at v5.15-rc6 2326 lines 64 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6#include <linux/export.h> 7#include <linux/fs.h> 8#include <linux/mm.h> 9#include <linux/backing-dev.h> 10#include <linux/hash.h> 11#include <linux/swap.h> 12#include <linux/security.h> 13#include <linux/cdev.h> 14#include <linux/memblock.h> 15#include <linux/fsnotify.h> 16#include <linux/mount.h> 17#include <linux/posix_acl.h> 18#include <linux/prefetch.h> 19#include <linux/buffer_head.h> /* for inode_has_buffers */ 20#include <linux/ratelimit.h> 21#include <linux/list_lru.h> 22#include <linux/iversion.h> 23#include <trace/events/writeback.h> 24#include "internal.h" 25 26/* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget() 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57static unsigned int i_hash_mask __read_mostly; 58static unsigned int i_hash_shift __read_mostly; 59static struct hlist_head *inode_hashtable __read_mostly; 60static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62/* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66const struct address_space_operations empty_aops = { 67}; 68EXPORT_SYMBOL(empty_aops); 69 70/* 71 * Statistics gathering.. 72 */ 73struct inodes_stat_t inodes_stat; 74 75static DEFINE_PER_CPU(unsigned long, nr_inodes); 76static DEFINE_PER_CPU(unsigned long, nr_unused); 77 78static struct kmem_cache *inode_cachep __read_mostly; 79 80static long get_nr_inodes(void) 81{ 82 int i; 83 long sum = 0; 84 for_each_possible_cpu(i) 85 sum += per_cpu(nr_inodes, i); 86 return sum < 0 ? 0 : sum; 87} 88 89static inline long get_nr_inodes_unused(void) 90{ 91 int i; 92 long sum = 0; 93 for_each_possible_cpu(i) 94 sum += per_cpu(nr_unused, i); 95 return sum < 0 ? 0 : sum; 96} 97 98long get_nr_dirty_inodes(void) 99{ 100 /* not actually dirty inodes, but a wild approximation */ 101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 102 return nr_dirty > 0 ? nr_dirty : 0; 103} 104 105/* 106 * Handle nr_inode sysctl 107 */ 108#ifdef CONFIG_SYSCTL 109int proc_nr_inodes(struct ctl_table *table, int write, 110 void *buffer, size_t *lenp, loff_t *ppos) 111{ 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115} 116#endif 117 118static int no_open(struct inode *inode, struct file *file) 119{ 120 return -ENXIO; 121} 122 123/** 124 * inode_init_always - perform inode structure initialisation 125 * @sb: superblock inode belongs to 126 * @inode: inode to initialise 127 * 128 * These are initializations that need to be done on every inode 129 * allocation as the fields are not initialised by slab allocation. 130 */ 131int inode_init_always(struct super_block *sb, struct inode *inode) 132{ 133 static const struct inode_operations empty_iops; 134 static const struct file_operations no_open_fops = {.open = no_open}; 135 struct address_space *const mapping = &inode->i_data; 136 137 inode->i_sb = sb; 138 inode->i_blkbits = sb->s_blocksize_bits; 139 inode->i_flags = 0; 140 atomic64_set(&inode->i_sequence, 0); 141 atomic_set(&inode->i_count, 1); 142 inode->i_op = &empty_iops; 143 inode->i_fop = &no_open_fops; 144 inode->i_ino = 0; 145 inode->__i_nlink = 1; 146 inode->i_opflags = 0; 147 if (sb->s_xattr) 148 inode->i_opflags |= IOP_XATTR; 149 i_uid_write(inode, 0); 150 i_gid_write(inode, 0); 151 atomic_set(&inode->i_writecount, 0); 152 inode->i_size = 0; 153 inode->i_write_hint = WRITE_LIFE_NOT_SET; 154 inode->i_blocks = 0; 155 inode->i_bytes = 0; 156 inode->i_generation = 0; 157 inode->i_pipe = NULL; 158 inode->i_cdev = NULL; 159 inode->i_link = NULL; 160 inode->i_dir_seq = 0; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164#ifdef CONFIG_CGROUP_WRITEBACK 165 inode->i_wb_frn_winner = 0; 166 inode->i_wb_frn_avg_time = 0; 167 inode->i_wb_frn_history = 0; 168#endif 169 170 if (security_inode_alloc(inode)) 171 goto out; 172 spin_lock_init(&inode->i_lock); 173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 174 175 init_rwsem(&inode->i_rwsem); 176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 177 178 atomic_set(&inode->i_dio_count, 0); 179 180 mapping->a_ops = &empty_aops; 181 mapping->host = inode; 182 mapping->flags = 0; 183 if (sb->s_type->fs_flags & FS_THP_SUPPORT) 184 __set_bit(AS_THP_SUPPORT, &mapping->flags); 185 mapping->wb_err = 0; 186 atomic_set(&mapping->i_mmap_writable, 0); 187#ifdef CONFIG_READ_ONLY_THP_FOR_FS 188 atomic_set(&mapping->nr_thps, 0); 189#endif 190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 191 mapping->private_data = NULL; 192 mapping->writeback_index = 0; 193 init_rwsem(&mapping->invalidate_lock); 194 