at v5.15 17 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright 2019 Google LLC 4 */ 5 6/** 7 * DOC: The Keyslot Manager 8 * 9 * Many devices with inline encryption support have a limited number of "slots" 10 * into which encryption contexts may be programmed, and requests can be tagged 11 * with a slot number to specify the key to use for en/decryption. 12 * 13 * As the number of slots is limited, and programming keys is expensive on 14 * many inline encryption hardware, we don't want to program the same key into 15 * multiple slots - if multiple requests are using the same key, we want to 16 * program just one slot with that key and use that slot for all requests. 17 * 18 * The keyslot manager manages these keyslots appropriately, and also acts as 19 * an abstraction between the inline encryption hardware and the upper layers. 20 * 21 * Lower layer devices will set up a keyslot manager in their request queue 22 * and tell it how to perform device specific operations like programming/ 23 * evicting keys from keyslots. 24 * 25 * Upper layers will call blk_ksm_get_slot_for_key() to program a 26 * key into some slot in the inline encryption hardware. 27 */ 28 29#define pr_fmt(fmt) "blk-crypto: " fmt 30 31#include <linux/keyslot-manager.h> 32#include <linux/device.h> 33#include <linux/atomic.h> 34#include <linux/mutex.h> 35#include <linux/pm_runtime.h> 36#include <linux/wait.h> 37#include <linux/blkdev.h> 38 39struct blk_ksm_keyslot { 40 atomic_t slot_refs; 41 struct list_head idle_slot_node; 42 struct hlist_node hash_node; 43 const struct blk_crypto_key *key; 44 struct blk_keyslot_manager *ksm; 45}; 46 47static inline void blk_ksm_hw_enter(struct blk_keyslot_manager *ksm) 48{ 49 /* 50 * Calling into the driver requires ksm->lock held and the device 51 * resumed. But we must resume the device first, since that can acquire 52 * and release ksm->lock via blk_ksm_reprogram_all_keys(). 53 */ 54 if (ksm->dev) 55 pm_runtime_get_sync(ksm->dev); 56 down_write(&ksm->lock); 57} 58 59static inline void blk_ksm_hw_exit(struct blk_keyslot_manager *ksm) 60{ 61 up_write(&ksm->lock); 62 if (ksm->dev) 63 pm_runtime_put_sync(ksm->dev); 64} 65 66static inline bool blk_ksm_is_passthrough(struct blk_keyslot_manager *ksm) 67{ 68 return ksm->num_slots == 0; 69} 70 71/** 72 * blk_ksm_init() - Initialize a keyslot manager 73 * @ksm: The keyslot_manager to initialize. 74 * @num_slots: The number of key slots to manage. 75 * 76 * Allocate memory for keyslots and initialize a keyslot manager. Called by 77 * e.g. storage drivers to set up a keyslot manager in their request_queue. 78 * 79 * Return: 0 on success, or else a negative error code. 80 */ 81int blk_ksm_init(struct blk_keyslot_manager *ksm, unsigned int num_slots) 82{ 83 unsigned int slot; 84 unsigned int i; 85 unsigned int slot_hashtable_size; 86 87 memset(ksm, 0, sizeof(*ksm)); 88 89 if (num_slots == 0) 90 return -EINVAL; 91 92 ksm->slots = kvcalloc(num_slots, sizeof(ksm->slots[0]), GFP_KERNEL); 93 if (!ksm->slots) 94 return -ENOMEM; 95 96 ksm->num_slots = num_slots; 97 98 init_rwsem(&ksm->lock); 99 100 init_waitqueue_head(&ksm->idle_slots_wait_queue); 101 INIT_LIST_HEAD(&ksm->idle_slots); 102 103 for (slot = 0; slot < num_slots; slot++) { 104 ksm->slots[slot].ksm = ksm; 105 list_add_tail(&ksm->slots[slot].idle_slot_node, 106 &ksm->idle_slots); 107 } 108 109 spin_lock_init(&ksm->idle_slots_lock); 110 111 slot_hashtable_size = roundup_pow_of_two(num_slots); 112 /* 113 * hash_ptr() assumes bits != 0, so ensure the hash table has at least 2 114 * buckets. This only makes a difference when there is only 1 keyslot. 