at v5.15 103 kB view raw
1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Block multiqueue core code 4 * 5 * Copyright (C) 2013-2014 Jens Axboe 6 * Copyright (C) 2013-2014 Christoph Hellwig 7 */ 8#include <linux/kernel.h> 9#include <linux/module.h> 10#include <linux/backing-dev.h> 11#include <linux/bio.h> 12#include <linux/blkdev.h> 13#include <linux/kmemleak.h> 14#include <linux/mm.h> 15#include <linux/init.h> 16#include <linux/slab.h> 17#include <linux/workqueue.h> 18#include <linux/smp.h> 19#include <linux/llist.h> 20#include <linux/list_sort.h> 21#include <linux/cpu.h> 22#include <linux/cache.h> 23#include <linux/sched/sysctl.h> 24#include <linux/sched/topology.h> 25#include <linux/sched/signal.h> 26#include <linux/delay.h> 27#include <linux/crash_dump.h> 28#include <linux/prefetch.h> 29#include <linux/blk-crypto.h> 30 31#include <trace/events/block.h> 32 33#include <linux/blk-mq.h> 34#include <linux/t10-pi.h> 35#include "blk.h" 36#include "blk-mq.h" 37#include "blk-mq-debugfs.h" 38#include "blk-mq-tag.h" 39#include "blk-pm.h" 40#include "blk-stat.h" 41#include "blk-mq-sched.h" 42#include "blk-rq-qos.h" 43 44static DEFINE_PER_CPU(struct llist_head, blk_cpu_done); 45 46static void blk_mq_poll_stats_start(struct request_queue *q); 47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb); 48 49static int blk_mq_poll_stats_bkt(const struct request *rq) 50{ 51 int ddir, sectors, bucket; 52 53 ddir = rq_data_dir(rq); 54 sectors = blk_rq_stats_sectors(rq); 55 56 bucket = ddir + 2 * ilog2(sectors); 57 58 if (bucket < 0) 59 return -1; 60 else if (bucket >= BLK_MQ_POLL_STATS_BKTS) 61 return ddir + BLK_MQ_POLL_STATS_BKTS - 2; 62 63 return bucket; 64} 65 66/* 67 * Check if any of the ctx, dispatch list or elevator 68 * have pending work in this hardware queue. 69 */ 70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx) 71{ 72 return !list_empty_careful(&hctx->dispatch) || 73 sbitmap_any_bit_set(&hctx->ctx_map) || 74 blk_mq_sched_has_work(hctx); 75} 76 77/* 78 * Mark this ctx as having pending work in this hardware queue 79 */ 80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx, 81 struct blk_mq_ctx *ctx) 82{ 83 const int bit = ctx->index_hw[hctx->type]; 84 85 if (!sbitmap_test_bit(&hctx->ctx_map, bit)) 86 sbitmap_set_bit(&hctx->ctx_map, bit); 87} 88 89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx, 90 struct blk_mq_ctx *ctx) 91{ 92 const int bit = ctx->index_hw[hctx->type]; 93 94 sbitmap_clear_bit(&hctx->ctx_map, bit); 95} 96 97struct mq_inflight { 98 struct block_device *part; 99 unsigned int inflight[2]; 100}; 101 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx, 103 struct request *rq, void *priv, 104 bool reserved) 105{ 106 struct mq_inflight *mi = priv; 107 108 if ((!mi->part->bd_partno || rq->part == mi->part) && 109 blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT) 110 mi->inflight[rq_data_dir(rq)]++; 111 112 return true; 113} 114 115unsigned int blk_mq_in_flight(struct request_queue *q, 116 struct block_device *part) 117{ 118 struct mq_inflight mi = { .part = part }; 119 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 121 122 return mi.inflight[0] + mi.inflight[1]; 123} 124 125void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part, 126 unsigned int inflight[2]) 127{ 128 struct mq_inflight mi = { .part = part }; 129 130 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi); 131 inflight[0] = mi.inflight[0]; 132 inflight[1] = mi.inflight[1]; 133} 134 135void blk_freeze_queue_start(struct request_queue *q) 136{ 137 mutex_lock(&q->mq_freeze_lock); 138 if (++q->mq_freeze_depth == 1) { 139 percpu_ref_kill(&q->q_usage_counter); 140 mutex_unlock(&q->mq_freeze_lock); 141 if (queue_is_mq(q)) 142 blk_mq_run_hw_queues(q, false); 143 } else { 144 mutex_unlock(&q->mq_freeze_lock); 145 } 146} 147EXPORT_SYMBOL_GPL(blk_freeze_queue_start); 148 149void blk_mq_freeze_queue_wait(struct request_queue *q) 150{ 151 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter)); 152} 153EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait); 154 155int blk_mq_freeze_queue_wait_timeout(struct request_queue *q, 156 unsigned long timeout) 157{ 158 return wait_event_timeout(q->mq_freeze_wq, 159 percpu_ref_is_zero(&q->q_usage_counter), 160 timeout); 161} 162EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout); 163 164/* 165 * Guarantee no request is in use, so we can change any data structure of 166 * the queue afterward. 167 */ 168void blk_freeze_queue(struct request_queue *q) 169{ 170 /* 171 * In the !blk_mq case we are only calling this to kill the 172 * q_usage_counter, otherwise this increases the freeze depth 173 * and waits for it to return to zero. For this reason there is 174 * no blk_unfreeze_queue(), and blk_freeze_queue() is not 175 * exported to drivers as the only user for unfreeze is blk_mq. 176 */ 177 blk_freeze_queue_start(q); 178 blk_mq_freeze_queue_wait(q); 179} 180 181void blk_mq_freeze_queue(struct request_queue *q) 182{ 183 /* 184 * ...just an alias to keep freeze and unfreeze actions balanced 185 * in the blk_mq_* namespace 186 */ 187 blk_freeze_queue(q); 188} 189EXPORT_SYMBOL_GPL(blk_mq_freeze_queue); 190 191void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic) 192{ 193 mutex_lock(&q->mq_freeze_lock); 194 if (force_atomic) 195 q->q_usage_counter.data->force_atomic = true; 196 q->mq_freeze_depth--; 197 WARN_ON_ONCE(q->mq_freeze_depth < 0); 198 if (!q->mq_freeze_depth) { 199 percpu_ref_resurrect(&q->q_usage_counter); 200 wake_up_all(&q->mq_freeze_wq); 201 } 202 mutex_unlock(&q->mq_freeze_lock); 203} 204 205void blk_mq_unfreeze_queue(struct request_queue *q) 206{ 207 __blk_mq_unfreeze_queue(q, false); 208} 209EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue); 210 211/* 212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the 213 * mpt3sas driver such that this function can be removed. 214 */ 215void blk_mq_quiesce_queue_nowait(struct request_queue *q) 216{ 217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q); 218} 219EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait); 220 221/** 222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished 223 * @q: request queue. 224 * 225 * Note: this function does not prevent that the struct request end_io() 226 * callback function is invoked. Once this function is returned, we make 227 * sure no dispatch can happen until the queue is unquiesced via 228 * blk_mq_unquiesce_queue(). 229 */ 230void blk_mq_quiesce_queue(struct request_queue *q) 231{ 232 struct blk_mq_hw_ctx *hctx; 233 unsigned int i; 234 bool rcu = false; 235 236 blk_mq_quiesce_queue_nowait(q); 237 238 queue_for_each_hw_ctx(q, hctx, i) { 239 if (hctx->flags & BLK_MQ_F_BLOCKING) 240 synchronize_srcu(hctx->srcu); 241 else 242 rcu = true; 243 } 244 if (rcu) 245 synchronize_rcu(); 246} 247EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue); 248 249/* 250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue() 251 * @q: request queue. 252 * 253 * This function recovers queue into the state before quiescing 254 * which is done by blk_mq_quiesce_queue. 255 */ 256void blk_mq_unquiesce_queue(struct request_queue *q) 257{ 258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q); 259 260 /* dispatch requests which are inserted during quiescing */ 261 blk_mq_run_hw_queues(q, true); 262} 263EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue); 264 265void blk_mq_wake_waiters(struct request_queue *q) 266{ 267 struct blk_mq_hw_ctx *hctx; 268 unsigned int i; 269 270 queue_for_each_hw_ctx(q, hctx, i) 271 if (blk_mq_hw_queue_mapped(hctx)) 272 blk_mq_tag_wakeup_all(hctx->tags, true); 273} 274 275/* 276 * Only need start/end time stamping if we have iostat or 277 * blk stats enabled, or using an IO scheduler. 278 */ 279static inline bool blk_mq_need_time_stamp(struct request *rq) 280{ 281 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator; 282} 283 284static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data, 285 unsigned int tag, u64 alloc_time_ns) 286{ 287 struct blk_mq_tags *tags = blk_mq_tags_from_data(data); 288 struct request *rq = tags->static_rqs[tag]; 289 290 if (data->q->elevator) { 291 rq->tag = BLK_MQ_NO_TAG; 292 rq->internal_tag = tag; 293 } else { 294 rq->tag = tag; 295 rq->internal_tag = BLK_MQ_NO_TAG; 296 } 297 298 /* csd/requeue_work/fifo_time is initialized before use */ 299 rq->q = data->q; 300 rq->mq_ctx = data->ctx; 301 rq->mq_hctx = data->hctx; 302 rq->rq_flags = 0; 303 rq->cmd_flags = data->cmd_flags; 304 if (data->flags & BLK_MQ_REQ_PM) 305 rq->rq_flags |= RQF_PM; 306 if (blk_queue_io_stat(data->q)) 307 rq->rq_flags |= RQF_IO_STAT; 308 INIT_LIST_HEAD(&rq->queuelist); 309 INIT_HLIST_NODE(&rq->hash); 310 RB_CLEAR_NODE(&rq->rb_node); 311 rq->rq_disk = NULL; 312 rq->part = NULL; 313#ifdef CONFIG_BLK_RQ_ALLOC_TIME 314 rq->alloc_time_ns = alloc_time_ns; 315#endif 316 if (blk_mq_need_time_stamp(rq)) 317 rq->start_time_ns = ktime_get_ns(); 318 else 319 rq->start_time_ns = 0; 320 rq->io_start_time_ns = 0; 321 rq->stats_sectors = 0; 322 rq->nr_phys_segments = 0; 323#if defined(CONFIG_BLK_DEV_INTEGRITY) 324 rq->nr_integrity_segments = 0; 325#endif 326 blk_crypto_rq_set_defaults(rq); 327 /* tag was already set */ 328 WRITE_ONCE(rq->deadline, 0); 329 330 rq->timeout = 0; 331 332 rq->end_io = NULL; 333 rq->end_io_data = NULL; 334 335 data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++; 336 refcount_set(&rq->ref, 1); 337 338 if (!op_is_flush(data->cmd_flags)) { 339 struct elevator_queue *e = data->q->elevator; 340 341 rq->elv.icq = NULL; 342 if (e && e->type->ops.prepare_request) { 343 if (e->type->icq_cache) 344 blk_mq_sched_assign_ioc(rq); 345 346 e->type->ops.prepare_request(rq); 347 rq->rq_flags |= RQF_ELVPRIV; 348 } 349 } 350 351 data->hctx->queued++; 352 return rq; 353} 354 355static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data) 356{ 357 struct request_queue *q = data->q; 358 struct elevator_queue *e = q->elevator; 359 u64 alloc_time_ns = 0; 360 unsigned int tag; 361 362 /* alloc_time includes depth and tag waits */ 363 if (blk_queue_rq_alloc_time(q)) 364 alloc_time_ns = ktime_get_ns(); 365 366 if (data->cmd_flags & REQ_NOWAIT) 367 data->flags |= BLK_MQ_REQ_NOWAIT; 368 369 if (e) { 370 /* 371 * Flush/passthrough requests are special and go directly to the 372 * dispatch list. Don't include reserved tags in the 373 * limiting, as it isn't useful. 374 */ 375 if (!op_is_flush(data->cmd_flags) && 376 !blk_op_is_passthrough(data->cmd_flags) && 377 e->type->ops.limit_depth && 378 !(data->flags & BLK_MQ_REQ_RESERVED)) 379 e->type->ops.limit_depth(data->cmd_flags, data); 380 } 381 382retry: 383 data->ctx = blk_mq_get_ctx(q); 384 data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx); 385 if (!e) 386 blk_mq_tag_busy(data->hctx); 387 388 /* 389 * Waiting allocations only fail because of an inactive hctx. In that 390 * case just retry the hctx assignment and tag allocation as CPU hotplug 391 * should have migrated us to an online CPU by now. 392 */ 393 tag = blk_mq_get_tag(data); 394 if (tag == BLK_MQ_NO_TAG) { 395 if (data->flags & BLK_MQ_REQ_NOWAIT) 396 return NULL; 397 398 /* 399 * Give up the CPU and sleep for a random short time to ensure 400 * that thread using a realtime scheduling class are migrated 401 * off the CPU, and thus off the hctx that is going away. 402 */ 403 msleep(3); 404 goto retry; 405 } 406 return blk_mq_rq_ctx_init(data, tag, alloc_time_ns); 407} 408 409struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op, 410 blk_mq_req_flags_t flags) 411{ 412 struct blk_mq_alloc_data data = { 413 .q = q, 414 .flags = flags, 415 .cmd_flags = op, 416 }; 417 struct request *rq; 418 int ret; 419 420 ret = blk_queue_enter(q, flags); 421 if (ret) 422 return ERR_PTR(ret); 423 424 rq = __blk_mq_alloc_request(&data); 425 if (!rq) 426 goto out_queue_exit; 427 rq->__data_len = 0; 428 rq->__sector = (sector_t) -1; 429 rq->bio = rq->biotail = NULL; 430 return rq; 431out_queue_exit: 432 blk_queue_exit(q); 433 return ERR_PTR(-EWOULDBLOCK); 434} 435EXPORT_SYMBOL(blk_mq_alloc_request); 436 437struct request *blk_mq_alloc_request_hctx(struct request_queue *q, 438 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx) 439{ 440 struct blk_mq_alloc_data data = { 441 .q = q, 442 .flags = flags, 443 .cmd_flags = op, 444 }; 445 u64 alloc_time_ns = 0; 446 unsigned int cpu; 447 unsigned int tag; 448 int ret; 449 450 /* alloc_time includes depth and tag waits */ 451 if (blk_queue_rq_alloc_time(q)) 452 alloc_time_ns = ktime_get_ns(); 453 454 /* 455 * If the tag allocator sleeps we could get an allocation for a 456 * different hardware context. No need to complicate the low level 457 * allocator for this for the rare use case of a command tied to 458 * a specific queue. 459 */ 460 if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED)))) 461 return ERR_PTR(-EINVAL); 462 463 if (hctx_idx >= q->nr_hw_queues) 464 return ERR_PTR(-EIO); 465 466 ret = blk_queue_enter(q, flags); 467 if (ret) 468 return ERR_PTR(ret); 469 470 /* 471 * Check if the hardware context is actually mapped to anything. 472 * If not tell the caller that it should skip this queue. 