Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_ingress.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "net-sysfs.h"
155
156#define MAX_GRO_SKBS 8
157
158/* This should be increased if a protocol with a bigger head is added. */
159#define GRO_MAX_HEAD (MAX_HEADER + 128)
160
161static DEFINE_SPINLOCK(ptype_lock);
162static DEFINE_SPINLOCK(offload_lock);
163struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
164struct list_head ptype_all __read_mostly; /* Taps */
165static struct list_head offload_base __read_mostly;
166
167static int netif_rx_internal(struct sk_buff *skb);
168static int call_netdevice_notifiers_info(unsigned long val,
169 struct netdev_notifier_info *info);
170static int call_netdevice_notifiers_extack(unsigned long val,
171 struct net_device *dev,
172 struct netlink_ext_ack *extack);
173static struct napi_struct *napi_by_id(unsigned int napi_id);
174
175/*
176 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
177 * semaphore.
178 *
179 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
180 *
181 * Writers must hold the rtnl semaphore while they loop through the
182 * dev_base_head list, and hold dev_base_lock for writing when they do the
183 * actual updates. This allows pure readers to access the list even
184 * while a writer is preparing to update it.
185 *
186 * To put it another way, dev_base_lock is held for writing only to
187 * protect against pure readers; the rtnl semaphore provides the
188 * protection against other writers.
189 *
190 * See, for example usages, register_netdevice() and
191 * unregister_netdevice(), which must be called with the rtnl
192 * semaphore held.
193 */
194DEFINE_RWLOCK(dev_base_lock);
195EXPORT_SYMBOL(dev_base_lock);
196
197static DEFINE_MUTEX(ifalias_mutex);
198
199/* protects napi_hash addition/deletion and napi_gen_id */
200static DEFINE_SPINLOCK(napi_hash_lock);
201
202static unsigned int napi_gen_id = NR_CPUS;
203static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
204
205static DECLARE_RWSEM(devnet_rename_sem);
206
207static inline void dev_base_seq_inc(struct net *net)
208{
209 while (++net->dev_base_seq == 0)
210 ;
211}
212
213static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
214{
215 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
216
217 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
218}
219
220static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
221{
222 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
223}
224
225static inline void rps_lock(struct softnet_data *sd)
226{
227#ifdef CONFIG_RPS
228 spin_lock(&sd->input_pkt_queue.lock);
229#endif
230}
231
232static inline void rps_unlock(struct softnet_data *sd)
233{
234#ifdef CONFIG_RPS
235 spin_unlock(&sd->input_pkt_queue.lock);
236#endif
237}
238
239static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
240 const char *name)
241{
242 struct netdev_name_node *name_node;
243
244 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
245 if (!name_node)
246 return NULL;
247 INIT_HLIST_NODE(&name_node->hlist);
248 name_node->dev = dev;
249 name_node->name = name;
250 return name_node;
251}
252
253static struct netdev_name_node *
254netdev_name_node_head_alloc(struct net_device *dev)
255{
256 struct netdev_name_node *name_node;
257
258 name_node = netdev_name_node_alloc(dev, dev->name);
259 if (!name_node)
260 return NULL;
261 INIT_LIST_HEAD(&name_node->list);
262 return name_node;
263}
264
265static void netdev_name_node_free(struct netdev_name_node *name_node)
266{
267 kfree(name_node);
268}
269
270static void netdev_name_node_add(struct net *net,
271 struct netdev_name_node *name_node)
272{
273 hlist_add_head_rcu(&name_node->hlist,
274 dev_name_hash(net, name_node->name));
275}
276
277static void netdev_name_node_del(struct netdev_name_node *name_node)
278{
279 hlist_del_rcu(&name_node->hlist);
280}
281
282static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
283 const char *name)
284{
285 struct hlist_head *head = dev_name_hash(net, name);
286 struct netdev_name_node *name_node;
287
288 hlist_for_each_entry(name_node, head, hlist)
289 if (!strcmp(name_node->name, name))
290 return name_node;
291 return NULL;
292}
293
294static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
295 const char *name)
296{
297 struct hlist_head *head = dev_name_hash(net, name);
298 struct netdev_name_node *name_node;
299
300 hlist_for_each_entry_rcu(name_node, head, hlist)
301 if (!strcmp(name_node->name, name))
302 return name_node;
303 return NULL;
304}
305
306int netdev_name_node_alt_create(struct net_device *dev, const char *name)
307{
308 struct netdev_name_node *name_node;
309 struct net *net = dev_net(dev);
310
311 name_node = netdev_name_node_lookup(net, name);
312 if (name_node)
313 return -EEXIST;
314 name_node = netdev_name_node_alloc(dev, name);
315 if (!name_node)
316 return -ENOMEM;
317 netdev_name_node_add(net, name_node);
318 /* The node that holds dev->name acts as a head of per-device list. */
319 list_add_tail(&name_node->list, &dev->name_node->list);
320
321 return 0;
322}
323EXPORT_SYMBOL(netdev_name_node_alt_create);
324
325static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
326{
327 list_del(&name_node->list);
328 netdev_name_node_del(name_node);
329 kfree(name_node->name);
330 netdev_name_node_free(name_node);
331}
332
333int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
334{
335 struct netdev_name_node *name_node;
336 struct net *net = dev_net(dev);
337
338 name_node = netdev_name_node_lookup(net, name);
339 if (!name_node)
340 return -ENOENT;
341 /* lookup might have found our primary name or a name belonging
342 * to another device.
343 */
344 if (name_node == dev->name_node || name_node->dev != dev)
345 return -EINVAL;
346
347 __netdev_name_node_alt_destroy(name_node);
348
349 return 0;
350}
351EXPORT_SYMBOL(netdev_name_node_alt_destroy);
352
353static void netdev_name_node_alt_flush(struct net_device *dev)
354{
355 struct netdev_name_node *name_node, *tmp;
356
357 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
358 __netdev_name_node_alt_destroy(name_node);
359}
360
361/* Device list insertion */
362static void list_netdevice(struct net_device *dev)
363{
364 struct net *net = dev_net(dev);
365
366 ASSERT_RTNL();
367
368 write_lock_bh(&dev_base_lock);
369 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
370 netdev_name_node_add(net, dev->name_node);
371 hlist_add_head_rcu(&dev->index_hlist,
372 dev_index_hash(net, dev->ifindex));
373 write_unlock_bh(&dev_base_lock);
374
375 dev_base_seq_inc(net);
376}
377
378/* Device list removal
379 * caller must respect a RCU grace period before freeing/reusing dev
380 */
381static void unlist_netdevice(struct net_device *dev)
382{
383 ASSERT_RTNL();
384
385 /* Unlink dev from the device chain */
386 write_lock_bh(&dev_base_lock);
387 list_del_rcu(&dev->dev_list);
388 netdev_name_node_del(dev->name_node);
389 hlist_del_rcu(&dev->index_hlist);
390 write_unlock_bh(&dev_base_lock);
391
392 dev_base_seq_inc(dev_net(dev));
393}
394
395/*
396 * Our notifier list
397 */
398
399static RAW_NOTIFIER_HEAD(netdev_chain);
400
401/*
402 * Device drivers call our routines to queue packets here. We empty the
403 * queue in the local softnet handler.
404 */
405
406DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
407EXPORT_PER_CPU_SYMBOL(softnet_data);
408
409#ifdef CONFIG_LOCKDEP
410/*
411 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
412 * according to dev->type
413 */
414static const unsigned short netdev_lock_type[] = {
415 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
416 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
417 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
418 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
419 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
420 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
421 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
422 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
423 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
424 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
425 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
426 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
427 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
428 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
429 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
430
431static const char *const netdev_lock_name[] = {
432 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
433 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
434 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
435 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
436 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
437 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
438 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
439 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
440 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
441 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
442 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
443 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
444 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
445 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
446 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
447
448static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
449static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
450
451static inline unsigned short netdev_lock_pos(unsigned short dev_type)
452{
453 int i;
454
455 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
456 if (netdev_lock_type[i] == dev_type)
457 return i;
458 /* the last key is used by default */
459 return ARRAY_SIZE(netdev_lock_type) - 1;
460}
461
462static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
463 unsigned short dev_type)
464{
465 int i;
466
467 i = netdev_lock_pos(dev_type);
468 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
469 netdev_lock_name[i]);
470}
471
472static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
473{
474 int i;
475
476 i = netdev_lock_pos(dev->type);
477 lockdep_set_class_and_name(&dev->addr_list_lock,
478 &netdev_addr_lock_key[i],
479 netdev_lock_name[i]);
480}
481#else
482static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
483 unsigned short dev_type)
484{
485}
486
487static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
488{
489}
490#endif
491
492/*******************************************************************************
493 *
494 * Protocol management and registration routines
495 *
496 *******************************************************************************/
497
498
499/*
500 * Add a protocol ID to the list. Now that the input handler is
501 * smarter we can dispense with all the messy stuff that used to be
502 * here.
503 *
504 * BEWARE!!! Protocol handlers, mangling input packets,
505 * MUST BE last in hash buckets and checking protocol handlers
506 * MUST start from promiscuous ptype_all chain in net_bh.
507 * It is true now, do not change it.
508 * Explanation follows: if protocol handler, mangling packet, will
509 * be the first on list, it is not able to sense, that packet
510 * is cloned and should be copied-on-write, so that it will
511 * change it and subsequent readers will get broken packet.
512 * --ANK (980803)
513 */
514
515static inline struct list_head *ptype_head(const struct packet_type *pt)
516{
517 if (pt->type == htons(ETH_P_ALL))
518 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
519 else
520 return pt->dev ? &pt->dev->ptype_specific :
521 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
522}
523
524/**
525 * dev_add_pack - add packet handler
526 * @pt: packet type declaration
527 *
528 * Add a protocol handler to the networking stack. The passed &packet_type
529 * is linked into kernel lists and may not be freed until it has been
530 * removed from the kernel lists.
531 *
532 * This call does not sleep therefore it can not
533 * guarantee all CPU's that are in middle of receiving packets
534 * will see the new packet type (until the next received packet).
535 */
536
537void dev_add_pack(struct packet_type *pt)
538{
539 struct list_head *head = ptype_head(pt);
540
541 spin_lock(&ptype_lock);
542 list_add_rcu(&pt->list, head);
543 spin_unlock(&ptype_lock);
544}
545EXPORT_SYMBOL(dev_add_pack);
546
547/**
548 * __dev_remove_pack - remove packet handler
549 * @pt: packet type declaration
550 *
551 * Remove a protocol handler that was previously added to the kernel
552 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
553 * from the kernel lists and can be freed or reused once this function
554 * returns.
555 *
556 * The packet type might still be in use by receivers
557 * and must not be freed until after all the CPU's have gone
558 * through a quiescent state.
559 */
560void __dev_remove_pack(struct packet_type *pt)
561{
562 struct list_head *head = ptype_head(pt);
563 struct packet_type *pt1;
564
565 spin_lock(&ptype_lock);
566
567 list_for_each_entry(pt1, head, list) {
568 if (pt == pt1) {
569 list_del_rcu(&pt->list);
570 goto out;
571 }
572 }
573
574 pr_warn("dev_remove_pack: %p not found\n", pt);
575out:
576 spin_unlock(&ptype_lock);
577}
578EXPORT_SYMBOL(__dev_remove_pack);
579
580/**
581 * dev_remove_pack - remove packet handler
582 * @pt: packet type declaration
583 *
584 * Remove a protocol handler that was previously added to the kernel
585 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
586 * from the kernel lists and can be freed or reused once this function
587 * returns.
588 *
589 * This call sleeps to guarantee that no CPU is looking at the packet
590 * type after return.
591 */
592void dev_remove_pack(struct packet_type *pt)
593{
594 __dev_remove_pack(pt);
595
596 synchronize_net();
597}
598EXPORT_SYMBOL(dev_remove_pack);
599
600
601/**
602 * dev_add_offload - register offload handlers
603 * @po: protocol offload declaration
604 *
605 * Add protocol offload handlers to the networking stack. The passed
606 * &proto_offload is linked into kernel lists and may not be freed until
607 * it has been removed from the kernel lists.
608 *
609 * This call does not sleep therefore it can not
610 * guarantee all CPU's that are in middle of receiving packets
611 * will see the new offload handlers (until the next received packet).
612 */
613void dev_add_offload(struct packet_offload *po)
614{
615 struct packet_offload *elem;
616
617 spin_lock(&offload_lock);
618 list_for_each_entry(elem, &offload_base, list) {
619 if (po->priority < elem->priority)
620 break;
621 }
622 list_add_rcu(&po->list, elem->list.prev);
623 spin_unlock(&offload_lock);
624}
625EXPORT_SYMBOL(dev_add_offload);
626
627/**
628 * __dev_remove_offload - remove offload handler
629 * @po: packet offload declaration
630 *
631 * Remove a protocol offload handler that was previously added to the
632 * kernel offload handlers by dev_add_offload(). The passed &offload_type
633 * is removed from the kernel lists and can be freed or reused once this
634 * function returns.
635 *
636 * The packet type might still be in use by receivers
637 * and must not be freed until after all the CPU's have gone
638 * through a quiescent state.
639 */
640static void __dev_remove_offload(struct packet_offload *po)
641{
642 struct list_head *head = &offload_base;
643 struct packet_offload *po1;
644
645 spin_lock(&offload_lock);
646
647 list_for_each_entry(po1, head, list) {
648 if (po == po1) {
649 list_del_rcu(&po->list);
650 goto out;
651 }
652 }
653
654 pr_warn("dev_remove_offload: %p not found\n", po);
655out:
656 spin_unlock(&offload_lock);
657}
658
659/**
660 * dev_remove_offload - remove packet offload handler
661 * @po: packet offload declaration
662 *
663 * Remove a packet offload handler that was previously added to the kernel
664 * offload handlers by dev_add_offload(). The passed &offload_type is
665 * removed from the kernel lists and can be freed or reused once this
666 * function returns.
667 *
668 * This call sleeps to guarantee that no CPU is looking at the packet
669 * type after return.
670 */
671void dev_remove_offload(struct packet_offload *po)
672{
673 __dev_remove_offload(po);
674
675 synchronize_net();
676}
677EXPORT_SYMBOL(dev_remove_offload);
678
679/*******************************************************************************
680 *
681 * Device Interface Subroutines
682 *
683 *******************************************************************************/
684
685/**
686 * dev_get_iflink - get 'iflink' value of a interface
687 * @dev: targeted interface
688 *
689 * Indicates the ifindex the interface is linked to.
690 * Physical interfaces have the same 'ifindex' and 'iflink' values.
691 */
692
693int dev_get_iflink(const struct net_device *dev)
694{
695 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
696 return dev->netdev_ops->ndo_get_iflink(dev);
697
698 return dev->ifindex;
699}
700EXPORT_SYMBOL(dev_get_iflink);
701
702/**
703 * dev_fill_metadata_dst - Retrieve tunnel egress information.
704 * @dev: targeted interface
705 * @skb: The packet.
706 *
707 * For better visibility of tunnel traffic OVS needs to retrieve
708 * egress tunnel information for a packet. Following API allows
709 * user to get this info.
710 */
711int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
712{
713 struct ip_tunnel_info *info;
714
715 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
716 return -EINVAL;
717
718 info = skb_tunnel_info_unclone(skb);
719 if (!info)
720 return -ENOMEM;
721 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
722 return -EINVAL;
723
724 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
725}
726EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
727
728static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
729{
730 int k = stack->num_paths++;
731
732 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
733 return NULL;
734
735 return &stack->path[k];
736}
737
738int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
739 struct net_device_path_stack *stack)
740{
741 const struct net_device *last_dev;
742 struct net_device_path_ctx ctx = {
743 .dev = dev,
744 .daddr = daddr,
745 };
746 struct net_device_path *path;
747 int ret = 0;
748
749 stack->num_paths = 0;
750 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
751 last_dev = ctx.dev;
752 path = dev_fwd_path(stack);
753 if (!path)
754 return -1;
755
756 memset(path, 0, sizeof(struct net_device_path));
757 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
758 if (ret < 0)
759 return -1;
760
761 if (WARN_ON_ONCE(last_dev == ctx.dev))
762 return -1;
763 }
764 path = dev_fwd_path(stack);
765 if (!path)
766 return -1;
767 path->type = DEV_PATH_ETHERNET;
768 path->dev = ctx.dev;
769
770 return ret;
771}
772EXPORT_SYMBOL_GPL(dev_fill_forward_path);
773
774/**
775 * __dev_get_by_name - find a device by its name
776 * @net: the applicable net namespace
777 * @name: name to find
778 *
779 * Find an interface by name. Must be called under RTNL semaphore
780 * or @dev_base_lock. If the name is found a pointer to the device
781 * is returned. If the name is not found then %NULL is returned. The
782 * reference counters are not incremented so the caller must be
783 * careful with locks.
784 */
785
786struct net_device *__dev_get_by_name(struct net *net, const char *name)
787{
788 struct netdev_name_node *node_name;
789
790 node_name = netdev_name_node_lookup(net, name);
791 return node_name ? node_name->dev : NULL;
792}
793EXPORT_SYMBOL(__dev_get_by_name);
794
795/**
796 * dev_get_by_name_rcu - find a device by its name
797 * @net: the applicable net namespace
798 * @name: name to find
799 *
800 * Find an interface by name.
801 * If the name is found a pointer to the device is returned.
802 * If the name is not found then %NULL is returned.
803 * The reference counters are not incremented so the caller must be
804 * careful with locks. The caller must hold RCU lock.
805 */
806
807struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
808{
809 struct netdev_name_node *node_name;
810
811 node_name = netdev_name_node_lookup_rcu(net, name);
812 return node_name ? node_name->dev : NULL;
813}
814EXPORT_SYMBOL(dev_get_by_name_rcu);
815
816/**
817 * dev_get_by_name - find a device by its name
818 * @net: the applicable net namespace
819 * @name: name to find
820 *
821 * Find an interface by name. This can be called from any
822 * context and does its own locking. The returned handle has
823 * the usage count incremented and the caller must use dev_put() to
824 * release it when it is no longer needed. %NULL is returned if no
825 * matching device is found.
826 */
827
828struct net_device *dev_get_by_name(struct net *net, const char *name)
829{
830 struct net_device *dev;
831
832 rcu_read_lock();
833 dev = dev_get_by_name_rcu(net, name);
834 dev_hold(dev);
835 rcu_read_unlock();
836 return dev;
837}
838EXPORT_SYMBOL(dev_get_by_name);
839
840/**
841 * __dev_get_by_index - find a device by its ifindex
842 * @net: the applicable net namespace
843 * @ifindex: index of device
844 *
845 * Search for an interface by index. Returns %NULL if the device
846 * is not found or a pointer to the device. The device has not
847 * had its reference counter increased so the caller must be careful
848 * about locking. The caller must hold either the RTNL semaphore
849 * or @dev_base_lock.
850 */
851
852struct net_device *__dev_get_by_index(struct net *net, int ifindex)
853{
854 struct net_device *dev;
855 struct hlist_head *head = dev_index_hash(net, ifindex);
856
857 hlist_for_each_entry(dev, head, index_hlist)
858 if (dev->ifindex == ifindex)
859 return dev;
860
861 return NULL;
862}
863EXPORT_SYMBOL(__dev_get_by_index);
864
865/**
866 * dev_get_by_index_rcu - find a device by its ifindex
867 * @net: the applicable net namespace
868 * @ifindex: index of device
869 *
870 * Search for an interface by index. Returns %NULL if the device
871 * is not found or a pointer to the device. The device has not
872 * had its reference counter increased so the caller must be careful
873 * about locking. The caller must hold RCU lock.
874 */
875
876struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
877{
878 struct net_device *dev;
879 struct hlist_head *head = dev_index_hash(net, ifindex);
880
881 hlist_for_each_entry_rcu(dev, head, index_hlist)
882 if (dev->ifindex == ifindex)
883 return dev;
884
885 return NULL;
886}
887EXPORT_SYMBOL(dev_get_by_index_rcu);
888
889
890/**
891 * dev_get_by_index - find a device by its ifindex
892 * @net: the applicable net namespace
893 * @ifindex: index of device
894 *
895 * Search for an interface by index. Returns NULL if the device
896 * is not found or a pointer to the device. The device returned has
897 * had a reference added and the pointer is safe until the user calls
898 * dev_put to indicate they have finished with it.
899 */
900
901struct net_device *dev_get_by_index(struct net *net, int ifindex)
902{
903 struct net_device *dev;
904
905 rcu_read_lock();
906 dev = dev_get_by_index_rcu(net, ifindex);
907 dev_hold(dev);
908 rcu_read_unlock();
909 return dev;
910}
911EXPORT_SYMBOL(dev_get_by_index);
912
913/**
914 * dev_get_by_napi_id - find a device by napi_id
915 * @napi_id: ID of the NAPI struct
916 *
917 * Search for an interface by NAPI ID. Returns %NULL if the device
918 * is not found or a pointer to the device. The device has not had
919 * its reference counter increased so the caller must be careful
920 * about locking. The caller must hold RCU lock.
921 */
922
923struct net_device *dev_get_by_napi_id(unsigned int napi_id)
924{
925 struct napi_struct *napi;
926
927 WARN_ON_ONCE(!rcu_read_lock_held());
928
929 if (napi_id < MIN_NAPI_ID)
930 return NULL;
931
932 napi = napi_by_id(napi_id);
933
934 return napi ? napi->dev : NULL;
935}
936EXPORT_SYMBOL(dev_get_by_napi_id);
937
938/**
939 * netdev_get_name - get a netdevice name, knowing its ifindex.
940 * @net: network namespace
941 * @name: a pointer to the buffer where the name will be stored.
942 * @ifindex: the ifindex of the interface to get the name from.
943 */
944int netdev_get_name(struct net *net, char *name, int ifindex)
945{
946 struct net_device *dev;
947 int ret;
948
949 down_read(&devnet_rename_sem);
950 rcu_read_lock();
951
952 dev = dev_get_by_index_rcu(net, ifindex);
953 if (!dev) {
954 ret = -ENODEV;
955 goto out;
956 }
957
958 strcpy(name, dev->name);
959
960 ret = 0;
961out:
962 rcu_read_unlock();
963 up_read(&devnet_rename_sem);
964 return ret;
965}
966
967/**
968 * dev_getbyhwaddr_rcu - find a device by its hardware address
969 * @net: the applicable net namespace
970 * @type: media type of device
971 * @ha: hardware address
972 *
973 * Search for an interface by MAC address. Returns NULL if the device
974 * is not found or a pointer to the device.
975 * The caller must hold RCU or RTNL.
976 * The returned device has not had its ref count increased
977 * and the caller must therefore be careful about locking
978 *
979 */
980
981struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
982 const char *ha)
983{
984 struct net_device *dev;
985
986 for_each_netdev_rcu(net, dev)
987 if (dev->type == type &&
988 !memcmp(dev->dev_addr, ha, dev->addr_len))
989 return dev;
990
991 return NULL;
992}
993EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
994
995struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
996{
997 struct net_device *dev, *ret = NULL;
998
999 rcu_read_lock();
1000 for_each_netdev_rcu(net, dev)
1001 if (dev->type == type) {
1002 dev_hold(dev);
1003 ret = dev;
1004 break;
1005 }
1006 rcu_read_unlock();
1007 return ret;
1008}
1009EXPORT_SYMBOL(dev_getfirstbyhwtype);
1010
1011/**
1012 * __dev_get_by_flags - find any device with given flags
1013 * @net: the applicable net namespace
1014 * @if_flags: IFF_* values
1015 * @mask: bitmask of bits in if_flags to check
1016 *
1017 * Search for any interface with the given flags. Returns NULL if a device
1018 * is not found or a pointer to the device. Must be called inside
1019 * rtnl_lock(), and result refcount is unchanged.
1020 */
1021
1022struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1023 unsigned short mask)
1024{
1025 struct net_device *dev, *ret;
1026
1027 ASSERT_RTNL();
1028
1029 ret = NULL;
1030 for_each_netdev(net, dev) {
1031 if (((dev->flags ^ if_flags) & mask) == 0) {
1032 ret = dev;
1033 break;
1034 }
1035 }
1036 return ret;
1037}
1038EXPORT_SYMBOL(__dev_get_by_flags);
1039
1040/**
1041 * dev_valid_name - check if name is okay for network device
1042 * @name: name string
1043 *
1044 * Network device names need to be valid file names to
1045 * allow sysfs to work. We also disallow any kind of
1046 * whitespace.
1047 */
1048bool dev_valid_name(const char *name)
1049{
1050 if (*name == '\0')
1051 return false;
1052 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1053 return false;
1054 if (!strcmp(name, ".") || !strcmp(name, ".."))
1055 return false;
1056
1057 while (*name) {
1058 if (*name == '/' || *name == ':' || isspace(*name))
1059 return false;
1060 name++;
1061 }
1062 return true;
1063}
1064EXPORT_SYMBOL(dev_valid_name);
1065
1066/**
1067 * __dev_alloc_name - allocate a name for a device
1068 * @net: network namespace to allocate the device name in
1069 * @name: name format string
1070 * @buf: scratch buffer and result name string
1071 *
1072 * Passed a format string - eg "lt%d" it will try and find a suitable
1073 * id. It scans list of devices to build up a free map, then chooses
1074 * the first empty slot. The caller must hold the dev_base or rtnl lock
1075 * while allocating the name and adding the device in order to avoid
1076 * duplicates.
1077 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1078 * Returns the number of the unit assigned or a negative errno code.
1079 */
1080
1081static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1082{
1083 int i = 0;
1084 const char *p;
1085 const int max_netdevices = 8*PAGE_SIZE;
1086 unsigned long *inuse;
1087 struct net_device *d;
1088
1089 if (!dev_valid_name(name))
1090 return -EINVAL;
1091
1092 p = strchr(name, '%');
1093 if (p) {
1094 /*
1095 * Verify the string as this thing may have come from
1096 * the user. There must be either one "%d" and no other "%"
1097 * characters.
1098 */
1099 if (p[1] != 'd' || strchr(p + 2, '%'))
1100 return -EINVAL;
1101
1102 /* Use one page as a bit array of possible slots */
1103 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1104 if (!inuse)
1105 return -ENOMEM;
1106
1107 for_each_netdev(net, d) {
1108 struct netdev_name_node *name_node;
1109 list_for_each_entry(name_node, &d->name_node->list, list) {
1110 if (!sscanf(name_node->name, name, &i))
1111 continue;
1112 if (i < 0 || i >= max_netdevices)
1113 continue;
1114
1115 /* avoid cases where sscanf is not exact inverse of printf */
1116 snprintf(buf, IFNAMSIZ, name, i);
1117 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1118 set_bit(i, inuse);
1119 }
1120 if (!sscanf(d->name, name, &i))
1121 continue;
1122 if (i < 0 || i >= max_netdevices)
1123 continue;
1124
1125 /* avoid cases where sscanf is not exact inverse of printf */
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!strncmp(buf, d->name, IFNAMSIZ))
1128 set_bit(i, inuse);
1129 }
1130
1131 i = find_first_zero_bit(inuse, max_netdevices);
1132 free_page((unsigned long) inuse);
1133 }
1134
1135 snprintf(buf, IFNAMSIZ, name, i);
1136 if (!__dev_get_by_name(net, buf))
1137 return i;
1138
1139 /* It is possible to run out of possible slots
1140 * when the name is long and there isn't enough space left
1141 * for the digits, or if all bits are used.
1142 */
1143 return -ENFILE;
1144}
1145
1146static int dev_alloc_name_ns(struct net *net,
1147 struct net_device *dev,
1148 const char *name)
1149{
1150 char buf[IFNAMSIZ];
1151 int ret;
1152
1153 BUG_ON(!net);
1154 ret = __dev_alloc_name(net, name, buf);
1155 if (ret >= 0)
1156 strlcpy(dev->name, buf, IFNAMSIZ);
1157 return ret;
1158}
1159
1160/**
1161 * dev_alloc_name - allocate a name for a device
1162 * @dev: device
1163 * @name: name format string
1164 *
1165 * Passed a format string - eg "lt%d" it will try and find a suitable
1166 * id. It scans list of devices to build up a free map, then chooses
1167 * the first empty slot. The caller must hold the dev_base or rtnl lock
1168 * while allocating the name and adding the device in order to avoid
1169 * duplicates.
1170 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1171 * Returns the number of the unit assigned or a negative errno code.
1172 */
1173
1174int dev_alloc_name(struct net_device *dev, const char *name)
1175{
1176 return dev_alloc_name_ns(dev_net(dev), dev, name);
1177}
1178EXPORT_SYMBOL(dev_alloc_name);
1179
1180static int dev_get_valid_name(struct net *net, struct net_device *dev,
1181 const char *name)
1182{
1183 BUG_ON(!net);
1184
1185 if (!dev_valid_name(name))
1186 return -EINVAL;
1187
1188 if (strchr(name, '%'))
1189 return dev_alloc_name_ns(net, dev, name);
1190 else if (__dev_get_by_name(net, name))
1191 return -EEXIST;
1192 else if (dev->name != name)
1193 strlcpy(dev->name, name, IFNAMSIZ);
1194
1195 return 0;
1196}
1197
1198/**
1199 * dev_change_name - change name of a device
1200 * @dev: device
1201 * @newname: name (or format string) must be at least IFNAMSIZ
1202 *
1203 * Change name of a device, can pass format strings "eth%d".
1204 * for wildcarding.
1205 */
1206int dev_change_name(struct net_device *dev, const char *newname)
1207{
1208 unsigned char old_assign_type;
1209 char oldname[IFNAMSIZ];
1210 int err = 0;
1211 int ret;
1212 struct net *net;
1213
1214 ASSERT_RTNL();
1215 BUG_ON(!dev_net(dev));
1216
1217 net = dev_net(dev);
1218
1219 /* Some auto-enslaved devices e.g. failover slaves are
1220 * special, as userspace might rename the device after
1221 * the interface had been brought up and running since
1222 * the point kernel initiated auto-enslavement. Allow
1223 * live name change even when these slave devices are
1224 * up and running.
1225 *
1226 * Typically, users of these auto-enslaving devices
1227 * don't actually care about slave name change, as
1228 * they are supposed to operate on master interface
1229 * directly.
1230 */
1231 if (dev->flags & IFF_UP &&
1232 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1233 return -EBUSY;
1234
1235 down_write(&devnet_rename_sem);
1236
1237 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1238 up_write(&devnet_rename_sem);
1239 return 0;
1240 }
1241
1242 memcpy(oldname, dev->name, IFNAMSIZ);
1243
1244 err = dev_get_valid_name(net, dev, newname);
1245 if (err < 0) {
1246 up_write(&devnet_rename_sem);
1247 return err;
1248 }
1249
1250 if (oldname[0] && !strchr(oldname, '%'))
1251 netdev_info(dev, "renamed from %s\n", oldname);
1252
1253 old_assign_type = dev->name_assign_type;
1254 dev->name_assign_type = NET_NAME_RENAMED;
1255
1256rollback:
1257 ret = device_rename(&dev->dev, dev->name);
1258 if (ret) {
1259 memcpy(dev->name, oldname, IFNAMSIZ);
1260 dev->name_assign_type = old_assign_type;
1261 up_write(&devnet_rename_sem);
1262 return ret;
1263 }
1264
1265 up_write(&devnet_rename_sem);
1266
1267 netdev_adjacent_rename_links(dev, oldname);
1268
1269 write_lock_bh(&dev_base_lock);
1270 netdev_name_node_del(dev->name_node);
1271 write_unlock_bh(&dev_base_lock);
1272
1273 synchronize_rcu();
1274
1275 write_lock_bh(&dev_base_lock);
1276 netdev_name_node_add(net, dev->name_node);
1277 write_unlock_bh(&dev_base_lock);
1278
1279 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1280 ret = notifier_to_errno(ret);
1281
1282 if (ret) {
1283 /* err >= 0 after dev_alloc_name() or stores the first errno */
1284 if (err >= 0) {
1285 err = ret;
1286 down_write(&devnet_rename_sem);
1287 memcpy(dev->name, oldname, IFNAMSIZ);
1288 memcpy(oldname, newname, IFNAMSIZ);
1289 dev->name_assign_type = old_assign_type;
1290 old_assign_type = NET_NAME_RENAMED;
1291 goto rollback;
1292 } else {
1293 pr_err("%s: name change rollback failed: %d\n",
1294 dev->name, ret);
1295 }
1296 }
1297
1298 return err;
1299}
1300
1301/**
1302 * dev_set_alias - change ifalias of a device
1303 * @dev: device
1304 * @alias: name up to IFALIASZ
1305 * @len: limit of bytes to copy from info
1306 *
1307 * Set ifalias for a device,
1308 */
1309int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1310{
1311 struct dev_ifalias *new_alias = NULL;
1312
1313 if (len >= IFALIASZ)
1314 return -EINVAL;
1315
1316 if (len) {
1317 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1318 if (!new_alias)
1319 return -ENOMEM;
1320
1321 memcpy(new_alias->ifalias, alias, len);
1322 new_alias->ifalias[len] = 0;
1323 }
1324
1325 mutex_lock(&ifalias_mutex);
1326 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1327 mutex_is_locked(&ifalias_mutex));
1328 mutex_unlock(&ifalias_mutex);
1329
1330 if (new_alias)
1331 kfree_rcu(new_alias, rcuhead);
1332
1333 return len;
1334}
1335EXPORT_SYMBOL(dev_set_alias);
1336
1337/**
1338 * dev_get_alias - get ifalias of a device
1339 * @dev: device
1340 * @name: buffer to store name of ifalias
1341 * @len: size of buffer
1342 *
1343 * get ifalias for a device. Caller must make sure dev cannot go
1344 * away, e.g. rcu read lock or own a reference count to device.
1345 */
1346int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1347{
1348 const struct dev_ifalias *alias;
1349 int ret = 0;
1350
1351 rcu_read_lock();
1352 alias = rcu_dereference(dev->ifalias);
1353 if (alias)
1354 ret = snprintf(name, len, "%s", alias->ifalias);
1355 rcu_read_unlock();
1356
1357 return ret;
1358}
1359
1360/**
1361 * netdev_features_change - device changes features
1362 * @dev: device to cause notification
1363 *
1364 * Called to indicate a device has changed features.
1365 */
1366void netdev_features_change(struct net_device *dev)
1367{
1368 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1369}
1370EXPORT_SYMBOL(netdev_features_change);
1371
1372/**
1373 * netdev_state_change - device changes state
1374 * @dev: device to cause notification
1375 *
1376 * Called to indicate a device has changed state. This function calls
1377 * the notifier chains for netdev_chain and sends a NEWLINK message
1378 * to the routing socket.
1379 */
1380void netdev_state_change(struct net_device *dev)
1381{
1382 if (dev->flags & IFF_UP) {
1383 struct netdev_notifier_change_info change_info = {
1384 .info.dev = dev,
1385 };
1386
1387 call_netdevice_notifiers_info(NETDEV_CHANGE,
1388 &change_info.info);
1389 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1390 }
1391}
1392EXPORT_SYMBOL(netdev_state_change);
1393
1394/**
1395 * __netdev_notify_peers - notify network peers about existence of @dev,
1396 * to be called when rtnl lock is already held.
1397 * @dev: network device
1398 *
1399 * Generate traffic such that interested network peers are aware of
1400 * @dev, such as by generating a gratuitous ARP. This may be used when
1401 * a device wants to inform the rest of the network about some sort of
1402 * reconfiguration such as a failover event or virtual machine
1403 * migration.
1404 */
1405void __netdev_notify_peers(struct net_device *dev)
1406{
1407 ASSERT_RTNL();
1408 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1409 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1410}
1411EXPORT_SYMBOL(__netdev_notify_peers);
1412
1413/**
1414 * netdev_notify_peers - notify network peers about existence of @dev
1415 * @dev: network device
1416 *
1417 * Generate traffic such that interested network peers are aware of
1418 * @dev, such as by generating a gratuitous ARP. This may be used when
1419 * a device wants to inform the rest of the network about some sort of
1420 * reconfiguration such as a failover event or virtual machine
1421 * migration.
1422 */
1423void netdev_notify_peers(struct net_device *dev)
1424{
1425 rtnl_lock();
1426 __netdev_notify_peers(dev);
1427 rtnl_unlock();
1428}
1429EXPORT_SYMBOL(netdev_notify_peers);
1430
1431static int napi_threaded_poll(void *data);
1432
1433static int napi_kthread_create(struct napi_struct *n)
1434{
1435 int err = 0;
1436
1437 /* Create and wake up the kthread once to put it in
1438 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1439 * warning and work with loadavg.
1440 */
1441 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1442 n->dev->name, n->napi_id);
1443 if (IS_ERR(n->thread)) {
1444 err = PTR_ERR(n->thread);
1445 pr_err("kthread_run failed with err %d\n", err);
1446 n->thread = NULL;
1447 }
1448
1449 return err;
1450}
1451
1452static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1453{
1454 const struct net_device_ops *ops = dev->netdev_ops;
1455 int ret;
1456
1457 ASSERT_RTNL();
1458
1459 if (!netif_device_present(dev)) {
1460 /* may be detached because parent is runtime-suspended */
1461 if (dev->dev.parent)
1462 pm_runtime_resume(dev->dev.parent);
1463 if (!netif_device_present(dev))
1464 return -ENODEV;
1465 }
1466
1467 /* Block netpoll from trying to do any rx path servicing.
1468 * If we don't do this there is a chance ndo_poll_controller
1469 * or ndo_poll may be running while we open the device
1470 */
1471 netpoll_poll_disable(dev);
1472
1473 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1474 ret = notifier_to_errno(ret);
1475 if (ret)
1476 return ret;
1477
1478 set_bit(__LINK_STATE_START, &dev->state);
1479
1480 if (ops->ndo_validate_addr)
1481 ret = ops->ndo_validate_addr(dev);
1482
1483 if (!ret && ops->ndo_open)
1484 ret = ops->ndo_open(dev);
1485
1486 netpoll_poll_enable(dev);
1487
1488 if (ret)
1489 clear_bit(__LINK_STATE_START, &dev->state);
1490 else {
1491 dev->flags |= IFF_UP;
1492 dev_set_rx_mode(dev);
1493 dev_activate(dev);
1494 add_device_randomness(dev->dev_addr, dev->addr_len);
1495 }
1496
1497 return ret;
1498}
1499
1500/**
1501 * dev_open - prepare an interface for use.
1502 * @dev: device to open
1503 * @extack: netlink extended ack
1504 *
1505 * Takes a device from down to up state. The device's private open
1506 * function is invoked and then the multicast lists are loaded. Finally
1507 * the device is moved into the up state and a %NETDEV_UP message is
1508 * sent to the netdev notifier chain.
1509 *
1510 * Calling this function on an active interface is a nop. On a failure
1511 * a negative errno code is returned.
1512 */
1513int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1514{
1515 int ret;
1516
1517 if (dev->flags & IFF_UP)
1518 return 0;
1519
1520 ret = __dev_open(dev, extack);
1521 if (ret < 0)
1522 return ret;
1523
1524 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1525 call_netdevice_notifiers(NETDEV_UP, dev);
1526
1527 return ret;
1528}
1529EXPORT_SYMBOL(dev_open);
1530
1531static void __dev_close_many(struct list_head *head)
1532{
1533 struct net_device *dev;
1534
1535 ASSERT_RTNL();
1536 might_sleep();
1537
1538 list_for_each_entry(dev, head, close_list) {
1539 /* Temporarily disable netpoll until the interface is down */
1540 netpoll_poll_disable(dev);
1541
1542 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1543
1544 clear_bit(__LINK_STATE_START, &dev->state);
1545
1546 /* Synchronize to scheduled poll. We cannot touch poll list, it
1547 * can be even on different cpu. So just clear netif_running().
1548 *
1549 * dev->stop() will invoke napi_disable() on all of it's
1550 * napi_struct instances on this device.
1551 */
1552 smp_mb__after_atomic(); /* Commit netif_running(). */
1553 }
1554
1555 dev_deactivate_many(head);
1556
1557 list_for_each_entry(dev, head, close_list) {
1558 const struct net_device_ops *ops = dev->netdev_ops;
1559
1560 /*
1561 * Call the device specific close. This cannot fail.
1562 * Only if device is UP
1563 *
1564 * We allow it to be called even after a DETACH hot-plug
1565 * event.
1566 */
1567 if (ops->ndo_stop)
1568 ops->ndo_stop(dev);
1569
1570 dev->flags &= ~IFF_UP;
1571 netpoll_poll_enable(dev);
1572 }
1573}
1574
1575static void __dev_close(struct net_device *dev)
1576{
1577 LIST_HEAD(single);
1578
1579 list_add(&dev->close_list, &single);
1580 __dev_close_many(&single);
1581 list_del(&single);
1582}
1583
1584void dev_close_many(struct list_head *head, bool unlink)
1585{
1586 struct net_device *dev, *tmp;
1587
1588 /* Remove the devices that don't need to be closed */
1589 list_for_each_entry_safe(dev, tmp, head, close_list)
1590 if (!(dev->flags & IFF_UP))
1591 list_del_init(&dev->close_list);
1592
1593 __dev_close_many(head);
1594
1595 list_for_each_entry_safe(dev, tmp, head, close_list) {
1596 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1597 call_netdevice_notifiers(NETDEV_DOWN, dev);
1598 if (unlink)
1599 list_del_init(&dev->close_list);
1600 }
1601}
1602EXPORT_SYMBOL(dev_close_many);
1603
1604/**
1605 * dev_close - shutdown an interface.
