnt; 595 struct rcu_head rcu; 596 struct bpf_prog *prog; 597}; 598 599DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key); 600 601typedef unsigned int (*bpf_dispatcher_fn)(const void *ctx, 602 const struct bpf_insn *insnsi, 603 unsigned int (*bpf_func)(const void *, 604 const struct bpf_insn *)); 605 606static __always_inline u32 __bpf_prog_run(const struct bpf_prog *prog, 607 const void *ctx, 608 bpf_dispatcher_fn dfunc) 609{ 610 u32 ret; 611 612 cant_migrate(); 613 if (static_branch_unlikely(&bpf_stats_enabled_key)) { 614 struct bpf_prog_stats *stats; 615 u64 start = sched_clock(); 616 617 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 618 stats = this_cpu_ptr(prog->stats); 619 u64_stats_update_begin(&stats->syncp); 620 stats->cnt++; 621 stats->nsecs += sched_clock() - start; 622 u64_stats_update_end(&stats->syncp); 623 } else { 624 ret = dfunc(ctx, prog->insnsi, prog->bpf_func); 625 } 626 return ret; 627} 628 629static __always_inline u32 bpf_prog_run(const struct bpf_prog *prog, const void *ctx) 630{ 631 return __bpf_prog_run(prog, ctx, bpf_dispatcher_nop_func); 632} 633 634/* 635 * Use in preemptible and therefore migratable context to make sure that 636 * the execution of the BPF program runs on one CPU. 637 * 638 * This uses migrate_disable/enable() explicitly to document that the 639 * invocation of a BPF program does not require reentrancy protection 640 * against a BPF program which is invoked from a preempting task. 641 * 642 * For non RT enabled kernels migrate_disable/enable() maps to 643 * preempt_disable/enable(), i.e. it disables also preemption. 644 */ 645static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog, 646 const void *ctx) 647{ 648 u32 ret; 649 650 migrate_disable(); 651 ret = bpf_prog_run(prog, ctx); 652 migrate_enable(); 653 return ret; 654} 655 656#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN 657 658struct bpf_skb_data_end { 659 struct qdisc_skb_cb qdisc_cb; 660 void *data_meta; 661 void *data_end; 662}; 663 664struct bpf_nh_params { 665 u32 nh_family; 666 union { 667 u32 ipv4_nh; 668 struct in6_addr ipv6_nh; 669 }; 670}; 671 672struct bpf_redirect_info { 673 u32 flags; 674 u32 tgt_index; 675 void *tgt_value; 676 struct bpf_map *map; 677 u32 map_id; 678 enum bpf_map_type map_type; 679 u32 kern_flags; 680 struct bpf_nh_params nh; 681}; 682 683DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info); 684 685/* flags for bpf_redirect_info kern_flags */ 686#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */ 687 688/* Compute the linear packet data range [data, data_end) which 689 * will be accessed by various program types (cls_bpf, act_bpf, 690 * lwt, ...). Subsystems allowing direct data access must (!) 691 * ensure that cb[] area can be written to when BPF program is 692 * invoked (otherwise cb[] save/restore is necessary). 693 */ 694static inline void bpf_compute_data_pointers(struct sk_buff *skb) 695{ 696 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 697 698 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb)); 699 cb->data_meta = skb->data - skb_metadata_len(skb); 700 cb->data_end = skb->data + skb_headlen(skb); 701} 702 703/* Similar to bpf_compute_data_pointers(), except that save orginal 704 * data in cb->data and cb->meta_data for restore. 705 */ 706static inline void bpf_compute_and_save_data_end( 707 struct sk_buff *skb, void **saved_data_end) 708{ 709 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 710 711 *saved_data_end = cb->data_end; 712 cb->data_end = skb->data + skb_headlen(skb); 713} 714 715/* Restore data saved by bpf_compute_data_pointers(). */ 716static inline void bpf_restore_data_end( 717 struct sk_buff *skb, void *saved_data_end) 718{ 719 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb; 720 721 cb->data_end = saved_data_end; 722} 723 724static inline u8 *bpf_skb_cb(const struct sk_buff *skb) 725{ 726 /* eBPF programs may read/write skb->cb[] area to transfer meta 727 * data between tail calls. Since this also needs to work with 728 * tc, that scratch memory is mapped to qdisc_skb_cb's data area. 729 * 730 * In some socket filter cases, the cb unfortunately needs to be 731 * saved/restored so that protocol specific skb->cb[] data won't 732 * be lost. In any case, due to unpriviledged eBPF programs 733 * attached to sockets, we need to clear the bpf_skb_cb() area 734 * to not leak previous contents to user space. 