at v5.15 1028 lines 30 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5#ifndef __ASM_PGTABLE_H 6#define __ASM_PGTABLE_H 7 8#include <asm/bug.h> 9#include <asm/proc-fns.h> 10 11#include <asm/memory.h> 12#include <asm/mte.h> 13#include <asm/pgtable-hwdef.h> 14#include <asm/pgtable-prot.h> 15#include <asm/tlbflush.h> 16 17/* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space 22 * and fixed mappings 23 */ 24#define VMALLOC_START (MODULES_END) 25#define VMALLOC_END (VMEMMAP_START - SZ_256M) 26 27#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 28 29#ifndef __ASSEMBLY__ 30 31#include <asm/cmpxchg.h> 32#include <asm/fixmap.h> 33#include <linux/mmdebug.h> 34#include <linux/mm_types.h> 35#include <linux/sched.h> 36 37#ifdef CONFIG_TRANSPARENT_HUGEPAGE 38#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 39 40/* Set stride and tlb_level in flush_*_tlb_range */ 41#define flush_pmd_tlb_range(vma, addr, end) \ 42 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 43#define flush_pud_tlb_range(vma, addr, end) \ 44 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 45#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 46 47/* 48 * Outside of a few very special situations (e.g. hibernation), we always 49 * use broadcast TLB invalidation instructions, therefore a spurious page 50 * fault on one CPU which has been handled concurrently by another CPU 51 * does not need to perform additional invalidation. 52 */ 53#define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 54 55/* 56 * ZERO_PAGE is a global shared page that is always zero: used 57 * for zero-mapped memory areas etc.. 58 */ 59extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 60#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 61 62#define pte_ERROR(e) \ 63 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 64 65/* 66 * Macros to convert between a physical address and its placement in a 67 * page table entry, taking care of 52-bit addresses. 68 */ 69#ifdef CONFIG_ARM64_PA_BITS_52 70#define __pte_to_phys(pte) \ 71 ((pte_val(pte) & PTE_ADDR_LOW) | ((pte_val(pte) & PTE_ADDR_HIGH) << 36)) 72#define __phys_to_pte_val(phys) (((phys) | ((phys) >> 36)) & PTE_ADDR_MASK) 73#else 74#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK) 75#define __phys_to_pte_val(phys) (phys) 76#endif 77 78#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 79#define pfn_pte(pfn,prot) \ 80 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 81 82#define pte_none(pte) (!pte_val(pte)) 83#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) 84#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 85 86/* 87 * The following only work if pte_present(). Undefined behaviour otherwise. 88 */ 89#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) 90#define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 91#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 92#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 93#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 94#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 95#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) 96#define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 97 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 98 99#define pte_cont_addr_end(addr, end) \ 100({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 101 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 102}) 103 104#define pmd_cont_addr_end(addr, end) \ 105({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 106 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 107}) 108 109#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) 110#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 111#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 112 113#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 114/* 115 * Execute-only user mappings do not have the PTE_USER bit set. All valid 116 * kernel mappings have the PTE_UXN bit set. 117 */ 118#define pte_valid_not_user(pte) \ 119 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 120/* 121 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 122 * so that we don't erroneously return false for pages that have been 123 * remapped as PROT_NONE but are yet to be flushed from the TLB. 124 * Note that we can't make any assumptions based on the state of the access 125 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the 126 * TLB. 127 */ 128#define pte_accessible(mm, pte) \ 129 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 130 131/* 132 * p??