lockdep_set_class_and_name(&mapping->invalidate_lock, 195 &sb->s_type->invalidate_lock_key, 196 "mapping.invalidate_lock"); 197 inode->i_private = NULL; 198 inode->i_mapping = mapping; 199 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 200#ifdef CONFIG_FS_POSIX_ACL 201 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 202#endif 203 204#ifdef CONFIG_FSNOTIFY 205 inode->i_fsnotify_mask = 0; 206#endif 207 inode->i_flctx = NULL; 208 this_cpu_inc(nr_inodes); 209 210 return 0; 211out: 212 return -ENOMEM; 213} 214EXPORT_SYMBOL(inode_init_always); 215 216void free_inode_nonrcu(struct inode *inode) 217{ 218 kmem_cache_free(inode_cachep, inode); 219} 220EXPORT_SYMBOL(free_inode_nonrcu); 221 222static void i_callback(struct rcu_head *head) 223{ 224 struct inode *inode = container_of(head, struct inode, i_rcu); 225 if (inode->free_inode) 226 inode->free_inode(inode); 227 else 228 free_inode_nonrcu(inode); 229} 230 231static struct inode *alloc_inode(struct super_block *sb) 232{ 233 const struct super_operations *ops = sb->s_op; 234 struct inode *inode; 235 236 if (ops->alloc_inode) 237 inode = ops->alloc_inode(sb); 238 else 239 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 240 241 if (!inode) 242 return NULL; 243 244 if (unlikely(inode_init_always(sb, inode))) { 245 if (ops->destroy_inode) { 246 ops->destroy_inode(inode); 247 if (!ops->free_inode) 248 return NULL; 249 } 250 inode->free_inode = ops->free_inode; 251 i_callback(&inode->i_rcu); 252 return NULL; 253 } 254 255 return inode; 256} 257 258void __destroy_inode(struct inode *inode) 259{ 260 BUG_ON(inode_has_buffers(inode)); 261 inode_detach_wb(inode); 262 security_inode_free(inode); 263 fsnotify_inode_delete(inode); 264 locks_free_lock_context(inode); 265 if (!inode->i_nlink) { 266 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 267 atomic_long_dec(&inode->i_sb->s_remove_count); 268 } 269 270#ifdef CONFIG_FS_POSIX_ACL 271 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 272 posix_acl_release(inode->i_acl); 273 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 274 posix_acl_release(inode->i_default_acl); 275#endif 276 this_cpu_dec(nr_inodes); 277} 278EXPORT_SYMBOL(__destroy_inode); 279 280static void destroy_inode(struct inode *inode) 281{ 282 const struct super_operations *ops = inode->i_sb->s_op; 283 284 BUG_ON(!list_empty(&inode->i_lru)); 285 __destroy_inode(inode); 286 if (ops->destroy_inode) { 287 ops->destroy_inode(inode); 288 if (!ops->free_inode) 289 return; 290 } 291 inode->free_inode = ops->free_inode; 292 call_rcu(&inode->i_rcu, i_callback); 293} 294 295/** 296 * drop_nlink - directly drop an inode's link count 297 * @inode: inode 298 * 299 * This is a low-level filesystem helper to replace any 300 * direct filesystem manipulation of i_nlink. In cases 301 * where we are attempting to track writes to the 302 * filesystem, a decrement to zero means an imminent 303 * write when the file is truncated and actually unlinked 304 * on the filesystem. 305 */ 306void drop_nlink(struct inode *inode) 307{ 308 WARN_ON(inode->i_nlink == 0); 309 inode->__i_nlink--; 310 if (!inode->i_nlink) 311 atomic_long_inc(&inode->i_sb->s_remove_count); 312} 313EXPORT_SYMBOL(drop_nlink); 314 315/** 316 * clear_nlink - directly zero an inode's link count 317 * @inode: inode 318 * 319 * This is a low-level filesystem helper to replace any 320 * direct filesystem manipulation of i_nlink. See 321 * drop_nlink() for why we care about i_nlink hitting zero. 322 */ 323void clear_nlink(struct inode *inode) 324{ 325 if (inode->i_nlink) { 326 inode->__i_nlink = 0; 327 atomic_long_inc(&inode->i_sb->s_remove_count); 328 } 329} 330EXPORT_SYMBOL(clear_nlink); 331 332/** 333 * set_nlink - directly set an inode's link count 334 * @inode: inode 335 * @nlink: new nlink (should be non-zero) 336 * 337 * This is a low-level filesystem helper to replace any 338 * direct filesystem manipulation of i_nlink. 339 */ 340void set_nlink(struct inode *inode, unsigned int nlink) 341{ 342 if (!nlink) { 343 clear_nlink(inode); 344 } else { 345 /* Yes, some filesystems do change nlink from zero to one */ 346 if (inode->i_nlink == 0) 347 atomic_long_dec(&inode->i_sb->s_remove_count); 348 349 inode->__i_nlink = nlink; 350 } 351} 352EXPORT_SYMBOL(set_nlink); 353 354/** 355 * inc_nlink - directly increment an inode's link count 356 * @inode: inode 357 * 358 * This is a low-level filesystem helper to replace any 359 * direct filesystem manipulation of i_nlink. Currently, 360 * it is only here for parity with dec_nlink(). 