at v5.15-rc7 674 lines 21 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/mm.h> 12#include <linux/pagemap.h> 13#include <linux/tracepoint-defs.h> 14 15/* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26/* The GFP flags allowed during early boot */ 27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29/* Control allocation cpuset and node placement constraints */ 30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32/* Do not use these with a slab allocator */ 33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35void page_writeback_init(void); 36 37vm_fault_t do_swap_page(struct vm_fault *vmf); 38 39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 40 unsigned long floor, unsigned long ceiling); 41 42static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 43{ 44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 45} 46 47void unmap_page_range(struct mmu_gather *tlb, 48 struct vm_area_struct *vma, 49 unsigned long addr, unsigned long end, 50 struct zap_details *details); 51 52void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 53 unsigned long lookahead_size); 54void force_page_cache_ra(struct readahead_control *, unsigned long nr); 55static inline void force_page_cache_readahead(struct address_space *mapping, 56 struct file *file, pgoff_t index, unsigned long nr_to_read) 57{ 58 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 59 force_page_cache_ra(&ractl, nr_to_read); 60} 61 62unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 63 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 64 65/** 66 * page_evictable - test whether a page is evictable 67 * @page: the page to test 68 * 69 * Test whether page is evictable--i.e., should be placed on active/inactive 70 * lists vs unevictable list. 71 * 72 * Reasons page might not be evictable: 73 * (1) page's mapping marked unevictable 74 * (2) page is part of an mlocked VMA 75 * 76 */ 77static inline bool page_evictable(struct page *page) 78{ 79 bool ret; 80 81 /* Prevent address_space of inode and swap cache from being freed */ 82 rcu_read_lock(); 83 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 84 rcu_read_unlock(); 85 return ret; 86} 87 88/* 89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 90 * a count of one. 91 */ 92static inline void set_page_refcounted(struct page *page) 93{ 94 VM_BUG_ON_PAGE(PageTail(page), page); 95 VM_BUG_ON_PAGE(page_ref_count(page), page); 96 set_page_count(page, 1); 97} 98 99extern unsigned long highest_memmap_pfn; 100 101/* 102 * Maximum number of reclaim retries without progress before the OOM 103 * killer is consider the only way forward. 104 */ 105#define MAX_RECLAIM_RETRIES 16 106 107/* 108 * in mm/vmscan.c: 109 */ 110extern int isolate_lru_page(struct page *page); 111extern void putback_lru_page(struct page *page); 112 113/* 114 * in mm/rmap.c: 115 */ 116extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 117 118/* 119 * in mm/memcontrol.c: 120 */ 121extern bool cgroup_memory_nokmem; 122 123/* 124 * in mm/page_alloc.c 125 */ 126 127/* 128 * Structure for holding the mostly immutable allocation parameters passed 129 * between functions involved in allocations, including the alloc_pages* 130 * family of functions. 131 * 132 * nodemask, migratetype and highest_zoneidx are initialized only once in 133 * __alloc_pages() and then never change. 134 * 135 * zonelist, preferred_zone and highest_zoneidx are set first in 136 * __alloc_pages() for the fast path, and might be later changed 137 * in __alloc_pages_slowpath(). All other functions pass the whole structure 138 * by a const pointer. 139 */ 140struct alloc_context { 141 struct zonelist *zonelist; 142 nodemask_t *nodemask; 143 struct zoneref *preferred_zoneref; 144 int migratetype; 145 146 /* 147 * highest_zoneidx represents highest usable zone index of 148 * the allocation request. Due to the nature of the zone, 149 * memory on lower zone than the highest_zoneidx will be 150 * protected by lowmem_reserve[highest_zoneidx]. 151 * 152 * highest_zoneidx is also used by reclaim/compaction to limit 153 * the target zone since higher zone than this index cannot be 154 * usable for this allocation request. 155 */ 156 enum zone_type highest_zoneidx; 157 bool spread_dirty_pages; 158}; 159 160/* 161 * Locate the struct page for both the matching buddy in our 162 * pair (buddy1) and the combined O(n+1) page they form (page). 