1606 * @dev: device to shutdown
1607 *
1608 * This function moves an active device into down state. A
1609 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1610 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1611 * chain.
1612 */
1613void dev_close(struct net_device *dev)
1614{
1615 if (dev->flags & IFF_UP) {
1616 LIST_HEAD(single);
1617
1618 list_add(&dev->close_list, &single);
1619 dev_close_many(&single, true);
1620 list_del(&single);
1621 }
1622}
1623EXPORT_SYMBOL(dev_close);
1624
1625
1626/**
1627 * dev_disable_lro - disable Large Receive Offload on a device
1628 * @dev: device
1629 *
1630 * Disable Large Receive Offload (LRO) on a net device. Must be
1631 * called under RTNL. This is needed if received packets may be
1632 * forwarded to another interface.
1633 */
1634void dev_disable_lro(struct net_device *dev)
1635{
1636 struct net_device *lower_dev;
1637 struct list_head *iter;
1638
1639 dev->wanted_features &= ~NETIF_F_LRO;
1640 netdev_update_features(dev);
1641
1642 if (unlikely(dev->features & NETIF_F_LRO))
1643 netdev_WARN(dev, "failed to disable LRO!\n");
1644
1645 netdev_for_each_lower_dev(dev, lower_dev, iter)
1646 dev_disable_lro(lower_dev);
1647}
1648EXPORT_SYMBOL(dev_disable_lro);
1649
1650/**
1651 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1652 * @dev: device
1653 *
1654 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1655 * called under RTNL. This is needed if Generic XDP is installed on
1656 * the device.
1657 */
1658static void dev_disable_gro_hw(struct net_device *dev)
1659{
1660 dev->wanted_features &= ~NETIF_F_GRO_HW;
1661 netdev_update_features(dev);
1662
1663 if (unlikely(dev->features & NETIF_F_GRO_HW))
1664 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1665}
1666
1667const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1668{
1669#define N(val) \
1670 case NETDEV_##val: \
1671 return "NETDEV_" __stringify(val);
1672 switch (cmd) {
1673 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1674 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1675 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1676 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1677 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1678 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1679 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1680 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1681 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1682 N(PRE_CHANGEADDR)
1683 }
1684#undef N
1685 return "UNKNOWN_NETDEV_EVENT";
1686}
1687EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1688
1689static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1690 struct net_device *dev)
1691{
1692 struct netdev_notifier_info info = {
1693 .dev = dev,
1694 };
1695
1696 return nb->notifier_call(nb, val, &info);
1697}
1698
1699static int call_netdevice_register_notifiers(struct notifier_block *nb,
1700 struct net_device *dev)
1701{
1702 int err;
1703
1704 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1705 err = notifier_to_errno(err);
1706 if (err)
1707 return err;
1708
1709 if (!(dev->flags & IFF_UP))
1710 return 0;
1711
1712 call_netdevice_notifier(nb, NETDEV_UP, dev);
1713 return 0;
1714}
1715
1716static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1717 struct net_device *dev)
1718{
1719 if (dev->flags & IFF_UP) {
1720 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1721 dev);
1722 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1723 }
1724 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1725}
1726
1727static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1728 struct net *net)
1729{
1730 struct net_device *dev;
1731 int err;
1732
1733 for_each_netdev(net, dev) {
1734 err = call_netdevice_register_notifiers(nb, dev);
1735 if (err)
1736 goto rollback;
1737 }
1738 return 0;
1739
1740rollback:
1741 for_each_netdev_continue_reverse(net, dev)
1742 call_netdevice_unregister_notifiers(nb, dev);
1743 return err;
1744}
1745
1746static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1747 struct net *net)
1748{
1749 struct net_device *dev;
1750
1751 for_each_netdev(net, dev)
1752 call_netdevice_unregister_notifiers(nb, dev);
1753}
1754
1755static int dev_boot_phase = 1;
1756
1757/**
1758 * register_netdevice_notifier - register a network notifier block
1759 * @nb: notifier
1760 *
1761 * Register a notifier to be called when network device events occur.
1762 * The notifier passed is linked into the kernel structures and must
1763 * not be reused until it has been unregistered. A negative errno code
1764 * is returned on a failure.
1765 *
1766 * When registered all registration and up events are replayed
1767 * to the new notifier to allow device to have a race free
1768 * view of the network device list.
1769 */
1770
1771int register_netdevice_notifier(struct notifier_block *nb)
1772{
1773 struct net *net;
1774 int err;
1775
1776 /* Close race with setup_net() and cleanup_net() */
1777 down_write(&pernet_ops_rwsem);
1778 rtnl_lock();
1779 err = raw_notifier_chain_register(&netdev_chain, nb);
1780 if (err)
1781 goto unlock;
1782 if (dev_boot_phase)
1783 goto unlock;
1784 for_each_net(net) {
1785 err = call_netdevice_register_net_notifiers(nb, net);
1786 if (err)
1787 goto rollback;
1788 }
1789
1790unlock:
1791 rtnl_unlock();
1792 up_write(&pernet_ops_rwsem);
1793 return err;
1794
1795rollback:
1796 for_each_net_continue_reverse(net)
1797 call_netdevice_unregister_net_notifiers(nb, net);
1798
1799 raw_notifier_chain_unregister(&netdev_chain, nb);
1800 goto unlock;
1801}
1802EXPORT_SYMBOL(register_netdevice_notifier);
1803
1804/**
1805 * unregister_netdevice_notifier - unregister a network notifier block
1806 * @nb: notifier
1807 *
1808 * Unregister a notifier previously registered by
1809 * register_netdevice_notifier(). The notifier is unlinked into the
1810 * kernel structures and may then be reused. A negative errno code
1811 * is returned on a failure.
1812 *
1813 * After unregistering unregister and down device events are synthesized
1814 * for all devices on the device list to the removed notifier to remove
1815 * the need for special case cleanup code.
1816 */
1817
1818int unregister_netdevice_notifier(struct notifier_block *nb)
1819{
1820 struct net *net;
1821 int err;
1822
1823 /* Close race with setup_net() and cleanup_net() */
1824 down_write(&pernet_ops_rwsem);
1825 rtnl_lock();
1826 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1827 if (err)
1828 goto unlock;
1829
1830 for_each_net(net)
1831 call_netdevice_unregister_net_notifiers(nb, net);
1832
1833unlock:
1834 rtnl_unlock();
1835 up_write(&pernet_ops_rwsem);
1836 return err;
1837}
1838EXPORT_SYMBOL(unregister_netdevice_notifier);
1839
1840static int __register_netdevice_notifier_net(struct net *net,
1841 struct notifier_block *nb,
1842 bool ignore_call_fail)
1843{
1844 int err;
1845
1846 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1847 if (err)
1848 return err;
1849 if (dev_boot_phase)
1850 return 0;
1851
1852 err = call_netdevice_register_net_notifiers(nb, net);
1853 if (err && !ignore_call_fail)
1854 goto chain_unregister;
1855
1856 return 0;
1857
1858chain_unregister:
1859 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1860 return err;
1861}
1862
1863static int __unregister_netdevice_notifier_net(struct net *net,
1864 struct notifier_block *nb)
1865{
1866 int err;
1867
1868 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1869 if (err)
1870 return err;
1871
1872 call_netdevice_unregister_net_notifiers(nb, net);
1873 return 0;
1874}
1875
1876/**
1877 * register_netdevice_notifier_net - register a per-netns network notifier block
1878 * @net: network namespace
1879 * @nb: notifier
1880 *
1881 * Register a notifier to be called when network device events occur.
1882 * The notifier passed is linked into the kernel structures and must
1883 * not be reused until it has been unregistered. A negative errno code
1884 * is returned on a failure.
1885 *
1886 * When registered all registration and up events are replayed
1887 * to the new notifier to allow device to have a race free
1888 * view of the network device list.
1889 */
1890
1891int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1892{
1893 int err;
1894
1895 rtnl_lock();
1896 err = __register_netdevice_notifier_net(net, nb, false);
1897 rtnl_unlock();
1898 return err;
1899}
1900EXPORT_SYMBOL(register_netdevice_notifier_net);
1901
1902/**
1903 * unregister_netdevice_notifier_net - unregister a per-netns
1904 * network notifier block
1905 * @net: network namespace
1906 * @nb: notifier
1907 *
1908 * Unregister a notifier previously registered by
1909 * register_netdevice_notifier(). The notifier is unlinked into the
1910 * kernel structures and may then be reused. A negative errno code
1911 * is returned on a failure.
1912 *
1913 * After unregistering unregister and down device events are synthesized
1914 * for all devices on the device list to the removed notifier to remove
1915 * the need for special case cleanup code.
1916 */
1917
1918int unregister_netdevice_notifier_net(struct net *net,
1919 struct notifier_block *nb)
1920{
1921 int err;
1922
1923 rtnl_lock();
1924 err = __unregister_netdevice_notifier_net(net, nb);
1925 rtnl_unlock();
1926 return err;
1927}
1928EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1929
1930int register_netdevice_notifier_dev_net(struct net_device *dev,
1931 struct notifier_block *nb,
1932 struct netdev_net_notifier *nn)
1933{
1934 int err;
1935
1936 rtnl_lock();
1937 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1938 if (!err) {
1939 nn->nb = nb;
1940 list_add(&nn->list, &dev->net_notifier_list);
1941 }
1942 rtnl_unlock();
1943 return err;
1944}
1945EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1946
1947int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1948 struct notifier_block *nb,
1949 struct netdev_net_notifier *nn)
1950{
1951 int err;
1952
1953 rtnl_lock();
1954 list_del(&nn->list);
1955 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1956 rtnl_unlock();
1957 return err;
1958}
1959EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1960
1961static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1962 struct net *net)
1963{
1964 struct netdev_net_notifier *nn;
1965
1966 list_for_each_entry(nn, &dev->net_notifier_list, list) {
1967 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
1968 __register_netdevice_notifier_net(net, nn->nb, true);
1969 }
1970}
1971
1972/**
1973 * call_netdevice_notifiers_info - call all network notifier blocks
1974 * @val: value passed unmodified to notifier function
1975 * @info: notifier information data
1976 *
1977 * Call all network notifier blocks. Parameters and return value
1978 * are as for raw_notifier_call_chain().
1979 */
1980
1981static int call_netdevice_notifiers_info(unsigned long val,
1982 struct netdev_notifier_info *info)
1983{
1984 struct net *net = dev_net(info->dev);
1985 int ret;
1986
1987 ASSERT_RTNL();
1988
1989 /* Run per-netns notifier block chain first, then run the global one.
1990 * Hopefully, one day, the global one is going to be removed after
1991 * all notifier block registrators get converted to be per-netns.
1992 */
1993 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1994 if (ret & NOTIFY_STOP_MASK)
1995 return ret;
1996 return raw_notifier_call_chain(&netdev_chain, val, info);
1997}
1998
1999static int call_netdevice_notifiers_extack(unsigned long val,
2000 struct net_device *dev,
2001 struct netlink_ext_ack *extack)
2002{
2003 struct netdev_notifier_info info = {
2004 .dev = dev,
2005 .extack = extack,
2006 };
2007
2008 return call_netdevice_notifiers_info(val, &info);
2009}
2010
2011/**
2012 * call_netdevice_notifiers - call all network notifier blocks
2013 * @val: value passed unmodified to notifier function
2014 * @dev: net_device pointer passed unmodified to notifier function
2015 *
2016 * Call all network notifier blocks. Parameters and return value
2017 * are as for raw_notifier_call_chain().
2018 */
2019
2020int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2021{
2022 return call_netdevice_notifiers_extack(val, dev, NULL);
2023}
2024EXPORT_SYMBOL(call_netdevice_notifiers);
2025
2026/**
2027 * call_netdevice_notifiers_mtu - call all network notifier blocks
2028 * @val: value passed unmodified to notifier function
2029 * @dev: net_device pointer passed unmodified to notifier function
2030 * @arg: additional u32 argument passed to the notifier function
2031 *
2032 * Call all network notifier blocks. Parameters and return value
2033 * are as for raw_notifier_call_chain().
2034 */
2035static int call_netdevice_notifiers_mtu(unsigned long val,
2036 struct net_device *dev, u32 arg)
2037{
2038 struct netdev_notifier_info_ext info = {
2039 .info.dev = dev,
2040 .ext.mtu = arg,
2041 };
2042
2043 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2044
2045 return call_netdevice_notifiers_info(val, &info.info);
2046}
2047
2048#ifdef CONFIG_NET_INGRESS
2049static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2050
2051void net_inc_ingress_queue(void)
2052{
2053 static_branch_inc(&ingress_needed_key);
2054}
2055EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2056
2057void net_dec_ingress_queue(void)
2058{
2059 static_branch_dec(&ingress_needed_key);
2060}
2061EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2062#endif
2063
2064#ifdef CONFIG_NET_EGRESS
2065static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2066
2067void net_inc_egress_queue(void)
2068{
2069 static_branch_inc(&egress_needed_key);
2070}
2071EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2072
2073void net_dec_egress_queue(void)
2074{
2075 static_branch_dec(&egress_needed_key);
2076}
2077EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2078#endif
2079
2080static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2081#ifdef CONFIG_JUMP_LABEL
2082static atomic_t netstamp_needed_deferred;
2083static atomic_t netstamp_wanted;
2084static void netstamp_clear(struct work_struct *work)
2085{
2086 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2087 int wanted;
2088
2089 wanted = atomic_add_return(deferred, &netstamp_wanted);
2090 if (wanted > 0)
2091 static_branch_enable(&netstamp_needed_key);
2092 else
2093 static_branch_disable(&netstamp_needed_key);
2094}
2095static DECLARE_WORK(netstamp_work, netstamp_clear);
2096#endif
2097
2098void net_enable_timestamp(void)
2099{
2100#ifdef CONFIG_JUMP_LABEL
2101 int wanted;
2102
2103 while (1) {
2104 wanted = atomic_read(&netstamp_wanted);
2105 if (wanted <= 0)
2106 break;
2107 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2108 return;
2109 }
2110 atomic_inc(&netstamp_needed_deferred);
2111 schedule_work(&netstamp_work);
2112#else
2113 static_branch_inc(&netstamp_needed_key);
2114#endif
2115}
2116EXPORT_SYMBOL(net_enable_timestamp);
2117
2118void net_disable_timestamp(void)
2119{
2120#ifdef CONFIG_JUMP_LABEL
2121 int wanted;
2122
2123 while (1) {
2124 wanted = atomic_read(&netstamp_wanted);
2125 if (wanted <= 1)
2126 break;
2127 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2128 return;
2129 }
2130 atomic_dec(&netstamp_needed_deferred);
2131 schedule_work(&netstamp_work);
2132#else
2133 static_branch_dec(&netstamp_needed_key);
2134#endif
2135}
2136EXPORT_SYMBOL(net_disable_timestamp);
2137
2138static inline void net_timestamp_set(struct sk_buff *skb)
2139{
2140 skb->tstamp = 0;
2141 if (static_branch_unlikely(&netstamp_needed_key))
2142 __net_timestamp(skb);
2143}
2144
2145#define net_timestamp_check(COND, SKB) \
2146 if (static_branch_unlikely(&netstamp_needed_key)) { \
2147 if ((COND) && !(SKB)->tstamp) \
2148 __net_timestamp(SKB); \
2149 } \
2150
2151bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2152{
2153 return __is_skb_forwardable(dev, skb, true);
2154}
2155EXPORT_SYMBOL_GPL(is_skb_forwardable);
2156
2157static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2158 bool check_mtu)
2159{
2160 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2161
2162 if (likely(!ret)) {
2163 skb->protocol = eth_type_trans(skb, dev);
2164 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2165 }
2166
2167 return ret;
2168}
2169
2170int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2171{
2172 return __dev_forward_skb2(dev, skb, true);
2173}
2174EXPORT_SYMBOL_GPL(__dev_forward_skb);
2175
2176/**
2177 * dev_forward_skb - loopback an skb to another netif
2178 *
2179 * @dev: destination network device
2180 * @skb: buffer to forward
2181 *
2182 * return values:
2183 * NET_RX_SUCCESS (no congestion)
2184 * NET_RX_DROP (packet was dropped, but freed)
2185 *
2186 * dev_forward_skb can be used for injecting an skb from the
2187 * start_xmit function of one device into the receive queue
2188 * of another device.
2189 *
2190 * The receiving device may be in another namespace, so
2191 * we have to clear all information in the skb that could
2192 * impact namespace isolation.
2193 */
2194int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2195{
2196 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2197}
2198EXPORT_SYMBOL_GPL(dev_forward_skb);
2199
2200int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2201{
2202 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2203}
2204
2205static inline int deliver_skb(struct sk_buff *skb,
2206 struct packet_type *pt_prev,
2207 struct net_device *orig_dev)
2208{
2209 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2210 return -ENOMEM;
2211 refcount_inc(&skb->users);
2212 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2213}
2214
2215static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2216 struct packet_type **pt,
2217 struct net_device *orig_dev,
2218 __be16 type,
2219 struct list_head *ptype_list)
2220{
2221 struct packet_type *ptype, *pt_prev = *pt;
2222
2223 list_for_each_entry_rcu(ptype, ptype_list, list) {
2224 if (ptype->type != type)
2225 continue;
2226 if (pt_prev)
2227 deliver_skb(skb, pt_prev, orig_dev);
2228 pt_prev = ptype;
2229 }
2230 *pt = pt_prev;
2231}
2232
2233static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2234{
2235 if (!ptype->af_packet_priv || !skb->sk)
2236 return false;
2237
2238 if (ptype->id_match)
2239 return ptype->id_match(ptype, skb->sk);
2240 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2241 return true;
2242
2243 return false;
2244}
2245
2246/**
2247 * dev_nit_active - return true if any network interface taps are in use
2248 *
2249 * @dev: network device to check for the presence of taps
2250 */
2251bool dev_nit_active(struct net_device *dev)
2252{
2253 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2254}
2255EXPORT_SYMBOL_GPL(dev_nit_active);
2256
2257/*
2258 * Support routine. Sends outgoing frames to any network
2259 * taps currently in use.
2260 */
2261
2262void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2263{
2264 struct packet_type *ptype;
2265 struct sk_buff *skb2 = NULL;
2266 struct packet_type *pt_prev = NULL;
2267 struct list_head *ptype_list = &ptype_all;
2268
2269 rcu_read_lock();
2270again:
2271 list_for_each_entry_rcu(ptype, ptype_list, list) {
2272 if (ptype->ignore_outgoing)
2273 continue;
2274
2275 /* Never send packets back to the socket
2276 * they originated from - MvS (miquels@drinkel.ow.org)
2277 */
2278 if (skb_loop_sk(ptype, skb))
2279 continue;
2280
2281 if (pt_prev) {
2282 deliver_skb(skb2, pt_prev, skb->dev);
2283 pt_prev = ptype;
2284 continue;
2285 }
2286
2287 /* need to clone skb, done only once */
2288 skb2 = skb_clone(skb, GFP_ATOMIC);
2289 if (!skb2)
2290 goto out_unlock;
2291
2292 net_timestamp_set(skb2);
2293
2294 /* skb->nh should be correctly
2295 * set by sender, so that the second statement is
2296 * just protection against buggy protocols.
2297 */
2298 skb_reset_mac_header(skb2);
2299
2300 if (skb_network_header(skb2) < skb2->data ||
2301 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2302 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2303 ntohs(skb2->protocol),
2304 dev->name);
2305 skb_reset_network_header(skb2);
2306 }
2307
2308 skb2->transport_header = skb2->network_header;
2309 skb2->pkt_type = PACKET_OUTGOING;
2310 pt_prev = ptype;
2311 }
2312
2313 if (ptype_list == &ptype_all) {
2314 ptype_list = &dev->ptype_all;
2315 goto again;
2316 }
2317out_unlock:
2318 if (pt_prev) {
2319 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2320 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2321 else
2322 kfree_skb(skb2);
2323 }
2324 rcu_read_unlock();
2325}
2326EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2327
2328/**
2329 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2330 * @dev: Network device
2331 * @txq: number of queues available
2332 *
2333 * If real_num_tx_queues is changed the tc mappings may no longer be
2334 * valid. To resolve this verify the tc mapping remains valid and if
2335 * not NULL the mapping. With no priorities mapping to this
2336 * offset/count pair it will no longer be used. In the worst case TC0
2337 * is invalid nothing can be done so disable priority mappings. If is
2338 * expected that drivers will fix this mapping if they can before
2339 * calling netif_set_real_num_tx_queues.
2340 */
2341static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2342{
2343 int i;
2344 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2345
2346 /* If TC0 is invalidated disable TC mapping */
2347 if (tc->offset + tc->count > txq) {
2348 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2349 dev->num_tc = 0;
2350 return;
2351 }
2352
2353 /* Invalidated prio to tc mappings set to TC0 */
2354 for (i = 1; i < TC_BITMASK + 1; i++) {
2355 int q = netdev_get_prio_tc_map(dev, i);
2356
2357 tc = &dev->tc_to_txq[q];
2358 if (tc->offset + tc->count > txq) {
2359 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2360 i, q);
2361 netdev_set_prio_tc_map(dev, i, 0);
2362 }
2363 }
2364}
2365
2366int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2367{
2368 if (dev->num_tc) {
2369 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2370 int i;
2371
2372 /* walk through the TCs and see if it falls into any of them */
2373 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2374 if ((txq - tc->offset) < tc->count)
2375 return i;
2376 }
2377
2378 /* didn't find it, just return -1 to indicate no match */
2379 return -1;
2380 }
2381
2382 return 0;
2383}
2384EXPORT_SYMBOL(netdev_txq_to_tc);
2385
2386#ifdef CONFIG_XPS
2387static struct static_key xps_needed __read_mostly;
2388static struct static_key xps_rxqs_needed __read_mostly;
2389static DEFINE_MUTEX(xps_map_mutex);
2390#define xmap_dereference(P) \
2391 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2392
2393static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2394 struct xps_dev_maps *old_maps, int tci, u16 index)
2395{
2396 struct xps_map *map = NULL;
2397 int pos;
2398
2399 if (dev_maps)
2400 map = xmap_dereference(dev_maps->attr_map[tci]);
2401 if (!map)
2402 return false;
2403
2404 for (pos = map->len; pos--;) {
2405 if (map->queues[pos] != index)
2406 continue;
2407
2408 if (map->len > 1) {
2409 map->queues[pos] = map->queues[--map->len];
2410 break;
2411 }
2412
2413 if (old_maps)
2414 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2415 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2416 kfree_rcu(map, rcu);
2417 return false;
2418 }
2419
2420 return true;
2421}
2422
2423static bool remove_xps_queue_cpu(struct net_device *dev,
2424 struct xps_dev_maps *dev_maps,
2425 int cpu, u16 offset, u16 count)
2426{
2427 int num_tc = dev_maps->num_tc;
2428 bool active = false;
2429 int tci;
2430
2431 for (tci = cpu * num_tc; num_tc--; tci++) {
2432 int i, j;
2433
2434 for (i = count, j = offset; i--; j++) {
2435 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2436 break;
2437 }
2438
2439 active |= i < 0;
2440 }
2441
2442 return active;
2443}
2444
2445static void reset_xps_maps(struct net_device *dev,
2446 struct xps_dev_maps *dev_maps,
2447 enum xps_map_type type)
2448{
2449 static_key_slow_dec_cpuslocked(&xps_needed);
2450 if (type == XPS_RXQS)
2451 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2452
2453 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2454
2455 kfree_rcu(dev_maps, rcu);
2456}
2457
2458static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2459 u16 offset, u16 count)
2460{
2461 struct xps_dev_maps *dev_maps;
2462 bool active = false;
2463 int i, j;
2464
2465 dev_maps = xmap_dereference(dev->xps_maps[type]);
2466 if (!dev_maps)
2467 return;
2468
2469 for (j = 0; j < dev_maps->nr_ids; j++)
2470 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2471 if (!active)
2472 reset_xps_maps(dev, dev_maps, type);
2473
2474 if (type == XPS_CPUS) {
2475 for (i = offset + (count - 1); count--; i--)
2476 netdev_queue_numa_node_write(
2477 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2478 }
2479}
2480
2481static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2482 u16 count)
2483{
2484 if (!static_key_false(&xps_needed))
2485 return;
2486
2487 cpus_read_lock();
2488 mutex_lock(&xps_map_mutex);
2489
2490 if (static_key_false(&xps_rxqs_needed))
2491 clean_xps_maps(dev, XPS_RXQS, offset, count);
2492
2493 clean_xps_maps(dev, XPS_CPUS, offset, count);
2494
2495 mutex_unlock(&xps_map_mutex);
2496 cpus_read_unlock();
2497}
2498
2499static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2500{
2501 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2502}
2503
2504static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2505 u16 index, bool is_rxqs_map)
2506{
2507 struct xps_map *new_map;
2508 int alloc_len = XPS_MIN_MAP_ALLOC;
2509 int i, pos;
2510
2511 for (pos = 0; map && pos < map->len; pos++) {
2512 if (map->queues[pos] != index)
2513 continue;
2514 return map;
2515 }
2516
2517 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2518 if (map) {
2519 if (pos < map->alloc_len)
2520 return map;
2521
2522 alloc_len = map->alloc_len * 2;
2523 }
2524
2525 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2526 * map
2527 */
2528 if (is_rxqs_map)
2529 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2530 else
2531 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2532 cpu_to_node(attr_index));
2533 if (!new_map)
2534 return NULL;
2535
2536 for (i = 0; i < pos; i++)
2537 new_map->queues[i] = map->queues[i];
2538 new_map->alloc_len = alloc_len;
2539 new_map->len = pos;
2540
2541 return new_map;
2542}
2543
2544/* Copy xps maps at a given index */
2545static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2546 struct xps_dev_maps *new_dev_maps, int index,
2547 int tc, bool skip_tc)
2548{
2549 int i, tci = index * dev_maps->num_tc;
2550 struct xps_map *map;
2551
2552 /* copy maps belonging to foreign traffic classes */
2553 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2554 if (i == tc && skip_tc)
2555 continue;
2556
2557 /* fill in the new device map from the old device map */
2558 map = xmap_dereference(dev_maps->attr_map[tci]);
2559 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2560 }
2561}
2562
2563/* Must be called under cpus_read_lock */
2564int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2565 u16 index, enum xps_map_type type)
2566{
2567 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2568 const unsigned long *online_mask = NULL;
2569 bool active = false, copy = false;
2570 int i, j, tci, numa_node_id = -2;
2571 int maps_sz, num_tc = 1, tc = 0;
2572 struct xps_map *map, *new_map;
2573 unsigned int nr_ids;
2574
2575 if (dev->num_tc) {
2576 /* Do not allow XPS on subordinate device directly */
2577 num_tc = dev->num_tc;
2578 if (num_tc < 0)
2579 return -EINVAL;
2580
2581 /* If queue belongs to subordinate dev use its map */
2582 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2583
2584 tc = netdev_txq_to_tc(dev, index);
2585 if (tc < 0)
2586 return -EINVAL;
2587 }
2588
2589 mutex_lock(&xps_map_mutex);
2590
2591 dev_maps = xmap_dereference(dev->xps_maps[type]);
2592 if (type == XPS_RXQS) {
2593 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2594 nr_ids = dev->num_rx_queues;
2595 } else {
2596 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2597 if (num_possible_cpus() > 1)
2598 online_mask = cpumask_bits(cpu_online_mask);
2599 nr_ids = nr_cpu_ids;
2600 }
2601
2602 if (maps_sz < L1_CACHE_BYTES)
2603 maps_sz = L1_CACHE_BYTES;
2604
2605 /* The old dev_maps could be larger or smaller than the one we're
2606 * setting up now, as dev->num_tc or nr_ids could have been updated in
2607 * between. We could try to be smart, but let's be safe instead and only
2608 * copy foreign traffic classes if the two map sizes match.
2609 */
2610 if (dev_maps &&
2611 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2612 copy = true;
2613
2614 /* allocate memory for queue storage */
2615 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2616 j < nr_ids;) {
2617 if (!new_dev_maps) {
2618 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2619 if (!new_dev_maps) {
2620 mutex_unlock(&xps_map_mutex);
2621 return -ENOMEM;
2622 }
2623
2624 new_dev_maps->nr_ids = nr_ids;
2625 new_dev_maps->num_tc = num_tc;
2626 }
2627
2628 tci = j * num_tc + tc;
2629 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2630
2631 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2632 if (!map)
2633 goto error;
2634
2635 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2636 }
2637
2638 if (!new_dev_maps)
2639 goto out_no_new_maps;
2640
2641 if (!dev_maps) {
2642 /* Increment static keys at most once per type */
2643 static_key_slow_inc_cpuslocked(&xps_needed);
2644 if (type == XPS_RXQS)
2645 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2646 }
2647
2648 for (j = 0; j < nr_ids; j++) {
2649 bool skip_tc = false;
2650
2651 tci = j * num_tc + tc;
2652 if (netif_attr_test_mask(j, mask, nr_ids) &&
2653 netif_attr_test_online(j, online_mask, nr_ids)) {
2654 /* add tx-queue to CPU/rx-queue maps */
2655 int pos = 0;
2656
2657 skip_tc = true;
2658
2659 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2660 while ((pos < map->len) && (map->queues[pos] != index))
2661 pos++;
2662
2663 if (pos == map->len)
2664 map->queues[map->len++] = index;
2665#ifdef CONFIG_NUMA
2666 if (type == XPS_CPUS) {
2667 if (numa_node_id == -2)
2668 numa_node_id = cpu_to_node(j);
2669 else if (numa_node_id != cpu_to_node(j))
2670 numa_node_id = -1;
2671 }
2672#endif
2673 }
2674
2675 if (copy)
2676 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2677 skip_tc);
2678 }
2679
2680 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2681
2682 /* Cleanup old maps */
2683 if (!dev_maps)
2684 goto out_no_old_maps;
2685
2686 for (j = 0; j < dev_maps->nr_ids; j++) {
2687 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2688 map = xmap_dereference(dev_maps->attr_map[tci]);
2689 if (!map)
2690 continue;
2691
2692 if (copy) {
2693 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2694 if (map == new_map)
2695 continue;
2696 }
2697
2698 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2699 kfree_rcu(map, rcu);
2700 }
2701 }
2702
2703 old_dev_maps = dev_maps;
2704
2705out_no_old_maps:
2706 dev_maps = new_dev_maps;
2707 active = true;
2708
2709out_no_new_maps:
2710 if (type == XPS_CPUS)
2711 /* update Tx queue numa node */
2712 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2713 (numa_node_id >= 0) ?
2714 numa_node_id : NUMA_NO_NODE);
2715
2716 if (!dev_maps)
2717 goto out_no_maps;
2718
2719 /* removes tx-queue from unused CPUs/rx-queues */
2720 for (j = 0; j < dev_maps->nr_ids; j++) {
2721 tci = j * dev_maps->num_tc;
2722
2723 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2724 if (i == tc &&
2725 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2726 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2727 continue;
2728
2729 active |= remove_xps_queue(dev_maps,
2730 copy ? old_dev_maps : NULL,
2731 tci, index);
2732 }
2733 }
2734
2735 if (old_dev_maps)
2736 kfree_rcu(old_dev_maps, rcu);
2737
2738 /* free map if not active */
2739 if (!active)
2740 reset_xps_maps(dev, dev_maps, type);
2741
2742out_no_maps:
2743 mutex_unlock(&xps_map_mutex);
2744
2745 return 0;
2746error:
2747 /* remove any maps that we added */
2748 for (j = 0; j < nr_ids; j++) {
2749 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2750 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2751 map = copy ?
2752 xmap_dereference(dev_maps->attr_map[tci]) :
2753 NULL;
2754 if (new_map && new_map != map)
2755 kfree(new_map);
2756 }
2757 }
2758
2759 mutex_unlock(&xps_map_mutex);
2760
2761 kfree(new_dev_maps);
2762 return -ENOMEM;
2763}
2764EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2765
2766int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2767 u16 index)
2768{
2769 int ret;
2770
2771 cpus_read_lock();
2772 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2773 cpus_read_unlock();
2774
2775 return ret;
2776}
2777EXPORT_SYMBOL(netif_set_xps_queue);
2778
2779#endif
2780static void netdev_unbind_all_sb_channels(struct net_device *dev)
2781{
2782 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2783
2784 /* Unbind any subordinate channels */
2785 while (txq-- != &dev->_tx[0]) {
2786 if (txq->sb_dev)
2787 netdev_unbind_sb_channel(dev, txq->sb_dev);
2788 }
2789}
2790
2791void netdev_reset_tc(struct net_device *dev)
2792{
2793#ifdef CONFIG_XPS
2794 netif_reset_xps_queues_gt(dev, 0);
2795#endif
2796 netdev_unbind_all_sb_channels(dev);
2797
2798 /* Reset TC configuration of device */
2799 dev->num_tc = 0;
2800 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2801 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2802}
2803EXPORT_SYMBOL(netdev_reset_tc);
2804
2805int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2806{
2807 if (tc >= dev->num_tc)
2808 return -EINVAL;
2809
2810#ifdef CONFIG_XPS
2811 netif_reset_xps_queues(dev, offset, count);
2812#endif
2813 dev->tc_to_txq[tc].count = count;
2814 dev->tc_to_txq[tc].offset = offset;
2815 return 0;
2816}
2817EXPORT_SYMBOL(netdev_set_tc_queue);
2818
2819int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2820{
2821 if (num_tc > TC_MAX_QUEUE)
2822 return -EINVAL;
2823
2824#ifdef CONFIG_XPS
2825 netif_reset_xps_queues_gt(dev, 0);
2826#endif
2827 netdev_unbind_all_sb_channels(dev);
2828
2829 dev->num_tc = num_tc;
2830 return 0;
2831}
2832EXPORT_SYMBOL(netdev_set_num_tc);
2833
2834void netdev_unbind_sb_channel(struct net_device *dev,
2835 struct net_device *sb_dev)
2836{
2837 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2838
2839#ifdef CONFIG_XPS
2840 netif_reset_xps_queues_gt(sb_dev, 0);
2841#endif
2842 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2843 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2844
2845 while (txq-- != &dev->_tx[0]) {
2846 if (txq->sb_dev == sb_dev)
2847 txq->sb_dev = NULL;
2848 }
2849}
2850EXPORT_SYMBOL(netdev_unbind_sb_channel);
2851
2852int netdev_bind_sb_channel_queue(struct net_device *dev,
2853 struct net_device *sb_dev,
2854 u8 tc, u16 count, u16 offset)
2855{
2856 /* Make certain the sb_dev and dev are already configured */
2857 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2858 return -EINVAL;
2859
2860 /* We cannot hand out queues we don't have */
2861 if ((offset + count) > dev->real_num_tx_queues)
2862 return -EINVAL;
2863
2864 /* Record the mapping */
2865 sb_dev->tc_to_txq[tc].count = count;
2866 sb_dev->tc_to_txq[tc].offset = offset;
2867
2868 /* Provide a way for Tx queue to find the tc_to_txq map or
2869 * XPS map for itself.
2870 */
2871 while (count--)
2872 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2873
2874 return 0;
2875}
2876EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2877
2878int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2879{
2880 /* Do not use a multiqueue device to represent a subordinate channel */
2881 if (netif_is_multiqueue(dev))
2882 return -ENODEV;
2883
2884 /* We allow channels 1 - 32767 to be used for subordinate channels.
2885 * Channel 0 is meant to be "native" mode and used only to represent
2886 * the main root device. We allow writing 0 to reset the device back
2887 * to normal mode after being used as a subordinate channel.
2888 */
2889 if (channel > S16_MAX)
2890 return -EINVAL;
2891
2892 dev->num_tc = -channel;
2893
2894 return 0;
2895}
2896EXPORT_SYMBOL(netdev_set_sb_channel);
2897
2898/*
2899 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2900 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2901 */
2902int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2903{
2904 bool disabling;
2905 int rc;
2906
2907 disabling = txq < dev->real_num_tx_queues;
2908
2909 if (txq < 1 || txq > dev->num_tx_queues)
2910 return -EINVAL;
2911
2912 if (dev->reg_state == NETREG_REGISTERED ||
2913 dev->reg_state == NETREG_UNREGISTERING) {
2914 ASSERT_RTNL();
2915
2916 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2917 txq);
2918 if (rc)
2919 return rc;
2920
2921 if (dev->num_tc)
2922 netif_setup_tc(dev, txq);
2923
2924 dev->real_num_tx_queues = txq;
2925
2926 if (disabling) {
2927 synchronize_net();
2928 qdisc_reset_all_tx_gt(dev, txq);
2929#ifdef CONFIG_XPS
2930 netif_reset_xps_queues_gt(dev, txq);
2931#endif
2932 }
2933 } else {
2934 dev->real_num_tx_queues = txq;
2935 }
2936
2937 return 0;
2938}
2939EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2940
2941#ifdef CONFIG_SYSFS
2942/**
2943 * netif_set_real_num_rx_queues - set actual number of RX queues used
2944 * @dev: Network device
2945 * @rxq: Actual number of RX queues
2946 *
2947 * This must be called either with the rtnl_lock held or before
2948 * registration of the net device. Returns 0 on success, or a
2949 * negative error code. If called before registration, it always
2950 * succeeds.
2951 */
2952int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2953{
2954 int rc;
2955
2956 if (rxq < 1 || rxq > dev->num_rx_queues)
2957 return -EINVAL;
2958
2959 if (dev->reg_state == NETREG_REGISTERED) {
2960 ASSERT_RTNL();
2961
2962 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2963 rxq);
2964 if (rc)
2965 return rc;
2966 }
2967
2968 dev->real_num_rx_queues = rxq;
2969 return 0;
2970}
2971EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2972#endif
2973
2974/**
2975 * netif_set_real_num_queues - set actual number of RX and TX queues used
2976 * @dev: Network device
2977 * @txq: Actual number of TX queues
2978 * @rxq: Actual number of RX queues
2979 *
2980 * Set the real number of both TX and RX queues.
2981 * Does nothing if the number of queues is already correct.
2982 */
2983int netif_set_real_num_queues(struct net_device *dev,
2984 unsigned int txq, unsigned int rxq)
2985{
2986 unsigned int old_rxq = dev->real_num_rx_queues;
2987 int err;
2988
2989 if (txq < 1 || txq > dev->num_tx_queues ||
2990 rxq < 1 || rxq > dev->num_rx_queues)
2991 return -EINVAL;
2992
2993 /* Start from increases, so the error path only does decreases -
2994 * decreases can't fail.
2995 */
2996 if (rxq > dev->real_num_rx_queues) {
2997 err = netif_set_real_num_rx_queues(dev, rxq);
2998 if (err)
2999 return err;
3000 }
3001 if (txq > dev->real_num_tx_queues) {
3002 err = netif_set_real_num_tx_queues(dev, txq);
3003 if (err)
3004 goto undo_rx;
3005 }
3006 if (rxq < dev->real_num_rx_queues)
3007 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3008 if (txq < dev->real_num_tx_queues)
3009 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3010
3011 return 0;
3012undo_rx:
3013 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3014 return err;
3015}
3016EXPORT_SYMBOL(netif_set_real_num_queues);
3017
3018/**
3019 * netif_get_num_default_rss_queues - default number of RSS queues
3020 *
3021 * This routine should set an upper limit on the number of RSS queues
3022 * used by default by multiqueue devices.
3023 */
3024int netif_get_num_default_rss_queues(void)
3025{
3026 return is_kdump_kernel() ?
3027 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3028}
3029EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3030
3031static void __netif_reschedule(struct Qdisc *q)
3032{
3033 struct softnet_data *sd;
3034 unsigned long flags;
3035
3036 local_irq_save(flags);
3037 sd = this_cpu_ptr(&softnet_data);
3038 q->next_sched = NULL;
3039 *sd->output_queue_tailp = q;
3040 sd->output_queue_tailp = &q->next_sched;
3041 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3042 local_irq_restore(flags);
3043}
3044
3045void __netif_schedule(struct Qdisc *q)
3046{
3047 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3048 __netif_reschedule(q);
3049}
3050EXPORT_SYMBOL(__netif_schedule);
3051
3052struct dev_kfree_skb_cb {
3053 enum skb_free_reason reason;
3054};
3055
3056static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3057{
3058 return (struct dev_kfree_skb_cb *)skb->cb;
3059}
3060
3061void netif_schedule_queue(struct netdev_queue *txq)
3062{
3063 rcu_read_lock();
3064 if (!netif_xmit_stopped(txq)) {
3065 struct Qdisc *q = rcu_dereference(txq->qdisc);
3066
3067 __netif_schedule(q);
3068 }
3069 rcu_read_unlock();
3070}
3071EXPORT_SYMBOL(netif_schedule_queue);
3072
3073void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3074{
3075 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3076 struct Qdisc *q;
3077
3078 rcu_read_lock();
3079 q = rcu_dereference(dev_queue->qdisc);
3080 __netif_schedule(q);
3081 rcu_read_unlock();
3082 }
3083}
3084EXPORT_SYMBOL(netif_tx_wake_queue);
3085
3086void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3087{
3088 unsigned long flags;
3089
3090 if (unlikely(!skb))
3091 return;
3092
3093 if (likely(refcount_read(&skb->users) == 1)) {
3094 smp_rmb();
3095 refcount_set(&skb->users, 0);
3096 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3097 return;
3098 }
3099 get_kfree_skb_cb(skb)->reason = reason;
3100 local_irq_save(flags);
3101 skb->next = __this_cpu_read(softnet_data.completion_queue);
3102 __this_cpu_write(softnet_data.completion_queue, skb);
3103 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3104 local_irq_restore(flags);
3105}
3106EXPORT_SYMBOL(__dev_kfree_skb_irq);
3107
3108void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3109{
3110 if (in_hardirq() || irqs_disabled())
3111 __dev_kfree_skb_irq(skb, reason);
3112 else
3113 dev_kfree_skb(skb);
3114}
3115EXPORT_SYMBOL(__dev_kfree_skb_any);
3116
3117
3118/**
3119 * netif_device_detach - mark device as removed
3120 * @dev: network device
3121 *
3122 * Mark device as removed from system and therefore no longer available.