361 */ 362void inc_nlink(struct inode *inode) 363{ 364 if (unlikely(inode->i_nlink == 0)) { 365 WARN_ON(!(inode->i_state & I_LINKABLE)); 366 atomic_long_dec(&inode->i_sb->s_remove_count); 367 } 368 369 inode->__i_nlink++; 370} 371EXPORT_SYMBOL(inc_nlink); 372 373static void __address_space_init_once(struct address_space *mapping) 374{ 375 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 376 init_rwsem(&mapping->i_mmap_rwsem); 377 INIT_LIST_HEAD(&mapping->private_list); 378 spin_lock_init(&mapping->private_lock); 379 mapping->i_mmap = RB_ROOT_CACHED; 380} 381 382void address_space_init_once(struct address_space *mapping) 383{ 384 memset(mapping, 0, sizeof(*mapping)); 385 __address_space_init_once(mapping); 386} 387EXPORT_SYMBOL(address_space_init_once); 388 389/* 390 * These are initializations that only need to be done 391 * once, because the fields are idempotent across use 392 * of the inode, so let the slab aware of that. 393 */ 394void inode_init_once(struct inode *inode) 395{ 396 memset(inode, 0, sizeof(*inode)); 397 INIT_HLIST_NODE(&inode->i_hash); 398 INIT_LIST_HEAD(&inode->i_devices); 399 INIT_LIST_HEAD(&inode->i_io_list); 400 INIT_LIST_HEAD(&inode->i_wb_list); 401 INIT_LIST_HEAD(&inode->i_lru); 402 __address_space_init_once(&inode->i_data); 403 i_size_ordered_init(inode); 404} 405EXPORT_SYMBOL(inode_init_once); 406 407static void init_once(void *foo) 408{ 409 struct inode *inode = (struct inode *) foo; 410 411 inode_init_once(inode); 412} 413 414/* 415 * inode->i_lock must be held 416 */ 417void __iget(struct inode *inode) 418{ 419 atomic_inc(&inode->i_count); 420} 421 422/* 423 * get additional reference to inode; caller must already hold one. 424 */ 425void ihold(struct inode *inode) 426{ 427 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 428} 429EXPORT_SYMBOL(ihold); 430 431static void inode_lru_list_add(struct inode *inode) 432{ 433 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 434 this_cpu_inc(nr_unused); 435 else 436 inode->i_state |= I_REFERENCED; 437} 438 439/* 440 * Add inode to LRU if needed (inode is unused and clean). 441 * 442 * Needs inode->i_lock held. 443 */ 444void inode_add_lru(struct inode *inode) 445{ 446 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 447 I_FREEING | I_WILL_FREE)) && 448 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 449 inode_lru_list_add(inode); 450} 451 452 453static void inode_lru_list_del(struct inode *inode) 454{ 455 456 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 457 this_cpu_dec(nr_unused); 458} 459 460/** 461 * inode_sb_list_add - add inode to the superblock list of inodes 462 * @inode: inode to add 463 */ 464void inode_sb_list_add(struct inode *inode) 465{ 466 spin_lock(&inode->i_sb->s_inode_list_lock); 467 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 468 spin_unlock(&inode->i_sb->s_inode_list_lock); 469} 470EXPORT_SYMBOL_GPL(inode_sb_list_add); 471 472static inline void inode_sb_list_del(struct inode *inode) 473{ 474 if (!list_empty(&inode->i_sb_list)) { 475 spin_lock(&inode->i_sb->s_inode_list_lock); 476 list_del_init(&inode->i_sb_list); 477 spin_unlock(&inode->i_sb->s_inode_list_lock); 478 } 479} 480 481static unsigned long hash(struct super_block *sb, unsigned long hashval) 482{ 483 unsigned long tmp; 484 485 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 486 L1_CACHE_BYTES; 487 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 488 return tmp & i_hash_mask; 489} 490 491/** 492 * __insert_inode_hash - hash an inode 493 * @inode: unhashed inode 494 * @hashval: unsigned long value used to locate this object in the 495 * inode_hashtable. 496 * 497 * Add an inode to the inode hash for this superblock. 498 */ 499void __insert_inode_hash(struct inode *inode, unsigned long hashval) 500{ 501 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 502 503 spin_lock(&inode_hash_lock); 504 spin_lock(&inode->i_lock); 505 hlist_add_head_rcu(&inode->i_hash, b); 506 spin_unlock(&inode->i_lock); 507 spin_unlock(&inode_hash_lock); 508} 509EXPORT_SYMBOL(__insert_inode_hash); 510 511/** 512 * __remove_inode_hash - remove an inode from the hash 513 * @inode: inode to unhash 514 * 515 * Remove an inode from the superblock. 