Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2#include <linux/mm.h>
3#include <linux/slab.h>
4#include <linux/string.h>
5#include <linux/compiler.h>
6#include <linux/export.h>
7#include <linux/err.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/sched/task_stack.h>
12#include <linux/security.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
17#include <linux/vmalloc.h>
18#include <linux/userfaultfd_k.h>
19#include <linux/elf.h>
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
22#include <linux/random.h>
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
26
27#include <linux/uaccess.h>
28
29#include "internal.h"
30
31/**
32 * kfree_const - conditionally free memory
33 * @x: pointer to the memory
34 *
35 * Function calls kfree only if @x is not in .rodata section.
36 */
37void kfree_const(const void *x)
38{
39 if (!is_kernel_rodata((unsigned long)x))
40 kfree(x);
41}
42EXPORT_SYMBOL(kfree_const);
43
44/**
45 * kstrdup - allocate space for and copy an existing string
46 * @s: the string to duplicate
47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
48 *
49 * Return: newly allocated copy of @s or %NULL in case of error
50 */
51char *kstrdup(const char *s, gfp_t gfp)
52{
53 size_t len;
54 char *buf;
55
56 if (!s)
57 return NULL;
58
59 len = strlen(s) + 1;
60 buf = kmalloc_track_caller(len, gfp);
61 if (buf)
62 memcpy(buf, s, len);
63 return buf;
64}
65EXPORT_SYMBOL(kstrdup);
66
67/**
68 * kstrdup_const - conditionally duplicate an existing const string
69 * @s: the string to duplicate
70 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
71 *
72 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
73 * must not be passed to krealloc().
74 *
75 * Return: source string if it is in .rodata section otherwise
76 * fallback to kstrdup.
77 */
78const char *kstrdup_const(const char *s, gfp_t gfp)
79{
80 if (is_kernel_rodata((unsigned long)s))
81 return s;
82
83 return kstrdup(s, gfp);
84}
85EXPORT_SYMBOL(kstrdup_const);
86
87/**
88 * kstrndup - allocate space for and copy an existing string
89 * @s: the string to duplicate
90 * @max: read at most @max chars from @s
91 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
92 *
93 * Note: Use kmemdup_nul() instead if the size is known exactly.
94 *
95 * Return: newly allocated copy of @s or %NULL in case of error
96 */
97char *kstrndup(const char *s, size_t max, gfp_t gfp)
98{
99 size_t len;
100 char *buf;
101
102 if (!s)
103 return NULL;
104
105 len = strnlen(s, max);
106 buf = kmalloc_track_caller(len+1, gfp);
107 if (buf) {
108 memcpy(buf, s, len);
109 buf[len] = '\0';
110 }
111 return buf;
112}
113EXPORT_SYMBOL(kstrndup);
114
115/**
116 * kmemdup - duplicate region of memory
117 *
118 * @src: memory region to duplicate
119 * @len: memory region length
120 * @gfp: GFP mask to use
121 *
122 * Return: newly allocated copy of @src or %NULL in case of error
123 */
124void *kmemdup(const void *src, size_t len, gfp_t gfp)
125{
126 void *p;
127
128 p = kmalloc_track_caller(len, gfp);
129 if (p)
130 memcpy(p, src, len);
131 return p;
132}
133EXPORT_SYMBOL(kmemdup);
134
135/**
136 * kmemdup_nul - Create a NUL-terminated string from unterminated data
137 * @s: The data to stringify
138 * @len: The size of the data
139 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
140 *
141 * Return: newly allocated copy of @s with NUL-termination or %NULL in
142 * case of error
143 */
144char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
145{
146 char *buf;
147
148 if (!s)
149 return NULL;
150
151 buf = kmalloc_track_caller(len + 1, gfp);
152 if (buf) {
153 memcpy(buf, s, len);
154 buf[len] = '\0';
155 }
156 return buf;
157}
158EXPORT_SYMBOL(kmemdup_nul);
159
160/**
161 * memdup_user - duplicate memory region from user space
162 *
163 * @src: source address in user space
164 * @len: number of bytes to copy
165 *
166 * Return: an ERR_PTR() on failure. Result is physically
167 * contiguous, to be freed by kfree().