115 */ 116 if (slot_hashtable_size < 2) 117 slot_hashtable_size = 2; 118 119 ksm->log_slot_ht_size = ilog2(slot_hashtable_size); 120 ksm->slot_hashtable = kvmalloc_array(slot_hashtable_size, 121 sizeof(ksm->slot_hashtable[0]), 122 GFP_KERNEL); 123 if (!ksm->slot_hashtable) 124 goto err_destroy_ksm; 125 for (i = 0; i < slot_hashtable_size; i++) 126 INIT_HLIST_HEAD(&ksm->slot_hashtable[i]); 127 128 return 0; 129 130err_destroy_ksm: 131 blk_ksm_destroy(ksm); 132 return -ENOMEM; 133} 134EXPORT_SYMBOL_GPL(blk_ksm_init); 135 136static void blk_ksm_destroy_callback(void *ksm) 137{ 138 blk_ksm_destroy(ksm); 139} 140 141/** 142 * devm_blk_ksm_init() - Resource-managed blk_ksm_init() 143 * @dev: The device which owns the blk_keyslot_manager. 144 * @ksm: The blk_keyslot_manager to initialize. 145 * @num_slots: The number of key slots to manage. 146 * 147 * Like blk_ksm_init(), but causes blk_ksm_destroy() to be called automatically 148 * on driver detach. 149 * 150 * Return: 0 on success, or else a negative error code. 151 */ 152int devm_blk_ksm_init(struct device *dev, struct blk_keyslot_manager *ksm, 153 unsigned int num_slots) 154{ 155 int err = blk_ksm_init(ksm, num_slots); 156 157 if (err) 158 return err; 159 160 return devm_add_action_or_reset(dev, blk_ksm_destroy_callback, ksm); 161} 162EXPORT_SYMBOL_GPL(devm_blk_ksm_init); 163 164static inline struct hlist_head * 165blk_ksm_hash_bucket_for_key(struct blk_keyslot_manager *ksm, 166 const struct blk_crypto_key *key) 167{ 168 return &ksm->slot_hashtable[hash_ptr(key, ksm->log_slot_ht_size)]; 169} 170 171static void blk_ksm_remove_slot_from_lru_list(struct blk_ksm_keyslot *slot) 172{ 173 struct blk_keyslot_manager *ksm = slot->ksm; 174 unsigned long flags; 175 176 spin_lock_irqsave(&ksm->idle_slots_lock, flags); 177 list_del(&slot->idle_slot_node); 178 spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); 179} 180 181static struct blk_ksm_keyslot *blk_ksm_find_keyslot( 182 struct blk_keyslot_manager *ksm, 183 const struct blk_crypto_key *key) 184{ 185 const struct hlist_head *head = blk_ksm_hash_bucket_for_key(ksm, key); 186 struct blk_ksm_keyslot *slotp; 187 188 hlist_for_each_entry(slotp, head, hash_node) { 189 if (slotp->key == key) 190 return slotp; 191 } 192 return NULL; 193} 194 195static struct blk_ksm_keyslot *blk_ksm_find_and_grab_keyslot( 196 struct blk_keyslot_manager *ksm, 197 const struct blk_crypto_key *key) 198{ 199 struct blk_ksm_keyslot *slot; 200 201 slot = blk_ksm_find_keyslot(ksm, key); 202 if (!slot) 203 return NULL; 204 if (atomic_inc_return(&slot->slot_refs) == 1) { 205 /* Took first reference to this slot; remove it from LRU list */ 206 blk_ksm_remove_slot_from_lru_list(slot); 207 } 208 return slot; 209} 210 211unsigned int blk_ksm_get_slot_idx(struct blk_ksm_keyslot *slot) 212{ 213 return slot - slot->ksm->slots; 214} 215EXPORT_SYMBOL_GPL(blk_ksm_get_slot_idx); 216 217/** 218 * blk_ksm_get_slot_for_key() - Program a key into a keyslot. 219 * @ksm: The keyslot manager to program the key into. 220 * @key: Pointer to the key object to program, including the raw key, crypto 221 * mode, and data unit size. 222 * @slot_ptr: A pointer to return the pointer of the allocated keyslot. 223 * 224 * Get a keyslot that's been programmed with the specified key. If one already 225 * exists, return it with incremented refcount. Otherwise, wait for a keyslot 226 * to become idle and program it. 227 * 228 * Context: Process context. Takes and releases ksm->lock. 229 * Return: BLK_STS_OK on success (and keyslot is set to the pointer of the 230 * allocated keyslot), or some other blk_status_t otherwise (and 231 * keyslot is set to NULL). 