3123 */
3124void netif_device_detach(struct net_device *dev)
3125{
3126 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3127 netif_running(dev)) {
3128 netif_tx_stop_all_queues(dev);
3129 }
3130}
3131EXPORT_SYMBOL(netif_device_detach);
3132
3133/**
3134 * netif_device_attach - mark device as attached
3135 * @dev: network device
3136 *
3137 * Mark device as attached from system and restart if needed.
3138 */
3139void netif_device_attach(struct net_device *dev)
3140{
3141 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3142 netif_running(dev)) {
3143 netif_tx_wake_all_queues(dev);
3144 __netdev_watchdog_up(dev);
3145 }
3146}
3147EXPORT_SYMBOL(netif_device_attach);
3148
3149/*
3150 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3151 * to be used as a distribution range.
3152 */
3153static u16 skb_tx_hash(const struct net_device *dev,
3154 const struct net_device *sb_dev,
3155 struct sk_buff *skb)
3156{
3157 u32 hash;
3158 u16 qoffset = 0;
3159 u16 qcount = dev->real_num_tx_queues;
3160
3161 if (dev->num_tc) {
3162 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3163
3164 qoffset = sb_dev->tc_to_txq[tc].offset;
3165 qcount = sb_dev->tc_to_txq[tc].count;
3166 }
3167
3168 if (skb_rx_queue_recorded(skb)) {
3169 hash = skb_get_rx_queue(skb);
3170 if (hash >= qoffset)
3171 hash -= qoffset;
3172 while (unlikely(hash >= qcount))
3173 hash -= qcount;
3174 return hash + qoffset;
3175 }
3176
3177 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3178}
3179
3180static void skb_warn_bad_offload(const struct sk_buff *skb)
3181{
3182 static const netdev_features_t null_features;
3183 struct net_device *dev = skb->dev;
3184 const char *name = "";
3185
3186 if (!net_ratelimit())
3187 return;
3188
3189 if (dev) {
3190 if (dev->dev.parent)
3191 name = dev_driver_string(dev->dev.parent);
3192 else
3193 name = netdev_name(dev);
3194 }
3195 skb_dump(KERN_WARNING, skb, false);
3196 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3197 name, dev ? &dev->features : &null_features,
3198 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3199}
3200
3201/*
3202 * Invalidate hardware checksum when packet is to be mangled, and
3203 * complete checksum manually on outgoing path.
3204 */
3205int skb_checksum_help(struct sk_buff *skb)
3206{
3207 __wsum csum;
3208 int ret = 0, offset;
3209
3210 if (skb->ip_summed == CHECKSUM_COMPLETE)
3211 goto out_set_summed;
3212
3213 if (unlikely(skb_is_gso(skb))) {
3214 skb_warn_bad_offload(skb);
3215 return -EINVAL;
3216 }
3217
3218 /* Before computing a checksum, we should make sure no frag could
3219 * be modified by an external entity : checksum could be wrong.
3220 */
3221 if (skb_has_shared_frag(skb)) {
3222 ret = __skb_linearize(skb);
3223 if (ret)
3224 goto out;
3225 }
3226
3227 offset = skb_checksum_start_offset(skb);
3228 BUG_ON(offset >= skb_headlen(skb));
3229 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3230
3231 offset += skb->csum_offset;
3232 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3233
3234 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3235 if (ret)
3236 goto out;
3237
3238 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3239out_set_summed:
3240 skb->ip_summed = CHECKSUM_NONE;
3241out:
3242 return ret;
3243}
3244EXPORT_SYMBOL(skb_checksum_help);
3245
3246int skb_crc32c_csum_help(struct sk_buff *skb)
3247{
3248 __le32 crc32c_csum;
3249 int ret = 0, offset, start;
3250
3251 if (skb->ip_summed != CHECKSUM_PARTIAL)
3252 goto out;
3253
3254 if (unlikely(skb_is_gso(skb)))
3255 goto out;
3256
3257 /* Before computing a checksum, we should make sure no frag could
3258 * be modified by an external entity : checksum could be wrong.
3259 */
3260 if (unlikely(skb_has_shared_frag(skb))) {
3261 ret = __skb_linearize(skb);
3262 if (ret)
3263 goto out;
3264 }
3265 start = skb_checksum_start_offset(skb);
3266 offset = start + offsetof(struct sctphdr, checksum);
3267 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3268 ret = -EINVAL;
3269 goto out;
3270 }
3271
3272 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3273 if (ret)
3274 goto out;
3275
3276 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3277 skb->len - start, ~(__u32)0,
3278 crc32c_csum_stub));
3279 *(__le32 *)(skb->data + offset) = crc32c_csum;
3280 skb->ip_summed = CHECKSUM_NONE;
3281 skb->csum_not_inet = 0;
3282out:
3283 return ret;
3284}
3285
3286__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3287{
3288 __be16 type = skb->protocol;
3289
3290 /* Tunnel gso handlers can set protocol to ethernet. */
3291 if (type == htons(ETH_P_TEB)) {
3292 struct ethhdr *eth;
3293
3294 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3295 return 0;
3296
3297 eth = (struct ethhdr *)skb->data;
3298 type = eth->h_proto;
3299 }
3300
3301 return __vlan_get_protocol(skb, type, depth);
3302}
3303
3304/**
3305 * skb_mac_gso_segment - mac layer segmentation handler.
3306 * @skb: buffer to segment
3307 * @features: features for the output path (see dev->features)
3308 */
3309struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3310 netdev_features_t features)
3311{
3312 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3313 struct packet_offload *ptype;
3314 int vlan_depth = skb->mac_len;
3315 __be16 type = skb_network_protocol(skb, &vlan_depth);
3316
3317 if (unlikely(!type))
3318 return ERR_PTR(-EINVAL);
3319
3320 __skb_pull(skb, vlan_depth);
3321
3322 rcu_read_lock();
3323 list_for_each_entry_rcu(ptype, &offload_base, list) {
3324 if (ptype->type == type && ptype->callbacks.gso_segment) {
3325 segs = ptype->callbacks.gso_segment(skb, features);
3326 break;
3327 }
3328 }
3329 rcu_read_unlock();
3330
3331 __skb_push(skb, skb->data - skb_mac_header(skb));
3332
3333 return segs;
3334}
3335EXPORT_SYMBOL(skb_mac_gso_segment);
3336
3337
3338/* openvswitch calls this on rx path, so we need a different check.
3339 */
3340static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3341{
3342 if (tx_path)
3343 return skb->ip_summed != CHECKSUM_PARTIAL &&
3344 skb->ip_summed != CHECKSUM_UNNECESSARY;
3345
3346 return skb->ip_summed == CHECKSUM_NONE;
3347}
3348
3349/**
3350 * __skb_gso_segment - Perform segmentation on skb.
3351 * @skb: buffer to segment
3352 * @features: features for the output path (see dev->features)
3353 * @tx_path: whether it is called in TX path
3354 *
3355 * This function segments the given skb and returns a list of segments.
3356 *
3357 * It may return NULL if the skb requires no segmentation. This is
3358 * only possible when GSO is used for verifying header integrity.
3359 *
3360 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3361 */
3362struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3363 netdev_features_t features, bool tx_path)
3364{
3365 struct sk_buff *segs;
3366
3367 if (unlikely(skb_needs_check(skb, tx_path))) {
3368 int err;
3369
3370 /* We're going to init ->check field in TCP or UDP header */
3371 err = skb_cow_head(skb, 0);
3372 if (err < 0)
3373 return ERR_PTR(err);
3374 }
3375
3376 /* Only report GSO partial support if it will enable us to
3377 * support segmentation on this frame without needing additional
3378 * work.
3379 */
3380 if (features & NETIF_F_GSO_PARTIAL) {
3381 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3382 struct net_device *dev = skb->dev;
3383
3384 partial_features |= dev->features & dev->gso_partial_features;
3385 if (!skb_gso_ok(skb, features | partial_features))
3386 features &= ~NETIF_F_GSO_PARTIAL;
3387 }
3388
3389 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3390 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3391
3392 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3393 SKB_GSO_CB(skb)->encap_level = 0;
3394
3395 skb_reset_mac_header(skb);
3396 skb_reset_mac_len(skb);
3397
3398 segs = skb_mac_gso_segment(skb, features);
3399
3400 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3401 skb_warn_bad_offload(skb);
3402
3403 return segs;
3404}
3405EXPORT_SYMBOL(__skb_gso_segment);
3406
3407/* Take action when hardware reception checksum errors are detected. */
3408#ifdef CONFIG_BUG
3409static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3410{
3411 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3412 skb_dump(KERN_ERR, skb, true);
3413 dump_stack();
3414}
3415
3416void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3417{
3418 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3419}
3420EXPORT_SYMBOL(netdev_rx_csum_fault);
3421#endif
3422
3423/* XXX: check that highmem exists at all on the given machine. */
3424static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3425{
3426#ifdef CONFIG_HIGHMEM
3427 int i;
3428
3429 if (!(dev->features & NETIF_F_HIGHDMA)) {
3430 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3431 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3432
3433 if (PageHighMem(skb_frag_page(frag)))
3434 return 1;
3435 }
3436 }
3437#endif
3438 return 0;
3439}
3440
3441/* If MPLS offload request, verify we are testing hardware MPLS features
3442 * instead of standard features for the netdev.
3443 */
3444#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3445static netdev_features_t net_mpls_features(struct sk_buff *skb,
3446 netdev_features_t features,
3447 __be16 type)
3448{
3449 if (eth_p_mpls(type))
3450 features &= skb->dev->mpls_features;
3451
3452 return features;
3453}
3454#else
3455static netdev_features_t net_mpls_features(struct sk_buff *skb,
3456 netdev_features_t features,
3457 __be16 type)
3458{
3459 return features;
3460}
3461#endif
3462
3463static netdev_features_t harmonize_features(struct sk_buff *skb,
3464 netdev_features_t features)
3465{
3466 __be16 type;
3467
3468 type = skb_network_protocol(skb, NULL);
3469 features = net_mpls_features(skb, features, type);
3470
3471 if (skb->ip_summed != CHECKSUM_NONE &&
3472 !can_checksum_protocol(features, type)) {
3473 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3474 }
3475 if (illegal_highdma(skb->dev, skb))
3476 features &= ~NETIF_F_SG;
3477
3478 return features;
3479}
3480
3481netdev_features_t passthru_features_check(struct sk_buff *skb,
3482 struct net_device *dev,
3483 netdev_features_t features)
3484{
3485 return features;
3486}
3487EXPORT_SYMBOL(passthru_features_check);
3488
3489static netdev_features_t dflt_features_check(struct sk_buff *skb,
3490 struct net_device *dev,
3491 netdev_features_t features)
3492{
3493 return vlan_features_check(skb, features);
3494}
3495
3496static netdev_features_t gso_features_check(const struct sk_buff *skb,
3497 struct net_device *dev,
3498 netdev_features_t features)
3499{
3500 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3501
3502 if (gso_segs > dev->gso_max_segs)
3503 return features & ~NETIF_F_GSO_MASK;
3504
3505 if (!skb_shinfo(skb)->gso_type) {
3506 skb_warn_bad_offload(skb);
3507 return features & ~NETIF_F_GSO_MASK;
3508 }
3509
3510 /* Support for GSO partial features requires software
3511 * intervention before we can actually process the packets
3512 * so we need to strip support for any partial features now
3513 * and we can pull them back in after we have partially
3514 * segmented the frame.
3515 */
3516 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3517 features &= ~dev->gso_partial_features;
3518
3519 /* Make sure to clear the IPv4 ID mangling feature if the
3520 * IPv4 header has the potential to be fragmented.
3521 */
3522 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3523 struct iphdr *iph = skb->encapsulation ?
3524 inner_ip_hdr(skb) : ip_hdr(skb);
3525
3526 if (!(iph->frag_off & htons(IP_DF)))
3527 features &= ~NETIF_F_TSO_MANGLEID;
3528 }
3529
3530 return features;
3531}
3532
3533netdev_features_t netif_skb_features(struct sk_buff *skb)
3534{
3535 struct net_device *dev = skb->dev;
3536 netdev_features_t features = dev->features;
3537
3538 if (skb_is_gso(skb))
3539 features = gso_features_check(skb, dev, features);
3540
3541 /* If encapsulation offload request, verify we are testing
3542 * hardware encapsulation features instead of standard
3543 * features for the netdev
3544 */
3545 if (skb->encapsulation)
3546 features &= dev->hw_enc_features;
3547
3548 if (skb_vlan_tagged(skb))
3549 features = netdev_intersect_features(features,
3550 dev->vlan_features |
3551 NETIF_F_HW_VLAN_CTAG_TX |
3552 NETIF_F_HW_VLAN_STAG_TX);
3553
3554 if (dev->netdev_ops->ndo_features_check)
3555 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3556 features);
3557 else
3558 features &= dflt_features_check(skb, dev, features);
3559
3560 return harmonize_features(skb, features);
3561}
3562EXPORT_SYMBOL(netif_skb_features);
3563
3564static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3565 struct netdev_queue *txq, bool more)
3566{
3567 unsigned int len;
3568 int rc;
3569
3570 if (dev_nit_active(dev))
3571 dev_queue_xmit_nit(skb, dev);
3572
3573 len = skb->len;
3574 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3575 trace_net_dev_start_xmit(skb, dev);
3576 rc = netdev_start_xmit(skb, dev, txq, more);
3577 trace_net_dev_xmit(skb, rc, dev, len);
3578
3579 return rc;
3580}
3581
3582struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 struct netdev_queue *txq, int *ret)
3584{
3585 struct sk_buff *skb = first;
3586 int rc = NETDEV_TX_OK;
3587
3588 while (skb) {
3589 struct sk_buff *next = skb->next;
3590
3591 skb_mark_not_on_list(skb);
3592 rc = xmit_one(skb, dev, txq, next != NULL);
3593 if (unlikely(!dev_xmit_complete(rc))) {
3594 skb->next = next;
3595 goto out;
3596 }
3597
3598 skb = next;
3599 if (netif_tx_queue_stopped(txq) && skb) {
3600 rc = NETDEV_TX_BUSY;
3601 break;
3602 }
3603 }
3604
3605out:
3606 *ret = rc;
3607 return skb;
3608}
3609
3610static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 netdev_features_t features)
3612{
3613 if (skb_vlan_tag_present(skb) &&
3614 !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 skb = __vlan_hwaccel_push_inside(skb);
3616 return skb;
3617}
3618
3619int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 const netdev_features_t features)
3621{
3622 if (unlikely(skb_csum_is_sctp(skb)))
3623 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 skb_crc32c_csum_help(skb);
3625
3626 if (features & NETIF_F_HW_CSUM)
3627 return 0;
3628
3629 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 switch (skb->csum_offset) {
3631 case offsetof(struct tcphdr, check):
3632 case offsetof(struct udphdr, check):
3633 return 0;
3634 }
3635 }
3636
3637 return skb_checksum_help(skb);
3638}
3639EXPORT_SYMBOL(skb_csum_hwoffload_help);
3640
3641static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3642{
3643 netdev_features_t features;
3644
3645 features = netif_skb_features(skb);
3646 skb = validate_xmit_vlan(skb, features);
3647 if (unlikely(!skb))
3648 goto out_null;
3649
3650 skb = sk_validate_xmit_skb(skb, dev);
3651 if (unlikely(!skb))
3652 goto out_null;
3653
3654 if (netif_needs_gso(skb, features)) {
3655 struct sk_buff *segs;
3656
3657 segs = skb_gso_segment(skb, features);
3658 if (IS_ERR(segs)) {
3659 goto out_kfree_skb;
3660 } else if (segs) {
3661 consume_skb(skb);
3662 skb = segs;
3663 }
3664 } else {
3665 if (skb_needs_linearize(skb, features) &&
3666 __skb_linearize(skb))
3667 goto out_kfree_skb;
3668
3669 /* If packet is not checksummed and device does not
3670 * support checksumming for this protocol, complete
3671 * checksumming here.
3672 */
3673 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3674 if (skb->encapsulation)
3675 skb_set_inner_transport_header(skb,
3676 skb_checksum_start_offset(skb));
3677 else
3678 skb_set_transport_header(skb,
3679 skb_checksum_start_offset(skb));
3680 if (skb_csum_hwoffload_help(skb, features))
3681 goto out_kfree_skb;
3682 }
3683 }
3684
3685 skb = validate_xmit_xfrm(skb, features, again);
3686
3687 return skb;
3688
3689out_kfree_skb:
3690 kfree_skb(skb);
3691out_null:
3692 atomic_long_inc(&dev->tx_dropped);
3693 return NULL;
3694}
3695
3696struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3697{
3698 struct sk_buff *next, *head = NULL, *tail;
3699
3700 for (; skb != NULL; skb = next) {
3701 next = skb->next;
3702 skb_mark_not_on_list(skb);
3703
3704 /* in case skb wont be segmented, point to itself */
3705 skb->prev = skb;
3706
3707 skb = validate_xmit_skb(skb, dev, again);
3708 if (!skb)
3709 continue;
3710
3711 if (!head)
3712 head = skb;
3713 else
3714 tail->next = skb;
3715 /* If skb was segmented, skb->prev points to
3716 * the last segment. If not, it still contains skb.
3717 */
3718 tail = skb->prev;
3719 }
3720 return head;
3721}
3722EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3723
3724static void qdisc_pkt_len_init(struct sk_buff *skb)
3725{
3726 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3727
3728 qdisc_skb_cb(skb)->pkt_len = skb->len;
3729
3730 /* To get more precise estimation of bytes sent on wire,
3731 * we add to pkt_len the headers size of all segments
3732 */
3733 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3734 unsigned int hdr_len;
3735 u16 gso_segs = shinfo->gso_segs;
3736
3737 /* mac layer + network layer */
3738 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3739
3740 /* + transport layer */
3741 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3742 const struct tcphdr *th;
3743 struct tcphdr _tcphdr;
3744
3745 th = skb_header_pointer(skb, skb_transport_offset(skb),
3746 sizeof(_tcphdr), &_tcphdr);
3747 if (likely(th))
3748 hdr_len += __tcp_hdrlen(th);
3749 } else {
3750 struct udphdr _udphdr;
3751
3752 if (skb_header_pointer(skb, skb_transport_offset(skb),
3753 sizeof(_udphdr), &_udphdr))
3754 hdr_len += sizeof(struct udphdr);
3755 }
3756
3757 if (shinfo->gso_type & SKB_GSO_DODGY)
3758 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3759 shinfo->gso_size);
3760
3761 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3762 }
3763}
3764
3765static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3766 struct sk_buff **to_free,
3767 struct netdev_queue *txq)
3768{
3769 int rc;
3770
3771 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3772 if (rc == NET_XMIT_SUCCESS)
3773 trace_qdisc_enqueue(q, txq, skb);
3774 return rc;
3775}
3776
3777static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3778 struct net_device *dev,
3779 struct netdev_queue *txq)
3780{
3781 spinlock_t *root_lock = qdisc_lock(q);
3782 struct sk_buff *to_free = NULL;
3783 bool contended;
3784 int rc;
3785
3786 qdisc_calculate_pkt_len(skb, q);
3787
3788 if (q->flags & TCQ_F_NOLOCK) {
3789 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3790 qdisc_run_begin(q)) {
3791 /* Retest nolock_qdisc_is_empty() within the protection
3792 * of q->seqlock to protect from racing with requeuing.
3793 */
3794 if (unlikely(!nolock_qdisc_is_empty(q))) {
3795 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3796 __qdisc_run(q);
3797 qdisc_run_end(q);
3798
3799 goto no_lock_out;
3800 }
3801
3802 qdisc_bstats_cpu_update(q, skb);
3803 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3804 !nolock_qdisc_is_empty(q))
3805 __qdisc_run(q);
3806
3807 qdisc_run_end(q);
3808 return NET_XMIT_SUCCESS;
3809 }
3810
3811 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3812 qdisc_run(q);
3813
3814no_lock_out:
3815 if (unlikely(to_free))
3816 kfree_skb_list(to_free);
3817 return rc;
3818 }
3819
3820 /*
3821 * Heuristic to force contended enqueues to serialize on a
3822 * separate lock before trying to get qdisc main lock.
3823 * This permits qdisc->running owner to get the lock more
3824 * often and dequeue packets faster.
3825 */
3826 contended = qdisc_is_running(q);
3827 if (unlikely(contended))
3828 spin_lock(&q->busylock);
3829
3830 spin_lock(root_lock);
3831 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3832 __qdisc_drop(skb, &to_free);
3833 rc = NET_XMIT_DROP;
3834 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3835 qdisc_run_begin(q)) {
3836 /*
3837 * This is a work-conserving queue; there are no old skbs
3838 * waiting to be sent out; and the qdisc is not running -
3839 * xmit the skb directly.
3840 */
3841
3842 qdisc_bstats_update(q, skb);
3843
3844 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3845 if (unlikely(contended)) {
3846 spin_unlock(&q->busylock);
3847 contended = false;
3848 }
3849 __qdisc_run(q);
3850 }
3851
3852 qdisc_run_end(q);
3853 rc = NET_XMIT_SUCCESS;
3854 } else {
3855 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3856 if (qdisc_run_begin(q)) {
3857 if (unlikely(contended)) {
3858 spin_unlock(&q->busylock);
3859 contended = false;
3860 }
3861 __qdisc_run(q);
3862 qdisc_run_end(q);
3863 }
3864 }
3865 spin_unlock(root_lock);
3866 if (unlikely(to_free))
3867 kfree_skb_list(to_free);
3868 if (unlikely(contended))
3869 spin_unlock(&q->busylock);
3870 return rc;
3871}
3872
3873#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3874static void skb_update_prio(struct sk_buff *skb)
3875{
3876 const struct netprio_map *map;
3877 const struct sock *sk;
3878 unsigned int prioidx;
3879
3880 if (skb->priority)
3881 return;
3882 map = rcu_dereference_bh(skb->dev->priomap);
3883 if (!map)
3884 return;
3885 sk = skb_to_full_sk(skb);
3886 if (!sk)
3887 return;
3888
3889 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3890
3891 if (prioidx < map->priomap_len)
3892 skb->priority = map->priomap[prioidx];
3893}
3894#else
3895#define skb_update_prio(skb)
3896#endif
3897
3898/**
3899 * dev_loopback_xmit - loop back @skb
3900 * @net: network namespace this loopback is happening in
3901 * @sk: sk needed to be a netfilter okfn
3902 * @skb: buffer to transmit
3903 */
3904int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3905{
3906 skb_reset_mac_header(skb);
3907 __skb_pull(skb, skb_network_offset(skb));
3908 skb->pkt_type = PACKET_LOOPBACK;
3909 skb->ip_summed = CHECKSUM_UNNECESSARY;
3910 WARN_ON(!skb_dst(skb));
3911 skb_dst_force(skb);
3912 netif_rx_ni(skb);
3913 return 0;
3914}
3915EXPORT_SYMBOL(dev_loopback_xmit);
3916
3917#ifdef CONFIG_NET_EGRESS
3918static struct sk_buff *
3919sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3920{
3921 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3922 struct tcf_result cl_res;
3923
3924 if (!miniq)
3925 return skb;
3926
3927 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3928 qdisc_skb_cb(skb)->mru = 0;
3929 qdisc_skb_cb(skb)->post_ct = false;
3930 mini_qdisc_bstats_cpu_update(miniq, skb);
3931
3932 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3933 case TC_ACT_OK:
3934 case TC_ACT_RECLASSIFY:
3935 skb->tc_index = TC_H_MIN(cl_res.classid);
3936 break;
3937 case TC_ACT_SHOT:
3938 mini_qdisc_qstats_cpu_drop(miniq);
3939 *ret = NET_XMIT_DROP;
3940 kfree_skb(skb);
3941 return NULL;
3942 case TC_ACT_STOLEN:
3943 case TC_ACT_QUEUED:
3944 case TC_ACT_TRAP:
3945 *ret = NET_XMIT_SUCCESS;
3946 consume_skb(skb);
3947 return NULL;
3948 case TC_ACT_REDIRECT:
3949 /* No need to push/pop skb's mac_header here on egress! */
3950 skb_do_redirect(skb);
3951 *ret = NET_XMIT_SUCCESS;
3952 return NULL;
3953 default:
3954 break;
3955 }
3956
3957 return skb;
3958}
3959#endif /* CONFIG_NET_EGRESS */
3960
3961#ifdef CONFIG_XPS
3962static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3963 struct xps_dev_maps *dev_maps, unsigned int tci)
3964{
3965 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3966 struct xps_map *map;
3967 int queue_index = -1;
3968
3969 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3970 return queue_index;
3971
3972 tci *= dev_maps->num_tc;
3973 tci += tc;
3974
3975 map = rcu_dereference(dev_maps->attr_map[tci]);
3976 if (map) {
3977 if (map->len == 1)
3978 queue_index = map->queues[0];
3979 else
3980 queue_index = map->queues[reciprocal_scale(
3981 skb_get_hash(skb), map->len)];
3982 if (unlikely(queue_index >= dev->real_num_tx_queues))
3983 queue_index = -1;
3984 }
3985 return queue_index;
3986}
3987#endif
3988
3989static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
3990 struct sk_buff *skb)
3991{
3992#ifdef CONFIG_XPS
3993 struct xps_dev_maps *dev_maps;
3994 struct sock *sk = skb->sk;
3995 int queue_index = -1;
3996
3997 if (!static_key_false(&xps_needed))
3998 return -1;
3999
4000 rcu_read_lock();
4001 if (!static_key_false(&xps_rxqs_needed))
4002 goto get_cpus_map;
4003
4004 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4005 if (dev_maps) {
4006 int tci = sk_rx_queue_get(sk);
4007
4008 if (tci >= 0)
4009 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4010 tci);
4011 }
4012
4013get_cpus_map:
4014 if (queue_index < 0) {
4015 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4016 if (dev_maps) {
4017 unsigned int tci = skb->sender_cpu - 1;
4018
4019 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4020 tci);
4021 }
4022 }
4023 rcu_read_unlock();
4024
4025 return queue_index;
4026#else
4027 return -1;
4028#endif
4029}
4030
4031u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4032 struct net_device *sb_dev)
4033{
4034 return 0;
4035}
4036EXPORT_SYMBOL(dev_pick_tx_zero);
4037
4038u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4039 struct net_device *sb_dev)
4040{
4041 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4042}
4043EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4044
4045u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4046 struct net_device *sb_dev)
4047{
4048 struct sock *sk = skb->sk;
4049 int queue_index = sk_tx_queue_get(sk);
4050
4051 sb_dev = sb_dev ? : dev;
4052
4053 if (queue_index < 0 || skb->ooo_okay ||
4054 queue_index >= dev->real_num_tx_queues) {
4055 int new_index = get_xps_queue(dev, sb_dev, skb);
4056
4057 if (new_index < 0)
4058 new_index = skb_tx_hash(dev, sb_dev, skb);
4059
4060 if (queue_index != new_index && sk &&
4061 sk_fullsock(sk) &&
4062 rcu_access_pointer(sk->sk_dst_cache))
4063 sk_tx_queue_set(sk, new_index);
4064
4065 queue_index = new_index;
4066 }
4067
4068 return queue_index;
4069}
4070EXPORT_SYMBOL(netdev_pick_tx);
4071
4072struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4073 struct sk_buff *skb,
4074 struct net_device *sb_dev)
4075{
4076 int queue_index = 0;
4077
4078#ifdef CONFIG_XPS
4079 u32 sender_cpu = skb->sender_cpu - 1;
4080
4081 if (sender_cpu >= (u32)NR_CPUS)
4082 skb->sender_cpu = raw_smp_processor_id() + 1;
4083#endif
4084
4085 if (dev->real_num_tx_queues != 1) {
4086 const struct net_device_ops *ops = dev->netdev_ops;
4087
4088 if (ops->ndo_select_queue)
4089 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4090 else
4091 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4092
4093 queue_index = netdev_cap_txqueue(dev, queue_index);
4094 }
4095
4096 skb_set_queue_mapping(skb, queue_index);
4097 return netdev_get_tx_queue(dev, queue_index);
4098}
4099
4100/**
4101 * __dev_queue_xmit - transmit a buffer
4102 * @skb: buffer to transmit
4103 * @sb_dev: suboordinate device used for L2 forwarding offload
4104 *
4105 * Queue a buffer for transmission to a network device. The caller must
4106 * have set the device and priority and built the buffer before calling
4107 * this function. The function can be called from an interrupt.
4108 *
4109 * A negative errno code is returned on a failure. A success does not
4110 * guarantee the frame will be transmitted as it may be dropped due
4111 * to congestion or traffic shaping.
4112 *
4113 * -----------------------------------------------------------------------------------
4114 * I notice this method can also return errors from the queue disciplines,
4115 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4116 * be positive.
4117 *
4118 * Regardless of the return value, the skb is consumed, so it is currently
4119 * difficult to retry a send to this method. (You can bump the ref count
4120 * before sending to hold a reference for retry if you are careful.)
4121 *
4122 * When calling this method, interrupts MUST be enabled. This is because
4123 * the BH enable code must have IRQs enabled so that it will not deadlock.
4124 * --BLG
4125 */
4126static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4127{
4128 struct net_device *dev = skb->dev;
4129 struct netdev_queue *txq;
4130 struct Qdisc *q;
4131 int rc = -ENOMEM;
4132 bool again = false;
4133
4134 skb_reset_mac_header(skb);
4135
4136 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4137 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4138
4139 /* Disable soft irqs for various locks below. Also
4140 * stops preemption for RCU.
4141 */
4142 rcu_read_lock_bh();
4143
4144 skb_update_prio(skb);
4145
4146 qdisc_pkt_len_init(skb);
4147#ifdef CONFIG_NET_CLS_ACT
4148 skb->tc_at_ingress = 0;
4149# ifdef CONFIG_NET_EGRESS
4150 if (static_branch_unlikely(&egress_needed_key)) {
4151 skb = sch_handle_egress(skb, &rc, dev);
4152 if (!skb)
4153 goto out;
4154 }
4155# endif
4156#endif
4157 /* If device/qdisc don't need skb->dst, release it right now while
4158 * its hot in this cpu cache.
4159 */
4160 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4161 skb_dst_drop(skb);
4162 else
4163 skb_dst_force(skb);
4164
4165 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4166 q = rcu_dereference_bh(txq->qdisc);
4167
4168 trace_net_dev_queue(skb);
4169 if (q->enqueue) {
4170 rc = __dev_xmit_skb(skb, q, dev, txq);
4171 goto out;
4172 }
4173
4174 /* The device has no queue. Common case for software devices:
4175 * loopback, all the sorts of tunnels...
4176
4177 * Really, it is unlikely that netif_tx_lock protection is necessary
4178 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4179 * counters.)
4180 * However, it is possible, that they rely on protection
4181 * made by us here.
4182
4183 * Check this and shot the lock. It is not prone from deadlocks.
4184 *Either shot noqueue qdisc, it is even simpler 8)
4185 */
4186 if (dev->flags & IFF_UP) {
4187 int cpu = smp_processor_id(); /* ok because BHs are off */
4188
4189 if (txq->xmit_lock_owner != cpu) {
4190 if (dev_xmit_recursion())
4191 goto recursion_alert;
4192
4193 skb = validate_xmit_skb(skb, dev, &again);
4194 if (!skb)
4195 goto out;
4196
4197 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4198 HARD_TX_LOCK(dev, txq, cpu);
4199
4200 if (!netif_xmit_stopped(txq)) {
4201 dev_xmit_recursion_inc();
4202 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4203 dev_xmit_recursion_dec();
4204 if (dev_xmit_complete(rc)) {
4205 HARD_TX_UNLOCK(dev, txq);
4206 goto out;
4207 }
4208 }
4209 HARD_TX_UNLOCK(dev, txq);
4210 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4211 dev->name);
4212 } else {
4213 /* Recursion is detected! It is possible,
4214 * unfortunately
4215 */
4216recursion_alert:
4217 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4218 dev->name);
4219 }
4220 }
4221
4222 rc = -ENETDOWN;
4223 rcu_read_unlock_bh();
4224
4225 atomic_long_inc(&dev->tx_dropped);
4226 kfree_skb_list(skb);
4227 return rc;
4228out:
4229 rcu_read_unlock_bh();
4230 return rc;
4231}
4232
4233int dev_queue_xmit(struct sk_buff *skb)
4234{
4235 return __dev_queue_xmit(skb, NULL);
4236}
4237EXPORT_SYMBOL(dev_queue_xmit);
4238
4239int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4240{
4241 return __dev_queue_xmit(skb, sb_dev);
4242}
4243EXPORT_SYMBOL(dev_queue_xmit_accel);
4244
4245int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4246{
4247 struct net_device *dev = skb->dev;
4248 struct sk_buff *orig_skb = skb;
4249 struct netdev_queue *txq;
4250 int ret = NETDEV_TX_BUSY;
4251 bool again = false;
4252
4253 if (unlikely(!netif_running(dev) ||
4254 !netif_carrier_ok(dev)))
4255 goto drop;
4256
4257 skb = validate_xmit_skb_list(skb, dev, &again);
4258 if (skb != orig_skb)
4259 goto drop;
4260
4261 skb_set_queue_mapping(skb, queue_id);
4262 txq = skb_get_tx_queue(dev, skb);
4263 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4264
4265 local_bh_disable();
4266
4267 dev_xmit_recursion_inc();
4268 HARD_TX_LOCK(dev, txq, smp_processor_id());
4269 if (!netif_xmit_frozen_or_drv_stopped(txq))
4270 ret = netdev_start_xmit(skb, dev, txq, false);
4271 HARD_TX_UNLOCK(dev, txq);
4272 dev_xmit_recursion_dec();
4273
4274 local_bh_enable();
4275 return ret;
4276drop:
4277 atomic_long_inc(&dev->tx_dropped);
4278 kfree_skb_list(skb);
4279 return NET_XMIT_DROP;
4280}
4281EXPORT_SYMBOL(__dev_direct_xmit);
4282
4283/*************************************************************************
4284 * Receiver routines
4285 *************************************************************************/
4286
4287int netdev_max_backlog __read_mostly = 1000;
4288EXPORT_SYMBOL(netdev_max_backlog);
4289
4290int netdev_tstamp_prequeue __read_mostly = 1;
4291int netdev_budget __read_mostly = 300;
4292/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4293unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4294int weight_p __read_mostly = 64; /* old backlog weight */
4295int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4296int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4297int dev_rx_weight __read_mostly = 64;
4298int dev_tx_weight __read_mostly = 64;
4299/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4300int gro_normal_batch __read_mostly = 8;
4301
4302/* Called with irq disabled */
4303static inline void ____napi_schedule(struct softnet_data *sd,
4304 struct napi_struct *napi)
4305{
4306 struct task_struct *thread;
4307
4308 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4309 /* Paired with smp_mb__before_atomic() in
4310 * napi_enable()/dev_set_threaded().
4311 * Use READ_ONCE() to guarantee a complete
4312 * read on napi->thread. Only call
4313 * wake_up_process() when it's not NULL.
4314 */
4315 thread = READ_ONCE(napi->thread);
4316 if (thread) {
4317 /* Avoid doing set_bit() if the thread is in
4318 * INTERRUPTIBLE state, cause napi_thread_wait()
4319 * makes sure to proceed with napi polling
4320 * if the thread is explicitly woken from here.
4321 */
4322 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4323 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4324 wake_up_process(thread);
4325 return;
4326 }
4327 }
4328
4329 list_add_tail(&napi->poll_list, &sd->poll_list);
4330 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4331}
4332
4333#ifdef CONFIG_RPS
4334
4335/* One global table that all flow-based protocols share. */
4336struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4337EXPORT_SYMBOL(rps_sock_flow_table);
4338u32 rps_cpu_mask __read_mostly;
4339EXPORT_SYMBOL(rps_cpu_mask);
4340
4341struct static_key_false rps_needed __read_mostly;
4342EXPORT_SYMBOL(rps_needed);
4343struct static_key_false rfs_needed __read_mostly;
4344EXPORT_SYMBOL(rfs_needed);
4345
4346static struct rps_dev_flow *
4347set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4348 struct rps_dev_flow *rflow, u16 next_cpu)
4349{
4350 if (next_cpu < nr_cpu_ids) {
4351#ifdef CONFIG_RFS_ACCEL
4352 struct netdev_rx_queue *rxqueue;
4353 struct rps_dev_flow_table *flow_table;
4354 struct rps_dev_flow *old_rflow;
4355 u32 flow_id;
4356 u16 rxq_index;
4357 int rc;
4358
4359 /* Should we steer this flow to a different hardware queue? */
4360 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4361 !(dev->features & NETIF_F_NTUPLE))
4362 goto out;
4363 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4364 if (rxq_index == skb_get_rx_queue(skb))
4365 goto out;
4366
4367 rxqueue = dev->_rx + rxq_index;
4368 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4369 if (!flow_table)
4370 goto out;
4371 flow_id = skb_get_hash(skb) & flow_table->mask;
4372 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4373 rxq_index, flow_id);
4374 if (rc < 0)
4375 goto out;
4376 old_rflow = rflow;
4377 rflow = &flow_table->flows[flow_id];
4378 rflow->filter = rc;
4379 if (old_rflow->filter == rflow->filter)
4380 old_rflow->filter = RPS_NO_FILTER;
4381 out:
4382#endif
4383 rflow->last_qtail =
4384 per_cpu(softnet_data, next_cpu).input_queue_head;
4385 }
4386
4387 rflow->cpu = next_cpu;
4388 return rflow;
4389}
4390
4391/*
4392 * get_rps_cpu is called from netif_receive_skb and returns the target
4393 * CPU from the RPS map of the receiving queue for a given skb.
4394 * rcu_read_lock must be held on entry.
4395 */
4396static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4397 struct rps_dev_flow **rflowp)
4398{
4399 const struct rps_sock_flow_table *sock_flow_table;
4400 struct netdev_rx_queue *rxqueue = dev->_rx;
4401 struct rps_dev_flow_table *flow_table;
4402 struct rps_map *map;
4403 int cpu = -1;
4404 u32 tcpu;
4405 u32 hash;
4406
4407 if (skb_rx_queue_recorded(skb)) {
4408 u16 index = skb_get_rx_queue(skb);
4409
4410 if (unlikely(index >= dev->real_num_rx_queues)) {
4411 WARN_ONCE(dev->real_num_rx_queues > 1,
4412 "%s received packet on queue %u, but number "
4413 "of RX queues is %u\n",
4414 dev->name, index, dev->real_num_rx_queues);
4415 goto done;
4416 }
4417 rxqueue += index;
4418 }
4419
4420 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4421
4422 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4423 map = rcu_dereference(rxqueue->rps_map);
4424 if (!flow_table && !map)
4425 goto done;
4426
4427 skb_reset_network_header(skb);
4428 hash = skb_get_hash(skb);
4429 if (!hash)
4430 goto done;
4431
4432 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4433 if (flow_table && sock_flow_table) {
4434 struct rps_dev_flow *rflow;
4435 u32 next_cpu;
4436 u32 ident;
4437
4438 /* First check into global flow table if there is a match */
4439 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4440 if ((ident ^ hash) & ~rps_cpu_mask)
4441 goto try_rps;
4442
4443 next_cpu = ident & rps_cpu_mask;
4444
4445 /* OK, now we know there is a match,
4446 * we can look at the local (per receive queue) flow table
4447 */
4448 rflow = &flow_table->flows[hash & flow_table->mask];
4449 tcpu = rflow->cpu;
4450
4451 /*
4452 * If the desired CPU (where last recvmsg was done) is
4453 * different from current CPU (one in the rx-queue flow
4454 * table entry), switch if one of the following holds:
4455 * - Current CPU is unset (>= nr_cpu_ids).
4456 * - Current CPU is offline.
4457 * - The current CPU's queue tail has advanced beyond the
4458 * last packet that was enqueued using this table entry.
4459 * This guarantees that all previous packets for the flow
4460 * have been dequeued, thus preserving in order delivery.
4461 */
4462 if (unlikely(tcpu != next_cpu) &&
4463 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4464 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4465 rflow->last_qtail)) >= 0)) {
4466 tcpu = next_cpu;
4467 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4468 }
4469
4470 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4471 *rflowp = rflow;
4472 cpu = tcpu;
4473 goto done;
4474 }
4475 }
4476
4477try_rps:
4478
4479 if (map) {
4480 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4481 if (cpu_online(tcpu)) {
4482 cpu = tcpu;
4483 goto done;
4484 }
4485 }
4486
4487done:
4488 return cpu;
4489}
4490
4491#ifdef CONFIG_RFS_ACCEL
4492
4493/**
4494 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4495 * @dev: Device on which the filter was set
4496 * @rxq_index: RX queue index
4497 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4498 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4499 *
4500 * Drivers that implement ndo_rx_flow_steer() should periodically call
4501 * this function for each installed filter and remove the filters for
4502 * which it returns %true.