168 */
169void *memdup_user(const void __user *src, size_t len)
170{
171 void *p;
172
173 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
174 if (!p)
175 return ERR_PTR(-ENOMEM);
176
177 if (copy_from_user(p, src, len)) {
178 kfree(p);
179 return ERR_PTR(-EFAULT);
180 }
181
182 return p;
183}
184EXPORT_SYMBOL(memdup_user);
185
186/**
187 * vmemdup_user - duplicate memory region from user space
188 *
189 * @src: source address in user space
190 * @len: number of bytes to copy
191 *
192 * Return: an ERR_PTR() on failure. Result may be not
193 * physically contiguous. Use kvfree() to free.
194 */
195void *vmemdup_user(const void __user *src, size_t len)
196{
197 void *p;
198
199 p = kvmalloc(len, GFP_USER);
200 if (!p)
201 return ERR_PTR(-ENOMEM);
202
203 if (copy_from_user(p, src, len)) {
204 kvfree(p);
205 return ERR_PTR(-EFAULT);
206 }
207
208 return p;
209}
210EXPORT_SYMBOL(vmemdup_user);
211
212/**
213 * strndup_user - duplicate an existing string from user space
214 * @s: The string to duplicate
215 * @n: Maximum number of bytes to copy, including the trailing NUL.
216 *
217 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
218 */
219char *strndup_user(const char __user *s, long n)
220{
221 char *p;
222 long length;
223
224 length = strnlen_user(s, n);
225
226 if (!length)
227 return ERR_PTR(-EFAULT);
228
229 if (length > n)
230 return ERR_PTR(-EINVAL);
231
232 p = memdup_user(s, length);
233
234 if (IS_ERR(p))
235 return p;
236
237 p[length - 1] = '\0';
238
239 return p;
240}
241EXPORT_SYMBOL(strndup_user);
242
243/**
244 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
245 *
246 * @src: source address in user space
247 * @len: number of bytes to copy
248 *
249 * Return: an ERR_PTR() on failure.
250 */
251void *memdup_user_nul(const void __user *src, size_t len)
252{
253 char *p;
254
255 /*
256 * Always use GFP_KERNEL, since copy_from_user() can sleep and
257 * cause pagefault, which makes it pointless to use GFP_NOFS
258 * or GFP_ATOMIC.
259 */
260 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
261 if (!p)
262 return ERR_PTR(-ENOMEM);
263
264 if (copy_from_user(p, src, len)) {
265 kfree(p);
266 return ERR_PTR(-EFAULT);
267 }
268 p[len] = '\0';
269
270 return p;
271}
272EXPORT_SYMBOL(memdup_user_nul);
273
274void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
275 struct vm_area_struct *prev)
276{
277 struct vm_area_struct *next;
278
279 vma->vm_prev = prev;
280 if (prev) {
281 next = prev->vm_next;
282 prev->vm_next = vma;
283 } else {
284 next = mm->mmap;
285 mm->mmap = vma;
286 }
287 vma->vm_next = next;
288 if (next)
289 next->vm_prev = vma;
290}
291
292void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma)
293{
294 struct vm_area_struct *prev, *next;
295
296 next = vma->vm_next;
297 prev = vma->vm_prev;
298 if (prev)
299 prev->vm_next = next;
300 else
301 mm->mmap = next;
302 if (next)
303 next->vm_prev = prev;
304}
305
306/* Check if the vma is being used as a stack by this task */
307int vma_is_stack_for_current(struct vm_area_struct *vma)
308{
309 struct task_struct * __maybe_unused t = current;
310
311 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
312}
313
314/*
315 * Change backing file, only valid to use during initial VMA setup.