735 */ 736 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN); 737 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != 738 sizeof_field(struct qdisc_skb_cb, data)); 739 740 return qdisc_skb_cb(skb)->data; 741} 742 743/* Must be invoked with migration disabled */ 744static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog, 745 const void *ctx) 746{ 747 const struct sk_buff *skb = ctx; 748 u8 *cb_data = bpf_skb_cb(skb); 749 u8 cb_saved[BPF_SKB_CB_LEN]; 750 u32 res; 751 752 if (unlikely(prog->cb_access)) { 753 memcpy(cb_saved, cb_data, sizeof(cb_saved)); 754 memset(cb_data, 0, sizeof(cb_saved)); 755 } 756 757 res = bpf_prog_run(prog, skb); 758 759 if (unlikely(prog->cb_access)) 760 memcpy(cb_data, cb_saved, sizeof(cb_saved)); 761 762 return res; 763} 764 765static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog, 766 struct sk_buff *skb) 767{ 768 u32 res; 769 770 migrate_disable(); 771 res = __bpf_prog_run_save_cb(prog, skb); 772 migrate_enable(); 773 return res; 774} 775 776static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog, 777 struct sk_buff *skb) 778{ 779 u8 *cb_data = bpf_skb_cb(skb); 780 u32 res; 781 782 if (unlikely(prog->cb_access)) 783 memset(cb_data, 0, BPF_SKB_CB_LEN); 784 785 res = bpf_prog_run_pin_on_cpu(prog, skb); 786 return res; 787} 788 789DECLARE_BPF_DISPATCHER(xdp) 790 791DECLARE_STATIC_KEY_FALSE(bpf_master_redirect_enabled_key); 792 793u32 xdp_master_redirect(struct xdp_buff *xdp); 794 795static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog, 796 struct xdp_buff *xdp) 797{ 798 /* Driver XDP hooks are invoked within a single NAPI poll cycle and thus 799 * under local_bh_disable(), which provides the needed RCU protection 800 * for accessing map entries. 801 */ 802 u32 act = __bpf_prog_run(prog, xdp, BPF_DISPATCHER_FUNC(xdp)); 803 804 if (static_branch_unlikely(&bpf_master_redirect_enabled_key)) { 805 if (act == XDP_TX && netif_is_bond_slave(xdp->rxq->dev)) 806 act = xdp_master_redirect(xdp); 807 } 808 809 return act; 810} 811 812void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog); 813 814static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog) 815{ 816 return prog->len * sizeof(struct bpf_insn); 817} 818 819static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog) 820{ 821 return round_up(bpf_prog_insn_size(prog) + 822 sizeof(__be64) + 1, SHA1_BLOCK_SIZE); 823} 824 825static inline unsigned int bpf_prog_size(unsigned int proglen) 826{ 827 return max(sizeof(struct bpf_prog), 828 offsetof(struct bpf_prog, insns[proglen])); 829} 830 831static inline bool bpf_prog_was_classic(const struct bpf_prog *prog) 832{ 833 /* When classic BPF programs have been loaded and the arch 834 * does not have a classic BPF JIT (anymore), they have been 835 * converted via bpf_migrate_filter() to eBPF and thus always 836 * have an unspec program type. 837 */ 838 return prog->type == BPF_PROG_TYPE_UNSPEC; 839} 840 841static inline u32 bpf_ctx_off_adjust_machine(u32 size) 842{ 843 const u32 size_machine = sizeof(unsigned long); 844 845 if (size > size_machine && size % size_machine == 0) 846 size = size_machine; 847 848 return size; 849} 850 851static inline bool 852bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default) 853{ 854 return size <= size_default && (size & (size - 1)) == 0; 855} 856 857static inline u8 858bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default) 859{ 860 u8 access_off = off & (size_default - 1); 861 862#ifdef __LITTLE_ENDIAN 863 return access_off; 864#else 865 return size_default - (access_off + size); 