516 */ 517void __remove_inode_hash(struct inode *inode) 518{ 519 spin_lock(&inode_hash_lock); 520 spin_lock(&inode->i_lock); 521 hlist_del_init_rcu(&inode->i_hash); 522 spin_unlock(&inode->i_lock); 523 spin_unlock(&inode_hash_lock); 524} 525EXPORT_SYMBOL(__remove_inode_hash); 526 527void clear_inode(struct inode *inode) 528{ 529 /* 530 * We have to cycle the i_pages lock here because reclaim can be in the 531 * process of removing the last page (in __delete_from_page_cache()) 532 * and we must not free the mapping under it. 533 */ 534 xa_lock_irq(&inode->i_data.i_pages); 535 BUG_ON(inode->i_data.nrpages); 536 /* 537 * Almost always, mapping_empty(&inode->i_data) here; but there are 538 * two known and long-standing ways in which nodes may get left behind 539 * (when deep radix-tree node allocation failed partway; or when THP 540 * collapse_file() failed). Until those two known cases are cleaned up, 541 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 542 * nor even WARN_ON(!mapping_empty). 543 */ 544 xa_unlock_irq(&inode->i_data.i_pages); 545 BUG_ON(!list_empty(&inode->i_data.private_list)); 546 BUG_ON(!(inode->i_state & I_FREEING)); 547 BUG_ON(inode->i_state & I_CLEAR); 548 BUG_ON(!list_empty(&inode->i_wb_list)); 549 /* don't need i_lock here, no concurrent mods to i_state */ 550 inode->i_state = I_FREEING | I_CLEAR; 551} 552EXPORT_SYMBOL(clear_inode); 553 554/* 555 * Free the inode passed in, removing it from the lists it is still connected 556 * to. We remove any pages still attached to the inode and wait for any IO that 557 * is still in progress before finally destroying the inode. 558 * 559 * An inode must already be marked I_FREEING so that we avoid the inode being 560 * moved back onto lists if we race with other code that manipulates the lists 561 * (e.g. writeback_single_inode). The caller is responsible for setting this. 562 * 563 * An inode must already be removed from the LRU list before being evicted from 564 * the cache. This should occur atomically with setting the I_FREEING state 565 * flag, so no inodes here should ever be on the LRU when being evicted. 566 */ 567static void evict(struct inode *inode) 568{ 569 const struct super_operations *op = inode->i_sb->s_op; 570 571 BUG_ON(!(inode->i_state & I_FREEING)); 572 BUG_ON(!list_empty(&inode->i_lru)); 573 574 if (!list_empty(&inode->i_io_list)) 575 inode_io_list_del(inode); 576 577 inode_sb_list_del(inode); 578 579 /* 580 * Wait for flusher thread to be done with the inode so that filesystem 581 * does not start destroying it while writeback is still running. Since 582 * the inode has I_FREEING set, flusher thread won't start new work on 583 * the inode. We just have to wait for running writeback to finish. 584 */ 585 inode_wait_for_writeback(inode); 586 587 if (op->evict_inode) { 588 op->evict_inode(inode); 589 } else { 590 truncate_inode_pages_final(&inode->i_data); 591 clear_inode(inode); 592 } 593 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 594 cd_forget(inode); 595 596 remove_inode_hash(inode); 597 598 spin_lock(&inode->i_lock); 599 wake_up_bit(&inode->i_state, __I_NEW); 600 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 601 spin_unlock(&inode->i_lock); 602 603 destroy_inode(inode); 604} 605 606/* 607 * dispose_list - dispose of the contents of a local list 608 * @head: the head of the list to free 609 * 610 * Dispose-list gets a local list with local inodes in it, so it doesn't 611 * need to worry about list corruption and SMP locks. 612 */ 613static void dispose_list(struct list_head *head) 614{ 615 while (!list_empty(head)) { 616 struct inode *inode; 617 618 inode = list_first_entry(head, struct inode, i_lru); 619 list_del_init(&inode->i_lru); 620 621 evict(inode); 622 cond_resched(); 623 } 624} 625 626/** 627 * evict_inodes - evict all evictable inodes for a superblock 628 * @sb: superblock to operate on 629 * 630 * Make sure that no inodes with zero refcount are retained. This is 631 * called by superblock shutdown after having SB_ACTIVE flag removed, 632 * so any inode reaching zero refcount during or after that call will 633 * be immediately evicted. 634 */ 635void evict_inodes(struct super_block *sb) 636{ 637 struct inode *inode, *next; 638 LIST_HEAD(dispose); 639 640again: 641 spin_lock(&sb->s_inode_list_lock); 642 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 643 if (atomic_read(&inode->i_count)) 644 continue; 645 646 spin_lock(&inode->i_lock); 647 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 648 spin_unlock(&inode->i_lock); 649 continue; 650 } 651 652 inode->i_state |= I_FREEING; 653 inode_lru_list_del(inode); 654 spin_unlock(&inode->i_lock); 655 list_add(&inode->i_lru, &dispose); 656 657 /* 658 * We can have a ton of inodes to evict at unmount time given 659 * enough memory, check to see if we need to go to sleep for a 660 * bit so we don't livelock. 