316 */
317void vma_set_file(struct vm_area_struct *vma, struct file *file)
318{
319 /* Changing an anonymous vma with this is illegal */
320 get_file(file);
321 swap(vma->vm_file, file);
322 fput(file);
323}
324EXPORT_SYMBOL(vma_set_file);
325
326#ifndef STACK_RND_MASK
327#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
328#endif
329
330unsigned long randomize_stack_top(unsigned long stack_top)
331{
332 unsigned long random_variable = 0;
333
334 if (current->flags & PF_RANDOMIZE) {
335 random_variable = get_random_long();
336 random_variable &= STACK_RND_MASK;
337 random_variable <<= PAGE_SHIFT;
338 }
339#ifdef CONFIG_STACK_GROWSUP
340 return PAGE_ALIGN(stack_top) + random_variable;
341#else
342 return PAGE_ALIGN(stack_top) - random_variable;
343#endif
344}
345
346#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
347unsigned long arch_randomize_brk(struct mm_struct *mm)
348{
349 /* Is the current task 32bit ? */
350 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
351 return randomize_page(mm->brk, SZ_32M);
352
353 return randomize_page(mm->brk, SZ_1G);
354}
355
356unsigned long arch_mmap_rnd(void)
357{
358 unsigned long rnd;
359
360#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
361 if (is_compat_task())
362 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
363 else
364#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
365 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
366
367 return rnd << PAGE_SHIFT;
368}
369
370static int mmap_is_legacy(struct rlimit *rlim_stack)
371{
372 if (current->personality & ADDR_COMPAT_LAYOUT)
373 return 1;
374
375 if (rlim_stack->rlim_cur == RLIM_INFINITY)
376 return 1;
377
378 return sysctl_legacy_va_layout;
379}
380
381/*
382 * Leave enough space between the mmap area and the stack to honour ulimit in
383 * the face of randomisation.
384 */
385#define MIN_GAP (SZ_128M)
386#define MAX_GAP (STACK_TOP / 6 * 5)
387
388static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
389{
390 unsigned long gap = rlim_stack->rlim_cur;
391 unsigned long pad = stack_guard_gap;
392
393 /* Account for stack randomization if necessary */
394 if (current->flags & PF_RANDOMIZE)
395 pad += (STACK_RND_MASK << PAGE_SHIFT);
396
397 /* Values close to RLIM_INFINITY can overflow. */
398 if (gap + pad > gap)
399 gap += pad;
400
401 if (gap < MIN_GAP)
402 gap = MIN_GAP;
403 else if (gap > MAX_GAP)
404 gap = MAX_GAP;
405
406 return PAGE_ALIGN(STACK_TOP - gap - rnd);
407}
408
409void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
410{
411 unsigned long random_factor = 0UL;
412
413 if (current->flags & PF_RANDOMIZE)
414 random_factor = arch_mmap_rnd();
415
416 if (mmap_is_legacy(rlim_stack)) {
417 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
418 mm->get_unmapped_area = arch_get_unmapped_area;
419 } else {
420 mm->mmap_base = mmap_base(random_factor, rlim_stack);
421 mm->get_unmapped_area = arch_get_unmapped_area_topdown;
422 }
423}
424#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
425void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
426{
427 mm->mmap_base = TASK_UNMAPPED_BASE;
428 mm->get_unmapped_area = arch_get_unmapped_area;
429}
430#endif
431
432/**
433 * __account_locked_vm - account locked pages to an mm's locked_vm
434 * @mm: mm to account against
435 * @pages: number of pages to account
436 * @inc: %true if @pages should be considered positive, %false if not
437 * @task: task used to check RLIMIT_MEMLOCK
438 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
439 *
440 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
441 * that mmap_lock is held as writer.