4503 */
4504bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4505 u32 flow_id, u16 filter_id)
4506{
4507 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4508 struct rps_dev_flow_table *flow_table;
4509 struct rps_dev_flow *rflow;
4510 bool expire = true;
4511 unsigned int cpu;
4512
4513 rcu_read_lock();
4514 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4515 if (flow_table && flow_id <= flow_table->mask) {
4516 rflow = &flow_table->flows[flow_id];
4517 cpu = READ_ONCE(rflow->cpu);
4518 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4519 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4520 rflow->last_qtail) <
4521 (int)(10 * flow_table->mask)))
4522 expire = false;
4523 }
4524 rcu_read_unlock();
4525 return expire;
4526}
4527EXPORT_SYMBOL(rps_may_expire_flow);
4528
4529#endif /* CONFIG_RFS_ACCEL */
4530
4531/* Called from hardirq (IPI) context */
4532static void rps_trigger_softirq(void *data)
4533{
4534 struct softnet_data *sd = data;
4535
4536 ____napi_schedule(sd, &sd->backlog);
4537 sd->received_rps++;
4538}
4539
4540#endif /* CONFIG_RPS */
4541
4542/*
4543 * Check if this softnet_data structure is another cpu one
4544 * If yes, queue it to our IPI list and return 1
4545 * If no, return 0
4546 */
4547static int rps_ipi_queued(struct softnet_data *sd)
4548{
4549#ifdef CONFIG_RPS
4550 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4551
4552 if (sd != mysd) {
4553 sd->rps_ipi_next = mysd->rps_ipi_list;
4554 mysd->rps_ipi_list = sd;
4555
4556 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4557 return 1;
4558 }
4559#endif /* CONFIG_RPS */
4560 return 0;
4561}
4562
4563#ifdef CONFIG_NET_FLOW_LIMIT
4564int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4565#endif
4566
4567static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4568{
4569#ifdef CONFIG_NET_FLOW_LIMIT
4570 struct sd_flow_limit *fl;
4571 struct softnet_data *sd;
4572 unsigned int old_flow, new_flow;
4573
4574 if (qlen < (netdev_max_backlog >> 1))
4575 return false;
4576
4577 sd = this_cpu_ptr(&softnet_data);
4578
4579 rcu_read_lock();
4580 fl = rcu_dereference(sd->flow_limit);
4581 if (fl) {
4582 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4583 old_flow = fl->history[fl->history_head];
4584 fl->history[fl->history_head] = new_flow;
4585
4586 fl->history_head++;
4587 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4588
4589 if (likely(fl->buckets[old_flow]))
4590 fl->buckets[old_flow]--;
4591
4592 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4593 fl->count++;
4594 rcu_read_unlock();
4595 return true;
4596 }
4597 }
4598 rcu_read_unlock();
4599#endif
4600 return false;
4601}
4602
4603/*
4604 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4605 * queue (may be a remote CPU queue).
4606 */
4607static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4608 unsigned int *qtail)
4609{
4610 struct softnet_data *sd;
4611 unsigned long flags;
4612 unsigned int qlen;
4613
4614 sd = &per_cpu(softnet_data, cpu);
4615
4616 local_irq_save(flags);
4617
4618 rps_lock(sd);
4619 if (!netif_running(skb->dev))
4620 goto drop;
4621 qlen = skb_queue_len(&sd->input_pkt_queue);
4622 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4623 if (qlen) {
4624enqueue:
4625 __skb_queue_tail(&sd->input_pkt_queue, skb);
4626 input_queue_tail_incr_save(sd, qtail);
4627 rps_unlock(sd);
4628 local_irq_restore(flags);
4629 return NET_RX_SUCCESS;
4630 }
4631
4632 /* Schedule NAPI for backlog device
4633 * We can use non atomic operation since we own the queue lock
4634 */
4635 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4636 if (!rps_ipi_queued(sd))
4637 ____napi_schedule(sd, &sd->backlog);
4638 }
4639 goto enqueue;
4640 }
4641
4642drop:
4643 sd->dropped++;
4644 rps_unlock(sd);
4645
4646 local_irq_restore(flags);
4647
4648 atomic_long_inc(&skb->dev->rx_dropped);
4649 kfree_skb(skb);
4650 return NET_RX_DROP;
4651}
4652
4653static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4654{
4655 struct net_device *dev = skb->dev;
4656 struct netdev_rx_queue *rxqueue;
4657
4658 rxqueue = dev->_rx;
4659
4660 if (skb_rx_queue_recorded(skb)) {
4661 u16 index = skb_get_rx_queue(skb);
4662
4663 if (unlikely(index >= dev->real_num_rx_queues)) {
4664 WARN_ONCE(dev->real_num_rx_queues > 1,
4665 "%s received packet on queue %u, but number "
4666 "of RX queues is %u\n",
4667 dev->name, index, dev->real_num_rx_queues);
4668
4669 return rxqueue; /* Return first rxqueue */
4670 }
4671 rxqueue += index;
4672 }
4673 return rxqueue;
4674}
4675
4676u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4677 struct bpf_prog *xdp_prog)
4678{
4679 void *orig_data, *orig_data_end, *hard_start;
4680 struct netdev_rx_queue *rxqueue;
4681 bool orig_bcast, orig_host;
4682 u32 mac_len, frame_sz;
4683 __be16 orig_eth_type;
4684 struct ethhdr *eth;
4685 u32 metalen, act;
4686 int off;
4687
4688 /* The XDP program wants to see the packet starting at the MAC
4689 * header.
4690 */
4691 mac_len = skb->data - skb_mac_header(skb);
4692 hard_start = skb->data - skb_headroom(skb);
4693
4694 /* SKB "head" area always have tailroom for skb_shared_info */
4695 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4696 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4697
4698 rxqueue = netif_get_rxqueue(skb);
4699 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4700 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4701 skb_headlen(skb) + mac_len, true);
4702
4703 orig_data_end = xdp->data_end;
4704 orig_data = xdp->data;
4705 eth = (struct ethhdr *)xdp->data;
4706 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4707 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4708 orig_eth_type = eth->h_proto;
4709
4710 act = bpf_prog_run_xdp(xdp_prog, xdp);
4711
4712 /* check if bpf_xdp_adjust_head was used */
4713 off = xdp->data - orig_data;
4714 if (off) {
4715 if (off > 0)
4716 __skb_pull(skb, off);
4717 else if (off < 0)
4718 __skb_push(skb, -off);
4719
4720 skb->mac_header += off;
4721 skb_reset_network_header(skb);
4722 }
4723
4724 /* check if bpf_xdp_adjust_tail was used */
4725 off = xdp->data_end - orig_data_end;
4726 if (off != 0) {
4727 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4728 skb->len += off; /* positive on grow, negative on shrink */
4729 }
4730
4731 /* check if XDP changed eth hdr such SKB needs update */
4732 eth = (struct ethhdr *)xdp->data;
4733 if ((orig_eth_type != eth->h_proto) ||
4734 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4735 skb->dev->dev_addr)) ||
4736 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4737 __skb_push(skb, ETH_HLEN);
4738 skb->pkt_type = PACKET_HOST;
4739 skb->protocol = eth_type_trans(skb, skb->dev);
4740 }
4741
4742 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4743 * before calling us again on redirect path. We do not call do_redirect
4744 * as we leave that up to the caller.
4745 *
4746 * Caller is responsible for managing lifetime of skb (i.e. calling
4747 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4748 */
4749 switch (act) {
4750 case XDP_REDIRECT:
4751 case XDP_TX:
4752 __skb_push(skb, mac_len);
4753 break;
4754 case XDP_PASS:
4755 metalen = xdp->data - xdp->data_meta;
4756 if (metalen)
4757 skb_metadata_set(skb, metalen);
4758 break;
4759 }
4760
4761 return act;
4762}
4763
4764static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4765 struct xdp_buff *xdp,
4766 struct bpf_prog *xdp_prog)
4767{
4768 u32 act = XDP_DROP;
4769
4770 /* Reinjected packets coming from act_mirred or similar should
4771 * not get XDP generic processing.
4772 */
4773 if (skb_is_redirected(skb))
4774 return XDP_PASS;
4775
4776 /* XDP packets must be linear and must have sufficient headroom
4777 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4778 * native XDP provides, thus we need to do it here as well.
4779 */
4780 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4781 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4782 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4783 int troom = skb->tail + skb->data_len - skb->end;
4784
4785 /* In case we have to go down the path and also linearize,
4786 * then lets do the pskb_expand_head() work just once here.
4787 */
4788 if (pskb_expand_head(skb,
4789 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4790 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4791 goto do_drop;
4792 if (skb_linearize(skb))
4793 goto do_drop;
4794 }
4795
4796 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4797 switch (act) {
4798 case XDP_REDIRECT:
4799 case XDP_TX:
4800 case XDP_PASS:
4801 break;
4802 default:
4803 bpf_warn_invalid_xdp_action(act);
4804 fallthrough;
4805 case XDP_ABORTED:
4806 trace_xdp_exception(skb->dev, xdp_prog, act);
4807 fallthrough;
4808 case XDP_DROP:
4809 do_drop:
4810 kfree_skb(skb);
4811 break;
4812 }
4813
4814 return act;
4815}
4816
4817/* When doing generic XDP we have to bypass the qdisc layer and the
4818 * network taps in order to match in-driver-XDP behavior.
4819 */
4820void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4821{
4822 struct net_device *dev = skb->dev;
4823 struct netdev_queue *txq;
4824 bool free_skb = true;
4825 int cpu, rc;
4826
4827 txq = netdev_core_pick_tx(dev, skb, NULL);
4828 cpu = smp_processor_id();
4829 HARD_TX_LOCK(dev, txq, cpu);
4830 if (!netif_xmit_stopped(txq)) {
4831 rc = netdev_start_xmit(skb, dev, txq, 0);
4832 if (dev_xmit_complete(rc))
4833 free_skb = false;
4834 }
4835 HARD_TX_UNLOCK(dev, txq);
4836 if (free_skb) {
4837 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4838 kfree_skb(skb);
4839 }
4840}
4841
4842static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4843
4844int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4845{
4846 if (xdp_prog) {
4847 struct xdp_buff xdp;
4848 u32 act;
4849 int err;
4850
4851 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4852 if (act != XDP_PASS) {
4853 switch (act) {
4854 case XDP_REDIRECT:
4855 err = xdp_do_generic_redirect(skb->dev, skb,
4856 &xdp, xdp_prog);
4857 if (err)
4858 goto out_redir;
4859 break;
4860 case XDP_TX:
4861 generic_xdp_tx(skb, xdp_prog);
4862 break;
4863 }
4864 return XDP_DROP;
4865 }
4866 }
4867 return XDP_PASS;
4868out_redir:
4869 kfree_skb(skb);
4870 return XDP_DROP;
4871}
4872EXPORT_SYMBOL_GPL(do_xdp_generic);
4873
4874static int netif_rx_internal(struct sk_buff *skb)
4875{
4876 int ret;
4877
4878 net_timestamp_check(netdev_tstamp_prequeue, skb);
4879
4880 trace_netif_rx(skb);
4881
4882#ifdef CONFIG_RPS
4883 if (static_branch_unlikely(&rps_needed)) {
4884 struct rps_dev_flow voidflow, *rflow = &voidflow;
4885 int cpu;
4886
4887 preempt_disable();
4888 rcu_read_lock();
4889
4890 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4891 if (cpu < 0)
4892 cpu = smp_processor_id();
4893
4894 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4895
4896 rcu_read_unlock();
4897 preempt_enable();
4898 } else
4899#endif
4900 {
4901 unsigned int qtail;
4902
4903 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4904 put_cpu();
4905 }
4906 return ret;
4907}
4908
4909/**
4910 * netif_rx - post buffer to the network code
4911 * @skb: buffer to post
4912 *
4913 * This function receives a packet from a device driver and queues it for
4914 * the upper (protocol) levels to process. It always succeeds. The buffer
4915 * may be dropped during processing for congestion control or by the
4916 * protocol layers.
4917 *
4918 * return values:
4919 * NET_RX_SUCCESS (no congestion)
4920 * NET_RX_DROP (packet was dropped)
4921 *
4922 */
4923
4924int netif_rx(struct sk_buff *skb)
4925{
4926 int ret;
4927
4928 trace_netif_rx_entry(skb);
4929
4930 ret = netif_rx_internal(skb);
4931 trace_netif_rx_exit(ret);
4932
4933 return ret;
4934}
4935EXPORT_SYMBOL(netif_rx);
4936
4937int netif_rx_ni(struct sk_buff *skb)
4938{
4939 int err;
4940
4941 trace_netif_rx_ni_entry(skb);
4942
4943 preempt_disable();
4944 err = netif_rx_internal(skb);
4945 if (local_softirq_pending())
4946 do_softirq();
4947 preempt_enable();
4948 trace_netif_rx_ni_exit(err);
4949
4950 return err;
4951}
4952EXPORT_SYMBOL(netif_rx_ni);
4953
4954int netif_rx_any_context(struct sk_buff *skb)
4955{
4956 /*
4957 * If invoked from contexts which do not invoke bottom half
4958 * processing either at return from interrupt or when softrqs are
4959 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4960 * directly.
4961 */
4962 if (in_interrupt())
4963 return netif_rx(skb);
4964 else
4965 return netif_rx_ni(skb);
4966}
4967EXPORT_SYMBOL(netif_rx_any_context);
4968
4969static __latent_entropy void net_tx_action(struct softirq_action *h)
4970{
4971 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4972
4973 if (sd->completion_queue) {
4974 struct sk_buff *clist;
4975
4976 local_irq_disable();
4977 clist = sd->completion_queue;
4978 sd->completion_queue = NULL;
4979 local_irq_enable();
4980
4981 while (clist) {
4982 struct sk_buff *skb = clist;
4983
4984 clist = clist->next;
4985
4986 WARN_ON(refcount_read(&skb->users));
4987 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
4988 trace_consume_skb(skb);
4989 else
4990 trace_kfree_skb(skb, net_tx_action);
4991
4992 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
4993 __kfree_skb(skb);
4994 else
4995 __kfree_skb_defer(skb);
4996 }
4997 }
4998
4999 if (sd->output_queue) {
5000 struct Qdisc *head;
5001
5002 local_irq_disable();
5003 head = sd->output_queue;
5004 sd->output_queue = NULL;
5005 sd->output_queue_tailp = &sd->output_queue;
5006 local_irq_enable();
5007
5008 rcu_read_lock();
5009
5010 while (head) {
5011 struct Qdisc *q = head;
5012 spinlock_t *root_lock = NULL;
5013
5014 head = head->next_sched;
5015
5016 /* We need to make sure head->next_sched is read
5017 * before clearing __QDISC_STATE_SCHED
5018 */
5019 smp_mb__before_atomic();
5020
5021 if (!(q->flags & TCQ_F_NOLOCK)) {
5022 root_lock = qdisc_lock(q);
5023 spin_lock(root_lock);
5024 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5025 &q->state))) {
5026 /* There is a synchronize_net() between
5027 * STATE_DEACTIVATED flag being set and
5028 * qdisc_reset()/some_qdisc_is_busy() in
5029 * dev_deactivate(), so we can safely bail out
5030 * early here to avoid data race between
5031 * qdisc_deactivate() and some_qdisc_is_busy()
5032 * for lockless qdisc.
5033 */
5034 clear_bit(__QDISC_STATE_SCHED, &q->state);
5035 continue;
5036 }
5037
5038 clear_bit(__QDISC_STATE_SCHED, &q->state);
5039 qdisc_run(q);
5040 if (root_lock)
5041 spin_unlock(root_lock);
5042 }
5043
5044 rcu_read_unlock();
5045 }
5046
5047 xfrm_dev_backlog(sd);
5048}
5049
5050#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5051/* This hook is defined here for ATM LANE */
5052int (*br_fdb_test_addr_hook)(struct net_device *dev,
5053 unsigned char *addr) __read_mostly;
5054EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5055#endif
5056
5057static inline struct sk_buff *
5058sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5059 struct net_device *orig_dev, bool *another)
5060{
5061#ifdef CONFIG_NET_CLS_ACT
5062 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5063 struct tcf_result cl_res;
5064
5065 /* If there's at least one ingress present somewhere (so
5066 * we get here via enabled static key), remaining devices
5067 * that are not configured with an ingress qdisc will bail
5068 * out here.
5069 */
5070 if (!miniq)
5071 return skb;
5072
5073 if (*pt_prev) {
5074 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5075 *pt_prev = NULL;
5076 }
5077
5078 qdisc_skb_cb(skb)->pkt_len = skb->len;
5079 qdisc_skb_cb(skb)->mru = 0;
5080 qdisc_skb_cb(skb)->post_ct = false;
5081 skb->tc_at_ingress = 1;
5082 mini_qdisc_bstats_cpu_update(miniq, skb);
5083
5084 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5085 case TC_ACT_OK:
5086 case TC_ACT_RECLASSIFY:
5087 skb->tc_index = TC_H_MIN(cl_res.classid);
5088 break;
5089 case TC_ACT_SHOT:
5090 mini_qdisc_qstats_cpu_drop(miniq);
5091 kfree_skb(skb);
5092 return NULL;
5093 case TC_ACT_STOLEN:
5094 case TC_ACT_QUEUED:
5095 case TC_ACT_TRAP:
5096 consume_skb(skb);
5097 return NULL;
5098 case TC_ACT_REDIRECT:
5099 /* skb_mac_header check was done by cls/act_bpf, so
5100 * we can safely push the L2 header back before
5101 * redirecting to another netdev
5102 */
5103 __skb_push(skb, skb->mac_len);
5104 if (skb_do_redirect(skb) == -EAGAIN) {
5105 __skb_pull(skb, skb->mac_len);
5106 *another = true;
5107 break;
5108 }
5109 return NULL;
5110 case TC_ACT_CONSUMED:
5111 return NULL;
5112 default:
5113 break;
5114 }
5115#endif /* CONFIG_NET_CLS_ACT */
5116 return skb;
5117}
5118
5119/**
5120 * netdev_is_rx_handler_busy - check if receive handler is registered
5121 * @dev: device to check
5122 *
5123 * Check if a receive handler is already registered for a given device.
5124 * Return true if there one.
5125 *
5126 * The caller must hold the rtnl_mutex.
5127 */
5128bool netdev_is_rx_handler_busy(struct net_device *dev)
5129{
5130 ASSERT_RTNL();
5131 return dev && rtnl_dereference(dev->rx_handler);
5132}
5133EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5134
5135/**
5136 * netdev_rx_handler_register - register receive handler
5137 * @dev: device to register a handler for
5138 * @rx_handler: receive handler to register
5139 * @rx_handler_data: data pointer that is used by rx handler
5140 *
5141 * Register a receive handler for a device. This handler will then be
5142 * called from __netif_receive_skb. A negative errno code is returned
5143 * on a failure.
5144 *
5145 * The caller must hold the rtnl_mutex.
5146 *
5147 * For a general description of rx_handler, see enum rx_handler_result.
5148 */
5149int netdev_rx_handler_register(struct net_device *dev,
5150 rx_handler_func_t *rx_handler,
5151 void *rx_handler_data)
5152{
5153 if (netdev_is_rx_handler_busy(dev))
5154 return -EBUSY;
5155
5156 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5157 return -EINVAL;
5158
5159 /* Note: rx_handler_data must be set before rx_handler */
5160 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5161 rcu_assign_pointer(dev->rx_handler, rx_handler);
5162
5163 return 0;
5164}
5165EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5166
5167/**
5168 * netdev_rx_handler_unregister - unregister receive handler
5169 * @dev: device to unregister a handler from
5170 *
5171 * Unregister a receive handler from a device.
5172 *
5173 * The caller must hold the rtnl_mutex.
5174 */
5175void netdev_rx_handler_unregister(struct net_device *dev)
5176{
5177
5178 ASSERT_RTNL();
5179 RCU_INIT_POINTER(dev->rx_handler, NULL);
5180 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5181 * section has a guarantee to see a non NULL rx_handler_data
5182 * as well.
5183 */
5184 synchronize_net();
5185 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5186}
5187EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5188
5189/*
5190 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5191 * the special handling of PFMEMALLOC skbs.
5192 */
5193static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5194{
5195 switch (skb->protocol) {
5196 case htons(ETH_P_ARP):
5197 case htons(ETH_P_IP):
5198 case htons(ETH_P_IPV6):
5199 case htons(ETH_P_8021Q):
5200 case htons(ETH_P_8021AD):
5201 return true;
5202 default:
5203 return false;
5204 }
5205}
5206
5207static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5208 int *ret, struct net_device *orig_dev)
5209{
5210 if (nf_hook_ingress_active(skb)) {
5211 int ingress_retval;
5212
5213 if (*pt_prev) {
5214 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5215 *pt_prev = NULL;
5216 }
5217
5218 rcu_read_lock();
5219 ingress_retval = nf_hook_ingress(skb);
5220 rcu_read_unlock();
5221 return ingress_retval;
5222 }
5223 return 0;
5224}
5225
5226static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5227 struct packet_type **ppt_prev)
5228{
5229 struct packet_type *ptype, *pt_prev;
5230 rx_handler_func_t *rx_handler;
5231 struct sk_buff *skb = *pskb;
5232 struct net_device *orig_dev;
5233 bool deliver_exact = false;
5234 int ret = NET_RX_DROP;
5235 __be16 type;
5236
5237 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5238
5239 trace_netif_receive_skb(skb);
5240
5241 orig_dev = skb->dev;
5242
5243 skb_reset_network_header(skb);
5244 if (!skb_transport_header_was_set(skb))
5245 skb_reset_transport_header(skb);
5246 skb_reset_mac_len(skb);
5247
5248 pt_prev = NULL;
5249
5250another_round:
5251 skb->skb_iif = skb->dev->ifindex;
5252
5253 __this_cpu_inc(softnet_data.processed);
5254
5255 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5256 int ret2;
5257
5258 migrate_disable();
5259 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5260 migrate_enable();
5261
5262 if (ret2 != XDP_PASS) {
5263 ret = NET_RX_DROP;
5264 goto out;
5265 }
5266 }
5267
5268 if (eth_type_vlan(skb->protocol)) {
5269 skb = skb_vlan_untag(skb);
5270 if (unlikely(!skb))
5271 goto out;
5272 }
5273
5274 if (skb_skip_tc_classify(skb))
5275 goto skip_classify;
5276
5277 if (pfmemalloc)
5278 goto skip_taps;
5279
5280 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5281 if (pt_prev)
5282 ret = deliver_skb(skb, pt_prev, orig_dev);
5283 pt_prev = ptype;
5284 }
5285
5286 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5287 if (pt_prev)
5288 ret = deliver_skb(skb, pt_prev, orig_dev);
5289 pt_prev = ptype;
5290 }
5291
5292skip_taps:
5293#ifdef CONFIG_NET_INGRESS
5294 if (static_branch_unlikely(&ingress_needed_key)) {
5295 bool another = false;
5296
5297 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5298 &another);
5299 if (another)
5300 goto another_round;
5301 if (!skb)
5302 goto out;
5303
5304 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5305 goto out;
5306 }
5307#endif
5308 skb_reset_redirect(skb);
5309skip_classify:
5310 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5311 goto drop;
5312
5313 if (skb_vlan_tag_present(skb)) {
5314 if (pt_prev) {
5315 ret = deliver_skb(skb, pt_prev, orig_dev);
5316 pt_prev = NULL;
5317 }
5318 if (vlan_do_receive(&skb))
5319 goto another_round;
5320 else if (unlikely(!skb))
5321 goto out;
5322 }
5323
5324 rx_handler = rcu_dereference(skb->dev->rx_handler);
5325 if (rx_handler) {
5326 if (pt_prev) {
5327 ret = deliver_skb(skb, pt_prev, orig_dev);
5328 pt_prev = NULL;
5329 }
5330 switch (rx_handler(&skb)) {
5331 case RX_HANDLER_CONSUMED:
5332 ret = NET_RX_SUCCESS;
5333 goto out;
5334 case RX_HANDLER_ANOTHER:
5335 goto another_round;
5336 case RX_HANDLER_EXACT:
5337 deliver_exact = true;
5338 break;
5339 case RX_HANDLER_PASS:
5340 break;
5341 default:
5342 BUG();
5343 }
5344 }
5345
5346 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5347check_vlan_id:
5348 if (skb_vlan_tag_get_id(skb)) {
5349 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5350 * find vlan device.
5351 */
5352 skb->pkt_type = PACKET_OTHERHOST;
5353 } else if (eth_type_vlan(skb->protocol)) {
5354 /* Outer header is 802.1P with vlan 0, inner header is
5355 * 802.1Q or 802.1AD and vlan_do_receive() above could
5356 * not find vlan dev for vlan id 0.
5357 */
5358 __vlan_hwaccel_clear_tag(skb);
5359 skb = skb_vlan_untag(skb);
5360 if (unlikely(!skb))
5361 goto out;
5362 if (vlan_do_receive(&skb))
5363 /* After stripping off 802.1P header with vlan 0
5364 * vlan dev is found for inner header.
5365 */
5366 goto another_round;
5367 else if (unlikely(!skb))
5368 goto out;
5369 else
5370 /* We have stripped outer 802.1P vlan 0 header.
5371 * But could not find vlan dev.
5372 * check again for vlan id to set OTHERHOST.
5373 */
5374 goto check_vlan_id;
5375 }
5376 /* Note: we might in the future use prio bits
5377 * and set skb->priority like in vlan_do_receive()
5378 * For the time being, just ignore Priority Code Point
5379 */
5380 __vlan_hwaccel_clear_tag(skb);
5381 }
5382
5383 type = skb->protocol;
5384
5385 /* deliver only exact match when indicated */
5386 if (likely(!deliver_exact)) {
5387 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5388 &ptype_base[ntohs(type) &
5389 PTYPE_HASH_MASK]);
5390 }
5391
5392 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5393 &orig_dev->ptype_specific);
5394
5395 if (unlikely(skb->dev != orig_dev)) {
5396 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5397 &skb->dev->ptype_specific);
5398 }
5399
5400 if (pt_prev) {
5401 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5402 goto drop;
5403 *ppt_prev = pt_prev;
5404 } else {
5405drop:
5406 if (!deliver_exact)
5407 atomic_long_inc(&skb->dev->rx_dropped);
5408 else
5409 atomic_long_inc(&skb->dev->rx_nohandler);
5410 kfree_skb(skb);
5411 /* Jamal, now you will not able to escape explaining
5412 * me how you were going to use this. :-)
5413 */
5414 ret = NET_RX_DROP;
5415 }
5416
5417out:
5418 /* The invariant here is that if *ppt_prev is not NULL
5419 * then skb should also be non-NULL.
5420 *
5421 * Apparently *ppt_prev assignment above holds this invariant due to
5422 * skb dereferencing near it.
5423 */
5424 *pskb = skb;
5425 return ret;
5426}
5427
5428static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5429{
5430 struct net_device *orig_dev = skb->dev;
5431 struct packet_type *pt_prev = NULL;
5432 int ret;
5433
5434 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5435 if (pt_prev)
5436 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5437 skb->dev, pt_prev, orig_dev);
5438 return ret;
5439}
5440
5441/**
5442 * netif_receive_skb_core - special purpose version of netif_receive_skb
5443 * @skb: buffer to process
5444 *
5445 * More direct receive version of netif_receive_skb(). It should
5446 * only be used by callers that have a need to skip RPS and Generic XDP.
5447 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5448 *
5449 * This function may only be called from softirq context and interrupts
5450 * should be enabled.
5451 *
5452 * Return values (usually ignored):
5453 * NET_RX_SUCCESS: no congestion
5454 * NET_RX_DROP: packet was dropped
5455 */
5456int netif_receive_skb_core(struct sk_buff *skb)
5457{
5458 int ret;
5459
5460 rcu_read_lock();
5461 ret = __netif_receive_skb_one_core(skb, false);
5462 rcu_read_unlock();
5463
5464 return ret;
5465}
5466EXPORT_SYMBOL(netif_receive_skb_core);
5467
5468static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5469 struct packet_type *pt_prev,
5470 struct net_device *orig_dev)
5471{
5472 struct sk_buff *skb, *next;
5473
5474 if (!pt_prev)
5475 return;
5476 if (list_empty(head))
5477 return;
5478 if (pt_prev->list_func != NULL)
5479 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5480 ip_list_rcv, head, pt_prev, orig_dev);
5481 else
5482 list_for_each_entry_safe(skb, next, head, list) {
5483 skb_list_del_init(skb);
5484 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5485 }
5486}
5487
5488static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5489{
5490 /* Fast-path assumptions:
5491 * - There is no RX handler.
5492 * - Only one packet_type matches.
5493 * If either of these fails, we will end up doing some per-packet
5494 * processing in-line, then handling the 'last ptype' for the whole
5495 * sublist. This can't cause out-of-order delivery to any single ptype,
5496 * because the 'last ptype' must be constant across the sublist, and all
5497 * other ptypes are handled per-packet.
5498 */
5499 /* Current (common) ptype of sublist */
5500 struct packet_type *pt_curr = NULL;
5501 /* Current (common) orig_dev of sublist */
5502 struct net_device *od_curr = NULL;
5503 struct list_head sublist;
5504 struct sk_buff *skb, *next;
5505
5506 INIT_LIST_HEAD(&sublist);
5507 list_for_each_entry_safe(skb, next, head, list) {
5508 struct net_device *orig_dev = skb->dev;
5509 struct packet_type *pt_prev = NULL;
5510
5511 skb_list_del_init(skb);
5512 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5513 if (!pt_prev)
5514 continue;
5515 if (pt_curr != pt_prev || od_curr != orig_dev) {
5516 /* dispatch old sublist */
5517 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5518 /* start new sublist */
5519 INIT_LIST_HEAD(&sublist);
5520 pt_curr = pt_prev;
5521 od_curr = orig_dev;
5522 }
5523 list_add_tail(&skb->list, &sublist);
5524 }
5525
5526 /* dispatch final sublist */
5527 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5528}
5529
5530static int __netif_receive_skb(struct sk_buff *skb)
5531{
5532 int ret;
5533
5534 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5535 unsigned int noreclaim_flag;
5536
5537 /*
5538 * PFMEMALLOC skbs are special, they should
5539 * - be delivered to SOCK_MEMALLOC sockets only
5540 * - stay away from userspace
5541 * - have bounded memory usage
5542 *
5543 * Use PF_MEMALLOC as this saves us from propagating the allocation
5544 * context down to all allocation sites.
5545 */
5546 noreclaim_flag = memalloc_noreclaim_save();
5547 ret = __netif_receive_skb_one_core(skb, true);
5548 memalloc_noreclaim_restore(noreclaim_flag);
5549 } else
5550 ret = __netif_receive_skb_one_core(skb, false);
5551
5552 return ret;
5553}
5554
5555static void __netif_receive_skb_list(struct list_head *head)
5556{
5557 unsigned long noreclaim_flag = 0;
5558 struct sk_buff *skb, *next;
5559 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5560
5561 list_for_each_entry_safe(skb, next, head, list) {
5562 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5563 struct list_head sublist;
5564
5565 /* Handle the previous sublist */
5566 list_cut_before(&sublist, head, &skb->list);
5567 if (!list_empty(&sublist))
5568 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5569 pfmemalloc = !pfmemalloc;
5570 /* See comments in __netif_receive_skb */
5571 if (pfmemalloc)
5572 noreclaim_flag = memalloc_noreclaim_save();
5573 else
5574 memalloc_noreclaim_restore(noreclaim_flag);
5575 }
5576 }
5577 /* Handle the remaining sublist */
5578 if (!list_empty(head))
5579 __netif_receive_skb_list_core(head, pfmemalloc);
5580 /* Restore pflags */
5581 if (pfmemalloc)
5582 memalloc_noreclaim_restore(noreclaim_flag);
5583}
5584
5585static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5586{
5587 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5588 struct bpf_prog *new = xdp->prog;
5589 int ret = 0;
5590
5591 switch (xdp->command) {
5592 case XDP_SETUP_PROG:
5593 rcu_assign_pointer(dev->xdp_prog, new);
5594 if (old)
5595 bpf_prog_put(old);
5596
5597 if (old && !new) {
5598 static_branch_dec(&generic_xdp_needed_key);
5599 } else if (new && !old) {
5600 static_branch_inc(&generic_xdp_needed_key);
5601 dev_disable_lro(dev);
5602 dev_disable_gro_hw(dev);
5603 }
5604 break;
5605
5606 default:
5607 ret = -EINVAL;
5608 break;
5609 }
5610
5611 return ret;
5612}
5613
5614static int netif_receive_skb_internal(struct sk_buff *skb)
5615{
5616 int ret;
5617
5618 net_timestamp_check(netdev_tstamp_prequeue, skb);
5619
5620 if (skb_defer_rx_timestamp(skb))
5621 return NET_RX_SUCCESS;
5622
5623 rcu_read_lock();
5624#ifdef CONFIG_RPS
5625 if (static_branch_unlikely(&rps_needed)) {
5626 struct rps_dev_flow voidflow, *rflow = &voidflow;
5627 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5628
5629 if (cpu >= 0) {
5630 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5631 rcu_read_unlock();
5632 return ret;
5633 }
5634 }
5635#endif
5636 ret = __netif_receive_skb(skb);
5637 rcu_read_unlock();
5638 return ret;
5639}
5640
5641static void netif_receive_skb_list_internal(struct list_head *head)
5642{
5643 struct sk_buff *skb, *next;
5644 struct list_head sublist;
5645
5646 INIT_LIST_HEAD(&sublist);
5647 list_for_each_entry_safe(skb, next, head, list) {
5648 net_timestamp_check(netdev_tstamp_prequeue, skb);
5649 skb_list_del_init(skb);
5650 if (!skb_defer_rx_timestamp(skb))
5651 list_add_tail(&skb->list, &sublist);
5652 }
5653 list_splice_init(&sublist, head);
5654
5655 rcu_read_lock();
5656#ifdef CONFIG_RPS
5657 if (static_branch_unlikely(&rps_needed)) {
5658 list_for_each_entry_safe(skb, next, head, list) {
5659 struct rps_dev_flow voidflow, *rflow = &voidflow;
5660 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5661
5662 if (cpu >= 0) {
5663 /* Will be handled, remove from list */
5664 skb_list_del_init(skb);
5665 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5666 }
5667 }
5668 }
5669#endif
5670 __netif_receive_skb_list(head);
5671 rcu_read_unlock();
5672}
5673
5674/**
5675 * netif_receive_skb - process receive buffer from network
5676 * @skb: buffer to process
5677 *
5678 * netif_receive_skb() is the main receive data processing function.
5679 * It always succeeds. The buffer may be dropped during processing
5680 * for congestion control or by the protocol layers.
5681 *
5682 * This function may only be called from softirq context and interrupts
5683 * should be enabled.
5684 *
5685 * Return values (usually ignored):
5686 * NET_RX_SUCCESS: no congestion
5687 * NET_RX_DROP: packet was dropped
5688 */
5689int netif_receive_skb(struct sk_buff *skb)
5690{
5691 int ret;
5692
5693 trace_netif_receive_skb_entry(skb);
5694
5695 ret = netif_receive_skb_internal(skb);
5696 trace_netif_receive_skb_exit(ret);
5697
5698 return ret;
5699}
5700EXPORT_SYMBOL(netif_receive_skb);
5701
5702/**
5703 * netif_receive_skb_list - process many receive buffers from network
5704 * @head: list of skbs to process.
5705 *
5706 * Since return value of netif_receive_skb() is normally ignored, and
5707 * wouldn't be meaningful for a list, this function returns void.
5708 *
5709 * This function may only be called from softirq context and interrupts
5710 * should be enabled.
5711 */
5712void netif_receive_skb_list(struct list_head *head)
5713{
5714 struct sk_buff *skb;
5715
5716 if (list_empty(head))
5717 return;
5718 if (trace_netif_receive_skb_list_entry_enabled()) {
5719 list_for_each_entry(skb, head, list)
5720 trace_netif_receive_skb_list_entry(skb);
5721 }
5722 netif_receive_skb_list_internal(head);
5723 trace_netif_receive_skb_list_exit(0);
5724}
5725EXPORT_SYMBOL(netif_receive_skb_list);
5726
5727static DEFINE_PER_CPU(struct work_struct, flush_works);
5728
5729/* Network device is going away, flush any packets still pending */
5730static void flush_backlog(struct work_struct *work)
5731{
5732 struct sk_buff *skb, *tmp;
5733 struct softnet_data *sd;
5734
5735 local_bh_disable();
5736 sd = this_cpu_ptr(&softnet_data);
5737
5738 local_irq_disable();
5739 rps_lock(sd);
5740 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5741 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5742 __skb_unlink(skb, &sd->input_pkt_queue);
5743 dev_kfree_skb_irq(skb);
5744 input_queue_head_incr(sd);
5745 }
5746 }
5747 rps_unlock(sd);
5748 local_irq_enable();
5749
5750 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5751 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5752 __skb_unlink(skb, &sd->process_queue);
5753 kfree_skb(skb);
5754 input_queue_head_incr(sd);
5755 }
5756 }
5757 local_bh_enable();
5758}
5759
5760static bool flush_required(int cpu)
5761{
5762#if IS_ENABLED(CONFIG_RPS)
5763 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5764 bool do_flush;
5765
5766 local_irq_disable();
5767 rps_lock(sd);
5768
5769 /* as insertion into process_queue happens with the rps lock held,
5770 * process_queue access may race only with dequeue
5771 */
5772 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5773 !skb_queue_empty_lockless(&sd->process_queue);
5774 rps_unlock(sd);
5775 local_irq_enable();
5776
5777 return do_flush;
5778#endif
5779 /* without RPS we can't safely check input_pkt_queue: during a
5780 * concurrent remote skb_queue_splice() we can detect as empty both
5781 * input_pkt_queue and process_queue even if the latter could end-up
5782 * containing a lot of packets.
5783 */
5784 return true;
5785}
5786
5787static void flush_all_backlogs(void)
5788{
5789 static cpumask_t flush_cpus;
5790 unsigned int cpu;
5791
5792 /* since we are under rtnl lock protection we can use static data
5793 * for the cpumask and avoid allocating on stack the possibly
5794 * large mask
5795 */
5796 ASSERT_RTNL();
5797
5798 cpus_read_lock();
5799
5800 cpumask_clear(&flush_cpus);
5801 for_each_online_cpu(cpu) {
5802 if (flush_required(cpu)) {
5803 queue_work_on(cpu, system_highpri_wq,
5804 per_cpu_ptr(&flush_works, cpu));
5805 cpumask_set_cpu(cpu, &flush_cpus);
5806 }
5807 }
5808
5809 /* we can have in flight packet[s] on the cpus we are not flushing,
5810 * synchronize_net() in unregister_netdevice_many() will take care of
5811 * them
5812 */
5813 for_each_cpu(cpu, &flush_cpus)
5814 flush_work(per_cpu_ptr(&flush_works, cpu));
5815
5816 cpus_read_unlock();
5817}
5818
5819/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5820static void gro_normal_list(struct napi_struct *napi)
5821{
5822 if (!napi->rx_count)
5823 return;
5824 netif_receive_skb_list_internal(&napi->rx_list);
5825 INIT_LIST_HEAD(&napi->rx_list);
5826 napi->rx_count = 0;
5827}
5828
5829/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5830 * pass the whole batch up to the stack.
5831 */
5832static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5833{
5834 list_add_tail(&skb->list, &napi->rx_list);
5835 napi->rx_count += segs;
5836 if (napi->rx_count >= gro_normal_batch)
5837 gro_normal_list(napi);
5838}
5839
5840static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5841{
5842 struct packet_offload *ptype;
5843 __be16 type = skb->protocol;
5844 struct list_head *head = &offload_base;
5845 int err = -ENOENT;
5846
5847 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5848
5849 if (NAPI_GRO_CB(skb)->count == 1) {
5850 skb_shinfo(skb)->gso_size = 0;
5851 goto out;
5852 }
5853
5854 rcu_read_lock();
5855 list_for_each_entry_rcu(ptype, head, list) {
5856 if (ptype->type != type || !ptype->callbacks.gro_complete)
5857 continue;
5858
5859 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5860 ipv6_gro_complete, inet_gro_complete,
5861 skb, 0);
5862 break;
5863 }
5864 rcu_read_unlock();
5865
5866 if (err) {
5867 WARN_ON(&ptype->list == head);
5868 kfree_skb(skb);
5869 return NET_RX_SUCCESS;
5870 }
5871
5872out:
5873 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5874 return NET_RX_SUCCESS;
5875}
5876
5877static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5878 bool flush_old)
5879{
5880 struct list_head *head = &napi->gro_hash[index].list;
5881 struct sk_buff *skb, *p;
5882
5883 list_for_each_entry_safe_reverse(skb, p, head, list) {
5884 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5885 return;
5886 skb_list_del_init(skb);
5887 napi_gro_complete(napi, skb);
5888 napi->gro_hash[index].count--;
5889 }
5890
5891 if (!napi->gro_hash[index].count)
5892 __clear_bit(index, &napi->gro_bitmask);
5893}
5894
5895/* napi->gro_hash[].list contains packets ordered by age.