661 */ 662 if (need_resched()) { 663 spin_unlock(&sb->s_inode_list_lock); 664 cond_resched(); 665 dispose_list(&dispose); 666 goto again; 667 } 668 } 669 spin_unlock(&sb->s_inode_list_lock); 670 671 dispose_list(&dispose); 672} 673EXPORT_SYMBOL_GPL(evict_inodes); 674 675/** 676 * invalidate_inodes - attempt to free all inodes on a superblock 677 * @sb: superblock to operate on 678 * @kill_dirty: flag to guide handling of dirty inodes 679 * 680 * Attempts to free all inodes for a given superblock. If there were any 681 * busy inodes return a non-zero value, else zero. 682 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 683 * them as busy. 684 */ 685int invalidate_inodes(struct super_block *sb, bool kill_dirty) 686{ 687 int busy = 0; 688 struct inode *inode, *next; 689 LIST_HEAD(dispose); 690 691again: 692 spin_lock(&sb->s_inode_list_lock); 693 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 694 spin_lock(&inode->i_lock); 695 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 696 spin_unlock(&inode->i_lock); 697 continue; 698 } 699 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 700 spin_unlock(&inode->i_lock); 701 busy = 1; 702 continue; 703 } 704 if (atomic_read(&inode->i_count)) { 705 spin_unlock(&inode->i_lock); 706 busy = 1; 707 continue; 708 } 709 710 inode->i_state |= I_FREEING; 711 inode_lru_list_del(inode); 712 spin_unlock(&inode->i_lock); 713 list_add(&inode->i_lru, &dispose); 714 if (need_resched()) { 715 spin_unlock(&sb->s_inode_list_lock); 716 cond_resched(); 717 dispose_list(&dispose); 718 goto again; 719 } 720 } 721 spin_unlock(&sb->s_inode_list_lock); 722 723 dispose_list(&dispose); 724 725 return busy; 726} 727 728/* 729 * Isolate the inode from the LRU in preparation for freeing it. 730 * 731 * Any inodes which are pinned purely because of attached pagecache have their 732 * pagecache removed. If the inode has metadata buffers attached to 733 * mapping->private_list then try to remove them. 734 * 735 * If the inode has the I_REFERENCED flag set, then it means that it has been 736 * used recently - the flag is set in iput_final(). When we encounter such an 737 * inode, clear the flag and move it to the back of the LRU so it gets another 738 * pass through the LRU before it gets reclaimed. This is necessary because of 739 * the fact we are doing lazy LRU updates to minimise lock contention so the 740 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 741 * with this flag set because they are the inodes that are out of order. 742 */ 743static enum lru_status inode_lru_isolate(struct list_head *item, 744 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 745{ 746 struct list_head *freeable = arg; 747 struct inode *inode = container_of(item, struct inode, i_lru); 748 749 /* 750 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 751 * If we fail to get the lock, just skip it. 752 */ 753 if (!spin_trylock(&inode->i_lock)) 754 return LRU_SKIP; 755 756 /* 757 * Referenced or dirty inodes are still in use. Give them another pass 758 * through the LRU as we canot reclaim them now. 759 */ 760 if (atomic_read(&inode->i_count) || 761 (inode->i_state & ~I_REFERENCED)) { 762 list_lru_isolate(lru, &inode->i_lru); 763 spin_unlock(&inode->i_lock); 764 this_cpu_dec(nr_unused); 765 return LRU_REMOVED; 766 } 767 768 /* recently referenced inodes get one more pass */ 769 if (inode->i_state & I_REFERENCED) { 770 inode->i_state &= ~I_REFERENCED; 771 spin_unlock(&inode->i_lock); 772 return LRU_ROTATE; 773 } 774 775 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 776 __iget(inode); 777 spin_unlock(&inode->i_lock); 778 spin_unlock(lru_lock); 779 if (remove_inode_buffers(inode)) { 780 unsigned long reap; 781 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 782 if (current_is_kswapd()) 783 __count_vm_events(KSWAPD_INODESTEAL, reap); 784 else 785 __count_vm_events(PGINODESTEAL, reap); 786 if (current->reclaim_state) 787 current->reclaim_state->reclaimed_slab += reap; 788 } 789 iput(inode); 790 spin_lock(lru_lock); 791 return LRU_RETRY; 792 } 793 794 WARN_ON(inode->i_state & I_NEW); 795 inode->i_state |= I_FREEING; 796 list_lru_isolate_move(lru, &inode->i_lru, freeable); 797 spin_unlock(&inode->i_lock); 798 799 this_cpu_dec(nr_unused); 800 return LRU_REMOVED; 801} 802 803/* 804 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 805 * This is called from the superblock shrinker function with a number of inodes 806 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 807 * then are freed outside inode_lock by dispose_list(). 