at v5.15 55 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43}; 44 45/** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_XOR, 54 DMA_PQ, 55 DMA_XOR_VAL, 56 DMA_PQ_VAL, 57 DMA_MEMSET, 58 DMA_MEMSET_SG, 59 DMA_INTERRUPT, 60 DMA_PRIVATE, 61 DMA_ASYNC_TX, 62 DMA_SLAVE, 63 DMA_CYCLIC, 64 DMA_INTERLEAVE, 65 DMA_COMPLETION_NO_ORDER, 66 DMA_REPEAT, 67 DMA_LOAD_EOT, 68/* last transaction type for creation of the capabilities mask */ 69 DMA_TX_TYPE_END, 70}; 71 72/** 73 * enum dma_transfer_direction - dma transfer mode and direction indicator 74 * @DMA_MEM_TO_MEM: Async/Memcpy mode 75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 78 */ 79enum dma_transfer_direction { 80 DMA_MEM_TO_MEM, 81 DMA_MEM_TO_DEV, 82 DMA_DEV_TO_MEM, 83 DMA_DEV_TO_DEV, 84 DMA_TRANS_NONE, 85}; 86 87/** 88 * Interleaved Transfer Request 89 * ---------------------------- 90 * A chunk is collection of contiguous bytes to be transferred. 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 92 * ICGs may or may not change between chunks. 93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 94 * that when repeated an integral number of times, specifies the transfer. 95 * A transfer template is specification of a Frame, the number of times 96 * it is to be repeated and other per-transfer attributes. 97 * 98 * Practically, a client driver would have ready a template for each 99 * type of transfer it is going to need during its lifetime and 100 * set only 'src_start' and 'dst_start' before submitting the requests. 101 * 102 * 103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 105 * 106 * == Chunk size 107 * ... ICG 108 */ 109 110/** 111 * struct data_chunk - Element of scatter-gather list that makes a frame. 112 * @size: Number of bytes to read from source. 113 * size_dst := fn(op, size_src), so doesn't mean much for destination. 114 * @icg: Number of bytes to jump after last src/dst address of this 115 * chunk and before first src/dst address for next chunk. 116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 118 * @dst_icg: Number of bytes to jump after last dst address of this 119 * chunk and before the first dst address for next chunk. 120 * Ignored if dst_inc is true and dst_sgl is false. 121 * @src_icg: Number of bytes to jump after last src address of this 122 * chunk and before the first src address for next chunk. 123 * Ignored if src_inc is true and src_sgl is false. 124 */ 125struct data_chunk { 126 size_t size; 127 size_t icg; 128 size_t dst_icg; 129 size_t src_icg; 130}; 131 132/** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[]; 161}; 162 163/** 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 165 * control completion, and communicate status. 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 167 * this transaction 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 169 * acknowledges receipt, i.e. has a chance to establish any dependency 170 * chains 171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 174 * sources that were the result of a previous operation, in the case of a PQ 175 * operation it continues the calculation with new sources 176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 177 * on the result of this operation 178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 179 * cleared or freed 180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 181 * data and the descriptor should be in different format from normal 182 * data descriptors. 183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 184 * repeated when it ends until a transaction is issued on the same channel 185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 186 * interleaved transactions and is ignored for all other transaction types. 187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 189 * repeated transaction ends. Not setting this flag when the previously queued 190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 191 * to never be processed and stay in the issued queue forever. The flag is 192 * ignored if the previous transaction is not a repeated transaction. 193 */ 194enum dma_ctrl_flags { 195 DMA_PREP_INTERRUPT = (1 << 0), 196 DMA_CTRL_ACK = (1 << 1), 197 DMA_PREP_PQ_DISABLE_P = (1 << 2), 198 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 199 DMA_PREP_CONTINUE = (1 << 4), 200 DMA_PREP_FENCE = (1 << 5), 201 DMA_CTRL_REUSE = (1 << 6), 202 DMA_PREP_CMD = (1 << 7), 203 DMA_PREP_REPEAT = (1 << 8), 204 DMA_PREP_LOAD_EOT = (1 << 9), 205}; 206 207/** 208 * enum sum_check_bits - bit position of pq_check_flags 209 */ 210enum sum_check_bits { 211 SUM_CHECK_P = 0, 212 SUM_CHECK_Q = 1, 213}; 214 215/** 216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 219 */ 220enum sum_check_flags { 221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 223}; 224 225 226/** 227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 228 * See linux/cpumask.h 229 */ 230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 231 232/** 233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 235 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 236 * helper) to the descriptor. 237 * 238 * Client drivers interested to use this mode can follow: 239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 240 * 1. prepare the descriptor (dmaengine_prep_*) 241 * construct the metadata in the client's buffer 242 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 243 * descriptor 244 * 3. submit the transfer 245 * - DMA_DEV_TO_MEM: 246 * 1. prepare the descriptor (dmaengine_prep_*) 247 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 248 * descriptor 249 * 3. submit the transfer 250 * 4. when the transfer is completed, the metadata should be available in the 251 * attached buffer 252 * 253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 254 * driver. The client driver can ask for the pointer, maximum size and the 255 * currently used size of the metadata and can directly update or read it. 256 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 257 * provided as helper functions. 258 * 259 * Note: the metadata area for the descriptor is no longer valid after the 260 * transfer has been completed (valid up to the point when the completion 261 * callback returns if used). 262 * 263 * Client drivers interested to use this mode can follow: 264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 265 * 1. prepare the descriptor (dmaengine_prep_*) 266 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 267 * metadata area 268 * 3. update the metadata at the pointer 269 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 270 * of data the client has placed into the metadata buffer 271 * 5. submit the transfer 272 * - DMA_DEV_TO_MEM: 273 * 1. prepare the descriptor (dmaengine_prep_*) 274 * 2. submit the transfer 275 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 276 * pointer to the engine's metadata area 277 * 4. Read out the metadata from the pointer 278 * 279 * Note: the two mode is not compatible and clients must use one mode for a 280 * descriptor. 