232 */ 233blk_status_t blk_ksm_get_slot_for_key(struct blk_keyslot_manager *ksm, 234 const struct blk_crypto_key *key, 235 struct blk_ksm_keyslot **slot_ptr) 236{ 237 struct blk_ksm_keyslot *slot; 238 int slot_idx; 239 int err; 240 241 *slot_ptr = NULL; 242 243 if (blk_ksm_is_passthrough(ksm)) 244 return BLK_STS_OK; 245 246 down_read(&ksm->lock); 247 slot = blk_ksm_find_and_grab_keyslot(ksm, key); 248 up_read(&ksm->lock); 249 if (slot) 250 goto success; 251 252 for (;;) { 253 blk_ksm_hw_enter(ksm); 254 slot = blk_ksm_find_and_grab_keyslot(ksm, key); 255 if (slot) { 256 blk_ksm_hw_exit(ksm); 257 goto success; 258 } 259 260 /* 261 * If we're here, that means there wasn't a slot that was 262 * already programmed with the key. So try to program it. 263 */ 264 if (!list_empty(&ksm->idle_slots)) 265 break; 266 267 blk_ksm_hw_exit(ksm); 268 wait_event(ksm->idle_slots_wait_queue, 269 !list_empty(&ksm->idle_slots)); 270 } 271 272 slot = list_first_entry(&ksm->idle_slots, struct blk_ksm_keyslot, 273 idle_slot_node); 274 slot_idx = blk_ksm_get_slot_idx(slot); 275 276 err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot_idx); 277 if (err) { 278 wake_up(&ksm->idle_slots_wait_queue); 279 blk_ksm_hw_exit(ksm); 280 return errno_to_blk_status(err); 281 } 282 283 /* Move this slot to the hash list for the new key. */ 284 if (slot->key) 285 hlist_del(&slot->hash_node); 286 slot->key = key; 287 hlist_add_head(&slot->hash_node, blk_ksm_hash_bucket_for_key(ksm, key)); 288 289 atomic_set(&slot->slot_refs, 1); 290 291 blk_ksm_remove_slot_from_lru_list(slot); 292 293 blk_ksm_hw_exit(ksm); 294success: 295 *slot_ptr = slot; 296 return BLK_STS_OK; 297} 298 299/** 300 * blk_ksm_put_slot() - Release a reference to a slot 301 * @slot: The keyslot to release the reference of. 302 * 303 * Context: Any context. 304 */ 305void blk_ksm_put_slot(struct blk_ksm_keyslot *slot) 306{ 307 struct blk_keyslot_manager *ksm; 308 unsigned long flags; 309 310 if (!slot) 311 return; 312 313 ksm = slot->ksm; 314 315 if (atomic_dec_and_lock_irqsave(&slot->slot_refs, 316 &ksm->idle_slots_lock, flags)) { 317 list_add_tail(&slot->idle_slot_node, &ksm->idle_slots); 318 spin_unlock_irqrestore(&ksm->idle_slots_lock, flags); 319 wake_up(&ksm->idle_slots_wait_queue); 320 } 321} 322 323/** 324 * blk_ksm_crypto_cfg_supported() - Find out if a crypto configuration is 325 * supported by a ksm. 326 * @ksm: The keyslot manager to check 327 * @cfg: The crypto configuration to check for. 328 * 329 * Checks for crypto_mode/data unit size/dun bytes support. 330 * 331 * Return: Whether or not this ksm supports the specified crypto config. 332 */ 333bool blk_ksm_crypto_cfg_supported(struct blk_keyslot_manager *ksm, 334 const struct blk_crypto_config *cfg) 335{ 336 if (!ksm) 337 return false; 338 if (!(ksm->crypto_modes_supported[cfg->crypto_mode] & 339 cfg->data_unit_size)) 340 return false; 341 if (ksm->max_dun_bytes_supported < cfg->dun_bytes) 342 return false; 343 return true; 344} 345 346/** 347 * blk_ksm_evict_key() - Evict a key from the lower layer device. 348 * @ksm: The keyslot manager to evict from 349 * @key: The key to evict 350 * 351 * Find the keyslot that the specified key was programmed into, and evict that 352 * slot from the lower layer device. The slot must not be in use by any 353 * in-flight IO when this function is called. 354 * 355 * Context: Process context. Takes and releases ksm->lock. 356 * Return: 0 on success or if there's no keyslot with the specified key, -EBUSY 357 * if the keyslot is still in use, or another -errno value on other 358 * error. 