473 */ 474 ret = -EXDEV; 475 data.hctx = q->queue_hw_ctx[hctx_idx]; 476 if (!blk_mq_hw_queue_mapped(data.hctx)) 477 goto out_queue_exit; 478 cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask); 479 data.ctx = __blk_mq_get_ctx(q, cpu); 480 481 if (!q->elevator) 482 blk_mq_tag_busy(data.hctx); 483 484 ret = -EWOULDBLOCK; 485 tag = blk_mq_get_tag(&data); 486 if (tag == BLK_MQ_NO_TAG) 487 goto out_queue_exit; 488 return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns); 489 490out_queue_exit: 491 blk_queue_exit(q); 492 return ERR_PTR(ret); 493} 494EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx); 495 496static void __blk_mq_free_request(struct request *rq) 497{ 498 struct request_queue *q = rq->q; 499 struct blk_mq_ctx *ctx = rq->mq_ctx; 500 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 501 const int sched_tag = rq->internal_tag; 502 503 blk_crypto_free_request(rq); 504 blk_pm_mark_last_busy(rq); 505 rq->mq_hctx = NULL; 506 if (rq->tag != BLK_MQ_NO_TAG) 507 blk_mq_put_tag(hctx->tags, ctx, rq->tag); 508 if (sched_tag != BLK_MQ_NO_TAG) 509 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag); 510 blk_mq_sched_restart(hctx); 511 blk_queue_exit(q); 512} 513 514void blk_mq_free_request(struct request *rq) 515{ 516 struct request_queue *q = rq->q; 517 struct elevator_queue *e = q->elevator; 518 struct blk_mq_ctx *ctx = rq->mq_ctx; 519 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 520 521 if (rq->rq_flags & RQF_ELVPRIV) { 522 if (e && e->type->ops.finish_request) 523 e->type->ops.finish_request(rq); 524 if (rq->elv.icq) { 525 put_io_context(rq->elv.icq->ioc); 526 rq->elv.icq = NULL; 527 } 528 } 529 530 ctx->rq_completed[rq_is_sync(rq)]++; 531 if (rq->rq_flags & RQF_MQ_INFLIGHT) 532 __blk_mq_dec_active_requests(hctx); 533 534 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq))) 535 laptop_io_completion(q->disk->bdi); 536 537 rq_qos_done(q, rq); 538 539 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 540 if (refcount_dec_and_test(&rq->ref)) 541 __blk_mq_free_request(rq); 542} 543EXPORT_SYMBOL_GPL(blk_mq_free_request); 544 545inline void __blk_mq_end_request(struct request *rq, blk_status_t error) 546{ 547 u64 now = 0; 548 549 if (blk_mq_need_time_stamp(rq)) 550 now = ktime_get_ns(); 551 552 if (rq->rq_flags & RQF_STATS) { 553 blk_mq_poll_stats_start(rq->q); 554 blk_stat_add(rq, now); 555 } 556 557 blk_mq_sched_completed_request(rq, now); 558 559 blk_account_io_done(rq, now); 560 561 if (rq->end_io) { 562 rq_qos_done(rq->q, rq); 563 rq->end_io(rq, error); 564 } else { 565 blk_mq_free_request(rq); 566 } 567} 568EXPORT_SYMBOL(__blk_mq_end_request); 569 570void blk_mq_end_request(struct request *rq, blk_status_t error) 571{ 572 if (blk_update_request(rq, error, blk_rq_bytes(rq))) 573 BUG(); 574 __blk_mq_end_request(rq, error); 575} 576EXPORT_SYMBOL(blk_mq_end_request); 577 578static void blk_complete_reqs(struct llist_head *list) 579{ 580 struct llist_node *entry = llist_reverse_order(llist_del_all(list)); 581 struct request *rq, *next; 582 583 llist_for_each_entry_safe(rq, next, entry, ipi_list) 584 rq->q->mq_ops->complete(rq); 585} 586 587static __latent_entropy void blk_done_softirq(struct softirq_action *h) 588{ 589 blk_complete_reqs(this_cpu_ptr(&blk_cpu_done)); 590} 591 592static int blk_softirq_cpu_dead(unsigned int cpu) 593{ 594 blk_complete_reqs(&per_cpu(blk_cpu_done, cpu)); 595 return 0; 596} 597 598static void __blk_mq_complete_request_remote(void *data) 599{ 600 __raise_softirq_irqoff(BLOCK_SOFTIRQ); 601} 602 603static inline bool blk_mq_complete_need_ipi(struct request *rq) 604{ 605 int cpu = raw_smp_processor_id(); 606 607 if (!IS_ENABLED(CONFIG_SMP) || 608 !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) 609 return false; 610 /* 611 * With force threaded interrupts enabled, raising softirq from an SMP 612 * function call will always result in waking the ksoftirqd thread. 613 * This is probably worse than completing the request on a different 614 * cache domain. 615 */ 616 if (force_irqthreads()) 617 return false; 618 619 /* same CPU or cache domain? Complete locally */ 620 if (cpu == rq->mq_ctx->cpu || 621 (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) && 622 cpus_share_cache(cpu, rq->mq_ctx->cpu))) 623 return false; 624 625 /* don't try to IPI to an offline CPU */ 626 return cpu_online(rq->mq_ctx->cpu); 627} 628 629static void blk_mq_complete_send_ipi(struct request *rq) 630{ 631 struct llist_head *list; 632 unsigned int cpu; 633 634 cpu = rq->mq_ctx->cpu; 635 list = &per_cpu(blk_cpu_done, cpu); 636 if (llist_add(&rq->ipi_list, list)) { 637 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq); 638 smp_call_function_single_async(cpu, &rq->csd); 639 } 640} 641 642static void blk_mq_raise_softirq(struct request *rq) 643{ 644 struct llist_head *list; 645 646 preempt_disable(); 647 list = this_cpu_ptr(&blk_cpu_done); 648 if (llist_add(&rq->ipi_list, list)) 649 raise_softirq(BLOCK_SOFTIRQ); 650 preempt_enable(); 651} 652 653bool blk_mq_complete_request_remote(struct request *rq) 654{ 655 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE); 656 657 /* 658 * For a polled request, always complete locallly, it's pointless 659 * to redirect the completion. 660 */ 661 if (rq->cmd_flags & REQ_HIPRI) 662 return false; 663 664 if (blk_mq_complete_need_ipi(rq)) { 665 blk_mq_complete_send_ipi(rq); 666 return true; 667 } 668 669 if (rq->q->nr_hw_queues == 1) { 670 blk_mq_raise_softirq(rq); 671 return true; 672 } 673 return false; 674} 675EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote); 676 677/** 678 * blk_mq_complete_request - end I/O on a request 679 * @rq: the request being processed 680 * 681 * Description: 682 * Complete a request by scheduling the ->complete_rq operation. 683 **/ 684void blk_mq_complete_request(struct request *rq) 685{ 686 if (!blk_mq_complete_request_remote(rq)) 687 rq->q->mq_ops->complete(rq); 688} 689EXPORT_SYMBOL(blk_mq_complete_request); 690 691static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx) 692 __releases(hctx->srcu) 693{ 694 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) 695 rcu_read_unlock(); 696 else 697 srcu_read_unlock(hctx->srcu, srcu_idx); 698} 699 700static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx) 701 __acquires(hctx->srcu) 702{ 703 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) { 704 /* shut up gcc false positive */ 705 *srcu_idx = 0; 706 rcu_read_lock(); 707 } else 708 *srcu_idx = srcu_read_lock(hctx->srcu); 709} 710 711/** 712 * blk_mq_start_request - Start processing a request 713 * @rq: Pointer to request to be started 714 * 715 * Function used by device drivers to notify the block layer that a request 716 * is going to be processed now, so blk layer can do proper initializations 717 * such as starting the timeout timer. 718 */ 719void blk_mq_start_request(struct request *rq) 720{ 721 struct request_queue *q = rq->q; 722 723 trace_block_rq_issue(rq); 724 725 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) { 726 rq->io_start_time_ns = ktime_get_ns(); 727 rq->stats_sectors = blk_rq_sectors(rq); 728 rq->rq_flags |= RQF_STATS; 729 rq_qos_issue(q, rq); 730 } 731 732 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE); 733 734 blk_add_timer(rq); 735 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT); 736 737#ifdef CONFIG_BLK_DEV_INTEGRITY 738 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE) 739 q->integrity.profile->prepare_fn(rq); 740#endif 741} 742EXPORT_SYMBOL(blk_mq_start_request); 743 744static void __blk_mq_requeue_request(struct request *rq) 745{ 746 struct request_queue *q = rq->q; 747 748 blk_mq_put_driver_tag(rq); 749 750 trace_block_rq_requeue(rq); 751 rq_qos_requeue(q, rq); 752 753 if (blk_mq_request_started(rq)) { 754 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 755 rq->rq_flags &= ~RQF_TIMED_OUT; 756 } 757} 758 759void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list) 760{ 761 __blk_mq_requeue_request(rq); 762 763 /* this request will be re-inserted to io scheduler queue */ 764 blk_mq_sched_requeue_request(rq); 765 766 BUG_ON(!list_empty(&rq->queuelist)); 767 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list); 768} 769EXPORT_SYMBOL(blk_mq_requeue_request); 770 771static void blk_mq_requeue_work(struct work_struct *work) 772{ 773 struct request_queue *q = 774 container_of(work, struct request_queue, requeue_work.work); 775 LIST_HEAD(rq_list); 776 struct request *rq, *next; 777 778 spin_lock_irq(&q->requeue_lock); 779 list_splice_init(&q->requeue_list, &rq_list); 780 spin_unlock_irq(&q->requeue_lock); 781 782 list_for_each_entry_safe(rq, next, &rq_list, queuelist) { 783 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP))) 784 continue; 785 786 rq->rq_flags &= ~RQF_SOFTBARRIER; 787 list_del_init(&rq->queuelist); 788 /* 789 * If RQF_DONTPREP, rq has contained some driver specific 790 * data, so insert it to hctx dispatch list to avoid any 791 * merge. 792 */ 793 if (rq->rq_flags & RQF_DONTPREP) 794 blk_mq_request_bypass_insert(rq, false, false); 795 else 796 blk_mq_sched_insert_request(rq, true, false, false); 797 } 798 799 while (!list_empty(&rq_list)) { 800 rq = list_entry(rq_list.next, struct request, queuelist); 801 list_del_init(&rq->queuelist); 802 blk_mq_sched_insert_request(rq, false, false, false); 803 } 804 805 blk_mq_run_hw_queues(q, false); 806} 807 808void blk_mq_add_to_requeue_list(struct request *rq, bool at_head, 809 bool kick_requeue_list) 810{ 811 struct request_queue *q = rq->q; 812 unsigned long flags; 813 814 /* 815 * We abuse this flag that is otherwise used by the I/O scheduler to 816 * request head insertion from the workqueue. 817 */ 818 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER); 819 820 spin_lock_irqsave(&q->requeue_lock, flags); 821 if (at_head) { 822 rq->rq_flags |= RQF_SOFTBARRIER; 823 list_add(&rq->queuelist, &q->requeue_list); 824 } else { 825 list_add_tail(&rq->queuelist, &q->requeue_list); 826 } 827 spin_unlock_irqrestore(&q->requeue_lock, flags); 828 829 if (kick_requeue_list) 830 blk_mq_kick_requeue_list(q); 831} 832 833void blk_mq_kick_requeue_list(struct request_queue *q) 834{ 835 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0); 836} 837EXPORT_SYMBOL(blk_mq_kick_requeue_list); 838 839void blk_mq_delay_kick_requeue_list(struct request_queue *q, 840 unsigned long msecs) 841{ 842 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 843 msecs_to_jiffies(msecs)); 844} 845EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list); 846 847struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag) 848{ 849 if (tag < tags->nr_tags) { 850 prefetch(tags->rqs[tag]); 851 return tags->rqs[tag]; 852 } 853 854 return NULL; 855} 856EXPORT_SYMBOL(blk_mq_tag_to_rq); 857 858static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq, 859 void *priv, bool reserved) 860{ 861 /* 862 * If we find a request that isn't idle and the queue matches, 863 * we know the queue is busy. Return false to stop the iteration. 864 */ 865 if (blk_mq_request_started(rq) && rq->q == hctx->queue) { 866 bool *busy = priv; 867 868 *busy = true; 869 return false; 870 } 871 872 return true; 873} 874 875bool blk_mq_queue_inflight(struct request_queue *q) 876{ 877 bool busy = false; 878 879 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy); 880 return busy; 881} 882EXPORT_SYMBOL_GPL(blk_mq_queue_inflight); 883 884static void blk_mq_rq_timed_out(struct request *req, bool reserved) 885{ 886 req->rq_flags |= RQF_TIMED_OUT; 887 if (req->q->mq_ops->timeout) { 888 enum blk_eh_timer_return ret; 889 890 ret = req->q->mq_ops->timeout(req, reserved); 891 if (ret == BLK_EH_DONE) 892 return; 893 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER); 894 } 895 896 blk_add_timer(req); 897} 898 899static bool blk_mq_req_expired(struct request *rq, unsigned long *next) 900{ 901 unsigned long deadline; 902 903 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT) 904 return false; 905 if (rq->rq_flags & RQF_TIMED_OUT) 906 return false; 907 908 deadline = READ_ONCE(rq->deadline); 909 if (time_after_eq(jiffies, deadline)) 910 return true; 911 912 if (*next == 0) 913 *next = deadline; 914 else if (time_after(*next, deadline)) 915 *next = deadline; 916 return false; 917} 918 919void blk_mq_put_rq_ref(struct request *rq) 920{ 921 if (is_flush_rq(rq)) 922 rq->end_io(rq, 0); 923 else if (refcount_dec_and_test(&rq->ref)) 924 __blk_mq_free_request(rq); 925} 926 927static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx, 928 struct request *rq, void *priv, bool reserved) 929{ 930 unsigned long *next = priv; 931 932 /* 933 * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot 934 * be reallocated underneath the timeout handler's processing, then 935 * the expire check is reliable. If the request is not expired, then 936 * it was completed and reallocated as a new request after returning 937 * from blk_mq_check_expired(). 938 */ 939 if (blk_mq_req_expired(rq, next)) 940 blk_mq_rq_timed_out(rq, reserved); 941 return true; 942} 943 944static void blk_mq_timeout_work(struct work_struct *work) 945{ 946 struct request_queue *q = 947 container_of(work, struct request_queue, timeout_work); 948 unsigned long next = 0; 949 struct blk_mq_hw_ctx *hctx; 950 int i; 951 952 /* A deadlock might occur if a request is stuck requiring a 953 * timeout at the same time a queue freeze is waiting 954 * completion, since the timeout code would not be able to 955 * acquire the queue reference here. 956 * 957 * That's why we don't use blk_queue_enter here; instead, we use 958 * percpu_ref_tryget directly, because we need to be able to 959 * obtain a reference even in the short window between the queue 960 * starting to freeze, by dropping the first reference in 961 * blk_freeze_queue_start, and the moment the last request is 962 * consumed, marked by the instant q_usage_counter reaches 963 * zero. 964 */ 965 if (!percpu_ref_tryget(&q->q_usage_counter)) 966 return; 967 968 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next); 969 970 if (next != 0) { 971 mod_timer(&q->timeout, next); 972 } else { 973 /* 974 * Request timeouts are handled as a forward rolling timer. If 975 * we end up here it means that no requests are pending and 976 * also that no request has been pending for a while. Mark 977 * each hctx as idle. 978 */ 979 queue_for_each_hw_ctx(q, hctx, i) { 980 /* the hctx may be unmapped, so check it here */ 981 if (blk_mq_hw_queue_mapped(hctx)) 982 blk_mq_tag_idle(hctx); 983 } 984 } 985 blk_queue_exit(q); 986} 987 988struct flush_busy_ctx_data { 989 struct blk_mq_hw_ctx *hctx; 990 struct list_head *list; 991}; 992 993static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data) 994{ 995 struct flush_busy_ctx_data *flush_data = data; 996 struct blk_mq_hw_ctx *hctx = flush_data->hctx; 997 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 998 enum hctx_type type = hctx->type; 999 1000 spin_lock(&ctx->lock); 1001 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list); 1002 sbitmap_clear_bit(sb, bitnr); 1003 spin_unlock(&ctx->lock); 1004 return true; 1005} 1006 1007/* 1008 * Process software queues that have been marked busy, splicing them 1009 * to the for-dispatch 1010 */ 1011void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list) 1012{ 1013 struct flush_busy_ctx_data data = { 1014 .hctx = hctx, 1015 .list = list, 1016 }; 1017 1018 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data); 1019} 1020EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs); 1021 1022struct dispatch_rq_data { 1023 struct blk_mq_hw_ctx *hctx; 1024 struct request *rq; 1025}; 1026 1027static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr, 1028 void *data) 1029{ 1030 struct dispatch_rq_data *dispatch_data = data; 1031 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx; 1032 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr]; 1033 enum hctx_type type = hctx->type; 1034 1035 spin_lock(&ctx->lock); 1036 if (!list_empty(&ctx->rq_lists[type])) { 1037 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next); 1038 list_del_init(&dispatch_data->rq->queuelist); 1039 if (list_empty(&ctx->rq_lists[type])) 1040 sbitmap_clear_bit(sb, bitnr); 1041 } 1042 spin_unlock(&ctx->lock); 1043 1044 return !dispatch_data->rq; 1045} 1046 1047struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx, 1048 struct blk_mq_ctx *start) 1049{ 1050 unsigned off = start ? start->index_hw[hctx->type] : 0; 1051 struct dispatch_rq_data data = { 1052 .hctx = hctx, 1053 .rq = NULL, 1054 }; 1055 1056 __sbitmap_for_each_set(&hctx->ctx_map, off, 1057 dispatch_rq_from_ctx, &data); 1058 1059 return data.rq; 1060} 1061 1062static inline unsigned int queued_to_index(unsigned int queued) 1063{ 1064 if (!queued) 1065 return 0; 1066 1067 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1); 1068} 1069 1070static bool __blk_mq_get_driver_tag(struct request *rq) 1071{ 1072 struct sbitmap_queue *bt = rq->mq_hctx->tags->bitmap_tags; 1073 unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags; 1074 int tag; 1075 1076 blk_mq_tag_busy(rq->mq_hctx); 1077 1078 if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) { 1079 bt = rq->mq_hctx->tags->breserved_tags; 1080 tag_offset = 0; 1081 } else { 1082 if (!hctx_may_queue(rq->mq_hctx, bt)) 1083 return false; 1084 } 1085 1086 tag = __sbitmap_queue_get(bt); 1087 if (tag == BLK_MQ_NO_TAG) 1088 return false; 1089 1090 rq->tag = tag + tag_offset; 1091 return true; 1092} 1093 1094bool blk_mq_get_driver_tag(struct request *rq) 1095{ 1096 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1097 1098 if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq)) 1099 return false; 1100 1101 if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) && 1102 !