442 *
443 * Return:
444 * * 0 on success
445 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
446 */
447int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
448 struct task_struct *task, bool bypass_rlim)
449{
450 unsigned long locked_vm, limit;
451 int ret = 0;
452
453 mmap_assert_write_locked(mm);
454
455 locked_vm = mm->locked_vm;
456 if (inc) {
457 if (!bypass_rlim) {
458 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
459 if (locked_vm + pages > limit)
460 ret = -ENOMEM;
461 }
462 if (!ret)
463 mm->locked_vm = locked_vm + pages;
464 } else {
465 WARN_ON_ONCE(pages > locked_vm);
466 mm->locked_vm = locked_vm - pages;
467 }
468
469 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
470 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
471 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
472 ret ? " - exceeded" : "");
473
474 return ret;
475}
476EXPORT_SYMBOL_GPL(__account_locked_vm);
477
478/**
479 * account_locked_vm - account locked pages to an mm's locked_vm
480 * @mm: mm to account against, may be NULL
481 * @pages: number of pages to account
482 * @inc: %true if @pages should be considered positive, %false if not
483 *
484 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
485 *
486 * Return:
487 * * 0 on success, or if mm is NULL
488 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
489 */
490int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
491{
492 int ret;
493
494 if (pages == 0 || !mm)
495 return 0;
496
497 mmap_write_lock(mm);
498 ret = __account_locked_vm(mm, pages, inc, current,
499 capable(CAP_IPC_LOCK));
500 mmap_write_unlock(mm);
501
502 return ret;
503}
504EXPORT_SYMBOL_GPL(account_locked_vm);
505
506unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
507 unsigned long len, unsigned long prot,
508 unsigned long flag, unsigned long pgoff)
509{
510 unsigned long ret;
511 struct mm_struct *mm = current->mm;
512 unsigned long populate;
513 LIST_HEAD(uf);
514
515 ret = security_mmap_file(file, prot, flag);
516 if (!ret) {
517 if (mmap_write_lock_killable(mm))
518 return -EINTR;
519 ret = do_mmap(file, addr, len, prot, flag, pgoff, &populate,
520 &uf);
521 mmap_write_unlock(mm);
522 userfaultfd_unmap_complete(mm, &uf);
523 if (populate)
524 mm_populate(ret, populate);
525 }
526 return ret;
527}
528
529unsigned long vm_mmap(struct file *file, unsigned long addr,
530 unsigned long len, unsigned long prot,
531 unsigned long flag, unsigned long offset)
532{
533 if (unlikely(offset + PAGE_ALIGN(len) < offset))
534 return -EINVAL;
535 if (unlikely(offset_in_page(offset)))
536 return -EINVAL;
537
538 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
539}
540EXPORT_SYMBOL(vm_mmap);
541
542/**
543 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
544 * failure, fall back to non-contiguous (vmalloc) allocation.
545 * @size: size of the request.
546 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
547 * @node: numa node to allocate from
548 *
549 * Uses kmalloc to get the memory but if the allocation fails then falls back
550 * to the vmalloc allocator. Use kvfree for freeing the memory.
551 *
552 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
553 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
554 * preferable to the vmalloc fallback, due to visible performance drawbacks.
555 *
556 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
557 * fall back to vmalloc.
558 *
559 * Return: pointer to the allocated memory of %NULL in case of failure
560 */
561void *kvmalloc_node(size_t size, gfp_t flags, int node)
562{
563 gfp_t kmalloc_flags = flags;
564 void *ret;
565
566 /*
567 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
568 * so the given set of flags has to be compatible.
569 */
570 if ((flags & GFP_KERNEL) != GFP_KERNEL)
571 return kmalloc_node(size, flags, node);
572
573 /*
574 * We want to attempt a large physically contiguous block first because
575 * it is less likely to fragment multiple larger blocks and therefore
576 * contribute to a long term fragmentation less than vmalloc fallback.
577 * However make sure that larger requests are not too disruptive - no
578 * OOM killer and no allocation failure warnings as we have a fallback.
579 */
580 if (size > PAGE_SIZE) {
581 kmalloc_flags |= __GFP_NOWARN;
582
583 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
584 kmalloc_flags |= __GFP_NORETRY;
585 }
586
587 ret = kmalloc_node(size, kmalloc_flags, node);
588
589 /*
590 * It doesn't really make sense to fallback to vmalloc for sub page
591 * requests
592 */
593 if (ret || size <= PAGE_SIZE)
594 return ret;
595
596 /* Don't even allow crazy sizes */
597 if (WARN_ON_ONCE(size > INT_MAX))
598 return NULL;
599
600 return __vmalloc_node(size, 1, flags, node,
601 __builtin_return_address(0));
602}
603EXPORT_SYMBOL(kvmalloc_node);
604
605/**
606 * kvfree() - Free memory.
607 * @addr: Pointer to allocated memory.
608 *
609 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
610 * It is slightly more efficient to use kfree() or vfree() if you are certain
611 * that you know which one to use.
612 *
613 * Context: Either preemptible task context or not-NMI interrupt.
614 */
615void kvfree(const void *addr)
616{
617 if (is_vmalloc_addr(addr))
618 vfree(addr);
619 else
620 kfree(addr);
621}
622EXPORT_SYMBOL(kvfree);
623
624/**
625 * kvfree_sensitive - Free a data object containing sensitive information.
626 * @addr: address of the data object to be freed.
