at v5.15-rc6 2959 lines 80 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/locks.c 4 * 5 * Provide support for fcntl()'s F_GETLK, F_SETLK, and F_SETLKW calls. 6 * Doug Evans (dje@spiff.uucp), August 07, 1992 7 * 8 * Deadlock detection added. 9 * FIXME: one thing isn't handled yet: 10 * - mandatory locks (requires lots of changes elsewhere) 11 * Kelly Carmichael (kelly@[142.24.8.65]), September 17, 1994. 12 * 13 * Miscellaneous edits, and a total rewrite of posix_lock_file() code. 14 * Kai Petzke (wpp@marie.physik.tu-berlin.de), 1994 15 * 16 * Converted file_lock_table to a linked list from an array, which eliminates 17 * the limits on how many active file locks are open. 18 * Chad Page (pageone@netcom.com), November 27, 1994 19 * 20 * Removed dependency on file descriptors. dup()'ed file descriptors now 21 * get the same locks as the original file descriptors, and a close() on 22 * any file descriptor removes ALL the locks on the file for the current 23 * process. Since locks still depend on the process id, locks are inherited 24 * after an exec() but not after a fork(). This agrees with POSIX, and both 25 * BSD and SVR4 practice. 26 * Andy Walker (andy@lysaker.kvaerner.no), February 14, 1995 27 * 28 * Scrapped free list which is redundant now that we allocate locks 29 * dynamically with kmalloc()/kfree(). 30 * Andy Walker (andy@lysaker.kvaerner.no), February 21, 1995 31 * 32 * Implemented two lock personalities - FL_FLOCK and FL_POSIX. 33 * 34 * FL_POSIX locks are created with calls to fcntl() and lockf() through the 35 * fcntl() system call. They have the semantics described above. 36 * 37 * FL_FLOCK locks are created with calls to flock(), through the flock() 38 * system call, which is new. Old C libraries implement flock() via fcntl() 39 * and will continue to use the old, broken implementation. 40 * 41 * FL_FLOCK locks follow the 4.4 BSD flock() semantics. They are associated 42 * with a file pointer (filp). As a result they can be shared by a parent 43 * process and its children after a fork(). They are removed when the last 44 * file descriptor referring to the file pointer is closed (unless explicitly 45 * unlocked). 46 * 47 * FL_FLOCK locks never deadlock, an existing lock is always removed before 48 * upgrading from shared to exclusive (or vice versa). When this happens 49 * any processes blocked by the current lock are woken up and allowed to 50 * run before the new lock is applied. 51 * Andy Walker (andy@lysaker.kvaerner.no), June 09, 1995 52 * 53 * Removed some race conditions in flock_lock_file(), marked other possible 54 * races. Just grep for FIXME to see them. 55 * Dmitry Gorodchanin (pgmdsg@ibi.com), February 09, 1996. 56 * 57 * Addressed Dmitry's concerns. Deadlock checking no longer recursive. 58 * Lock allocation changed to GFP_ATOMIC as we can't afford to sleep 59 * once we've checked for blocking and deadlocking. 60 * Andy Walker (andy@lysaker.kvaerner.no), April 03, 1996. 61 * 62 * Initial implementation of mandatory locks. SunOS turned out to be 63 * a rotten model, so I implemented the "obvious" semantics. 64 * See 'Documentation/filesystems/mandatory-locking.rst' for details. 65 * Andy Walker (andy@lysaker.kvaerner.no), April 06, 1996. 66 * 67 * Don't allow mandatory locks on mmap()'ed files. Added simple functions to 68 * check if a file has mandatory locks, used by mmap(), open() and creat() to 69 * see if system call should be rejected. Ref. HP-UX/SunOS/Solaris Reference 70 * Manual, Section 2. 71 * Andy Walker (andy@lysaker.kvaerner.no), April 09, 1996. 72 * 73 * Tidied up block list handling. Added '/proc/locks' interface. 74 * Andy Walker (andy@lysaker.kvaerner.no), April 24, 1996. 75 * 76 * Fixed deadlock condition for pathological code that mixes calls to 77 * flock() and fcntl(). 78 * Andy Walker (andy@lysaker.kvaerner.no), April 29, 1996. 79 * 80 * Allow only one type of locking scheme (FL_POSIX or FL_FLOCK) to be in use 81 * for a given file at a time. Changed the CONFIG_LOCK_MANDATORY scheme to 82 * guarantee sensible behaviour in the case where file system modules might 83 * be compiled with different options than the kernel itself. 84 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 85 * 86 * Added a couple of missing wake_up() calls. Thanks to Thomas Meckel 87 * (Thomas.Meckel@mni.fh-giessen.de) for spotting this. 88 * Andy Walker (andy@lysaker.kvaerner.no), May 15, 1996. 89 * 90 * Changed FL_POSIX locks to use the block list in the same way as FL_FLOCK 91 * locks. Changed process synchronisation to avoid dereferencing locks that 92 * have already been freed. 93 * Andy Walker (andy@lysaker.kvaerner.no), Sep 21, 1996. 94 * 95 * Made the block list a circular list to minimise searching in the list. 96 * Andy Walker (andy@lysaker.kvaerner.no), Sep 25, 1996. 97 * 98 * Made mandatory locking a mount option. Default is not to allow mandatory 99 * locking. 100 * Andy Walker (andy@lysaker.kvaerner.no), Oct 04, 1996. 101 * 102 * Some adaptations for NFS support. 103 * Olaf Kirch (okir@monad.swb.de), Dec 1996, 104 * 105 * Fixed /proc/locks interface so that we can't overrun the buffer we are handed. 106 * Andy Walker (andy@lysaker.kvaerner.no), May 12, 1997. 107 * 108 * Use slab allocator instead of kmalloc/kfree. 109 * Use generic list implementation from <linux/list.h>. 110 * Sped up posix_locks_deadlock by only considering blocked locks. 111 * Matthew Wilcox <willy@debian.org>, March, 2000. 112 * 113 * Leases and LOCK_MAND 114 * Matthew Wilcox <willy@debian.org>, June, 2000. 115 * Stephen Rothwell <sfr@canb.auug.org.au>, June, 2000. 116 * 117 * Locking conflicts and dependencies: 118 * If multiple threads attempt to lock the same byte (or flock the same file) 119 * only one can be granted the lock, and other must wait their turn. 120 * The first lock has been "applied" or "granted", the others are "waiting" 121 * and are "blocked" by the "applied" lock.. 122 * 123 * Waiting and applied locks are all kept in trees whose properties are: 124 * 125 * - the root of a tree may be an applied or waiting lock. 126 * - every other node in the tree is a waiting lock that 127 * conflicts with every ancestor of that node. 128 * 129 * Every such tree begins life as a waiting singleton which obviously 130 * satisfies the above properties. 131 * 132 * The only ways we modify trees preserve these properties: 133 * 134 * 1. We may add a new leaf node, but only after first verifying that it 135 * conflicts with all of its ancestors. 136 * 2. We may remove the root of a tree, creating a new singleton 137 * tree from the root and N new trees rooted in the immediate 138 * children. 139 * 3. If the root of a tree is not currently an applied lock, we may 140 * apply it (if possible). 141 * 4. We may upgrade the root of the tree (either extend its range, 142 * or upgrade its entire range from read to write). 143 * 144 * When an applied lock is modified in a way that reduces or downgrades any 145 * part of its range, we remove all its children (2 above). This particularly 146 * happens when a lock is unlocked. 147 * 148 * For each of those child trees we "wake up" the thread which is 149 * waiting for the lock so it can continue handling as follows: if the 150 * root of the tree applies, we do so (3). If it doesn't, it must 151 * conflict with some applied lock. We remove (wake up) all of its children 152 * (2), and add it is a new leaf to the tree rooted in the applied 153 * lock (1). We then repeat the process recursively with those 154 * children. 155 * 156 */ 157 158#include <linux/capability.h> 159#include <linux/file.h> 160#include <linux/fdtable.h> 161#include <linux/fs.h> 162#include <linux/init.h> 163#include <linux/security.h> 164#include <linux/slab.h> 165#include <linux/syscalls.h> 166#include <linux/time.h> 167#include <linux/rcupdate.h> 168#include <linux/pid_namespace.h> 169#include <linux/hashtable.h> 170#include <linux/percpu.h> 171 172#define CREATE_TRACE_POINTS 173#include <trace/events/filelock.h> 174 175#include <linux/uaccess.h> 176 177#define IS_POSIX(fl) (fl->fl_flags & FL_POSIX) 178#define IS_FLOCK(fl) (fl->fl_flags & FL_FLOCK) 179#define IS_LEASE(fl) (fl->fl_flags & (FL_LEASE|FL_DELEG|FL_LAYOUT)) 180#define IS_OFDLCK(fl) (fl->fl_flags & FL_OFDLCK) 181#define IS_REMOTELCK(fl) (fl->fl_pid <= 0) 182 183static bool lease_breaking(struct file_lock *fl) 184{ 185 return fl->fl_flags & (FL_UNLOCK_PENDING | FL_DOWNGRADE_PENDING); 186} 187 188static int target_leasetype(struct file_lock *fl) 189{ 190 if (fl->fl_flags & FL_UNLOCK_PENDING) 191 return F_UNLCK; 192 if (fl->fl_flags & FL_DOWNGRADE_PENDING) 193 return F_RDLCK; 194 return fl->fl_type; 195} 196 197int leases_enable = 1; 198int lease_break_time = 45; 199 200/* 201 * The global file_lock_list is only used for displaying /proc/locks, so we 202 * keep a list on each CPU, with each list protected by its own spinlock. 203 * Global serialization is done using file_rwsem. 204 * 205 * Note that alterations to the list also require that the relevant flc_lock is 206 * held. 207 */ 208struct file_lock_list_struct { 209 spinlock_t lock; 210 struct hlist_head hlist; 211}; 212static DEFINE_PER_CPU(struct file_lock_list_struct, file_lock_list); 213DEFINE_STATIC_PERCPU_RWSEM(file_rwsem); 214 215 216/* 217 * The blocked_hash is used to find POSIX lock loops for deadlock detection. 218 * It is protected by blocked_lock_lock. 219 * 220 * We hash locks by lockowner in order to optimize searching for the lock a 221 * particular lockowner is waiting on. 222 * 223 * FIXME: make this value scale via some heuristic? We generally will want more 224 * buckets when we have more lockowners holding locks, but that's a little 225 * difficult to determine without knowing what the workload will look like. 226 */ 227#define BLOCKED_HASH_BITS 7 228static DEFINE_HASHTABLE(blocked_hash, BLOCKED_HASH_BITS); 229 230/* 231 * This lock protects the blocked_hash. Generally, if you're accessing it, you 232 * want to be holding this lock. 233 * 234 * In addition, it also protects the fl->fl_blocked_requests list, and the 235 * fl->fl_blocker pointer for file_lock structures that are acting as lock 236 * requests (in contrast to those that are acting as records of acquired locks). 237 * 238 * Note that when we acquire this lock in order to change the above fields, 239 * we often hold the flc_lock as well. In certain cases, when reading the fields 240 * protected by this lock, we can skip acquiring it iff we already hold the 241 * flc_lock. 242 */ 243static DEFINE_SPINLOCK(blocked_lock_lock); 244 245static struct kmem_cache *flctx_cache __read_mostly; 246static struct kmem_cache *filelock_cache __read_mostly; 247 248static struct file_lock_context * 249locks_get_lock_context(struct inode *inode, int type) 250{ 251 struct file_lock_context *ctx; 252 253 /* paired with cmpxchg() below */ 254 ctx = smp_load_acquire(&inode->i_flctx); 255 if (likely(ctx) || type == F_UNLCK) 256 goto out; 257 258 ctx = kmem_cache_alloc(flctx_cache, GFP_KERNEL); 259 if (!ctx) 260 goto out; 261 262 spin_lock_init(&ctx->flc_lock); 263 INIT_LIST_HEAD(&ctx->flc_flock); 264 INIT_LIST_HEAD(&ctx->flc_posix); 265 INIT_LIST_HEAD(&ctx->flc_lease); 266 267 /* 268 * Assign the pointer if it's not already assigned. If it is, then 269 * free the context we just allocated. 