_access_permitted() is true for valid user mappings (PTE_USER 133 * bit set, subject to the write permission check). For execute-only 134 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 135 * not set) must return false. PROT_NONE mappings do not have the 136 * PTE_VALID bit set. 137 */ 138#define pte_access_permitted(pte, write) \ 139 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 140#define pmd_access_permitted(pmd, write) \ 141 (pte_access_permitted(pmd_pte(pmd), (write))) 142#define pud_access_permitted(pud, write) \ 143 (pte_access_permitted(pud_pte(pud), (write))) 144 145static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 146{ 147 pte_val(pte) &= ~pgprot_val(prot); 148 return pte; 149} 150 151static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 152{ 153 pte_val(pte) |= pgprot_val(prot); 154 return pte; 155} 156 157static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 158{ 159 pmd_val(pmd) &= ~pgprot_val(prot); 160 return pmd; 161} 162 163static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 164{ 165 pmd_val(pmd) |= pgprot_val(prot); 166 return pmd; 167} 168 169static inline pte_t pte_mkwrite(pte_t pte) 170{ 171 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 172 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 173 return pte; 174} 175 176static inline pte_t pte_mkclean(pte_t pte) 177{ 178 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 179 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 180 181 return pte; 182} 183 184static inline pte_t pte_mkdirty(pte_t pte) 185{ 186 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 187 188 if (pte_write(pte)) 189 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 190 191 return pte; 192} 193 194static inline pte_t pte_wrprotect(pte_t pte) 195{ 196 /* 197 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 198 * clear), set the PTE_DIRTY bit. 199 */ 200 if (pte_hw_dirty(pte)) 201 pte = pte_mkdirty(pte); 202 203 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 204 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 205 return pte; 206} 207 208static inline pte_t pte_mkold(pte_t pte) 209{ 210 return clear_pte_bit(pte, __pgprot(PTE_AF)); 211} 212 213static inline pte_t pte_mkyoung(pte_t pte) 214{ 215 return set_pte_bit(pte, __pgprot(PTE_AF)); 216} 217 218static inline pte_t pte_mkspecial(pte_t pte) 219{ 220 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 221} 222 223static inline pte_t pte_mkcont(pte_t pte) 224{ 225 pte = set_pte_bit(pte, __pgprot(PTE_CONT)); 226 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); 227} 228 229static inline pte_t pte_mknoncont(pte_t pte) 230{ 231 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 232} 233 234static inline pte_t pte_mkpresent(pte_t pte) 235{ 236 return set_pte_bit(pte, __pgprot(PTE_VALID)); 237} 238 239static inline pmd_t pmd_mkcont(pmd_t pmd) 240{ 241 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 242} 243 244static inline pte_t pte_mkdevmap(pte_t pte) 245{ 246 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); 247} 248 249static inline void set_pte(pte_t *ptep, pte_t pte) 250{ 251 WRITE_ONCE(*ptep, pte); 252 253 /* 254 * Only if the new pte is valid and kernel, otherwise TLB maintenance 255 * or update_mmu_cache() have the necessary barriers. 256 */ 257 if (pte_valid_not_user(pte)) { 258 dsb(ishst); 259 isb(); 260 } 261} 262 263extern void __sync_icache_dcache(pte_t pteval); 264 265/* 266 * PTE bits configuration in the presence of hardware Dirty Bit Management 267 * (PTE_WRITE == PTE_DBM): 268 * 269 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 270 * 0 0 | 1 0 0 271 * 0 1 | 1 1 0 272 * 1 0 | 1 0 1 273 * 1 1 | 0 1 x 274 * 275 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 276 * the page fault mechanism. Checking the dirty status of a pte becomes: 277 * 278 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 279 */ 280 281static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep, 282 pte_t pte) 283{ 284 pte_t old_pte; 285 286 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 287 return; 288 289 old_pte = READ_ONCE(*ptep); 290 291 if (!pte_valid(old_pte) || !pte_valid(pte)) 292 return; 293 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 294 return; 295 296 /* 297 * Check for potential race with hardware updates of the pte 298 * (ptep_set_access_flags safely changes valid ptes without going 299 * through an invalid entry). 300 */ 301 VM_WARN_ONCE(!pte_young(pte), 302 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 303 __func__, pte_val(old_pte), pte_val(pte)); 304 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 305 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 306 __func__, pte_val(old_pte), pte_val(pte)); 307} 308 309static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 310 pte_t *ptep, pte_t pte) 311{ 312 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 313 __sync_icache_dcache(pte); 314 315 /* 316 * If the PTE would provide user space access to the tags associated 317 * with it then ensure that the MTE tags are synchronised. Although 318 * pte_access_permitted() returns false for exec only mappings, they 319 * don't expose tags (instruction fetches don't check tags). 320 */ 321 if (system_supports_mte() && pte_access_permitted(pte, false) && 322 !pte_special(pte)) { 323 pte_t old_pte = READ_ONCE(*ptep); 324 /* 325 * We only need to synchronise if the new PTE has tags enabled 326 * or if swapping in (in which case another mapping may have 327 * set tags in the past even if this PTE isn't tagged). 328 * (!pte_none() && !pte_present()) is an open coded version of 329 * is_swap_pte() 330 */ 331 if (pte_tagged(pte) || (!pte_none(old_pte) && !pte_present(old_pte))) 332 mte_sync_tags(old_pte, pte); 333 } 334 335 __check_racy_pte_update(mm, ptep, pte); 336 337 set_pte(ptep, pte); 338} 339 340/* 341 * Huge pte definitions. 