163 * 164 * 1) Any buddy B1 will have an order O twin B2 which satisfies 165 * the following equation: 166 * B2 = B1 ^ (1 << O) 167 * For example, if the starting buddy (buddy2) is #8 its order 168 * 1 buddy is #10: 169 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 170 * 171 * 2) Any buddy B will have an order O+1 parent P which 172 * satisfies the following equation: 173 * P = B & ~(1 << O) 174 * 175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 176 */ 177static inline unsigned long 178__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 179{ 180 return page_pfn ^ (1 << order); 181} 182 183extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 184 unsigned long end_pfn, struct zone *zone); 185 186static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 187 unsigned long end_pfn, struct zone *zone) 188{ 189 if (zone->contiguous) 190 return pfn_to_page(start_pfn); 191 192 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 193} 194 195extern int __isolate_free_page(struct page *page, unsigned int order); 196extern void __putback_isolated_page(struct page *page, unsigned int order, 197 int mt); 198extern void memblock_free_pages(struct page *page, unsigned long pfn, 199 unsigned int order); 200extern void __free_pages_core(struct page *page, unsigned int order); 201extern void prep_compound_page(struct page *page, unsigned int order); 202extern void post_alloc_hook(struct page *page, unsigned int order, 203 gfp_t gfp_flags); 204extern int user_min_free_kbytes; 205 206extern void free_unref_page(struct page *page, unsigned int order); 207extern void free_unref_page_list(struct list_head *list); 208 209extern void zone_pcp_update(struct zone *zone, int cpu_online); 210extern void zone_pcp_reset(struct zone *zone); 211extern void zone_pcp_disable(struct zone *zone); 212extern void zone_pcp_enable(struct zone *zone); 213 214extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 215 phys_addr_t min_addr, 216 int nid, bool exact_nid); 217 218#if defined CONFIG_COMPACTION || defined CONFIG_CMA 219 220/* 221 * in mm/compaction.c 222 */ 223/* 224 * compact_control is used to track pages being migrated and the free pages 225 * they are being migrated to during memory compaction. The free_pfn starts 226 * at the end of a zone and migrate_pfn begins at the start. Movable pages 227 * are moved to the end of a zone during a compaction run and the run 228 * completes when free_pfn <= migrate_pfn 229 */ 230struct compact_control { 231 struct list_head freepages; /* List of free pages to migrate to */ 232 struct list_head migratepages; /* List of pages being migrated */ 233 unsigned int nr_freepages; /* Number of isolated free pages */ 234 unsigned int nr_migratepages; /* Number of pages to migrate */ 235 unsigned long free_pfn; /* isolate_freepages search base */ 236 /* 237 * Acts as an in/out parameter to page isolation for migration. 238 * isolate_migratepages uses it as a search base. 239 * isolate_migratepages_block will update the value to the next pfn 240 * after the last isolated one. 241 */ 242 unsigned long migrate_pfn; 243 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 244 struct zone *zone; 245 unsigned long total_migrate_scanned; 246 unsigned long total_free_scanned; 247 unsigned short fast_search_fail;/* failures to use free list searches */ 248 short search_order; /* order to start a fast search at */ 249 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 250 int order; /* order a direct compactor needs */ 251 int migratetype; /* migratetype of direct compactor */ 252 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 253 const int highest_zoneidx; /* zone index of a direct compactor */ 254 enum migrate_mode mode; /* Async or sync migration mode */ 255 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 256 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 257 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 258 bool direct_compaction; /* False from kcompactd or /proc/... */ 259 bool proactive_compaction; /* kcompactd proactive compaction */ 260 bool whole_zone; /* Whole zone should/has been scanned */ 261 bool contended; /* Signal lock or sched contention */ 262 bool rescan; /* Rescanning the same pageblock */ 263 bool alloc_contig; /* alloc_contig_range