(rq->rq_flags & RQF_MQ_INFLIGHT)) { 1103 rq->rq_flags |= RQF_MQ_INFLIGHT; 1104 __blk_mq_inc_active_requests(hctx); 1105 } 1106 hctx->tags->rqs[rq->tag] = rq; 1107 return true; 1108} 1109 1110static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode, 1111 int flags, void *key) 1112{ 1113 struct blk_mq_hw_ctx *hctx; 1114 1115 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait); 1116 1117 spin_lock(&hctx->dispatch_wait_lock); 1118 if (!list_empty(&wait->entry)) { 1119 struct sbitmap_queue *sbq; 1120 1121 list_del_init(&wait->entry); 1122 sbq = hctx->tags->bitmap_tags; 1123 atomic_dec(&sbq->ws_active); 1124 } 1125 spin_unlock(&hctx->dispatch_wait_lock); 1126 1127 blk_mq_run_hw_queue(hctx, true); 1128 return 1; 1129} 1130 1131/* 1132 * Mark us waiting for a tag. For shared tags, this involves hooking us into 1133 * the tag wakeups. For non-shared tags, we can simply mark us needing a 1134 * restart. For both cases, take care to check the condition again after 1135 * marking us as waiting. 1136 */ 1137static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx, 1138 struct request *rq) 1139{ 1140 struct sbitmap_queue *sbq = hctx->tags->bitmap_tags; 1141 struct wait_queue_head *wq; 1142 wait_queue_entry_t *wait; 1143 bool ret; 1144 1145 if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 1146 blk_mq_sched_mark_restart_hctx(hctx); 1147 1148 /* 1149 * It's possible that a tag was freed in the window between the 1150 * allocation failure and adding the hardware queue to the wait 1151 * queue. 1152 * 1153 * Don't clear RESTART here, someone else could have set it. 1154 * At most this will cost an extra queue run. 1155 */ 1156 return blk_mq_get_driver_tag(rq); 1157 } 1158 1159 wait = &hctx->dispatch_wait; 1160 if (!list_empty_careful(&wait->entry)) 1161 return false; 1162 1163 wq = &bt_wait_ptr(sbq, hctx)->wait; 1164 1165 spin_lock_irq(&wq->lock); 1166 spin_lock(&hctx->dispatch_wait_lock); 1167 if (!list_empty(&wait->entry)) { 1168 spin_unlock(&hctx->dispatch_wait_lock); 1169 spin_unlock_irq(&wq->lock); 1170 return false; 1171 } 1172 1173 atomic_inc(&sbq->ws_active); 1174 wait->flags &= ~WQ_FLAG_EXCLUSIVE; 1175 __add_wait_queue(wq, wait); 1176 1177 /* 1178 * It's possible that a tag was freed in the window between the 1179 * allocation failure and adding the hardware queue to the wait 1180 * queue. 1181 */ 1182 ret = blk_mq_get_driver_tag(rq); 1183 if (!ret) { 1184 spin_unlock(&hctx->dispatch_wait_lock); 1185 spin_unlock_irq(&wq->lock); 1186 return false; 1187 } 1188 1189 /* 1190 * We got a tag, remove ourselves from the wait queue to ensure 1191 * someone else gets the wakeup. 1192 */ 1193 list_del_init(&wait->entry); 1194 atomic_dec(&sbq->ws_active); 1195 spin_unlock(&hctx->dispatch_wait_lock); 1196 spin_unlock_irq(&wq->lock); 1197 1198 return true; 1199} 1200 1201#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8 1202#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4 1203/* 1204 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA): 1205 * - EWMA is one simple way to compute running average value 1206 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially 1207 * - take 4 as factor for avoiding to get too small(0) result, and this 1208 * factor doesn't matter because EWMA decreases exponentially 1209 */ 1210static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy) 1211{ 1212 unsigned int ewma; 1213 1214 ewma = hctx->dispatch_busy; 1215 1216 if (!ewma && !busy) 1217 return; 1218 1219 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1; 1220 if (busy) 1221 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR; 1222 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT; 1223 1224 hctx->dispatch_busy = ewma; 1225} 1226 1227#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */ 1228 1229static void blk_mq_handle_dev_resource(struct request *rq, 1230 struct list_head *list) 1231{ 1232 struct request *next = 1233 list_first_entry_or_null(list, struct request, queuelist); 1234 1235 /* 1236 * If an I/O scheduler has been configured and we got a driver tag for 1237 * the next request already, free it. 1238 */ 1239 if (next) 1240 blk_mq_put_driver_tag(next); 1241 1242 list_add(&rq->queuelist, list); 1243 __blk_mq_requeue_request(rq); 1244} 1245 1246static void blk_mq_handle_zone_resource(struct request *rq, 1247 struct list_head *zone_list) 1248{ 1249 /* 1250 * If we end up here it is because we cannot dispatch a request to a 1251 * specific zone due to LLD level zone-write locking or other zone 1252 * related resource not being available. In this case, set the request 1253 * aside in zone_list for retrying it later. 1254 */ 1255 list_add(&rq->queuelist, zone_list); 1256 __blk_mq_requeue_request(rq); 1257} 1258 1259enum prep_dispatch { 1260 PREP_DISPATCH_OK, 1261 PREP_DISPATCH_NO_TAG, 1262 PREP_DISPATCH_NO_BUDGET, 1263}; 1264 1265static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq, 1266 bool need_budget) 1267{ 1268 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1269 int budget_token = -1; 1270 1271 if (need_budget) { 1272 budget_token = blk_mq_get_dispatch_budget(rq->q); 1273 if (budget_token < 0) { 1274 blk_mq_put_driver_tag(rq); 1275 return PREP_DISPATCH_NO_BUDGET; 1276 } 1277 blk_mq_set_rq_budget_token(rq, budget_token); 1278 } 1279 1280 if (!blk_mq_get_driver_tag(rq)) { 1281 /* 1282 * The initial allocation attempt failed, so we need to 1283 * rerun the hardware queue when a tag is freed. The 1284 * waitqueue takes care of that. If the queue is run 1285 * before we add this entry back on the dispatch list, 1286 * we'll re-run it below. 1287 */ 1288 if (!blk_mq_mark_tag_wait(hctx, rq)) { 1289 /* 1290 * All budgets not got from this function will be put 1291 * together during handling partial dispatch 1292 */ 1293 if (need_budget) 1294 blk_mq_put_dispatch_budget(rq->q, budget_token); 1295 return PREP_DISPATCH_NO_TAG; 1296 } 1297 } 1298 1299 return PREP_DISPATCH_OK; 1300} 1301 1302/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */ 1303static void blk_mq_release_budgets(struct request_queue *q, 1304 struct list_head *list) 1305{ 1306 struct request *rq; 1307 1308 list_for_each_entry(rq, list, queuelist) { 1309 int budget_token = blk_mq_get_rq_budget_token(rq); 1310 1311 if (budget_token >= 0) 1312 blk_mq_put_dispatch_budget(q, budget_token); 1313 } 1314} 1315 1316/* 1317 * Returns true if we did some work AND can potentially do more. 1318 */ 1319bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list, 1320 unsigned int nr_budgets) 1321{ 1322 enum prep_dispatch prep; 1323 struct request_queue *q = hctx->queue; 1324 struct request *rq, *nxt; 1325 int errors, queued; 1326 blk_status_t ret = BLK_STS_OK; 1327 LIST_HEAD(zone_list); 1328 bool needs_resource = false; 1329 1330 if (list_empty(list)) 1331 return false; 1332 1333 /* 1334 * Now process all the entries, sending them to the driver. 1335 */ 1336 errors = queued = 0; 1337 do { 1338 struct blk_mq_queue_data bd; 1339 1340 rq = list_first_entry(list, struct request, queuelist); 1341 1342 WARN_ON_ONCE(hctx != rq->mq_hctx); 1343 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets); 1344 if (prep != PREP_DISPATCH_OK) 1345 break; 1346 1347 list_del_init(&rq->queuelist); 1348 1349 bd.rq = rq; 1350 1351 /* 1352 * Flag last if we have no more requests, or if we have more 1353 * but can't assign a driver tag to it. 1354 */ 1355 if (list_empty(list)) 1356 bd.last = true; 1357 else { 1358 nxt = list_first_entry(list, struct request, queuelist); 1359 bd.last = !blk_mq_get_driver_tag(nxt); 1360 } 1361 1362 /* 1363 * once the request is queued to lld, no need to cover the 1364 * budget any more 1365 */ 1366 if (nr_budgets) 1367 nr_budgets--; 1368 ret = q->mq_ops->queue_rq(hctx, &bd); 1369 switch (ret) { 1370 case BLK_STS_OK: 1371 queued++; 1372 break; 1373 case BLK_STS_RESOURCE: 1374 needs_resource = true; 1375 fallthrough; 1376 case BLK_STS_DEV_RESOURCE: 1377 blk_mq_handle_dev_resource(rq, list); 1378 goto out; 1379 case BLK_STS_ZONE_RESOURCE: 1380 /* 1381 * Move the request to zone_list and keep going through 1382 * the dispatch list to find more requests the drive can 1383 * accept. 1384 */ 1385 blk_mq_handle_zone_resource(rq, &zone_list); 1386 needs_resource = true; 1387 break; 1388 default: 1389 errors++; 1390 blk_mq_end_request(rq, ret); 1391 } 1392 } while (!list_empty(list)); 1393out: 1394 if (!list_empty(&zone_list)) 1395 list_splice_tail_init(&zone_list, list); 1396 1397 hctx->dispatched[queued_to_index(queued)]++; 1398 1399 /* If we didn't flush the entire list, we could have told the driver 1400 * there was more coming, but that turned out to be a lie. 1401 */ 1402 if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued) 1403 q->mq_ops->commit_rqs(hctx); 1404 /* 1405 * Any items that need requeuing? Stuff them into hctx->dispatch, 1406 * that is where we will continue on next queue run. 1407 */ 1408 if (!list_empty(list)) { 1409 bool needs_restart; 1410 /* For non-shared tags, the RESTART check will suffice */ 1411 bool no_tag = prep == PREP_DISPATCH_NO_TAG && 1412 (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED); 1413 1414 if (nr_budgets) 1415 blk_mq_release_budgets(q, list); 1416 1417 spin_lock(&hctx->lock); 1418 list_splice_tail_init(list, &hctx->dispatch); 1419 spin_unlock(&hctx->lock); 1420 1421 /* 1422 * Order adding requests to hctx->dispatch and checking 1423 * SCHED_RESTART flag. The pair of this smp_mb() is the one 1424 * in blk_mq_sched_restart(). Avoid restart code path to 1425 * miss the new added requests to hctx->dispatch, meantime 1426 * SCHED_RESTART is observed here. 1427 */ 1428 smp_mb(); 1429 1430 /* 1431 * If SCHED_RESTART was set by the caller of this function and 1432 * it is no longer set that means that it was cleared by another 1433 * thread and hence that a queue rerun is needed. 1434 * 1435 * If 'no_tag' is set, that means that we failed getting 1436 * a driver tag with an I/O scheduler attached. If our dispatch 1437 * waitqueue is no longer active, ensure that we run the queue 1438 * AFTER adding our entries back to the list. 1439 * 1440 * If no I/O scheduler has been configured it is possible that 1441 * the hardware queue got stopped and restarted before requests 1442 * were pushed back onto the dispatch list. Rerun the queue to 1443 * avoid starvation. Notes: 1444 * - blk_mq_run_hw_queue() checks whether or not a queue has 1445 * been stopped before rerunning a queue. 1446 * - Some but not all block drivers stop a queue before 1447 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq 1448 * and dm-rq. 1449 * 1450 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART 1451 * bit is set, run queue after a delay to avoid IO stalls 1452 * that could otherwise occur if the queue is idle. We'll do 1453 * similar if we couldn't get budget or couldn't lock a zone 1454 * and SCHED_RESTART is set. 1455 */ 1456 needs_restart = blk_mq_sched_needs_restart(hctx); 1457 if (prep == PREP_DISPATCH_NO_BUDGET) 1458 needs_resource = true; 1459 if (!needs_restart || 1460 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry))) 1461 blk_mq_run_hw_queue(hctx, true); 1462 else if (needs_restart && needs_resource) 1463 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY); 1464 1465 blk_mq_update_dispatch_busy(hctx, true); 1466 return false; 1467 } else 1468 blk_mq_update_dispatch_busy(hctx, false); 1469 1470 return (queued + errors) != 0; 1471} 1472 1473/** 1474 * __blk_mq_run_hw_queue - Run a hardware queue. 1475 * @hctx: Pointer to the hardware queue to run. 1476 * 1477 * Send pending requests to the hardware. 1478 */ 1479static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx) 1480{ 1481 int srcu_idx; 1482 1483 /* 1484 * We can't run the queue inline with ints disabled. Ensure that 1485 * we catch bad users of this early. 1486 */ 1487 WARN_ON_ONCE(in_interrupt()); 1488 1489 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 1490 1491 hctx_lock(hctx, &srcu_idx); 1492 blk_mq_sched_dispatch_requests(hctx); 1493 hctx_unlock(hctx, srcu_idx); 1494} 1495 1496static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx) 1497{ 1498 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask); 1499 1500 if (cpu >= nr_cpu_ids) 1501 cpu = cpumask_first(hctx->cpumask); 1502 return cpu; 1503} 1504 1505/* 1506 * It'd be great if the workqueue API had a way to pass 1507 * in a mask and had some smarts for more clever placement. 