281 */ 282enum dma_desc_metadata_mode { 283 DESC_METADATA_NONE = 0, 284 DESC_METADATA_CLIENT = BIT(0), 285 DESC_METADATA_ENGINE = BIT(1), 286}; 287 288/** 289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 290 * @memcpy_count: transaction counter 291 * @bytes_transferred: byte counter 292 */ 293struct dma_chan_percpu { 294 /* stats */ 295 unsigned long memcpy_count; 296 unsigned long bytes_transferred; 297}; 298 299/** 300 * struct dma_router - DMA router structure 301 * @dev: pointer to the DMA router device 302 * @route_free: function to be called when the route can be disconnected 303 */ 304struct dma_router { 305 struct device *dev; 306 void (*route_free)(struct device *dev, void *route_data); 307}; 308 309/** 310 * struct dma_chan - devices supply DMA channels, clients use them 311 * @device: ptr to the dma device who supplies this channel, always !%NULL 312 * @slave: ptr to the device using this channel 313 * @cookie: last cookie value returned to client 314 * @completed_cookie: last completed cookie for this channel 315 * @chan_id: channel ID for sysfs 316 * @dev: class device for sysfs 317 * @name: backlink name for sysfs 318 * @dbg_client_name: slave name for debugfs in format: 319 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 320 * @device_node: used to add this to the device chan list 321 * @local: per-cpu pointer to a struct dma_chan_percpu 322 * @client_count: how many clients are using this channel 323 * @table_count: number of appearances in the mem-to-mem allocation table 324 * @router: pointer to the DMA router structure 325 * @route_data: channel specific data for the router 326 * @private: private data for certain client-channel associations 327 */ 328struct dma_chan { 329 struct dma_device *device; 330 struct device *slave; 331 dma_cookie_t cookie; 332 dma_cookie_t completed_cookie; 333 334 /* sysfs */ 335 int chan_id; 336 struct dma_chan_dev *dev; 337 const char *name; 338#ifdef CONFIG_DEBUG_FS 339 char *dbg_client_name; 340#endif 341 342 struct list_head device_node; 343 struct dma_chan_percpu __percpu *local; 344 int client_count; 345 int table_count; 346 347 /* DMA router */ 348 struct dma_router *router; 349 void *route_data; 350 351 void *private; 352}; 353 354/** 355 * struct dma_chan_dev - relate sysfs device node to backing channel device 356 * @chan: driver channel device 357 * @device: sysfs device 358 * @dev_id: parent dma_device dev_id 359 * @chan_dma_dev: The channel is using custom/different dma-mapping 360 * compared to the parent dma_device 361 */ 362struct dma_chan_dev { 363 struct dma_chan *chan; 364 struct device device; 365 int dev_id; 366 bool chan_dma_dev; 367}; 368 369/** 370 * enum dma_slave_buswidth - defines bus width of the DMA slave 371 * device, source or target buses 372 */ 373enum dma_slave_buswidth { 374 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 375 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 376 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 377 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 378 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 379 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 380 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 381 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 382 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 383 DMA_SLAVE_BUSWIDTH_128_BYTES = 128, 384}; 385 386/** 387 * struct dma_slave_config - dma slave channel runtime config 388 * @direction: whether the data shall go in or out on this slave 389 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 390 * legal values. DEPRECATED, drivers should use the direction argument 391 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 392 * the dir field in the dma_interleaved_template structure. 393 * @src_addr: this is the physical address where DMA slave data 394 * should be read (RX), if the source is memory this argument is 395 * ignored. 396 * @dst_addr: this is the physical address where DMA slave data 397 * should be written (TX), if the source is memory this argument 398 * is ignored. 399 * @src_addr_width: this is the width in bytes of the source (RX) 400 * register where DMA data shall be read. If the source 401 * is memory this may be ignored depending on architecture. 402 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128. 403 * @dst_addr_width: same as src_addr_width but for destination 404 * target (TX) mutatis mutandis. 405 * @src_maxburst: the maximum number of words (note: words, as in 406 * units of the src_addr_width member, not bytes) that can be sent 407 * in one burst to the device. Typically something like half the 408 * FIFO depth on I/O peripherals so you don't overflow it. This 409 * may or may not be applicable on memory sources. 410 * @dst_maxburst: same as src_maxburst but for destination target 411 * mutatis mutandis. 412 * @src_port_window_size: The length of the register area in words the data need 413 * to be accessed on the device side. It is only used for devices which is using 414 * an area instead of a single register to receive the data. Typically the DMA 415 * loops in this area in order to transfer the data. 416 * @dst_port_window_size: same as src_port_window_size but for the destination 417 * port. 418 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 419 * with 'true' if peripheral should be flow controller. Direction will be 420 * selected at Runtime. 421 * @slave_id: Slave requester id. Only valid for slave channels. The dma 422 * slave peripheral will have unique id as dma requester which need to be 423 * pass as slave config. 424 * @peripheral_config: peripheral configuration for programming peripheral 425 * for dmaengine transfer 426 * @peripheral_size: peripheral configuration buffer size 427 * 428 * This struct is passed in as configuration data to a DMA engine 429 * in order to set up a certain channel for DMA transport at runtime. 430 * The DMA device/engine has to provide support for an additional 431 * callback in the dma_device structure, device_config and this struct 432 * will then be passed in as an argument to the function. 433 * 434 * The rationale for adding configuration information to this struct is as 435 * follows: if it is likely that more than one DMA slave controllers in 436 * the world will support the configuration option, then make it generic. 