342 */ 343#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) 344 345/* 346 * Hugetlb definitions. 347 */ 348#define HUGE_MAX_HSTATE 4 349#define HPAGE_SHIFT PMD_SHIFT 350#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 351#define HPAGE_MASK (~(HPAGE_SIZE - 1)) 352#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 353 354static inline pte_t pgd_pte(pgd_t pgd) 355{ 356 return __pte(pgd_val(pgd)); 357} 358 359static inline pte_t p4d_pte(p4d_t p4d) 360{ 361 return __pte(p4d_val(p4d)); 362} 363 364static inline pte_t pud_pte(pud_t pud) 365{ 366 return __pte(pud_val(pud)); 367} 368 369static inline pud_t pte_pud(pte_t pte) 370{ 371 return __pud(pte_val(pte)); 372} 373 374static inline pmd_t pud_pmd(pud_t pud) 375{ 376 return __pmd(pud_val(pud)); 377} 378 379static inline pte_t pmd_pte(pmd_t pmd) 380{ 381 return __pte(pmd_val(pmd)); 382} 383 384static inline pmd_t pte_pmd(pte_t pte) 385{ 386 return __pmd(pte_val(pte)); 387} 388 389static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 390{ 391 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); 392} 393 394static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 395{ 396 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); 397} 398 399#ifdef CONFIG_NUMA_BALANCING 400/* 401 * See the comment in include/linux/pgtable.h 402 */ 403static inline int pte_protnone(pte_t pte) 404{ 405 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE; 406} 407 408static inline int pmd_protnone(pmd_t pmd) 409{ 410 return pte_protnone(pmd_pte(pmd)); 411} 412#endif 413 414#define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID)) 415 416static inline int pmd_present(pmd_t pmd) 417{ 418 return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd); 419} 420 421/* 422 * THP definitions. 423 */ 424 425#ifdef CONFIG_TRANSPARENT_HUGEPAGE 426static inline int pmd_trans_huge(pmd_t pmd) 427{ 428 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 429} 430#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 431 432#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 433#define pmd_young(pmd) pte_young(pmd_pte(pmd)) 434#define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 435#define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 436#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 437#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 438#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 439#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 440#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 441#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 442 443static inline pmd_t pmd_mkinvalid(pmd_t pmd) 444{ 445 pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID)); 446 pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID)); 447 448 return pmd; 449} 450 451#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) 452 453#define pmd_write(pmd) pte_write(pmd_pte(pmd)) 454 455#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) 456 457#ifdef CONFIG_TRANSPARENT_HUGEPAGE 458#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) 459#endif 460static inline pmd_t pmd_mkdevmap(pmd_t pmd) 461{ 462 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); 463} 464 465#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 466#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 467#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 468#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 469#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 470 471#define pud_young(pud) pte_young(pud_pte(pud)) 472#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 473#define pud_write(pud) pte_write(pud_pte(pud)) 474 475#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) 476 477#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 478#define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 479#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 480#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 481 482#define set_pmd_at(mm, addr, pmdp, pmd) set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)) 483#define set_pud_at(mm, addr, pudp, pud) set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)) 484 485#define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 486#define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 487 488#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 489#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 490 491#define __pgprot_modify(prot,mask,bits) \ 492 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 493 494#define pgprot_nx(prot) \ 495 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 496 497/* 498 * Mark the prot value as uncacheable and unbufferable. 499 */ 500#define pgprot_noncached(prot) \ 501 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 502#define pgprot_writecombine(prot) \ 503 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 504#define pgprot_device(prot) \ 505 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 506#define pgprot_tagged(prot) \ 507 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 508#define pgprot_mhp pgprot_tagged 509/* 510 * DMA allocations for non-coherent devices use what the Arm architecture calls 511 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 512 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 513 * is intended for MMIO and thus forbids speculation, preserves access size, 514 * requires strict alignment and can also force write responses to come from the 515 * endpoint. 