1508 * For now we just round-robin here, switching for every 1509 * BLK_MQ_CPU_WORK_BATCH queued items. 1510 */ 1511static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx) 1512{ 1513 bool tried = false; 1514 int next_cpu = hctx->next_cpu; 1515 1516 if (hctx->queue->nr_hw_queues == 1) 1517 return WORK_CPU_UNBOUND; 1518 1519 if (--hctx->next_cpu_batch <= 0) { 1520select_cpu: 1521 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask, 1522 cpu_online_mask); 1523 if (next_cpu >= nr_cpu_ids) 1524 next_cpu = blk_mq_first_mapped_cpu(hctx); 1525 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 1526 } 1527 1528 /* 1529 * Do unbound schedule if we can't find a online CPU for this hctx, 1530 * and it should only happen in the path of handling CPU DEAD. 1531 */ 1532 if (!cpu_online(next_cpu)) { 1533 if (!tried) { 1534 tried = true; 1535 goto select_cpu; 1536 } 1537 1538 /* 1539 * Make sure to re-select CPU next time once after CPUs 1540 * in hctx->cpumask become online again. 1541 */ 1542 hctx->next_cpu = next_cpu; 1543 hctx->next_cpu_batch = 1; 1544 return WORK_CPU_UNBOUND; 1545 } 1546 1547 hctx->next_cpu = next_cpu; 1548 return next_cpu; 1549} 1550 1551/** 1552 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue. 1553 * @hctx: Pointer to the hardware queue to run. 1554 * @async: If we want to run the queue asynchronously. 1555 * @msecs: Milliseconds of delay to wait before running the queue. 1556 * 1557 * If !@async, try to run the queue now. Else, run the queue asynchronously and 1558 * with a delay of @msecs. 1559 */ 1560static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async, 1561 unsigned long msecs) 1562{ 1563 if (unlikely(blk_mq_hctx_stopped(hctx))) 1564 return; 1565 1566 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) { 1567 int cpu = get_cpu(); 1568 if (cpumask_test_cpu(cpu, hctx->cpumask)) { 1569 __blk_mq_run_hw_queue(hctx); 1570 put_cpu(); 1571 return; 1572 } 1573 1574 put_cpu(); 1575 } 1576 1577 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work, 1578 msecs_to_jiffies(msecs)); 1579} 1580 1581/** 1582 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously. 1583 * @hctx: Pointer to the hardware queue to run. 1584 * @msecs: Milliseconds of delay to wait before running the queue. 1585 * 1586 * Run a hardware queue asynchronously with a delay of @msecs. 1587 */ 1588void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs) 1589{ 1590 __blk_mq_delay_run_hw_queue(hctx, true, msecs); 1591} 1592EXPORT_SYMBOL(blk_mq_delay_run_hw_queue); 1593 1594/** 1595 * blk_mq_run_hw_queue - Start to run a hardware queue. 1596 * @hctx: Pointer to the hardware queue to run. 1597 * @async: If we want to run the queue asynchronously. 1598 * 1599 * Check if the request queue is not in a quiesced state and if there are 1600 * pending requests to be sent. If this is true, run the queue to send requests 1601 * to hardware. 1602 */ 1603void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1604{ 1605 int srcu_idx; 1606 bool need_run; 1607 1608 /* 1609 * When queue is quiesced, we may be switching io scheduler, or 1610 * updating nr_hw_queues, or other things, and we can't run queue 1611 * any more, even __blk_mq_hctx_has_pending() can't be called safely. 1612 * 1613 * And queue will be rerun in blk_mq_unquiesce_queue() if it is 1614 * quiesced. 1615 */ 1616 hctx_lock(hctx, &srcu_idx); 1617 need_run = !blk_queue_quiesced(hctx->queue) && 1618 blk_mq_hctx_has_pending(hctx); 1619 hctx_unlock(hctx, srcu_idx); 1620 1621 if (need_run) 1622 __blk_mq_delay_run_hw_queue(hctx, async, 0); 1623} 1624EXPORT_SYMBOL(blk_mq_run_hw_queue); 1625 1626/* 1627 * Is the request queue handled by an IO scheduler that does not respect 1628 * hardware queues when dispatching? 1629 */ 1630static bool blk_mq_has_sqsched(struct request_queue *q) 1631{ 1632 struct elevator_queue *e = q->elevator; 1633 1634 if (e && e->type->ops.dispatch_request && 1635 !(e->type->elevator_features & ELEVATOR_F_MQ_AWARE)) 1636 return true; 1637 return false; 1638} 1639 1640/* 1641 * Return prefered queue to dispatch from (if any) for non-mq aware IO 1642 * scheduler. 1643 */ 1644static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q) 1645{ 1646 struct blk_mq_hw_ctx *hctx; 1647 1648 /* 1649 * If the IO scheduler does not respect hardware queues when 1650 * dispatching, we just don't bother with multiple HW queues and 1651 * dispatch from hctx for the current CPU since running multiple queues 1652 * just causes lock contention inside the scheduler and pointless cache 1653 * bouncing. 1654 */ 1655 hctx = blk_mq_map_queue_type(q, HCTX_TYPE_DEFAULT, 1656 raw_smp_processor_id()); 1657 if (!blk_mq_hctx_stopped(hctx)) 1658 return hctx; 1659 return NULL; 1660} 1661 1662/** 1663 * blk_mq_run_hw_queues - Run all hardware queues in a request queue. 1664 * @q: Pointer to the request queue to run. 1665 * @async: If we want to run the queue asynchronously. 1666 */ 1667void blk_mq_run_hw_queues(struct request_queue *q, bool async) 1668{ 1669 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1670 int i; 1671 1672 sq_hctx = NULL; 1673 if (blk_mq_has_sqsched(q)) 1674 sq_hctx = blk_mq_get_sq_hctx(q); 1675 queue_for_each_hw_ctx(q, hctx, i) { 1676 if (blk_mq_hctx_stopped(hctx)) 1677 continue; 1678 /* 1679 * Dispatch from this hctx either if there's no hctx preferred 1680 * by IO scheduler or if it has requests that bypass the 1681 * scheduler. 1682 */ 1683 if (!sq_hctx || sq_hctx == hctx || 1684 !list_empty_careful(&hctx->dispatch)) 1685 blk_mq_run_hw_queue(hctx, async); 1686 } 1687} 1688EXPORT_SYMBOL(blk_mq_run_hw_queues); 1689 1690/** 1691 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously. 1692 * @q: Pointer to the request queue to run. 1693 * @msecs: Milliseconds of delay to wait before running the queues. 1694 */ 1695void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs) 1696{ 1697 struct blk_mq_hw_ctx *hctx, *sq_hctx; 1698 int i; 1699 1700 sq_hctx = NULL; 1701 if (blk_mq_has_sqsched(q)) 1702 sq_hctx = blk_mq_get_sq_hctx(q); 1703 queue_for_each_hw_ctx(q, hctx, i) { 1704 if (blk_mq_hctx_stopped(hctx)) 1705 continue; 1706 /* 1707 * Dispatch from this hctx either if there's no hctx preferred 1708 * by IO scheduler or if it has requests that bypass the 1709 * scheduler. 1710 */ 1711 if (!sq_hctx || sq_hctx == hctx || 1712 !list_empty_careful(&hctx->dispatch)) 1713 blk_mq_delay_run_hw_queue(hctx, msecs); 1714 } 1715} 1716EXPORT_SYMBOL(blk_mq_delay_run_hw_queues); 1717 1718/** 1719 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped 1720 * @q: request queue. 1721 * 1722 * The caller is responsible for serializing this function against 1723 * blk_mq_{start,stop}_hw_queue(). 1724 */ 1725bool blk_mq_queue_stopped(struct request_queue *q) 1726{ 1727 struct blk_mq_hw_ctx *hctx; 1728 int i; 1729 1730 queue_for_each_hw_ctx(q, hctx, i) 1731 if (blk_mq_hctx_stopped(hctx)) 1732 return true; 1733 1734 return false; 1735} 1736EXPORT_SYMBOL(blk_mq_queue_stopped); 1737 1738/* 1739 * This function is often used for pausing .queue_rq() by driver when 1740 * there isn't enough resource or some conditions aren't satisfied, and 1741 * BLK_STS_RESOURCE is usually returned. 1742 * 1743 * We do not guarantee that dispatch can be drained or blocked 1744 * after blk_mq_stop_hw_queue() returns. Please use 1745 * blk_mq_quiesce_queue() for that requirement. 1746 */ 1747void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx) 1748{ 1749 cancel_delayed_work(&hctx->run_work); 1750 1751 set_bit(BLK_MQ_S_STOPPED, &hctx->state); 1752} 1753EXPORT_SYMBOL(blk_mq_stop_hw_queue); 1754 1755/* 1756 * This function is often used for pausing .queue_rq() by driver when 1757 * there isn't enough resource or some conditions aren't satisfied, and 1758 * BLK_STS_RESOURCE is usually returned. 1759 * 1760 * We do not guarantee that dispatch can be drained or blocked 1761 * after blk_mq_stop_hw_queues() returns. Please use 1762 * blk_mq_quiesce_queue() for that requirement. 1763 */ 1764void blk_mq_stop_hw_queues(struct request_queue *q) 1765{ 1766 struct blk_mq_hw_ctx *hctx; 1767 int i; 1768 1769 queue_for_each_hw_ctx(q, hctx, i) 1770 blk_mq_stop_hw_queue(hctx); 1771} 1772EXPORT_SYMBOL(blk_mq_stop_hw_queues); 1773 1774void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx) 1775{ 1776 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1777 1778 blk_mq_run_hw_queue(hctx, false); 1779} 1780EXPORT_SYMBOL(blk_mq_start_hw_queue); 1781 1782void blk_mq_start_hw_queues(struct request_queue *q) 1783{ 1784 struct blk_mq_hw_ctx *hctx; 1785 int i; 1786 1787 queue_for_each_hw_ctx(q, hctx, i) 1788 blk_mq_start_hw_queue(hctx); 1789} 1790EXPORT_SYMBOL(blk_mq_start_hw_queues); 1791 1792void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async) 1793{ 1794 if (!blk_mq_hctx_stopped(hctx)) 1795 return; 1796 1797 clear_bit(BLK_MQ_S_STOPPED, &hctx->state); 1798 blk_mq_run_hw_queue(hctx, async); 1799} 1800EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue); 1801 1802void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async) 1803{ 1804 struct blk_mq_hw_ctx *hctx; 1805 int i; 1806 1807 queue_for_each_hw_ctx(q, hctx, i) 1808 blk_mq_start_stopped_hw_queue(hctx, async); 1809} 1810EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues); 1811 1812static void blk_mq_run_work_fn(struct work_struct *work) 1813{ 1814 struct blk_mq_hw_ctx *hctx; 1815 1816 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work); 1817 1818 /* 1819 * If we are stopped, don't run the queue. 1820 */ 1821 if (blk_mq_hctx_stopped(hctx)) 1822 return; 1823 1824 __blk_mq_run_hw_queue(hctx); 1825} 1826 1827static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx, 1828 struct request *rq, 1829 bool at_head) 1830{ 1831 struct blk_mq_ctx *ctx = rq->mq_ctx; 1832 enum hctx_type type = hctx->type; 1833 1834 lockdep_assert_held(&ctx->lock); 1835 1836 trace_block_rq_insert(rq); 1837 1838 if (at_head) 1839 list_add(&rq->queuelist, &ctx->rq_lists[type]); 1840 else 1841 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]); 1842} 1843 1844void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq, 1845 bool at_head) 1846{ 1847 struct blk_mq_ctx *ctx = rq->mq_ctx; 1848 1849 lockdep_assert_held(&ctx->lock); 1850 1851 __blk_mq_insert_req_list(hctx, rq, at_head); 1852 blk_mq_hctx_mark_pending(hctx, ctx); 1853} 1854 1855/** 1856 * blk_mq_request_bypass_insert - Insert a request at dispatch list. 1857 * @rq: Pointer to request to be inserted. 1858 * @at_head: true if the request should be inserted at the head of the list. 1859 * @run_queue: If we should run the hardware queue after inserting the request. 1860 * 1861 * Should only be used carefully, when the caller knows we want to 1862 * bypass a potential IO scheduler on the target device. 1863 */ 1864void blk_mq_request_bypass_insert(struct request *rq, bool at_head, 1865 bool run_queue) 1866{ 1867 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 1868 1869 spin_lock(&hctx->lock); 1870 if (at_head) 1871 list_add(&rq->queuelist, &hctx->dispatch); 1872 else 1873 list_add_tail(&rq->queuelist, &hctx->dispatch); 1874 spin_unlock(&hctx->lock); 1875 1876 if (run_queue) 1877 blk_mq_run_hw_queue(hctx, false); 1878} 1879 1880void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx, 1881 struct list_head *list) 1882 1883{ 1884 struct request *rq; 1885 enum hctx_type type = hctx->type; 1886 1887 /* 1888 * preemption doesn't flush plug list, so it's possible ctx->cpu is 1889 * offline now 1890 */ 1891 list_for_each_entry(rq, list, queuelist) { 1892 BUG_ON(rq->mq_ctx != ctx); 1893 trace_block_rq_insert(rq); 1894 } 1895 1896 spin_lock(&ctx->lock); 1897 list_splice_tail_init(list, &ctx->rq_lists[type]); 1898 blk_mq_hctx_mark_pending(hctx, ctx); 1899 spin_unlock(&ctx->lock); 1900} 1901 1902static int plug_rq_cmp(void *priv, const struct list_head *a, 1903 const struct list_head *b) 1904{ 1905 struct request *rqa = container_of(a, struct request, queuelist); 1906 struct request *rqb = container_of(b, struct request, queuelist); 1907 1908 if (rqa->mq_ctx != rqb->mq_ctx) 1909 return rqa->mq_ctx > rqb->mq_ctx; 1910 if (rqa->mq_hctx != rqb->mq_hctx) 1911 return rqa->mq_hctx > rqb->mq_hctx; 1912 1913 return blk_rq_pos(rqa) > blk_rq_pos(rqb); 1914} 1915 1916void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1917{ 1918 LIST_HEAD(list); 1919 1920 if (list_empty(&plug->mq_list)) 1921 return; 1922 list_splice_init(&plug->mq_list, &list); 1923 1924 if (plug->rq_count > 2 && plug->multiple_queues) 1925 list_sort(NULL, &list, plug_rq_cmp); 1926 1927 plug->rq_count = 0; 1928 1929 do { 1930 struct list_head rq_list; 1931 struct request *rq, *head_rq = list_entry_rq(list.next); 1932 struct list_head *pos = &head_rq->queuelist; /* skip first */ 1933 struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx; 1934 struct blk_mq_ctx *this_ctx = head_rq->mq_ctx; 1935 unsigned int depth = 1; 1936 1937 list_for_each_continue(pos, &list) { 1938 rq = list_entry_rq(pos); 1939 BUG_ON(!rq->q); 1940 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) 1941 break; 1942 depth++; 1943 } 1944 1945 list_cut_before(&rq_list, &list, pos); 1946 trace_block_unplug(head_rq->q, depth, !from_schedule); 1947 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list, 1948 from_schedule); 1949 } while(!list_empty(&list)); 1950} 1951 1952static void blk_mq_bio_to_request(struct request *rq, struct bio *bio, 1953 unsigned int nr_segs) 1954{ 1955 int err; 1956 1957 if (bio->bi_opf & REQ_RAHEAD) 1958 rq->cmd_flags |= REQ_FAILFAST_MASK; 1959 1960 rq->__sector = bio->bi_iter.bi_sector; 1961 rq->write_hint = bio->bi_write_hint; 1962 blk_rq_bio_prep(rq, bio, nr_segs); 1963 1964 /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */ 1965 err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO); 1966 WARN_ON_ONCE(err); 1967 1968 blk_account_io_start(rq); 1969} 1970 1971static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx, 1972 struct request *rq, 1973 blk_qc_t *cookie, bool last) 1974{ 1975 struct request_queue *q = rq->q; 1976 struct blk_mq_queue_data bd = { 1977 .rq = rq, 1978 .last = last, 1979 }; 1980 blk_qc_t new_cookie; 1981 blk_status_t ret; 1982 1983 new_cookie = request_to_qc_t(hctx, rq); 1984 1985 /* 1986 * For OK queue, we are done. For error, caller may kill it. 1987 * Any other error (busy), just add it to our list as we 1988 * previously would have done. 1989 */ 1990 ret = q->mq_ops->queue_rq(hctx, &bd); 1991 switch (ret) { 1992 case BLK_STS_OK: 1993 blk_mq_update_dispatch_busy(hctx, false); 1994 *cookie = new_cookie; 1995 break; 1996 case BLK_STS_RESOURCE: 1997 case BLK_STS_DEV_RESOURCE: 1998 blk_mq_update_dispatch_busy(hctx, true); 1999 __blk_mq_requeue_request(rq); 2000 break; 2001 default: 2002 blk_mq_update_dispatch_busy(hctx, false); 2003 *cookie = BLK_QC_T_NONE; 2004 break; 2005 } 2006 2007 return ret; 2008} 2009 2010static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2011 struct request *rq, 2012 blk_qc_t *cookie, 2013 bool bypass_insert, bool last) 2014{ 2015 struct request_queue *q = rq->q; 2016 bool run_queue = true; 2017 int budget_token; 2018 2019 /* 2020 * RCU or SRCU read lock is needed before checking quiesced flag. 2021 * 2022 * When queue is stopped or quiesced, ignore 'bypass_insert' from 2023 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller, 2024 * and avoid driver to try to dispatch again. 