5896 * youngest packets at the head of it.
5897 * Complete skbs in reverse order to reduce latencies.
5898 */
5899void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5900{
5901 unsigned long bitmask = napi->gro_bitmask;
5902 unsigned int i, base = ~0U;
5903
5904 while ((i = ffs(bitmask)) != 0) {
5905 bitmask >>= i;
5906 base += i;
5907 __napi_gro_flush_chain(napi, base, flush_old);
5908 }
5909}
5910EXPORT_SYMBOL(napi_gro_flush);
5911
5912static void gro_list_prepare(const struct list_head *head,
5913 const struct sk_buff *skb)
5914{
5915 unsigned int maclen = skb->dev->hard_header_len;
5916 u32 hash = skb_get_hash_raw(skb);
5917 struct sk_buff *p;
5918
5919 list_for_each_entry(p, head, list) {
5920 unsigned long diffs;
5921
5922 NAPI_GRO_CB(p)->flush = 0;
5923
5924 if (hash != skb_get_hash_raw(p)) {
5925 NAPI_GRO_CB(p)->same_flow = 0;
5926 continue;
5927 }
5928
5929 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5930 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5931 if (skb_vlan_tag_present(p))
5932 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5933 diffs |= skb_metadata_differs(p, skb);
5934 if (maclen == ETH_HLEN)
5935 diffs |= compare_ether_header(skb_mac_header(p),
5936 skb_mac_header(skb));
5937 else if (!diffs)
5938 diffs = memcmp(skb_mac_header(p),
5939 skb_mac_header(skb),
5940 maclen);
5941
5942 /* in most common scenarions 'slow_gro' is 0
5943 * otherwise we are already on some slower paths
5944 * either skip all the infrequent tests altogether or
5945 * avoid trying too hard to skip each of them individually
5946 */
5947 if (!diffs && unlikely(skb->slow_gro | p->slow_gro)) {
5948#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5949 struct tc_skb_ext *skb_ext;
5950 struct tc_skb_ext *p_ext;
5951#endif
5952
5953 diffs |= p->sk != skb->sk;
5954 diffs |= skb_metadata_dst_cmp(p, skb);
5955 diffs |= skb_get_nfct(p) ^ skb_get_nfct(skb);
5956
5957#if IS_ENABLED(CONFIG_SKB_EXTENSIONS) && IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
5958 skb_ext = skb_ext_find(skb, TC_SKB_EXT);
5959 p_ext = skb_ext_find(p, TC_SKB_EXT);
5960
5961 diffs |= (!!p_ext) ^ (!!skb_ext);
5962 if (!diffs && unlikely(skb_ext))
5963 diffs |= p_ext->chain ^ skb_ext->chain;
5964#endif
5965 }
5966
5967 NAPI_GRO_CB(p)->same_flow = !diffs;
5968 }
5969}
5970
5971static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5972{
5973 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5974 const skb_frag_t *frag0 = &pinfo->frags[0];
5975
5976 NAPI_GRO_CB(skb)->data_offset = 0;
5977 NAPI_GRO_CB(skb)->frag0 = NULL;
5978 NAPI_GRO_CB(skb)->frag0_len = 0;
5979
5980 if (!skb_headlen(skb) && pinfo->nr_frags &&
5981 !PageHighMem(skb_frag_page(frag0)) &&
5982 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
5983 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
5984 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
5985 skb_frag_size(frag0),
5986 skb->end - skb->tail);
5987 }
5988}
5989
5990static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
5991{
5992 struct skb_shared_info *pinfo = skb_shinfo(skb);
5993
5994 BUG_ON(skb->end - skb->tail < grow);
5995
5996 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
5997
5998 skb->data_len -= grow;
5999 skb->tail += grow;
6000
6001 skb_frag_off_add(&pinfo->frags[0], grow);
6002 skb_frag_size_sub(&pinfo->frags[0], grow);
6003
6004 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6005 skb_frag_unref(skb, 0);
6006 memmove(pinfo->frags, pinfo->frags + 1,
6007 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6008 }
6009}
6010
6011static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6012{
6013 struct sk_buff *oldest;
6014
6015 oldest = list_last_entry(head, struct sk_buff, list);
6016
6017 /* We are called with head length >= MAX_GRO_SKBS, so this is
6018 * impossible.
6019 */
6020 if (WARN_ON_ONCE(!oldest))
6021 return;
6022
6023 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6024 * SKB to the chain.
6025 */
6026 skb_list_del_init(oldest);
6027 napi_gro_complete(napi, oldest);
6028}
6029
6030static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6031{
6032 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6033 struct gro_list *gro_list = &napi->gro_hash[bucket];
6034 struct list_head *head = &offload_base;
6035 struct packet_offload *ptype;
6036 __be16 type = skb->protocol;
6037 struct sk_buff *pp = NULL;
6038 enum gro_result ret;
6039 int same_flow;
6040 int grow;
6041
6042 if (netif_elide_gro(skb->dev))
6043 goto normal;
6044
6045 gro_list_prepare(&gro_list->list, skb);
6046
6047 rcu_read_lock();
6048 list_for_each_entry_rcu(ptype, head, list) {
6049 if (ptype->type != type || !ptype->callbacks.gro_receive)
6050 continue;
6051
6052 skb_set_network_header(skb, skb_gro_offset(skb));
6053 skb_reset_mac_len(skb);
6054 NAPI_GRO_CB(skb)->same_flow = 0;
6055 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6056 NAPI_GRO_CB(skb)->free = 0;
6057 NAPI_GRO_CB(skb)->encap_mark = 0;
6058 NAPI_GRO_CB(skb)->recursion_counter = 0;
6059 NAPI_GRO_CB(skb)->is_fou = 0;
6060 NAPI_GRO_CB(skb)->is_atomic = 1;
6061 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6062
6063 /* Setup for GRO checksum validation */
6064 switch (skb->ip_summed) {
6065 case CHECKSUM_COMPLETE:
6066 NAPI_GRO_CB(skb)->csum = skb->csum;
6067 NAPI_GRO_CB(skb)->csum_valid = 1;
6068 NAPI_GRO_CB(skb)->csum_cnt = 0;
6069 break;
6070 case CHECKSUM_UNNECESSARY:
6071 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6072 NAPI_GRO_CB(skb)->csum_valid = 0;
6073 break;
6074 default:
6075 NAPI_GRO_CB(skb)->csum_cnt = 0;
6076 NAPI_GRO_CB(skb)->csum_valid = 0;
6077 }
6078
6079 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6080 ipv6_gro_receive, inet_gro_receive,
6081 &gro_list->list, skb);
6082 break;
6083 }
6084 rcu_read_unlock();
6085
6086 if (&ptype->list == head)
6087 goto normal;
6088
6089 if (PTR_ERR(pp) == -EINPROGRESS) {
6090 ret = GRO_CONSUMED;
6091 goto ok;
6092 }
6093
6094 same_flow = NAPI_GRO_CB(skb)->same_flow;
6095 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6096
6097 if (pp) {
6098 skb_list_del_init(pp);
6099 napi_gro_complete(napi, pp);
6100 gro_list->count--;
6101 }
6102
6103 if (same_flow)
6104 goto ok;
6105
6106 if (NAPI_GRO_CB(skb)->flush)
6107 goto normal;
6108
6109 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6110 gro_flush_oldest(napi, &gro_list->list);
6111 else
6112 gro_list->count++;
6113
6114 NAPI_GRO_CB(skb)->count = 1;
6115 NAPI_GRO_CB(skb)->age = jiffies;
6116 NAPI_GRO_CB(skb)->last = skb;
6117 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6118 list_add(&skb->list, &gro_list->list);
6119 ret = GRO_HELD;
6120
6121pull:
6122 grow = skb_gro_offset(skb) - skb_headlen(skb);
6123 if (grow > 0)
6124 gro_pull_from_frag0(skb, grow);
6125ok:
6126 if (gro_list->count) {
6127 if (!test_bit(bucket, &napi->gro_bitmask))
6128 __set_bit(bucket, &napi->gro_bitmask);
6129 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6130 __clear_bit(bucket, &napi->gro_bitmask);
6131 }
6132
6133 return ret;
6134
6135normal:
6136 ret = GRO_NORMAL;
6137 goto pull;
6138}
6139
6140struct packet_offload *gro_find_receive_by_type(__be16 type)
6141{
6142 struct list_head *offload_head = &offload_base;
6143 struct packet_offload *ptype;
6144
6145 list_for_each_entry_rcu(ptype, offload_head, list) {
6146 if (ptype->type != type || !ptype->callbacks.gro_receive)
6147 continue;
6148 return ptype;
6149 }
6150 return NULL;
6151}
6152EXPORT_SYMBOL(gro_find_receive_by_type);
6153
6154struct packet_offload *gro_find_complete_by_type(__be16 type)
6155{
6156 struct list_head *offload_head = &offload_base;
6157 struct packet_offload *ptype;
6158
6159 list_for_each_entry_rcu(ptype, offload_head, list) {
6160 if (ptype->type != type || !ptype->callbacks.gro_complete)
6161 continue;
6162 return ptype;
6163 }
6164 return NULL;
6165}
6166EXPORT_SYMBOL(gro_find_complete_by_type);
6167
6168static gro_result_t napi_skb_finish(struct napi_struct *napi,
6169 struct sk_buff *skb,
6170 gro_result_t ret)
6171{
6172 switch (ret) {
6173 case GRO_NORMAL:
6174 gro_normal_one(napi, skb, 1);
6175 break;
6176
6177 case GRO_MERGED_FREE:
6178 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6179 napi_skb_free_stolen_head(skb);
6180 else if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
6181 __kfree_skb(skb);
6182 else
6183 __kfree_skb_defer(skb);
6184 break;
6185
6186 case GRO_HELD:
6187 case GRO_MERGED:
6188 case GRO_CONSUMED:
6189 break;
6190 }
6191
6192 return ret;
6193}
6194
6195gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6196{
6197 gro_result_t ret;
6198
6199 skb_mark_napi_id(skb, napi);
6200 trace_napi_gro_receive_entry(skb);
6201
6202 skb_gro_reset_offset(skb, 0);
6203
6204 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6205 trace_napi_gro_receive_exit(ret);
6206
6207 return ret;
6208}
6209EXPORT_SYMBOL(napi_gro_receive);
6210
6211static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6212{
6213 if (unlikely(skb->pfmemalloc)) {
6214 consume_skb(skb);
6215 return;
6216 }
6217 __skb_pull(skb, skb_headlen(skb));
6218 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6219 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6220 __vlan_hwaccel_clear_tag(skb);
6221 skb->dev = napi->dev;
6222 skb->skb_iif = 0;
6223
6224 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6225 skb->pkt_type = PACKET_HOST;
6226
6227 skb->encapsulation = 0;
6228 skb_shinfo(skb)->gso_type = 0;
6229 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6230 if (unlikely(skb->slow_gro)) {
6231 skb_orphan(skb);
6232 skb_ext_reset(skb);
6233 nf_reset_ct(skb);
6234 skb->slow_gro = 0;
6235 }
6236
6237 napi->skb = skb;
6238}
6239
6240struct sk_buff *napi_get_frags(struct napi_struct *napi)
6241{
6242 struct sk_buff *skb = napi->skb;
6243
6244 if (!skb) {
6245 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6246 if (skb) {
6247 napi->skb = skb;
6248 skb_mark_napi_id(skb, napi);
6249 }
6250 }
6251 return skb;
6252}
6253EXPORT_SYMBOL(napi_get_frags);
6254
6255static gro_result_t napi_frags_finish(struct napi_struct *napi,
6256 struct sk_buff *skb,
6257 gro_result_t ret)
6258{
6259 switch (ret) {
6260 case GRO_NORMAL:
6261 case GRO_HELD:
6262 __skb_push(skb, ETH_HLEN);
6263 skb->protocol = eth_type_trans(skb, skb->dev);
6264 if (ret == GRO_NORMAL)
6265 gro_normal_one(napi, skb, 1);
6266 break;
6267
6268 case GRO_MERGED_FREE:
6269 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6270 napi_skb_free_stolen_head(skb);
6271 else
6272 napi_reuse_skb(napi, skb);
6273 break;
6274
6275 case GRO_MERGED:
6276 case GRO_CONSUMED:
6277 break;
6278 }
6279
6280 return ret;
6281}
6282
6283/* Upper GRO stack assumes network header starts at gro_offset=0
6284 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6285 * We copy ethernet header into skb->data to have a common layout.
6286 */
6287static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6288{
6289 struct sk_buff *skb = napi->skb;
6290 const struct ethhdr *eth;
6291 unsigned int hlen = sizeof(*eth);
6292
6293 napi->skb = NULL;
6294
6295 skb_reset_mac_header(skb);
6296 skb_gro_reset_offset(skb, hlen);
6297
6298 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6299 eth = skb_gro_header_slow(skb, hlen, 0);
6300 if (unlikely(!eth)) {
6301 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6302 __func__, napi->dev->name);
6303 napi_reuse_skb(napi, skb);
6304 return NULL;
6305 }
6306 } else {
6307 eth = (const struct ethhdr *)skb->data;
6308 gro_pull_from_frag0(skb, hlen);
6309 NAPI_GRO_CB(skb)->frag0 += hlen;
6310 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6311 }
6312 __skb_pull(skb, hlen);
6313
6314 /*
6315 * This works because the only protocols we care about don't require
6316 * special handling.
6317 * We'll fix it up properly in napi_frags_finish()
6318 */
6319 skb->protocol = eth->h_proto;
6320
6321 return skb;
6322}
6323
6324gro_result_t napi_gro_frags(struct napi_struct *napi)
6325{
6326 gro_result_t ret;
6327 struct sk_buff *skb = napi_frags_skb(napi);
6328
6329 trace_napi_gro_frags_entry(skb);
6330
6331 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6332 trace_napi_gro_frags_exit(ret);
6333
6334 return ret;
6335}
6336EXPORT_SYMBOL(napi_gro_frags);
6337
6338/* Compute the checksum from gro_offset and return the folded value
6339 * after adding in any pseudo checksum.
6340 */
6341__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6342{
6343 __wsum wsum;
6344 __sum16 sum;
6345
6346 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6347
6348 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6349 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6350 /* See comments in __skb_checksum_complete(). */
6351 if (likely(!sum)) {
6352 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6353 !skb->csum_complete_sw)
6354 netdev_rx_csum_fault(skb->dev, skb);
6355 }
6356
6357 NAPI_GRO_CB(skb)->csum = wsum;
6358 NAPI_GRO_CB(skb)->csum_valid = 1;
6359
6360 return sum;
6361}
6362EXPORT_SYMBOL(__skb_gro_checksum_complete);
6363
6364static void net_rps_send_ipi(struct softnet_data *remsd)
6365{
6366#ifdef CONFIG_RPS
6367 while (remsd) {
6368 struct softnet_data *next = remsd->rps_ipi_next;
6369
6370 if (cpu_online(remsd->cpu))
6371 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6372 remsd = next;
6373 }
6374#endif
6375}
6376
6377/*
6378 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6379 * Note: called with local irq disabled, but exits with local irq enabled.
6380 */
6381static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6382{
6383#ifdef CONFIG_RPS
6384 struct softnet_data *remsd = sd->rps_ipi_list;
6385
6386 if (remsd) {
6387 sd->rps_ipi_list = NULL;
6388
6389 local_irq_enable();
6390
6391 /* Send pending IPI's to kick RPS processing on remote cpus. */
6392 net_rps_send_ipi(remsd);
6393 } else
6394#endif
6395 local_irq_enable();
6396}
6397
6398static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6399{
6400#ifdef CONFIG_RPS
6401 return sd->rps_ipi_list != NULL;
6402#else
6403 return false;
6404#endif
6405}
6406
6407static int process_backlog(struct napi_struct *napi, int quota)
6408{
6409 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6410 bool again = true;
6411 int work = 0;
6412
6413 /* Check if we have pending ipi, its better to send them now,
6414 * not waiting net_rx_action() end.
6415 */
6416 if (sd_has_rps_ipi_waiting(sd)) {
6417 local_irq_disable();
6418 net_rps_action_and_irq_enable(sd);
6419 }
6420
6421 napi->weight = dev_rx_weight;
6422 while (again) {
6423 struct sk_buff *skb;
6424
6425 while ((skb = __skb_dequeue(&sd->process_queue))) {
6426 rcu_read_lock();
6427 __netif_receive_skb(skb);
6428 rcu_read_unlock();
6429 input_queue_head_incr(sd);
6430 if (++work >= quota)
6431 return work;
6432
6433 }
6434
6435 local_irq_disable();
6436 rps_lock(sd);
6437 if (skb_queue_empty(&sd->input_pkt_queue)) {
6438 /*
6439 * Inline a custom version of __napi_complete().
6440 * only current cpu owns and manipulates this napi,
6441 * and NAPI_STATE_SCHED is the only possible flag set
6442 * on backlog.
6443 * We can use a plain write instead of clear_bit(),
6444 * and we dont need an smp_mb() memory barrier.
6445 */
6446 napi->state = 0;
6447 again = false;
6448 } else {
6449 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6450 &sd->process_queue);
6451 }
6452 rps_unlock(sd);
6453 local_irq_enable();
6454 }
6455
6456 return work;
6457}
6458
6459/**
6460 * __napi_schedule - schedule for receive
6461 * @n: entry to schedule
6462 *
6463 * The entry's receive function will be scheduled to run.
6464 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6465 */
6466void __napi_schedule(struct napi_struct *n)
6467{
6468 unsigned long flags;
6469
6470 local_irq_save(flags);
6471 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6472 local_irq_restore(flags);
6473}
6474EXPORT_SYMBOL(__napi_schedule);
6475
6476/**
6477 * napi_schedule_prep - check if napi can be scheduled
6478 * @n: napi context
6479 *
6480 * Test if NAPI routine is already running, and if not mark
6481 * it as running. This is used as a condition variable to
6482 * insure only one NAPI poll instance runs. We also make
6483 * sure there is no pending NAPI disable.
6484 */
6485bool napi_schedule_prep(struct napi_struct *n)
6486{
6487 unsigned long val, new;
6488
6489 do {
6490 val = READ_ONCE(n->state);
6491 if (unlikely(val & NAPIF_STATE_DISABLE))
6492 return false;
6493 new = val | NAPIF_STATE_SCHED;
6494
6495 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6496 * This was suggested by Alexander Duyck, as compiler
6497 * emits better code than :
6498 * if (val & NAPIF_STATE_SCHED)
6499 * new |= NAPIF_STATE_MISSED;
6500 */
6501 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6502 NAPIF_STATE_MISSED;
6503 } while (cmpxchg(&n->state, val, new) != val);
6504
6505 return !(val & NAPIF_STATE_SCHED);
6506}
6507EXPORT_SYMBOL(napi_schedule_prep);
6508
6509/**
6510 * __napi_schedule_irqoff - schedule for receive
6511 * @n: entry to schedule
6512 *
6513 * Variant of __napi_schedule() assuming hard irqs are masked.
6514 *
6515 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6516 * because the interrupt disabled assumption might not be true
6517 * due to force-threaded interrupts and spinlock substitution.
6518 */
6519void __napi_schedule_irqoff(struct napi_struct *n)
6520{
6521 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6522 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6523 else
6524 __napi_schedule(n);
6525}
6526EXPORT_SYMBOL(__napi_schedule_irqoff);
6527
6528bool napi_complete_done(struct napi_struct *n, int work_done)
6529{
6530 unsigned long flags, val, new, timeout = 0;
6531 bool ret = true;
6532
6533 /*
6534 * 1) Don't let napi dequeue from the cpu poll list
6535 * just in case its running on a different cpu.
6536 * 2) If we are busy polling, do nothing here, we have
6537 * the guarantee we will be called later.
6538 */
6539 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6540 NAPIF_STATE_IN_BUSY_POLL)))
6541 return false;
6542
6543 if (work_done) {
6544 if (n->gro_bitmask)
6545 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6546 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6547 }
6548 if (n->defer_hard_irqs_count > 0) {
6549 n->defer_hard_irqs_count--;
6550 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6551 if (timeout)
6552 ret = false;
6553 }
6554 if (n->gro_bitmask) {
6555 /* When the NAPI instance uses a timeout and keeps postponing
6556 * it, we need to bound somehow the time packets are kept in
6557 * the GRO layer
6558 */
6559 napi_gro_flush(n, !!timeout);
6560 }
6561
6562 gro_normal_list(n);
6563
6564 if (unlikely(!list_empty(&n->poll_list))) {
6565 /* If n->poll_list is not empty, we need to mask irqs */
6566 local_irq_save(flags);
6567 list_del_init(&n->poll_list);
6568 local_irq_restore(flags);
6569 }
6570
6571 do {
6572 val = READ_ONCE(n->state);
6573
6574 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6575
6576 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6577 NAPIF_STATE_SCHED_THREADED |
6578 NAPIF_STATE_PREFER_BUSY_POLL);
6579
6580 /* If STATE_MISSED was set, leave STATE_SCHED set,
6581 * because we will call napi->poll() one more time.
6582 * This C code was suggested by Alexander Duyck to help gcc.
6583 */
6584 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6585 NAPIF_STATE_SCHED;
6586 } while (cmpxchg(&n->state, val, new) != val);
6587
6588 if (unlikely(val & NAPIF_STATE_MISSED)) {
6589 __napi_schedule(n);
6590 return false;
6591 }
6592
6593 if (timeout)
6594 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6595 HRTIMER_MODE_REL_PINNED);
6596 return ret;
6597}
6598EXPORT_SYMBOL(napi_complete_done);
6599
6600/* must be called under rcu_read_lock(), as we dont take a reference */
6601static struct napi_struct *napi_by_id(unsigned int napi_id)
6602{
6603 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6604 struct napi_struct *napi;
6605
6606 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6607 if (napi->napi_id == napi_id)
6608 return napi;
6609
6610 return NULL;
6611}
6612
6613#if defined(CONFIG_NET_RX_BUSY_POLL)
6614
6615static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6616{
6617 if (!skip_schedule) {
6618 gro_normal_list(napi);
6619 __napi_schedule(napi);
6620 return;
6621 }
6622
6623 if (napi->gro_bitmask) {
6624 /* flush too old packets
6625 * If HZ < 1000, flush all packets.
6626 */
6627 napi_gro_flush(napi, HZ >= 1000);
6628 }
6629
6630 gro_normal_list(napi);
6631 clear_bit(NAPI_STATE_SCHED, &napi->state);
6632}
6633
6634static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6635 u16 budget)
6636{
6637 bool skip_schedule = false;
6638 unsigned long timeout;
6639 int rc;
6640
6641 /* Busy polling means there is a high chance device driver hard irq
6642 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6643 * set in napi_schedule_prep().
6644 * Since we are about to call napi->poll() once more, we can safely
6645 * clear NAPI_STATE_MISSED.
6646 *
6647 * Note: x86 could use a single "lock and ..." instruction
6648 * to perform these two clear_bit()
6649 */
6650 clear_bit(NAPI_STATE_MISSED, &napi->state);
6651 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6652
6653 local_bh_disable();
6654
6655 if (prefer_busy_poll) {
6656 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6657 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6658 if (napi->defer_hard_irqs_count && timeout) {
6659 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6660 skip_schedule = true;
6661 }
6662 }
6663
6664 /* All we really want here is to re-enable device interrupts.
6665 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6666 */
6667 rc = napi->poll(napi, budget);
6668 /* We can't gro_normal_list() here, because napi->poll() might have
6669 * rearmed the napi (napi_complete_done()) in which case it could
6670 * already be running on another CPU.
6671 */
6672 trace_napi_poll(napi, rc, budget);
6673 netpoll_poll_unlock(have_poll_lock);
6674 if (rc == budget)
6675 __busy_poll_stop(napi, skip_schedule);
6676 local_bh_enable();
6677}
6678
6679void napi_busy_loop(unsigned int napi_id,
6680 bool (*loop_end)(void *, unsigned long),
6681 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6682{
6683 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6684 int (*napi_poll)(struct napi_struct *napi, int budget);
6685 void *have_poll_lock = NULL;
6686 struct napi_struct *napi;
6687
6688restart:
6689 napi_poll = NULL;
6690
6691 rcu_read_lock();
6692
6693 napi = napi_by_id(napi_id);
6694 if (!napi)
6695 goto out;
6696
6697 preempt_disable();
6698 for (;;) {
6699 int work = 0;
6700
6701 local_bh_disable();
6702 if (!napi_poll) {
6703 unsigned long val = READ_ONCE(napi->state);
6704
6705 /* If multiple threads are competing for this napi,
6706 * we avoid dirtying napi->state as much as we can.
6707 */
6708 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6709 NAPIF_STATE_IN_BUSY_POLL)) {
6710 if (prefer_busy_poll)
6711 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6712 goto count;
6713 }
6714 if (cmpxchg(&napi->state, val,
6715 val | NAPIF_STATE_IN_BUSY_POLL |
6716 NAPIF_STATE_SCHED) != val) {
6717 if (prefer_busy_poll)
6718 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6719 goto count;
6720 }
6721 have_poll_lock = netpoll_poll_lock(napi);
6722 napi_poll = napi->poll;
6723 }
6724 work = napi_poll(napi, budget);
6725 trace_napi_poll(napi, work, budget);
6726 gro_normal_list(napi);
6727count:
6728 if (work > 0)
6729 __NET_ADD_STATS(dev_net(napi->dev),
6730 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6731 local_bh_enable();
6732
6733 if (!loop_end || loop_end(loop_end_arg, start_time))
6734 break;
6735
6736 if (unlikely(need_resched())) {
6737 if (napi_poll)
6738 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6739 preempt_enable();
6740 rcu_read_unlock();
6741 cond_resched();
6742 if (loop_end(loop_end_arg, start_time))
6743 return;
6744 goto restart;
6745 }
6746 cpu_relax();
6747 }
6748 if (napi_poll)
6749 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6750 preempt_enable();
6751out:
6752 rcu_read_unlock();
6753}
6754EXPORT_SYMBOL(napi_busy_loop);
6755
6756#endif /* CONFIG_NET_RX_BUSY_POLL */
6757
6758static void napi_hash_add(struct napi_struct *napi)
6759{
6760 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6761 return;
6762
6763 spin_lock(&napi_hash_lock);
6764
6765 /* 0..NR_CPUS range is reserved for sender_cpu use */
6766 do {
6767 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6768 napi_gen_id = MIN_NAPI_ID;
6769 } while (napi_by_id(napi_gen_id));
6770 napi->napi_id = napi_gen_id;
6771
6772 hlist_add_head_rcu(&napi->napi_hash_node,
6773 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6774
6775 spin_unlock(&napi_hash_lock);
6776}
6777
6778/* Warning : caller is responsible to make sure rcu grace period
6779 * is respected before freeing memory containing @napi
6780 */
6781static void napi_hash_del(struct napi_struct *napi)
6782{
6783 spin_lock(&napi_hash_lock);
6784
6785 hlist_del_init_rcu(&napi->napi_hash_node);
6786
6787 spin_unlock(&napi_hash_lock);
6788}
6789
6790static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6791{
6792 struct napi_struct *napi;
6793
6794 napi = container_of(timer, struct napi_struct, timer);
6795
6796 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6797 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6798 */
6799 if (!napi_disable_pending(napi) &&
6800 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6801 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6802 __napi_schedule_irqoff(napi);
6803 }
6804
6805 return HRTIMER_NORESTART;
6806}
6807
6808static void init_gro_hash(struct napi_struct *napi)
6809{
6810 int i;
6811
6812 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6813 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6814 napi->gro_hash[i].count = 0;
6815 }
6816 napi->gro_bitmask = 0;
6817}
6818
6819int dev_set_threaded(struct net_device *dev, bool threaded)
6820{
6821 struct napi_struct *napi;
6822 int err = 0;
6823
6824 if (dev->threaded == threaded)
6825 return 0;
6826
6827 if (threaded) {
6828 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6829 if (!napi->thread) {
6830 err = napi_kthread_create(napi);
6831 if (err) {
6832 threaded = false;
6833 break;
6834 }
6835 }
6836 }
6837 }
6838
6839 dev->threaded = threaded;
6840
6841 /* Make sure kthread is created before THREADED bit
6842 * is set.
6843 */
6844 smp_mb__before_atomic();
6845
6846 /* Setting/unsetting threaded mode on a napi might not immediately
6847 * take effect, if the current napi instance is actively being
6848 * polled. In this case, the switch between threaded mode and
6849 * softirq mode will happen in the next round of napi_schedule().
6850 * This should not cause hiccups/stalls to the live traffic.
6851 */
6852 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6853 if (threaded)
6854 set_bit(NAPI_STATE_THREADED, &napi->state);
6855 else
6856 clear_bit(NAPI_STATE_THREADED, &napi->state);
6857 }
6858
6859 return err;
6860}
6861EXPORT_SYMBOL(dev_set_threaded);
6862
6863void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6864 int (*poll)(struct napi_struct *, int), int weight)
6865{
6866 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6867 return;
6868
6869 INIT_LIST_HEAD(&napi->poll_list);
6870 INIT_HLIST_NODE(&napi->napi_hash_node);
6871 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6872 napi->timer.function = napi_watchdog;
6873 init_gro_hash(napi);
6874 napi->skb = NULL;
6875 INIT_LIST_HEAD(&napi->rx_list);
6876 napi->rx_count = 0;
6877 napi->poll = poll;
6878 if (weight > NAPI_POLL_WEIGHT)
6879 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6880 weight);
6881 napi->weight = weight;
6882 napi->dev = dev;
6883#ifdef CONFIG_NETPOLL
6884 napi->poll_owner = -1;
6885#endif
6886 set_bit(NAPI_STATE_SCHED, &napi->state);
6887 set_bit(NAPI_STATE_NPSVC, &napi->state);
6888 list_add_rcu(&napi->dev_list, &dev->napi_list);
6889 napi_hash_add(napi);
6890 /* Create kthread for this napi if dev->threaded is set.
6891 * Clear dev->threaded if kthread creation failed so that
6892 * threaded mode will not be enabled in napi_enable().
6893 */
6894 if (dev->threaded && napi_kthread_create(napi))
6895 dev->threaded = 0;
6896}
6897EXPORT_SYMBOL(netif_napi_add);
6898
6899void napi_disable(struct napi_struct *n)
6900{
6901 might_sleep();
6902 set_bit(NAPI_STATE_DISABLE, &n->state);
6903
6904 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6905 msleep(1);
6906 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6907 msleep(1);
6908
6909 hrtimer_cancel(&n->timer);
6910
6911 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6912 clear_bit(NAPI_STATE_DISABLE, &n->state);
6913 clear_bit(NAPI_STATE_THREADED, &n->state);
6914}
6915EXPORT_SYMBOL(napi_disable);
6916
6917/**
6918 * napi_enable - enable NAPI scheduling
6919 * @n: NAPI context
6920 *
6921 * Resume NAPI from being scheduled on this context.
6922 * Must be paired with napi_disable.
6923 */
6924void napi_enable(struct napi_struct *n)
6925{
6926 unsigned long val, new;
6927
6928 do {
6929 val = READ_ONCE(n->state);
6930 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6931
6932 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6933 if (n->dev->threaded && n->thread)
6934 new |= NAPIF_STATE_THREADED;
6935 } while (cmpxchg(&n->state, val, new) != val);
6936}
6937EXPORT_SYMBOL(napi_enable);
6938
6939static void flush_gro_hash(struct napi_struct *napi)
6940{
6941 int i;
6942
6943 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6944 struct sk_buff *skb, *n;
6945
6946 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6947 kfree_skb(skb);
6948 napi->gro_hash[i].count = 0;
6949 }
6950}
6951
6952/* Must be called in process context */
6953void __netif_napi_del(struct napi_struct *napi)
6954{
6955 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6956 return;
6957
6958 napi_hash_del(napi);
6959 list_del_rcu(&napi->dev_list);
6960 napi_free_frags(napi);
6961
6962 flush_gro_hash(napi);
6963 napi->gro_bitmask = 0;
6964
6965 if (napi->thread) {
6966 kthread_stop(napi->thread);
6967 napi->thread = NULL;
6968 }
6969}
6970EXPORT_SYMBOL(__netif_napi_del);
6971
6972static int __napi_poll(struct napi_struct *n, bool *repoll)
6973{
6974 int work, weight;
6975
6976 weight = n->weight;
6977
6978 /* This NAPI_STATE_SCHED test is for avoiding a race
6979 * with netpoll's poll_napi(). Only the entity which
6980 * obtains the lock and sees NAPI_STATE_SCHED set will
6981 * actually make the ->poll() call. Therefore we avoid
6982 * accidentally calling ->poll() when NAPI is not scheduled.
6983 */
6984 work = 0;
6985 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6986 work = n->poll(n, weight);
6987 trace_napi_poll(n, work, weight);
6988 }
6989
6990 if (unlikely(work > weight))
6991 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6992 n->poll, work, weight);
6993
6994 if (likely(work < weight))
6995 return work;
6996
6997 /* Drivers must not modify the NAPI state if they
6998 * consume the entire weight. In such cases this code
6999 * still "owns" the NAPI instance and therefore can
7000 * move the instance around on the list at-will.
7001 */
7002 if (unlikely(napi_disable_pending(n))) {
7003 napi_complete(n);
7004 return work;
7005 }
7006
7007 /* The NAPI context has more processing work, but busy-polling
7008 * is preferred. Exit early.
7009 */
7010 if (napi_prefer_busy_poll(n)) {
7011 if (napi_complete_done(n, work)) {
7012 /* If timeout is not set, we need to make sure
7013 * that the NAPI is re-scheduled.
7014 */
7015 napi_schedule(n);
7016 }
7017 return work;
7018 }
7019
7020 if (n->gro_bitmask) {
7021 /* flush too old packets
7022 * If HZ < 1000, flush all packets.
7023 */
7024 napi_gro_flush(n, HZ >= 1000);
7025 }
7026
7027 gro_normal_list(n);
7028
7029 /* Some drivers may have called napi_schedule
7030 * prior to exhausting their budget.
7031 */
7032 if (unlikely(!list_empty(&n->poll_list))) {
7033 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7034 n->dev ? n->dev->name : "backlog");
7035 return work;
7036 }
7037
7038 *repoll = true;
7039
7040 return work;
7041}
7042
7043static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7044{
7045 bool do_repoll = false;
7046 void *have;
7047 int work;
7048
7049 list_del_init(&n->poll_list);
7050
7051 have = netpoll_poll_lock(n);
7052
7053 work = __napi_poll(n, &do_repoll);
7054
7055 if (do_repoll)
7056 list_add_tail(&n->poll_list, repoll);
7057
7058 netpoll_poll_unlock(have);
7059
7060 return work;
7061}
7062
7063static int napi_thread_wait(struct napi_struct *napi)
7064{
7065 bool woken = false;
7066
7067 set_current_state(TASK_INTERRUPTIBLE);
7068
7069 while (!kthread_should_stop()) {
7070 /* Testing SCHED_THREADED bit here to make sure the current
7071 * kthread owns this napi and could poll on this napi.
7072 * Testing SCHED bit is not enough because SCHED bit might be
7073 * set by some other busy poll thread or by napi_disable().
7074 */
7075 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7076 WARN_ON(!list_empty(&napi->poll_list));
7077 __set_current_state(TASK_RUNNING);
7078 return 0;
7079 }
7080
7081 schedule();
7082 /* woken being true indicates this thread owns this napi. */
7083 woken = true;
7084 set_current_state(TASK_INTERRUPTIBLE);
7085 }
7086 __set_current_state(TASK_RUNNING);
7087
7088 return -1;
7089}
7090
7091static int napi_threaded_poll(void *data)
7092{
7093 struct napi_struct *napi = data;
7094 void *have;
7095
7096 while (!napi_thread_wait(napi)) {
7097 for (;;) {
7098 bool repoll = false;
7099
7100 local_bh_disable();
7101
7102 have = netpoll_poll_lock(napi);
7103 __napi_poll(napi, &repoll);
7104 netpoll_poll_unlock(have);
7105
7106 local_bh_enable();
7107
7108 if (!repoll)
7109 break;
7110
7111 cond_resched();
7112 }
7113 }
7114 return 0;
7115}
7116
7117static __latent_entropy void net_rx_action(struct softirq_action *h)
7118{
7119 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7120 unsigned long time_limit = jiffies +
7121 usecs_to_jiffies(netdev_budget_usecs);
7122 int budget = netdev_budget;
7123 LIST_HEAD(list);
7124 LIST_HEAD(repoll);
7125
7126 local_irq_disable();
7127 list_splice_init(&sd->poll_list, &list);
7128 local_irq_enable();
7129
7130 for (;;) {
7131 struct napi_struct *n;
7132
7133 if (list_empty(&list)) {
7134 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7135 return;
7136 break;
7137 }
7138
7139 n = list_first_entry(&list, struct napi_struct, poll_list);
7140 budget -= napi_poll(n, &repoll);
7141
7142 /* If softirq window is exhausted then punt.
7143 * Allow this to run for 2 jiffies since which will allow
7144 * an average latency of 1.5/HZ.
7145 */
7146 if (unlikely(budget <= 0 ||
7147 time_after_eq(jiffies, time_limit))) {
7148 sd->time_squeeze++;
7149 break;
7150 }
7151 }
7152
7153 local_irq_disable();
7154
7155 list_splice_tail_init(&sd->poll_list, &list);
7156 list_splice_tail(&repoll, &list);
7157 list_splice(&list, &sd->poll_list);
7158 if (!list_empty(&sd->poll_list))
7159 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7160
7161 net_rps_action_and_irq_enable(sd);
7162}
7163
7164struct netdev_adjacent {
7165 struct net_device *dev;
7166
7167 /* upper master flag, there can only be one master device per list */
7168 bool master;
7169
7170 /* lookup ignore flag */
7171 bool ignore;
7172
7173 /* counter for the number of times this device was added to us */
7174 u16 ref_nr;
7175
7176 /* private field for the users */
7177 void *private;
7178
7179 struct list_head list;
7180 struct rcu_head rcu;
7181};
7182
7183static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7184 struct list_head *adj_list)
7185{
7186 struct netdev_adjacent *adj;
7187
7188 list_for_each_entry(adj, adj_list, list) {
7189 if (adj->dev == adj_dev)
7190 return adj;
7191 }
7192 return NULL;
7193}
7194
7195static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7196 struct netdev_nested_priv *priv)
7197{
7198 struct net_device *dev = (struct net_device *)priv->data;
7199
7200 return upper_dev == dev;
7201}
7202
7203/**
7204 * netdev_has_upper_dev - Check if device is linked to an upper device
7205 * @dev: device
7206 * @upper_dev: upper device to check
7207 *
7208 * Find out if a device is linked to specified upper device and return true
7209 * in case it is. Note that this checks only immediate upper device,
7210 * not through a complete stack of devices. The caller must hold the RTNL lock.
7211 */
7212bool netdev_has_upper_dev(struct net_device *dev,
7213 struct net_device *upper_dev)
7214{
7215 struct netdev_nested_priv priv = {
7216 .data = (void *)upper_dev,
7217 };
7218
7219 ASSERT_RTNL();
7220
7221 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7222 &priv);
7223}
7224EXPORT_SYMBOL(netdev_has_upper_dev);
7225
7226/**
7227 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7228 * @dev: device
7229 * @upper_dev: upper device to check
7230 *
7231 * Find out if a device is linked to specified upper device and return true
7232 * in case it is. Note that this checks the entire upper device chain.
7233 * The caller must hold rcu lock.
7234 */
7235
7236bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7237 struct net_device *upper_dev)
7238{
7239 struct netdev_nested_priv priv = {
7240 .data = (void *)upper_dev,
7241 };
7242
7243 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7244 &priv);
7245}
7246EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7247
7248/**
7249 * netdev_has_any_upper_dev - Check if device is linked to some device
7250 * @dev: device
7251 *
7252 * Find out if a device is linked to an upper device and return true in case
7253 * it is. The caller must hold the RTNL lock.
7254 */
7255bool netdev_has_any_upper_dev(struct net_device *dev)
7256{
7257 ASSERT_RTNL();
7258
7259 return !list_empty(&dev->adj_list.upper);
7260}
7261EXPORT_SYMBOL(netdev_has_any_upper_dev);
7262
7263/**
7264 * netdev_master_upper_dev_get - Get master upper device
7265 * @dev: device
7266 *
7267 * Find a master upper device and return pointer to it or NULL in case
7268 * it's not there. The caller must hold the RTNL lock.
7269 */
7270struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7271{
7272 struct netdev_adjacent *upper;
7273
7274 ASSERT_RTNL();
7275
7276 if (list_empty(&dev->adj_list.upper))
7277 return NULL;
7278
7279 upper = list_first_entry(&dev->adj_list.upper,
7280 struct netdev_adjacent, list);
7281 if (likely(upper->master))
7282 return upper->dev;
7283 return NULL;
7284}
7285EXPORT_SYMBOL(netdev_master_upper_dev_get);
7286
7287static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7288{
7289 struct netdev_adjacent *upper;
7290
7291 ASSERT_RTNL();
7292
7293 if (list_empty(&dev->adj_list.upper))
7294 return NULL;
7295
7296 upper = list_first_entry(&dev->adj_list.upper,
7297 struct netdev_adjacent, list);
7298 if (likely(upper->master) && !upper->ignore)
7299 return upper->dev;
7300 return NULL;
7301}
7302
7303/**
7304 * netdev_has_any_lower_dev - Check if device is linked to some device
7305 * @dev: device
7306 *
7307 * Find out if a device is linked to a lower device and return true in case
7308 * it is. The caller must hold the RTNL lock.