866#endif 867} 868 869#define bpf_ctx_wide_access_ok(off, size, type, field) \ 870 (size == sizeof(__u64) && \ 871 off >= offsetof(type, field) && \ 872 off + sizeof(__u64) <= offsetofend(type, field) && \ 873 off % sizeof(__u64) == 0) 874 875#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0])) 876 877static inline void bpf_prog_lock_ro(struct bpf_prog *fp) 878{ 879#ifndef CONFIG_BPF_JIT_ALWAYS_ON 880 if (!fp->jited) { 881 set_vm_flush_reset_perms(fp); 882 set_memory_ro((unsigned long)fp, fp->pages); 883 } 884#endif 885} 886 887static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr) 888{ 889 set_vm_flush_reset_perms(hdr); 890 set_memory_ro((unsigned long)hdr, hdr->pages); 891 set_memory_x((unsigned long)hdr, hdr->pages); 892} 893 894static inline struct bpf_binary_header * 895bpf_jit_binary_hdr(const struct bpf_prog *fp) 896{ 897 unsigned long real_start = (unsigned long)fp->bpf_func; 898 unsigned long addr = real_start & PAGE_MASK; 899 900 return (void *)addr; 901} 902 903int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap); 904static inline int sk_filter(struct sock *sk, struct sk_buff *skb) 905{ 906 return sk_filter_trim_cap(sk, skb, 1); 907} 908 909struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err); 910void bpf_prog_free(struct bpf_prog *fp); 911 912bool bpf_opcode_in_insntable(u8 code); 913 914void bpf_prog_free_linfo(struct bpf_prog *prog); 915void bpf_prog_fill_jited_linfo(struct bpf_prog *prog, 916 const u32 *insn_to_jit_off); 917int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog); 918void bpf_prog_jit_attempt_done(struct bpf_prog *prog); 919 920struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags); 921struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags); 922struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size, 923 gfp_t gfp_extra_flags); 924void __bpf_prog_free(struct bpf_prog *fp); 925 926static inline void bpf_prog_unlock_free(struct bpf_prog *fp) 927{ 928 __bpf_prog_free(fp); 929} 930 931typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter, 932 unsigned int flen); 933 934int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog); 935int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog, 936 bpf_aux_classic_check_t trans, bool save_orig); 937void bpf_prog_destroy(struct bpf_prog *fp); 938 939int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk); 940int sk_attach_bpf(u32 ufd, struct sock *sk); 941int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk); 942int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk); 943void sk_reuseport_prog_free(struct bpf_prog *prog); 944int sk_detach_filter(struct sock *sk); 945int sk_get_filter(struct sock *sk, struct sock_filter __user *filter, 946 unsigned int len); 947 948bool sk_filter_charge(struct sock *sk, struct sk_filter *fp); 949void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp); 950 951u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5); 952#define __bpf_call_base_args \ 953 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \ 954 (void *)__bpf_call_base) 955 956struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog); 957void bpf_jit_compile(struct bpf_prog *prog); 958bool bpf_jit_needs_zext(void); 959bool bpf_jit_supports_kfunc_call(void); 960bool bpf_helper_changes_pkt_data(void *func); 961 962static inline bool bpf_dump_raw_ok(const struct cred *cred) 963{ 964 /* Reconstruction of call-sites is dependent on kallsyms, 965 * thus make dump the same restriction. 