516 */ 517#define pgprot_dmacoherent(prot) \ 518 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 519 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 520 521#define __HAVE_PHYS_MEM_ACCESS_PROT 522struct file; 523extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 524 unsigned long size, pgprot_t vma_prot); 525 526#define pmd_none(pmd) (!pmd_val(pmd)) 527 528#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 529 PMD_TYPE_TABLE) 530#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 531 PMD_TYPE_SECT) 532#define pmd_leaf(pmd) pmd_sect(pmd) 533#define pmd_bad(pmd) (!pmd_table(pmd)) 534 535#define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 536#define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 537 538#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 539static inline bool pud_sect(pud_t pud) { return false; } 540static inline bool pud_table(pud_t pud) { return true; } 541#else 542#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 543 PUD_TYPE_SECT) 544#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 545 PUD_TYPE_TABLE) 546#endif 547 548extern pgd_t init_pg_dir[PTRS_PER_PGD]; 549extern pgd_t init_pg_end[]; 550extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 551extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; 552extern pgd_t idmap_pg_end[]; 553extern pgd_t tramp_pg_dir[PTRS_PER_PGD]; 554extern pgd_t reserved_pg_dir[PTRS_PER_PGD]; 555 556extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 557 558static inline bool in_swapper_pgdir(void *addr) 559{ 560 return ((unsigned long)addr & PAGE_MASK) == 561 ((unsigned long)swapper_pg_dir & PAGE_MASK); 562} 563 564static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 565{ 566#ifdef __PAGETABLE_PMD_FOLDED 567 if (in_swapper_pgdir(pmdp)) { 568 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 569 return; 570 } 571#endif /* __PAGETABLE_PMD_FOLDED */ 572 573 WRITE_ONCE(*pmdp, pmd); 574 575 if (pmd_valid(pmd)) { 576 dsb(ishst); 577 isb(); 578 } 579} 580 581static inline void pmd_clear(pmd_t *pmdp) 582{ 583 set_pmd(pmdp, __pmd(0)); 584} 585 586static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 587{ 588 return __pmd_to_phys(pmd); 589} 590 591static inline unsigned long pmd_page_vaddr(pmd_t pmd) 592{ 593 return (unsigned long)__va(pmd_page_paddr(pmd)); 594} 595 596/* Find an entry in the third-level page table. */ 597#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 598 599#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 600#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 601#define pte_clear_fixmap() clear_fixmap(FIX_PTE) 602 603#define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 604 605/* use ONLY for statically allocated translation tables */ 606#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 607 608/* 609 * Conversion functions: convert a page and protection to a page entry, 610 * and a page entry and page directory to the page they refer to. 611 */ 612#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 613 614#if CONFIG_PGTABLE_LEVELS > 2 615 616#define pmd_ERROR(e) \ 617 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 618 619#define pud_none(pud) (!pud_val(pud)) 620#define pud_bad(pud) (!pud_table(pud)) 621#define pud_present(pud) pte_present(pud_pte(pud)) 622#define pud_leaf(pud) pud_sect(pud) 623#define pud_valid(pud) pte_valid(pud_pte(pud)) 624 625static inline void set_pud(pud_t *pudp, pud_t pud) 626{ 627#ifdef __PAGETABLE_PUD_FOLDED 628 if (in_swapper_pgdir(pudp)) { 629 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 630 return; 631 } 632#endif /* __PAGETABLE_PUD_FOLDED */ 633 634 WRITE_ONCE(*pudp, pud); 635 636 if (pud_valid(pud)) { 637 dsb(ishst); 638 isb(); 639 } 640} 641 642static inline void pud_clear(pud_t *pudp) 643{ 644 set_pud(pudp, __pud(0)); 645} 646 647static inline phys_addr_t pud_page_paddr(pud_t pud) 648{ 649 return __pud_to_phys(pud); 650} 651 652static inline pmd_t *pud_pgtable(pud_t pud) 653{ 654 return (pmd_t *)__va(pud_page_paddr(pud)); 655} 656 657/* Find an entry in the second-level page table. */ 658#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 659 660#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 661#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 662#define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 663 664#define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 665 666/* use ONLY for statically allocated translation tables */ 667#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 668 669#else 670 671#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 672 673/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 674#define pmd_set_fixmap(addr) NULL 675#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 676#define pmd_clear_fixmap() 677 678#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 679 680#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 681 682#if CONFIG_PGTABLE_LEVELS > 3 683 684#define pud_ERROR(e) \ 685 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 686 687#define p4d_none(p4d) (!p4d_val(p4d)) 688#define p4d_bad(p4d) (!