270 */ 271 if (cmpxchg(&inode->i_flctx, NULL, ctx)) { 272 kmem_cache_free(flctx_cache, ctx); 273 ctx = smp_load_acquire(&inode->i_flctx); 274 } 275out: 276 trace_locks_get_lock_context(inode, type, ctx); 277 return ctx; 278} 279 280static void 281locks_dump_ctx_list(struct list_head *list, char *list_type) 282{ 283 struct file_lock *fl; 284 285 list_for_each_entry(fl, list, fl_list) { 286 pr_warn("%s: fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", list_type, fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 287 } 288} 289 290static void 291locks_check_ctx_lists(struct inode *inode) 292{ 293 struct file_lock_context *ctx = inode->i_flctx; 294 295 if (unlikely(!list_empty(&ctx->flc_flock) || 296 !list_empty(&ctx->flc_posix) || 297 !list_empty(&ctx->flc_lease))) { 298 pr_warn("Leaked locks on dev=0x%x:0x%x ino=0x%lx:\n", 299 MAJOR(inode->i_sb->s_dev), MINOR(inode->i_sb->s_dev), 300 inode->i_ino); 301 locks_dump_ctx_list(&ctx->flc_flock, "FLOCK"); 302 locks_dump_ctx_list(&ctx->flc_posix, "POSIX"); 303 locks_dump_ctx_list(&ctx->flc_lease, "LEASE"); 304 } 305} 306 307static void 308locks_check_ctx_file_list(struct file *filp, struct list_head *list, 309 char *list_type) 310{ 311 struct file_lock *fl; 312 struct inode *inode = locks_inode(filp); 313 314 list_for_each_entry(fl, list, fl_list) 315 if (fl->fl_file == filp) 316 pr_warn("Leaked %s lock on dev=0x%x:0x%x ino=0x%lx " 317 " fl_owner=%p fl_flags=0x%x fl_type=0x%x fl_pid=%u\n", 318 list_type, MAJOR(inode->i_sb->s_dev), 319 MINOR(inode->i_sb->s_dev), inode->i_ino, 320 fl->fl_owner, fl->fl_flags, fl->fl_type, fl->fl_pid); 321} 322 323void 324locks_free_lock_context(struct inode *inode) 325{ 326 struct file_lock_context *ctx = inode->i_flctx; 327 328 if (unlikely(ctx)) { 329 locks_check_ctx_lists(inode); 330 kmem_cache_free(flctx_cache, ctx); 331 } 332} 333 334static void locks_init_lock_heads(struct file_lock *fl) 335{ 336 INIT_HLIST_NODE(&fl->fl_link); 337 INIT_LIST_HEAD(&fl->fl_list); 338 INIT_LIST_HEAD(&fl->fl_blocked_requests); 339 INIT_LIST_HEAD(&fl->fl_blocked_member); 340 init_waitqueue_head(&fl->fl_wait); 341} 342 343/* Allocate an empty lock structure. */ 344struct file_lock *locks_alloc_lock(void) 345{ 346 struct file_lock *fl = kmem_cache_zalloc(filelock_cache, GFP_KERNEL); 347 348 if (fl) 349 locks_init_lock_heads(fl); 350 351 return fl; 352} 353EXPORT_SYMBOL_GPL(locks_alloc_lock); 354 355void locks_release_private(struct file_lock *fl) 356{ 357 BUG_ON(waitqueue_active(&fl->fl_wait)); 358 BUG_ON(!list_empty(&fl->fl_list)); 359 BUG_ON(!list_empty(&fl->fl_blocked_requests)); 360 BUG_ON(!list_empty(&fl->fl_blocked_member)); 361 BUG_ON(!hlist_unhashed(&fl->fl_link)); 362 363 if (fl->fl_ops) { 364 if (fl->fl_ops->fl_release_private) 365 fl->fl_ops->fl_release_private(fl); 366 fl->fl_ops = NULL; 367 } 368 369 if (fl->fl_lmops) { 370 if (fl->fl_lmops->lm_put_owner) { 371 fl->fl_lmops->lm_put_owner(fl->fl_owner); 372 fl->fl_owner = NULL; 373 } 374 fl->fl_lmops = NULL; 375 } 376} 377EXPORT_SYMBOL_GPL(locks_release_private); 378 379/* Free a lock which is not in use. */ 380void locks_free_lock(struct file_lock *fl) 381{ 382 locks_release_private(fl); 383 kmem_cache_free(filelock_cache, fl); 384} 385EXPORT_SYMBOL(locks_free_lock); 386 387static void 388locks_dispose_list(struct list_head *dispose) 389{ 390 struct file_lock *fl; 391 392 while (!list_empty(dispose)) { 393 fl = list_first_entry(dispose, struct file_lock, fl_list); 394 list_del_init(&fl->fl_list); 395 locks_free_lock(fl); 396 } 397} 398 399void locks_init_lock(struct file_lock *fl) 400{ 401 memset(fl, 0, sizeof(struct file_lock)); 402 locks_init_lock_heads(fl); 403} 404EXPORT_SYMBOL(locks_init_lock); 405 406/* 407 * Initialize a new lock from an existing file_lock structure. 408 */ 409void locks_copy_conflock(struct file_lock *new, struct file_lock *fl) 410{ 411 new->fl_owner = fl->fl_owner; 412 new->fl_pid = fl->fl_pid; 413 new->fl_file = NULL; 414 new->fl_flags = fl->fl_flags; 415 new->fl_type = fl->fl_type; 416 new->fl_start = fl->fl_start; 417 new->fl_end = fl->fl_end; 418 new->fl_lmops = fl->fl_lmops; 419 new->fl_ops = NULL; 420 421 if (fl->fl_lmops) { 422 if (fl->fl_lmops->lm_get_owner) 423 fl->fl_lmops->lm_get_owner(fl->fl_owner); 424 } 425} 426EXPORT_SYMBOL(locks_copy_conflock); 427 428void locks_copy_lock(struct file_lock *new, struct file_lock *fl) 429{ 430 /* "new" must be a freshly-initialized lock */ 431 WARN_ON_ONCE(new->fl_ops); 432 433 locks_copy_conflock(new, fl); 434 435 new->fl_file = fl->fl_file; 436 new->fl_ops = fl->fl_ops; 437 438 if (fl->fl_ops) { 439 if (fl->fl_ops->fl_copy_lock) 440 fl->fl_ops->fl_copy_lock(new, fl); 441 } 442} 443EXPORT_SYMBOL(locks_copy_lock); 444 445static void locks_move_blocks(struct file_lock *new, struct file_lock *fl) 446{ 447 struct file_lock *f; 448 449 /* 450 * As ctx->flc_lock is held, new requests cannot be added to 451 * ->fl_blocked_requests, so we don't need a lock to check if it 452 * is empty. 453 */ 454 if (list_empty(&fl->fl_blocked_requests)) 455 return; 456 spin_lock(&blocked_lock_lock); 457 list_splice_init(&fl->fl_blocked_requests, &new->fl_blocked_requests); 458 list_for_each_entry(f, &new->fl_blocked_requests, fl_blocked_member) 459 f->fl_blocker = new; 460 spin_unlock(&blocked_lock_lock); 461} 462 463static inline int flock_translate_cmd(int cmd) { 464 if (cmd & LOCK_MAND) 465 return cmd & (LOCK_MAND | LOCK_RW); 466 switch (cmd) { 467 case LOCK_SH: 468 return F_RDLCK; 469 case LOCK_EX: 470 return F_WRLCK; 471 case LOCK_UN: 472 return F_UNLCK; 473 } 474 return -EINVAL; 475} 476 477/* Fill in a file_lock structure with an appropriate FLOCK lock. */ 478static struct file_lock * 479flock_make_lock(struct file *filp, unsigned int cmd, struct file_lock *fl) 480{ 481 int type = flock_translate_cmd(cmd); 482 483 if (type < 0) 484 return ERR_PTR(type); 485 486 if (fl == NULL) { 487 fl = locks_alloc_lock(); 488 if (fl == NULL) 489 return ERR_PTR(-ENOMEM); 490 } else { 491 locks_init_lock(fl); 492 } 493 494 fl->fl_file = filp; 495 fl->fl_owner = filp; 496 fl->fl_pid = current->tgid; 497 fl->fl_flags = FL_FLOCK; 498 fl->fl_type = type; 499 fl->fl_end = OFFSET_MAX; 500 501 return fl; 502} 503 504static int assign_type(struct file_lock *fl, long type) 505{ 506 switch (type) { 507 case F_RDLCK: 508 case F_WRLCK: 509 case F_UNLCK: 510 fl->fl_type = type; 511 break; 512 default: 513 return -EINVAL; 514 } 515 return 0; 516} 517 518static int flock64_to_posix_lock(struct file *filp, struct file_lock *fl, 519 struct flock64 *l) 520{ 521 switch (l->l_whence) { 522 case SEEK_SET: 523 fl->fl_start = 0; 524 break; 525 case SEEK_CUR: 526 fl->fl_start = filp->f_pos; 527 break; 528 case SEEK_END: 529 fl->fl_start = i_size_read(file_inode(filp)); 530 break; 531 default: 532 return -EINVAL; 533 } 534 if (l->l_start > OFFSET_MAX - fl->fl_start) 535 return -EOVERFLOW; 536 fl->fl_start += l->l_start; 537 if (fl->fl_start < 0) 538 return -EINVAL; 539 540 /* POSIX-1996 leaves the case l->l_len < 0 undefined; 541 POSIX-2001 defines it. */ 542 if (l->l_len > 0) { 543 if (l->l_len - 1 > OFFSET_MAX - fl->fl_start) 544 return -EOVERFLOW; 545 fl->fl_end = fl->fl_start + (l->l_len - 1); 546 547 } else if (l->l_len < 0) { 548 if (fl->fl_start + l->l_len < 0) 549 return -EINVAL; 550 fl->fl_end = fl->fl_start - 1; 551 fl->fl_start += l->l_len; 552 } else 553 fl->fl_end = OFFSET_MAX; 554 555 fl->fl_owner = current->files; 556 fl->fl_pid = current->tgid; 557 fl->fl_file = filp; 558 fl->fl_flags = FL_POSIX; 559 fl->fl_ops = NULL; 560 fl->fl_lmops = NULL; 561 562 return assign_type(fl, l->l_type); 563} 564 565/* Verify a "struct flock" and copy it to a "struct file_lock" as a POSIX 566 * style lock. 567 */ 568static int flock_to_posix_lock(struct file *filp, struct file_lock *fl, 569 struct flock *l) 570{ 571 struct flock64 ll = { 572 .l_type = l->l_type, 573 .l_whence = l->l_whence, 574 .l_start = l->l_start, 575 .l_len = l->l_len, 576 }; 577 578 return flock64_to_posix_lock(filp, fl, &ll); 579} 580 581/* default lease lock manager operations */ 582static bool 583lease_break_callback(struct file_lock *fl) 584{ 585 kill_fasync(&fl->fl_fasync, SIGIO, POLL_MSG); 586 return false; 587} 588 589static void 590lease_setup(struct file_lock *fl, void **priv) 591{ 592 struct file *filp = fl->fl_file; 593 struct fasync_struct *fa = *priv; 594 595 /* 596 * fasync_insert_entry() returns the old entry if any. If there was no 597 * old entry, then it used "priv" and inserted it into the fasync list. 598 * Clear the pointer to indicate that it shouldn't be freed. 599 */ 600 if (!fasync_insert_entry(fa->fa_fd, filp, &fl->fl_fasync, fa)) 601 *priv = NULL; 602 603 __f_setown(filp, task_pid(current), PIDTYPE_TGID, 0); 604} 605 606static const struct lock_manager_operations lease_manager_ops = { 607 .lm_break = lease_break_callback, 608 .lm_change = lease_modify, 609 .lm_setup = lease_setup, 610}; 611 612/* 613 * Initialize a lease, use the default lock manager operations 614 */ 615static int lease_init(struct file *filp, long type, struct file_lock *fl) 616{ 617 if (assign_type(fl, type) != 0) 618 return -EINVAL; 619 620 fl->fl_owner = filp; 621 fl->fl_pid = current->tgid; 622 623 fl->fl_file = filp; 624 fl->fl_flags = FL_LEASE; 625 fl->fl_start = 0; 626 fl->fl_end = OFFSET_MAX; 627 fl->fl_ops = NULL; 628 fl->fl_lmops = &lease_manager_ops; 629 return 0; 630} 631 632/* Allocate a file_lock initialised to this type of lease */ 633static struct file_lock *lease_alloc(struct file *filp, long type) 634{ 635 struct file_lock *fl = locks_alloc_lock(); 636 int error = -ENOMEM; 637 638 if (fl == NULL) 639 return ERR_PTR(error); 640 641 error = lease_init(filp, type, fl); 642 if (error) { 643 locks_free_lock(fl); 644 return ERR_PTR(error); 645 } 646 return fl; 647} 648 649/* Check if two locks overlap each other. 650 */ 651static inline int locks_overlap(struct file_lock *fl1, struct file_lock *fl2) 652{ 653 return ((fl1->fl_end >= fl2->fl_start) && 654 (fl2->fl_end >= fl1->fl_start)); 655} 656 657/* 658 * Check whether two locks have the same owner. 659 */ 660static int posix_same_owner(struct file_lock *fl1, struct file_lock *fl2) 661{ 662 return fl1->fl_owner == fl2->fl_owner; 663} 664 665/* Must be called with the flc_lock held! */ 666static void locks_insert_global_locks(struct file_lock *fl) 667{ 668 struct file_lock_list_struct *fll = this_cpu_ptr(&file_lock_list); 669 670 percpu_rwsem_assert_held(&file_rwsem); 671 672 spin_lock(&fll->lock); 673 fl->fl_link_cpu = smp_processor_id(); 674 hlist_add_head(&fl->fl_link, &fll->hlist); 675 spin_unlock(&fll->lock); 676} 677 678/* Must be called with the flc_lock held! */ 679static void locks_delete_global_locks(struct file_lock *fl) 680{ 681 struct file_lock_list_struct *fll; 682 683 percpu_rwsem_assert_held(&file_rwsem); 684 685 /* 686 * Avoid taking lock if already unhashed. This is safe since this check 687 * is done while holding the flc_lock, and new insertions into the list 688 * also require that it be held. 689 */ 690 if (hlist_unhashed(&fl->fl_link)) 691 return; 692 693 fll = per_cpu_ptr(&file_lock_list, fl->fl_link_cpu); 694 spin_lock(&fll->lock); 695 hlist_del_init(&fl->fl_link); 696 spin_unlock(&fll->lock); 697} 698 699static unsigned long 700posix_owner_key(struct file_lock *fl) 701{ 702 return (unsigned long)fl->fl_owner; 703} 704 705static void locks_insert_global_blocked(struct file_lock *waiter) 706{ 707 lockdep_assert_held(&blocked_lock_lock); 708 709 hash_add(blocked_hash, &waiter->fl_link, posix_owner_key(waiter)); 710} 711 712static void locks_delete_global_blocked(struct file_lock *waiter) 713{ 714 lockdep_assert_held(&blocked_lock_lock); 715 716 hash_del(&waiter->fl_link); 717} 718 719/* Remove waiter from blocker's block list. 720 * When blocker ends up pointing to itself then the list is empty. 