627 * @len: length of the data object.
628 *
629 * Use the special memzero_explicit() function to clear the content of a
630 * kvmalloc'ed object containing sensitive data to make sure that the
631 * compiler won't optimize out the data clearing.
632 */
633void kvfree_sensitive(const void *addr, size_t len)
634{
635 if (likely(!ZERO_OR_NULL_PTR(addr))) {
636 memzero_explicit((void *)addr, len);
637 kvfree(addr);
638 }
639}
640EXPORT_SYMBOL(kvfree_sensitive);
641
642void *kvrealloc(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
643{
644 void *newp;
645
646 if (oldsize >= newsize)
647 return (void *)p;
648 newp = kvmalloc(newsize, flags);
649 if (!newp)
650 return NULL;
651 memcpy(newp, p, oldsize);
652 kvfree(p);
653 return newp;
654}
655EXPORT_SYMBOL(kvrealloc);
656
657static inline void *__page_rmapping(struct page *page)
658{
659 unsigned long mapping;
660
661 mapping = (unsigned long)page->mapping;
662 mapping &= ~PAGE_MAPPING_FLAGS;
663
664 return (void *)mapping;
665}
666
667/* Neutral page->mapping pointer to address_space or anon_vma or other */
668void *page_rmapping(struct page *page)
669{
670 page = compound_head(page);
671 return __page_rmapping(page);
672}
673
674/*
675 * Return true if this page is mapped into pagetables.
676 * For compound page it returns true if any subpage of compound page is mapped.
677 */
678bool page_mapped(struct page *page)
679{
680 int i;
681
682 if (likely(!PageCompound(page)))
683 return atomic_read(&page->_mapcount) >= 0;
684 page = compound_head(page);
685 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
686 return true;
687 if (PageHuge(page))
688 return false;
689 for (i = 0; i < compound_nr(page); i++) {
690 if (atomic_read(&page[i]._mapcount) >= 0)
691 return true;
692 }
693 return false;
694}
695EXPORT_SYMBOL(page_mapped);
696
697struct anon_vma *page_anon_vma(struct page *page)
698{
699 unsigned long mapping;
700
701 page = compound_head(page);
702 mapping = (unsigned long)page->mapping;
703 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
704 return NULL;
705 return __page_rmapping(page);
706}
707
708struct address_space *page_mapping(struct page *page)
709{
710 struct address_space *mapping;
711
712 page = compound_head(page);
713
714 /* This happens if someone calls flush_dcache_page on slab page */
715 if (unlikely(PageSlab(page)))
716 return NULL;
717
718 if (unlikely(PageSwapCache(page))) {
719 swp_entry_t entry;
720
721 entry.val = page_private(page);
722 return swap_address_space(entry);
723 }
724
725 mapping = page->mapping;
726 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
727 return NULL;
728
729 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
730}
731EXPORT_SYMBOL(page_mapping);
732
733/* Slow path of page_mapcount() for compound pages */
734int __page_mapcount(struct page *page)
735{
736 int ret;
737
738 ret = atomic_read(&page->_mapcount) + 1;
739 /*
740 * For file THP page->_mapcount contains total number of mapping
741 * of the page: no need to look into compound_mapcount.