437 * If not: if it is fixed so that it be sent in static from the platform 438 * data, then prefer to do that. 439 */ 440struct dma_slave_config { 441 enum dma_transfer_direction direction; 442 phys_addr_t src_addr; 443 phys_addr_t dst_addr; 444 enum dma_slave_buswidth src_addr_width; 445 enum dma_slave_buswidth dst_addr_width; 446 u32 src_maxburst; 447 u32 dst_maxburst; 448 u32 src_port_window_size; 449 u32 dst_port_window_size; 450 bool device_fc; 451 unsigned int slave_id; 452 void *peripheral_config; 453 size_t peripheral_size; 454}; 455 456/** 457 * enum dma_residue_granularity - Granularity of the reported transfer residue 458 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 459 * DMA channel is only able to tell whether a descriptor has been completed or 460 * not, which means residue reporting is not supported by this channel. The 461 * residue field of the dma_tx_state field will always be 0. 462 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 463 * completed segment of the transfer (For cyclic transfers this is after each 464 * period). This is typically implemented by having the hardware generate an 465 * interrupt after each transferred segment and then the drivers updates the 466 * outstanding residue by the size of the segment. Another possibility is if 467 * the hardware supports scatter-gather and the segment descriptor has a field 468 * which gets set after the segment has been completed. The driver then counts 469 * the number of segments without the flag set to compute the residue. 470 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 471 * burst. This is typically only supported if the hardware has a progress 472 * register of some sort (E.g. a register with the current read/write address 473 * or a register with the amount of bursts/beats/bytes that have been 474 * transferred or still need to be transferred). 475 */ 476enum dma_residue_granularity { 477 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 478 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 479 DMA_RESIDUE_GRANULARITY_BURST = 2, 480}; 481 482/** 483 * struct dma_slave_caps - expose capabilities of a slave channel only 484 * @src_addr_widths: bit mask of src addr widths the channel supports. 485 * Width is specified in bytes, e.g. for a channel supporting 486 * a width of 4 the mask should have BIT(4) set. 487 * @dst_addr_widths: bit mask of dst addr widths the channel supports 488 * @directions: bit mask of slave directions the channel supports. 489 * Since the enum dma_transfer_direction is not defined as bit flag for 490 * each type, the dma controller should set BIT(<TYPE>) and same 491 * should be checked by controller as well 492 * @min_burst: min burst capability per-transfer 493 * @max_burst: max burst capability per-transfer 494 * @max_sg_burst: max number of SG list entries executed in a single burst 495 * DMA tansaction with no software intervention for reinitialization. 496 * Zero value means unlimited number of entries. 497 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 498 * for resume later) 499 * @cmd_resume: true, if resume is supported 500 * @cmd_terminate: true, if terminate cmd is supported 501 * @residue_granularity: granularity of the reported transfer residue 502 * @descriptor_reuse: if a descriptor can be reused by client and 503 * resubmitted multiple times 504 */ 505struct dma_slave_caps { 506 u32 src_addr_widths; 507 u32 dst_addr_widths; 508 u32 directions; 509 u32 min_burst; 510 u32 max_burst; 511 u32 max_sg_burst; 512 bool cmd_pause; 513 bool cmd_resume; 514 bool cmd_terminate; 515 enum dma_residue_granularity residue_granularity; 516 bool descriptor_reuse; 517}; 518 519static inline const char *dma_chan_name(struct dma_chan *chan) 520{ 521 return dev_name(&chan->dev->device); 522} 523 524void dma_chan_cleanup(struct kref *kref); 525 526/** 527 * typedef dma_filter_fn - callback filter for dma_request_channel 528 * @chan: channel to be reviewed 529 * @filter_param: opaque parameter passed through dma_request_channel 530 * 531 * When this optional parameter is specified in a call to dma_request_channel a 532 * suitable channel is passed to this routine for further dispositioning before 533 * being returned. Where 'suitable' indicates a non-busy channel that 534 * satisfies the given capability mask. It returns 'true' to indicate that the 535 * channel is suitable. 536 */ 537typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 538 539typedef void (*dma_async_tx_callback)(void *dma_async_param); 540 541enum dmaengine_tx_result { 542 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 543 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 544 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 545 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 546}; 547 548struct dmaengine_result { 549 enum dmaengine_tx_result result; 550 u32 residue; 551}; 552 553typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 554 const struct dmaengine_result *result); 555 556struct dmaengine_unmap_data { 557#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 558 u16 map_cnt; 559#else 560 u8 map_cnt; 561#endif 562 u8 to_cnt; 563 u8 from_cnt; 564 u8 bidi_cnt; 565 struct device *dev; 566 struct kref kref; 567 size_t len; 568 dma_addr_t addr[]; 569}; 570 571struct dma_async_tx_descriptor; 572 573struct dma_descriptor_metadata_ops { 574 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 575 size_t len); 576 577 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 578 size_t *payload_len, size_t *max_len); 579 int (*set_len)(struct dma_async_tx_descriptor *desc, 580 size_t payload_len); 581}; 582 583/** 584 * struct dma_async_tx_descriptor - async transaction descriptor 585 * ---dma generic offload fields--- 586 * @cookie: tracking cookie for this transaction, set to -EBUSY if 587 * this tx is sitting on a dependency list 588 * @flags: flags to augment operation preparation, control completion, and 589 * communicate status 590 * @phys: physical address of the descriptor 591 * @chan: target channel for this operation 592 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 593 * descriptor pending. To be pushed on .issue_pending() call 594 * @callback: routine to call after this operation is complete 595 * @callback_param: general parameter to pass to the callback routine 596 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 597 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 598 * DESC_METADATA_NONE 599 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 600 * DMA driver if metadata mode is supported with the descriptor 601 * ---async_tx api specific fields--- 602 * @next: at completion submit this descriptor 603 * @parent: pointer to the next level up in the dependency chain 604 * @lock: protect the parent and next pointers 605 */ 606struct dma_async_tx_descriptor { 607 dma_cookie_t cookie; 608 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 609 dma_addr_t phys; 610 