721 * 722 * Must be called with blocked_lock_lock held. 723 */ 724static void __locks_delete_block(struct file_lock *waiter) 725{ 726 locks_delete_global_blocked(waiter); 727 list_del_init(&waiter->fl_blocked_member); 728} 729 730static void __locks_wake_up_blocks(struct file_lock *blocker) 731{ 732 while (!list_empty(&blocker->fl_blocked_requests)) { 733 struct file_lock *waiter; 734 735 waiter = list_first_entry(&blocker->fl_blocked_requests, 736 struct file_lock, fl_blocked_member); 737 __locks_delete_block(waiter); 738 if (waiter->fl_lmops && waiter->fl_lmops->lm_notify) 739 waiter->fl_lmops->lm_notify(waiter); 740 else 741 wake_up(&waiter->fl_wait); 742 743 /* 744 * The setting of fl_blocker to NULL marks the "done" 745 * point in deleting a block. Paired with acquire at the top 746 * of locks_delete_block(). 747 */ 748 smp_store_release(&waiter->fl_blocker, NULL); 749 } 750} 751 752/** 753 * locks_delete_block - stop waiting for a file lock 754 * @waiter: the lock which was waiting 755 * 756 * lockd/nfsd need to disconnect the lock while working on it. 757 */ 758int locks_delete_block(struct file_lock *waiter) 759{ 760 int status = -ENOENT; 761 762 /* 763 * If fl_blocker is NULL, it won't be set again as this thread "owns" 764 * the lock and is the only one that might try to claim the lock. 765 * 766 * We use acquire/release to manage fl_blocker so that we can 767 * optimize away taking the blocked_lock_lock in many cases. 768 * 769 * The smp_load_acquire guarantees two things: 770 * 771 * 1/ that fl_blocked_requests can be tested locklessly. If something 772 * was recently added to that list it must have been in a locked region 773 * *before* the locked region when fl_blocker was set to NULL. 774 * 775 * 2/ that no other thread is accessing 'waiter', so it is safe to free 776 * it. __locks_wake_up_blocks is careful not to touch waiter after 777 * fl_blocker is released. 778 * 779 * If a lockless check of fl_blocker shows it to be NULL, we know that 780 * no new locks can be inserted into its fl_blocked_requests list, and 781 * can avoid doing anything further if the list is empty. 782 */ 783 if (!smp_load_acquire(&waiter->fl_blocker) && 784 list_empty(&waiter->fl_blocked_requests)) 785 return status; 786 787 spin_lock(&blocked_lock_lock); 788 if (waiter->fl_blocker) 789 status = 0; 790 __locks_wake_up_blocks(waiter); 791 __locks_delete_block(waiter); 792 793 /* 794 * The setting of fl_blocker to NULL marks the "done" point in deleting 795 * a block. Paired with acquire at the top of this function. 796 */ 797 smp_store_release(&waiter->fl_blocker, NULL); 798 spin_unlock(&blocked_lock_lock); 799 return status; 800} 801EXPORT_SYMBOL(locks_delete_block); 802 803/* Insert waiter into blocker's block list. 804 * We use a circular list so that processes can be easily woken up in 805 * the order they blocked. The documentation doesn't require this but 806 * it seems like the reasonable thing to do. 807 * 808 * Must be called with both the flc_lock and blocked_lock_lock held. The 809 * fl_blocked_requests list itself is protected by the blocked_lock_lock, 810 * but by ensuring that the flc_lock is also held on insertions we can avoid 811 * taking the blocked_lock_lock in some cases when we see that the 812 * fl_blocked_requests list is empty. 813 * 814 * Rather than just adding to the list, we check for conflicts with any existing 815 * waiters, and add beneath any waiter that blocks the new waiter. 816 * Thus wakeups don't happen until needed. 817 */ 818static void __locks_insert_block(struct file_lock *blocker, 819 struct file_lock *waiter, 820 bool conflict(struct file_lock *, 821 struct file_lock *)) 822{ 823 struct file_lock *fl; 824 BUG_ON(!list_empty(&waiter->fl_blocked_member)); 825 826new_blocker: 827 list_for_each_entry(fl, &blocker->fl_blocked_requests, fl_blocked_member) 828 if (conflict(fl, waiter)) { 829 blocker = fl; 830 goto new_blocker; 831 } 832 waiter->fl_blocker = blocker; 833 list_add_tail(&waiter->fl_blocked_member, &blocker->fl_blocked_requests); 834 if (IS_POSIX(blocker) && !IS_OFDLCK(blocker)) 835 locks_insert_global_blocked(waiter); 836 837 /* The requests in waiter->fl_blocked are known to conflict with 838 * waiter, but might not conflict with blocker, or the requests 839 * and lock which block it. So they all need to be woken. 840 */ 841 __locks_wake_up_blocks(waiter); 842} 843 844/* Must be called with flc_lock held. */ 845static void locks_insert_block(struct file_lock *blocker, 846 struct file_lock *waiter, 847 bool conflict(struct file_lock *, 848 struct file_lock *)) 849{ 850 spin_lock(&blocked_lock_lock); 851 __locks_insert_block(blocker, waiter, conflict); 852 spin_unlock(&blocked_lock_lock); 853} 854 855/* 856 * Wake up processes blocked waiting for blocker. 857 * 858 * Must be called with the inode->flc_lock held! 859 */ 860static void locks_wake_up_blocks(struct file_lock *blocker) 861{ 862 /* 863 * Avoid taking global lock if list is empty. This is safe since new 864 * blocked requests are only added to the list under the flc_lock, and 865 * the flc_lock is always held here. Note that removal from the 866 * fl_blocked_requests list does not require the flc_lock, so we must 867 * recheck list_empty() after acquiring the blocked_lock_lock. 868 */ 869 if (list_empty(&blocker->fl_blocked_requests)) 870 return; 871 872 spin_lock(&blocked_lock_lock); 873 __locks_wake_up_blocks(blocker); 874 spin_unlock(&blocked_lock_lock); 875} 876 877static void 878locks_insert_lock_ctx(struct file_lock *fl, struct list_head *before) 879{ 880 list_add_tail(&fl->fl_list, before); 881 locks_insert_global_locks(fl); 882} 883 884static void 885locks_unlink_lock_ctx(struct file_lock *fl) 886{ 887 locks_delete_global_locks(fl); 888 list_del_init(&fl->fl_list); 889 locks_wake_up_blocks(fl); 890} 891 892static void 893locks_delete_lock_ctx(struct file_lock *fl, struct list_head *dispose) 894{ 895 locks_unlink_lock_ctx(fl); 896 if (dispose) 897 list_add(&fl->fl_list, dispose); 898 else 899 locks_free_lock(fl); 900} 901 902/* Determine if lock sys_fl blocks lock caller_fl. Common functionality 903 * checks for shared/exclusive status of overlapping locks. 904 */ 905static bool locks_conflict(struct file_lock *caller_fl, 906 struct file_lock *sys_fl) 907{ 908 if (sys_fl->fl_type == F_WRLCK) 909 return true; 910 if (caller_fl->fl_type == F_WRLCK) 911 return true; 912 return false; 913} 914 915/* Determine if lock sys_fl blocks lock caller_fl. POSIX specific 916 * checking before calling the locks_conflict(). 917 */ 918static bool posix_locks_conflict(struct file_lock *caller_fl, 919 struct file_lock *sys_fl) 920{ 921 /* POSIX locks owned by the same process do not conflict with 922 * each other. 923 */ 924 if (posix_same_owner(caller_fl, sys_fl)) 925 return false; 926 927 /* Check whether they overlap */ 928 if (!locks_overlap(caller_fl, sys_fl)) 929 return false; 930 931 return locks_conflict(caller_fl, sys_fl); 932} 933 934/* Determine if lock sys_fl blocks lock caller_fl. FLOCK specific 935 * checking before calling the locks_conflict(). 936 */ 937static bool flock_locks_conflict(struct file_lock *caller_fl, 938 struct file_lock *sys_fl) 939{ 940 /* FLOCK locks referring to the same filp do not conflict with 941 * each other. 942 */ 943 if (caller_fl->fl_file == sys_fl->fl_file) 944 return false; 945 if ((caller_fl->fl_type & LOCK_MAND) || (sys_fl->fl_type & LOCK_MAND)) 946 return false; 947 948 return locks_conflict(caller_fl, sys_fl); 949} 950 951void 952posix_test_lock(struct file *filp, struct file_lock *fl) 953{ 954 struct file_lock *cfl; 955 struct file_lock_context *ctx; 956 struct inode *inode = locks_inode(filp); 957 958 ctx = smp_load_acquire(&inode->i_flctx); 959 if (!ctx || list_empty_careful(&ctx->flc_posix)) { 960 fl->fl_type = F_UNLCK; 961 return; 962 } 963 964 spin_lock(&ctx->flc_lock); 965 list_for_each_entry(cfl, &ctx->flc_posix, fl_list) { 966 if (posix_locks_conflict(fl, cfl)) { 967 locks_copy_conflock(fl, cfl); 968 goto out; 969 } 970 } 971 fl->fl_type = F_UNLCK; 972out: 973 spin_unlock(&ctx->flc_lock); 974 return; 975} 976EXPORT_SYMBOL(posix_test_lock); 977 978/* 979 * Deadlock detection: 980 * 981 * We attempt to detect deadlocks that are due purely to posix file 982 * locks. 983 * 984 * We assume that a task can be waiting for at most one lock at a time. 985 * So for any acquired lock, the process holding that lock may be 986 * waiting on at most one other lock. That lock in turns may be held by 987 * someone waiting for at most one other lock. Given a requested lock 988 * caller_fl which is about to wait for a conflicting lock block_fl, we 989 * follow this chain of waiters to ensure we are not about to create a 990 * cycle. 991 * 992 * Since we do this before we ever put a process to sleep on a lock, we 993 * are ensured that there is never a cycle; that is what guarantees that 994 * the while() loop in posix_locks_deadlock() eventually completes. 995 * 996 * Note: the above assumption may not be true when handling lock 997 * requests from a broken NFS client. It may also fail in the presence 998 * of tasks (such as posix threads) sharing the same open file table. 999 * To handle those cases, we just bail out after a few iterations. 1000 * 1001 * For FL_OFDLCK locks, the owner is the filp, not the files_struct. 1002 * Because the owner is not even nominally tied to a thread of 1003 * execution, the deadlock detection below can't reasonably work well. Just 1004 * skip it for those. 1005 * 1006 * In principle, we could do a more limited deadlock detection on FL_OFDLCK 1007 * locks that just checks for the case where two tasks are attempting to 1008 * upgrade from read to write locks on the same inode. 1009 */ 1010 1011#define MAX_DEADLK_ITERATIONS 10 1012 1013/* Find a lock that the owner of the given block_fl is blocking on. */ 1014static struct file_lock *what_owner_is_waiting_for(struct file_lock *block_fl) 1015{ 1016 struct file_lock *fl; 1017 1018 hash_for_each_possible(blocked_hash, fl, fl_link, posix_owner_key(block_fl)) { 1019 if (posix_same_owner(fl, block_fl)) { 1020 while (fl->fl_blocker) 1021 fl = fl->fl_blocker; 1022 return fl; 1023 } 1024 } 1025 return NULL; 1026} 1027 1028/* Must be called with the blocked_lock_lock held! */ 1029static int posix_locks_deadlock(struct file_lock *caller_fl, 1030 struct file_lock *block_fl) 1031{ 1032 int i = 0; 1033 1034 lockdep_assert_held(&blocked_lock_lock); 1035 1036 /* 1037 * This deadlock detector can't reasonably detect deadlocks with 1038 * FL_OFDLCK locks, since they aren't owned by a process, per-se. 1039 */ 1040 if (IS_OFDLCK(caller_fl)) 1041 return 0; 1042 1043 while ((block_fl = what_owner_is_waiting_for(block_fl))) { 1044 if (i++ > MAX_DEADLK_ITERATIONS) 1045 return 0; 1046 if (posix_same_owner(caller_fl, block_fl)) 1047 return 1; 1048 } 1049 return 0; 1050} 1051 1052/* Try to create a FLOCK lock on filp. We always insert new FLOCK locks 1053 * after any leases, but before any posix locks. 