2025 */ 2026 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) { 2027 run_queue = false; 2028 bypass_insert = false; 2029 goto insert; 2030 } 2031 2032 if (q->elevator && !bypass_insert) 2033 goto insert; 2034 2035 budget_token = blk_mq_get_dispatch_budget(q); 2036 if (budget_token < 0) 2037 goto insert; 2038 2039 blk_mq_set_rq_budget_token(rq, budget_token); 2040 2041 if (!blk_mq_get_driver_tag(rq)) { 2042 blk_mq_put_dispatch_budget(q, budget_token); 2043 goto insert; 2044 } 2045 2046 return __blk_mq_issue_directly(hctx, rq, cookie, last); 2047insert: 2048 if (bypass_insert) 2049 return BLK_STS_RESOURCE; 2050 2051 blk_mq_sched_insert_request(rq, false, run_queue, false); 2052 2053 return BLK_STS_OK; 2054} 2055 2056/** 2057 * blk_mq_try_issue_directly - Try to send a request directly to device driver. 2058 * @hctx: Pointer of the associated hardware queue. 2059 * @rq: Pointer to request to be sent. 2060 * @cookie: Request queue cookie. 2061 * 2062 * If the device has enough resources to accept a new request now, send the 2063 * request directly to device driver. Else, insert at hctx->dispatch queue, so 2064 * we can try send it another time in the future. Requests inserted at this 2065 * queue have higher priority. 2066 */ 2067static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx, 2068 struct request *rq, blk_qc_t *cookie) 2069{ 2070 blk_status_t ret; 2071 int srcu_idx; 2072 2073 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING); 2074 2075 hctx_lock(hctx, &srcu_idx); 2076 2077 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true); 2078 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) 2079 blk_mq_request_bypass_insert(rq, false, true); 2080 else if (ret != BLK_STS_OK) 2081 blk_mq_end_request(rq, ret); 2082 2083 hctx_unlock(hctx, srcu_idx); 2084} 2085 2086blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last) 2087{ 2088 blk_status_t ret; 2089 int srcu_idx; 2090 blk_qc_t unused_cookie; 2091 struct blk_mq_hw_ctx *hctx = rq->mq_hctx; 2092 2093 hctx_lock(hctx, &srcu_idx); 2094 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last); 2095 hctx_unlock(hctx, srcu_idx); 2096 2097 return ret; 2098} 2099 2100void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx, 2101 struct list_head *list) 2102{ 2103 int queued = 0; 2104 int errors = 0; 2105 2106 while (!list_empty(list)) { 2107 blk_status_t ret; 2108 struct request *rq = list_first_entry(list, struct request, 2109 queuelist); 2110 2111 list_del_init(&rq->queuelist); 2112 ret = blk_mq_request_issue_directly(rq, list_empty(list)); 2113 if (ret != BLK_STS_OK) { 2114 if (ret == BLK_STS_RESOURCE || 2115 ret == BLK_STS_DEV_RESOURCE) { 2116 blk_mq_request_bypass_insert(rq, false, 2117 list_empty(list)); 2118 break; 2119 } 2120 blk_mq_end_request(rq, ret); 2121 errors++; 2122 } else 2123 queued++; 2124 } 2125 2126 /* 2127 * If we didn't flush the entire list, we could have told 2128 * the driver there was more coming, but that turned out to 2129 * be a lie. 2130 */ 2131 if ((!list_empty(list) || errors) && 2132 hctx->queue->mq_ops->commit_rqs && queued) 2133 hctx->queue->mq_ops->commit_rqs(hctx); 2134} 2135 2136static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq) 2137{ 2138 list_add_tail(&rq->queuelist, &plug->mq_list); 2139 plug->rq_count++; 2140 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) { 2141 struct request *tmp; 2142 2143 tmp = list_first_entry(&plug->mq_list, struct request, 2144 queuelist); 2145 if (tmp->q != rq->q) 2146 plug->multiple_queues = true; 2147 } 2148} 2149 2150/* 2151 * Allow 4x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple 2152 * queues. This is important for md arrays to benefit from merging 2153 * requests. 2154 */ 2155static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug) 2156{ 2157 if (plug->multiple_queues) 2158 return BLK_MAX_REQUEST_COUNT * 4; 2159 return BLK_MAX_REQUEST_COUNT; 2160} 2161 2162/** 2163 * blk_mq_submit_bio - Create and send a request to block device. 2164 * @bio: Bio pointer. 2165 * 2166 * Builds up a request structure from @q and @bio and send to the device. The 2167 * request may not be queued directly to hardware if: 2168 * * This request can be merged with another one 2169 * * We want to place request at plug queue for possible future merging 2170 * * There is an IO scheduler active at this queue 2171 * 2172 * It will not queue the request if there is an error with the bio, or at the 2173 * request creation. 2174 * 2175 * Returns: Request queue cookie. 2176 */ 2177blk_qc_t blk_mq_submit_bio(struct bio *bio) 2178{ 2179 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 2180 const int is_sync = op_is_sync(bio->bi_opf); 2181 const int is_flush_fua = op_is_flush(bio->bi_opf); 2182 struct blk_mq_alloc_data data = { 2183 .q = q, 2184 }; 2185 struct request *rq; 2186 struct blk_plug *plug; 2187 struct request *same_queue_rq = NULL; 2188 unsigned int nr_segs; 2189 blk_qc_t cookie; 2190 blk_status_t ret; 2191 bool hipri; 2192 2193 blk_queue_bounce(q, &bio); 2194 __blk_queue_split(&bio, &nr_segs); 2195 2196 if (!bio_integrity_prep(bio)) 2197 goto queue_exit; 2198 2199 if (!is_flush_fua && !blk_queue_nomerges(q) && 2200 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq)) 2201 goto queue_exit; 2202 2203 if (blk_mq_sched_bio_merge(q, bio, nr_segs)) 2204 goto queue_exit; 2205 2206 rq_qos_throttle(q, bio); 2207 2208 hipri = bio->bi_opf & REQ_HIPRI; 2209 2210 data.cmd_flags = bio->bi_opf; 2211 rq = __blk_mq_alloc_request(&data); 2212 if (unlikely(!rq)) { 2213 rq_qos_cleanup(q, bio); 2214 if (bio->bi_opf & REQ_NOWAIT) 2215 bio_wouldblock_error(bio); 2216 goto queue_exit; 2217 } 2218 2219 trace_block_getrq(bio); 2220 2221 rq_qos_track(q, rq, bio); 2222 2223 cookie = request_to_qc_t(data.hctx, rq); 2224 2225 blk_mq_bio_to_request(rq, bio, nr_segs); 2226 2227 ret = blk_crypto_init_request(rq); 2228 if (ret != BLK_STS_OK) { 2229 bio->bi_status = ret; 2230 bio_endio(bio); 2231 blk_mq_free_request(rq); 2232 return BLK_QC_T_NONE; 2233 } 2234 2235 plug = blk_mq_plug(q, bio); 2236 if (unlikely(is_flush_fua)) { 2237 /* Bypass scheduler for flush requests */ 2238 blk_insert_flush(rq); 2239 blk_mq_run_hw_queue(data.hctx, true); 2240 } else if (plug && (q->nr_hw_queues == 1 || 2241 blk_mq_is_sbitmap_shared(rq->mq_hctx->flags) || 2242 q->mq_ops->commit_rqs || !blk_queue_nonrot(q))) { 2243 /* 2244 * Use plugging if we have a ->commit_rqs() hook as well, as 2245 * we know the driver uses bd->last in a smart fashion. 2246 * 2247 * Use normal plugging if this disk is slow HDD, as sequential 2248 * IO may benefit a lot from plug merging. 2249 */ 2250 unsigned int request_count = plug->rq_count; 2251 struct request *last = NULL; 2252 2253 if (!request_count) 2254 trace_block_plug(q); 2255 else 2256 last = list_entry_rq(plug->mq_list.prev); 2257 2258 if (request_count >= blk_plug_max_rq_count(plug) || (last && 2259 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) { 2260 blk_flush_plug_list(plug, false); 2261 trace_block_plug(q); 2262 } 2263 2264 blk_add_rq_to_plug(plug, rq); 2265 } else if (q->elevator) { 2266 /* Insert the request at the IO scheduler queue */ 2267 blk_mq_sched_insert_request(rq, false, true, true); 2268 } else if (plug && !blk_queue_nomerges(q)) { 2269 /* 2270 * We do limited plugging. If the bio can be merged, do that. 2271 * Otherwise the existing request in the plug list will be 2272 * issued. So the plug list will have one request at most 2273 * The plug list might get flushed before this. If that happens, 2274 * the plug list is empty, and same_queue_rq is invalid. 2275 */ 2276 if (list_empty(&plug->mq_list)) 2277 same_queue_rq = NULL; 2278 if (same_queue_rq) { 2279 list_del_init(&same_queue_rq->queuelist); 2280 plug->rq_count--; 2281 } 2282 blk_add_rq_to_plug(plug, rq); 2283 trace_block_plug(q); 2284 2285 if (same_queue_rq) { 2286 data.hctx = same_queue_rq->mq_hctx; 2287 trace_block_unplug(q, 1, true); 2288 blk_mq_try_issue_directly(data.hctx, same_queue_rq, 2289 &cookie); 2290 } 2291 } else if ((q->nr_hw_queues > 1 && is_sync) || 2292 !data.hctx->dispatch_busy) { 2293 /* 2294 * There is no scheduler and we can try to send directly 2295 * to the hardware. 2296 */ 2297 blk_mq_try_issue_directly(data.hctx, rq, &cookie); 2298 } else { 2299 /* Default case. */ 2300 blk_mq_sched_insert_request(rq, false, true, true); 2301 } 2302 2303 if (!hipri) 2304 return BLK_QC_T_NONE; 2305 return cookie; 2306queue_exit: 2307 blk_queue_exit(q); 2308 return BLK_QC_T_NONE; 2309} 2310 2311static size_t order_to_size(unsigned int order) 2312{ 2313 return (size_t)PAGE_SIZE << order; 2314} 2315 2316/* called before freeing request pool in @tags */ 2317static void blk_mq_clear_rq_mapping(struct blk_mq_tag_set *set, 2318 struct blk_mq_tags *tags, unsigned int hctx_idx) 2319{ 2320 struct blk_mq_tags *drv_tags = set->tags[hctx_idx]; 2321 struct page *page; 2322 unsigned long flags; 2323 2324 list_for_each_entry(page, &tags->page_list, lru) { 2325 unsigned long start = (unsigned long)page_address(page); 2326 unsigned long end = start + order_to_size(page->private); 2327 int i; 2328 2329 for (i = 0; i < set->queue_depth; i++) { 2330 struct request *rq = drv_tags->rqs[i]; 2331 unsigned long rq_addr = (unsigned long)rq; 2332 2333 if (rq_addr >= start && rq_addr < end) { 2334 WARN_ON_ONCE(refcount_read(&rq->ref) != 0); 2335 cmpxchg(&drv_tags->rqs[i], rq, NULL); 2336 } 2337 } 2338 } 2339 2340 /* 2341 * Wait until all pending iteration is done. 2342 * 2343 * Request reference is cleared and it is guaranteed to be observed 2344 * after the ->lock is released. 2345 */ 2346 spin_lock_irqsave(&drv_tags->lock, flags); 2347 spin_unlock_irqrestore(&drv_tags->lock, flags); 2348} 2349 2350void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2351 unsigned int hctx_idx) 2352{ 2353 struct page *page; 2354 2355 if (tags->rqs && set->ops->exit_request) { 2356 int i; 2357 2358 for (i = 0; i < tags->nr_tags; i++) { 2359 struct request *rq = tags->static_rqs[i]; 2360 2361 if (!rq) 2362 continue; 2363 set->ops->exit_request(set, rq, hctx_idx); 2364 tags->static_rqs[i] = NULL; 2365 } 2366 } 2367 2368 blk_mq_clear_rq_mapping(set, tags, hctx_idx); 2369 2370 while (!list_empty(&tags->page_list)) { 2371 page = list_first_entry(&tags->page_list, struct page, lru); 2372 list_del_init(&page->lru); 2373 /* 2374 * Remove kmemleak object previously allocated in 2375 * blk_mq_alloc_rqs(). 2376 */ 2377 kmemleak_free(page_address(page)); 2378 __free_pages(page, page->private); 2379 } 2380} 2381 2382void blk_mq_free_rq_map(struct blk_mq_tags *tags, unsigned int flags) 2383{ 2384 kfree(tags->rqs); 2385 tags->rqs = NULL; 2386 kfree(tags->static_rqs); 2387 tags->static_rqs = NULL; 2388 2389 blk_mq_free_tags(tags, flags); 2390} 2391 2392struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, 2393 unsigned int hctx_idx, 2394 unsigned int nr_tags, 2395 unsigned int reserved_tags, 2396 unsigned int flags) 2397{ 2398 struct blk_mq_tags *tags; 2399 int node; 2400 2401 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2402 if (node == NUMA_NO_NODE) 2403 node = set->numa_node; 2404 2405 tags = blk_mq_init_tags(nr_tags, reserved_tags, node, flags); 2406 if (!tags) 2407 return NULL; 2408 2409 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2410 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2411 node); 2412 if (!tags->rqs) { 2413 blk_mq_free_tags(tags, flags); 2414 return NULL; 2415 } 2416 2417 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *), 2418 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, 2419 node); 2420 if (!tags->static_rqs) { 2421 kfree(tags->rqs); 2422 blk_mq_free_tags(tags, flags); 2423 return NULL; 2424 } 2425 2426 return tags; 2427} 2428 2429static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq, 2430 unsigned int hctx_idx, int node) 2431{ 2432 int ret; 2433 2434 if (set->ops->init_request) { 2435 ret = set->ops->init_request(set, rq, hctx_idx, node); 2436 if (ret) 2437 return ret; 2438 } 2439 2440 WRITE_ONCE(rq->state, MQ_RQ_IDLE); 2441 return 0; 2442} 2443 2444int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags, 2445 unsigned int hctx_idx, unsigned int depth) 2446{ 2447 unsigned int i, j, entries_per_page, max_order = 4; 2448 size_t rq_size, left; 2449 int node; 2450 2451 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx); 2452 if (node == NUMA_NO_NODE) 2453 node = set->numa_node; 2454 2455 INIT_LIST_HEAD(&tags->page_list); 2456 2457 /* 2458 * rq_size is the size of the request plus driver payload, rounded 2459 * to the cacheline size 2460 */ 2461 rq_size = round_up(sizeof(struct request) + set->cmd_size, 2462 cache_line_size()); 2463 left = rq_size * depth; 2464 2465 for (i = 0; i < depth; ) { 2466 int this_order = max_order; 2467 struct page *page; 2468 int to_do; 2469 void *p; 2470 2471 while (this_order && left < order_to_size(this_order - 1)) 2472 this_order--; 2473 2474 do { 2475 page = alloc_pages_node(node, 2476 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO, 2477 this_order); 2478 if (page) 2479 break; 2480 if (!this_order--) 2481 break; 2482 if (order_to_size(this_order) < rq_size) 2483 break; 2484 } while (1); 2485 2486 if (!page) 2487 goto fail; 2488 2489 page->private = this_order; 2490 list_add_tail(&page->lru, &tags->page_list); 2491 2492 p = page_address(page); 2493 /* 2494 * Allow kmemleak to scan these pages as they contain pointers 2495 * to additional allocations like via ops->init_request(). 