struct dma_chan *chan; 611 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 612 int (*desc_free)(struct dma_async_tx_descriptor *tx); 613 dma_async_tx_callback callback; 614 dma_async_tx_callback_result callback_result; 615 void *callback_param; 616 struct dmaengine_unmap_data *unmap; 617 enum dma_desc_metadata_mode desc_metadata_mode; 618 struct dma_descriptor_metadata_ops *metadata_ops; 619#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 620 struct dma_async_tx_descriptor *next; 621 struct dma_async_tx_descriptor *parent; 622 spinlock_t lock; 623#endif 624}; 625 626#ifdef CONFIG_DMA_ENGINE 627static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 628 struct dmaengine_unmap_data *unmap) 629{ 630 kref_get(&unmap->kref); 631 tx->unmap = unmap; 632} 633 634struct dmaengine_unmap_data * 635dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 636void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 637#else 638static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 639 struct dmaengine_unmap_data *unmap) 640{ 641} 642static inline struct dmaengine_unmap_data * 643dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 644{ 645 return NULL; 646} 647static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 648{ 649} 650#endif 651 652static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 653{ 654 if (!tx->unmap) 655 return; 656 657 dmaengine_unmap_put(tx->unmap); 658 tx->unmap = NULL; 659} 660 661#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 662static inline void txd_lock(struct dma_async_tx_descriptor *txd) 663{ 664} 665static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 666{ 667} 668static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 669{ 670 BUG(); 671} 672static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 673{ 674} 675static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 676{ 677} 678static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 679{ 680 return NULL; 681} 682static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 683{ 684 return NULL; 685} 686 687#else 688static inline void txd_lock(struct dma_async_tx_descriptor *txd) 689{ 690 spin_lock_bh(&txd->lock); 691} 692static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 693{ 694 spin_unlock_bh(&txd->lock); 695} 696static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 697{ 698 txd->next = next; 699 next->parent = txd; 700} 701static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 702{ 703 txd->parent = NULL; 704} 705static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 706{ 707 txd->next = NULL; 708} 709static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 710{ 711 return txd->parent; 712} 713static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 714{ 715 return txd->next; 716} 717#endif 718 719/** 720 * struct dma_tx_state - filled in to report the status of 721 * a transfer. 722 * @last: last completed DMA cookie 723 * @used: last issued DMA cookie (i.e. the one in progress) 724 * @residue: the remaining number of bytes left to transmit 725 * on the selected transfer for states DMA_IN_PROGRESS and 726 * DMA_PAUSED if this is implemented in the driver, else 0 727 * @in_flight_bytes: amount of data in bytes cached by the DMA. 728 */ 729struct dma_tx_state { 730 dma_cookie_t last; 731 dma_cookie_t used; 732 u32 residue; 733 u32 in_flight_bytes; 734}; 735 736/** 737 * enum dmaengine_alignment - defines alignment of the DMA async tx 738 * buffers 739 */ 740enum dmaengine_alignment { 741 DMAENGINE_ALIGN_1_BYTE = 0, 742 DMAENGINE_ALIGN_2_BYTES = 1, 743 DMAENGINE_ALIGN_4_BYTES = 2, 744 DMAENGINE_ALIGN_8_BYTES = 3, 745 DMAENGINE_ALIGN_16_BYTES = 4, 746 DMAENGINE_ALIGN_32_BYTES = 5, 747 DMAENGINE_ALIGN_64_BYTES = 6, 748 DMAENGINE_ALIGN_128_BYTES = 7, 749 DMAENGINE_ALIGN_256_BYTES = 8, 750}; 751 752/** 753 * struct dma_slave_map - associates slave device and it's slave channel with 754 * parameter to be used by a filter function 755 * @devname: name of the device 756 * @slave: slave channel name 757 * @param: opaque parameter to pass to struct dma_filter.fn 758 */ 759struct dma_slave_map { 760 const char *devname; 761 const char *slave; 762 void *param; 763}; 764 765/** 766 * struct dma_filter - information for slave device/channel to filter_fn/param 767 * mapping 768 * @fn: filter function callback 769 * @mapcnt: number of slave device/channel in the map 770 * @map: array of channel to filter mapping data 771 */ 772struct dma_filter { 773 dma_filter_fn fn; 774 int mapcnt; 775 const struct dma_slave_map *map; 776}; 777 778/** 779 * struct dma_device - info on the entity supplying DMA services 780 * @chancnt: how many DMA channels are supported 781 * @privatecnt: how many DMA channels are requested by dma_request_channel 782 * @channels: the list of struct dma_chan 783 * @global_node: list_head for global dma_device_list 784 * @filter: information for device/slave to filter function/param mapping 785 * @cap_mask: one or more dma_capability flags 786 * @desc_metadata_modes: supported metadata modes by the DMA device 787 * @max_xor: maximum number of xor sources, 0 if no capability 788 * @max_pq: maximum number of PQ sources and PQ-continue capability 789 * @copy_align: alignment shift for memcpy operations 790 * @xor_align: alignment shift for xor operations 791 * @pq_align: alignment shift for pq operations 792 * @fill_align: alignment shift for memset operations 793 * @dev_id: unique device ID 794 * @dev: struct device reference for dma mapping api 795 * @owner: owner module (automatically set based on the provided dev) 796 * @src_addr_widths: bit mask of src addr widths the device supports 797 * Width is specified in bytes, e.g. for a device supporting 798 * a width of 4 the mask should have BIT(4) set. 799 * @dst_addr_widths: bit mask of dst addr widths the device supports 800 * @directions: bit mask of slave directions the device supports. 801 * Since the enum dma_transfer_direction is not defined as bit flag for 802 * each type, the dma controller should set BIT(<TYPE>) and same 803 * should be checked by controller as well 804 * @min_burst: min burst capability per-transfer 805 * @max_burst: max burst capability per-transfer 806 * @max_sg_burst: max number of SG list entries executed in a single burst 807 * DMA tansaction with no software intervention for reinitialization. 808 * Zero value means unlimited number of entries. 