7309 */
7310static bool netdev_has_any_lower_dev(struct net_device *dev)
7311{
7312 ASSERT_RTNL();
7313
7314 return !list_empty(&dev->adj_list.lower);
7315}
7316
7317void *netdev_adjacent_get_private(struct list_head *adj_list)
7318{
7319 struct netdev_adjacent *adj;
7320
7321 adj = list_entry(adj_list, struct netdev_adjacent, list);
7322
7323 return adj->private;
7324}
7325EXPORT_SYMBOL(netdev_adjacent_get_private);
7326
7327/**
7328 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7329 * @dev: device
7330 * @iter: list_head ** of the current position
7331 *
7332 * Gets the next device from the dev's upper list, starting from iter
7333 * position. The caller must hold RCU read lock.
7334 */
7335struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7336 struct list_head **iter)
7337{
7338 struct netdev_adjacent *upper;
7339
7340 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7341
7342 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7343
7344 if (&upper->list == &dev->adj_list.upper)
7345 return NULL;
7346
7347 *iter = &upper->list;
7348
7349 return upper->dev;
7350}
7351EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7352
7353static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7354 struct list_head **iter,
7355 bool *ignore)
7356{
7357 struct netdev_adjacent *upper;
7358
7359 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7360
7361 if (&upper->list == &dev->adj_list.upper)
7362 return NULL;
7363
7364 *iter = &upper->list;
7365 *ignore = upper->ignore;
7366
7367 return upper->dev;
7368}
7369
7370static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7371 struct list_head **iter)
7372{
7373 struct netdev_adjacent *upper;
7374
7375 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7376
7377 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7378
7379 if (&upper->list == &dev->adj_list.upper)
7380 return NULL;
7381
7382 *iter = &upper->list;
7383
7384 return upper->dev;
7385}
7386
7387static int __netdev_walk_all_upper_dev(struct net_device *dev,
7388 int (*fn)(struct net_device *dev,
7389 struct netdev_nested_priv *priv),
7390 struct netdev_nested_priv *priv)
7391{
7392 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7393 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7394 int ret, cur = 0;
7395 bool ignore;
7396
7397 now = dev;
7398 iter = &dev->adj_list.upper;
7399
7400 while (1) {
7401 if (now != dev) {
7402 ret = fn(now, priv);
7403 if (ret)
7404 return ret;
7405 }
7406
7407 next = NULL;
7408 while (1) {
7409 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7410 if (!udev)
7411 break;
7412 if (ignore)
7413 continue;
7414
7415 next = udev;
7416 niter = &udev->adj_list.upper;
7417 dev_stack[cur] = now;
7418 iter_stack[cur++] = iter;
7419 break;
7420 }
7421
7422 if (!next) {
7423 if (!cur)
7424 return 0;
7425 next = dev_stack[--cur];
7426 niter = iter_stack[cur];
7427 }
7428
7429 now = next;
7430 iter = niter;
7431 }
7432
7433 return 0;
7434}
7435
7436int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7437 int (*fn)(struct net_device *dev,
7438 struct netdev_nested_priv *priv),
7439 struct netdev_nested_priv *priv)
7440{
7441 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7442 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7443 int ret, cur = 0;
7444
7445 now = dev;
7446 iter = &dev->adj_list.upper;
7447
7448 while (1) {
7449 if (now != dev) {
7450 ret = fn(now, priv);
7451 if (ret)
7452 return ret;
7453 }
7454
7455 next = NULL;
7456 while (1) {
7457 udev = netdev_next_upper_dev_rcu(now, &iter);
7458 if (!udev)
7459 break;
7460
7461 next = udev;
7462 niter = &udev->adj_list.upper;
7463 dev_stack[cur] = now;
7464 iter_stack[cur++] = iter;
7465 break;
7466 }
7467
7468 if (!next) {
7469 if (!cur)
7470 return 0;
7471 next = dev_stack[--cur];
7472 niter = iter_stack[cur];
7473 }
7474
7475 now = next;
7476 iter = niter;
7477 }
7478
7479 return 0;
7480}
7481EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7482
7483static bool __netdev_has_upper_dev(struct net_device *dev,
7484 struct net_device *upper_dev)
7485{
7486 struct netdev_nested_priv priv = {
7487 .flags = 0,
7488 .data = (void *)upper_dev,
7489 };
7490
7491 ASSERT_RTNL();
7492
7493 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7494 &priv);
7495}
7496
7497/**
7498 * netdev_lower_get_next_private - Get the next ->private from the
7499 * lower neighbour list
7500 * @dev: device
7501 * @iter: list_head ** of the current position
7502 *
7503 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7504 * list, starting from iter position. The caller must hold either hold the
7505 * RTNL lock or its own locking that guarantees that the neighbour lower
7506 * list will remain unchanged.
7507 */
7508void *netdev_lower_get_next_private(struct net_device *dev,
7509 struct list_head **iter)
7510{
7511 struct netdev_adjacent *lower;
7512
7513 lower = list_entry(*iter, struct netdev_adjacent, list);
7514
7515 if (&lower->list == &dev->adj_list.lower)
7516 return NULL;
7517
7518 *iter = lower->list.next;
7519
7520 return lower->private;
7521}
7522EXPORT_SYMBOL(netdev_lower_get_next_private);
7523
7524/**
7525 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7526 * lower neighbour list, RCU
7527 * variant
7528 * @dev: device
7529 * @iter: list_head ** of the current position
7530 *
7531 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7532 * list, starting from iter position. The caller must hold RCU read lock.
7533 */
7534void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7535 struct list_head **iter)
7536{
7537 struct netdev_adjacent *lower;
7538
7539 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7540
7541 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7542
7543 if (&lower->list == &dev->adj_list.lower)
7544 return NULL;
7545
7546 *iter = &lower->list;
7547
7548 return lower->private;
7549}
7550EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7551
7552/**
7553 * netdev_lower_get_next - Get the next device from the lower neighbour
7554 * list
7555 * @dev: device
7556 * @iter: list_head ** of the current position
7557 *
7558 * Gets the next netdev_adjacent from the dev's lower neighbour
7559 * list, starting from iter position. The caller must hold RTNL lock or
7560 * its own locking that guarantees that the neighbour lower
7561 * list will remain unchanged.
7562 */
7563void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7564{
7565 struct netdev_adjacent *lower;
7566
7567 lower = list_entry(*iter, struct netdev_adjacent, list);
7568
7569 if (&lower->list == &dev->adj_list.lower)
7570 return NULL;
7571
7572 *iter = lower->list.next;
7573
7574 return lower->dev;
7575}
7576EXPORT_SYMBOL(netdev_lower_get_next);
7577
7578static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7579 struct list_head **iter)
7580{
7581 struct netdev_adjacent *lower;
7582
7583 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7584
7585 if (&lower->list == &dev->adj_list.lower)
7586 return NULL;
7587
7588 *iter = &lower->list;
7589
7590 return lower->dev;
7591}
7592
7593static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7594 struct list_head **iter,
7595 bool *ignore)
7596{
7597 struct netdev_adjacent *lower;
7598
7599 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7600
7601 if (&lower->list == &dev->adj_list.lower)
7602 return NULL;
7603
7604 *iter = &lower->list;
7605 *ignore = lower->ignore;
7606
7607 return lower->dev;
7608}
7609
7610int netdev_walk_all_lower_dev(struct net_device *dev,
7611 int (*fn)(struct net_device *dev,
7612 struct netdev_nested_priv *priv),
7613 struct netdev_nested_priv *priv)
7614{
7615 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7616 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7617 int ret, cur = 0;
7618
7619 now = dev;
7620 iter = &dev->adj_list.lower;
7621
7622 while (1) {
7623 if (now != dev) {
7624 ret = fn(now, priv);
7625 if (ret)
7626 return ret;
7627 }
7628
7629 next = NULL;
7630 while (1) {
7631 ldev = netdev_next_lower_dev(now, &iter);
7632 if (!ldev)
7633 break;
7634
7635 next = ldev;
7636 niter = &ldev->adj_list.lower;
7637 dev_stack[cur] = now;
7638 iter_stack[cur++] = iter;
7639 break;
7640 }
7641
7642 if (!next) {
7643 if (!cur)
7644 return 0;
7645 next = dev_stack[--cur];
7646 niter = iter_stack[cur];
7647 }
7648
7649 now = next;
7650 iter = niter;
7651 }
7652
7653 return 0;
7654}
7655EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7656
7657static int __netdev_walk_all_lower_dev(struct net_device *dev,
7658 int (*fn)(struct net_device *dev,
7659 struct netdev_nested_priv *priv),
7660 struct netdev_nested_priv *priv)
7661{
7662 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7663 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7664 int ret, cur = 0;
7665 bool ignore;
7666
7667 now = dev;
7668 iter = &dev->adj_list.lower;
7669
7670 while (1) {
7671 if (now != dev) {
7672 ret = fn(now, priv);
7673 if (ret)
7674 return ret;
7675 }
7676
7677 next = NULL;
7678 while (1) {
7679 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7680 if (!ldev)
7681 break;
7682 if (ignore)
7683 continue;
7684
7685 next = ldev;
7686 niter = &ldev->adj_list.lower;
7687 dev_stack[cur] = now;
7688 iter_stack[cur++] = iter;
7689 break;
7690 }
7691
7692 if (!next) {
7693 if (!cur)
7694 return 0;
7695 next = dev_stack[--cur];
7696 niter = iter_stack[cur];
7697 }
7698
7699 now = next;
7700 iter = niter;
7701 }
7702
7703 return 0;
7704}
7705
7706struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7707 struct list_head **iter)
7708{
7709 struct netdev_adjacent *lower;
7710
7711 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7712 if (&lower->list == &dev->adj_list.lower)
7713 return NULL;
7714
7715 *iter = &lower->list;
7716
7717 return lower->dev;
7718}
7719EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7720
7721static u8 __netdev_upper_depth(struct net_device *dev)
7722{
7723 struct net_device *udev;
7724 struct list_head *iter;
7725 u8 max_depth = 0;
7726 bool ignore;
7727
7728 for (iter = &dev->adj_list.upper,
7729 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7730 udev;
7731 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7732 if (ignore)
7733 continue;
7734 if (max_depth < udev->upper_level)
7735 max_depth = udev->upper_level;
7736 }
7737
7738 return max_depth;
7739}
7740
7741static u8 __netdev_lower_depth(struct net_device *dev)
7742{
7743 struct net_device *ldev;
7744 struct list_head *iter;
7745 u8 max_depth = 0;
7746 bool ignore;
7747
7748 for (iter = &dev->adj_list.lower,
7749 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7750 ldev;
7751 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7752 if (ignore)
7753 continue;
7754 if (max_depth < ldev->lower_level)
7755 max_depth = ldev->lower_level;
7756 }
7757
7758 return max_depth;
7759}
7760
7761static int __netdev_update_upper_level(struct net_device *dev,
7762 struct netdev_nested_priv *__unused)
7763{
7764 dev->upper_level = __netdev_upper_depth(dev) + 1;
7765 return 0;
7766}
7767
7768static int __netdev_update_lower_level(struct net_device *dev,
7769 struct netdev_nested_priv *priv)
7770{
7771 dev->lower_level = __netdev_lower_depth(dev) + 1;
7772
7773#ifdef CONFIG_LOCKDEP
7774 if (!priv)
7775 return 0;
7776
7777 if (priv->flags & NESTED_SYNC_IMM)
7778 dev->nested_level = dev->lower_level - 1;
7779 if (priv->flags & NESTED_SYNC_TODO)
7780 net_unlink_todo(dev);
7781#endif
7782 return 0;
7783}
7784
7785int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7786 int (*fn)(struct net_device *dev,
7787 struct netdev_nested_priv *priv),
7788 struct netdev_nested_priv *priv)
7789{
7790 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7791 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7792 int ret, cur = 0;
7793
7794 now = dev;
7795 iter = &dev->adj_list.lower;
7796
7797 while (1) {
7798 if (now != dev) {
7799 ret = fn(now, priv);
7800 if (ret)
7801 return ret;
7802 }
7803
7804 next = NULL;
7805 while (1) {
7806 ldev = netdev_next_lower_dev_rcu(now, &iter);
7807 if (!ldev)
7808 break;
7809
7810 next = ldev;
7811 niter = &ldev->adj_list.lower;
7812 dev_stack[cur] = now;
7813 iter_stack[cur++] = iter;
7814 break;
7815 }
7816
7817 if (!next) {
7818 if (!cur)
7819 return 0;
7820 next = dev_stack[--cur];
7821 niter = iter_stack[cur];
7822 }
7823
7824 now = next;
7825 iter = niter;
7826 }
7827
7828 return 0;
7829}
7830EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7831
7832/**
7833 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7834 * lower neighbour list, RCU
7835 * variant
7836 * @dev: device
7837 *
7838 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7839 * list. The caller must hold RCU read lock.
7840 */
7841void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7842{
7843 struct netdev_adjacent *lower;
7844
7845 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7846 struct netdev_adjacent, list);
7847 if (lower)
7848 return lower->private;
7849 return NULL;
7850}
7851EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7852
7853/**
7854 * netdev_master_upper_dev_get_rcu - Get master upper device
7855 * @dev: device
7856 *
7857 * Find a master upper device and return pointer to it or NULL in case
7858 * it's not there. The caller must hold the RCU read lock.
7859 */
7860struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7861{
7862 struct netdev_adjacent *upper;
7863
7864 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7865 struct netdev_adjacent, list);
7866 if (upper && likely(upper->master))
7867 return upper->dev;
7868 return NULL;
7869}
7870EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7871
7872static int netdev_adjacent_sysfs_add(struct net_device *dev,
7873 struct net_device *adj_dev,
7874 struct list_head *dev_list)
7875{
7876 char linkname[IFNAMSIZ+7];
7877
7878 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7879 "upper_%s" : "lower_%s", adj_dev->name);
7880 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7881 linkname);
7882}
7883static void netdev_adjacent_sysfs_del(struct net_device *dev,
7884 char *name,
7885 struct list_head *dev_list)
7886{
7887 char linkname[IFNAMSIZ+7];
7888
7889 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7890 "upper_%s" : "lower_%s", name);
7891 sysfs_remove_link(&(dev->dev.kobj), linkname);
7892}
7893
7894static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7895 struct net_device *adj_dev,
7896 struct list_head *dev_list)
7897{
7898 return (dev_list == &dev->adj_list.upper ||
7899 dev_list == &dev->adj_list.lower) &&
7900 net_eq(dev_net(dev), dev_net(adj_dev));
7901}
7902
7903static int __netdev_adjacent_dev_insert(struct net_device *dev,
7904 struct net_device *adj_dev,
7905 struct list_head *dev_list,
7906 void *private, bool master)
7907{
7908 struct netdev_adjacent *adj;
7909 int ret;
7910
7911 adj = __netdev_find_adj(adj_dev, dev_list);
7912
7913 if (adj) {
7914 adj->ref_nr += 1;
7915 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7916 dev->name, adj_dev->name, adj->ref_nr);
7917
7918 return 0;
7919 }
7920
7921 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7922 if (!adj)
7923 return -ENOMEM;
7924
7925 adj->dev = adj_dev;
7926 adj->master = master;
7927 adj->ref_nr = 1;
7928 adj->private = private;
7929 adj->ignore = false;
7930 dev_hold(adj_dev);
7931
7932 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7933 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7934
7935 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7936 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7937 if (ret)
7938 goto free_adj;
7939 }
7940
7941 /* Ensure that master link is always the first item in list. */
7942 if (master) {
7943 ret = sysfs_create_link(&(dev->dev.kobj),
7944 &(adj_dev->dev.kobj), "master");
7945 if (ret)
7946 goto remove_symlinks;
7947
7948 list_add_rcu(&adj->list, dev_list);
7949 } else {
7950 list_add_tail_rcu(&adj->list, dev_list);
7951 }
7952
7953 return 0;
7954
7955remove_symlinks:
7956 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7957 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7958free_adj:
7959 kfree(adj);
7960 dev_put(adj_dev);
7961
7962 return ret;
7963}
7964
7965static void __netdev_adjacent_dev_remove(struct net_device *dev,
7966 struct net_device *adj_dev,
7967 u16 ref_nr,
7968 struct list_head *dev_list)
7969{
7970 struct netdev_adjacent *adj;
7971
7972 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7973 dev->name, adj_dev->name, ref_nr);
7974
7975 adj = __netdev_find_adj(adj_dev, dev_list);
7976
7977 if (!adj) {
7978 pr_err("Adjacency does not exist for device %s from %s\n",
7979 dev->name, adj_dev->name);
7980 WARN_ON(1);
7981 return;
7982 }
7983
7984 if (adj->ref_nr > ref_nr) {
7985 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7986 dev->name, adj_dev->name, ref_nr,
7987 adj->ref_nr - ref_nr);
7988 adj->ref_nr -= ref_nr;
7989 return;
7990 }
7991
7992 if (adj->master)
7993 sysfs_remove_link(&(dev->dev.kobj), "master");
7994
7995 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7996 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7997
7998 list_del_rcu(&adj->list);
7999 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
8000 adj_dev->name, dev->name, adj_dev->name);
8001 dev_put(adj_dev);
8002 kfree_rcu(adj, rcu);
8003}
8004
8005static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8006 struct net_device *upper_dev,
8007 struct list_head *up_list,
8008 struct list_head *down_list,
8009 void *private, bool master)
8010{
8011 int ret;
8012
8013 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8014 private, master);
8015 if (ret)
8016 return ret;
8017
8018 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8019 private, false);
8020 if (ret) {
8021 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8022 return ret;
8023 }
8024
8025 return 0;
8026}
8027
8028static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8029 struct net_device *upper_dev,
8030 u16 ref_nr,
8031 struct list_head *up_list,
8032 struct list_head *down_list)
8033{
8034 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8035 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8036}
8037
8038static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8039 struct net_device *upper_dev,
8040 void *private, bool master)
8041{
8042 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8043 &dev->adj_list.upper,
8044 &upper_dev->adj_list.lower,
8045 private, master);
8046}
8047
8048static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8049 struct net_device *upper_dev)
8050{
8051 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8052 &dev->adj_list.upper,
8053 &upper_dev->adj_list.lower);
8054}
8055
8056static int __netdev_upper_dev_link(struct net_device *dev,
8057 struct net_device *upper_dev, bool master,
8058 void *upper_priv, void *upper_info,
8059 struct netdev_nested_priv *priv,
8060 struct netlink_ext_ack *extack)
8061{
8062 struct netdev_notifier_changeupper_info changeupper_info = {
8063 .info = {
8064 .dev = dev,
8065 .extack = extack,
8066 },
8067 .upper_dev = upper_dev,
8068 .master = master,
8069 .linking = true,
8070 .upper_info = upper_info,
8071 };
8072 struct net_device *master_dev;
8073 int ret = 0;
8074
8075 ASSERT_RTNL();
8076
8077 if (dev == upper_dev)
8078 return -EBUSY;
8079
8080 /* To prevent loops, check if dev is not upper device to upper_dev. */
8081 if (__netdev_has_upper_dev(upper_dev, dev))
8082 return -EBUSY;
8083
8084 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8085 return -EMLINK;
8086
8087 if (!master) {
8088 if (__netdev_has_upper_dev(dev, upper_dev))
8089 return -EEXIST;
8090 } else {
8091 master_dev = __netdev_master_upper_dev_get(dev);
8092 if (master_dev)
8093 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8094 }
8095
8096 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8097 &changeupper_info.info);
8098 ret = notifier_to_errno(ret);
8099 if (ret)
8100 return ret;
8101
8102 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8103 master);
8104 if (ret)
8105 return ret;
8106
8107 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8108 &changeupper_info.info);
8109 ret = notifier_to_errno(ret);
8110 if (ret)
8111 goto rollback;
8112
8113 __netdev_update_upper_level(dev, NULL);
8114 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8115
8116 __netdev_update_lower_level(upper_dev, priv);
8117 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8118 priv);
8119
8120 return 0;
8121
8122rollback:
8123 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8124
8125 return ret;
8126}
8127
8128/**
8129 * netdev_upper_dev_link - Add a link to the upper device
8130 * @dev: device
8131 * @upper_dev: new upper device
8132 * @extack: netlink extended ack
8133 *
8134 * Adds a link to device which is upper to this one. The caller must hold
8135 * the RTNL lock. On a failure a negative errno code is returned.
8136 * On success the reference counts are adjusted and the function
8137 * returns zero.
8138 */
8139int netdev_upper_dev_link(struct net_device *dev,
8140 struct net_device *upper_dev,
8141 struct netlink_ext_ack *extack)
8142{
8143 struct netdev_nested_priv priv = {
8144 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8145 .data = NULL,
8146 };
8147
8148 return __netdev_upper_dev_link(dev, upper_dev, false,
8149 NULL, NULL, &priv, extack);
8150}
8151EXPORT_SYMBOL(netdev_upper_dev_link);
8152
8153/**
8154 * netdev_master_upper_dev_link - Add a master link to the upper device
8155 * @dev: device
8156 * @upper_dev: new upper device
8157 * @upper_priv: upper device private
8158 * @upper_info: upper info to be passed down via notifier
8159 * @extack: netlink extended ack
8160 *
8161 * Adds a link to device which is upper to this one. In this case, only
8162 * one master upper device can be linked, although other non-master devices
8163 * might be linked as well. The caller must hold the RTNL lock.
8164 * On a failure a negative errno code is returned. On success the reference
8165 * counts are adjusted and the function returns zero.
8166 */
8167int netdev_master_upper_dev_link(struct net_device *dev,
8168 struct net_device *upper_dev,
8169 void *upper_priv, void *upper_info,
8170 struct netlink_ext_ack *extack)
8171{
8172 struct netdev_nested_priv priv = {
8173 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8174 .data = NULL,
8175 };
8176
8177 return __netdev_upper_dev_link(dev, upper_dev, true,
8178 upper_priv, upper_info, &priv, extack);
8179}
8180EXPORT_SYMBOL(netdev_master_upper_dev_link);
8181
8182static void __netdev_upper_dev_unlink(struct net_device *dev,
8183 struct net_device *upper_dev,
8184 struct netdev_nested_priv *priv)
8185{
8186 struct netdev_notifier_changeupper_info changeupper_info = {
8187 .info = {
8188 .dev = dev,
8189 },
8190 .upper_dev = upper_dev,
8191 .linking = false,
8192 };
8193
8194 ASSERT_RTNL();
8195
8196 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8197
8198 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8199 &changeupper_info.info);
8200
8201 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8202
8203 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8204 &changeupper_info.info);
8205
8206 __netdev_update_upper_level(dev, NULL);
8207 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8208
8209 __netdev_update_lower_level(upper_dev, priv);
8210 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8211 priv);
8212}
8213
8214/**
8215 * netdev_upper_dev_unlink - Removes a link to upper device
8216 * @dev: device
8217 * @upper_dev: new upper device
8218 *
8219 * Removes a link to device which is upper to this one. The caller must hold
8220 * the RTNL lock.
8221 */
8222void netdev_upper_dev_unlink(struct net_device *dev,
8223 struct net_device *upper_dev)
8224{
8225 struct netdev_nested_priv priv = {
8226 .flags = NESTED_SYNC_TODO,
8227 .data = NULL,
8228 };
8229
8230 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8231}
8232EXPORT_SYMBOL(netdev_upper_dev_unlink);
8233
8234static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8235 struct net_device *lower_dev,
8236 bool val)
8237{
8238 struct netdev_adjacent *adj;
8239
8240 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8241 if (adj)
8242 adj->ignore = val;
8243
8244 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8245 if (adj)
8246 adj->ignore = val;
8247}
8248
8249static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8250 struct net_device *lower_dev)
8251{
8252 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8253}
8254
8255static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8256 struct net_device *lower_dev)
8257{
8258 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8259}
8260
8261int netdev_adjacent_change_prepare(struct net_device *old_dev,
8262 struct net_device *new_dev,
8263 struct net_device *dev,
8264 struct netlink_ext_ack *extack)
8265{
8266 struct netdev_nested_priv priv = {
8267 .flags = 0,
8268 .data = NULL,
8269 };
8270 int err;
8271
8272 if (!new_dev)
8273 return 0;
8274
8275 if (old_dev && new_dev != old_dev)
8276 netdev_adjacent_dev_disable(dev, old_dev);
8277 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8278 extack);
8279 if (err) {
8280 if (old_dev && new_dev != old_dev)
8281 netdev_adjacent_dev_enable(dev, old_dev);
8282 return err;
8283 }
8284
8285 return 0;
8286}
8287EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8288
8289void netdev_adjacent_change_commit(struct net_device *old_dev,
8290 struct net_device *new_dev,
8291 struct net_device *dev)
8292{
8293 struct netdev_nested_priv priv = {
8294 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8295 .data = NULL,
8296 };
8297
8298 if (!new_dev || !old_dev)
8299 return;
8300
8301 if (new_dev == old_dev)
8302 return;
8303
8304 netdev_adjacent_dev_enable(dev, old_dev);
8305 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8306}
8307EXPORT_SYMBOL(netdev_adjacent_change_commit);
8308
8309void netdev_adjacent_change_abort(struct net_device *old_dev,
8310 struct net_device *new_dev,
8311 struct net_device *dev)
8312{
8313 struct netdev_nested_priv priv = {
8314 .flags = 0,
8315 .data = NULL,
8316 };
8317
8318 if (!new_dev)
8319 return;
8320
8321 if (old_dev && new_dev != old_dev)
8322 netdev_adjacent_dev_enable(dev, old_dev);
8323
8324 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8325}
8326EXPORT_SYMBOL(netdev_adjacent_change_abort);
8327
8328/**
8329 * netdev_bonding_info_change - Dispatch event about slave change
8330 * @dev: device
8331 * @bonding_info: info to dispatch
8332 *
8333 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8334 * The caller must hold the RTNL lock.
8335 */
8336void netdev_bonding_info_change(struct net_device *dev,
8337 struct netdev_bonding_info *bonding_info)
8338{
8339 struct netdev_notifier_bonding_info info = {
8340 .info.dev = dev,
8341 };
8342
8343 memcpy(&info.bonding_info, bonding_info,
8344 sizeof(struct netdev_bonding_info));
8345 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8346 &info.info);
8347}
8348EXPORT_SYMBOL(netdev_bonding_info_change);
8349
8350/**
8351 * netdev_get_xmit_slave - Get the xmit slave of master device
8352 * @dev: device
8353 * @skb: The packet
8354 * @all_slaves: assume all the slaves are active
8355 *
8356 * The reference counters are not incremented so the caller must be
8357 * careful with locks. The caller must hold RCU lock.
8358 * %NULL is returned if no slave is found.
8359 */
8360
8361struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8362 struct sk_buff *skb,
8363 bool all_slaves)
8364{
8365 const struct net_device_ops *ops = dev->netdev_ops;
8366
8367 if (!ops->ndo_get_xmit_slave)
8368 return NULL;
8369 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8370}
8371EXPORT_SYMBOL(netdev_get_xmit_slave);
8372
8373static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8374 struct sock *sk)
8375{
8376 const struct net_device_ops *ops = dev->netdev_ops;
8377
8378 if (!ops->ndo_sk_get_lower_dev)
8379 return NULL;
8380 return ops->ndo_sk_get_lower_dev(dev, sk);
8381}
8382
8383/**
8384 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8385 * @dev: device
8386 * @sk: the socket
8387 *
8388 * %NULL is returned if no lower device is found.
8389 */
8390
8391struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8392 struct sock *sk)
8393{
8394 struct net_device *lower;
8395
8396 lower = netdev_sk_get_lower_dev(dev, sk);
8397 while (lower) {
8398 dev = lower;
8399 lower = netdev_sk_get_lower_dev(dev, sk);
8400 }
8401
8402 return dev;
8403}
8404EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8405
8406static void netdev_adjacent_add_links(struct net_device *dev)
8407{
8408 struct netdev_adjacent *iter;
8409
8410 struct net *net = dev_net(dev);
8411
8412 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8413 if (!net_eq(net, dev_net(iter->dev)))
8414 continue;
8415 netdev_adjacent_sysfs_add(iter->dev, dev,
8416 &iter->dev->adj_list.lower);
8417 netdev_adjacent_sysfs_add(dev, iter->dev,
8418 &dev->adj_list.upper);
8419 }
8420
8421 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8422 if (!net_eq(net, dev_net(iter->dev)))
8423 continue;
8424 netdev_adjacent_sysfs_add(iter->dev, dev,
8425 &iter->dev->adj_list.upper);
8426 netdev_adjacent_sysfs_add(dev, iter->dev,
8427 &dev->adj_list.lower);
8428 }
8429}
8430
8431static void netdev_adjacent_del_links(struct net_device *dev)
8432{
8433 struct netdev_adjacent *iter;
8434
8435 struct net *net = dev_net(dev);
8436
8437 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8438 if (!net_eq(net, dev_net(iter->dev)))
8439 continue;
8440 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8441 &iter->dev->adj_list.lower);
8442 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8443 &dev->adj_list.upper);
8444 }
8445
8446 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8447 if (!net_eq(net, dev_net(iter->dev)))
8448 continue;
8449 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8450 &iter->dev->adj_list.upper);
8451 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8452 &dev->adj_list.lower);
8453 }
8454}
8455
8456void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8457{
8458 struct netdev_adjacent *iter;
8459
8460 struct net *net = dev_net(dev);
8461
8462 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8463 if (!net_eq(net, dev_net(iter->dev)))
8464 continue;
8465 netdev_adjacent_sysfs_del(iter->dev, oldname,
8466 &iter->dev->adj_list.lower);
8467 netdev_adjacent_sysfs_add(iter->dev, dev,
8468 &iter->dev->adj_list.lower);
8469 }
8470
8471 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8472 if (!net_eq(net, dev_net(iter->dev)))
8473 continue;
8474 netdev_adjacent_sysfs_del(iter->dev, oldname,
8475 &iter->dev->adj_list.upper);
8476 netdev_adjacent_sysfs_add(iter->dev, dev,
8477 &iter->dev->adj_list.upper);
8478 }
8479}
8480
8481void *netdev_lower_dev_get_private(struct net_device *dev,
8482 struct net_device *lower_dev)
8483{
8484 struct netdev_adjacent *lower;
8485
8486 if (!lower_dev)
8487 return NULL;
8488 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8489 if (!lower)
8490 return NULL;
8491
8492 return lower->private;
8493}
8494EXPORT_SYMBOL(netdev_lower_dev_get_private);
8495
8496
8497/**
8498 * netdev_lower_state_changed - Dispatch event about lower device state change
8499 * @lower_dev: device
8500 * @lower_state_info: state to dispatch
8501 *
8502 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8503 * The caller must hold the RTNL lock.
8504 */
8505void netdev_lower_state_changed(struct net_device *lower_dev,
8506 void *lower_state_info)
8507{
8508 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8509 .info.dev = lower_dev,
8510 };
8511
8512 ASSERT_RTNL();
8513 changelowerstate_info.lower_state_info = lower_state_info;
8514 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8515 &changelowerstate_info.info);
8516}
8517EXPORT_SYMBOL(netdev_lower_state_changed);
8518
8519static void dev_change_rx_flags(struct net_device *dev, int flags)
8520{
8521 const struct net_device_ops *ops = dev->netdev_ops;
8522
8523 if (ops->ndo_change_rx_flags)
8524 ops->ndo_change_rx_flags(dev, flags);
8525}
8526
8527static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8528{
8529 unsigned int old_flags = dev->flags;
8530 kuid_t uid;
8531 kgid_t gid;
8532
8533 ASSERT_RTNL();
8534
8535 dev->flags |= IFF_PROMISC;
8536 dev->promiscuity += inc;
8537 if (dev->promiscuity == 0) {
8538 /*
8539 * Avoid overflow.
8540 * If inc causes overflow, untouch promisc and return error.
8541 */
8542 if (inc < 0)
8543 dev->flags &= ~IFF_PROMISC;
8544 else {
8545 dev->promiscuity -= inc;
8546 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8547 dev->name);
8548 return -EOVERFLOW;
8549 }
8550 }
8551 if (dev->flags != old_flags) {
8552 pr_info("device %s %s promiscuous mode\n",
8553 dev->name,
8554 dev->flags & IFF_PROMISC ? "entered" : "left");
8555 if (audit_enabled) {
8556 current_uid_gid(&uid, &gid);
8557 audit_log(audit_context(), GFP_ATOMIC,
8558 AUDIT_ANOM_PROMISCUOUS,
8559 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8560 dev->name, (dev->flags & IFF_PROMISC),
8561 (old_flags & IFF_PROMISC),
8562 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8563 from_kuid(&init_user_ns, uid),
8564 from_kgid(&init_user_ns, gid),
8565 audit_get_sessionid(current));
8566 }
8567
8568 dev_change_rx_flags(dev, IFF_PROMISC);
8569 }
8570 if (notify)
8571 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8572 return 0;
8573}
8574
8575/**
8576 * dev_set_promiscuity - update promiscuity count on a device
8577 * @dev: device
8578 * @inc: modifier
8579 *
8580 * Add or remove promiscuity from a device. While the count in the device
8581 * remains above zero the interface remains promiscuous. Once it hits zero
8582 * the device reverts back to normal filtering operation. A negative inc
8583 * value is used to drop promiscuity on the device.
8584 * Return 0 if successful or a negative errno code on error.
8585 */
8586int dev_set_promiscuity(struct net_device *dev, int inc)
8587{
8588 unsigned int old_flags = dev->flags;
8589 int err;
8590
8591 err = __dev_set_promiscuity(dev, inc, true);
8592 if (err < 0)
8593 return err;
8594 if (dev->flags != old_flags)
8595 dev_set_rx_mode(dev);
8596 return err;
8597}
8598EXPORT_SYMBOL(dev_set_promiscuity);
8599
8600static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8601{
8602 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8603
8604 ASSERT_RTNL();
8605
8606 dev->flags |= IFF_ALLMULTI;
8607 dev->allmulti += inc;
8608 if (dev->allmulti == 0) {
8609 /*
8610 * Avoid overflow.
8611 * If inc causes overflow, untouch allmulti and return error.
8612 */
8613 if (inc < 0)
8614 dev->flags &= ~IFF_ALLMULTI;
8615 else {
8616 dev->allmulti -= inc;
8617 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8618 dev->name);
8619 return -EOVERFLOW;
8620 }
8621 }
8622 if (dev->flags ^ old_flags) {
8623 dev_change_rx_flags(dev, IFF_ALLMULTI);
8624 dev_set_rx_mode(dev);
8625 if (notify)
8626 __dev_notify_flags(dev, old_flags,
8627 dev->gflags ^ old_gflags);
8628 }
8629 return 0;
8630}
8631
8632/**
8633 * dev_set_allmulti - update allmulti count on a device
8634 * @dev: device
8635 * @inc: modifier
8636 *
8637 * Add or remove reception of all multicast frames to a device. While the
8638 * count in the device remains above zero the interface remains listening
8639 * to all interfaces. Once it hits zero the device reverts back to normal
8640 * filtering operation. A negative @inc value is used to drop the counter
8641 * when releasing a resource needing all multicasts.
8642 * Return 0 if successful or a negative errno code on error.
8643 */
8644
8645int dev_set_allmulti(struct net_device *dev, int inc)
8646{
8647 return __dev_set_allmulti(dev, inc, true);
8648}
8649EXPORT_SYMBOL(dev_set_allmulti);
8650
8651/*
8652 * Upload unicast and multicast address lists to device and
8653 * configure RX filtering. When the device doesn't support unicast
8654 * filtering it is put in promiscuous mode while unicast addresses
8655 * are present.
8656 */
8657void __dev_set_rx_mode(struct net_device *dev)
8658{
8659 const struct net_device_ops *ops = dev->netdev_ops;
8660
8661 /* dev_open will call this function so the list will stay sane. */
8662 if (!(dev->flags&IFF_UP))
8663 return;
8664
8665 if (!netif_device_present(dev))
8666 return;
8667
8668 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8669 /* Unicast addresses changes may only happen under the rtnl,
8670 * therefore calling __dev_set_promiscuity here is safe.
8671 */
8672 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8673 __dev_set_promiscuity(dev, 1, false);
8674 dev->uc_promisc = true;
8675 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8676 __dev_set_promiscuity(dev, -1, false);
8677 dev->uc_promisc = false;
8678 }
8679 }
8680
8681 if (ops->ndo_set_rx_mode)
8682 ops->ndo_set_rx_mode(dev);
8683}
8684
8685void dev_set_rx_mode(struct net_device *dev)
8686{
8687 netif_addr_lock_bh(dev);
8688 __dev_set_rx_mode(dev);
8689 netif_addr_unlock_bh(dev);
8690}
8691
8692/**
8693 * dev_get_flags - get flags reported to userspace
8694 * @dev: device
8695 *
8696 * Get the combination of flag bits exported through APIs to userspace.
8697 */
8698unsigned int dev_get_flags(const struct net_device *dev)
8699{
8700 unsigned int flags;
8701
8702 flags = (dev->flags & ~(IFF_PROMISC |
8703 IFF_ALLMULTI |
8704 IFF_RUNNING |
8705 IFF_LOWER_UP |
8706 IFF_DORMANT)) |
8707 (dev->gflags & (IFF_PROMISC |
8708 IFF_ALLMULTI));
8709
8710 if (netif_running(dev)) {
8711 if (netif_oper_up(dev))
8712 flags |= IFF_RUNNING;
8713 if (netif_carrier_ok(dev))
8714 flags |= IFF_LOWER_UP;
8715 if (netif_dormant(dev))
8716 flags |= IFF_DORMANT;
8717 }
8718
8719 return flags;
8720}
8721EXPORT_SYMBOL(dev_get_flags);
8722
8723int __dev_change_flags(struct net_device *dev, unsigned int flags,
8724 struct netlink_ext_ack *extack)
8725{
8726 unsigned int old_flags = dev->flags;
8727 int ret;
8728
8729 ASSERT_RTNL();
8730
8731 /*
8732 * Set the flags on our device.
8733 */
8734
8735 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8736 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8737 IFF_AUTOMEDIA)) |
8738 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8739 IFF_ALLMULTI));
8740
8741 /*
8742 * Load in the correct multicast list now the flags have changed.
8743 */
8744
8745 if ((old_flags ^ flags) & IFF_MULTICAST)
8746 dev_change_rx_flags(dev, IFF_MULTICAST);
8747
8748 dev_set_rx_mode(dev);
8749
8750 /*
8751 * Have we downed the interface. We handle IFF_UP ourselves
8752 * according to user attempts to set it, rather than blindly
8753 * setting it.
8754 */
8755
8756 ret = 0;
8757 if ((old_flags ^ flags) & IFF_UP) {
8758 if (old_flags & IFF_UP)
8759 __dev_close(dev);
8760 else
8761 ret = __dev_open(dev, extack);
8762 }
8763
8764 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8765 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8766 unsigned int old_flags = dev->flags;
8767
8768 dev->gflags ^= IFF_PROMISC;
8769
8770 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8771 if (dev->flags != old_flags)
8772 dev_set_rx_mode(dev);
8773 }
8774
8775 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8776 * is important. Some (broken) drivers set IFF_PROMISC, when
8777 * IFF_ALLMULTI is requested not asking us and not reporting.
8778 */
8779 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8780 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8781
8782 dev->gflags ^= IFF_ALLMULTI;
8783 __dev_set_allmulti(dev, inc, false);
8784 }
8785
8786 return ret;
8787}
8788
8789void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8790 unsigned int gchanges)
8791{
8792 unsigned int changes = dev->flags ^ old_flags;
8793
8794 if (gchanges)
8795 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8796
8797 if (changes & IFF_UP) {
8798 if (dev->flags & IFF_UP)
8799 call_netdevice_notifiers(NETDEV_UP, dev);
8800 else
8801 call_netdevice_notifiers(NETDEV_DOWN, dev);
8802 }
8803
8804 if (dev->flags & IFF_UP &&
8805 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8806 struct netdev_notifier_change_info change_info = {
8807 .info = {
8808 .dev = dev,
8809 },
8810 .flags_changed = changes,
8811 };
8812
8813 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8814 }
8815}
8816
8817/**
8818 * dev_change_flags - change device settings
8819 * @dev: device
8820 * @flags: device state flags
8821 * @extack: netlink extended ack
8822 *
8823 * Change settings on device based state flags. The flags are
8824 * in the userspace exported format.
8825 */
8826int dev_change_flags(struct net_device *dev, unsigned int flags,
8827 struct netlink_ext_ack *extack)
8828{
8829 int ret;
8830 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8831
8832 ret = __dev_change_flags(dev, flags, extack);
8833 if (ret < 0)
8834 return ret;
8835
8836 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8837 __dev_notify_flags(dev, old_flags, changes);
8838 return ret;
8839}
8840EXPORT_SYMBOL(dev_change_flags);
8841
8842int __dev_set_mtu(struct net_device *dev, int new_mtu)
8843{
8844 const struct net_device_ops *ops = dev->netdev_ops;
8845
8846 if (ops->ndo_change_mtu)
8847 return ops->ndo_change_mtu(dev, new_mtu);
8848
8849 /* Pairs with all the lockless reads of dev->mtu in the stack */
8850 WRITE_ONCE(dev->mtu, new_mtu);
8851 return 0;
8852}
8853EXPORT_SYMBOL(__dev_set_mtu);
8854
8855int dev_validate_mtu(struct net_device *dev, int new_mtu,
8856 struct netlink_ext_ack *extack)
8857{
8858 /* MTU must be positive, and in range */
8859 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8860 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8861 return -EINVAL;
8862 }
8863
8864 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8865 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8866 return -EINVAL;
8867 }
8868 return 0;
8869}
8870
8871/**
8872 * dev_set_mtu_ext - Change maximum transfer unit
8873 * @dev: device
8874 * @new_mtu: new transfer unit
8875 * @extack: netlink extended ack
8876 *
8877 * Change the maximum transfer size of the network device.