2496 */ 2497 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO); 2498 entries_per_page = order_to_size(this_order) / rq_size; 2499 to_do = min(entries_per_page, depth - i); 2500 left -= to_do * rq_size; 2501 for (j = 0; j < to_do; j++) { 2502 struct request *rq = p; 2503 2504 tags->static_rqs[i] = rq; 2505 if (blk_mq_init_request(set, rq, hctx_idx, node)) { 2506 tags->static_rqs[i] = NULL; 2507 goto fail; 2508 } 2509 2510 p += rq_size; 2511 i++; 2512 } 2513 } 2514 return 0; 2515 2516fail: 2517 blk_mq_free_rqs(set, tags, hctx_idx); 2518 return -ENOMEM; 2519} 2520 2521struct rq_iter_data { 2522 struct blk_mq_hw_ctx *hctx; 2523 bool has_rq; 2524}; 2525 2526static bool blk_mq_has_request(struct request *rq, void *data, bool reserved) 2527{ 2528 struct rq_iter_data *iter_data = data; 2529 2530 if (rq->mq_hctx != iter_data->hctx) 2531 return true; 2532 iter_data->has_rq = true; 2533 return false; 2534} 2535 2536static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx) 2537{ 2538 struct blk_mq_tags *tags = hctx->sched_tags ? 2539 hctx->sched_tags : hctx->tags; 2540 struct rq_iter_data data = { 2541 .hctx = hctx, 2542 }; 2543 2544 blk_mq_all_tag_iter(tags, blk_mq_has_request, &data); 2545 return data.has_rq; 2546} 2547 2548static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu, 2549 struct blk_mq_hw_ctx *hctx) 2550{ 2551 if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu) 2552 return false; 2553 if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids) 2554 return false; 2555 return true; 2556} 2557 2558static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node) 2559{ 2560 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2561 struct blk_mq_hw_ctx, cpuhp_online); 2562 2563 if (!cpumask_test_cpu(cpu, hctx->cpumask) || 2564 !blk_mq_last_cpu_in_hctx(cpu, hctx)) 2565 return 0; 2566 2567 /* 2568 * Prevent new request from being allocated on the current hctx. 2569 * 2570 * The smp_mb__after_atomic() Pairs with the implied barrier in 2571 * test_and_set_bit_lock in sbitmap_get(). Ensures the inactive flag is 2572 * seen once we return from the tag allocator. 2573 */ 2574 set_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2575 smp_mb__after_atomic(); 2576 2577 /* 2578 * Try to grab a reference to the queue and wait for any outstanding 2579 * requests. If we could not grab a reference the queue has been 2580 * frozen and there are no requests. 2581 */ 2582 if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) { 2583 while (blk_mq_hctx_has_requests(hctx)) 2584 msleep(5); 2585 percpu_ref_put(&hctx->queue->q_usage_counter); 2586 } 2587 2588 return 0; 2589} 2590 2591static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node) 2592{ 2593 struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node, 2594 struct blk_mq_hw_ctx, cpuhp_online); 2595 2596 if (cpumask_test_cpu(cpu, hctx->cpumask)) 2597 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state); 2598 return 0; 2599} 2600 2601/* 2602 * 'cpu' is going away. splice any existing rq_list entries from this 2603 * software queue to the hw queue dispatch list, and ensure that it 2604 * gets run. 2605 */ 2606static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node) 2607{ 2608 struct blk_mq_hw_ctx *hctx; 2609 struct blk_mq_ctx *ctx; 2610 LIST_HEAD(tmp); 2611 enum hctx_type type; 2612 2613 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead); 2614 if (!cpumask_test_cpu(cpu, hctx->cpumask)) 2615 return 0; 2616 2617 ctx = __blk_mq_get_ctx(hctx->queue, cpu); 2618 type = hctx->type; 2619 2620 spin_lock(&ctx->lock); 2621 if (!list_empty(&ctx->rq_lists[type])) { 2622 list_splice_init(&ctx->rq_lists[type], &tmp); 2623 blk_mq_hctx_clear_pending(hctx, ctx); 2624 } 2625 spin_unlock(&ctx->lock); 2626 2627 if (list_empty(&tmp)) 2628 return 0; 2629 2630 spin_lock(&hctx->lock); 2631 list_splice_tail_init(&tmp, &hctx->dispatch); 2632 spin_unlock(&hctx->lock); 2633 2634 blk_mq_run_hw_queue(hctx, true); 2635 return 0; 2636} 2637 2638static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx) 2639{ 2640 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2641 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2642 &hctx->cpuhp_online); 2643 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD, 2644 &hctx->cpuhp_dead); 2645} 2646 2647/* 2648 * Before freeing hw queue, clearing the flush request reference in 2649 * tags->rqs[] for avoiding potential UAF. 2650 */ 2651static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags, 2652 unsigned int queue_depth, struct request *flush_rq) 2653{ 2654 int i; 2655 unsigned long flags; 2656 2657 /* The hw queue may not be mapped yet */ 2658 if (!tags) 2659 return; 2660 2661 WARN_ON_ONCE(refcount_read(&flush_rq->ref) != 0); 2662 2663 for (i = 0; i < queue_depth; i++) 2664 cmpxchg(&tags->rqs[i], flush_rq, NULL); 2665 2666 /* 2667 * Wait until all pending iteration is done. 2668 * 2669 * Request reference is cleared and it is guaranteed to be observed 2670 * after the ->lock is released. 2671 */ 2672 spin_lock_irqsave(&tags->lock, flags); 2673 spin_unlock_irqrestore(&tags->lock, flags); 2674} 2675 2676/* hctx->ctxs will be freed in queue's release handler */ 2677static void blk_mq_exit_hctx(struct request_queue *q, 2678 struct blk_mq_tag_set *set, 2679 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) 2680{ 2681 struct request *flush_rq = hctx->fq->flush_rq; 2682 2683 if (blk_mq_hw_queue_mapped(hctx)) 2684 blk_mq_tag_idle(hctx); 2685 2686 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx], 2687 set->queue_depth, flush_rq); 2688 if (set->ops->exit_request) 2689 set->ops->exit_request(set, flush_rq, hctx_idx); 2690 2691 if (set->ops->exit_hctx) 2692 set->ops->exit_hctx(hctx, hctx_idx); 2693 2694 blk_mq_remove_cpuhp(hctx); 2695 2696 spin_lock(&q->unused_hctx_lock); 2697 list_add(&hctx->hctx_list, &q->unused_hctx_list); 2698 spin_unlock(&q->unused_hctx_lock); 2699} 2700 2701static void blk_mq_exit_hw_queues(struct request_queue *q, 2702 struct blk_mq_tag_set *set, int nr_queue) 2703{ 2704 struct blk_mq_hw_ctx *hctx; 2705 unsigned int i; 2706 2707 queue_for_each_hw_ctx(q, hctx, i) { 2708 if (i == nr_queue) 2709 break; 2710 blk_mq_debugfs_unregister_hctx(hctx); 2711 blk_mq_exit_hctx(q, set, hctx, i); 2712 } 2713} 2714 2715static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set) 2716{ 2717 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx); 2718 2719 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu), 2720 __alignof__(struct blk_mq_hw_ctx)) != 2721 sizeof(struct blk_mq_hw_ctx)); 2722 2723 if (tag_set->flags & BLK_MQ_F_BLOCKING) 2724 hw_ctx_size += sizeof(struct srcu_struct); 2725 2726 return hw_ctx_size; 2727} 2728 2729static int blk_mq_init_hctx(struct request_queue *q, 2730 struct blk_mq_tag_set *set, 2731 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx) 2732{ 2733 hctx->queue_num = hctx_idx; 2734 2735 if (!(hctx->flags & BLK_MQ_F_STACKING)) 2736 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE, 2737 &hctx->cpuhp_online); 2738 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead); 2739 2740 hctx->tags = set->tags[hctx_idx]; 2741 2742 if (set->ops->init_hctx && 2743 set->ops->init_hctx(hctx, set->driver_data, hctx_idx)) 2744 goto unregister_cpu_notifier; 2745 2746 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, 2747 hctx->numa_node)) 2748 goto exit_hctx; 2749 return 0; 2750 2751 exit_hctx: 2752 if (set->ops->exit_hctx) 2753 set->ops->exit_hctx(hctx, hctx_idx); 2754 unregister_cpu_notifier: 2755 blk_mq_remove_cpuhp(hctx); 2756 return -1; 2757} 2758 2759static struct blk_mq_hw_ctx * 2760blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set, 2761 int node) 2762{ 2763 struct blk_mq_hw_ctx *hctx; 2764 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY; 2765 2766 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node); 2767 if (!hctx) 2768 goto fail_alloc_hctx; 2769 2770 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node)) 2771 goto free_hctx; 2772 2773 atomic_set(&hctx->nr_active, 0); 2774 if (node == NUMA_NO_NODE) 2775 node = set->numa_node; 2776 hctx->numa_node = node; 2777 2778 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn); 2779 spin_lock_init(&hctx->lock); 2780 INIT_LIST_HEAD(&hctx->dispatch); 2781 hctx->queue = q; 2782 hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED; 2783 2784 INIT_LIST_HEAD(&hctx->hctx_list); 2785 2786 /* 2787 * Allocate space for all possible cpus to avoid allocation at 2788 * runtime 2789 */ 2790 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *), 2791 gfp, node); 2792 if (!hctx->ctxs) 2793 goto free_cpumask; 2794 2795 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), 2796 gfp, node, false, false)) 2797 goto free_ctxs; 2798 hctx->nr_ctx = 0; 2799 2800 spin_lock_init(&hctx->dispatch_wait_lock); 2801 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake); 2802 INIT_LIST_HEAD(&hctx->dispatch_wait.entry); 2803 2804 hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp); 2805 if (!hctx->fq) 2806 goto free_bitmap; 2807 2808 if (hctx->flags & BLK_MQ_F_BLOCKING) 2809 init_srcu_struct(hctx->srcu); 2810 blk_mq_hctx_kobj_init(hctx); 2811 2812 return hctx; 2813 2814 free_bitmap: 2815 sbitmap_free(&hctx->ctx_map); 2816 free_ctxs: 2817 kfree(hctx->ctxs); 2818 free_cpumask: 2819 free_cpumask_var(hctx->cpumask); 2820 free_hctx: 2821 kfree(hctx); 2822 fail_alloc_hctx: 2823 return NULL; 2824} 2825 2826static void blk_mq_init_cpu_queues(struct request_queue *q, 2827 unsigned int nr_hw_queues) 2828{ 2829 struct blk_mq_tag_set *set = q->tag_set; 2830 unsigned int i, j; 2831 2832 for_each_possible_cpu(i) { 2833 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i); 2834 struct blk_mq_hw_ctx *hctx; 2835 int k; 2836 2837 __ctx->cpu = i; 2838 spin_lock_init(&__ctx->lock); 2839 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++) 2840 INIT_LIST_HEAD(&__ctx->rq_lists[k]); 2841 2842 __ctx->queue = q; 2843 2844 /* 2845 * Set local node, IFF we have more than one hw queue. If 2846 * not, we remain on the home node of the device 2847 */ 2848 for (j = 0; j < set->nr_maps; j++) { 2849 hctx = blk_mq_map_queue_type(q, j, i); 2850 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE) 2851 hctx->numa_node = cpu_to_node(i); 2852 } 2853 } 2854} 2855 2856static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set, 2857 int hctx_idx) 2858{ 2859 unsigned int flags = set->flags; 2860 int ret = 0; 2861 2862 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx, 2863 set->queue_depth, set->reserved_tags, flags); 2864 if (!set->tags[hctx_idx]) 2865 return false; 2866 2867 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx, 2868 set->queue_depth); 2869 if (!ret) 2870 return true; 2871 2872 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2873 set->tags[hctx_idx] = NULL; 2874 return false; 2875} 2876 2877static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set, 2878 unsigned int hctx_idx) 2879{ 2880 unsigned int flags = set->flags; 2881 2882 if (set->tags && set->tags[hctx_idx]) { 2883 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx); 2884 blk_mq_free_rq_map(set->tags[hctx_idx], flags); 2885 set->tags[hctx_idx] = NULL; 2886 } 2887} 2888 2889static void blk_mq_map_swqueue(struct request_queue *q) 2890{ 2891 unsigned int i, j, hctx_idx; 2892 struct blk_mq_hw_ctx *hctx; 2893 struct blk_mq_ctx *ctx; 2894 struct blk_mq_tag_set *set = q->tag_set; 2895 2896 queue_for_each_hw_ctx(q, hctx, i) { 2897 cpumask_clear(hctx->cpumask); 2898 hctx->nr_ctx = 0; 2899 hctx->dispatch_from = NULL; 2900 } 2901 2902 /* 2903 * Map software to hardware queues. 2904 * 2905 * If the cpu isn't present, the cpu is mapped to first hctx. 2906 */ 2907 for_each_possible_cpu(i) { 2908 2909 ctx = per_cpu_ptr(q->queue_ctx, i); 2910 for (j = 0; j < set->nr_maps; j++) { 2911 if (!set->map[j].nr_queues) { 2912 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2913 HCTX_TYPE_DEFAULT, i); 2914 continue; 2915 } 2916 hctx_idx = set->map[j].mq_map[i]; 2917 /* unmapped hw queue can be remapped after CPU topo changed */ 2918 if (!set->tags[hctx_idx] && 2919 !__blk_mq_alloc_map_and_request(set, hctx_idx)) { 2920 /* 2921 * If tags initialization fail for some hctx, 2922 * that hctx won't be brought online. In this 2923 * case, remap the current ctx to hctx[0] which 2924 * is guaranteed to always have tags allocated 2925 */ 2926 set->map[j].mq_map[i] = 0; 2927 } 2928 2929 hctx = blk_mq_map_queue_type(q, j, i); 2930 ctx->hctxs[j] = hctx; 2931 /* 2932 * If the CPU is already set in the mask, then we've 2933 * mapped this one already. This can happen if 2934 * devices share queues across queue maps. 2935 */ 2936 if (cpumask_test_cpu(i, hctx->cpumask)) 2937 continue; 2938 2939 cpumask_set_cpu(i, hctx->cpumask); 2940 hctx->type = j; 2941 ctx->index_hw[hctx->type] = hctx->nr_ctx; 2942 hctx->ctxs[hctx->nr_ctx++] = ctx; 2943 2944 /* 2945 * If the nr_ctx type overflows, we have exceeded the 2946 * amount of sw queues we can support. 2947 */ 2948 BUG_ON(!hctx->nr_ctx); 2949 } 2950 2951 for (; j < HCTX_MAX_TYPES; j++) 2952 ctx->hctxs[j] = blk_mq_map_queue_type(q, 2953 HCTX_TYPE_DEFAULT, i); 2954 } 2955 2956 queue_for_each_hw_ctx(q, hctx, i) { 2957 /* 2958 * If no software queues are mapped to this hardware queue, 2959 * disable it and free the request entries. 2960 */ 2961 if (!hctx->nr_ctx) { 2962 /* Never unmap queue 0. We need it as a 2963 * fallback in case of a new remap fails 2964 * allocation 2965 */ 2966 if (i && set->tags[i]) 2967 blk_mq_free_map_and_requests(set, i); 2968 2969 hctx->tags = NULL; 2970 continue; 2971 } 2972 2973 hctx->tags = set->tags[i]; 2974 WARN_ON(!hctx->tags); 2975 2976 /* 2977 * Set the map size to the number of mapped software queues. 2978 * This is more accurate and more efficient than looping 2979 * over all possibly mapped software queues. 