808 */ 809long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 810{ 811 LIST_HEAD(freeable); 812 long freed; 813 814 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 815 inode_lru_isolate, &freeable); 816 dispose_list(&freeable); 817 return freed; 818} 819 820static void __wait_on_freeing_inode(struct inode *inode); 821/* 822 * Called with the inode lock held. 823 */ 824static struct inode *find_inode(struct super_block *sb, 825 struct hlist_head *head, 826 int (*test)(struct inode *, void *), 827 void *data) 828{ 829 struct inode *inode = NULL; 830 831repeat: 832 hlist_for_each_entry(inode, head, i_hash) { 833 if (inode->i_sb != sb) 834 continue; 835 if (!test(inode, data)) 836 continue; 837 spin_lock(&inode->i_lock); 838 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 839 __wait_on_freeing_inode(inode); 840 goto repeat; 841 } 842 if (unlikely(inode->i_state & I_CREATING)) { 843 spin_unlock(&inode->i_lock); 844 return ERR_PTR(-ESTALE); 845 } 846 __iget(inode); 847 spin_unlock(&inode->i_lock); 848 return inode; 849 } 850 return NULL; 851} 852 853/* 854 * find_inode_fast is the fast path version of find_inode, see the comment at 855 * iget_locked for details. 856 */ 857static struct inode *find_inode_fast(struct super_block *sb, 858 struct hlist_head *head, unsigned long ino) 859{ 860 struct inode *inode = NULL; 861 862repeat: 863 hlist_for_each_entry(inode, head, i_hash) { 864 if (inode->i_ino != ino) 865 continue; 866 if (inode->i_sb != sb) 867 continue; 868 spin_lock(&inode->i_lock); 869 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 870 __wait_on_freeing_inode(inode); 871 goto repeat; 872 } 873 if (unlikely(inode->i_state & I_CREATING)) { 874 spin_unlock(&inode->i_lock); 875 return ERR_PTR(-ESTALE); 876 } 877 __iget(inode); 878 spin_unlock(&inode->i_lock); 879 return inode; 880 } 881 return NULL; 882} 883 884/* 885 * Each cpu owns a range of LAST_INO_BATCH numbers. 886 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 887 * to renew the exhausted range. 888 * 889 * This does not significantly increase overflow rate because every CPU can 890 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 891 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 892 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 893 * overflow rate by 2x, which does not seem too significant. 894 * 895 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 896 * error if st_ino won't fit in target struct field. Use 32bit counter 897 * here to attempt to avoid that. 898 */ 899#define LAST_INO_BATCH 1024 900static DEFINE_PER_CPU(unsigned int, last_ino); 901 902unsigned int get_next_ino(void) 903{ 904 unsigned int *p = &get_cpu_var(last_ino); 905 unsigned int res = *p; 906 907#ifdef CONFIG_SMP 908 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 909 static atomic_t shared_last_ino; 910 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 911 912 res = next - LAST_INO_BATCH; 913 } 914#endif 915 916 res++; 917 /* get_next_ino should not provide a 0 inode number */ 918 if (unlikely(!res)) 919 res++; 920 *p = res; 921 put_cpu_var(last_ino); 922 return res; 923} 924EXPORT_SYMBOL(get_next_ino); 925 926/** 927 * new_inode_pseudo - obtain an inode 928 * @sb: superblock 929 * 930 * Allocates a new inode for given superblock. 931 * Inode wont be chained in superblock s_inodes list 932 * This means : 933 * - fs can't be unmount 934 * - quotas, fsnotify, writeback can't work 935 */ 936struct inode *new_inode_pseudo(struct super_block *sb) 937{ 938 struct inode *inode = alloc_inode(sb); 939 940 if (inode) { 941 spin_lock(&inode->i_lock); 942 inode->i_state = 0; 943 spin_unlock(&inode->i_lock); 944 INIT_LIST_HEAD(&inode->i_sb_list); 945 } 946 return inode; 947} 948 949/** 950 * new_inode - obtain an inode 951 * @sb: superblock 952 * 953 * Allocates a new inode for given superblock. The default gfp_mask 954 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 955 * If HIGHMEM pages are unsuitable or it is known that pages allocated 956 * for the page cache are not reclaimable or migratable, 957 * mapping_set_gfp_mask() must be called with suitable flags on the 958 * newly created inode's mapping 959 * 960 */ 961struct inode *new_inode(struct super_block *sb) 962{ 963 struct inode *inode; 964 965 spin_lock_prefetch(&sb->s_inode_list_lock); 966 967 inode = new_inode_pseudo(sb); 968 if (inode) 969 inode_sb_list_add(inode); 970 return inode; 971} 972EXPORT_SYMBOL(new_inode); 973 974#ifdef CONFIG_DEBUG_LOCK_ALLOC 975void lockdep_annotate_inode_mutex_key(struct inode *inode) 976{ 977 if (S_ISDIR(inode->i_mode)) { 978 struct file_system_type *type = inode->i_sb->s_type; 979 980 /* Set new key only if filesystem hasn't already changed it */ 981 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 982 /* 983 * ensure nobody is actually holding i_mutex 984 */ 985 // mutex_destroy(&inode->i_mutex); 986 init_rwsem(&inode->i_rwsem); 987 lockdep_set_class(&inode->i_rwsem, 988 &type->i_mutex_dir_key); 989 } 990 } 991} 992EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 993#endif 994 995/** 996 * unlock_new_inode - clear the I_NEW state and wake up any waiters 997 * @inode: new inode to unlock 998 * 999 * Called when the inode is fully initialised to clear the new state of the 1000 * inode and wake up anyone waiting for the inode to finish initialisation. 