(p4d_val(p4d) & 2)) 689#define p4d_present(p4d) (p4d_val(p4d)) 690 691static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 692{ 693 if (in_swapper_pgdir(p4dp)) { 694 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 695 return; 696 } 697 698 WRITE_ONCE(*p4dp, p4d); 699 dsb(ishst); 700 isb(); 701} 702 703static inline void p4d_clear(p4d_t *p4dp) 704{ 705 set_p4d(p4dp, __p4d(0)); 706} 707 708static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 709{ 710 return __p4d_to_phys(p4d); 711} 712 713static inline pud_t *p4d_pgtable(p4d_t p4d) 714{ 715 return (pud_t *)__va(p4d_page_paddr(p4d)); 716} 717 718/* Find an entry in the first-level page table. */ 719#define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t)) 720 721#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr)) 722#define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr)) 723#define pud_clear_fixmap() clear_fixmap(FIX_PUD) 724 725#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 726 727/* use ONLY for statically allocated translation tables */ 728#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr)))) 729 730#else 731 732#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 733#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;}) 734 735/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 736#define pud_set_fixmap(addr) NULL 737#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 738#define pud_clear_fixmap() 739 740#define pud_offset_kimg(dir,addr) ((pud_t *)dir) 741 742#endif /* CONFIG_PGTABLE_LEVELS > 3 */ 743 744#define pgd_ERROR(e) \ 745 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 746 747#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 748#define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 749 750static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 751{ 752 /* 753 * Normal and Normal-Tagged are two different memory types and indices 754 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 755 */ 756 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 757 PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP | 758 PTE_ATTRINDX_MASK; 759 /* preserve the hardware dirty information */ 760 if (pte_hw_dirty(pte)) 761 pte = pte_mkdirty(pte); 762 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 763 return pte; 764} 765 766static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 767{ 768 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 769} 770 771#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 772extern int ptep_set_access_flags(struct vm_area_struct *vma, 773 unsigned long address, pte_t *ptep, 774 pte_t entry, int dirty); 775 776#ifdef CONFIG_TRANSPARENT_HUGEPAGE 777#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 778static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 779 unsigned long address, pmd_t *pmdp, 780 pmd_t entry, int dirty) 781{ 782 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 783} 784 785static inline int pud_devmap(pud_t pud) 786{ 787 return 0; 788} 789 790static inline int pgd_devmap(pgd_t pgd) 791{ 792 return 0; 793} 794#endif 795 796/* 797 * Atomic pte/pmd modifications. 798 */ 799#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 800static inline int __ptep_test_and_clear_young(pte_t *ptep) 801{ 802 pte_t old_pte, pte; 803 804 pte = READ_ONCE(*ptep); 805 do { 806 old_pte = pte; 807 pte = pte_mkold(pte); 808 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 809 pte_val(old_pte), pte_val(pte)); 810 } while (pte_val(pte) != pte_val(old_pte)); 811 812 return pte_young(pte); 813} 814 815static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 816 unsigned long address, 817 pte_t *ptep) 818{ 819 return __ptep_test_and_clear_young(ptep); 820} 821 822#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 823static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 824 unsigned long address, pte_t *ptep) 825{ 826 int young = ptep_test_and_clear_young(vma, address, ptep); 827 828 if (young) { 829 /* 830 * We can elide the trailing DSB here since the worst that can 831 * happen is that a CPU continues to use the young entry in its 832 * TLB and we mistakenly reclaim the associated page. The 833 * window for such an event is bounded by the next 834 * context-switch, which provides a DSB to complete the TLB 835 * invalidation. 