1054 * 1055 * Note that if called with an FL_EXISTS argument, the caller may determine 1056 * whether or not a lock was successfully freed by testing the return 1057 * value for -ENOENT. 1058 */ 1059static int flock_lock_inode(struct inode *inode, struct file_lock *request) 1060{ 1061 struct file_lock *new_fl = NULL; 1062 struct file_lock *fl; 1063 struct file_lock_context *ctx; 1064 int error = 0; 1065 bool found = false; 1066 LIST_HEAD(dispose); 1067 1068 ctx = locks_get_lock_context(inode, request->fl_type); 1069 if (!ctx) { 1070 if (request->fl_type != F_UNLCK) 1071 return -ENOMEM; 1072 return (request->fl_flags & FL_EXISTS) ? -ENOENT : 0; 1073 } 1074 1075 if (!(request->fl_flags & FL_ACCESS) && (request->fl_type != F_UNLCK)) { 1076 new_fl = locks_alloc_lock(); 1077 if (!new_fl) 1078 return -ENOMEM; 1079 } 1080 1081 percpu_down_read(&file_rwsem); 1082 spin_lock(&ctx->flc_lock); 1083 if (request->fl_flags & FL_ACCESS) 1084 goto find_conflict; 1085 1086 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1087 if (request->fl_file != fl->fl_file) 1088 continue; 1089 if (request->fl_type == fl->fl_type) 1090 goto out; 1091 found = true; 1092 locks_delete_lock_ctx(fl, &dispose); 1093 break; 1094 } 1095 1096 if (request->fl_type == F_UNLCK) { 1097 if ((request->fl_flags & FL_EXISTS) && !found) 1098 error = -ENOENT; 1099 goto out; 1100 } 1101 1102find_conflict: 1103 list_for_each_entry(fl, &ctx->flc_flock, fl_list) { 1104 if (!flock_locks_conflict(request, fl)) 1105 continue; 1106 error = -EAGAIN; 1107 if (!(request->fl_flags & FL_SLEEP)) 1108 goto out; 1109 error = FILE_LOCK_DEFERRED; 1110 locks_insert_block(fl, request, flock_locks_conflict); 1111 goto out; 1112 } 1113 if (request->fl_flags & FL_ACCESS) 1114 goto out; 1115 locks_copy_lock(new_fl, request); 1116 locks_move_blocks(new_fl, request); 1117 locks_insert_lock_ctx(new_fl, &ctx->flc_flock); 1118 new_fl = NULL; 1119 error = 0; 1120 1121out: 1122 spin_unlock(&ctx->flc_lock); 1123 percpu_up_read(&file_rwsem); 1124 if (new_fl) 1125 locks_free_lock(new_fl); 1126 locks_dispose_list(&dispose); 1127 trace_flock_lock_inode(inode, request, error); 1128 return error; 1129} 1130 1131static int posix_lock_inode(struct inode *inode, struct file_lock *request, 1132 struct file_lock *conflock) 1133{ 1134 struct file_lock *fl, *tmp; 1135 struct file_lock *new_fl = NULL; 1136 struct file_lock *new_fl2 = NULL; 1137 struct file_lock *left = NULL; 1138 struct file_lock *right = NULL; 1139 struct file_lock_context *ctx; 1140 int error; 1141 bool added = false; 1142 LIST_HEAD(dispose); 1143 1144 ctx = locks_get_lock_context(inode, request->fl_type); 1145 if (!ctx) 1146 return (request->fl_type == F_UNLCK) ? 0 : -ENOMEM; 1147 1148 /* 1149 * We may need two file_lock structures for this operation, 1150 * so we get them in advance to avoid races. 1151 * 1152 * In some cases we can be sure, that no new locks will be needed 1153 */ 1154 if (!(request->fl_flags & FL_ACCESS) && 1155 (request->fl_type != F_UNLCK || 1156 request->fl_start != 0 || request->fl_end != OFFSET_MAX)) { 1157 new_fl = locks_alloc_lock(); 1158 new_fl2 = locks_alloc_lock(); 1159 } 1160 1161 percpu_down_read(&file_rwsem); 1162 spin_lock(&ctx->flc_lock); 1163 /* 1164 * New lock request. Walk all POSIX locks and look for conflicts. If 1165 * there are any, either return error or put the request on the 1166 * blocker's list of waiters and the global blocked_hash. 1167 */ 1168 if (request->fl_type != F_UNLCK) { 1169 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1170 if (!posix_locks_conflict(request, fl)) 1171 continue; 1172 if (conflock) 1173 locks_copy_conflock(conflock, fl); 1174 error = -EAGAIN; 1175 if (!(request->fl_flags & FL_SLEEP)) 1176 goto out; 1177 /* 1178 * Deadlock detection and insertion into the blocked 1179 * locks list must be done while holding the same lock! 1180 */ 1181 error = -EDEADLK; 1182 spin_lock(&blocked_lock_lock); 1183 /* 1184 * Ensure that we don't find any locks blocked on this 1185 * request during deadlock detection. 1186 */ 1187 __locks_wake_up_blocks(request); 1188 if (likely(!posix_locks_deadlock(request, fl))) { 1189 error = FILE_LOCK_DEFERRED; 1190 __locks_insert_block(fl, request, 1191 posix_locks_conflict); 1192 } 1193 spin_unlock(&blocked_lock_lock); 1194 goto out; 1195 } 1196 } 1197 1198 /* If we're just looking for a conflict, we're done. */ 1199 error = 0; 1200 if (request->fl_flags & FL_ACCESS) 1201 goto out; 1202 1203 /* Find the first old lock with the same owner as the new lock */ 1204 list_for_each_entry(fl, &ctx->flc_posix, fl_list) { 1205 if (posix_same_owner(request, fl)) 1206 break; 1207 } 1208 1209 /* Process locks with this owner. */ 1210 list_for_each_entry_safe_from(fl, tmp, &ctx->flc_posix, fl_list) { 1211 if (!posix_same_owner(request, fl)) 1212 break; 1213 1214 /* Detect adjacent or overlapping regions (if same lock type) */ 1215 if (request->fl_type == fl->fl_type) { 1216 /* In all comparisons of start vs end, use 1217 * "start - 1" rather than "end + 1". If end 1218 * is OFFSET_MAX, end + 1 will become negative. 1219 */ 1220 if (fl->fl_end < request->fl_start - 1) 1221 continue; 1222 /* If the next lock in the list has entirely bigger 1223 * addresses than the new one, insert the lock here. 1224 */ 1225 if (fl->fl_start - 1 > request->fl_end) 1226 break; 1227 1228 /* If we come here, the new and old lock are of the 1229 * same type and adjacent or overlapping. Make one 1230 * lock yielding from the lower start address of both 1231 * locks to the higher end address. 1232 */ 1233 if (fl->fl_start > request->fl_start) 1234 fl->fl_start = request->fl_start; 1235 else 1236 request->fl_start = fl->fl_start; 1237 if (fl->fl_end < request->fl_end) 1238 fl->fl_end = request->fl_end; 1239 else 1240 request->fl_end = fl->fl_end; 1241 if (added) { 1242 locks_delete_lock_ctx(fl, &dispose); 1243 continue; 1244 } 1245 request = fl; 1246 added = true; 1247 } else { 1248 /* Processing for different lock types is a bit 1249 * more complex. 1250 */ 1251 if (fl->fl_end < request->fl_start) 1252 continue; 1253 if (fl->fl_start > request->fl_end) 1254 break; 1255 if (request->fl_type == F_UNLCK) 1256 added = true; 1257 if (fl->fl_start < request->fl_start) 1258 left = fl; 1259 /* If the next lock in the list has a higher end 1260 * address than the new one, insert the new one here. 1261 */ 1262 if (fl->fl_end > request->fl_end) { 1263 right = fl; 1264 break; 1265 } 1266 if (fl->fl_start >= request->fl_start) { 1267 /* The new lock completely replaces an old 1268 * one (This may happen several times). 1269 */ 1270 if (added) { 1271 locks_delete_lock_ctx(fl, &dispose); 1272 continue; 1273 } 1274 /* 1275 * Replace the old lock with new_fl, and 1276 * remove the old one. It's safe to do the 1277 * insert here since we know that we won't be 1278 * using new_fl later, and that the lock is 1279 * just replacing an existing lock. 1280 */ 1281 error = -ENOLCK; 1282 if (!new_fl) 1283 goto out; 1284 locks_copy_lock(new_fl, request); 1285 locks_move_blocks(new_fl, request); 1286 request = new_fl; 1287 new_fl = NULL; 1288 locks_insert_lock_ctx(request, &fl->fl_list); 1289 locks_delete_lock_ctx(fl, &dispose); 1290 added = true; 1291 } 1292 } 1293 } 1294 1295 /* 1296 * The above code only modifies existing locks in case of merging or 1297 * replacing. If new lock(s) need to be inserted all modifications are 1298 * done below this, so it's safe yet to bail out. 1299 */ 1300 error = -ENOLCK; /* "no luck" */ 1301 if (right && left == right && !new_fl2) 1302 goto out; 1303 1304 error = 0; 1305 if (!added) { 1306 if (request->fl_type == F_UNLCK) { 1307 if (request->fl_flags & FL_EXISTS) 1308 error = -ENOENT; 1309 goto out; 1310 } 1311 1312 if (!new_fl) { 1313 error = -ENOLCK; 1314 goto out; 1315 } 1316 locks_copy_lock(new_fl, request); 1317 locks_move_blocks(new_fl, request); 1318 locks_insert_lock_ctx(new_fl, &fl->fl_list); 1319 fl = new_fl; 1320 new_fl = NULL; 1321 } 1322 if (right) { 1323 if (left == right) { 1324 /* The new lock breaks the old one in two pieces, 1325 * so we have to use the second new lock. 1326 */ 1327 left = new_fl2; 1328 new_fl2 = NULL; 1329 locks_copy_lock(left, right); 1330 locks_insert_lock_ctx(left, &fl->fl_list); 1331 } 1332 right->fl_start = request->fl_end + 1; 1333 locks_wake_up_blocks(right); 1334 } 1335 if (left) { 1336 left->fl_end = request->fl_start - 1; 1337 locks_wake_up_blocks(left); 1338 } 1339 out: 1340 spin_unlock(&ctx->flc_lock); 1341 percpu_up_read(&file_rwsem); 1342 /* 1343 * Free any unused locks. 1344 */ 1345 if (new_fl) 1346 locks_free_lock(new_fl); 1347 if (new_fl2) 1348 locks_free_lock(new_fl2); 1349 locks_dispose_list(&dispose); 1350 trace_posix_lock_inode(inode, request, error); 1351 1352 return error; 1353} 1354 1355/** 1356 * posix_lock_file - Apply a POSIX-style lock to a file 1357 * @filp: The file to apply the lock to 1358 * @fl: The lock to be applied 1359 * @conflock: Place to return a copy of the conflicting lock, if found. 1360 * 1361 * Add a POSIX style lock to a file. 1362 * We merge adjacent & overlapping locks whenever possible. 1363 * POSIX locks are sorted by owner task, then by starting address 1364 * 1365 * Note that if called with an FL_EXISTS argument, the caller may determine 1366 * whether or not a lock was successfully freed by testing the return 1367 * value for -ENOENT. 1368 */ 1369int posix_lock_file(struct file *filp, struct file_lock *fl, 1370 struct file_lock *conflock) 1371{ 1372 return posix_lock_inode(locks_inode(filp), fl, conflock); 1373} 1374EXPORT_SYMBOL(posix_lock_file); 1375 1376/** 1377 * posix_lock_inode_wait - Apply a POSIX-style lock to a file 1378 * @inode: inode of file to which lock request should be applied 1379 * @fl: The lock to be applied 1380 * 1381 * Apply a POSIX style lock request to an inode. 