1001 */ 1002void unlock_new_inode(struct inode *inode) 1003{ 1004 lockdep_annotate_inode_mutex_key(inode); 1005 spin_lock(&inode->i_lock); 1006 WARN_ON(!(inode->i_state & I_NEW)); 1007 inode->i_state &= ~I_NEW & ~I_CREATING; 1008 smp_mb(); 1009 wake_up_bit(&inode->i_state, __I_NEW); 1010 spin_unlock(&inode->i_lock); 1011} 1012EXPORT_SYMBOL(unlock_new_inode); 1013 1014void discard_new_inode(struct inode *inode) 1015{ 1016 lockdep_annotate_inode_mutex_key(inode); 1017 spin_lock(&inode->i_lock); 1018 WARN_ON(!(inode->i_state & I_NEW)); 1019 inode->i_state &= ~I_NEW; 1020 smp_mb(); 1021 wake_up_bit(&inode->i_state, __I_NEW); 1022 spin_unlock(&inode->i_lock); 1023 iput(inode); 1024} 1025EXPORT_SYMBOL(discard_new_inode); 1026 1027/** 1028 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1029 * 1030 * Lock any non-NULL argument that is not a directory. 1031 * Zero, one or two objects may be locked by this function. 1032 * 1033 * @inode1: first inode to lock 1034 * @inode2: second inode to lock 1035 */ 1036void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1037{ 1038 if (inode1 > inode2) 1039 swap(inode1, inode2); 1040 1041 if (inode1 && !S_ISDIR(inode1->i_mode)) 1042 inode_lock(inode1); 1043 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1044 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1045} 1046EXPORT_SYMBOL(lock_two_nondirectories); 1047 1048/** 1049 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1050 * @inode1: first inode to unlock 1051 * @inode2: second inode to unlock 1052 */ 1053void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1054{ 1055 if (inode1 && !S_ISDIR(inode1->i_mode)) 1056 inode_unlock(inode1); 1057 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1058 inode_unlock(inode2); 1059} 1060EXPORT_SYMBOL(unlock_two_nondirectories); 1061 1062/** 1063 * inode_insert5 - obtain an inode from a mounted file system 1064 * @inode: pre-allocated inode to use for insert to cache 1065 * @hashval: hash value (usually inode number) to get 1066 * @test: callback used for comparisons between inodes 1067 * @set: callback used to initialize a new struct inode 1068 * @data: opaque data pointer to pass to @test and @set 1069 * 1070 * Search for the inode specified by @hashval and @data in the inode cache, 1071 * and if present it is return it with an increased reference count. This is 1072 * a variant of iget5_locked() for callers that don't want to fail on memory 1073 * allocation of inode. 1074 * 1075 * If the inode is not in cache, insert the pre-allocated inode to cache and 1076 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1077 * to fill it in before unlocking it via unlock_new_inode(). 1078 * 1079 * Note both @test and @set are called with the inode_hash_lock held, so can't 1080 * sleep. 1081 */ 1082struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1083 int (*test)(struct inode *, void *), 1084 int (*set)(struct inode *, void *), void *data) 1085{ 1086 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1087 struct inode *old; 1088 bool creating = inode->i_state & I_CREATING; 1089 1090again: 1091 spin_lock(&inode_hash_lock); 1092 old = find_inode(inode->i_sb, head, test, data); 1093 if (unlikely(old)) { 1094 /* 1095 * Uhhuh, somebody else created the same inode under us. 1096 * Use the old inode instead of the preallocated one. 1097 */ 1098 spin_unlock(&inode_hash_lock); 1099 if (IS_ERR(old)) 1100 return NULL; 1101 wait_on_inode(old); 1102 if (unlikely(inode_unhashed(old))) { 1103 iput(old); 1104 goto again; 1105 } 1106 return old; 1107 } 1108 1109 if (set && unlikely(set(inode, data))) { 1110 inode = NULL; 1111 goto unlock; 1112 } 1113 1114 /* 1115 * Return the locked inode with I_NEW set, the 1116 * caller is responsible for filling in the contents 1117 */ 1118 spin_lock(&inode->i_lock); 1119 inode->i_state |= I_NEW; 1120 hlist_add_head_rcu(&inode->i_hash, head); 