809 * @residue_granularity: granularity of the transfer residue reported 810 * by tx_status 811 * @device_alloc_chan_resources: allocate resources and return the 812 * number of allocated descriptors 813 * @device_router_config: optional callback for DMA router configuration 814 * @device_free_chan_resources: release DMA channel's resources 815 * @device_prep_dma_memcpy: prepares a memcpy operation 816 * @device_prep_dma_xor: prepares a xor operation 817 * @device_prep_dma_xor_val: prepares a xor validation operation 818 * @device_prep_dma_pq: prepares a pq operation 819 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 820 * @device_prep_dma_memset: prepares a memset operation 821 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 822 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 823 * @device_prep_slave_sg: prepares a slave dma operation 824 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 825 * The function takes a buffer of size buf_len. The callback function will 826 * be called after period_len bytes have been transferred. 827 * @device_prep_interleaved_dma: Transfer expression in a generic way. 828 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 829 * @device_caps: May be used to override the generic DMA slave capabilities 830 * with per-channel specific ones 831 * @device_config: Pushes a new configuration to a channel, return 0 or an error 832 * code 833 * @device_pause: Pauses any transfer happening on a channel. Returns 834 * 0 or an error code 835 * @device_resume: Resumes any transfer on a channel previously 836 * paused. Returns 0 or an error code 837 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 838 * or an error code 839 * @device_synchronize: Synchronizes the termination of a transfers to the 840 * current context. 841 * @device_tx_status: poll for transaction completion, the optional 842 * txstate parameter can be supplied with a pointer to get a 843 * struct with auxiliary transfer status information, otherwise the call 844 * will just return a simple status code 845 * @device_issue_pending: push pending transactions to hardware 846 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 847 * @device_release: called sometime atfer dma_async_device_unregister() is 848 * called and there are no further references to this structure. This 849 * must be implemented to free resources however many existing drivers 850 * do not and are therefore not safe to unbind while in use. 851 * @dbg_summary_show: optional routine to show contents in debugfs; default code 852 * will be used when this is omitted, but custom code can show extra, 853 * controller specific information. 854 */ 855struct dma_device { 856 struct kref ref; 857 unsigned int chancnt; 858 unsigned int privatecnt; 859 struct list_head channels; 860 struct list_head global_node; 861 struct dma_filter filter; 862 dma_cap_mask_t cap_mask; 863 enum dma_desc_metadata_mode desc_metadata_modes; 864 unsigned short max_xor; 865 unsigned short max_pq; 866 enum dmaengine_alignment copy_align; 867 enum dmaengine_alignment xor_align; 868 enum dmaengine_alignment pq_align; 869 enum dmaengine_alignment fill_align; 870 #define DMA_HAS_PQ_CONTINUE (1 << 15) 871 872 int dev_id; 873 struct device *dev; 874 struct module *owner; 875 struct ida chan_ida; 876 struct mutex chan_mutex; /* to protect chan_ida */ 877 878 u32 src_addr_widths; 879 u32 dst_addr_widths; 880 u32 directions; 881 u32 min_burst; 882 u32 max_burst; 883 u32 max_sg_burst; 884 bool descriptor_reuse; 885 enum dma_residue_granularity residue_granularity; 886 887 int (*device_alloc_chan_resources)(struct dma_chan *chan); 888 int (*device_router_config)(struct dma_chan *chan); 889 void (*device_free_chan_resources)(struct dma_chan *chan); 890 891 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 892 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 893 size_t len, unsigned long flags); 894 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 895 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 896 unsigned int src_cnt, size_t len, unsigned long flags); 897 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 898 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 899 size_t len, enum sum_check_flags *result, unsigned long flags); 900 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 901 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 902 unsigned int src_cnt, const unsigned char *scf, 903 size_t len, unsigned long flags); 904 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 905 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 906 unsigned int src_cnt, const unsigned char *scf, size_t len, 907 enum sum_check_flags *pqres, unsigned long flags); 908 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 909 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 910 unsigned long flags); 911 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 912 struct dma_chan *chan, struct scatterlist *sg, 913 unsigned int nents, int value, unsigned long flags); 914 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 915 struct dma_chan *chan, unsigned long flags); 916 917 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 918 struct dma_chan *chan, struct scatterlist *sgl, 919 unsigned int sg_len, enum dma_transfer_direction direction, 920 unsigned long flags, void *context); 921 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 922 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 923 size_t period_len, enum dma_transfer_direction direction, 924 unsigned long flags); 925 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 926 struct dma_chan *chan, struct dma_interleaved_template *xt, 927 unsigned long flags); 928 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 929 struct dma_chan *chan, dma_addr_t dst, u64 data, 930 unsigned long flags); 931 932 void (*device_caps)(struct dma_chan *chan, 933 struct dma_slave_caps *caps); 934 int (*device_config)(struct dma_chan *chan, 935 struct dma_slave_config *config); 936 int (*device_pause)(struct dma_chan *chan); 937 int (*device_resume)(struct dma_chan *chan); 938 int (*device_terminate_all)(struct dma_chan *chan); 939 void (*device_synchronize)(struct dma_chan *chan); 940 941 enum dma_status (*device_tx_status)(struct dma_chan *chan, 942 dma_cookie_t cookie, 943 struct dma_tx_state *txstate); 944 void (*device_issue_pending)(struct dma_chan *chan); 945 void (*device_release)(struct dma_device *dev); 946 /* debugfs support */ 947#ifdef CONFIG_DEBUG_FS 948 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 949 struct dentry *dbg_dev_root; 950#endif 951}; 952 953static inline int dmaengine_slave_config(struct dma_chan *chan, 954 struct dma_slave_config *config) 955{ 956 if (chan->device->device_config) 957 return chan->device->device_config(chan, config); 958 959 return -ENOSYS; 960} 961 962static inline bool is_slave_direction(enum dma_transfer_direction direction) 963{ 964 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 965} 966 967static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 968 struct dma_chan *chan, dma_addr_t buf, size_t len, 969 enum dma_transfer_direction