1382 */ 1383static int posix_lock_inode_wait(struct inode *inode, struct file_lock *fl) 1384{ 1385 int error; 1386 might_sleep (); 1387 for (;;) { 1388 error = posix_lock_inode(inode, fl, NULL); 1389 if (error != FILE_LOCK_DEFERRED) 1390 break; 1391 error = wait_event_interruptible(fl->fl_wait, 1392 list_empty(&fl->fl_blocked_member)); 1393 if (error) 1394 break; 1395 } 1396 locks_delete_block(fl); 1397 return error; 1398} 1399 1400static void lease_clear_pending(struct file_lock *fl, int arg) 1401{ 1402 switch (arg) { 1403 case F_UNLCK: 1404 fl->fl_flags &= ~FL_UNLOCK_PENDING; 1405 fallthrough; 1406 case F_RDLCK: 1407 fl->fl_flags &= ~FL_DOWNGRADE_PENDING; 1408 } 1409} 1410 1411/* We already had a lease on this file; just change its type */ 1412int lease_modify(struct file_lock *fl, int arg, struct list_head *dispose) 1413{ 1414 int error = assign_type(fl, arg); 1415 1416 if (error) 1417 return error; 1418 lease_clear_pending(fl, arg); 1419 locks_wake_up_blocks(fl); 1420 if (arg == F_UNLCK) { 1421 struct file *filp = fl->fl_file; 1422 1423 f_delown(filp); 1424 filp->f_owner.signum = 0; 1425 fasync_helper(0, fl->fl_file, 0, &fl->fl_fasync); 1426 if (fl->fl_fasync != NULL) { 1427 printk(KERN_ERR "locks_delete_lock: fasync == %p\n", fl->fl_fasync); 1428 fl->fl_fasync = NULL; 1429 } 1430 locks_delete_lock_ctx(fl, dispose); 1431 } 1432 return 0; 1433} 1434EXPORT_SYMBOL(lease_modify); 1435 1436static bool past_time(unsigned long then) 1437{ 1438 if (!then) 1439 /* 0 is a special value meaning "this never expires": */ 1440 return false; 1441 return time_after(jiffies, then); 1442} 1443 1444static void time_out_leases(struct inode *inode, struct list_head *dispose) 1445{ 1446 struct file_lock_context *ctx = inode->i_flctx; 1447 struct file_lock *fl, *tmp; 1448 1449 lockdep_assert_held(&ctx->flc_lock); 1450 1451 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1452 trace_time_out_leases(inode, fl); 1453 if (past_time(fl->fl_downgrade_time)) 1454 lease_modify(fl, F_RDLCK, dispose); 1455 if (past_time(fl->fl_break_time)) 1456 lease_modify(fl, F_UNLCK, dispose); 1457 } 1458} 1459 1460static bool leases_conflict(struct file_lock *lease, struct file_lock *breaker) 1461{ 1462 bool rc; 1463 1464 if (lease->fl_lmops->lm_breaker_owns_lease 1465 && lease->fl_lmops->lm_breaker_owns_lease(lease)) 1466 return false; 1467 if ((breaker->fl_flags & FL_LAYOUT) != (lease->fl_flags & FL_LAYOUT)) { 1468 rc = false; 1469 goto trace; 1470 } 1471 if ((breaker->fl_flags & FL_DELEG) && (lease->fl_flags & FL_LEASE)) { 1472 rc = false; 1473 goto trace; 1474 } 1475 1476 rc = locks_conflict(breaker, lease); 1477trace: 1478 trace_leases_conflict(rc, lease, breaker); 1479 return rc; 1480} 1481 1482static bool 1483any_leases_conflict(struct inode *inode, struct file_lock *breaker) 1484{ 1485 struct file_lock_context *ctx = inode->i_flctx; 1486 struct file_lock *fl; 1487 1488 lockdep_assert_held(&ctx->flc_lock); 1489 1490 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1491 if (leases_conflict(fl, breaker)) 1492 return true; 1493 } 1494 return false; 1495} 1496 1497/** 1498 * __break_lease - revoke all outstanding leases on file 1499 * @inode: the inode of the file to return 1500 * @mode: O_RDONLY: break only write leases; O_WRONLY or O_RDWR: 1501 * break all leases 1502 * @type: FL_LEASE: break leases and delegations; FL_DELEG: break 1503 * only delegations 1504 * 1505 * break_lease (inlined for speed) has checked there already is at least 1506 * some kind of lock (maybe a lease) on this file. Leases are broken on 1507 * a call to open() or truncate(). This function can sleep unless you 1508 * specified %O_NONBLOCK to your open(). 1509 */ 1510int __break_lease(struct inode *inode, unsigned int mode, unsigned int type) 1511{ 1512 int error = 0; 1513 struct file_lock_context *ctx; 1514 struct file_lock *new_fl, *fl, *tmp; 1515 unsigned long break_time; 1516 int want_write = (mode & O_ACCMODE) != O_RDONLY; 1517 LIST_HEAD(dispose); 1518 1519 new_fl = lease_alloc(NULL, want_write ? F_WRLCK : F_RDLCK); 1520 if (IS_ERR(new_fl)) 1521 return PTR_ERR(new_fl); 1522 new_fl->fl_flags = type; 1523 1524 /* typically we will check that ctx is non-NULL before calling */ 1525 ctx = smp_load_acquire(&inode->i_flctx); 1526 if (!ctx) { 1527 WARN_ON_ONCE(1); 1528 goto free_lock; 1529 } 1530 1531 percpu_down_read(&file_rwsem); 1532 spin_lock(&ctx->flc_lock); 1533 1534 time_out_leases(inode, &dispose); 1535 1536 if (!any_leases_conflict(inode, new_fl)) 1537 goto out; 1538 1539 break_time = 0; 1540 if (lease_break_time > 0) { 1541 break_time = jiffies + lease_break_time * HZ; 1542 if (break_time == 0) 1543 break_time++; /* so that 0 means no break time */ 1544 } 1545 1546 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) { 1547 if (!leases_conflict(fl, new_fl)) 1548 continue; 1549 if (want_write) { 1550 if (fl->fl_flags & FL_UNLOCK_PENDING) 1551 continue; 1552 fl->fl_flags |= FL_UNLOCK_PENDING; 1553 fl->fl_break_time = break_time; 1554 } else { 1555 if (lease_breaking(fl)) 1556 continue; 1557 fl->fl_flags |= FL_DOWNGRADE_PENDING; 1558 fl->fl_downgrade_time = break_time; 1559 } 1560 if (fl->fl_lmops->lm_break(fl)) 1561 locks_delete_lock_ctx(fl, &dispose); 1562 } 1563 1564 if (list_empty(&ctx->flc_lease)) 1565 goto out; 1566 1567 if (mode & O_NONBLOCK) { 1568 trace_break_lease_noblock(inode, new_fl); 1569 error = -EWOULDBLOCK; 1570 goto out; 1571 } 1572 1573restart: 1574 fl = list_first_entry(&ctx->flc_lease, struct file_lock, fl_list); 1575 break_time = fl->fl_break_time; 1576 if (break_time != 0) 1577 break_time -= jiffies; 1578 if (break_time == 0) 1579 break_time++; 1580 locks_insert_block(fl, new_fl, leases_conflict); 1581 trace_break_lease_block(inode, new_fl); 1582 spin_unlock(&ctx->flc_lock); 1583 percpu_up_read(&file_rwsem); 1584 1585 locks_dispose_list(&dispose); 1586 error = wait_event_interruptible_timeout(new_fl->fl_wait, 1587 list_empty(&new_fl->fl_blocked_member), 1588 break_time); 1589 1590 percpu_down_read(&file_rwsem); 1591 spin_lock(&ctx->flc_lock); 1592 trace_break_lease_unblock(inode, new_fl); 1593 locks_delete_block(new_fl); 1594 if (error >= 0) { 1595 /* 1596 * Wait for the next conflicting lease that has not been 1597 * broken yet 1598 */ 1599 if (error == 0) 1600 time_out_leases(inode, &dispose); 1601 if (any_leases_conflict(inode, new_fl)) 1602 goto restart; 1603 error = 0; 1604 } 1605out: 1606 spin_unlock(&ctx->flc_lock); 1607 percpu_up_read(&file_rwsem); 1608 locks_dispose_list(&dispose); 1609free_lock: 1610 locks_free_lock(new_fl); 1611 return error; 1612} 1613EXPORT_SYMBOL(__break_lease); 1614 1615/** 1616 * lease_get_mtime - update modified time of an inode with exclusive lease 1617 * @inode: the inode 1618 * @time: pointer to a timespec which contains the last modified time 1619 * 1620 * This is to force NFS clients to flush their caches for files with 1621 * exclusive leases. The justification is that if someone has an 1622 * exclusive lease, then they could be modifying it. 1623 */ 1624void lease_get_mtime(struct inode *inode, struct timespec64 *time) 1625{ 1626 bool has_lease = false; 1627 struct file_lock_context *ctx; 1628 struct file_lock *fl; 1629 1630 ctx = smp_load_acquire(&inode->i_flctx); 1631 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1632 spin_lock(&ctx->flc_lock); 1633 fl = list_first_entry_or_null(&ctx->flc_lease, 1634 struct file_lock, fl_list); 1635 if (fl && (fl->fl_type == F_WRLCK)) 1636 has_lease = true; 1637 spin_unlock(&ctx->flc_lock); 1638 } 1639 1640 if (has_lease) 1641 *time = current_time(inode); 1642} 1643EXPORT_SYMBOL(lease_get_mtime); 1644 1645/** 1646 * fcntl_getlease - Enquire what lease is currently active 1647 * @filp: the file 1648 * 1649 * The value returned by this function will be one of 1650 * (if no lease break is pending): 1651 * 1652 * %F_RDLCK to indicate a shared lease is held. 1653 * 1654 * %F_WRLCK to indicate an exclusive lease is held. 1655 * 1656 * %F_UNLCK to indicate no lease is held. 1657 * 1658 * (if a lease break is pending): 1659 * 1660 * %F_RDLCK to indicate an exclusive lease needs to be 1661 * changed to a shared lease (or removed). 1662 * 1663 * %F_UNLCK to indicate the lease needs to be removed. 1664 * 1665 * XXX: sfr & willy disagree over whether F_INPROGRESS 1666 * should be returned to userspace. 1667 */ 1668int fcntl_getlease(struct file *filp) 1669{ 1670 struct file_lock *fl; 1671 struct inode *inode = locks_inode(filp); 1672 struct file_lock_context *ctx; 1673 int type = F_UNLCK; 1674 LIST_HEAD(dispose); 1675 1676 ctx = smp_load_acquire(&inode->i_flctx); 1677 if (ctx && !list_empty_careful(&ctx->flc_lease)) { 1678 percpu_down_read(&file_rwsem); 1679 spin_lock(&ctx->flc_lock); 1680 time_out_leases(inode, &dispose); 1681 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1682 if (fl->fl_file != filp) 1683 continue; 1684 type = target_leasetype(fl); 1685 break; 1686 } 1687 spin_unlock(&ctx->flc_lock); 1688 percpu_up_read(&file_rwsem); 1689 1690 locks_dispose_list(&dispose); 1691 } 1692 return type; 1693} 1694 1695/** 1696 * check_conflicting_open - see if the given file points to an inode that has 1697 * an existing open that would conflict with the 1698 * desired lease. 1699 * @filp: file to check 1700 * @arg: type of lease that we're trying to acquire 1701 * @flags: current lock flags 1702 * 1703 * Check to see if there's an existing open fd on this file that would 1704 * conflict with the lease we're trying to set. 1705 */ 1706static int 1707check_conflicting_open(struct file *filp, const long arg, int flags) 1708{ 1709 struct inode *inode = locks_inode(filp); 1710 int self_wcount = 0, self_rcount = 0; 1711 1712 if (flags & FL_LAYOUT) 1713 return 0; 1714 if (flags & FL_DELEG) 1715 /* We leave these checks to the caller */ 1716 return 0; 1717 1718 if (arg == F_RDLCK) 1719 return inode_is_open_for_write(inode) ? -EAGAIN : 0; 1720 else if (arg != F_WRLCK) 1721 return 0; 1722 1723 /* 1724 * Make sure that only read/write count is from lease requestor. 1725 * Note that this will result in denying write leases when i_writecount 1726 * is negative, which is what we want. (We shouldn't grant write leases 1727 * on files open for execution.) 1728 */ 1729 if (filp->f_mode & FMODE_WRITE) 1730 self_wcount = 1; 1731 else if (filp->f_mode & FMODE_READ) 1732 self_rcount = 1; 1733 1734 if (atomic_read(&inode->i_writecount) != self_wcount || 1735 atomic_read(&inode->i_readcount) != self_rcount) 1736 return -EAGAIN; 1737 1738 return 0; 1739} 1740 1741static int 1742generic_add_lease(struct file *filp, long arg, struct file_lock **flp, void **priv) 1743{ 1744 struct file_lock *fl, *my_fl = NULL, *lease; 1745 struct inode *inode = locks_inode(filp); 1746 struct file_lock_context *ctx; 1747 bool is_deleg = (*flp)->fl_flags & FL_DELEG; 1748 int error; 1749 LIST_HEAD(dispose); 1750 1751 lease = *flp; 1752 trace_generic_add_lease(inode, lease); 1753 1754 /* Note that arg is never F_UNLCK here */ 1755 ctx = locks_get_lock_context(inode, arg); 1756 if (!ctx) 1757 return -ENOMEM; 1758 1759 /* 1760 * In the delegation case we need mutual exclusion with 1761 * a number of operations that take the i_mutex. We trylock 1762 * because delegations are an optional optimization, and if 1763 * there's some chance of a conflict--we'd rather not 1764 * bother, maybe that's a sign this just isn't a good file to 1765 * hand out a delegation on. 1766 */ 1767 if (is_deleg && !inode_trylock(inode)) 1768 return -EAGAIN; 1769 1770 if (is_deleg && arg == F_WRLCK) { 1771 /* Write delegations are not currently supported: */ 1772 inode_unlock(inode); 1773 WARN_ON_ONCE(1); 1774 return -EINVAL; 1775 } 1776 1777 percpu_down_read(&file_rwsem); 1778 spin_lock(&ctx->flc_lock); 1779 time_out_leases(inode, &dispose); 1780 error = check_conflicting_open(filp, arg, lease->fl_flags); 1781 if (error) 1782 goto out; 1783 1784 /* 1785 * At this point, we know that if there is an exclusive 1786 * lease on this file, then we hold it on this filp 1787 * (otherwise our open of this file would have blocked). 