allocation */ 264}; 265 266/* 267 * Used in direct compaction when a page should be taken from the freelists 268 * immediately when one is created during the free path. 269 */ 270struct capture_control { 271 struct compact_control *cc; 272 struct page *page; 273}; 274 275unsigned long 276isolate_freepages_range(struct compact_control *cc, 277 unsigned long start_pfn, unsigned long end_pfn); 278int 279isolate_migratepages_range(struct compact_control *cc, 280 unsigned long low_pfn, unsigned long end_pfn); 281#endif 282int find_suitable_fallback(struct free_area *area, unsigned int order, 283 int migratetype, bool only_stealable, bool *can_steal); 284 285/* 286 * This function returns the order of a free page in the buddy system. In 287 * general, page_zone(page)->lock must be held by the caller to prevent the 288 * page from being allocated in parallel and returning garbage as the order. 289 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 290 * page cannot be allocated or merged in parallel. Alternatively, it must 291 * handle invalid values gracefully, and use buddy_order_unsafe() below. 292 */ 293static inline unsigned int buddy_order(struct page *page) 294{ 295 /* PageBuddy() must be checked by the caller */ 296 return page_private(page); 297} 298 299/* 300 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 301 * PageBuddy() should be checked first by the caller to minimize race window, 302 * and invalid values must be handled gracefully. 303 * 304 * READ_ONCE is used so that if the caller assigns the result into a local 305 * variable and e.g. tests it for valid range before using, the compiler cannot 306 * decide to remove the variable and inline the page_private(page) multiple 307 * times, potentially observing different values in the tests and the actual 308 * use of the result. 309 */ 310#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 311 312/* 313 * These three helpers classifies VMAs for virtual memory accounting. 314 */ 315 316/* 317 * Executable code area - executable, not writable, not stack 318 */ 319static inline bool is_exec_mapping(vm_flags_t flags) 320{ 321 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 322} 323 324/* 325 * Stack area - automatically grows in one direction 326 * 327 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 328 * do_mmap() forbids all other combinations. 329 */ 330static inline bool is_stack_mapping(vm_flags_t flags) 331{ 332 return (flags & VM_STACK) == VM_STACK; 333} 334 335/* 336 * Data area - private, writable, not stack 337 */ 338static inline bool is_data_mapping(vm_flags_t flags) 339{ 340 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 341} 342 343/* mm/util.c */ 344void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 345 struct vm_area_struct *prev); 346void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 347 348#ifdef CONFIG_MMU 349extern long populate_vma_page_range(struct vm_area_struct *vma, 350 unsigned long start, unsigned long end, int *locked); 351extern long faultin_vma_page_range(struct vm_area_struct *vma, 352 unsigned long start, unsigned long end, 353 bool write, int *locked); 354extern void munlock_vma_pages_range(struct vm_area_struct *vma, 355 unsigned long start, unsigned long end); 356static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 357{ 358 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 359} 360 361/* 362 * must be called with vma's mmap_lock held for read or write, and page locked. 363 */ 364extern void mlock_vma_page(struct page *page); 365extern unsigned int munlock_vma_page(struct page *page); 366 367extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 368 unsigned long len); 369 370/* 371 * Clear the page's PageMlocked(). This can be useful in a situation where 372 * we want to unconditionally remove a page from the pagecache -- e.g., 373 * on truncation or freeing. 374 * 375 * It is legal to call this function for any page, mlocked or not. 376 * If called for a page that is still mapped by mlocked vmas, all we do 377 * is revert to lazy LRU behaviour -- semantics are not broken. 378 */ 379extern void clear_page_mlock(struct page *page); 380 381extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 382 383/* 384 * At what user virtual address is page expected in vma? 385 * Returns -EFAULT if all of the page is outside the range of vma. 386 * If page is a compound head, the entire compound page is considered. 