836 */ 837 flush_tlb_page_nosync(vma, address); 838 } 839 840 return young; 841} 842 843#ifdef CONFIG_TRANSPARENT_HUGEPAGE 844#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 845static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 846 unsigned long address, 847 pmd_t *pmdp) 848{ 849 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 850} 851#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 852 853#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 854static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 855 unsigned long address, pte_t *ptep) 856{ 857 return __pte(xchg_relaxed(&pte_val(*ptep), 0)); 858} 859 860#ifdef CONFIG_TRANSPARENT_HUGEPAGE 861#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 862static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 863 unsigned long address, pmd_t *pmdp) 864{ 865 return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp)); 866} 867#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 868 869/* 870 * ptep_set_wrprotect - mark read-only while trasferring potential hardware 871 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 872 */ 873#define __HAVE_ARCH_PTEP_SET_WRPROTECT 874static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 875{ 876 pte_t old_pte, pte; 877 878 pte = READ_ONCE(*ptep); 879 do { 880 old_pte = pte; 881 pte = pte_wrprotect(pte); 882 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 883 pte_val(old_pte), pte_val(pte)); 884 } while (pte_val(pte) != pte_val(old_pte)); 885} 886 887#ifdef CONFIG_TRANSPARENT_HUGEPAGE 888#define __HAVE_ARCH_PMDP_SET_WRPROTECT 889static inline void pmdp_set_wrprotect(struct mm_struct *mm, 890 unsigned long address, pmd_t *pmdp) 891{ 892 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 893} 894 895#define pmdp_establish pmdp_establish 896static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 897 unsigned long address, pmd_t *pmdp, pmd_t pmd) 898{ 899 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 900} 901#endif 902 903/* 904 * Encode and decode a swap entry: 905 * bits 0-1: present (must be zero) 906 * bits 2-7: swap type 907 * bits 8-57: swap offset 908 * bit 58: PTE_PROT_NONE (must be zero) 909 */ 910#define __SWP_TYPE_SHIFT 2 911#define __SWP_TYPE_BITS 6 912#define __SWP_OFFSET_BITS 50 913#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 914#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 915#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 916 917#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 918#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 919#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 920 921#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 922#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 923 924#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 925#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 926#define __swp_entry_to_pmd(swp) __pmd((swp).val) 927#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 928 929/* 930 * Ensure that there are not more swap files than can be encoded in the kernel 931 * PTEs. 932 */ 933#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 934 935extern int kern_addr_valid(unsigned long addr); 936 937#ifdef CONFIG_ARM64_MTE 938 939#define __HAVE_ARCH_PREPARE_TO_SWAP 940static inline int arch_prepare_to_swap(struct page *page) 941{ 942 if (system_supports_mte()) 943 return mte_save_tags(page); 944 return 0; 945} 946 947#define __HAVE_ARCH_SWAP_INVALIDATE 948static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 949{ 950 if (system_supports_mte()) 951 mte_invalidate_tags(type, offset); 952} 953 954static inline void arch_swap_invalidate_area(int type) 955{ 956 if (system_supports_mte()) 957 mte_invalidate_tags_area(type); 958} 959 960#define __HAVE_ARCH_SWAP_RESTORE 961static inline void arch_swap_restore(swp_entry_t entry, struct page *page) 962{ 963 if (system_supports_mte() && mte_restore_tags(entry, page)) 964 set_bit(PG_mte_tagged, &page->flags); 965} 966 967#endif /* CONFIG_ARM64_MTE */ 968 969/* 970 * On AArch64, the cache coherency is handled via the set_pte_at() function. 971 */ 972static inline void update_mmu_cache(struct vm_area_struct *vma, 973 unsigned long addr, pte_t *ptep) 974{ 975 /* 976 * We don't do anything here, so there's a very small chance of 977 * us retaking a user fault which we just fixed up. The alternative 978 * is doing a dsb(ishst), but that penalises the fastpath. 979 */ 980} 981 982#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 983 984#ifdef CONFIG_ARM64_PA_BITS_52 985#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 986#else 987#define phys_to_ttbr(addr) (addr) 988#endif 989 990/* 991 * On arm64 without hardware Access Flag, copying from user will fail because 992 * the pte is old and cannot be marked young. So we always end up with zeroed 993 * page after fork() + CoW for pfn mappings. We don't always have a 994 * hardware-managed access flag on arm64. 995 */ 996static inline bool arch_faults_on_old_pte(void) 997{ 998 WARN_ON(preemptible()); 999 1000 return !cpu_has_hw_af(); 1001} 1002#define arch_faults_on_old_pte arch_faults_on_old_pte 1003 1004/* 1005 * Experimentally, it's cheap to set the access flag in hardware and we 1006 * benefit from prefaulting mappings as 'old' to start with. 1007 */ 1008static inline bool arch_wants_old_prefaulted_pte(void) 1009{ 1010 return !arch_faults_on_old_pte(); 1011} 1012#define arch_wants_old_prefaulted_pte arch_wants_old_prefaulted_pte 1013 1014static inline pgprot_t arch_filter_pgprot(pgprot_t prot) 1015{ 1016 if (cpus_have_const_cap(ARM64_HAS_EPAN)) 1017 return prot; 1018 1019 if (pgprot_val(prot) != pgprot_val(PAGE_EXECONLY)) 1020 return prot; 1021 1022 return PAGE_READONLY_EXEC; 1023} 1024 1025 1026#endif /* !__ASSEMBLY__ */ 1027 1028#endif /* __ASM_PGTABLE_H */