dir, unsigned long flags) 970{ 971 struct scatterlist sg; 972 sg_init_table(&sg, 1); 973 sg_dma_address(&sg) = buf; 974 sg_dma_len(&sg) = len; 975 976 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 977 return NULL; 978 979 return chan->device->device_prep_slave_sg(chan, &sg, 1, 980 dir, flags, NULL); 981} 982 983static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 984 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 985 enum dma_transfer_direction dir, unsigned long flags) 986{ 987 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 988 return NULL; 989 990 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 991 dir, flags, NULL); 992} 993 994#ifdef CONFIG_RAPIDIO_DMA_ENGINE 995struct rio_dma_ext; 996static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 997 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 998 enum dma_transfer_direction dir, unsigned long flags, 999 struct rio_dma_ext *rio_ext) 1000{ 1001 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 1002 return NULL; 1003 1004 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1005 dir, flags, rio_ext); 1006} 1007#endif 1008 1009static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 1010 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1011 size_t period_len, enum dma_transfer_direction dir, 1012 unsigned long flags) 1013{ 1014 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1015 return NULL; 1016 1017 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1018 period_len, dir, flags); 1019} 1020 1021static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1022 struct dma_chan *chan, struct dma_interleaved_template *xt, 1023 unsigned long flags) 1024{ 1025 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1026 return NULL; 1027 if (flags & DMA_PREP_REPEAT && 1028 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1029 return NULL; 1030 1031 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1032} 1033 1034static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1035 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1036 unsigned long flags) 1037{ 1038 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1039 return NULL; 1040 1041 return chan->device->device_prep_dma_memset(chan, dest, value, 1042 len, flags); 1043} 1044 1045static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1046 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1047 size_t len, unsigned long flags) 1048{ 1049 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1050 return NULL; 1051 1052 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1053 len, flags); 1054} 1055 1056static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1057 enum dma_desc_metadata_mode mode) 1058{ 1059 if (!chan) 1060 return false; 1061 1062 return !!(chan->device->desc_metadata_modes & mode); 1063} 1064 1065#ifdef CONFIG_DMA_ENGINE 1066int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1067 void *data, size_t len); 1068void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1069 size_t *payload_len, size_t *max_len); 1070int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1071 size_t payload_len); 1072#else /* CONFIG_DMA_ENGINE */ 1073static inline int dmaengine_desc_attach_metadata( 1074 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1075{ 1076 return -EINVAL; 1077} 1078static inline void *dmaengine_desc_get_metadata_ptr( 1079 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1080 size_t *max_len) 1081{ 1082 return NULL; 1083} 1084static inline int dmaengine_desc_set_metadata_len( 1085 struct dma_async_tx_descriptor *desc, size_t payload_len) 1086{ 1087 return -EINVAL; 1088} 1089#endif /* CONFIG_DMA_ENGINE */ 1090 1091/** 1092 * dmaengine_terminate_all() - Terminate all active DMA transfers 1093 * @chan: The channel for which to terminate the transfers 1094 * 1095 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1096 * dmaengine_terminate_async() instead. 1097 */ 1098static inline int dmaengine_terminate_all(struct dma_chan *chan) 1099{ 1100 if (chan->device->device_terminate_all) 1101 return chan->device->device_terminate_all(chan); 1102 1103 return -ENOSYS; 1104} 1105 1106/** 1107 * dmaengine_terminate_async() - Terminate all active DMA transfers 1108 * @chan: The channel for which to terminate the transfers 1109 * 1110 * Calling this function will terminate all active and pending descriptors 1111 * that have previously been submitted to the channel. It is not guaranteed 1112 * though that the transfer for the active descriptor has stopped when the 1113 * function returns. Furthermore it is possible the complete callback of a 1114 * submitted transfer is still running when this function returns. 1115 * 1116 * dmaengine_synchronize() needs to be called before it is safe to free 1117 * any memory that is accessed by previously submitted descriptors or before 1118 * freeing any resources accessed from within the completion callback of any 1119 * previously submitted descriptors. 1120 * 1121 * This function can be called from atomic context as well as from within a 1122 * complete callback of a descriptor submitted on the same channel. 1123 * 1124 * If none of the two conditions above apply consider using 1125 * dmaengine_terminate_sync() instead. 1126 */ 1127static inline int dmaengine_terminate_async(struct dma_chan *chan) 1128{ 1129 if (chan->device->device_terminate_all) 1130 return chan->device->device_terminate_all(chan); 1131 1132 return -EINVAL; 1133} 1134 1135/** 1136 * dmaengine_synchronize() - Synchronize DMA channel termination 1137 * @chan: The channel to synchronize 1138 * 1139 * Synchronizes to the DMA channel termination to the current context. When this 1140 * function returns it is guaranteed that all transfers for previously issued 1141 * descriptors have stopped and it is safe to free the memory associated 1142 * with them. Furthermore it is guaranteed that all complete callback functions 1143 * for a previously submitted descriptor have finished running and it is safe to 1144 * free resources accessed from within the complete callbacks. 1145 * 1146 * The behavior of this function is undefined if dma_async_issue_pending() has 1147 * been called between dmaengine_terminate_async() and this function. 1148 * 1149 * This function must only be called from non-atomic context and must not be 1150 * called from within a complete callback of a descriptor submitted on the same 1151 * channel. 1152 */ 1153static inline void dmaengine_synchronize(struct dma_chan *chan) 1154{ 1155 might_sleep(); 1156 1157 if (chan->device->device_synchronize) 1158 chan->device->device_synchronize(chan); 1159} 1160 1161/** 1162 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1163 * @chan: The channel for which to terminate the transfers 1164 * 1165 * Calling this function will terminate all active and pending transfers 1166 * that have previously been submitted to the channel. It is similar to 1167 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1168 * stopped and that all complete callbacks have finished running when the 1169 * function returns. 