359 */ 360int blk_ksm_evict_key(struct blk_keyslot_manager *ksm, 361 const struct blk_crypto_key *key) 362{ 363 struct blk_ksm_keyslot *slot; 364 int err = 0; 365 366 if (blk_ksm_is_passthrough(ksm)) { 367 if (ksm->ksm_ll_ops.keyslot_evict) { 368 blk_ksm_hw_enter(ksm); 369 err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, -1); 370 blk_ksm_hw_exit(ksm); 371 return err; 372 } 373 return 0; 374 } 375 376 blk_ksm_hw_enter(ksm); 377 slot = blk_ksm_find_keyslot(ksm, key); 378 if (!slot) 379 goto out_unlock; 380 381 if (WARN_ON_ONCE(atomic_read(&slot->slot_refs) != 0)) { 382 err = -EBUSY; 383 goto out_unlock; 384 } 385 err = ksm->ksm_ll_ops.keyslot_evict(ksm, key, 386 blk_ksm_get_slot_idx(slot)); 387 if (err) 388 goto out_unlock; 389 390 hlist_del(&slot->hash_node); 391 slot->key = NULL; 392 err = 0; 393out_unlock: 394 blk_ksm_hw_exit(ksm); 395 return err; 396} 397 398/** 399 * blk_ksm_reprogram_all_keys() - Re-program all keyslots. 400 * @ksm: The keyslot manager 401 * 402 * Re-program all keyslots that are supposed to have a key programmed. This is 403 * intended only for use by drivers for hardware that loses its keys on reset. 404 * 405 * Context: Process context. Takes and releases ksm->lock. 406 */ 407void blk_ksm_reprogram_all_keys(struct blk_keyslot_manager *ksm) 408{ 409 unsigned int slot; 410 411 if (blk_ksm_is_passthrough(ksm)) 412 return; 413 414 /* This is for device initialization, so don't resume the device */ 415 down_write(&ksm->lock); 416 for (slot = 0; slot < ksm->num_slots; slot++) { 417 const struct blk_crypto_key *key = ksm->slots[slot].key; 418 int err; 419 420 if (!key) 421 continue; 422 423 err = ksm->ksm_ll_ops.keyslot_program(ksm, key, slot); 424 WARN_ON(err); 425 } 426 up_write(&ksm->lock); 427} 428EXPORT_SYMBOL_GPL(blk_ksm_reprogram_all_keys); 429 430void blk_ksm_destroy(struct blk_keyslot_manager *ksm) 431{ 432 if (!ksm) 433 return; 434 kvfree(ksm->slot_hashtable); 435 kvfree_sensitive(ksm->slots, sizeof(ksm->slots[0]) * ksm->num_slots); 436 memzero_explicit(ksm, sizeof(*ksm)); 437} 438EXPORT_SYMBOL_GPL(blk_ksm_destroy); 439 440bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q) 441{ 442 if (blk_integrity_queue_supports_integrity(q)) { 443 pr_warn("Integrity and hardware inline encryption are not supported together. Disabling hardware inline encryption.\n"); 444 return false; 445 } 446 q->ksm = ksm; 447 return true; 448} 449EXPORT_SYMBOL_GPL(blk_ksm_register); 450 451void blk_ksm_unregister(struct request_queue *q) 452{ 453 q->ksm = NULL; 454} 455 456/** 457 * blk_ksm_intersect_modes() - restrict supported modes by child device 458 * @parent: The keyslot manager for parent device 459 * @child: The keyslot manager for child device, or NULL 460 * 461 * Clear any crypto mode support bits in @parent that aren't set in @child. 462 * If @child is NULL, then all parent bits are cleared. 463 * 464 * Only use this when setting up the keyslot manager for a layered device, 465 * before it's been exposed yet. 466 */ 467void blk_ksm_intersect_modes(struct blk_keyslot_manager *parent, 468 const struct blk_keyslot_manager *child) 469{ 470 if (child) { 471 unsigned int i; 472 473 parent->max_dun_bytes_supported = 474 min(parent->max_dun_bytes_supported, 475 child->max_dun_bytes_supported); 476 for (i = 0; i < ARRAY_SIZE(child->crypto_modes_supported); 477 i++) { 478 parent->crypto_modes_supported[i] &= 479 child->crypto_modes_supported[i]; 480 } 481 } else { 482 parent->max_dun_bytes_supported = 0; 483 memset(parent->crypto_modes_supported, 0, 484 sizeof(parent->crypto_modes_supported)); 485 } 486} 487EXPORT_SYMBOL_GPL(blk_ksm_intersect_modes); 488 489/** 490 * blk_ksm_is_superset() - Check if a KSM supports a superset of crypto modes 491 * and DUN bytes that another KSM supports. Here, 492 * "superset" refers to the mathematical meaning of the 493 * word - i.e. if two KSMs have the *same* capabilities, 494 * they *are* considered supersets of each other. 