966 */ 967 return kallsyms_show_value(cred); 968} 969 970struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off, 971 const struct bpf_insn *patch, u32 len); 972int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt); 973 974void bpf_clear_redirect_map(struct bpf_map *map); 975 976static inline bool xdp_return_frame_no_direct(void) 977{ 978 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 979 980 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT; 981} 982 983static inline void xdp_set_return_frame_no_direct(void) 984{ 985 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 986 987 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT; 988} 989 990static inline void xdp_clear_return_frame_no_direct(void) 991{ 992 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 993 994 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT; 995} 996 997static inline int xdp_ok_fwd_dev(const struct net_device *fwd, 998 unsigned int pktlen) 999{ 1000 unsigned int len; 1001 1002 if (unlikely(!(fwd->flags & IFF_UP))) 1003 return -ENETDOWN; 1004 1005 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN; 1006 if (pktlen > len) 1007 return -EMSGSIZE; 1008 1009 return 0; 1010} 1011 1012/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the 1013 * same cpu context. Further for best results no more than a single map 1014 * for the do_redirect/do_flush pair should be used. This limitation is 1015 * because we only track one map and force a flush when the map changes. 1016 * This does not appear to be a real limitation for existing software. 1017 */ 1018int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb, 1019 struct xdp_buff *xdp, struct bpf_prog *prog); 1020int xdp_do_redirect(struct net_device *dev, 1021 struct xdp_buff *xdp, 1022 struct bpf_prog *prog); 1023void xdp_do_flush(void); 1024 1025/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as 1026 * it is no longer only flushing maps. Keep this define for compatibility 1027 * until all drivers are updated - do not use xdp_do_flush_map() in new code! 1028 */ 1029#define xdp_do_flush_map xdp_do_flush 1030 1031void bpf_warn_invalid_xdp_action(u32 act); 1032 1033#ifdef CONFIG_INET 1034struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1035 struct bpf_prog *prog, struct sk_buff *skb, 1036 struct sock *migrating_sk, 1037 u32 hash); 1038#else 1039static inline struct sock * 1040bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk, 1041 struct bpf_prog *prog, struct sk_buff *skb, 1042 struct sock *migrating_sk, 1043 u32 hash) 1044{ 1045 return NULL; 1046} 1047#endif 1048 1049#ifdef CONFIG_BPF_JIT 1050extern int bpf_jit_enable; 1051extern int bpf_jit_harden; 1052extern int bpf_jit_kallsyms; 1053extern long bpf_jit_limit; 1054extern long bpf_jit_limit_max; 1055 1056typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size); 1057 1058struct bpf_binary_header * 1059bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr, 1060 unsigned int alignment, 1061 bpf_jit_fill_hole_t bpf_fill_ill_insns); 1062void bpf_jit_binary_free(struct bpf_binary_header *hdr); 1063u64 bpf_jit_alloc_exec_limit(void); 1064void *bpf_jit_alloc_exec(unsigned long size); 1065void bpf_jit_free_exec(void *addr); 1066void bpf_jit_free(struct bpf_prog *fp); 1067 1068int bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1069 struct bpf_jit_poke_descriptor *poke); 1070 1071int bpf_jit_get_func_addr(const struct bpf_prog *prog, 1072 const struct bpf_insn *insn, bool extra_pass, 1073 u64 *func_addr, bool *func_addr_fixed); 1074 1075struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp); 1076void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other); 1077 1078static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen, 1079 u32 pass, void *image) 1080{ 1081 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen, 1082 proglen, pass, image, current->comm, task_pid_nr(current)); 1083 1084 if (image) 1085 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET, 1086 16, 1, image, proglen, false); 1087} 1088 1089static inline bool bpf_jit_is_ebpf(void) 1090{ 1091# ifdef CONFIG_HAVE_EBPF_JIT 1092 return true; 1093# else 1094 return false; 1095# endif 1096} 1097 1098static inline bool ebpf_jit_enabled(void) 1099{ 1100 return bpf_jit_enable && bpf_jit_is_ebpf(); 1101} 1102 1103static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1104{ 1105 return fp->jited && bpf_jit_is_ebpf(); 1106} 1107 1108static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1109{ 1110 /* These are the prerequisites, should someone ever have the 1111 * idea to call blinding outside of them, we make sure to 1112 * bail out. 1113 */ 1114 if (!bpf_jit_is_ebpf()) 1115 return false; 1116 if (!prog->jit_requested) 1117 return false; 1118 if (!bpf_jit_harden) 1119 return false; 1120 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN)) 1121 return false; 1122 1123 return true; 1124} 1125 1126static inline bool bpf_jit_kallsyms_enabled(void) 1127{ 1128 /* There are a couple of corner cases where kallsyms should 1129 * not be enabled f.e. on hardening. 