1788 * And if we are trying to acquire an exclusive lease, 1789 * then the file is not open by anyone (including us) 1790 * except for this filp. 1791 */ 1792 error = -EAGAIN; 1793 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1794 if (fl->fl_file == filp && 1795 fl->fl_owner == lease->fl_owner) { 1796 my_fl = fl; 1797 continue; 1798 } 1799 1800 /* 1801 * No exclusive leases if someone else has a lease on 1802 * this file: 1803 */ 1804 if (arg == F_WRLCK) 1805 goto out; 1806 /* 1807 * Modifying our existing lease is OK, but no getting a 1808 * new lease if someone else is opening for write: 1809 */ 1810 if (fl->fl_flags & FL_UNLOCK_PENDING) 1811 goto out; 1812 } 1813 1814 if (my_fl != NULL) { 1815 lease = my_fl; 1816 error = lease->fl_lmops->lm_change(lease, arg, &dispose); 1817 if (error) 1818 goto out; 1819 goto out_setup; 1820 } 1821 1822 error = -EINVAL; 1823 if (!leases_enable) 1824 goto out; 1825 1826 locks_insert_lock_ctx(lease, &ctx->flc_lease); 1827 /* 1828 * The check in break_lease() is lockless. It's possible for another 1829 * open to race in after we did the earlier check for a conflicting 1830 * open but before the lease was inserted. Check again for a 1831 * conflicting open and cancel the lease if there is one. 1832 * 1833 * We also add a barrier here to ensure that the insertion of the lock 1834 * precedes these checks. 1835 */ 1836 smp_mb(); 1837 error = check_conflicting_open(filp, arg, lease->fl_flags); 1838 if (error) { 1839 locks_unlink_lock_ctx(lease); 1840 goto out; 1841 } 1842 1843out_setup: 1844 if (lease->fl_lmops->lm_setup) 1845 lease->fl_lmops->lm_setup(lease, priv); 1846out: 1847 spin_unlock(&ctx->flc_lock); 1848 percpu_up_read(&file_rwsem); 1849 locks_dispose_list(&dispose); 1850 if (is_deleg) 1851 inode_unlock(inode); 1852 if (!error && !my_fl) 1853 *flp = NULL; 1854 return error; 1855} 1856 1857static int generic_delete_lease(struct file *filp, void *owner) 1858{ 1859 int error = -EAGAIN; 1860 struct file_lock *fl, *victim = NULL; 1861 struct inode *inode = locks_inode(filp); 1862 struct file_lock_context *ctx; 1863 LIST_HEAD(dispose); 1864 1865 ctx = smp_load_acquire(&inode->i_flctx); 1866 if (!ctx) { 1867 trace_generic_delete_lease(inode, NULL); 1868 return error; 1869 } 1870 1871 percpu_down_read(&file_rwsem); 1872 spin_lock(&ctx->flc_lock); 1873 list_for_each_entry(fl, &ctx->flc_lease, fl_list) { 1874 if (fl->fl_file == filp && 1875 fl->fl_owner == owner) { 1876 victim = fl; 1877 break; 1878 } 1879 } 1880 trace_generic_delete_lease(inode, victim); 1881 if (victim) 1882 error = fl->fl_lmops->lm_change(victim, F_UNLCK, &dispose); 1883 spin_unlock(&ctx->flc_lock); 1884 percpu_up_read(&file_rwsem); 1885 locks_dispose_list(&dispose); 1886 return error; 1887} 1888 1889/** 1890 * generic_setlease - sets a lease on an open file 1891 * @filp: file pointer 1892 * @arg: type of lease to obtain 1893 * @flp: input - file_lock to use, output - file_lock inserted 1894 * @priv: private data for lm_setup (may be NULL if lm_setup 1895 * doesn't require it) 1896 * 1897 * The (input) flp->fl_lmops->lm_break function is required 1898 * by break_lease(). 1899 */ 1900int generic_setlease(struct file *filp, long arg, struct file_lock **flp, 1901 void **priv) 1902{ 1903 struct inode *inode = locks_inode(filp); 1904 int error; 1905 1906 if ((!uid_eq(current_fsuid(), inode->i_uid)) && !capable(CAP_LEASE)) 1907 return -EACCES; 1908 if (!S_ISREG(inode->i_mode)) 1909 return -EINVAL; 1910 error = security_file_lock(filp, arg); 1911 if (error) 1912 return error; 1913 1914 switch (arg) { 1915 case F_UNLCK: 1916 return generic_delete_lease(filp, *priv); 1917 case F_RDLCK: 1918 case F_WRLCK: 1919 if (!(*flp)->fl_lmops->lm_break) { 1920 WARN_ON_ONCE(1); 1921 return -ENOLCK; 1922 } 1923 1924 return generic_add_lease(filp, arg, flp, priv); 1925 default: 1926 return -EINVAL; 1927 } 1928} 1929EXPORT_SYMBOL(generic_setlease); 1930 1931#if IS_ENABLED(CONFIG_SRCU) 1932/* 1933 * Kernel subsystems can register to be notified on any attempt to set 1934 * a new lease with the lease_notifier_chain. This is used by (e.g.) nfsd 1935 * to close files that it may have cached when there is an attempt to set a 1936 * conflicting lease. 1937 */ 1938static struct srcu_notifier_head lease_notifier_chain; 1939 1940static inline void 1941lease_notifier_chain_init(void) 1942{ 1943 srcu_init_notifier_head(&lease_notifier_chain); 1944} 1945 1946static inline void 1947setlease_notifier(long arg, struct file_lock *lease) 1948{ 1949 if (arg != F_UNLCK) 1950 srcu_notifier_call_chain(&lease_notifier_chain, arg, lease); 1951} 1952 1953int lease_register_notifier(struct notifier_block *nb) 1954{ 1955 return srcu_notifier_chain_register(&lease_notifier_chain, nb); 1956} 1957EXPORT_SYMBOL_GPL(lease_register_notifier); 1958 1959void lease_unregister_notifier(struct notifier_block *nb) 1960{ 1961 srcu_notifier_chain_unregister(&lease_notifier_chain, nb); 1962} 1963EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1964 1965#else /* !IS_ENABLED(CONFIG_SRCU) */ 1966static inline void 1967lease_notifier_chain_init(void) 1968{ 1969} 1970 1971static inline void 1972setlease_notifier(long arg, struct file_lock *lease) 1973{ 1974} 1975 1976int lease_register_notifier(struct notifier_block *nb) 1977{ 1978 return 0; 1979} 1980EXPORT_SYMBOL_GPL(lease_register_notifier); 1981 1982void lease_unregister_notifier(struct notifier_block *nb) 1983{ 1984} 1985EXPORT_SYMBOL_GPL(lease_unregister_notifier); 1986 1987#endif /* IS_ENABLED(CONFIG_SRCU) */ 1988 1989/** 1990 * vfs_setlease - sets a lease on an open file 1991 * @filp: file pointer 1992 * @arg: type of lease to obtain 1993 * @lease: file_lock to use when adding a lease 1994 * @priv: private info for lm_setup when adding a lease (may be 1995 * NULL if lm_setup doesn't require it) 1996 * 1997 * Call this to establish a lease on the file. The "lease" argument is not 1998 * used for F_UNLCK requests and may be NULL. For commands that set or alter 1999 * an existing lease, the ``(*lease)->fl_lmops->lm_break`` operation must be 2000 * set; if not, this function will return -ENOLCK (and generate a scary-looking 2001 * stack trace). 2002 * 2003 * The "priv" pointer is passed directly to the lm_setup function as-is. It 2004 * may be NULL if the lm_setup operation doesn't require it. 2005 */ 2006int 2007vfs_setlease(struct file *filp, long arg, struct file_lock **lease, void **priv) 2008{ 2009 if (lease) 2010 setlease_notifier(arg, *lease); 2011 if (filp->f_op->setlease) 2012 return filp->f_op->setlease(filp, arg, lease, priv); 2013 else 2014 return generic_setlease(filp, arg, lease, priv); 2015} 2016EXPORT_SYMBOL_GPL(vfs_setlease); 2017 2018static int do_fcntl_add_lease(unsigned int fd, struct file *filp, long arg) 2019{ 2020 struct file_lock *fl; 2021 struct fasync_struct *new; 2022 int error; 2023 2024 fl = lease_alloc(filp, arg); 2025 if (IS_ERR(fl)) 2026 return PTR_ERR(fl); 2027 2028 new = fasync_alloc(); 2029 if (!new) { 2030 locks_free_lock(fl); 2031 return -ENOMEM; 2032 } 2033 new->fa_fd = fd; 2034 2035 error = vfs_setlease(filp, arg, &fl, (void **)&new); 2036 if (fl) 2037 locks_free_lock(fl); 2038 if (new) 2039 fasync_free(new); 2040 return error; 2041} 2042 2043/** 2044 * fcntl_setlease - sets a lease on an open file 2045 * @fd: open file descriptor 2046 * @filp: file pointer 2047 * @arg: type of lease to obtain 2048 * 2049 * Call this fcntl to establish a lease on the file. 2050 * Note that you also need to call %F_SETSIG to 2051 * receive a signal when the lease is broken. 2052 */ 2053int fcntl_setlease(unsigned int fd, struct file *filp, long arg) 2054{ 2055 if (arg == F_UNLCK) 2056 return vfs_setlease(filp, F_UNLCK, NULL, (void **)&filp); 2057 return do_fcntl_add_lease(fd, filp, arg); 2058} 2059 2060/** 2061 * flock_lock_inode_wait - Apply a FLOCK-style lock to a file 2062 * @inode: inode of the file to apply to 2063 * @fl: The lock to be applied 2064 * 2065 * Apply a FLOCK style lock request to an inode. 2066 */ 2067static int flock_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2068{ 2069 int error; 2070 might_sleep(); 2071 for (;;) { 2072 error = flock_lock_inode(inode, fl); 2073 if (error != FILE_LOCK_DEFERRED) 2074 break; 2075 error = wait_event_interruptible(fl->fl_wait, 2076 list_empty(&fl->fl_blocked_member)); 2077 if (error) 2078 break; 2079 } 2080 locks_delete_block(fl); 2081 return error; 2082} 2083 2084/** 2085 * locks_lock_inode_wait - Apply a lock to an inode 2086 * @inode: inode of the file to apply to 2087 * @fl: The lock to be applied 2088 * 2089 * Apply a POSIX or FLOCK style lock request to an inode. 2090 */ 2091int locks_lock_inode_wait(struct inode *inode, struct file_lock *fl) 2092{ 2093 int res = 0; 2094 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) { 2095 case FL_POSIX: 2096 res = posix_lock_inode_wait(inode, fl); 2097 break; 2098 case FL_FLOCK: 2099 res = flock_lock_inode_wait(inode, fl); 2100 break; 2101 default: 2102 BUG(); 2103 } 2104 return res; 2105} 2106EXPORT_SYMBOL(locks_lock_inode_wait); 2107 2108/** 2109 * sys_flock: - flock() system call. 2110 * @fd: the file descriptor to lock. 2111 * @cmd: the type of lock to apply. 2112 * 2113 * Apply a %FL_FLOCK style lock to an open file descriptor. 2114 * The @cmd can be one of: 2115 * 2116 * - %LOCK_SH -- a shared lock. 2117 * - %LOCK_EX -- an exclusive lock. 2118 * - %LOCK_UN -- remove an existing lock. 2119 * - %LOCK_MAND -- a 'mandatory' flock. 2120 * This exists to emulate Windows Share Modes. 2121 * 2122 * %LOCK_MAND can be combined with %LOCK_READ or %LOCK_WRITE to allow other 2123 * processes read and write access respectively. 2124 */ 2125SYSCALL_DEFINE2(flock, unsigned int, fd, unsigned int, cmd) 2126{ 2127 struct fd f = fdget(fd); 2128 struct file_lock *lock; 2129 int can_sleep, unlock; 2130 int error; 2131 2132 error = -EBADF; 2133 if (!f.file) 2134 goto out; 2135 2136 can_sleep = !(cmd & LOCK_NB); 2137 cmd &= ~LOCK_NB; 2138 unlock = (cmd == LOCK_UN); 2139 2140 if (!unlock && !(cmd & LOCK_MAND) && 2141 !(f.file->f_mode & (FMODE_READ|FMODE_WRITE))) 2142 goto out_putf; 2143 2144 lock = flock_make_lock(f.file, cmd, NULL); 2145 if (IS_ERR(lock)) { 2146 error = PTR_ERR(lock); 2147 goto out_putf; 2148 } 2149 2150 if (can_sleep) 2151 lock->fl_flags |= FL_SLEEP; 2152 2153 error = security_file_lock(f.file, lock->fl_type); 2154 if (error) 2155 goto out_free; 2156 2157 if (f.file->f_op->flock) 2158 error = f.file->f_op->flock(f.file, 2159 (can_sleep) ? F_SETLKW : F_SETLK, 2160 lock); 2161 else 2162 error = locks_lock_file_wait(f.file, lock); 2163 2164 out_free: 2165 locks_free_lock(lock); 2166 2167 out_putf: 2168 fdput(f); 2169 out: 2170 return error; 2171} 2172 2173/** 2174 * vfs_test_lock - test file byte range lock 2175 * @filp: The file to test lock for 2176 * @fl: The lock to test; also used to hold result 2177 * 2178 * Returns -ERRNO on failure. Indicates presence of conflicting lock by 2179 * setting conf->fl_type to something other than F_UNLCK. 