742 */
743 if (!PageAnon(page) && !PageHuge(page))
744 return ret;
745 page = compound_head(page);
746 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
747 if (PageDoubleMap(page))
748 ret--;
749 return ret;
750}
751EXPORT_SYMBOL_GPL(__page_mapcount);
752
753void copy_huge_page(struct page *dst, struct page *src)
754{
755 unsigned i, nr = compound_nr(src);
756
757 for (i = 0; i < nr; i++) {
758 cond_resched();
759 copy_highpage(nth_page(dst, i), nth_page(src, i));
760 }
761}
762
763int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
764int sysctl_overcommit_ratio __read_mostly = 50;
765unsigned long sysctl_overcommit_kbytes __read_mostly;
766int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
767unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
768unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
769
770int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
771 size_t *lenp, loff_t *ppos)
772{
773 int ret;
774
775 ret = proc_dointvec(table, write, buffer, lenp, ppos);
776 if (ret == 0 && write)
777 sysctl_overcommit_kbytes = 0;
778 return ret;
779}
780
781static void sync_overcommit_as(struct work_struct *dummy)
782{
783 percpu_counter_sync(&vm_committed_as);
784}
785
786int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
787 size_t *lenp, loff_t *ppos)
788{
789 struct ctl_table t;
790 int new_policy = -1;
791 int ret;
792
793 /*
794 * The deviation of sync_overcommit_as could be big with loose policy
795 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
796 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
797 * with the strict "NEVER", and to avoid possible race condition (even
798 * though user usually won't too frequently do the switching to policy
799 * OVERCOMMIT_NEVER), the switch is done in the following order:
800 * 1. changing the batch
801 * 2. sync percpu count on each CPU
802 * 3. switch the policy
803 */
804 if (write) {
805 t = *table;
806 t.data = &new_policy;
807 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
808 if (ret || new_policy == -1)
809 return ret;
810
811 mm_compute_batch(new_policy);
812 if (new_policy == OVERCOMMIT_NEVER)
813 schedule_on_each_cpu(sync_overcommit_as);
814 sysctl_overcommit_memory = new_policy;
815 } else {
816 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
817 }
818
819 return ret;
820}
821
822int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
823 size_t *lenp, loff_t *ppos)
824{
825 int ret;
826
827 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
828 if (ret == 0 && write)
829 sysctl_overcommit_ratio = 0;
830 return ret;
831}
832
833/*
834 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
835 */
836unsigned long vm_commit_limit(void)
837{
838 unsigned long allowed;
839
840 if (sysctl_overcommit_kbytes)
841 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
842 else
843 allowed = ((totalram_pages() - hugetlb_total_pages())
844 * sysctl_overcommit_ratio / 100);
845 allowed += total_swap_pages;
846
847 return allowed;
848}
849
850/*
851 * Make sure vm_committed_as in one cacheline and not cacheline shared with
852 * other variables. It can be updated by several CPUs frequently.
853 */
854struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
855
856/*
857 * The global memory commitment made in the system can be a metric
858 * that can be used to drive ballooning decisions when Linux is hosted
859 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
860 * balancing memory across competing virtual machines that are hosted.
861 * Several metrics drive this policy engine including the guest reported
862 * memory commitment.
863 *
864 * The time cost of this is very low for small platforms, and for big
865 * platform like a 2S/36C/72T Skylake server, in worst case where
866 * vm_committed_as's spinlock is under severe contention, the time cost
867 * could be about 30~40 microseconds.
868 */
869unsigned long vm_memory_committed(void)
870{
871 return percpu_counter_sum_positive(&vm_committed_as);
872}
873EXPORT_SYMBOL_GPL(vm_memory_committed);
874
875/*
876 * Check that a process has enough memory to allocate a new virtual
877 * mapping. 0 means there is enough memory for the allocation to
878 * succeed and -ENOMEM implies there is not.
879 *
880 * We currently support three overcommit policies, which are set via the
881 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
882 *
883 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
884 * Additional code 2002 Jul 20 by Robert Love.
885 *
886 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
887 *
888 * Note this is a helper function intended to be used by LSMs which
889 * wish to use this logic.
890 */
891int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
892{
893 long allowed;
894
895 vm_acct_memory(pages);
896
897 /*
898 * Sometimes we want to use more memory than we have
899 */
900 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
901 return 0;
902
903 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
904 if (pages > totalram_pages() + total_swap_pages)
905 goto error;
906 return 0;
907 }
908
909 allowed = vm_commit_limit();
910 /*
911 * Reserve some for root
912 */
913 if (!cap_sys_admin)
914 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
915
916 /*
917 * Don't let a single process grow so big a user can't recover
918 */
919 if (mm) {
920 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
921
922 allowed -= min_t(long, mm->total_vm / 32, reserve);
923 }
924
925 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
926 return 0;
927error:
928 vm_unacct_memory(pages);
929
930 return -ENOMEM;
931}
932
933/**
934 * get_cmdline() - copy the cmdline value to a buffer.
935 * @task: the task whose cmdline value to copy.
936 * @buffer: the buffer to copy to.
937 * @buflen: the length of the buffer. Larger cmdline values are truncated
938 * to this length.
939 *
940 * Return: the size of the cmdline field copied. Note that the copy does
941 * not guarantee an ending NULL byte.