1130 */ 1131 if (bpf_jit_harden) 1132 return false; 1133 if (!bpf_jit_kallsyms) 1134 return false; 1135 if (bpf_jit_kallsyms == 1) 1136 return true; 1137 1138 return false; 1139} 1140 1141const char *__bpf_address_lookup(unsigned long addr, unsigned long *size, 1142 unsigned long *off, char *sym); 1143bool is_bpf_text_address(unsigned long addr); 1144int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 1145 char *sym); 1146 1147static inline const char * 1148bpf_address_lookup(unsigned long addr, unsigned long *size, 1149 unsigned long *off, char **modname, char *sym) 1150{ 1151 const char *ret = __bpf_address_lookup(addr, size, off, sym); 1152 1153 if (ret && modname) 1154 *modname = NULL; 1155 return ret; 1156} 1157 1158void bpf_prog_kallsyms_add(struct bpf_prog *fp); 1159void bpf_prog_kallsyms_del(struct bpf_prog *fp); 1160 1161#else /* CONFIG_BPF_JIT */ 1162 1163static inline bool ebpf_jit_enabled(void) 1164{ 1165 return false; 1166} 1167 1168static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog) 1169{ 1170 return false; 1171} 1172 1173static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp) 1174{ 1175 return false; 1176} 1177 1178static inline int 1179bpf_jit_add_poke_descriptor(struct bpf_prog *prog, 1180 struct bpf_jit_poke_descriptor *poke) 1181{ 1182 return -ENOTSUPP; 1183} 1184 1185static inline void bpf_jit_free(struct bpf_prog *fp) 1186{ 1187 bpf_prog_unlock_free(fp); 1188} 1189 1190static inline bool bpf_jit_kallsyms_enabled(void) 1191{ 1192 return false; 1193} 1194 1195static inline const char * 1196__bpf_address_lookup(unsigned long addr, unsigned long *size, 1197 unsigned long *off, char *sym) 1198{ 1199 return NULL; 1200} 1201 1202static inline bool is_bpf_text_address(unsigned long addr) 1203{ 1204 return false; 1205} 1206 1207static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value, 1208 char *type, char *sym) 1209{ 1210 return -ERANGE; 1211} 1212 1213static inline const char * 1214bpf_address_lookup(unsigned long addr, unsigned long *size, 1215 unsigned long *off, char **modname, char *sym) 1216{ 1217 return NULL; 1218} 1219 1220static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp) 1221{ 1222} 1223 1224static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp) 1225{ 1226} 1227 1228#endif /* CONFIG_BPF_JIT */ 1229 1230void bpf_prog_kallsyms_del_all(struct bpf_prog *fp); 1231 1232#define BPF_ANC BIT(15) 1233 1234static inline bool bpf_needs_clear_a(const struct sock_filter *first) 1235{ 1236 switch (first->code) { 1237 case BPF_RET | BPF_K: 1238 case BPF_LD | BPF_W | BPF_LEN: 1239 return false; 1240 1241 case BPF_LD | BPF_W | BPF_ABS: 1242 case BPF_LD | BPF_H | BPF_ABS: 1243 case BPF_LD | BPF_B | BPF_ABS: 1244 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X) 1245 return true; 1246 return false; 1247 1248 default: 1249 return true; 1250 } 1251} 1252 1253static inline u16 bpf_anc_helper(const struct sock_filter *ftest) 1254{ 1255 BUG_ON(ftest->code & BPF_ANC); 1256 1257 switch (ftest->code) { 1258 case BPF_LD | BPF_W | BPF_ABS: 1259 case BPF_LD | BPF_H | BPF_ABS: 1260 case BPF_LD | BPF_B | BPF_ABS: 1261#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \ 1262 return BPF_ANC | SKF_AD_##CODE 1263 switch (ftest->k) { 1264 BPF_ANCILLARY(PROTOCOL); 1265 BPF_ANCILLARY(PKTTYPE); 1266 BPF_ANCILLARY(IFINDEX); 1267 BPF_ANCILLARY(NLATTR); 1268 BPF_ANCILLARY(NLATTR_NEST); 1269 