2180 */ 2181int vfs_test_lock(struct file *filp, struct file_lock *fl) 2182{ 2183 if (filp->f_op->lock) 2184 return filp->f_op->lock(filp, F_GETLK, fl); 2185 posix_test_lock(filp, fl); 2186 return 0; 2187} 2188EXPORT_SYMBOL_GPL(vfs_test_lock); 2189 2190/** 2191 * locks_translate_pid - translate a file_lock's fl_pid number into a namespace 2192 * @fl: The file_lock who's fl_pid should be translated 2193 * @ns: The namespace into which the pid should be translated 2194 * 2195 * Used to tranlate a fl_pid into a namespace virtual pid number 2196 */ 2197static pid_t locks_translate_pid(struct file_lock *fl, struct pid_namespace *ns) 2198{ 2199 pid_t vnr; 2200 struct pid *pid; 2201 2202 if (IS_OFDLCK(fl)) 2203 return -1; 2204 if (IS_REMOTELCK(fl)) 2205 return fl->fl_pid; 2206 /* 2207 * If the flock owner process is dead and its pid has been already 2208 * freed, the translation below won't work, but we still want to show 2209 * flock owner pid number in init pidns. 2210 */ 2211 if (ns == &init_pid_ns) 2212 return (pid_t)fl->fl_pid; 2213 2214 rcu_read_lock(); 2215 pid = find_pid_ns(fl->fl_pid, &init_pid_ns); 2216 vnr = pid_nr_ns(pid, ns); 2217 rcu_read_unlock(); 2218 return vnr; 2219} 2220 2221static int posix_lock_to_flock(struct flock *flock, struct file_lock *fl) 2222{ 2223 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2224#if BITS_PER_LONG == 32 2225 /* 2226 * Make sure we can represent the posix lock via 2227 * legacy 32bit flock. 2228 */ 2229 if (fl->fl_start > OFFT_OFFSET_MAX) 2230 return -EOVERFLOW; 2231 if (fl->fl_end != OFFSET_MAX && fl->fl_end > OFFT_OFFSET_MAX) 2232 return -EOVERFLOW; 2233#endif 2234 flock->l_start = fl->fl_start; 2235 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2236 fl->fl_end - fl->fl_start + 1; 2237 flock->l_whence = 0; 2238 flock->l_type = fl->fl_type; 2239 return 0; 2240} 2241 2242#if BITS_PER_LONG == 32 2243static void posix_lock_to_flock64(struct flock64 *flock, struct file_lock *fl) 2244{ 2245 flock->l_pid = locks_translate_pid(fl, task_active_pid_ns(current)); 2246 flock->l_start = fl->fl_start; 2247 flock->l_len = fl->fl_end == OFFSET_MAX ? 0 : 2248 fl->fl_end - fl->fl_start + 1; 2249 flock->l_whence = 0; 2250 flock->l_type = fl->fl_type; 2251} 2252#endif 2253 2254/* Report the first existing lock that would conflict with l. 2255 * This implements the F_GETLK command of fcntl(). 2256 */ 2257int fcntl_getlk(struct file *filp, unsigned int cmd, struct flock *flock) 2258{ 2259 struct file_lock *fl; 2260 int error; 2261 2262 fl = locks_alloc_lock(); 2263 if (fl == NULL) 2264 return -ENOMEM; 2265 error = -EINVAL; 2266 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2267 goto out; 2268 2269 error = flock_to_posix_lock(filp, fl, flock); 2270 if (error) 2271 goto out; 2272 2273 if (cmd == F_OFD_GETLK) { 2274 error = -EINVAL; 2275 if (flock->l_pid != 0) 2276 goto out; 2277 2278 fl->fl_flags |= FL_OFDLCK; 2279 fl->fl_owner = filp; 2280 } 2281 2282 error = vfs_test_lock(filp, fl); 2283 if (error) 2284 goto out; 2285 2286 flock->l_type = fl->fl_type; 2287 if (fl->fl_type != F_UNLCK) { 2288 error = posix_lock_to_flock(flock, fl); 2289 if (error) 2290 goto out; 2291 } 2292out: 2293 locks_free_lock(fl); 2294 return error; 2295} 2296 2297/** 2298 * vfs_lock_file - file byte range lock 2299 * @filp: The file to apply the lock to 2300 * @cmd: type of locking operation (F_SETLK, F_GETLK, etc.) 2301 * @fl: The lock to be applied 2302 * @conf: Place to return a copy of the conflicting lock, if found. 2303 * 2304 * A caller that doesn't care about the conflicting lock may pass NULL 2305 * as the final argument. 2306 * 2307 * If the filesystem defines a private ->lock() method, then @conf will 2308 * be left unchanged; so a caller that cares should initialize it to 2309 * some acceptable default. 2310 * 2311 * To avoid blocking kernel daemons, such as lockd, that need to acquire POSIX 2312 * locks, the ->lock() interface may return asynchronously, before the lock has 2313 * been granted or denied by the underlying filesystem, if (and only if) 2314 * lm_grant is set. Callers expecting ->lock() to return asynchronously 2315 * will only use F_SETLK, not F_SETLKW; they will set FL_SLEEP if (and only if) 2316 * the request is for a blocking lock. When ->lock() does return asynchronously, 2317 * it must return FILE_LOCK_DEFERRED, and call ->lm_grant() when the lock 2318 * request completes. 2319 * If the request is for non-blocking lock the file system should return 2320 * FILE_LOCK_DEFERRED then try to get the lock and call the callback routine 2321 * with the result. If the request timed out the callback routine will return a 2322 * nonzero return code and the file system should release the lock. The file 2323 * system is also responsible to keep a corresponding posix lock when it 2324 * grants a lock so the VFS can find out which locks are locally held and do 2325 * the correct lock cleanup when required. 2326 * The underlying filesystem must not drop the kernel lock or call 2327 * ->lm_grant() before returning to the caller with a FILE_LOCK_DEFERRED 2328 * return code. 2329 */ 2330int vfs_lock_file(struct file *filp, unsigned int cmd, struct file_lock *fl, struct file_lock *conf) 2331{ 2332 if (filp->f_op->lock) 2333 return filp->f_op->lock(filp, cmd, fl); 2334 else 2335 return posix_lock_file(filp, fl, conf); 2336} 2337EXPORT_SYMBOL_GPL(vfs_lock_file); 2338 2339static int do_lock_file_wait(struct file *filp, unsigned int cmd, 2340 struct file_lock *fl) 2341{ 2342 int error; 2343 2344 error = security_file_lock(filp, fl->fl_type); 2345 if (error) 2346 return error; 2347 2348 for (;;) { 2349 error = vfs_lock_file(filp, cmd, fl, NULL); 2350 if (error != FILE_LOCK_DEFERRED) 2351 break; 2352 error = wait_event_interruptible(fl->fl_wait, 2353 list_empty(&fl->fl_blocked_member)); 2354 if (error) 2355 break; 2356 } 2357 locks_delete_block(fl); 2358 2359 return error; 2360} 2361 2362/* Ensure that fl->fl_file has compatible f_mode for F_SETLK calls */ 2363static int 2364check_fmode_for_setlk(struct file_lock *fl) 2365{ 2366 switch (fl->fl_type) { 2367 case F_RDLCK: 2368 if (!(fl->fl_file->f_mode & FMODE_READ)) 2369 return -EBADF; 2370 break; 2371 case F_WRLCK: 2372 if (!(fl->fl_file->f_mode & FMODE_WRITE)) 2373 return -EBADF; 2374 } 2375 return 0; 2376} 2377 2378/* Apply the lock described by l to an open file descriptor. 2379 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2380 */ 2381int fcntl_setlk(unsigned int fd, struct file *filp, unsigned int cmd, 2382 struct flock *flock) 2383{ 2384 struct file_lock *file_lock = locks_alloc_lock(); 2385 struct inode *inode = locks_inode(filp); 2386 struct file *f; 2387 int error; 2388 2389 if (file_lock == NULL) 2390 return -ENOLCK; 2391 2392 error = flock_to_posix_lock(filp, file_lock, flock); 2393 if (error) 2394 goto out; 2395 2396 error = check_fmode_for_setlk(file_lock); 2397 if (error) 2398 goto out; 2399 2400 /* 2401 * If the cmd is requesting file-private locks, then set the 2402 * FL_OFDLCK flag and override the owner. 2403 */ 2404 switch (cmd) { 2405 case F_OFD_SETLK: 2406 error = -EINVAL; 2407 if (flock->l_pid != 0) 2408 goto out; 2409 2410 cmd = F_SETLK; 2411 file_lock->fl_flags |= FL_OFDLCK; 2412 file_lock->fl_owner = filp; 2413 break; 2414 case F_OFD_SETLKW: 2415 error = -EINVAL; 2416 if (flock->l_pid != 0) 2417 goto out; 2418 2419 cmd = F_SETLKW; 2420 file_lock->fl_flags |= FL_OFDLCK; 2421 file_lock->fl_owner = filp; 2422 fallthrough; 2423 case F_SETLKW: 2424 file_lock->fl_flags |= FL_SLEEP; 2425 } 2426 2427 error = do_lock_file_wait(filp, cmd, file_lock); 2428 2429 /* 2430 * Attempt to detect a close/fcntl race and recover by releasing the 2431 * lock that was just acquired. There is no need to do that when we're 2432 * unlocking though, or for OFD locks. 2433 */ 2434 if (!error && file_lock->fl_type != F_UNLCK && 2435 !(file_lock->fl_flags & FL_OFDLCK)) { 2436 struct files_struct *files = current->files; 2437 /* 2438 * We need that spin_lock here - it prevents reordering between 2439 * update of i_flctx->flc_posix and check for it done in 2440 * close(). rcu_read_lock() wouldn't do. 2441 */ 2442 spin_lock(&files->file_lock); 2443 f = files_lookup_fd_locked(files, fd); 2444 spin_unlock(&files->file_lock); 2445 if (f != filp) { 2446 file_lock->fl_type = F_UNLCK; 2447 error = do_lock_file_wait(filp, cmd, file_lock); 2448 WARN_ON_ONCE(error); 2449 error = -EBADF; 2450 } 2451 } 2452out: 2453 trace_fcntl_setlk(inode, file_lock, error); 2454 locks_free_lock(file_lock); 2455 return error; 2456} 2457 2458#if BITS_PER_LONG == 32 2459/* Report the first existing lock that would conflict with l. 2460 * This implements the F_GETLK command of fcntl(). 2461 */ 2462int fcntl_getlk64(struct file *filp, unsigned int cmd, struct flock64 *flock) 2463{ 2464 struct file_lock *fl; 2465 int error; 2466 2467 fl = locks_alloc_lock(); 2468 if (fl == NULL) 2469 return -ENOMEM; 2470 2471 error = -EINVAL; 2472 if (flock->l_type != F_RDLCK && flock->l_type != F_WRLCK) 2473 goto out; 2474 2475 error = flock64_to_posix_lock(filp, fl, flock); 2476 if (error) 2477 goto out; 2478 2479 if (cmd == F_OFD_GETLK) { 2480 error = -EINVAL; 2481 if (flock->l_pid != 0) 2482 goto out; 2483 2484 cmd = F_GETLK64; 2485 fl->fl_flags |= FL_OFDLCK; 2486 fl->fl_owner = filp; 2487 } 2488 2489 error = vfs_test_lock(filp, fl); 2490 if (error) 2491 goto out; 2492 2493 flock->l_type = fl->fl_type; 2494 if (fl->fl_type != F_UNLCK) 2495 posix_lock_to_flock64(flock, fl); 2496 2497out: 2498 locks_free_lock(fl); 2499 return error; 2500} 2501 2502/* Apply the lock described by l to an open file descriptor. 2503 * This implements both the F_SETLK and F_SETLKW commands of fcntl(). 2504 */ 2505int fcntl_setlk64(unsigned int fd, struct file *filp, unsigned int cmd, 2506 struct flock64 *flock) 2507{ 2508 struct file_lock *file_lock = locks_alloc_lock(); 2509 struct file *f; 2510 int error; 2511 2512 if (file_lock == NULL) 2513 return -ENOLCK; 2514 2515 error = flock64_to_posix_lock(filp, file_lock, flock); 2516 if (error) 2517 goto out; 2518 2519 error = check_fmode_for_setlk(file_lock); 2520 if (error) 2521 goto out; 2522 2523 /* 2524 * If the cmd is requesting file-private locks, then set the 2525 * FL_OFDLCK flag and override the owner. 2526 */ 2527 switch (cmd) { 2528 case F_OFD_SETLK: 2529 error = -EINVAL; 2530 if (flock->l_pid != 0) 2531 goto out; 2532 2533 cmd = F_SETLK64; 2534 file_lock->fl_flags |= FL_OFDLCK; 2535 file_lock->fl_owner = filp; 2536 break; 2537 case F_OFD_SETLKW: 2538 error = -EINVAL; 2539 if (flock->l_pid != 0) 2540 goto out; 2541 2542 cmd = F_SETLKW64; 2543 file_lock->fl_flags |= FL_OFDLCK; 2544 file_lock->fl_owner = filp; 2545 fallthrough; 2546 case F_SETLKW64: 2547 file_lock->fl_flags |= FL_SLEEP; 2548 } 2549 2550 error = do_lock_file_wait(filp, cmd, file_lock); 2551 2552 /* 2553 * Attempt to detect a close/fcntl race and recover by releasing the 2554 * lock that was just acquired. There is no need to do that when we're 2555 * unlocking though, or for OFD locks. 2556 */ 2557 if (!error && file_lock->fl_type != F_UNLCK && 2558 !