8878 */
8879int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8880 struct netlink_ext_ack *extack)
8881{
8882 int err, orig_mtu;
8883
8884 if (new_mtu == dev->mtu)
8885 return 0;
8886
8887 err = dev_validate_mtu(dev, new_mtu, extack);
8888 if (err)
8889 return err;
8890
8891 if (!netif_device_present(dev))
8892 return -ENODEV;
8893
8894 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8895 err = notifier_to_errno(err);
8896 if (err)
8897 return err;
8898
8899 orig_mtu = dev->mtu;
8900 err = __dev_set_mtu(dev, new_mtu);
8901
8902 if (!err) {
8903 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8904 orig_mtu);
8905 err = notifier_to_errno(err);
8906 if (err) {
8907 /* setting mtu back and notifying everyone again,
8908 * so that they have a chance to revert changes.
8909 */
8910 __dev_set_mtu(dev, orig_mtu);
8911 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8912 new_mtu);
8913 }
8914 }
8915 return err;
8916}
8917
8918int dev_set_mtu(struct net_device *dev, int new_mtu)
8919{
8920 struct netlink_ext_ack extack;
8921 int err;
8922
8923 memset(&extack, 0, sizeof(extack));
8924 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8925 if (err && extack._msg)
8926 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8927 return err;
8928}
8929EXPORT_SYMBOL(dev_set_mtu);
8930
8931/**
8932 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8933 * @dev: device
8934 * @new_len: new tx queue length
8935 */
8936int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8937{
8938 unsigned int orig_len = dev->tx_queue_len;
8939 int res;
8940
8941 if (new_len != (unsigned int)new_len)
8942 return -ERANGE;
8943
8944 if (new_len != orig_len) {
8945 dev->tx_queue_len = new_len;
8946 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8947 res = notifier_to_errno(res);
8948 if (res)
8949 goto err_rollback;
8950 res = dev_qdisc_change_tx_queue_len(dev);
8951 if (res)
8952 goto err_rollback;
8953 }
8954
8955 return 0;
8956
8957err_rollback:
8958 netdev_err(dev, "refused to change device tx_queue_len\n");
8959 dev->tx_queue_len = orig_len;
8960 return res;
8961}
8962
8963/**
8964 * dev_set_group - Change group this device belongs to
8965 * @dev: device
8966 * @new_group: group this device should belong to
8967 */
8968void dev_set_group(struct net_device *dev, int new_group)
8969{
8970 dev->group = new_group;
8971}
8972EXPORT_SYMBOL(dev_set_group);
8973
8974/**
8975 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8976 * @dev: device
8977 * @addr: new address
8978 * @extack: netlink extended ack
8979 */
8980int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8981 struct netlink_ext_ack *extack)
8982{
8983 struct netdev_notifier_pre_changeaddr_info info = {
8984 .info.dev = dev,
8985 .info.extack = extack,
8986 .dev_addr = addr,
8987 };
8988 int rc;
8989
8990 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8991 return notifier_to_errno(rc);
8992}
8993EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8994
8995/**
8996 * dev_set_mac_address - Change Media Access Control Address
8997 * @dev: device
8998 * @sa: new address
8999 * @extack: netlink extended ack
9000 *
9001 * Change the hardware (MAC) address of the device
9002 */
9003int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9004 struct netlink_ext_ack *extack)
9005{
9006 const struct net_device_ops *ops = dev->netdev_ops;
9007 int err;
9008
9009 if (!ops->ndo_set_mac_address)
9010 return -EOPNOTSUPP;
9011 if (sa->sa_family != dev->type)
9012 return -EINVAL;
9013 if (!netif_device_present(dev))
9014 return -ENODEV;
9015 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9016 if (err)
9017 return err;
9018 err = ops->ndo_set_mac_address(dev, sa);
9019 if (err)
9020 return err;
9021 dev->addr_assign_type = NET_ADDR_SET;
9022 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9023 add_device_randomness(dev->dev_addr, dev->addr_len);
9024 return 0;
9025}
9026EXPORT_SYMBOL(dev_set_mac_address);
9027
9028static DECLARE_RWSEM(dev_addr_sem);
9029
9030int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9031 struct netlink_ext_ack *extack)
9032{
9033 int ret;
9034
9035 down_write(&dev_addr_sem);
9036 ret = dev_set_mac_address(dev, sa, extack);
9037 up_write(&dev_addr_sem);
9038 return ret;
9039}
9040EXPORT_SYMBOL(dev_set_mac_address_user);
9041
9042int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9043{
9044 size_t size = sizeof(sa->sa_data);
9045 struct net_device *dev;
9046 int ret = 0;
9047
9048 down_read(&dev_addr_sem);
9049 rcu_read_lock();
9050
9051 dev = dev_get_by_name_rcu(net, dev_name);
9052 if (!dev) {
9053 ret = -ENODEV;
9054 goto unlock;
9055 }
9056 if (!dev->addr_len)
9057 memset(sa->sa_data, 0, size);
9058 else
9059 memcpy(sa->sa_data, dev->dev_addr,
9060 min_t(size_t, size, dev->addr_len));
9061 sa->sa_family = dev->type;
9062
9063unlock:
9064 rcu_read_unlock();
9065 up_read(&dev_addr_sem);
9066 return ret;
9067}
9068EXPORT_SYMBOL(dev_get_mac_address);
9069
9070/**
9071 * dev_change_carrier - Change device carrier
9072 * @dev: device
9073 * @new_carrier: new value
9074 *
9075 * Change device carrier
9076 */
9077int dev_change_carrier(struct net_device *dev, bool new_carrier)
9078{
9079 const struct net_device_ops *ops = dev->netdev_ops;
9080
9081 if (!ops->ndo_change_carrier)
9082 return -EOPNOTSUPP;
9083 if (!netif_device_present(dev))
9084 return -ENODEV;
9085 return ops->ndo_change_carrier(dev, new_carrier);
9086}
9087EXPORT_SYMBOL(dev_change_carrier);
9088
9089/**
9090 * dev_get_phys_port_id - Get device physical port ID
9091 * @dev: device
9092 * @ppid: port ID
9093 *
9094 * Get device physical port ID
9095 */
9096int dev_get_phys_port_id(struct net_device *dev,
9097 struct netdev_phys_item_id *ppid)
9098{
9099 const struct net_device_ops *ops = dev->netdev_ops;
9100
9101 if (!ops->ndo_get_phys_port_id)
9102 return -EOPNOTSUPP;
9103 return ops->ndo_get_phys_port_id(dev, ppid);
9104}
9105EXPORT_SYMBOL(dev_get_phys_port_id);
9106
9107/**
9108 * dev_get_phys_port_name - Get device physical port name
9109 * @dev: device
9110 * @name: port name
9111 * @len: limit of bytes to copy to name
9112 *
9113 * Get device physical port name
9114 */
9115int dev_get_phys_port_name(struct net_device *dev,
9116 char *name, size_t len)
9117{
9118 const struct net_device_ops *ops = dev->netdev_ops;
9119 int err;
9120
9121 if (ops->ndo_get_phys_port_name) {
9122 err = ops->ndo_get_phys_port_name(dev, name, len);
9123 if (err != -EOPNOTSUPP)
9124 return err;
9125 }
9126 return devlink_compat_phys_port_name_get(dev, name, len);
9127}
9128EXPORT_SYMBOL(dev_get_phys_port_name);
9129
9130/**
9131 * dev_get_port_parent_id - Get the device's port parent identifier
9132 * @dev: network device
9133 * @ppid: pointer to a storage for the port's parent identifier
9134 * @recurse: allow/disallow recursion to lower devices
9135 *
9136 * Get the devices's port parent identifier
9137 */
9138int dev_get_port_parent_id(struct net_device *dev,
9139 struct netdev_phys_item_id *ppid,
9140 bool recurse)
9141{
9142 const struct net_device_ops *ops = dev->netdev_ops;
9143 struct netdev_phys_item_id first = { };
9144 struct net_device *lower_dev;
9145 struct list_head *iter;
9146 int err;
9147
9148 if (ops->ndo_get_port_parent_id) {
9149 err = ops->ndo_get_port_parent_id(dev, ppid);
9150 if (err != -EOPNOTSUPP)
9151 return err;
9152 }
9153
9154 err = devlink_compat_switch_id_get(dev, ppid);
9155 if (!err || err != -EOPNOTSUPP)
9156 return err;
9157
9158 if (!recurse)
9159 return -EOPNOTSUPP;
9160
9161 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9162 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9163 if (err)
9164 break;
9165 if (!first.id_len)
9166 first = *ppid;
9167 else if (memcmp(&first, ppid, sizeof(*ppid)))
9168 return -EOPNOTSUPP;
9169 }
9170
9171 return err;
9172}
9173EXPORT_SYMBOL(dev_get_port_parent_id);
9174
9175/**
9176 * netdev_port_same_parent_id - Indicate if two network devices have
9177 * the same port parent identifier
9178 * @a: first network device
9179 * @b: second network device
9180 */
9181bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9182{
9183 struct netdev_phys_item_id a_id = { };
9184 struct netdev_phys_item_id b_id = { };
9185
9186 if (dev_get_port_parent_id(a, &a_id, true) ||
9187 dev_get_port_parent_id(b, &b_id, true))
9188 return false;
9189
9190 return netdev_phys_item_id_same(&a_id, &b_id);
9191}
9192EXPORT_SYMBOL(netdev_port_same_parent_id);
9193
9194/**
9195 * dev_change_proto_down - update protocol port state information
9196 * @dev: device
9197 * @proto_down: new value
9198 *
9199 * This info can be used by switch drivers to set the phys state of the
9200 * port.
9201 */
9202int dev_change_proto_down(struct net_device *dev, bool proto_down)
9203{
9204 const struct net_device_ops *ops = dev->netdev_ops;
9205
9206 if (!ops->ndo_change_proto_down)
9207 return -EOPNOTSUPP;
9208 if (!netif_device_present(dev))
9209 return -ENODEV;
9210 return ops->ndo_change_proto_down(dev, proto_down);
9211}
9212EXPORT_SYMBOL(dev_change_proto_down);
9213
9214/**
9215 * dev_change_proto_down_generic - generic implementation for
9216 * ndo_change_proto_down that sets carrier according to
9217 * proto_down.
9218 *
9219 * @dev: device
9220 * @proto_down: new value
9221 */
9222int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9223{
9224 if (proto_down)
9225 netif_carrier_off(dev);
9226 else
9227 netif_carrier_on(dev);
9228 dev->proto_down = proto_down;
9229 return 0;
9230}
9231EXPORT_SYMBOL(dev_change_proto_down_generic);
9232
9233/**
9234 * dev_change_proto_down_reason - proto down reason
9235 *
9236 * @dev: device
9237 * @mask: proto down mask
9238 * @value: proto down value
9239 */
9240void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9241 u32 value)
9242{
9243 int b;
9244
9245 if (!mask) {
9246 dev->proto_down_reason = value;
9247 } else {
9248 for_each_set_bit(b, &mask, 32) {
9249 if (value & (1 << b))
9250 dev->proto_down_reason |= BIT(b);
9251 else
9252 dev->proto_down_reason &= ~BIT(b);
9253 }
9254 }
9255}
9256EXPORT_SYMBOL(dev_change_proto_down_reason);
9257
9258struct bpf_xdp_link {
9259 struct bpf_link link;
9260 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9261 int flags;
9262};
9263
9264static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9265{
9266 if (flags & XDP_FLAGS_HW_MODE)
9267 return XDP_MODE_HW;
9268 if (flags & XDP_FLAGS_DRV_MODE)
9269 return XDP_MODE_DRV;
9270 if (flags & XDP_FLAGS_SKB_MODE)
9271 return XDP_MODE_SKB;
9272 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9273}
9274
9275static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9276{
9277 switch (mode) {
9278 case XDP_MODE_SKB:
9279 return generic_xdp_install;
9280 case XDP_MODE_DRV:
9281 case XDP_MODE_HW:
9282 return dev->netdev_ops->ndo_bpf;
9283 default:
9284 return NULL;
9285 }
9286}
9287
9288static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9289 enum bpf_xdp_mode mode)
9290{
9291 return dev->xdp_state[mode].link;
9292}
9293
9294static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9295 enum bpf_xdp_mode mode)
9296{
9297 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9298
9299 if (link)
9300 return link->link.prog;
9301 return dev->xdp_state[mode].prog;
9302}
9303
9304u8 dev_xdp_prog_count(struct net_device *dev)
9305{
9306 u8 count = 0;
9307 int i;
9308
9309 for (i = 0; i < __MAX_XDP_MODE; i++)
9310 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9311 count++;
9312 return count;
9313}
9314EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9315
9316u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9317{
9318 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9319
9320 return prog ? prog->aux->id : 0;
9321}
9322
9323static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9324 struct bpf_xdp_link *link)
9325{
9326 dev->xdp_state[mode].link = link;
9327 dev->xdp_state[mode].prog = NULL;
9328}
9329
9330static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9331 struct bpf_prog *prog)
9332{
9333 dev->xdp_state[mode].link = NULL;
9334 dev->xdp_state[mode].prog = prog;
9335}
9336
9337static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9338 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9339 u32 flags, struct bpf_prog *prog)
9340{
9341 struct netdev_bpf xdp;
9342 int err;
9343
9344 memset(&xdp, 0, sizeof(xdp));
9345 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9346 xdp.extack = extack;
9347 xdp.flags = flags;
9348 xdp.prog = prog;
9349
9350 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9351 * "moved" into driver), so they don't increment it on their own, but
9352 * they do decrement refcnt when program is detached or replaced.
9353 * Given net_device also owns link/prog, we need to bump refcnt here
9354 * to prevent drivers from underflowing it.
9355 */
9356 if (prog)
9357 bpf_prog_inc(prog);
9358 err = bpf_op(dev, &xdp);
9359 if (err) {
9360 if (prog)
9361 bpf_prog_put(prog);
9362 return err;
9363 }
9364
9365 if (mode != XDP_MODE_HW)
9366 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9367
9368 return 0;
9369}
9370
9371static void dev_xdp_uninstall(struct net_device *dev)
9372{
9373 struct bpf_xdp_link *link;
9374 struct bpf_prog *prog;
9375 enum bpf_xdp_mode mode;
9376 bpf_op_t bpf_op;
9377
9378 ASSERT_RTNL();
9379
9380 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9381 prog = dev_xdp_prog(dev, mode);
9382 if (!prog)
9383 continue;
9384
9385 bpf_op = dev_xdp_bpf_op(dev, mode);
9386 if (!bpf_op)
9387 continue;
9388
9389 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9390
9391 /* auto-detach link from net device */
9392 link = dev_xdp_link(dev, mode);
9393 if (link)
9394 link->dev = NULL;
9395 else
9396 bpf_prog_put(prog);
9397
9398 dev_xdp_set_link(dev, mode, NULL);
9399 }
9400}
9401
9402static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9403 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9404 struct bpf_prog *old_prog, u32 flags)
9405{
9406 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9407 struct bpf_prog *cur_prog;
9408 struct net_device *upper;
9409 struct list_head *iter;
9410 enum bpf_xdp_mode mode;
9411 bpf_op_t bpf_op;
9412 int err;
9413
9414 ASSERT_RTNL();
9415
9416 /* either link or prog attachment, never both */
9417 if (link && (new_prog || old_prog))
9418 return -EINVAL;
9419 /* link supports only XDP mode flags */
9420 if (link && (flags & ~XDP_FLAGS_MODES)) {
9421 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9422 return -EINVAL;
9423 }
9424 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9425 if (num_modes > 1) {
9426 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9427 return -EINVAL;
9428 }
9429 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9430 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9431 NL_SET_ERR_MSG(extack,
9432 "More than one program loaded, unset mode is ambiguous");
9433 return -EINVAL;
9434 }
9435 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9436 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9437 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9438 return -EINVAL;
9439 }
9440
9441 mode = dev_xdp_mode(dev, flags);
9442 /* can't replace attached link */
9443 if (dev_xdp_link(dev, mode)) {
9444 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9445 return -EBUSY;
9446 }
9447
9448 /* don't allow if an upper device already has a program */
9449 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9450 if (dev_xdp_prog_count(upper) > 0) {
9451 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9452 return -EEXIST;
9453 }
9454 }
9455
9456 cur_prog = dev_xdp_prog(dev, mode);
9457 /* can't replace attached prog with link */
9458 if (link && cur_prog) {
9459 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9460 return -EBUSY;
9461 }
9462 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9463 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9464 return -EEXIST;
9465 }
9466
9467 /* put effective new program into new_prog */
9468 if (link)
9469 new_prog = link->link.prog;
9470
9471 if (new_prog) {
9472 bool offload = mode == XDP_MODE_HW;
9473 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9474 ? XDP_MODE_DRV : XDP_MODE_SKB;
9475
9476 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9477 NL_SET_ERR_MSG(extack, "XDP program already attached");
9478 return -EBUSY;
9479 }
9480 if (!offload && dev_xdp_prog(dev, other_mode)) {
9481 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9482 return -EEXIST;
9483 }
9484 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9485 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9486 return -EINVAL;
9487 }
9488 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9489 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9490 return -EINVAL;
9491 }
9492 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9493 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9494 return -EINVAL;
9495 }
9496 }
9497
9498 /* don't call drivers if the effective program didn't change */
9499 if (new_prog != cur_prog) {
9500 bpf_op = dev_xdp_bpf_op(dev, mode);
9501 if (!bpf_op) {
9502 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9503 return -EOPNOTSUPP;
9504 }
9505
9506 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9507 if (err)
9508 return err;
9509 }
9510
9511 if (link)
9512 dev_xdp_set_link(dev, mode, link);
9513 else
9514 dev_xdp_set_prog(dev, mode, new_prog);
9515 if (cur_prog)
9516 bpf_prog_put(cur_prog);
9517
9518 return 0;
9519}
9520
9521static int dev_xdp_attach_link(struct net_device *dev,
9522 struct netlink_ext_ack *extack,
9523 struct bpf_xdp_link *link)
9524{
9525 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9526}
9527
9528static int dev_xdp_detach_link(struct net_device *dev,
9529 struct netlink_ext_ack *extack,
9530 struct bpf_xdp_link *link)
9531{
9532 enum bpf_xdp_mode mode;
9533 bpf_op_t bpf_op;
9534
9535 ASSERT_RTNL();
9536
9537 mode = dev_xdp_mode(dev, link->flags);
9538 if (dev_xdp_link(dev, mode) != link)
9539 return -EINVAL;
9540
9541 bpf_op = dev_xdp_bpf_op(dev, mode);
9542 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9543 dev_xdp_set_link(dev, mode, NULL);
9544 return 0;
9545}
9546
9547static void bpf_xdp_link_release(struct bpf_link *link)
9548{
9549 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9550
9551 rtnl_lock();
9552
9553 /* if racing with net_device's tear down, xdp_link->dev might be
9554 * already NULL, in which case link was already auto-detached
9555 */
9556 if (xdp_link->dev) {
9557 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9558 xdp_link->dev = NULL;
9559 }
9560
9561 rtnl_unlock();
9562}
9563
9564static int bpf_xdp_link_detach(struct bpf_link *link)
9565{
9566 bpf_xdp_link_release(link);
9567 return 0;
9568}
9569
9570static void bpf_xdp_link_dealloc(struct bpf_link *link)
9571{
9572 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9573
9574 kfree(xdp_link);
9575}
9576
9577static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9578 struct seq_file *seq)
9579{
9580 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9581 u32 ifindex = 0;
9582
9583 rtnl_lock();
9584 if (xdp_link->dev)
9585 ifindex = xdp_link->dev->ifindex;
9586 rtnl_unlock();
9587
9588 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9589}
9590
9591static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9592 struct bpf_link_info *info)
9593{
9594 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9595 u32 ifindex = 0;
9596
9597 rtnl_lock();
9598 if (xdp_link->dev)
9599 ifindex = xdp_link->dev->ifindex;
9600 rtnl_unlock();
9601
9602 info->xdp.ifindex = ifindex;
9603 return 0;
9604}
9605
9606static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9607 struct bpf_prog *old_prog)
9608{
9609 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9610 enum bpf_xdp_mode mode;
9611 bpf_op_t bpf_op;
9612 int err = 0;
9613
9614 rtnl_lock();
9615
9616 /* link might have been auto-released already, so fail */
9617 if (!xdp_link->dev) {
9618 err = -ENOLINK;
9619 goto out_unlock;
9620 }
9621
9622 if (old_prog && link->prog != old_prog) {
9623 err = -EPERM;
9624 goto out_unlock;
9625 }
9626 old_prog = link->prog;
9627 if (old_prog == new_prog) {
9628 /* no-op, don't disturb drivers */
9629 bpf_prog_put(new_prog);
9630 goto out_unlock;
9631 }
9632
9633 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9634 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9635 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9636 xdp_link->flags, new_prog);
9637 if (err)
9638 goto out_unlock;
9639
9640 old_prog = xchg(&link->prog, new_prog);
9641 bpf_prog_put(old_prog);
9642
9643out_unlock:
9644 rtnl_unlock();
9645 return err;
9646}
9647
9648static const struct bpf_link_ops bpf_xdp_link_lops = {
9649 .release = bpf_xdp_link_release,
9650 .dealloc = bpf_xdp_link_dealloc,
9651 .detach = bpf_xdp_link_detach,
9652 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9653 .fill_link_info = bpf_xdp_link_fill_link_info,
9654 .update_prog = bpf_xdp_link_update,
9655};
9656
9657int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9658{
9659 struct net *net = current->nsproxy->net_ns;
9660 struct bpf_link_primer link_primer;
9661 struct bpf_xdp_link *link;
9662 struct net_device *dev;
9663 int err, fd;
9664
9665 rtnl_lock();
9666 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9667 if (!dev) {
9668 rtnl_unlock();
9669 return -EINVAL;
9670 }
9671
9672 link = kzalloc(sizeof(*link), GFP_USER);
9673 if (!link) {
9674 err = -ENOMEM;
9675 goto unlock;
9676 }
9677
9678 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9679 link->dev = dev;
9680 link->flags = attr->link_create.flags;
9681
9682 err = bpf_link_prime(&link->link, &link_primer);
9683 if (err) {
9684 kfree(link);
9685 goto unlock;
9686 }
9687
9688 err = dev_xdp_attach_link(dev, NULL, link);
9689 rtnl_unlock();
9690
9691 if (err) {
9692 link->dev = NULL;
9693 bpf_link_cleanup(&link_primer);
9694 goto out_put_dev;
9695 }
9696
9697 fd = bpf_link_settle(&link_primer);
9698 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9699 dev_put(dev);
9700 return fd;
9701
9702unlock:
9703 rtnl_unlock();
9704
9705out_put_dev:
9706 dev_put(dev);
9707 return err;
9708}
9709
9710/**
9711 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9712 * @dev: device
9713 * @extack: netlink extended ack
9714 * @fd: new program fd or negative value to clear
9715 * @expected_fd: old program fd that userspace expects to replace or clear
9716 * @flags: xdp-related flags
9717 *
9718 * Set or clear a bpf program for a device
9719 */
9720int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9721 int fd, int expected_fd, u32 flags)
9722{
9723 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9724 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9725 int err;
9726
9727 ASSERT_RTNL();
9728
9729 if (fd >= 0) {
9730 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9731 mode != XDP_MODE_SKB);
9732 if (IS_ERR(new_prog))
9733 return PTR_ERR(new_prog);
9734 }
9735
9736 if (expected_fd >= 0) {
9737 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9738 mode != XDP_MODE_SKB);
9739 if (IS_ERR(old_prog)) {
9740 err = PTR_ERR(old_prog);
9741 old_prog = NULL;
9742 goto err_out;
9743 }
9744 }
9745
9746 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9747
9748err_out:
9749 if (err && new_prog)
9750 bpf_prog_put(new_prog);
9751 if (old_prog)
9752 bpf_prog_put(old_prog);
9753 return err;
9754}
9755
9756/**
9757 * dev_new_index - allocate an ifindex
9758 * @net: the applicable net namespace
9759 *
9760 * Returns a suitable unique value for a new device interface
9761 * number. The caller must hold the rtnl semaphore or the
9762 * dev_base_lock to be sure it remains unique.
9763 */
9764static int dev_new_index(struct net *net)
9765{
9766 int ifindex = net->ifindex;
9767
9768 for (;;) {
9769 if (++ifindex <= 0)
9770 ifindex = 1;
9771 if (!__dev_get_by_index(net, ifindex))
9772 return net->ifindex = ifindex;
9773 }
9774}
9775
9776/* Delayed registration/unregisteration */
9777static LIST_HEAD(net_todo_list);
9778DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9779
9780static void net_set_todo(struct net_device *dev)
9781{
9782 list_add_tail(&dev->todo_list, &net_todo_list);
9783 dev_net(dev)->dev_unreg_count++;
9784}
9785
9786static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9787 struct net_device *upper, netdev_features_t features)
9788{
9789 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9790 netdev_features_t feature;
9791 int feature_bit;
9792
9793 for_each_netdev_feature(upper_disables, feature_bit) {
9794 feature = __NETIF_F_BIT(feature_bit);
9795 if (!(upper->wanted_features & feature)
9796 && (features & feature)) {
9797 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9798 &feature, upper->name);
9799 features &= ~feature;
9800 }
9801 }
9802
9803 return features;
9804}
9805
9806static void netdev_sync_lower_features(struct net_device *upper,
9807 struct net_device *lower, netdev_features_t features)
9808{
9809 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9810 netdev_features_t feature;
9811 int feature_bit;
9812
9813 for_each_netdev_feature(upper_disables, feature_bit) {
9814 feature = __NETIF_F_BIT(feature_bit);
9815 if (!(features & feature) && (lower->features & feature)) {
9816 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9817 &feature, lower->name);
9818 lower->wanted_features &= ~feature;
9819 __netdev_update_features(lower);
9820
9821 if (unlikely(lower->features & feature))
9822 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9823 &feature, lower->name);
9824 else
9825 netdev_features_change(lower);
9826 }
9827 }
9828}
9829
9830static netdev_features_t netdev_fix_features(struct net_device *dev,
9831 netdev_features_t features)
9832{
9833 /* Fix illegal checksum combinations */
9834 if ((features & NETIF_F_HW_CSUM) &&
9835 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9836 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9837 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9838 }
9839
9840 /* TSO requires that SG is present as well. */
9841 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9842 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9843 features &= ~NETIF_F_ALL_TSO;
9844 }
9845
9846 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9847 !(features & NETIF_F_IP_CSUM)) {
9848 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9849 features &= ~NETIF_F_TSO;
9850 features &= ~NETIF_F_TSO_ECN;
9851 }
9852
9853 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9854 !(features & NETIF_F_IPV6_CSUM)) {
9855 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9856 features &= ~NETIF_F_TSO6;
9857 }
9858
9859 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9860 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9861 features &= ~NETIF_F_TSO_MANGLEID;
9862
9863 /* TSO ECN requires that TSO is present as well. */
9864 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9865 features &= ~NETIF_F_TSO_ECN;
9866
9867 /* Software GSO depends on SG. */
9868 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9869 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9870 features &= ~NETIF_F_GSO;
9871 }
9872
9873 /* GSO partial features require GSO partial be set */
9874 if ((features & dev->gso_partial_features) &&
9875 !(features & NETIF_F_GSO_PARTIAL)) {
9876 netdev_dbg(dev,
9877 "Dropping partially supported GSO features since no GSO partial.\n");
9878 features &= ~dev->gso_partial_features;
9879 }
9880
9881 if (!(features & NETIF_F_RXCSUM)) {
9882 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9883 * successfully merged by hardware must also have the
9884 * checksum verified by hardware. If the user does not
9885 * want to enable RXCSUM, logically, we should disable GRO_HW.
9886 */
9887 if (features & NETIF_F_GRO_HW) {
9888 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9889 features &= ~NETIF_F_GRO_HW;
9890 }
9891 }
9892
9893 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9894 if (features & NETIF_F_RXFCS) {
9895 if (features & NETIF_F_LRO) {
9896 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9897 features &= ~NETIF_F_LRO;
9898 }
9899
9900 if (features & NETIF_F_GRO_HW) {
9901 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9902 features &= ~NETIF_F_GRO_HW;
9903 }
9904 }
9905
9906 if (features & NETIF_F_HW_TLS_TX) {
9907 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9908 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9909 bool hw_csum = features & NETIF_F_HW_CSUM;
9910
9911 if (!ip_csum && !hw_csum) {
9912 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9913 features &= ~NETIF_F_HW_TLS_TX;
9914 }
9915 }
9916
9917 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9918 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9919 features &= ~NETIF_F_HW_TLS_RX;
9920 }
9921
9922 return features;
9923}
9924
9925int __netdev_update_features(struct net_device *dev)
9926{
9927 struct net_device *upper, *lower;
9928 netdev_features_t features;
9929 struct list_head *iter;
9930 int err = -1;
9931
9932 ASSERT_RTNL();
9933
9934 features = netdev_get_wanted_features(dev);
9935
9936 if (dev->netdev_ops->ndo_fix_features)
9937 features = dev->netdev_ops->ndo_fix_features(dev, features);
9938
9939 /* driver might be less strict about feature dependencies */
9940 features = netdev_fix_features(dev, features);
9941
9942 /* some features can't be enabled if they're off on an upper device */
9943 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9944 features = netdev_sync_upper_features(dev, upper, features);
9945
9946 if (dev->features == features)
9947 goto sync_lower;
9948
9949 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9950 &dev->features, &features);
9951
9952 if (dev->netdev_ops->ndo_set_features)
9953 err = dev->netdev_ops->ndo_set_features(dev, features);
9954 else
9955 err = 0;
9956
9957 if (unlikely(err < 0)) {
9958 netdev_err(dev,
9959 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9960 err, &features, &dev->features);
9961 /* return non-0 since some features might have changed and
9962 * it's better to fire a spurious notification than miss it
9963 */
9964 return -1;
9965 }
9966
9967sync_lower:
9968 /* some features must be disabled on lower devices when disabled
9969 * on an upper device (think: bonding master or bridge)
9970 */
9971 netdev_for_each_lower_dev(dev, lower, iter)
9972 netdev_sync_lower_features(dev, lower, features);
9973
9974 if (!err) {
9975 netdev_features_t diff = features ^ dev->features;
9976
9977 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9978 /* udp_tunnel_{get,drop}_rx_info both need
9979 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9980 * device, or they won't do anything.
9981 * Thus we need to update dev->features
9982 * *before* calling udp_tunnel_get_rx_info,
9983 * but *after* calling udp_tunnel_drop_rx_info.
9984 */
9985 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9986 dev->features = features;
9987 udp_tunnel_get_rx_info(dev);
9988 } else {
9989 udp_tunnel_drop_rx_info(dev);
9990 }
9991 }
9992
9993 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9994 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9995 dev->features = features;
9996 err |= vlan_get_rx_ctag_filter_info(dev);
9997 } else {
9998 vlan_drop_rx_ctag_filter_info(dev);
9999 }
10000 }
10001
10002 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
10003 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
10004 dev->features = features;
10005 err |= vlan_get_rx_stag_filter_info(dev);
10006 } else {
10007 vlan_drop_rx_stag_filter_info(dev);
10008 }
10009 }
10010
10011 dev->features = features;
10012 }
10013
10014 return err < 0 ? 0 : 1;
10015}
10016
10017/**
10018 * netdev_update_features - recalculate device features
10019 * @dev: the device to check
10020 *
10021 * Recalculate dev->features set and send notifications if it
10022 * has changed. Should be called after driver or hardware dependent
10023 * conditions might have changed that influence the features.
10024 */
10025void netdev_update_features(struct net_device *dev)
10026{
10027 if (__netdev_update_features(dev))
10028 netdev_features_change(dev);
10029}
10030EXPORT_SYMBOL(netdev_update_features);
10031
10032/**
10033 * netdev_change_features - recalculate device features
10034 * @dev: the device to check
10035 *
10036 * Recalculate dev->features set and send notifications even
10037 * if they have not changed. Should be called instead of
10038 * netdev_update_features() if also dev->vlan_features might
10039 * have changed to allow the changes to be propagated to stacked
10040 * VLAN devices.
10041 */
10042void netdev_change_features(struct net_device *dev)
10043{
10044 __netdev_update_features(dev);
10045 netdev_features_change(dev);
10046}
10047EXPORT_SYMBOL(netdev_change_features);
10048
10049/**
10050 * netif_stacked_transfer_operstate - transfer operstate
10051 * @rootdev: the root or lower level device to transfer state from
10052 * @dev: the device to transfer operstate to
10053 *
10054 * Transfer operational state from root to device. This is normally
10055 * called when a stacking relationship exists between the root
10056 * device and the device(a leaf device).
10057 */
10058void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10059 struct net_device *dev)
10060{
10061 if (rootdev->operstate == IF_OPER_DORMANT)
10062 netif_dormant_on(dev);
10063 else
10064 netif_dormant_off(dev);
10065
10066 if (rootdev->operstate == IF_OPER_TESTING)
10067 netif_testing_on(dev);
10068 else
10069 netif_testing_off(dev);
10070
10071 if (netif_carrier_ok(rootdev))
10072 netif_carrier_on(dev);
10073 else
10074 netif_carrier_off(dev);
10075}
10076EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10077
10078static int netif_alloc_rx_queues(struct net_device *dev)
10079{
10080 unsigned int i, count = dev->num_rx_queues;
10081 struct netdev_rx_queue *rx;
10082 size_t sz = count * sizeof(*rx);
10083 int err = 0;
10084
10085 BUG_ON(count < 1);
10086
10087 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10088 if (!rx)
10089 return -ENOMEM;
10090
10091 dev->_rx = rx;
10092
10093 for (i = 0; i < count; i++) {
10094 rx[i].dev = dev;
10095
10096 /* XDP RX-queue setup */
10097 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10098 if (err < 0)
10099 goto err_rxq_info;
10100 }
10101 return 0;
10102
10103err_rxq_info:
10104 /* Rollback successful reg's and free other resources */
10105 while (i--)
10106 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10107 kvfree(dev->_rx);
10108 dev->_rx = NULL;
10109 return err;
10110}
10111
10112static void netif_free_rx_queues(struct net_device *dev)
10113{
10114 unsigned int i, count = dev->num_rx_queues;
10115
10116 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10117 if (!dev->_rx)
10118 return;
10119
10120 for (i = 0; i < count; i++)
10121 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10122
10123 kvfree(dev->_rx);
10124}
10125
10126static void netdev_init_one_queue(struct net_device *dev,
10127 struct netdev_queue *queue, void *_unused)
10128{
10129 /* Initialize queue lock */
10130 spin_lock_init(&queue->_xmit_lock);
10131 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10132 queue->xmit_lock_owner = -1;
10133 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10134 queue->dev = dev;
10135#ifdef CONFIG_BQL
10136 dql_init(&queue->dql, HZ);
10137#endif
10138}
10139
10140static void netif_free_tx_queues(struct net_device *dev)
10141{
10142 kvfree(dev->_tx);
10143}
10144
10145static int netif_alloc_netdev_queues(struct net_device *dev)
10146{
10147 unsigned int count = dev->num_tx_queues;
10148 struct netdev_queue *tx;
10149 size_t sz = count * sizeof(*tx);
10150
10151 if (count < 1 || count > 0xffff)
10152 return -EINVAL;
10153
10154 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10155 if (!tx)
10156 return -ENOMEM;
10157
10158 dev->_tx = tx;
10159
10160 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10161 spin_lock_init(&dev->tx_global_lock);
10162
10163 return 0;
10164}
10165
10166void netif_tx_stop_all_queues(struct net_device *dev)
10167{
10168 unsigned int i;
10169
10170 for (i = 0; i < dev->num_tx_queues; i++) {
10171 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10172
10173 netif_tx_stop_queue(txq);
10174 }
10175}
10176EXPORT_SYMBOL(netif_tx_stop_all_queues);
10177
10178/**
10179 * register_netdevice - register a network device
10180 * @dev: device to register
10181 *
10182 * Take a completed network device structure and add it to the kernel
10183 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10184 * chain. 0 is returned on success. A negative errno code is returned
10185 * on a failure to set up the device, or if the name is a duplicate.
10186 *
10187 * Callers must hold the rtnl semaphore. You may want
10188 * register_netdev() instead of this.
10189 *
10190 * BUGS:
10191 * The locking appears insufficient to guarantee two parallel registers
10192 * will not get the same name.
10193 */
10194
10195int register_netdevice(struct net_device *dev)
10196{
10197 int ret;
10198 struct net *net = dev_net(dev);
10199
10200 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10201 NETDEV_FEATURE_COUNT);
10202 BUG_ON(dev_boot_phase);
10203 ASSERT_RTNL();
10204
10205 might_sleep();
10206
10207 /* When net_device's are persistent, this will be fatal. */
10208 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10209 BUG_ON(!net);
10210
10211 ret = ethtool_check_ops(dev->ethtool_ops);
10212 if (ret)
10213 return ret;
10214
10215 spin_lock_init(&dev->addr_list_lock);
10216 netdev_set_addr_lockdep_class(dev);
10217
10218 ret = dev_get_valid_name(net, dev, dev->name);
10219 if (ret < 0)
10220 goto out;
10221
10222 ret = -ENOMEM;
10223 dev->name_node = netdev_name_node_head_alloc(dev);
10224 if (!dev->name_node)
10225 goto out;
10226
10227 /* Init, if this function is available */
10228 if (dev->netdev_ops->ndo_init) {
10229 ret = dev->netdev_ops->ndo_init(dev);
10230 if (ret) {
10231 if (ret > 0)
10232 ret = -EIO;
10233 goto err_free_name;
10234 }
10235 }
10236
10237 if (((dev->hw_features | dev->features) &
10238 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10239 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10240 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10241 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10242 ret = -EINVAL;
10243 goto err_uninit;
10244 }
10245
10246 ret = -EBUSY;
10247 if (!dev->ifindex)
10248 dev->ifindex = dev_new_index(net);
10249 else if (__dev_get_by_index(net, dev->ifindex))
10250 goto err_uninit;
10251
10252 /* Transfer changeable features to wanted_features and enable
10253 * software offloads (GSO and GRO).
10254 */
10255 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10256 dev->features |= NETIF_F_SOFT_FEATURES;
10257
10258 if (dev->udp_tunnel_nic_info) {
10259 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10260 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10261 }
10262
10263 dev->wanted_features = dev->features & dev->hw_features;
10264
10265 if (!(dev->flags & IFF_LOOPBACK))
10266 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10267
10268 /* If IPv4 TCP segmentation offload is supported we should also
10269 * allow the device to enable segmenting the frame with the option
10270 * of ignoring a static IP ID value. This doesn't enable the
10271 * feature itself but allows the user to enable it later.
10272 */
10273 if (dev->hw_features & NETIF_F_TSO)
10274 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10275 if (dev->vlan_features & NETIF_F_TSO)
10276 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10277 if (dev->mpls_features & NETIF_F_TSO)
10278 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10279 if (dev->hw_enc_features & NETIF_F_TSO)
10280 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10281
10282 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10283 */
10284 dev->vlan_features |= NETIF_F_HIGHDMA;
10285
10286 /* Make NETIF_F_SG inheritable to tunnel devices.
10287 */
10288 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10289
10290 /* Make NETIF_F_SG inheritable to MPLS.
10291 */
10292 dev->mpls_features |= NETIF_F_SG;
10293
10294 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10295 ret = notifier_to_errno(ret);
10296 if (ret)
10297 goto err_uninit;
10298
10299 ret = netdev_register_kobject(dev);
10300 if (ret) {
10301 dev->reg_state = NETREG_UNREGISTERED;
10302 goto err_uninit;
10303 }
10304 dev->reg_state = NETREG_REGISTERED;
10305
10306 __netdev_update_features(dev);
10307
10308 /*
10309 * Default initial state at registry is that the
10310 * device is present.
10311 */
10312
10313 set_bit(__LINK_STATE_PRESENT, &dev->state);
10314
10315 linkwatch_init_dev(dev);
10316
10317 dev_init_scheduler(dev);
10318 dev_hold(dev);
10319 list_netdevice(dev);
10320 add_device_randomness(dev->dev_addr, dev->addr_len);
10321
10322 /* If the device has permanent device address, driver should
10323 * set dev_addr and also addr_assign_type should be set to
10324 * NET_ADDR_PERM (default value).
10325 */
10326 if (dev->addr_assign_type == NET_ADDR_PERM)
10327 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10328
10329 /* Notify protocols, that a new device appeared. */
10330 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10331 ret = notifier_to_errno(ret);
10332 if (ret) {
10333 /* Expect explicit free_netdev() on failure */
10334 dev->needs_free_netdev = false;
10335 unregister_netdevice_queue(dev, NULL);
10336 goto out;
10337 }
10338 /*
10339 * Prevent userspace races by waiting until the network
10340 * device is fully setup before sending notifications.