2980 */ 2981 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx); 2982 2983 /* 2984 * Initialize batch roundrobin counts 2985 */ 2986 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx); 2987 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH; 2988 } 2989} 2990 2991/* 2992 * Caller needs to ensure that we're either frozen/quiesced, or that 2993 * the queue isn't live yet. 2994 */ 2995static void queue_set_hctx_shared(struct request_queue *q, bool shared) 2996{ 2997 struct blk_mq_hw_ctx *hctx; 2998 int i; 2999 3000 queue_for_each_hw_ctx(q, hctx, i) { 3001 if (shared) { 3002 hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3003 } else { 3004 blk_mq_tag_idle(hctx); 3005 hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3006 } 3007 } 3008} 3009 3010static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set, 3011 bool shared) 3012{ 3013 struct request_queue *q; 3014 3015 lockdep_assert_held(&set->tag_list_lock); 3016 3017 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3018 blk_mq_freeze_queue(q); 3019 queue_set_hctx_shared(q, shared); 3020 blk_mq_unfreeze_queue(q); 3021 } 3022} 3023 3024static void blk_mq_del_queue_tag_set(struct request_queue *q) 3025{ 3026 struct blk_mq_tag_set *set = q->tag_set; 3027 3028 mutex_lock(&set->tag_list_lock); 3029 list_del(&q->tag_set_list); 3030 if (list_is_singular(&set->tag_list)) { 3031 /* just transitioned to unshared */ 3032 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED; 3033 /* update existing queue */ 3034 blk_mq_update_tag_set_shared(set, false); 3035 } 3036 mutex_unlock(&set->tag_list_lock); 3037 INIT_LIST_HEAD(&q->tag_set_list); 3038} 3039 3040static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set, 3041 struct request_queue *q) 3042{ 3043 mutex_lock(&set->tag_list_lock); 3044 3045 /* 3046 * Check to see if we're transitioning to shared (from 1 to 2 queues). 3047 */ 3048 if (!list_empty(&set->tag_list) && 3049 !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) { 3050 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED; 3051 /* update existing queue */ 3052 blk_mq_update_tag_set_shared(set, true); 3053 } 3054 if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED) 3055 queue_set_hctx_shared(q, true); 3056 list_add_tail(&q->tag_set_list, &set->tag_list); 3057 3058 mutex_unlock(&set->tag_list_lock); 3059} 3060 3061/* All allocations will be freed in release handler of q->mq_kobj */ 3062static int blk_mq_alloc_ctxs(struct request_queue *q) 3063{ 3064 struct blk_mq_ctxs *ctxs; 3065 int cpu; 3066 3067 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL); 3068 if (!ctxs) 3069 return -ENOMEM; 3070 3071 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx); 3072 if (!ctxs->queue_ctx) 3073 goto fail; 3074 3075 for_each_possible_cpu(cpu) { 3076 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu); 3077 ctx->ctxs = ctxs; 3078 } 3079 3080 q->mq_kobj = &ctxs->kobj; 3081 q->queue_ctx = ctxs->queue_ctx; 3082 3083 return 0; 3084 fail: 3085 kfree(ctxs); 3086 return -ENOMEM; 3087} 3088 3089/* 3090 * It is the actual release handler for mq, but we do it from 3091 * request queue's release handler for avoiding use-after-free 3092 * and headache because q->mq_kobj shouldn't have been introduced, 3093 * but we can't group ctx/kctx kobj without it. 3094 */ 3095void blk_mq_release(struct request_queue *q) 3096{ 3097 struct blk_mq_hw_ctx *hctx, *next; 3098 int i; 3099 3100 queue_for_each_hw_ctx(q, hctx, i) 3101 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list)); 3102 3103 /* all hctx are in .unused_hctx_list now */ 3104 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) { 3105 list_del_init(&hctx->hctx_list); 3106 kobject_put(&hctx->kobj); 3107 } 3108 3109 kfree(q->queue_hw_ctx); 3110 3111 /* 3112 * release .mq_kobj and sw queue's kobject now because 3113 * both share lifetime with request queue. 3114 */ 3115 blk_mq_sysfs_deinit(q); 3116} 3117 3118static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set, 3119 void *queuedata) 3120{ 3121 struct request_queue *q; 3122 int ret; 3123 3124 q = blk_alloc_queue(set->numa_node); 3125 if (!q) 3126 return ERR_PTR(-ENOMEM); 3127 q->queuedata = queuedata; 3128 ret = blk_mq_init_allocated_queue(set, q); 3129 if (ret) { 3130 blk_cleanup_queue(q); 3131 return ERR_PTR(ret); 3132 } 3133 return q; 3134} 3135 3136struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set) 3137{ 3138 return blk_mq_init_queue_data(set, NULL); 3139} 3140EXPORT_SYMBOL(blk_mq_init_queue); 3141 3142struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata, 3143 struct lock_class_key *lkclass) 3144{ 3145 struct request_queue *q; 3146 struct gendisk *disk; 3147 3148 q = blk_mq_init_queue_data(set, queuedata); 3149 if (IS_ERR(q)) 3150 return ERR_CAST(q); 3151 3152 disk = __alloc_disk_node(q, set->numa_node, lkclass); 3153 if (!disk) { 3154 blk_cleanup_queue(q); 3155 return ERR_PTR(-ENOMEM); 3156 } 3157 return disk; 3158} 3159EXPORT_SYMBOL(__blk_mq_alloc_disk); 3160 3161static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx( 3162 struct blk_mq_tag_set *set, struct request_queue *q, 3163 int hctx_idx, int node) 3164{ 3165 struct blk_mq_hw_ctx *hctx = NULL, *tmp; 3166 3167 /* reuse dead hctx first */ 3168 spin_lock(&q->unused_hctx_lock); 3169 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) { 3170 if (tmp->numa_node == node) { 3171 hctx = tmp; 3172 break; 3173 } 3174 } 3175 if (hctx) 3176 list_del_init(&hctx->hctx_list); 3177 spin_unlock(&q->unused_hctx_lock); 3178 3179 if (!hctx) 3180 hctx = blk_mq_alloc_hctx(q, set, node); 3181 if (!hctx) 3182 goto fail; 3183 3184 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) 3185 goto free_hctx; 3186 3187 return hctx; 3188 3189 free_hctx: 3190 kobject_put(&hctx->kobj); 3191 fail: 3192 return NULL; 3193} 3194 3195static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set, 3196 struct request_queue *q) 3197{ 3198 int i, j, end; 3199 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx; 3200 3201 if (q->nr_hw_queues < set->nr_hw_queues) { 3202 struct blk_mq_hw_ctx **new_hctxs; 3203 3204 new_hctxs = kcalloc_node(set->nr_hw_queues, 3205 sizeof(*new_hctxs), GFP_KERNEL, 3206 set->numa_node); 3207 if (!new_hctxs) 3208 return; 3209 if (hctxs) 3210 memcpy(new_hctxs, hctxs, q->nr_hw_queues * 3211 sizeof(*hctxs)); 3212 q->queue_hw_ctx = new_hctxs; 3213 kfree(hctxs); 3214 hctxs = new_hctxs; 3215 } 3216 3217 /* protect against switching io scheduler */ 3218 mutex_lock(&q->sysfs_lock); 3219 for (i = 0; i < set->nr_hw_queues; i++) { 3220 int node; 3221 struct blk_mq_hw_ctx *hctx; 3222 3223 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i); 3224 /* 3225 * If the hw queue has been mapped to another numa node, 3226 * we need to realloc the hctx. If allocation fails, fallback 3227 * to use the previous one. 3228 */ 3229 if (hctxs[i] && (hctxs[i]->numa_node == node)) 3230 continue; 3231 3232 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node); 3233 if (hctx) { 3234 if (hctxs[i]) 3235 blk_mq_exit_hctx(q, set, hctxs[i], i); 3236 hctxs[i] = hctx; 3237 } else { 3238 if (hctxs[i]) 3239 pr_warn("Allocate new hctx on node %d fails,\ 3240 fallback to previous one on node %d\n", 3241 node, hctxs[i]->numa_node); 3242 else 3243 break; 3244 } 3245 } 3246 /* 3247 * Increasing nr_hw_queues fails. Free the newly allocated 3248 * hctxs and keep the previous q->nr_hw_queues. 3249 */ 3250 if (i != set->nr_hw_queues) { 3251 j = q->nr_hw_queues; 3252 end = i; 3253 } else { 3254 j = i; 3255 end = q->nr_hw_queues; 3256 q->nr_hw_queues = set->nr_hw_queues; 3257 } 3258 3259 for (; j < end; j++) { 3260 struct blk_mq_hw_ctx *hctx = hctxs[j]; 3261 3262 if (hctx) { 3263 if (hctx->tags) 3264 blk_mq_free_map_and_requests(set, j); 3265 blk_mq_exit_hctx(q, set, hctx, j); 3266 hctxs[j] = NULL; 3267 } 3268 } 3269 mutex_unlock(&q->sysfs_lock); 3270} 3271 3272int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set, 3273 struct request_queue *q) 3274{ 3275 /* mark the queue as mq asap */ 3276 q->mq_ops = set->ops; 3277 3278 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn, 3279 blk_mq_poll_stats_bkt, 3280 BLK_MQ_POLL_STATS_BKTS, q); 3281 if (!q->poll_cb) 3282 goto err_exit; 3283 3284 if (blk_mq_alloc_ctxs(q)) 3285 goto err_poll; 3286 3287 /* init q->mq_kobj and sw queues' kobjects */ 3288 blk_mq_sysfs_init(q); 3289 3290 INIT_LIST_HEAD(&q->unused_hctx_list); 3291 spin_lock_init(&q->unused_hctx_lock); 3292 3293 blk_mq_realloc_hw_ctxs(set, q); 3294 if (!q->nr_hw_queues) 3295 goto err_hctxs; 3296 3297 INIT_WORK(&q->timeout_work, blk_mq_timeout_work); 3298 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ); 3299 3300 q->tag_set = set; 3301 3302 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT; 3303 if (set->nr_maps > HCTX_TYPE_POLL && 3304 set->map[HCTX_TYPE_POLL].nr_queues) 3305 blk_queue_flag_set(QUEUE_FLAG_POLL, q); 3306 3307 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work); 3308 INIT_LIST_HEAD(&q->requeue_list); 3309 spin_lock_init(&q->requeue_lock); 3310 3311 q->nr_requests = set->queue_depth; 3312 3313 /* 3314 * Default to classic polling 3315 */ 3316 q->poll_nsec = BLK_MQ_POLL_CLASSIC; 3317 3318 blk_mq_init_cpu_queues(q, set->nr_hw_queues); 3319 blk_mq_add_queue_tag_set(set, q); 3320 blk_mq_map_swqueue(q); 3321 return 0; 3322 3323err_hctxs: 3324 kfree(q->queue_hw_ctx); 3325 q->nr_hw_queues = 0; 3326 blk_mq_sysfs_deinit(q); 3327err_poll: 3328 blk_stat_free_callback(q->poll_cb); 3329 q->poll_cb = NULL; 3330err_exit: 3331 q->mq_ops = NULL; 3332 return -ENOMEM; 3333} 3334EXPORT_SYMBOL(blk_mq_init_allocated_queue); 3335 3336/* tags can _not_ be used after returning from blk_mq_exit_queue */ 3337void blk_mq_exit_queue(struct request_queue *q) 3338{ 3339 struct blk_mq_tag_set *set = q->tag_set; 3340 3341 /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */ 3342 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues); 3343 /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */ 3344 blk_mq_del_queue_tag_set(q); 3345} 3346 3347static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set) 3348{ 3349 int i; 3350 3351 for (i = 0; i < set->nr_hw_queues; i++) { 3352 if (!__blk_mq_alloc_map_and_request(set, i)) 3353 goto out_unwind; 3354 cond_resched(); 3355 } 3356 3357 return 0; 3358 3359out_unwind: 3360 while (--i >= 0) 3361 blk_mq_free_map_and_requests(set, i); 3362 3363 return -ENOMEM; 3364} 3365 3366/* 3367 * Allocate the request maps associated with this tag_set. Note that this 3368 * may reduce the depth asked for, if memory is tight. set->queue_depth 3369 * will be updated to reflect the allocated depth. 3370 */ 3371static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set) 3372{ 3373 unsigned int depth; 3374 int err; 3375 3376 depth = set->queue_depth; 3377 do { 3378 err = __blk_mq_alloc_rq_maps(set); 3379 if (!err) 3380 break; 3381 3382 set->queue_depth >>= 1; 3383 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) { 3384 err = -ENOMEM; 3385 break; 3386 } 3387 } while (set->queue_depth); 3388 3389 if (!set->queue_depth || err) { 3390 pr_err("blk-mq: failed to allocate request map\n"); 3391 return -ENOMEM; 3392 } 3393 3394 if (depth != set->queue_depth) 3395 pr_info("blk-mq: reduced tag depth (%u -> %u)\n", 3396 depth, set->queue_depth); 3397 3398 return 0; 3399} 3400 3401static int blk_mq_update_queue_map(struct blk_mq_tag_set *set) 3402{ 3403 /* 3404 * blk_mq_map_queues() and multiple .map_queues() implementations 3405 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the 3406 * number of hardware queues. 3407 */ 3408 if (set->nr_maps == 1) 3409 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues; 3410 3411 if (set->ops->map_queues && !is_kdump_kernel()) { 3412 int i; 3413 3414 /* 3415 * transport .map_queues is usually done in the following 3416 * way: 3417 * 3418 * for (queue = 0; queue < set->nr_hw_queues; queue++) { 3419 * mask = get_cpu_mask(queue) 3420 * for_each_cpu(cpu, mask) 3421 * set->map[x].mq_map[cpu] = queue; 3422 * } 3423 * 3424 * When we need to remap, the table has to be cleared for 3425 * killing stale mapping since one CPU may not be mapped 3426 * to any hw queue. 3427 */ 3428 for (i = 0; i < set->nr_maps; i++) 3429 blk_mq_clear_mq_map(&set->map[i]); 3430 3431 return set->ops->map_queues(set); 3432 } else { 3433 BUG_ON(set->nr_maps > 1); 3434 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3435 } 3436} 3437 3438static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set, 3439 int cur_nr_hw_queues, int new_nr_hw_queues) 3440{ 3441 struct blk_mq_tags **new_tags; 3442 3443 if (cur_nr_hw_queues >= new_nr_hw_queues) 3444 return 0; 3445 3446 new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *), 3447 GFP_KERNEL, set->numa_node); 3448 if (!new_tags) 3449 return -ENOMEM; 3450 3451 if (set->tags) 3452 memcpy(new_tags, set->tags, cur_nr_hw_queues * 3453 sizeof(*set->tags)); 3454 kfree(set->tags); 3455 set->tags = new_tags; 3456 set->nr_hw_queues = new_nr_hw_queues; 3457 3458 return 0; 3459} 3460 3461static int blk_mq_alloc_tag_set_tags(struct blk_mq_tag_set *set, 3462 int new_nr_hw_queues) 3463{ 3464 return blk_mq_realloc_tag_set_tags(set, 0, new_nr_hw_queues); 3465} 3466 3467/* 3468 * Alloc a tag set to be associated with one or more request queues. 3469 * May fail with EINVAL for various error conditions. May adjust the 3470 * requested depth down, if it's too large. In that case, the set 3471 * value will be stored in set->queue_depth. 3472 */ 3473int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set) 3474{ 3475 int i, ret; 3476 3477 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS); 3478 3479 if (!set->nr_hw_queues) 3480 return -EINVAL; 3481 if (!set->queue_depth) 3482 return -EINVAL; 3483 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) 3484 return -EINVAL; 3485 3486 if (!set->ops->queue_rq) 3487 return -EINVAL; 3488 3489 if (!set->ops->get_budget ^ !set->ops->put_budget) 3490 return -EINVAL; 3491 3492 if (set->queue_depth > BLK_MQ_MAX_DEPTH) { 3493 pr_info("blk-mq: reduced tag depth to %u\n", 3494 BLK_MQ_MAX_DEPTH); 3495 set->queue_depth = BLK_MQ_MAX_DEPTH; 3496 } 3497 3498 if (!set->nr_maps) 3499 set->nr_maps = 1; 3500 else if (set->nr_maps > HCTX_MAX_TYPES) 3501 return -EINVAL; 3502 3503 /* 3504 * If a crashdump is active, then we are potentially in a very 3505 * memory constrained environment. Limit us to 1 queue and 3506 * 64 tags to prevent using too much memory. 