495 * @ksm_superset: The KSM that we want to verify is a superset 496 * @ksm_subset: The KSM that we want to verify is a subset 497 * 498 * Return: True if @ksm_superset supports a superset of the crypto modes and DUN 499 * bytes that @ksm_subset supports. 500 */ 501bool blk_ksm_is_superset(struct blk_keyslot_manager *ksm_superset, 502 struct blk_keyslot_manager *ksm_subset) 503{ 504 int i; 505 506 if (!ksm_subset) 507 return true; 508 509 if (!ksm_superset) 510 return false; 511 512 for (i = 0; i < ARRAY_SIZE(ksm_superset->crypto_modes_supported); i++) { 513 if (ksm_subset->crypto_modes_supported[i] & 514 (~ksm_superset->crypto_modes_supported[i])) { 515 return false; 516 } 517 } 518 519 if (ksm_subset->max_dun_bytes_supported > 520 ksm_superset->max_dun_bytes_supported) { 521 return false; 522 } 523 524 return true; 525} 526EXPORT_SYMBOL_GPL(blk_ksm_is_superset); 527 528/** 529 * blk_ksm_update_capabilities() - Update the restrictions of a KSM to those of 530 * another KSM 531 * @target_ksm: The KSM whose restrictions to update. 532 * @reference_ksm: The KSM to whose restrictions this function will update 533 * @target_ksm's restrictions to. 534 * 535 * Blk-crypto requires that crypto capabilities that were 536 * advertised when a bio was created continue to be supported by the 537 * device until that bio is ended. This is turn means that a device cannot 538 * shrink its advertised crypto capabilities without any explicit 539 * synchronization with upper layers. So if there's no such explicit 540 * synchronization, @reference_ksm must support all the crypto capabilities that 541 * @target_ksm does 542 * (i.e. we need blk_ksm_is_superset(@reference_ksm, @target_ksm) == true). 543 * 544 * Note also that as long as the crypto capabilities are being expanded, the 545 * order of updates becoming visible is not important because it's alright 546 * for blk-crypto to see stale values - they only cause blk-crypto to 547 * believe that a crypto capability isn't supported when it actually is (which 548 * might result in blk-crypto-fallback being used if available, or the bio being 549 * failed). 550 */ 551void blk_ksm_update_capabilities(struct blk_keyslot_manager *target_ksm, 552 struct blk_keyslot_manager *reference_ksm) 553{ 554 memcpy(target_ksm->crypto_modes_supported, 555 reference_ksm->crypto_modes_supported, 556 sizeof(target_ksm->crypto_modes_supported)); 557 558 target_ksm->max_dun_bytes_supported = 559 reference_ksm->max_dun_bytes_supported; 560} 561EXPORT_SYMBOL_GPL(blk_ksm_update_capabilities); 562 563/** 564 * blk_ksm_init_passthrough() - Init a passthrough keyslot manager 565 * @ksm: The keyslot manager to init 566 * 567 * Initialize a passthrough keyslot manager. 568 * Called by e.g. storage drivers to set up a keyslot manager in their 569 * request_queue, when the storage driver wants to manage its keys by itself. 570 * This is useful for inline encryption hardware that doesn't have the concept 571 * of keyslots, and for layered devices. 572 */ 573void blk_ksm_init_passthrough(struct blk_keyslot_manager *ksm) 574{ 575 memset(ksm, 0, sizeof(*ksm)); 576 init_rwsem(&ksm->lock); 577} 578EXPORT_SYMBOL_GPL(blk_ksm_init_passthrough);