BPF_ANCILLARY(MARK); 1270 BPF_ANCILLARY(QUEUE); 1271 BPF_ANCILLARY(HATYPE); 1272 BPF_ANCILLARY(RXHASH); 1273 BPF_ANCILLARY(CPU); 1274 BPF_ANCILLARY(ALU_XOR_X); 1275 BPF_ANCILLARY(VLAN_TAG); 1276 BPF_ANCILLARY(VLAN_TAG_PRESENT); 1277 BPF_ANCILLARY(PAY_OFFSET); 1278 BPF_ANCILLARY(RANDOM); 1279 BPF_ANCILLARY(VLAN_TPID); 1280 } 1281 fallthrough; 1282 default: 1283 return ftest->code; 1284 } 1285} 1286 1287void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, 1288 int k, unsigned int size); 1289 1290static inline int bpf_tell_extensions(void) 1291{ 1292 return SKF_AD_MAX; 1293} 1294 1295struct bpf_sock_addr_kern { 1296 struct sock *sk; 1297 struct sockaddr *uaddr; 1298 /* Temporary "register" to make indirect stores to nested structures 1299 * defined above. We need three registers to make such a store, but 1300 * only two (src and dst) are available at convert_ctx_access time 1301 */ 1302 u64 tmp_reg; 1303 void *t_ctx; /* Attach type specific context. */ 1304}; 1305 1306struct bpf_sock_ops_kern { 1307 struct sock *sk; 1308 union { 1309 u32 args[4]; 1310 u32 reply; 1311 u32 replylong[4]; 1312 }; 1313 struct sk_buff *syn_skb; 1314 struct sk_buff *skb; 1315 void *skb_data_end; 1316 u8 op; 1317 u8 is_fullsock; 1318 u8 remaining_opt_len; 1319 u64 temp; /* temp and everything after is not 1320 * initialized to 0 before calling 1321 * the BPF program. New fields that 1322 * should be initialized to 0 should 1323 * be inserted before temp. 1324 * temp is scratch storage used by 1325 * sock_ops_convert_ctx_access 1326 * as temporary storage of a register. 1327 */ 1328}; 1329 1330struct bpf_sysctl_kern { 1331 struct ctl_table_header *head; 1332 struct ctl_table *table; 1333 void *cur_val; 1334 size_t cur_len; 1335 void *new_val; 1336 size_t new_len; 1337 int new_updated; 1338 int write; 1339 loff_t *ppos; 1340 /* Temporary "register" for indirect stores to ppos. */ 1341 u64 tmp_reg; 1342}; 1343 1344#define BPF_SOCKOPT_KERN_BUF_SIZE 32 1345struct bpf_sockopt_buf { 1346 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE]; 1347}; 1348 1349struct bpf_sockopt_kern { 1350 struct sock *sk; 1351 u8 *optval; 1352 u8 *optval_end; 1353 s32 level; 1354 s32 optname; 1355 s32 optlen; 1356 s32 retval; 1357}; 1358 1359int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len); 1360 1361struct bpf_sk_lookup_kern { 1362 u16 family; 1363 u16 protocol; 1364 __be16 sport; 1365 u16 dport; 1366 struct { 1367 __be32 saddr; 1368 __be32 daddr; 1369 } v4; 1370 struct { 1371 const struct in6_addr *saddr; 1372 const struct in6_addr *daddr; 1373 } v6; 1374 struct sock *selected_sk; 1375 bool no_reuseport; 1376}; 1377 1378extern struct static_key_false bpf_sk_lookup_enabled; 1379 1380/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup. 1381 * 1382 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and 1383 * SK_DROP. Their meaning is as follows: 1384 * 1385 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result 1386 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup 1387 * SK_DROP : terminate lookup with -ECONNREFUSED 1388 * 1389 * This macro aggregates return values and selected sockets from 1390 * multiple BPF programs according to following rules in order: 1391 * 1392 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk, 1393 * macro result is SK_PASS and last ctx.selected_sk is used. 1394 * 2. If any program returned SK_DROP return value, 1395 * macro result is SK_DROP. 1396 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL. 1397 * 1398 * Caller must ensure that the prog array is non-NULL, and that the 1399 * array as well as the programs it contains remain valid. 