1170 * 1171 * This function must only be called from non-atomic context and must not be 1172 * called from within a complete callback of a descriptor submitted on the same 1173 * channel. 1174 */ 1175static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1176{ 1177 int ret; 1178 1179 ret = dmaengine_terminate_async(chan); 1180 if (ret) 1181 return ret; 1182 1183 dmaengine_synchronize(chan); 1184 1185 return 0; 1186} 1187 1188static inline int dmaengine_pause(struct dma_chan *chan) 1189{ 1190 if (chan->device->device_pause) 1191 return chan->device->device_pause(chan); 1192 1193 return -ENOSYS; 1194} 1195 1196static inline int dmaengine_resume(struct dma_chan *chan) 1197{ 1198 if (chan->device->device_resume) 1199 return chan->device->device_resume(chan); 1200 1201 return -ENOSYS; 1202} 1203 1204static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1205 dma_cookie_t cookie, struct dma_tx_state *state) 1206{ 1207 return chan->device->device_tx_status(chan, cookie, state); 1208} 1209 1210static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1211{ 1212 return desc->tx_submit(desc); 1213} 1214 1215static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1216 size_t off1, size_t off2, size_t len) 1217{ 1218 return !(((1 << align) - 1) & (off1 | off2 | len)); 1219} 1220 1221static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1222 size_t off2, size_t len) 1223{ 1224 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1225} 1226 1227static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1228 size_t off2, size_t len) 1229{ 1230 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1231} 1232 1233static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1234 size_t off2, size_t len) 1235{ 1236 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1237} 1238 1239static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1240 size_t off2, size_t len) 1241{ 1242 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1243} 1244 1245static inline void 1246dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1247{ 1248 dma->max_pq = maxpq; 1249 if (has_pq_continue) 1250 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1251} 1252 1253static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1254{ 1255 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1256} 1257 1258static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1259{ 1260 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1261 1262 return (flags & mask) == mask; 1263} 1264 1265static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1266{ 1267 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1268} 1269 1270static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1271{ 1272 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1273} 1274 1275/* dma_maxpq - reduce maxpq in the face of continued operations 1276 * @dma - dma device with PQ capability 1277 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1278 * 1279 * When an engine does not support native continuation we need 3 extra 1280 * source slots to reuse P and Q with the following coefficients: 1281 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1282 * 2/ {01} * Q : use Q to continue Q' calculation 1283 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1284 * 1285 * In the case where P is disabled we only need 1 extra source: 1286 * 1/ {01} * Q : use Q to continue Q' calculation 1287 */ 1288static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1289{ 1290 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1291 return dma_dev_to_maxpq(dma); 1292 if (dmaf_p_disabled_continue(flags)) 1293 return dma_dev_to_maxpq(dma) - 1; 1294 if (dmaf_continue(flags)) 1295 return dma_dev_to_maxpq(dma) - 3; 1296 BUG(); 1297} 1298 1299static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1300 size_t dir_icg) 1301{ 1302 if (inc) { 1303 if (dir_icg) 1304 return dir_icg; 1305 if (sgl) 1306 return icg; 1307 } 1308 1309 return 0; 1310} 1311 1312static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1313 struct data_chunk *chunk) 1314{ 1315 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1316 chunk->icg, chunk->dst_icg); 1317} 1318 1319static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1320 struct data_chunk *chunk) 1321{ 1322 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1323 chunk->icg, chunk->src_icg); 1324} 1325 1326/* --- public DMA engine API --- */ 1327 1328#ifdef CONFIG_DMA_ENGINE 1329void dmaengine_get(void); 1330void dmaengine_put(void); 1331#else 1332static inline void dmaengine_get(void) 1333{ 1334} 1335static inline void dmaengine_put(void) 1336{ 1337} 1338#endif 1339 1340#ifdef CONFIG_ASYNC_TX_DMA 1341#define async_dmaengine_get() dmaengine_get() 1342#define async_dmaengine_put() dmaengine_put() 1343#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1344#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1345#else 1346#define async_dma_find_channel(type) dma_find_channel(type) 1347#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1348#else 1349static inline void async_dmaengine_get(void) 1350{ 1351} 1352static inline void async_dmaengine_put(void) 1353{ 1354} 1355static inline struct dma_chan * 1356async_dma_find_channel(enum dma_transaction_type type) 1357{ 1358 return NULL; 1359} 1360#endif /* CONFIG_ASYNC_TX_DMA */ 1361void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1362 struct dma_chan *chan); 1363 1364static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1365{ 1366 tx->flags |= DMA_CTRL_ACK; 1367} 1368 1369static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1370{ 1371 tx->flags &= ~DMA_CTRL_ACK; 1372} 1373 1374static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1375{ 1376 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1377} 1378 1379#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1380static inline void 1381__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1382{ 1383 set_bit(tx_type, dstp->bits); 1384} 1385 1386#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1387static inline void 1388__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1389{ 1390 clear_bit(tx_type, dstp->bits); 1391} 1392 1393#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1394static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1395{ 1396 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1397} 1398 1399#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1400static inline int 1401__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1402{ 1403 return test_bit(tx_type, srcp->bits); 1404} 1405 1406#define for_each_dma_cap_mask(cap, mask) \ 1407 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1408 1409/** 1410 * dma_async_issue_pending - flush pending transactions to HW 1411 * @chan: target DMA channel 1412 * 1413 * This allows drivers to push copies to HW in batches, 1414 * reducing MMIO writes where possible. 