3507 */ 3508 if (is_kdump_kernel()) { 3509 set->nr_hw_queues = 1; 3510 set->nr_maps = 1; 3511 set->queue_depth = min(64U, set->queue_depth); 3512 } 3513 /* 3514 * There is no use for more h/w queues than cpus if we just have 3515 * a single map 3516 */ 3517 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids) 3518 set->nr_hw_queues = nr_cpu_ids; 3519 3520 if (blk_mq_alloc_tag_set_tags(set, set->nr_hw_queues) < 0) 3521 return -ENOMEM; 3522 3523 ret = -ENOMEM; 3524 for (i = 0; i < set->nr_maps; i++) { 3525 set->map[i].mq_map = kcalloc_node(nr_cpu_ids, 3526 sizeof(set->map[i].mq_map[0]), 3527 GFP_KERNEL, set->numa_node); 3528 if (!set->map[i].mq_map) 3529 goto out_free_mq_map; 3530 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues; 3531 } 3532 3533 ret = blk_mq_update_queue_map(set); 3534 if (ret) 3535 goto out_free_mq_map; 3536 3537 ret = blk_mq_alloc_map_and_requests(set); 3538 if (ret) 3539 goto out_free_mq_map; 3540 3541 if (blk_mq_is_sbitmap_shared(set->flags)) { 3542 atomic_set(&set->active_queues_shared_sbitmap, 0); 3543 3544 if (blk_mq_init_shared_sbitmap(set)) { 3545 ret = -ENOMEM; 3546 goto out_free_mq_rq_maps; 3547 } 3548 } 3549 3550 mutex_init(&set->tag_list_lock); 3551 INIT_LIST_HEAD(&set->tag_list); 3552 3553 return 0; 3554 3555out_free_mq_rq_maps: 3556 for (i = 0; i < set->nr_hw_queues; i++) 3557 blk_mq_free_map_and_requests(set, i); 3558out_free_mq_map: 3559 for (i = 0; i < set->nr_maps; i++) { 3560 kfree(set->map[i].mq_map); 3561 set->map[i].mq_map = NULL; 3562 } 3563 kfree(set->tags); 3564 set->tags = NULL; 3565 return ret; 3566} 3567EXPORT_SYMBOL(blk_mq_alloc_tag_set); 3568 3569/* allocate and initialize a tagset for a simple single-queue device */ 3570int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set, 3571 const struct blk_mq_ops *ops, unsigned int queue_depth, 3572 unsigned int set_flags) 3573{ 3574 memset(set, 0, sizeof(*set)); 3575 set->ops = ops; 3576 set->nr_hw_queues = 1; 3577 set->nr_maps = 1; 3578 set->queue_depth = queue_depth; 3579 set->numa_node = NUMA_NO_NODE; 3580 set->flags = set_flags; 3581 return blk_mq_alloc_tag_set(set); 3582} 3583EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set); 3584 3585void blk_mq_free_tag_set(struct blk_mq_tag_set *set) 3586{ 3587 int i, j; 3588 3589 for (i = 0; i < set->nr_hw_queues; i++) 3590 blk_mq_free_map_and_requests(set, i); 3591 3592 if (blk_mq_is_sbitmap_shared(set->flags)) 3593 blk_mq_exit_shared_sbitmap(set); 3594 3595 for (j = 0; j < set->nr_maps; j++) { 3596 kfree(set->map[j].mq_map); 3597 set->map[j].mq_map = NULL; 3598 } 3599 3600 kfree(set->tags); 3601 set->tags = NULL; 3602} 3603EXPORT_SYMBOL(blk_mq_free_tag_set); 3604 3605int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr) 3606{ 3607 struct blk_mq_tag_set *set = q->tag_set; 3608 struct blk_mq_hw_ctx *hctx; 3609 int i, ret; 3610 3611 if (!set) 3612 return -EINVAL; 3613 3614 if (q->nr_requests == nr) 3615 return 0; 3616 3617 blk_mq_freeze_queue(q); 3618 blk_mq_quiesce_queue(q); 3619 3620 ret = 0; 3621 queue_for_each_hw_ctx(q, hctx, i) { 3622 if (!hctx->tags) 3623 continue; 3624 /* 3625 * If we're using an MQ scheduler, just update the scheduler 3626 * queue depth. This is similar to what the old code would do. 3627 */ 3628 if (!hctx->sched_tags) { 3629 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr, 3630 false); 3631 if (!ret && blk_mq_is_sbitmap_shared(set->flags)) 3632 blk_mq_tag_resize_shared_sbitmap(set, nr); 3633 } else { 3634 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags, 3635 nr, true); 3636 if (blk_mq_is_sbitmap_shared(set->flags)) { 3637 hctx->sched_tags->bitmap_tags = 3638 &q->sched_bitmap_tags; 3639 hctx->sched_tags->breserved_tags = 3640 &q->sched_breserved_tags; 3641 } 3642 } 3643 if (ret) 3644 break; 3645 if (q->elevator && q->elevator->type->ops.depth_updated) 3646 q->elevator->type->ops.depth_updated(hctx); 3647 } 3648 if (!ret) { 3649 q->nr_requests = nr; 3650 if (q->elevator && blk_mq_is_sbitmap_shared(set->flags)) 3651 sbitmap_queue_resize(&q->sched_bitmap_tags, 3652 nr - set->reserved_tags); 3653 } 3654 3655 blk_mq_unquiesce_queue(q); 3656 blk_mq_unfreeze_queue(q); 3657 3658 return ret; 3659} 3660 3661/* 3662 * request_queue and elevator_type pair. 3663 * It is just used by __blk_mq_update_nr_hw_queues to cache 3664 * the elevator_type associated with a request_queue. 3665 */ 3666struct blk_mq_qe_pair { 3667 struct list_head node; 3668 struct request_queue *q; 3669 struct elevator_type *type; 3670}; 3671 3672/* 3673 * Cache the elevator_type in qe pair list and switch the 3674 * io scheduler to 'none' 3675 */ 3676static bool blk_mq_elv_switch_none(struct list_head *head, 3677 struct request_queue *q) 3678{ 3679 struct blk_mq_qe_pair *qe; 3680 3681 if (!q->elevator) 3682 return true; 3683 3684 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY); 3685 if (!qe) 3686 return false; 3687 3688 INIT_LIST_HEAD(&qe->node); 3689 qe->q = q; 3690 qe->type = q->elevator->type; 3691 list_add(&qe->node, head); 3692 3693 mutex_lock(&q->sysfs_lock); 3694 /* 3695 * After elevator_switch_mq, the previous elevator_queue will be 3696 * released by elevator_release. The reference of the io scheduler 3697 * module get by elevator_get will also be put. So we need to get 3698 * a reference of the io scheduler module here to prevent it to be 3699 * removed. 3700 */ 3701 __module_get(qe->type->elevator_owner); 3702 elevator_switch_mq(q, NULL); 3703 mutex_unlock(&q->sysfs_lock); 3704 3705 return true; 3706} 3707 3708static void blk_mq_elv_switch_back(struct list_head *head, 3709 struct request_queue *q) 3710{ 3711 struct blk_mq_qe_pair *qe; 3712 struct elevator_type *t = NULL; 3713 3714 list_for_each_entry(qe, head, node) 3715 if (qe->q == q) { 3716 t = qe->type; 3717 break; 3718 } 3719 3720 if (!t) 3721 return; 3722 3723 list_del(&qe->node); 3724 kfree(qe); 3725 3726 mutex_lock(&q->sysfs_lock); 3727 elevator_switch_mq(q, t); 3728 mutex_unlock(&q->sysfs_lock); 3729} 3730 3731static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, 3732 int nr_hw_queues) 3733{ 3734 struct request_queue *q; 3735 LIST_HEAD(head); 3736 int prev_nr_hw_queues; 3737 3738 lockdep_assert_held(&set->tag_list_lock); 3739 3740 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids) 3741 nr_hw_queues = nr_cpu_ids; 3742 if (nr_hw_queues < 1) 3743 return; 3744 if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues) 3745 return; 3746 3747 list_for_each_entry(q, &set->tag_list, tag_set_list) 3748 blk_mq_freeze_queue(q); 3749 /* 3750 * Switch IO scheduler to 'none', cleaning up the data associated 3751 * with the previous scheduler. We will switch back once we are done 3752 * updating the new sw to hw queue mappings. 3753 */ 3754 list_for_each_entry(q, &set->tag_list, tag_set_list) 3755 if (!blk_mq_elv_switch_none(&head, q)) 3756 goto switch_back; 3757 3758 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3759 blk_mq_debugfs_unregister_hctxs(q); 3760 blk_mq_sysfs_unregister(q); 3761 } 3762 3763 prev_nr_hw_queues = set->nr_hw_queues; 3764 if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) < 3765 0) 3766 goto reregister; 3767 3768 set->nr_hw_queues = nr_hw_queues; 3769fallback: 3770 blk_mq_update_queue_map(set); 3771 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3772 blk_mq_realloc_hw_ctxs(set, q); 3773 if (q->nr_hw_queues != set->nr_hw_queues) { 3774 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n", 3775 nr_hw_queues, prev_nr_hw_queues); 3776 set->nr_hw_queues = prev_nr_hw_queues; 3777 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]); 3778 goto fallback; 3779 } 3780 blk_mq_map_swqueue(q); 3781 } 3782 3783reregister: 3784 list_for_each_entry(q, &set->tag_list, tag_set_list) { 3785 blk_mq_sysfs_register(q); 3786 blk_mq_debugfs_register_hctxs(q); 3787 } 3788 3789switch_back: 3790 list_for_each_entry(q, &set->tag_list, tag_set_list) 3791 blk_mq_elv_switch_back(&head, q); 3792 3793 list_for_each_entry(q, &set->tag_list, tag_set_list) 3794 blk_mq_unfreeze_queue(q); 3795} 3796 3797void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues) 3798{ 3799 mutex_lock(&set->tag_list_lock); 3800 __blk_mq_update_nr_hw_queues(set, nr_hw_queues); 3801 mutex_unlock(&set->tag_list_lock); 3802} 3803EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues); 3804 3805/* Enable polling stats and return whether they were already enabled. */ 3806static bool blk_poll_stats_enable(struct request_queue *q) 3807{ 3808 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3809 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q)) 3810 return true; 3811 blk_stat_add_callback(q, q->poll_cb); 3812 return false; 3813} 3814 3815static void blk_mq_poll_stats_start(struct request_queue *q) 3816{ 3817 /* 3818 * We don't arm the callback if polling stats are not enabled or the 3819 * callback is already active. 3820 */ 3821 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) || 3822 blk_stat_is_active(q->poll_cb)) 3823 return; 3824 3825 blk_stat_activate_msecs(q->poll_cb, 100); 3826} 3827 3828static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb) 3829{ 3830 struct request_queue *q = cb->data; 3831 int bucket; 3832 3833 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) { 3834 if (cb->stat[bucket].nr_samples) 3835 q->poll_stat[bucket] = cb->stat[bucket]; 3836 } 3837} 3838 3839static unsigned long blk_mq_poll_nsecs(struct request_queue *q, 3840 struct request *rq) 3841{ 3842 unsigned long ret = 0; 3843 int bucket; 3844 3845 /* 3846 * If stats collection isn't on, don't sleep but turn it on for 3847 * future users 3848 */ 3849 if (!blk_poll_stats_enable(q)) 3850 return 0; 3851 3852 /* 3853 * As an optimistic guess, use half of the mean service time 3854 * for this type of request. We can (and should) make this smarter. 3855 * For instance, if the completion latencies are tight, we can 3856 * get closer than just half the mean. This is especially 3857 * important on devices where the completion latencies are longer 3858 * than ~10 usec. We do use the stats for the relevant IO size 3859 * if available which does lead to better estimates. 3860 */ 3861 bucket = blk_mq_poll_stats_bkt(rq); 3862 if (bucket < 0) 3863 return ret; 3864 3865 if (q->poll_stat[bucket].nr_samples) 3866 ret = (q->poll_stat[bucket].mean + 1) / 2; 3867 3868 return ret; 3869} 3870 3871static bool blk_mq_poll_hybrid_sleep(struct request_queue *q, 3872 struct request *rq) 3873{ 3874 struct hrtimer_sleeper hs; 3875 enum hrtimer_mode mode; 3876 unsigned int nsecs; 3877 ktime_t kt; 3878 3879 if (rq->rq_flags & RQF_MQ_POLL_SLEPT) 3880 return false; 3881 3882 /* 3883 * If we get here, hybrid polling is enabled. Hence poll_nsec can be: 3884 * 3885 * 0: use half of prev avg 3886 * >0: use this specific value 3887 */ 3888 if (q->poll_nsec > 0) 3889 nsecs = q->poll_nsec; 3890 else 3891 nsecs = blk_mq_poll_nsecs(q, rq); 3892 3893 if (!nsecs) 3894 return false; 3895 3896 rq->rq_flags |= RQF_MQ_POLL_SLEPT; 3897 3898 /* 3899 * This will be replaced with the stats tracking code, using 3900 * 'avg_completion_time / 2' as the pre-sleep target. 3901 */ 3902 kt = nsecs; 3903 3904 mode = HRTIMER_MODE_REL; 3905 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode); 3906 hrtimer_set_expires(&hs.timer, kt); 3907 3908 do { 3909 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE) 3910 break; 3911 set_current_state(TASK_UNINTERRUPTIBLE); 3912 hrtimer_sleeper_start_expires(&hs, mode); 3913 if (hs.task) 3914 io_schedule(); 3915 hrtimer_cancel(&hs.timer); 3916 mode = HRTIMER_MODE_ABS; 3917 } while (hs.task && !signal_pending(current)); 3918 3919 __set_current_state(TASK_RUNNING); 3920 destroy_hrtimer_on_stack(&hs.timer); 3921 return true; 3922} 3923 3924static bool blk_mq_poll_hybrid(struct request_queue *q, 3925 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie) 3926{ 3927 struct request *rq; 3928 3929 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC) 3930 return false; 3931 3932 if (!blk_qc_t_is_internal(cookie)) 3933 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie)); 3934 else { 3935 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie)); 3936 /* 3937 * With scheduling, if the request has completed, we'll 3938 * get a NULL return here, as we clear the sched tag when 3939 * that happens. The request still remains valid, like always, 3940 * so we should be safe with just the NULL check. 3941 */ 3942 if (!rq) 3943 return false; 3944 } 3945 3946 return blk_mq_poll_hybrid_sleep(q, rq); 3947} 3948 3949/** 3950 * blk_poll - poll for IO completions 3951 * @q: the queue 3952 * @cookie: cookie passed back at IO submission time 3953 * @spin: whether to spin for completions 3954 * 3955 * Description: 3956 * Poll for completions on the passed in queue. Returns number of 3957 * completed entries found. If @spin is true, then blk_poll will continue 3958 * looping until at least one completion is found, unless the task is 3959 * otherwise marked running (or we need to reschedule). 3960 */ 3961int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin) 3962{ 3963 struct blk_mq_hw_ctx *hctx; 3964 unsigned int state; 3965 3966 if (!blk_qc_t_valid(cookie) || 3967 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 3968 return 0; 3969 3970 if (current->plug) 3971 blk_flush_plug_list(current->plug, false); 3972 3973 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)]; 3974 3975 /* 3976 * If we sleep, have the caller restart the poll loop to reset 3977 * the state. Like for the other success return cases, the 3978 * caller is responsible for checking if the IO completed. If 3979 * the IO isn't complete, we'll get called again and will go 3980 * straight to the busy poll loop. If specified not to spin, 3981 * we also should not sleep. 3982 */ 3983 if (spin && blk_mq_poll_hybrid(q, hctx, cookie)) 3984 return 1; 3985 3986 hctx->poll_considered++; 3987 3988 state = get_current_state(); 3989 do { 3990 int ret; 3991 3992 hctx->poll_invoked++; 3993 3994 ret = q->mq_ops->poll(hctx); 3995 if (ret > 0) { 3996 hctx->poll_success++; 3997 __set_current_state(TASK_RUNNING); 3998 return ret; 3999 } 4000 4001 if (signal_pending_state(state, current)) 4002 __set_current_state(TASK_RUNNING); 4003 4004 if (task_is_running(current)) 4005 return 1; 4006 if (ret < 0 || !spin) 4007 break; 4008 cpu_relax(); 4009 } while (!need_resched()); 4010 4011 __set_current_state(TASK_RUNNING); 4012 return 0; 4013} 4014EXPORT_SYMBOL_GPL(blk_poll); 4015 4016unsigned int blk_mq_rq_cpu(struct request *rq) 4017{ 4018 return rq->mq_ctx->cpu; 4019} 4020EXPORT_SYMBOL(blk_mq_rq_cpu); 4021 4022static int __init blk_mq_init(void) 4023{ 4024 int i; 4025 4026 for_each_possible_cpu(i) 4027 init_llist_head(&per_cpu(blk_cpu_done, i)); 4028 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq); 4029 4030 cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD, 4031 "block/softirq:dead", NULL, 4032 blk_softirq_cpu_dead); 4033 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL, 4034 blk_mq_hctx_notify_dead); 4035 cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online", 4036 blk_mq_hctx_notify_online, 4037 blk_mq_hctx_notify_offline); 4038 return 0; 4039} 4040subsys_initcall(blk_mq_init);