387 */ 388static inline unsigned long 389vma_address(struct page *page, struct vm_area_struct *vma) 390{ 391 pgoff_t pgoff; 392 unsigned long address; 393 394 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 395 pgoff = page_to_pgoff(page); 396 if (pgoff >= vma->vm_pgoff) { 397 address = vma->vm_start + 398 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 399 /* Check for address beyond vma (or wrapped through 0?) */ 400 if (address < vma->vm_start || address >= vma->vm_end) 401 address = -EFAULT; 402 } else if (PageHead(page) && 403 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 404 /* Test above avoids possibility of wrap to 0 on 32-bit */ 405 address = vma->vm_start; 406 } else { 407 address = -EFAULT; 408 } 409 return address; 410} 411 412/* 413 * Then at what user virtual address will none of the page be found in vma? 414 * Assumes that vma_address() already returned a good starting address. 415 * If page is a compound head, the entire compound page is considered. 416 */ 417static inline unsigned long 418vma_address_end(struct page *page, struct vm_area_struct *vma) 419{ 420 pgoff_t pgoff; 421 unsigned long address; 422 423 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 424 pgoff = page_to_pgoff(page) + compound_nr(page); 425 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 426 /* Check for address beyond vma (or wrapped through 0?) */ 427 if (address < vma->vm_start || address > vma->vm_end) 428 address = vma->vm_end; 429 return address; 430} 431 432static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 433 struct file *fpin) 434{ 435 int flags = vmf->flags; 436 437 if (fpin) 438 return fpin; 439 440 /* 441 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 442 * anything, so we only pin the file and drop the mmap_lock if only 443 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 444 */ 445 if (fault_flag_allow_retry_first(flags) && 446 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 447 fpin = get_file(vmf->vma->vm_file); 448 mmap_read_unlock(vmf->vma->vm_mm); 449 } 450 return fpin; 451} 452 453#else /* !CONFIG_MMU */ 454static inline void clear_page_mlock(struct page *page) { } 455static inline void mlock_vma_page(struct page *page) { } 456static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 457{ 458} 459#endif /* !CONFIG_MMU */ 460 461/* 462 * Return the mem_map entry representing the 'offset' subpage within 463 * the maximally aligned gigantic page 'base'. Handle any discontiguity 464 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 465 */ 466static inline struct page *mem_map_offset(struct page *base, int offset) 467{ 468 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 469 return nth_page(base, offset); 470 return base + offset; 471} 472 473/* 474 * Iterator over all subpages within the maximally aligned gigantic 475 * page 'base'. Handle any discontiguity in the mem_map. 476 */ 477static inline struct page *mem_map_next(struct page *iter, 478 struct page *base, int offset) 479{ 480 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 481 unsigned long pfn = page_to_pfn(base) + offset; 482 if (!pfn_valid(pfn)) 483 return NULL; 484 return pfn_to_page(pfn); 485 } 486 return iter + 1; 487} 488 489/* Memory initialisation debug and verification */ 490enum mminit_level { 491 MMINIT_WARNING, 492 MMINIT_VERIFY, 493 MMINIT_TRACE 494}; 495 496#ifdef CONFIG_DEBUG_MEMORY_INIT 497 498extern int mminit_loglevel; 499 500#define mminit_dprintk(level, prefix, fmt, arg...) \ 501do { \ 502 if (level < mminit_loglevel) { \ 503 if (level <= MMINIT_WARNING) \ 504 pr_warn("mminit::" prefix " " fmt, ##arg); \ 505 else \ 506 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 507 } \ 508} while (0) 509 510extern void mminit_verify_pageflags_layout(void); 511extern void mminit_verify_zonelist(void); 512#else 513 514static inline void mminit_dprintk(enum mminit_level level, 515 const char *prefix, const char *fmt, ...) 