1400 */ 1401#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \ 1402 ({ \ 1403 struct bpf_sk_lookup_kern *_ctx = &(ctx); \ 1404 struct bpf_prog_array_item *_item; \ 1405 struct sock *_selected_sk = NULL; \ 1406 bool _no_reuseport = false; \ 1407 struct bpf_prog *_prog; \ 1408 bool _all_pass = true; \ 1409 u32 _ret; \ 1410 \ 1411 migrate_disable(); \ 1412 _item = &(array)->items[0]; \ 1413 while ((_prog = READ_ONCE(_item->prog))) { \ 1414 /* restore most recent selection */ \ 1415 _ctx->selected_sk = _selected_sk; \ 1416 _ctx->no_reuseport = _no_reuseport; \ 1417 \ 1418 _ret = func(_prog, _ctx); \ 1419 if (_ret == SK_PASS && _ctx->selected_sk) { \ 1420 /* remember last non-NULL socket */ \ 1421 _selected_sk = _ctx->selected_sk; \ 1422 _no_reuseport = _ctx->no_reuseport; \ 1423 } else if (_ret == SK_DROP && _all_pass) { \ 1424 _all_pass = false; \ 1425 } \ 1426 _item++; \ 1427 } \ 1428 _ctx->selected_sk = _selected_sk; \ 1429 _ctx->no_reuseport = _no_reuseport; \ 1430 migrate_enable(); \ 1431 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \ 1432 }) 1433 1434static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol, 1435 const __be32 saddr, const __be16 sport, 1436 const __be32 daddr, const u16 dport, 1437 struct sock **psk) 1438{ 1439 struct bpf_prog_array *run_array; 1440 struct sock *selected_sk = NULL; 1441 bool no_reuseport = false; 1442 1443 rcu_read_lock(); 1444 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1445 if (run_array) { 1446 struct bpf_sk_lookup_kern ctx = { 1447 .family = AF_INET, 1448 .protocol = protocol, 1449 .v4.saddr = saddr, 1450 .v4.daddr = daddr, 1451 .sport = sport, 1452 .dport = dport, 1453 }; 1454 u32 act; 1455 1456 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1457 if (act == SK_PASS) { 1458 selected_sk = ctx.selected_sk; 1459 no_reuseport = ctx.no_reuseport; 1460 } else { 1461 selected_sk = ERR_PTR(-ECONNREFUSED); 1462 } 1463 } 1464 rcu_read_unlock(); 1465 *psk = selected_sk; 1466 return no_reuseport; 1467} 1468 1469#if IS_ENABLED(CONFIG_IPV6) 1470static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol, 1471 const struct in6_addr *saddr, 1472 const __be16 sport, 1473 const struct in6_addr *daddr, 1474 const u16 dport, 1475 struct sock **psk) 1476{ 1477 struct bpf_prog_array *run_array; 1478 struct sock *selected_sk = NULL; 1479 bool no_reuseport = false; 1480 1481 rcu_read_lock(); 1482 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]); 1483 if (run_array) { 1484 struct bpf_sk_lookup_kern ctx = { 1485 .family = AF_INET6, 1486 .protocol = protocol, 1487 .v6.saddr = saddr, 1488 .v6.daddr = daddr, 1489 .sport = sport, 1490 .dport = dport, 1491 }; 1492 u32 act; 1493 1494 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, bpf_prog_run); 1495 if (act == SK_PASS) { 1496 selected_sk = ctx.selected_sk; 1497 no_reuseport = ctx.no_reuseport; 1498 } else { 1499 selected_sk = ERR_PTR(-ECONNREFUSED); 1500 } 1501 } 1502 rcu_read_unlock(); 1503 *psk = selected_sk; 1504 return no_reuseport; 1505} 1506#endif /* IS_ENABLED(CONFIG_IPV6) */ 1507 1508static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex, 1509 u64 flags, const u64 flag_mask, 1510 void *lookup_elem(struct bpf_map *map, u32 key)) 1511{ 1512 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info); 1513 const u64 action_mask = XDP_ABORTED | XDP_DROP | XDP_PASS | XDP_TX; 1514 1515 /* Lower bits of the flags are used as return code on lookup failure */ 1516 if (unlikely(flags & ~(action_mask | flag_mask))) 1517 return XDP_ABORTED; 1518 1519 ri->tgt_value = lookup_elem(map, ifindex); 1520 if (unlikely(!ri->tgt_value) && !(flags & BPF_F_BROADCAST)) { 1521 /* If the lookup fails we want to clear out the state in the 1522 * redirect_info struct completely, so that if an eBPF program 1523 * performs multiple lookups, the last one always takes 1524 * precedence. 1525 */ 1526 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */ 1527 ri->map_type = BPF_MAP_TYPE_UNSPEC; 1528 return flags & action_mask; 1529 } 1530 1531 ri->tgt_index = ifindex; 1532 ri->map_id = map->id; 1533 ri->map_type = map->map_type; 1534 1535 if (flags & BPF_F_BROADCAST) { 1536 WRITE_ONCE(ri->map, map); 1537 ri->flags = flags; 1538 } else { 1539 WRITE_ONCE(ri->map, NULL); 1540 ri->flags = 0; 1541 } 1542 1543 return XDP_REDIRECT; 1544} 1545 1546#endif /* __LINUX_FILTER_H__ */