10341 */
10342 if (!dev->rtnl_link_ops ||
10343 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10344 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10345
10346out:
10347 return ret;
10348
10349err_uninit:
10350 if (dev->netdev_ops->ndo_uninit)
10351 dev->netdev_ops->ndo_uninit(dev);
10352 if (dev->priv_destructor)
10353 dev->priv_destructor(dev);
10354err_free_name:
10355 netdev_name_node_free(dev->name_node);
10356 goto out;
10357}
10358EXPORT_SYMBOL(register_netdevice);
10359
10360/**
10361 * init_dummy_netdev - init a dummy network device for NAPI
10362 * @dev: device to init
10363 *
10364 * This takes a network device structure and initialize the minimum
10365 * amount of fields so it can be used to schedule NAPI polls without
10366 * registering a full blown interface. This is to be used by drivers
10367 * that need to tie several hardware interfaces to a single NAPI
10368 * poll scheduler due to HW limitations.
10369 */
10370int init_dummy_netdev(struct net_device *dev)
10371{
10372 /* Clear everything. Note we don't initialize spinlocks
10373 * are they aren't supposed to be taken by any of the
10374 * NAPI code and this dummy netdev is supposed to be
10375 * only ever used for NAPI polls
10376 */
10377 memset(dev, 0, sizeof(struct net_device));
10378
10379 /* make sure we BUG if trying to hit standard
10380 * register/unregister code path
10381 */
10382 dev->reg_state = NETREG_DUMMY;
10383
10384 /* NAPI wants this */
10385 INIT_LIST_HEAD(&dev->napi_list);
10386
10387 /* a dummy interface is started by default */
10388 set_bit(__LINK_STATE_PRESENT, &dev->state);
10389 set_bit(__LINK_STATE_START, &dev->state);
10390
10391 /* napi_busy_loop stats accounting wants this */
10392 dev_net_set(dev, &init_net);
10393
10394 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10395 * because users of this 'device' dont need to change
10396 * its refcount.
10397 */
10398
10399 return 0;
10400}
10401EXPORT_SYMBOL_GPL(init_dummy_netdev);
10402
10403
10404/**
10405 * register_netdev - register a network device
10406 * @dev: device to register
10407 *
10408 * Take a completed network device structure and add it to the kernel
10409 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10410 * chain. 0 is returned on success. A negative errno code is returned
10411 * on a failure to set up the device, or if the name is a duplicate.
10412 *
10413 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10414 * and expands the device name if you passed a format string to
10415 * alloc_netdev.
10416 */
10417int register_netdev(struct net_device *dev)
10418{
10419 int err;
10420
10421 if (rtnl_lock_killable())
10422 return -EINTR;
10423 err = register_netdevice(dev);
10424 rtnl_unlock();
10425 return err;
10426}
10427EXPORT_SYMBOL(register_netdev);
10428
10429int netdev_refcnt_read(const struct net_device *dev)
10430{
10431#ifdef CONFIG_PCPU_DEV_REFCNT
10432 int i, refcnt = 0;
10433
10434 for_each_possible_cpu(i)
10435 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10436 return refcnt;
10437#else
10438 return refcount_read(&dev->dev_refcnt);
10439#endif
10440}
10441EXPORT_SYMBOL(netdev_refcnt_read);
10442
10443int netdev_unregister_timeout_secs __read_mostly = 10;
10444
10445#define WAIT_REFS_MIN_MSECS 1
10446#define WAIT_REFS_MAX_MSECS 250
10447/**
10448 * netdev_wait_allrefs - wait until all references are gone.
10449 * @dev: target net_device
10450 *
10451 * This is called when unregistering network devices.
10452 *
10453 * Any protocol or device that holds a reference should register
10454 * for netdevice notification, and cleanup and put back the
10455 * reference if they receive an UNREGISTER event.
10456 * We can get stuck here if buggy protocols don't correctly
10457 * call dev_put.
10458 */
10459static void netdev_wait_allrefs(struct net_device *dev)
10460{
10461 unsigned long rebroadcast_time, warning_time;
10462 int wait = 0, refcnt;
10463
10464 linkwatch_forget_dev(dev);
10465
10466 rebroadcast_time = warning_time = jiffies;
10467 refcnt = netdev_refcnt_read(dev);
10468
10469 while (refcnt != 1) {
10470 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10471 rtnl_lock();
10472
10473 /* Rebroadcast unregister notification */
10474 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10475
10476 __rtnl_unlock();
10477 rcu_barrier();
10478 rtnl_lock();
10479
10480 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10481 &dev->state)) {
10482 /* We must not have linkwatch events
10483 * pending on unregister. If this
10484 * happens, we simply run the queue
10485 * unscheduled, resulting in a noop
10486 * for this device.
10487 */
10488 linkwatch_run_queue();
10489 }
10490
10491 __rtnl_unlock();
10492
10493 rebroadcast_time = jiffies;
10494 }
10495
10496 if (!wait) {
10497 rcu_barrier();
10498 wait = WAIT_REFS_MIN_MSECS;
10499 } else {
10500 msleep(wait);
10501 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10502 }
10503
10504 refcnt = netdev_refcnt_read(dev);
10505
10506 if (refcnt != 1 &&
10507 time_after(jiffies, warning_time +
10508 netdev_unregister_timeout_secs * HZ)) {
10509 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10510 dev->name, refcnt);
10511 warning_time = jiffies;
10512 }
10513 }
10514}
10515
10516/* The sequence is:
10517 *
10518 * rtnl_lock();
10519 * ...
10520 * register_netdevice(x1);
10521 * register_netdevice(x2);
10522 * ...
10523 * unregister_netdevice(y1);
10524 * unregister_netdevice(y2);
10525 * ...
10526 * rtnl_unlock();
10527 * free_netdev(y1);
10528 * free_netdev(y2);
10529 *
10530 * We are invoked by rtnl_unlock().
10531 * This allows us to deal with problems:
10532 * 1) We can delete sysfs objects which invoke hotplug
10533 * without deadlocking with linkwatch via keventd.
10534 * 2) Since we run with the RTNL semaphore not held, we can sleep
10535 * safely in order to wait for the netdev refcnt to drop to zero.
10536 *
10537 * We must not return until all unregister events added during
10538 * the interval the lock was held have been completed.
10539 */
10540void netdev_run_todo(void)
10541{
10542 struct list_head list;
10543#ifdef CONFIG_LOCKDEP
10544 struct list_head unlink_list;
10545
10546 list_replace_init(&net_unlink_list, &unlink_list);
10547
10548 while (!list_empty(&unlink_list)) {
10549 struct net_device *dev = list_first_entry(&unlink_list,
10550 struct net_device,
10551 unlink_list);
10552 list_del_init(&dev->unlink_list);
10553 dev->nested_level = dev->lower_level - 1;
10554 }
10555#endif
10556
10557 /* Snapshot list, allow later requests */
10558 list_replace_init(&net_todo_list, &list);
10559
10560 __rtnl_unlock();
10561
10562
10563 /* Wait for rcu callbacks to finish before next phase */
10564 if (!list_empty(&list))
10565 rcu_barrier();
10566
10567 while (!list_empty(&list)) {
10568 struct net_device *dev
10569 = list_first_entry(&list, struct net_device, todo_list);
10570 list_del(&dev->todo_list);
10571
10572 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10573 pr_err("network todo '%s' but state %d\n",
10574 dev->name, dev->reg_state);
10575 dump_stack();
10576 continue;
10577 }
10578
10579 dev->reg_state = NETREG_UNREGISTERED;
10580
10581 netdev_wait_allrefs(dev);
10582
10583 /* paranoia */
10584 BUG_ON(netdev_refcnt_read(dev) != 1);
10585 BUG_ON(!list_empty(&dev->ptype_all));
10586 BUG_ON(!list_empty(&dev->ptype_specific));
10587 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10588 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10589#if IS_ENABLED(CONFIG_DECNET)
10590 WARN_ON(dev->dn_ptr);
10591#endif
10592 if (dev->priv_destructor)
10593 dev->priv_destructor(dev);
10594 if (dev->needs_free_netdev)
10595 free_netdev(dev);
10596
10597 /* Report a network device has been unregistered */
10598 rtnl_lock();
10599 dev_net(dev)->dev_unreg_count--;
10600 __rtnl_unlock();
10601 wake_up(&netdev_unregistering_wq);
10602
10603 /* Free network device */
10604 kobject_put(&dev->dev.kobj);
10605 }
10606}
10607
10608/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10609 * all the same fields in the same order as net_device_stats, with only
10610 * the type differing, but rtnl_link_stats64 may have additional fields
10611 * at the end for newer counters.
10612 */
10613void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10614 const struct net_device_stats *netdev_stats)
10615{
10616#if BITS_PER_LONG == 64
10617 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10618 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10619 /* zero out counters that only exist in rtnl_link_stats64 */
10620 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10621 sizeof(*stats64) - sizeof(*netdev_stats));
10622#else
10623 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10624 const unsigned long *src = (const unsigned long *)netdev_stats;
10625 u64 *dst = (u64 *)stats64;
10626
10627 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10628 for (i = 0; i < n; i++)
10629 dst[i] = src[i];
10630 /* zero out counters that only exist in rtnl_link_stats64 */
10631 memset((char *)stats64 + n * sizeof(u64), 0,
10632 sizeof(*stats64) - n * sizeof(u64));
10633#endif
10634}
10635EXPORT_SYMBOL(netdev_stats_to_stats64);
10636
10637/**
10638 * dev_get_stats - get network device statistics
10639 * @dev: device to get statistics from
10640 * @storage: place to store stats
10641 *
10642 * Get network statistics from device. Return @storage.
10643 * The device driver may provide its own method by setting
10644 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10645 * otherwise the internal statistics structure is used.
10646 */
10647struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10648 struct rtnl_link_stats64 *storage)
10649{
10650 const struct net_device_ops *ops = dev->netdev_ops;
10651
10652 if (ops->ndo_get_stats64) {
10653 memset(storage, 0, sizeof(*storage));
10654 ops->ndo_get_stats64(dev, storage);
10655 } else if (ops->ndo_get_stats) {
10656 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10657 } else {
10658 netdev_stats_to_stats64(storage, &dev->stats);
10659 }
10660 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10661 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10662 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10663 return storage;
10664}
10665EXPORT_SYMBOL(dev_get_stats);
10666
10667/**
10668 * dev_fetch_sw_netstats - get per-cpu network device statistics
10669 * @s: place to store stats
10670 * @netstats: per-cpu network stats to read from
10671 *
10672 * Read per-cpu network statistics and populate the related fields in @s.
10673 */
10674void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10675 const struct pcpu_sw_netstats __percpu *netstats)
10676{
10677 int cpu;
10678
10679 for_each_possible_cpu(cpu) {
10680 const struct pcpu_sw_netstats *stats;
10681 struct pcpu_sw_netstats tmp;
10682 unsigned int start;
10683
10684 stats = per_cpu_ptr(netstats, cpu);
10685 do {
10686 start = u64_stats_fetch_begin_irq(&stats->syncp);
10687 tmp.rx_packets = stats->rx_packets;
10688 tmp.rx_bytes = stats->rx_bytes;
10689 tmp.tx_packets = stats->tx_packets;
10690 tmp.tx_bytes = stats->tx_bytes;
10691 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10692
10693 s->rx_packets += tmp.rx_packets;
10694 s->rx_bytes += tmp.rx_bytes;
10695 s->tx_packets += tmp.tx_packets;
10696 s->tx_bytes += tmp.tx_bytes;
10697 }
10698}
10699EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10700
10701/**
10702 * dev_get_tstats64 - ndo_get_stats64 implementation
10703 * @dev: device to get statistics from
10704 * @s: place to store stats
10705 *
10706 * Populate @s from dev->stats and dev->tstats. Can be used as
10707 * ndo_get_stats64() callback.
10708 */
10709void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10710{
10711 netdev_stats_to_stats64(s, &dev->stats);
10712 dev_fetch_sw_netstats(s, dev->tstats);
10713}
10714EXPORT_SYMBOL_GPL(dev_get_tstats64);
10715
10716struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10717{
10718 struct netdev_queue *queue = dev_ingress_queue(dev);
10719
10720#ifdef CONFIG_NET_CLS_ACT
10721 if (queue)
10722 return queue;
10723 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10724 if (!queue)
10725 return NULL;
10726 netdev_init_one_queue(dev, queue, NULL);
10727 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10728 queue->qdisc_sleeping = &noop_qdisc;
10729 rcu_assign_pointer(dev->ingress_queue, queue);
10730#endif
10731 return queue;
10732}
10733
10734static const struct ethtool_ops default_ethtool_ops;
10735
10736void netdev_set_default_ethtool_ops(struct net_device *dev,
10737 const struct ethtool_ops *ops)
10738{
10739 if (dev->ethtool_ops == &default_ethtool_ops)
10740 dev->ethtool_ops = ops;
10741}
10742EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10743
10744void netdev_freemem(struct net_device *dev)
10745{
10746 char *addr = (char *)dev - dev->padded;
10747
10748 kvfree(addr);
10749}
10750
10751/**
10752 * alloc_netdev_mqs - allocate network device
10753 * @sizeof_priv: size of private data to allocate space for
10754 * @name: device name format string
10755 * @name_assign_type: origin of device name
10756 * @setup: callback to initialize device
10757 * @txqs: the number of TX subqueues to allocate
10758 * @rxqs: the number of RX subqueues to allocate
10759 *
10760 * Allocates a struct net_device with private data area for driver use
10761 * and performs basic initialization. Also allocates subqueue structs
10762 * for each queue on the device.
10763 */
10764struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10765 unsigned char name_assign_type,
10766 void (*setup)(struct net_device *),
10767 unsigned int txqs, unsigned int rxqs)
10768{
10769 struct net_device *dev;
10770 unsigned int alloc_size;
10771 struct net_device *p;
10772
10773 BUG_ON(strlen(name) >= sizeof(dev->name));
10774
10775 if (txqs < 1) {
10776 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10777 return NULL;
10778 }
10779
10780 if (rxqs < 1) {
10781 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10782 return NULL;
10783 }
10784
10785 alloc_size = sizeof(struct net_device);
10786 if (sizeof_priv) {
10787 /* ensure 32-byte alignment of private area */
10788 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10789 alloc_size += sizeof_priv;
10790 }
10791 /* ensure 32-byte alignment of whole construct */
10792 alloc_size += NETDEV_ALIGN - 1;
10793
10794 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10795 if (!p)
10796 return NULL;
10797
10798 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10799 dev->padded = (char *)dev - (char *)p;
10800
10801#ifdef CONFIG_PCPU_DEV_REFCNT
10802 dev->pcpu_refcnt = alloc_percpu(int);
10803 if (!dev->pcpu_refcnt)
10804 goto free_dev;
10805 dev_hold(dev);
10806#else
10807 refcount_set(&dev->dev_refcnt, 1);
10808#endif
10809
10810 if (dev_addr_init(dev))
10811 goto free_pcpu;
10812
10813 dev_mc_init(dev);
10814 dev_uc_init(dev);
10815
10816 dev_net_set(dev, &init_net);
10817
10818 dev->gso_max_size = GSO_MAX_SIZE;
10819 dev->gso_max_segs = GSO_MAX_SEGS;
10820 dev->upper_level = 1;
10821 dev->lower_level = 1;
10822#ifdef CONFIG_LOCKDEP
10823 dev->nested_level = 0;
10824 INIT_LIST_HEAD(&dev->unlink_list);
10825#endif
10826
10827 INIT_LIST_HEAD(&dev->napi_list);
10828 INIT_LIST_HEAD(&dev->unreg_list);
10829 INIT_LIST_HEAD(&dev->close_list);
10830 INIT_LIST_HEAD(&dev->link_watch_list);
10831 INIT_LIST_HEAD(&dev->adj_list.upper);
10832 INIT_LIST_HEAD(&dev->adj_list.lower);
10833 INIT_LIST_HEAD(&dev->ptype_all);
10834 INIT_LIST_HEAD(&dev->ptype_specific);
10835 INIT_LIST_HEAD(&dev->net_notifier_list);
10836#ifdef CONFIG_NET_SCHED
10837 hash_init(dev->qdisc_hash);
10838#endif
10839 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10840 setup(dev);
10841
10842 if (!dev->tx_queue_len) {
10843 dev->priv_flags |= IFF_NO_QUEUE;
10844 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10845 }
10846
10847 dev->num_tx_queues = txqs;
10848 dev->real_num_tx_queues = txqs;
10849 if (netif_alloc_netdev_queues(dev))
10850 goto free_all;
10851
10852 dev->num_rx_queues = rxqs;
10853 dev->real_num_rx_queues = rxqs;
10854 if (netif_alloc_rx_queues(dev))
10855 goto free_all;
10856
10857 strcpy(dev->name, name);
10858 dev->name_assign_type = name_assign_type;
10859 dev->group = INIT_NETDEV_GROUP;
10860 if (!dev->ethtool_ops)
10861 dev->ethtool_ops = &default_ethtool_ops;
10862
10863 nf_hook_ingress_init(dev);
10864
10865 return dev;
10866
10867free_all:
10868 free_netdev(dev);
10869 return NULL;
10870
10871free_pcpu:
10872#ifdef CONFIG_PCPU_DEV_REFCNT
10873 free_percpu(dev->pcpu_refcnt);
10874free_dev:
10875#endif
10876 netdev_freemem(dev);
10877 return NULL;
10878}
10879EXPORT_SYMBOL(alloc_netdev_mqs);
10880
10881/**
10882 * free_netdev - free network device
10883 * @dev: device
10884 *
10885 * This function does the last stage of destroying an allocated device
10886 * interface. The reference to the device object is released. If this
10887 * is the last reference then it will be freed.Must be called in process
10888 * context.
10889 */
10890void free_netdev(struct net_device *dev)
10891{
10892 struct napi_struct *p, *n;
10893
10894 might_sleep();
10895
10896 /* When called immediately after register_netdevice() failed the unwind
10897 * handling may still be dismantling the device. Handle that case by
10898 * deferring the free.
10899 */
10900 if (dev->reg_state == NETREG_UNREGISTERING) {
10901 ASSERT_RTNL();
10902 dev->needs_free_netdev = true;
10903 return;
10904 }
10905
10906 netif_free_tx_queues(dev);
10907 netif_free_rx_queues(dev);
10908
10909 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10910
10911 /* Flush device addresses */
10912 dev_addr_flush(dev);
10913
10914 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10915 netif_napi_del(p);
10916
10917#ifdef CONFIG_PCPU_DEV_REFCNT
10918 free_percpu(dev->pcpu_refcnt);
10919 dev->pcpu_refcnt = NULL;
10920#endif
10921 free_percpu(dev->xdp_bulkq);
10922 dev->xdp_bulkq = NULL;
10923
10924 /* Compatibility with error handling in drivers */
10925 if (dev->reg_state == NETREG_UNINITIALIZED) {
10926 netdev_freemem(dev);
10927 return;
10928 }
10929
10930 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10931 dev->reg_state = NETREG_RELEASED;
10932
10933 /* will free via device release */
10934 put_device(&dev->dev);
10935}
10936EXPORT_SYMBOL(free_netdev);
10937
10938/**
10939 * synchronize_net - Synchronize with packet receive processing
10940 *
10941 * Wait for packets currently being received to be done.
10942 * Does not block later packets from starting.
10943 */
10944void synchronize_net(void)
10945{
10946 might_sleep();
10947 if (rtnl_is_locked())
10948 synchronize_rcu_expedited();
10949 else
10950 synchronize_rcu();
10951}
10952EXPORT_SYMBOL(synchronize_net);
10953
10954/**
10955 * unregister_netdevice_queue - remove device from the kernel
10956 * @dev: device
10957 * @head: list
10958 *
10959 * This function shuts down a device interface and removes it
10960 * from the kernel tables.
10961 * If head not NULL, device is queued to be unregistered later.
10962 *
10963 * Callers must hold the rtnl semaphore. You may want
10964 * unregister_netdev() instead of this.
10965 */
10966
10967void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10968{
10969 ASSERT_RTNL();
10970
10971 if (head) {
10972 list_move_tail(&dev->unreg_list, head);
10973 } else {
10974 LIST_HEAD(single);
10975
10976 list_add(&dev->unreg_list, &single);
10977 unregister_netdevice_many(&single);
10978 }
10979}
10980EXPORT_SYMBOL(unregister_netdevice_queue);
10981
10982/**
10983 * unregister_netdevice_many - unregister many devices
10984 * @head: list of devices
10985 *
10986 * Note: As most callers use a stack allocated list_head,
10987 * we force a list_del() to make sure stack wont be corrupted later.
10988 */
10989void unregister_netdevice_many(struct list_head *head)
10990{
10991 struct net_device *dev, *tmp;
10992 LIST_HEAD(close_head);
10993
10994 BUG_ON(dev_boot_phase);
10995 ASSERT_RTNL();
10996
10997 if (list_empty(head))
10998 return;
10999
11000 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11001 /* Some devices call without registering
11002 * for initialization unwind. Remove those
11003 * devices and proceed with the remaining.
11004 */
11005 if (dev->reg_state == NETREG_UNINITIALIZED) {
11006 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11007 dev->name, dev);
11008
11009 WARN_ON(1);
11010 list_del(&dev->unreg_list);
11011 continue;
11012 }
11013 dev->dismantle = true;
11014 BUG_ON(dev->reg_state != NETREG_REGISTERED);
11015 }
11016
11017 /* If device is running, close it first. */
11018 list_for_each_entry(dev, head, unreg_list)
11019 list_add_tail(&dev->close_list, &close_head);
11020 dev_close_many(&close_head, true);
11021
11022 list_for_each_entry(dev, head, unreg_list) {
11023 /* And unlink it from device chain. */
11024 unlist_netdevice(dev);
11025
11026 dev->reg_state = NETREG_UNREGISTERING;
11027 }
11028 flush_all_backlogs();
11029
11030 synchronize_net();
11031
11032 list_for_each_entry(dev, head, unreg_list) {
11033 struct sk_buff *skb = NULL;
11034
11035 /* Shutdown queueing discipline. */
11036 dev_shutdown(dev);
11037
11038 dev_xdp_uninstall(dev);
11039
11040 /* Notify protocols, that we are about to destroy
11041 * this device. They should clean all the things.
11042 */
11043 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11044
11045 if (!dev->rtnl_link_ops ||
11046 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11047 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11048 GFP_KERNEL, NULL, 0);
11049
11050 /*
11051 * Flush the unicast and multicast chains
11052 */
11053 dev_uc_flush(dev);
11054 dev_mc_flush(dev);
11055
11056 netdev_name_node_alt_flush(dev);
11057 netdev_name_node_free(dev->name_node);
11058
11059 if (dev->netdev_ops->ndo_uninit)
11060 dev->netdev_ops->ndo_uninit(dev);
11061
11062 if (skb)
11063 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11064
11065 /* Notifier chain MUST detach us all upper devices. */
11066 WARN_ON(netdev_has_any_upper_dev(dev));
11067 WARN_ON(netdev_has_any_lower_dev(dev));
11068
11069 /* Remove entries from kobject tree */
11070 netdev_unregister_kobject(dev);
11071#ifdef CONFIG_XPS
11072 /* Remove XPS queueing entries */
11073 netif_reset_xps_queues_gt(dev, 0);
11074#endif
11075 }
11076
11077 synchronize_net();
11078
11079 list_for_each_entry(dev, head, unreg_list) {
11080 dev_put(dev);
11081 net_set_todo(dev);
11082 }
11083
11084 list_del(head);
11085}
11086EXPORT_SYMBOL(unregister_netdevice_many);
11087
11088/**
11089 * unregister_netdev - remove device from the kernel
11090 * @dev: device
11091 *
11092 * This function shuts down a device interface and removes it
11093 * from the kernel tables.
11094 *
11095 * This is just a wrapper for unregister_netdevice that takes
11096 * the rtnl semaphore. In general you want to use this and not
11097 * unregister_netdevice.
11098 */
11099void unregister_netdev(struct net_device *dev)
11100{
11101 rtnl_lock();
11102 unregister_netdevice(dev);
11103 rtnl_unlock();
11104}
11105EXPORT_SYMBOL(unregister_netdev);
11106
11107/**
11108 * __dev_change_net_namespace - move device to different nethost namespace
11109 * @dev: device
11110 * @net: network namespace
11111 * @pat: If not NULL name pattern to try if the current device name
11112 * is already taken in the destination network namespace.
11113 * @new_ifindex: If not zero, specifies device index in the target
11114 * namespace.
11115 *
11116 * This function shuts down a device interface and moves it
11117 * to a new network namespace. On success 0 is returned, on
11118 * a failure a netagive errno code is returned.
11119 *
11120 * Callers must hold the rtnl semaphore.
11121 */
11122
11123int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11124 const char *pat, int new_ifindex)
11125{
11126 struct net *net_old = dev_net(dev);
11127 int err, new_nsid;
11128
11129 ASSERT_RTNL();
11130
11131 /* Don't allow namespace local devices to be moved. */
11132 err = -EINVAL;
11133 if (dev->features & NETIF_F_NETNS_LOCAL)
11134 goto out;
11135
11136 /* Ensure the device has been registrered */
11137 if (dev->reg_state != NETREG_REGISTERED)
11138 goto out;
11139
11140 /* Get out if there is nothing todo */
11141 err = 0;
11142 if (net_eq(net_old, net))
11143 goto out;
11144
11145 /* Pick the destination device name, and ensure
11146 * we can use it in the destination network namespace.
11147 */
11148 err = -EEXIST;
11149 if (__dev_get_by_name(net, dev->name)) {
11150 /* We get here if we can't use the current device name */
11151 if (!pat)
11152 goto out;
11153 err = dev_get_valid_name(net, dev, pat);
11154 if (err < 0)
11155 goto out;
11156 }
11157
11158 /* Check that new_ifindex isn't used yet. */
11159 err = -EBUSY;
11160 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11161 goto out;
11162
11163 /*
11164 * And now a mini version of register_netdevice unregister_netdevice.
11165 */
11166
11167 /* If device is running close it first. */
11168 dev_close(dev);
11169
11170 /* And unlink it from device chain */
11171 unlist_netdevice(dev);
11172
11173 synchronize_net();
11174
11175 /* Shutdown queueing discipline. */
11176 dev_shutdown(dev);
11177
11178 /* Notify protocols, that we are about to destroy
11179 * this device. They should clean all the things.
11180 *
11181 * Note that dev->reg_state stays at NETREG_REGISTERED.
11182 * This is wanted because this way 8021q and macvlan know
11183 * the device is just moving and can keep their slaves up.
11184 */
11185 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11186 rcu_barrier();
11187
11188 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11189 /* If there is an ifindex conflict assign a new one */
11190 if (!new_ifindex) {
11191 if (__dev_get_by_index(net, dev->ifindex))
11192 new_ifindex = dev_new_index(net);
11193 else
11194 new_ifindex = dev->ifindex;
11195 }
11196
11197 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11198 new_ifindex);
11199
11200 /*
11201 * Flush the unicast and multicast chains
11202 */
11203 dev_uc_flush(dev);
11204 dev_mc_flush(dev);
11205
11206 /* Send a netdev-removed uevent to the old namespace */
11207 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11208 netdev_adjacent_del_links(dev);
11209
11210 /* Move per-net netdevice notifiers that are following the netdevice */
11211 move_netdevice_notifiers_dev_net(dev, net);
11212
11213 /* Actually switch the network namespace */
11214 dev_net_set(dev, net);
11215 dev->ifindex = new_ifindex;
11216
11217 /* Send a netdev-add uevent to the new namespace */
11218 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11219 netdev_adjacent_add_links(dev);
11220
11221 /* Fixup kobjects */
11222 err = device_rename(&dev->dev, dev->name);
11223 WARN_ON(err);
11224
11225 /* Adapt owner in case owning user namespace of target network
11226 * namespace is different from the original one.
11227 */
11228 err = netdev_change_owner(dev, net_old, net);
11229 WARN_ON(err);
11230
11231 /* Add the device back in the hashes */
11232 list_netdevice(dev);
11233
11234 /* Notify protocols, that a new device appeared. */
11235 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11236
11237 /*
11238 * Prevent userspace races by waiting until the network
11239 * device is fully setup before sending notifications.
11240 */
11241 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11242
11243 synchronize_net();
11244 err = 0;
11245out:
11246 return err;
11247}
11248EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11249
11250static int dev_cpu_dead(unsigned int oldcpu)
11251{
11252 struct sk_buff **list_skb;
11253 struct sk_buff *skb;
11254 unsigned int cpu;
11255 struct softnet_data *sd, *oldsd, *remsd = NULL;
11256
11257 local_irq_disable();
11258 cpu = smp_processor_id();
11259 sd = &per_cpu(softnet_data, cpu);
11260 oldsd = &per_cpu(softnet_data, oldcpu);
11261
11262 /* Find end of our completion_queue. */
11263 list_skb = &sd->completion_queue;
11264 while (*list_skb)
11265 list_skb = &(*list_skb)->next;
11266 /* Append completion queue from offline CPU. */
11267 *list_skb = oldsd->completion_queue;
11268 oldsd->completion_queue = NULL;
11269
11270 /* Append output queue from offline CPU. */
11271 if (oldsd->output_queue) {
11272 *sd->output_queue_tailp = oldsd->output_queue;
11273 sd->output_queue_tailp = oldsd->output_queue_tailp;
11274 oldsd->output_queue = NULL;
11275 oldsd->output_queue_tailp = &oldsd->output_queue;
11276 }
11277 /* Append NAPI poll list from offline CPU, with one exception :
11278 * process_backlog() must be called by cpu owning percpu backlog.
11279 * We properly handle process_queue & input_pkt_queue later.
11280 */
11281 while (!list_empty(&oldsd->poll_list)) {
11282 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11283 struct napi_struct,
11284 poll_list);
11285
11286 list_del_init(&napi->poll_list);
11287 if (napi->poll == process_backlog)
11288 napi->state = 0;
11289 else
11290 ____napi_schedule(sd, napi);
11291 }
11292
11293 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11294 local_irq_enable();
11295
11296#ifdef CONFIG_RPS
11297 remsd = oldsd->rps_ipi_list;
11298 oldsd->rps_ipi_list = NULL;
11299#endif
11300 /* send out pending IPI's on offline CPU */
11301 net_rps_send_ipi(remsd);
11302
11303 /* Process offline CPU's input_pkt_queue */
11304 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11305 netif_rx_ni(skb);
11306 input_queue_head_incr(oldsd);
11307 }
11308 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11309 netif_rx_ni(skb);
11310 input_queue_head_incr(oldsd);
11311 }
11312
11313 return 0;
11314}
11315
11316/**
11317 * netdev_increment_features - increment feature set by one
11318 * @all: current feature set
11319 * @one: new feature set
11320 * @mask: mask feature set
11321 *
11322 * Computes a new feature set after adding a device with feature set
11323 * @one to the master device with current feature set @all. Will not
11324 * enable anything that is off in @mask. Returns the new feature set.
11325 */
11326netdev_features_t netdev_increment_features(netdev_features_t all,
11327 netdev_features_t one, netdev_features_t mask)
11328{
11329 if (mask & NETIF_F_HW_CSUM)
11330 mask |= NETIF_F_CSUM_MASK;
11331 mask |= NETIF_F_VLAN_CHALLENGED;
11332
11333 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11334 all &= one | ~NETIF_F_ALL_FOR_ALL;
11335
11336 /* If one device supports hw checksumming, set for all. */
11337 if (all & NETIF_F_HW_CSUM)
11338 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11339
11340 return all;
11341}
11342EXPORT_SYMBOL(netdev_increment_features);
11343
11344static struct hlist_head * __net_init netdev_create_hash(void)
11345{
11346 int i;
11347 struct hlist_head *hash;
11348
11349 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11350 if (hash != NULL)
11351 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11352 INIT_HLIST_HEAD(&hash[i]);
11353
11354 return hash;
11355}
11356
11357/* Initialize per network namespace state */
11358static int __net_init netdev_init(struct net *net)
11359{
11360 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11361 8 * sizeof_field(struct napi_struct, gro_bitmask));
11362
11363 if (net != &init_net)
11364 INIT_LIST_HEAD(&net->dev_base_head);
11365
11366 net->dev_name_head = netdev_create_hash();
11367 if (net->dev_name_head == NULL)
11368 goto err_name;
11369
11370 net->dev_index_head = netdev_create_hash();
11371 if (net->dev_index_head == NULL)
11372 goto err_idx;
11373
11374 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11375
11376 return 0;
11377
11378err_idx:
11379 kfree(net->dev_name_head);
11380err_name:
11381 return -ENOMEM;
11382}
11383
11384/**
11385 * netdev_drivername - network driver for the device
11386 * @dev: network device
11387 *
11388 * Determine network driver for device.
11389 */
11390const char *netdev_drivername(const struct net_device *dev)
11391{
11392 const struct device_driver *driver;
11393 const struct device *parent;
11394 const char *empty = "";
11395
11396 parent = dev->dev.parent;
11397 if (!parent)
11398 return empty;
11399
11400 driver = parent->driver;
11401 if (driver && driver->name)
11402 return driver->name;
11403 return empty;
11404}
11405
11406static void __netdev_printk(const char *level, const struct net_device *dev,
11407 struct va_format *vaf)
11408{
11409 if (dev && dev->dev.parent) {
11410 dev_printk_emit(level[1] - '0',
11411 dev->dev.parent,
11412 "%s %s %s%s: %pV",
11413 dev_driver_string(dev->dev.parent),
11414 dev_name(dev->dev.parent),
11415 netdev_name(dev), netdev_reg_state(dev),
11416 vaf);
11417 } else if (dev) {
11418 printk("%s%s%s: %pV",
11419 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11420 } else {
11421 printk("%s(NULL net_device): %pV", level, vaf);
11422 }
11423}
11424
11425void netdev_printk(const char *level, const struct net_device *dev,
11426 const char *format, ...)
11427{
11428 struct va_format vaf;
11429 va_list args;
11430
11431 va_start(args, format);
11432
11433 vaf.fmt = format;
11434 vaf.va = &args;
11435
11436 __netdev_printk(level, dev, &vaf);
11437
11438 va_end(args);
11439}
11440EXPORT_SYMBOL(netdev_printk);
11441
11442#define define_netdev_printk_level(func, level) \
11443void func(const struct net_device *dev, const char *fmt, ...) \
11444{ \
11445 struct va_format vaf; \
11446 va_list args; \
11447 \
11448 va_start(args, fmt); \
11449 \
11450 vaf.fmt = fmt; \
11451 vaf.va = &args; \
11452 \
11453 __netdev_printk(level, dev, &vaf); \
11454 \
11455 va_end(args); \
11456} \
11457EXPORT_SYMBOL(func);
11458
11459define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11460define_netdev_printk_level(netdev_alert, KERN_ALERT);
11461define_netdev_printk_level(netdev_crit, KERN_CRIT);
11462define_netdev_printk_level(netdev_err, KERN_ERR);
11463define_netdev_printk_level(netdev_warn, KERN_WARNING);
11464define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11465define_netdev_printk_level(netdev_info, KERN_INFO);
11466
11467static void __net_exit netdev_exit(struct net *net)
11468{
11469 kfree(net->dev_name_head);
11470 kfree(net->dev_index_head);
11471 if (net != &init_net)
11472 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11473}
11474
11475static struct pernet_operations __net_initdata netdev_net_ops = {
11476 .init = netdev_init,
11477 .exit = netdev_exit,
11478};
11479
11480static void __net_exit default_device_exit(struct net *net)
11481{
11482 struct net_device *dev, *aux;
11483 /*
11484 * Push all migratable network devices back to the
11485 * initial network namespace
11486 */
11487 rtnl_lock();
11488 for_each_netdev_safe(net, dev, aux) {
11489 int err;
11490 char fb_name[IFNAMSIZ];
11491
11492 /* Ignore unmoveable devices (i.e. loopback) */
11493 if (dev->features & NETIF_F_NETNS_LOCAL)
11494 continue;
11495
11496 /* Leave virtual devices for the generic cleanup */
11497 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11498 continue;
11499
11500 /* Push remaining network devices to init_net */
11501 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11502 if (__dev_get_by_name(&init_net, fb_name))
11503 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11504 err = dev_change_net_namespace(dev, &init_net, fb_name);
11505 if (err) {
11506 pr_emerg("%s: failed to move %s to init_net: %d\n",
11507 __func__, dev->name, err);
11508 BUG();
11509 }
11510 }
11511 rtnl_unlock();
11512}
11513
11514static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11515{
11516 /* Return with the rtnl_lock held when there are no network
11517 * devices unregistering in any network namespace in net_list.
11518 */
11519 struct net *net;
11520 bool unregistering;
11521 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11522
11523 add_wait_queue(&netdev_unregistering_wq, &wait);
11524 for (;;) {
11525 unregistering = false;
11526 rtnl_lock();
11527 list_for_each_entry(net, net_list, exit_list) {
11528 if (net->dev_unreg_count > 0) {
11529 unregistering = true;
11530 break;
11531 }
11532 }
11533 if (!unregistering)
11534 break;
11535 __rtnl_unlock();
11536
11537 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11538 }
11539 remove_wait_queue(&netdev_unregistering_wq, &wait);
11540}
11541
11542static void __net_exit default_device_exit_batch(struct list_head *net_list)
11543{
11544 /* At exit all network devices most be removed from a network
11545 * namespace. Do this in the reverse order of registration.
11546 * Do this across as many network namespaces as possible to
11547 * improve batching efficiency.
11548 */
11549 struct net_device *dev;
11550 struct net *net;
11551 LIST_HEAD(dev_kill_list);
11552
11553 /* To prevent network device cleanup code from dereferencing
11554 * loopback devices or network devices that have been freed
11555 * wait here for all pending unregistrations to complete,
11556 * before unregistring the loopback device and allowing the
11557 * network namespace be freed.
11558 *
11559 * The netdev todo list containing all network devices
11560 * unregistrations that happen in default_device_exit_batch
11561 * will run in the rtnl_unlock() at the end of
11562 * default_device_exit_batch.
11563 */
11564 rtnl_lock_unregistering(net_list);
11565 list_for_each_entry(net, net_list, exit_list) {
11566 for_each_netdev_reverse(net, dev) {
11567 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11568 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11569 else
11570 unregister_netdevice_queue(dev, &dev_kill_list);
11571 }
11572 }
11573 unregister_netdevice_many(&dev_kill_list);
11574 rtnl_unlock();
11575}
11576
11577static struct pernet_operations __net_initdata default_device_ops = {
11578 .exit = default_device_exit,
11579 .exit_batch = default_device_exit_batch,
11580};
11581
11582/*
11583 * Initialize the DEV module. At boot time this walks the device list and
11584 * unhooks any devices that fail to initialise (normally hardware not
11585 * present) and leaves us with a valid list of present and active devices.
11586 *
11587 */
11588
11589/*
11590 * This is called single threaded during boot, so no need
11591 * to take the rtnl semaphore.
11592 */
11593static int __init net_dev_init(void)
11594{
11595 int i, rc = -ENOMEM;
11596
11597 BUG_ON(!dev_boot_phase);
11598
11599 if (dev_proc_init())
11600 goto out;
11601
11602 if (netdev_kobject_init())
11603 goto out;
11604
11605 INIT_LIST_HEAD(&ptype_all);
11606 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11607 INIT_LIST_HEAD(&ptype_base[i]);
11608
11609 INIT_LIST_HEAD(&offload_base);
11610
11611 if (register_pernet_subsys(&netdev_net_ops))
11612 goto out;
11613
11614 /*
11615 * Initialise the packet receive queues.
11616 */
11617
11618 for_each_possible_cpu(i) {
11619 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11620 struct softnet_data *sd = &per_cpu(softnet_data, i);
11621
11622 INIT_WORK(flush, flush_backlog);
11623
11624 skb_queue_head_init(&sd->input_pkt_queue);
11625 skb_queue_head_init(&sd->process_queue);
11626#ifdef CONFIG_XFRM_OFFLOAD
11627 skb_queue_head_init(&sd->xfrm_backlog);
11628#endif
11629 INIT_LIST_HEAD(&sd->poll_list);
11630 sd->output_queue_tailp = &sd->output_queue;
11631#ifdef CONFIG_RPS
11632 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11633 sd->cpu = i;
11634#endif
11635
11636 init_gro_hash(&sd->backlog);
11637 sd->backlog.poll = process_backlog;
11638 sd->backlog.weight = weight_p;
11639 }
11640
11641 dev_boot_phase = 0;
11642
11643 /* The loopback device is special if any other network devices
11644 * is present in a network namespace the loopback device must
11645 * be present. Since we now dynamically allocate and free the
11646 * loopback device ensure this invariant is maintained by
11647 * keeping the loopback device as the first device on the
11648 * list of network devices. Ensuring the loopback devices
11649 * is the first device that appears and the last network device
11650 * that disappears.
11651 */
11652 if (register_pernet_device(&loopback_net_ops))
11653 goto out;
11654
11655 if (register_pernet_device(&default_device_ops))
11656 goto out;
11657
11658 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11659 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11660
11661 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11662 NULL, dev_cpu_dead);
11663 WARN_ON(rc < 0);
11664 rc = 0;
11665out:
11666 return rc;
11667}
11668
11669subsys_initcall(net_dev_init);