516{ 517} 518 519static inline void mminit_verify_pageflags_layout(void) 520{ 521} 522 523static inline void mminit_verify_zonelist(void) 524{ 525} 526#endif /* CONFIG_DEBUG_MEMORY_INIT */ 527 528/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 529#if defined(CONFIG_SPARSEMEM) 530extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 531 unsigned long *end_pfn); 532#else 533static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 534 unsigned long *end_pfn) 535{ 536} 537#endif /* CONFIG_SPARSEMEM */ 538 539#define NODE_RECLAIM_NOSCAN -2 540#define NODE_RECLAIM_FULL -1 541#define NODE_RECLAIM_SOME 0 542#define NODE_RECLAIM_SUCCESS 1 543 544#ifdef CONFIG_NUMA 545extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 546extern int find_next_best_node(int node, nodemask_t *used_node_mask); 547#else 548static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 549 unsigned int order) 550{ 551 return NODE_RECLAIM_NOSCAN; 552} 553static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 554{ 555 return NUMA_NO_NODE; 556} 557#endif 558 559extern int hwpoison_filter(struct page *p); 560 561extern u32 hwpoison_filter_dev_major; 562extern u32 hwpoison_filter_dev_minor; 563extern u64 hwpoison_filter_flags_mask; 564extern u64 hwpoison_filter_flags_value; 565extern u64 hwpoison_filter_memcg; 566extern u32 hwpoison_filter_enable; 567 568extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 569 unsigned long, unsigned long, 570 unsigned long, unsigned long); 571 572extern void set_pageblock_order(void); 573unsigned int reclaim_clean_pages_from_list(struct zone *zone, 574 struct list_head *page_list); 575/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 576#define ALLOC_WMARK_MIN WMARK_MIN 577#define ALLOC_WMARK_LOW WMARK_LOW 578#define ALLOC_WMARK_HIGH WMARK_HIGH 579#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 580 581/* Mask to get the watermark bits */ 582#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 583 584/* 585 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 586 * cannot assume a reduced access to memory reserves is sufficient for 587 * !MMU 588 */ 589#ifdef CONFIG_MMU 590#define ALLOC_OOM 0x08 591#else 592#define ALLOC_OOM ALLOC_NO_WATERMARKS 593#endif 594 595#define ALLOC_HARDER 0x10 /* try to alloc harder */ 596#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 597#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 598#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 599#ifdef CONFIG_ZONE_DMA32 600#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 601#else 602#define ALLOC_NOFRAGMENT 0x0 603#endif 604#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 605 606enum ttu_flags; 607struct tlbflush_unmap_batch; 608 609 610/* 611 * only for MM internal work items which do not depend on 612 * any allocations or locks which might depend on allocations 613 */ 614extern struct workqueue_struct *mm_percpu_wq; 615 616#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 617void try_to_unmap_flush(void); 618void try_to_unmap_flush_dirty(void); 619void flush_tlb_batched_pending(struct mm_struct *mm); 620#else 621static inline void try_to_unmap_flush(void) 622{ 623} 624static inline void try_to_unmap_flush_dirty(void) 625{ 626} 627static inline void flush_tlb_batched_pending(struct mm_struct *mm) 628{ 629} 630#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 631 632extern const struct trace_print_flags pageflag_names[]; 633extern const struct trace_print_flags vmaflag_names[]; 634extern const struct trace_print_flags gfpflag_names[]; 635 636static inline bool is_migrate_highatomic(enum migratetype migratetype) 637{ 638 return migratetype == MIGRATE_HIGHATOMIC; 639} 640 641static inline bool is_migrate_highatomic_page(struct page *page) 642{ 643 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 644} 645 646void setup_zone_pageset(struct zone *zone); 647 648struct migration_target_control { 649 int nid; /* preferred node id */ 650 nodemask_t *nmask; 651 gfp_t gfp_mask; 652}; 653 654/* 655 * mm/vmalloc.c 656 */ 657#ifdef CONFIG_MMU 658int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 659 pgprot_t prot, struct page **pages, unsigned int page_shift); 660#else 661static inline 662int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 663 pgprot_t prot, struct page **pages, unsigned int page_shift) 664{ 665 return -EINVAL; 666} 667#endif 668 669void vunmap_range_noflush(unsigned long start, unsigned long end); 670 671int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 672 unsigned long addr, int page_nid, int *flags); 673 674#endif /* __MM_INTERNAL_H */