942 */
943int get_cmdline(struct task_struct *task, char *buffer, int buflen)
944{
945 int res = 0;
946 unsigned int len;
947 struct mm_struct *mm = get_task_mm(task);
948 unsigned long arg_start, arg_end, env_start, env_end;
949 if (!mm)
950 goto out;
951 if (!mm->arg_end)
952 goto out_mm; /* Shh! No looking before we're done */
953
954 spin_lock(&mm->arg_lock);
955 arg_start = mm->arg_start;
956 arg_end = mm->arg_end;
957 env_start = mm->env_start;
958 env_end = mm->env_end;
959 spin_unlock(&mm->arg_lock);
960
961 len = arg_end - arg_start;
962
963 if (len > buflen)
964 len = buflen;
965
966 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
967
968 /*
969 * If the nul at the end of args has been overwritten, then
970 * assume application is using setproctitle(3).
971 */
972 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
973 len = strnlen(buffer, res);
974 if (len < res) {
975 res = len;
976 } else {
977 len = env_end - env_start;
978 if (len > buflen - res)
979 len = buflen - res;
980 res += access_process_vm(task, env_start,
981 buffer+res, len,
982 FOLL_FORCE);
983 res = strnlen(buffer, res);
984 }
985 }
986out_mm:
987 mmput(mm);
988out:
989 return res;
990}
991
992int __weak memcmp_pages(struct page *page1, struct page *page2)
993{
994 char *addr1, *addr2;
995 int ret;
996
997 addr1 = kmap_atomic(page1);
998 addr2 = kmap_atomic(page2);
999 ret = memcmp(addr1, addr2, PAGE_SIZE);
1000 kunmap_atomic(addr2);
1001 kunmap_atomic(addr1);
1002 return ret;
1003}
1004
1005#ifdef CONFIG_PRINTK
1006/**
1007 * mem_dump_obj - Print available provenance information
1008 * @object: object for which to find provenance information.
1009 *
1010 * This function uses pr_cont(), so that the caller is expected to have
1011 * printed out whatever preamble is appropriate. The provenance information
1012 * depends on the type of object and on how much debugging is enabled.
1013 * For example, for a slab-cache object, the slab name is printed, and,
1014 * if available, the return address and stack trace from the allocation
1015 * and last free path of that object.
1016 */
1017void mem_dump_obj(void *object)
1018{
1019 const char *type;
1020
1021 if (kmem_valid_obj(object)) {
1022 kmem_dump_obj(object);
1023 return;
1024 }
1025
1026 if (vmalloc_dump_obj(object))
1027 return;
1028
1029 if (virt_addr_valid(object))
1030 type = "non-slab/vmalloc memory";
1031 else if (object == NULL)
1032 type = "NULL pointer";
1033 else if (object == ZERO_SIZE_PTR)
1034 type = "zero-size pointer";
1035 else
1036 type = "non-paged memory";
1037
1038 pr_cont(" %s\n", type);
1039}
1040EXPORT_SYMBOL_GPL(mem_dump_obj);
1041#endif
1042
1043/*
1044 * A driver might set a page logically offline -- PageOffline() -- and
1045 * turn the page inaccessible in the hypervisor; after that, access to page
1046 * content can be fatal.
1047 *
1048 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1049 * pages after checking PageOffline(); however, these PFN walkers can race
1050 * with drivers that set PageOffline().
1051 *
1052 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1053 * synchronize with such drivers, achieving that a page cannot be set
1054 * PageOffline() while frozen.
1055 *
1056 * page_offline_begin()/page_offline_end() is used by drivers that care about
1057 * such races when setting a page PageOffline().
1058 */
1059static DECLARE_RWSEM(page_offline_rwsem);
1060
1061void page_offline_freeze(void)
1062{
1063 down_read(&page_offline_rwsem);
1064}
1065
1066void page_offline_thaw(void)
1067{
1068 up_read(&page_offline_rwsem);
1069}
1070
1071void page_offline_begin(void)
1072{
1073 down_write(&page_offline_rwsem);
1074}
1075EXPORT_SYMBOL(page_offline_begin);
1076
1077void page_offline_end(void)
1078{
1079 up_write(&page_offline_rwsem);
1080}
1081EXPORT_SYMBOL(page_offline_end);