(file_lock->fl_flags & FL_OFDLCK)) { 2559 struct files_struct *files = current->files; 2560 /* 2561 * We need that spin_lock here - it prevents reordering between 2562 * update of i_flctx->flc_posix and check for it done in 2563 * close(). rcu_read_lock() wouldn't do. 2564 */ 2565 spin_lock(&files->file_lock); 2566 f = files_lookup_fd_locked(files, fd); 2567 spin_unlock(&files->file_lock); 2568 if (f != filp) { 2569 file_lock->fl_type = F_UNLCK; 2570 error = do_lock_file_wait(filp, cmd, file_lock); 2571 WARN_ON_ONCE(error); 2572 error = -EBADF; 2573 } 2574 } 2575out: 2576 locks_free_lock(file_lock); 2577 return error; 2578} 2579#endif /* BITS_PER_LONG == 32 */ 2580 2581/* 2582 * This function is called when the file is being removed 2583 * from the task's fd array. POSIX locks belonging to this task 2584 * are deleted at this time. 2585 */ 2586void locks_remove_posix(struct file *filp, fl_owner_t owner) 2587{ 2588 int error; 2589 struct inode *inode = locks_inode(filp); 2590 struct file_lock lock; 2591 struct file_lock_context *ctx; 2592 2593 /* 2594 * If there are no locks held on this file, we don't need to call 2595 * posix_lock_file(). Another process could be setting a lock on this 2596 * file at the same time, but we wouldn't remove that lock anyway. 2597 */ 2598 ctx = smp_load_acquire(&inode->i_flctx); 2599 if (!ctx || list_empty(&ctx->flc_posix)) 2600 return; 2601 2602 locks_init_lock(&lock); 2603 lock.fl_type = F_UNLCK; 2604 lock.fl_flags = FL_POSIX | FL_CLOSE; 2605 lock.fl_start = 0; 2606 lock.fl_end = OFFSET_MAX; 2607 lock.fl_owner = owner; 2608 lock.fl_pid = current->tgid; 2609 lock.fl_file = filp; 2610 lock.fl_ops = NULL; 2611 lock.fl_lmops = NULL; 2612 2613 error = vfs_lock_file(filp, F_SETLK, &lock, NULL); 2614 2615 if (lock.fl_ops && lock.fl_ops->fl_release_private) 2616 lock.fl_ops->fl_release_private(&lock); 2617 trace_locks_remove_posix(inode, &lock, error); 2618} 2619EXPORT_SYMBOL(locks_remove_posix); 2620 2621/* The i_flctx must be valid when calling into here */ 2622static void 2623locks_remove_flock(struct file *filp, struct file_lock_context *flctx) 2624{ 2625 struct file_lock fl; 2626 struct inode *inode = locks_inode(filp); 2627 2628 if (list_empty(&flctx->flc_flock)) 2629 return; 2630 2631 flock_make_lock(filp, LOCK_UN, &fl); 2632 fl.fl_flags |= FL_CLOSE; 2633 2634 if (filp->f_op->flock) 2635 filp->f_op->flock(filp, F_SETLKW, &fl); 2636 else 2637 flock_lock_inode(inode, &fl); 2638 2639 if (fl.fl_ops && fl.fl_ops->fl_release_private) 2640 fl.fl_ops->fl_release_private(&fl); 2641} 2642 2643/* The i_flctx must be valid when calling into here */ 2644static void 2645locks_remove_lease(struct file *filp, struct file_lock_context *ctx) 2646{ 2647 struct file_lock *fl, *tmp; 2648 LIST_HEAD(dispose); 2649 2650 if (list_empty(&ctx->flc_lease)) 2651 return; 2652 2653 percpu_down_read(&file_rwsem); 2654 spin_lock(&ctx->flc_lock); 2655 list_for_each_entry_safe(fl, tmp, &ctx->flc_lease, fl_list) 2656 if (filp == fl->fl_file) 2657 lease_modify(fl, F_UNLCK, &dispose); 2658 spin_unlock(&ctx->flc_lock); 2659 percpu_up_read(&file_rwsem); 2660 2661 locks_dispose_list(&dispose); 2662} 2663 2664/* 2665 * This function is called on the last close of an open file. 2666 */ 2667void locks_remove_file(struct file *filp) 2668{ 2669 struct file_lock_context *ctx; 2670 2671 ctx = smp_load_acquire(&locks_inode(filp)->i_flctx); 2672 if (!ctx) 2673 return; 2674 2675 /* remove any OFD locks */ 2676 locks_remove_posix(filp, filp); 2677 2678 /* remove flock locks */ 2679 locks_remove_flock(filp, ctx); 2680 2681 /* remove any leases */ 2682 locks_remove_lease(filp, ctx); 2683 2684 spin_lock(&ctx->flc_lock); 2685 locks_check_ctx_file_list(filp, &ctx->flc_posix, "POSIX"); 2686 locks_check_ctx_file_list(filp, &ctx->flc_flock, "FLOCK"); 2687 locks_check_ctx_file_list(filp, &ctx->flc_lease, "LEASE"); 2688 spin_unlock(&ctx->flc_lock); 2689} 2690 2691/** 2692 * vfs_cancel_lock - file byte range unblock lock 2693 * @filp: The file to apply the unblock to 2694 * @fl: The lock to be unblocked 2695 * 2696 * Used by lock managers to cancel blocked requests 2697 */ 2698int vfs_cancel_lock(struct file *filp, struct file_lock *fl) 2699{ 2700 if (filp->f_op->lock) 2701 return filp->f_op->lock(filp, F_CANCELLK, fl); 2702 return 0; 2703} 2704EXPORT_SYMBOL_GPL(vfs_cancel_lock); 2705 2706#ifdef CONFIG_PROC_FS 2707#include <linux/proc_fs.h> 2708#include <linux/seq_file.h> 2709 2710struct locks_iterator { 2711 int li_cpu; 2712 loff_t li_pos; 2713}; 2714 2715static void lock_get_status(struct seq_file *f, struct file_lock *fl, 2716 loff_t id, char *pfx, int repeat) 2717{ 2718 struct inode *inode = NULL; 2719 unsigned int fl_pid; 2720 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2721 2722 fl_pid = locks_translate_pid(fl, proc_pidns); 2723 /* 2724 * If lock owner is dead (and pid is freed) or not visible in current 2725 * pidns, zero is shown as a pid value. Check lock info from 2726 * init_pid_ns to get saved lock pid value. 2727 */ 2728 2729 if (fl->fl_file != NULL) 2730 inode = locks_inode(fl->fl_file); 2731 2732 seq_printf(f, "%lld: ", id); 2733 2734 if (repeat) 2735 seq_printf(f, "%*s", repeat - 1 + (int)strlen(pfx), pfx); 2736 2737 if (IS_POSIX(fl)) { 2738 if (fl->fl_flags & FL_ACCESS) 2739 seq_puts(f, "ACCESS"); 2740 else if (IS_OFDLCK(fl)) 2741 seq_puts(f, "OFDLCK"); 2742 else 2743 seq_puts(f, "POSIX "); 2744 2745 seq_printf(f, " %s ", 2746 (inode == NULL) ? "*NOINODE*" : "ADVISORY "); 2747 } else if (IS_FLOCK(fl)) { 2748 if (fl->fl_type & LOCK_MAND) { 2749 seq_puts(f, "FLOCK MSNFS "); 2750 } else { 2751 seq_puts(f, "FLOCK ADVISORY "); 2752 } 2753 } else if (IS_LEASE(fl)) { 2754 if (fl->fl_flags & FL_DELEG) 2755 seq_puts(f, "DELEG "); 2756 else 2757 seq_puts(f, "LEASE "); 2758 2759 if (lease_breaking(fl)) 2760 seq_puts(f, "BREAKING "); 2761 else if (fl->fl_file) 2762 seq_puts(f, "ACTIVE "); 2763 else 2764 seq_puts(f, "BREAKER "); 2765 } else { 2766 seq_puts(f, "UNKNOWN UNKNOWN "); 2767 } 2768 if (fl->fl_type & LOCK_MAND) { 2769 seq_printf(f, "%s ", 2770 (fl->fl_type & LOCK_READ) 2771 ? (fl->fl_type & LOCK_WRITE) ? "RW " : "READ " 2772 : (fl->fl_type & LOCK_WRITE) ? "WRITE" : "NONE "); 2773 } else { 2774 int type = IS_LEASE(fl) ? target_leasetype(fl) : fl->fl_type; 2775 2776 seq_printf(f, "%s ", (type == F_WRLCK) ? "WRITE" : 2777 (type == F_RDLCK) ? "READ" : "UNLCK"); 2778 } 2779 if (inode) { 2780 /* userspace relies on this representation of dev_t */ 2781 seq_printf(f, "%d %02x:%02x:%lu ", fl_pid, 2782 MAJOR(inode->i_sb->s_dev), 2783 MINOR(inode->i_sb->s_dev), inode->i_ino); 2784 } else { 2785 seq_printf(f, "%d <none>:0 ", fl_pid); 2786 } 2787 if (IS_POSIX(fl)) { 2788 if (fl->fl_end == OFFSET_MAX) 2789 seq_printf(f, "%Ld EOF\n", fl->fl_start); 2790 else 2791 seq_printf(f, "%Ld %Ld\n", fl->fl_start, fl->fl_end); 2792 } else { 2793 seq_puts(f, "0 EOF\n"); 2794 } 2795} 2796 2797static struct file_lock *get_next_blocked_member(struct file_lock *node) 2798{ 2799 struct file_lock *tmp; 2800 2801 /* NULL node or root node */ 2802 if (node == NULL || node->fl_blocker == NULL) 2803 return NULL; 2804 2805 /* Next member in the linked list could be itself */ 2806 tmp = list_next_entry(node, fl_blocked_member); 2807 if (list_entry_is_head(tmp, &node->fl_blocker->fl_blocked_requests, fl_blocked_member) 2808 || tmp == node) { 2809 return NULL; 2810 } 2811 2812 return tmp; 2813} 2814 2815static int locks_show(struct seq_file *f, void *v) 2816{ 2817 struct locks_iterator *iter = f->private; 2818 struct file_lock *cur, *tmp; 2819 struct pid_namespace *proc_pidns = proc_pid_ns(file_inode(f->file)->i_sb); 2820 int level = 0; 2821 2822 cur = hlist_entry(v, struct file_lock, fl_link); 2823 2824 if (locks_translate_pid(cur, proc_pidns) == 0) 2825 return 0; 2826 2827 /* View this crossed linked list as a binary tree, the first member of fl_blocked_requests 2828 * is the left child of current node, the next silibing in fl_blocked_member is the 2829 * right child, we can alse get the parent of current node from fl_blocker, so this 2830 * question becomes traversal of a binary tree 2831 */ 2832 while (cur != NULL) { 2833 if (level) 2834 lock_get_status(f, cur, iter->li_pos, "-> ", level); 2835 else 2836 lock_get_status(f, cur, iter->li_pos, "", level); 2837 2838 if (!list_empty(&cur->fl_blocked_requests)) { 2839 /* Turn left */ 2840 cur = list_first_entry_or_null(&cur->fl_blocked_requests, 2841 struct file_lock, fl_blocked_member); 2842 level++; 2843 } else { 2844 /* Turn right */ 2845 tmp = get_next_blocked_member(cur); 2846 /* Fall back to parent node */ 2847 while (tmp == NULL && cur->fl_blocker != NULL) { 2848 cur = cur->fl_blocker; 2849 level--; 2850 tmp = get_next_blocked_member(cur); 2851 } 2852 cur = tmp; 2853 } 2854 } 2855 2856 return 0; 2857} 2858 2859static void __show_fd_locks(struct seq_file *f, 2860 struct list_head *head, int *id, 2861 struct file *filp, struct files_struct *files) 2862{ 2863 struct file_lock *fl; 2864 2865 list_for_each_entry(fl, head, fl_list) { 2866 2867 if (filp != fl->fl_file) 2868 continue; 2869 if (fl->fl_owner != files && 2870 fl->fl_owner != filp) 2871 continue; 2872 2873 (*id)++; 2874 seq_puts(f, "lock:\t"); 2875 lock_get_status(f, fl, *id, "", 0); 2876 } 2877} 2878 2879void show_fd_locks(struct seq_file *f, 2880 struct file *filp, struct files_struct *files) 2881{ 2882 struct inode *inode = locks_inode(filp); 2883 struct file_lock_context *ctx; 2884 int id = 0; 2885 2886 ctx = smp_load_acquire(&inode->i_flctx); 2887 if (!ctx) 2888 return; 2889 2890 spin_lock(&ctx->flc_lock); 2891 __show_fd_locks(f, &ctx->flc_flock, &id, filp, files); 2892 __show_fd_locks(f, &ctx->flc_posix, &id, filp, files); 2893 __show_fd_locks(f, &ctx->flc_lease, &id, filp, files); 2894 spin_unlock(&ctx->flc_lock); 2895} 2896 2897static void *locks_start(struct seq_file *f, loff_t *pos) 2898 __acquires(&blocked_lock_lock) 2899{ 2900 struct locks_iterator *iter = f->private; 2901 2902 iter->li_pos = *pos + 1; 2903 percpu_down_write(&file_rwsem); 2904 spin_lock(&blocked_lock_lock); 2905 return seq_hlist_start_percpu(&file_lock_list.hlist, &iter->li_cpu, *pos); 2906} 2907 2908static void *locks_next(struct seq_file *f, void *v, loff_t *pos) 2909{ 2910 struct locks_iterator *iter = f->private; 2911 2912 ++iter->li_pos; 2913 return seq_hlist_next_percpu(v, &file_lock_list.hlist, &iter->li_cpu, pos); 2914} 2915 2916static void locks_stop(struct seq_file *f, void *v) 2917 __releases(&blocked_lock_lock) 2918{ 2919 spin_unlock(&blocked_lock_lock); 2920 percpu_up_write(&file_rwsem); 2921} 2922 2923static const struct seq_operations locks_seq_operations = { 2924 .start = locks_start, 2925 .next = locks_next, 2926 .stop = locks_stop, 2927 .show = locks_show, 2928}; 2929 2930static int __init proc_locks_init(void) 2931{ 2932 proc_create_seq_private("locks", 0, NULL, &locks_seq_operations, 2933 sizeof(struct locks_iterator), NULL); 2934 return 0; 2935} 2936fs_initcall(proc_locks_init); 2937#endif 2938 2939static int __init filelock_init(void) 2940{ 2941 int i; 2942 2943 flctx_cache = kmem_cache_create("file_lock_ctx", 2944 sizeof(struct file_lock_context), 0, SLAB_PANIC, NULL); 2945 2946 filelock_cache = kmem_cache_create("file_lock_cache", 2947 sizeof(struct file_lock), 0, SLAB_PANIC, NULL); 2948 2949 for_each_possible_cpu(i) { 2950 struct file_lock_list_struct *fll = per_cpu_ptr(&file_lock_list, i); 2951 2952 spin_lock_init(&fll->lock); 2953 INIT_HLIST_HEAD(&fll->hlist); 2954 } 2955 2956 lease_notifier_chain_init(); 2957 return 0; 2958} 2959core_initcall(filelock_init);