1415 */ 1416static inline void dma_async_issue_pending(struct dma_chan *chan) 1417{ 1418 chan->device->device_issue_pending(chan); 1419} 1420 1421/** 1422 * dma_async_is_tx_complete - poll for transaction completion 1423 * @chan: DMA channel 1424 * @cookie: transaction identifier to check status of 1425 * @last: returns last completed cookie, can be NULL 1426 * @used: returns last issued cookie, can be NULL 1427 * 1428 * If @last and @used are passed in, upon return they reflect the driver 1429 * internal state and can be used with dma_async_is_complete() to check 1430 * the status of multiple cookies without re-checking hardware state. 1431 */ 1432static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1433 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1434{ 1435 struct dma_tx_state state; 1436 enum dma_status status; 1437 1438 status = chan->device->device_tx_status(chan, cookie, &state); 1439 if (last) 1440 *last = state.last; 1441 if (used) 1442 *used = state.used; 1443 return status; 1444} 1445 1446/** 1447 * dma_async_is_complete - test a cookie against chan state 1448 * @cookie: transaction identifier to test status of 1449 * @last_complete: last know completed transaction 1450 * @last_used: last cookie value handed out 1451 * 1452 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1453 * the test logic is separated for lightweight testing of multiple cookies 1454 */ 1455static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1456 dma_cookie_t last_complete, dma_cookie_t last_used) 1457{ 1458 if (last_complete <= last_used) { 1459 if ((cookie <= last_complete) || (cookie > last_used)) 1460 return DMA_COMPLETE; 1461 } else { 1462 if ((cookie <= last_complete) && (cookie > last_used)) 1463 return DMA_COMPLETE; 1464 } 1465 return DMA_IN_PROGRESS; 1466} 1467 1468static inline void 1469dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1470{ 1471 if (!st) 1472 return; 1473 1474 st->last = last; 1475 st->used = used; 1476 st->residue = residue; 1477} 1478 1479#ifdef CONFIG_DMA_ENGINE 1480struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1481enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1482enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1483void dma_issue_pending_all(void); 1484struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1485 dma_filter_fn fn, void *fn_param, 1486 struct device_node *np); 1487 1488struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1489struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1490 1491void dma_release_channel(struct dma_chan *chan); 1492int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1493#else 1494static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1495{ 1496 return NULL; 1497} 1498static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1499{ 1500 return DMA_COMPLETE; 1501} 1502static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1503{ 1504 return DMA_COMPLETE; 1505} 1506static inline void dma_issue_pending_all(void) 1507{ 1508} 1509static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1510 dma_filter_fn fn, 1511 void *fn_param, 1512 struct device_node *np) 1513{ 1514 return NULL; 1515} 1516static inline struct dma_chan *dma_request_chan(struct device *dev, 1517 const char *name) 1518{ 1519 return ERR_PTR(-ENODEV); 1520} 1521static inline struct dma_chan *dma_request_chan_by_mask( 1522 const dma_cap_mask_t *mask) 1523{ 1524 return ERR_PTR(-ENODEV); 1525} 1526static inline void dma_release_channel(struct dma_chan *chan) 1527{ 1528} 1529static inline int dma_get_slave_caps(struct dma_chan *chan, 1530 struct dma_slave_caps *caps) 1531{ 1532 return -ENXIO; 1533} 1534#endif 1535 1536static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1537{ 1538 struct dma_slave_caps caps; 1539 int ret; 1540 1541 ret = dma_get_slave_caps(tx->chan, &caps); 1542 if (ret) 1543 return ret; 1544 1545 if (!caps.descriptor_reuse) 1546 return -EPERM; 1547 1548 tx->flags |= DMA_CTRL_REUSE; 1549 return 0; 1550} 1551 1552static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1553{ 1554 tx->flags &= ~DMA_CTRL_REUSE; 1555} 1556 1557static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1558{ 1559 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1560} 1561 1562static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1563{ 1564 /* this is supported for reusable desc, so check that */ 1565 if (!dmaengine_desc_test_reuse(desc)) 1566 return -EPERM; 1567 1568 return desc->desc_free(desc); 1569} 1570 1571/* --- DMA device --- */ 1572 1573int dma_async_device_register(struct dma_device *device); 1574int dmaenginem_async_device_register(struct dma_device *device); 1575void dma_async_device_unregister(struct dma_device *device); 1576int dma_async_device_channel_register(struct dma_device *device, 1577 struct dma_chan *chan); 1578void dma_async_device_channel_unregister(struct dma_device *device, 1579 struct dma_chan *chan); 1580void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1581#define dma_request_channel(mask, x, y) \ 1582 __dma_request_channel(&(mask), x, y, NULL) 1583 1584/* Deprecated, please use dma_request_chan() directly */ 1585static inline struct dma_chan * __deprecated 1586dma_request_slave_channel(struct device *dev, const char *name) 1587{ 1588 struct dma_chan *ch = dma_request_chan(dev, name); 1589 1590 return IS_ERR(ch) ? NULL : ch; 1591} 1592 1593static inline struct dma_chan 1594*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1595 dma_filter_fn fn, void *fn_param, 1596 struct device *dev, const char *name) 1597{ 1598 struct dma_chan *chan; 1599 1600 chan = dma_request_slave_channel(dev, name); 1601 if (chan) 1602 return chan; 1603 1604 if (!fn || !fn_param) 1605 return NULL; 1606 1607 return __dma_request_channel(&mask, fn, fn_param, NULL); 1608} 1609 1610static inline char * 1611dmaengine_get_direction_text(enum dma_transfer_direction dir) 1612{ 1613 switch (dir) { 1614 case DMA_DEV_TO_MEM: 1615 return "DEV_TO_MEM"; 1616 case DMA_MEM_TO_DEV: 1617 return "MEM_TO_DEV"; 1618 case DMA_MEM_TO_MEM: 1619 return "MEM_TO_MEM"; 1620 case DMA_DEV_TO_DEV: 1621 return "DEV_TO_DEV"; 1622 default: 1623 return "invalid"; 1624 } 1625} 1626 1627static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) 1628{ 1629 if (chan->dev->chan_dma_dev) 1630 return &chan->dev->device; 1631 1632 return chan->device->dev; 1633} 1634 1635#endif /* DMAENGINE_H */