1121 spin_unlock(&inode->i_lock); 1122 if (!creating) 1123 inode_sb_list_add(inode); 1124unlock: 1125 spin_unlock(&inode_hash_lock); 1126 1127 return inode; 1128} 1129EXPORT_SYMBOL(inode_insert5); 1130 1131/** 1132 * iget5_locked - obtain an inode from a mounted file system 1133 * @sb: super block of file system 1134 * @hashval: hash value (usually inode number) to get 1135 * @test: callback used for comparisons between inodes 1136 * @set: callback used to initialize a new struct inode 1137 * @data: opaque data pointer to pass to @test and @set 1138 * 1139 * Search for the inode specified by @hashval and @data in the inode cache, 1140 * and if present it is return it with an increased reference count. This is 1141 * a generalized version of iget_locked() for file systems where the inode 1142 * number is not sufficient for unique identification of an inode. 1143 * 1144 * If the inode is not in cache, allocate a new inode and return it locked, 1145 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1146 * before unlocking it via unlock_new_inode(). 1147 * 1148 * Note both @test and @set are called with the inode_hash_lock held, so can't 1149 * sleep. 1150 */ 1151struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1152 int (*test)(struct inode *, void *), 1153 int (*set)(struct inode *, void *), void *data) 1154{ 1155 struct inode *inode = ilookup5(sb, hashval, test, data); 1156 1157 if (!inode) { 1158 struct inode *new = alloc_inode(sb); 1159 1160 if (new) { 1161 new->i_state = 0; 1162 inode = inode_insert5(new, hashval, test, set, data); 1163 if (unlikely(inode != new)) 1164 destroy_inode(new); 1165 } 1166 } 1167 return inode; 1168} 1169EXPORT_SYMBOL(iget5_locked); 1170 1171/** 1172 * iget_locked - obtain an inode from a mounted file system 1173 * @sb: super block of file system 1174 * @ino: inode number to get 1175 * 1176 * Search for the inode specified by @ino in the inode cache and if present 1177 * return it with an increased reference count. This is for file systems 1178 * where the inode number is sufficient for unique identification of an inode. 1179 * 1180 * If the inode is not in cache, allocate a new inode and return it locked, 1181 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1182 * before unlocking it via unlock_new_inode(). 1183 */ 1184struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1185{ 1186 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1187 struct inode *inode; 1188again: 1189 spin_lock(&inode_hash_lock); 1190 inode = find_inode_fast(sb, head, ino); 1191 spin_unlock(&inode_hash_lock); 1192 if (inode) { 1193 if (IS_ERR(inode)) 1194 return NULL; 1195 wait_on_inode(inode); 1196 if (unlikely(inode_unhashed(inode))) { 1197 iput(inode); 1198 goto again; 1199 } 1200 return inode; 1201 } 1202 1203 inode = alloc_inode(sb); 1204 if (inode) { 1205 struct inode *old; 1206 1207 spin_lock(&inode_hash_lock); 1208 /* We released the lock, so.. */ 1209 old = find_inode_fast(sb, head, ino); 1210 if (!old) { 1211 inode->i_ino = ino; 1212 spin_lock(&inode->i_lock); 1213 inode->i_state = I_NEW; 1214 hlist_add_head_rcu(&inode->i_hash, head); 1215 spin_unlock(&inode->i_lock); 1216 inode_sb_list_add(inode); 1217 spin_unlock(&inode_hash_lock); 1218 1219 /* Return the locked inode with I_NEW set, the 1220 * caller is responsible for filling in the contents 1221 */ 1222 return inode; 1223 } 1224 1225 /* 1226 * Uhhuh, somebody else created the same inode under 1227 * us. Use the old inode instead of the one we just 1228 * allocated. 1229 */ 1230 spin_unlock(&inode_hash_lock); 1231 destroy_inode(inode); 1232 if (IS_ERR(old)) 1233 return NULL; 1234 inode = old; 1235 wait_on_inode(inode); 1236 if (unlikely(inode_unhashed(inode))) { 1237 iput(inode); 1238 goto again; 1239 } 1240 } 1241 return inode; 1242} 1243EXPORT_SYMBOL(iget_locked); 1244 1245/* 1246 * search the inode cache for a matching inode number. 1247 * If we find one, then the inode number we are trying to 1248 * allocate is not unique and so we should not use it. 1249 * 1250 * Returns 1 if the inode number is unique, 0 if it is not. 1251 */ 1252static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1253{ 1254 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1255 struct inode *inode; 1256 1257 hlist_for_each_entry_rcu(inode, b, i_hash) { 1258 if (inode->i_ino == ino && inode->i_sb == sb) 1259 return 0; 1260 } 1261 return 1; 1262} 1263 1264/** 1265 * iunique - get a unique inode number 1266 * @sb: superblock 1267 * @max_reserved: highest reserved inode number 1268 * 1269 * Obtain an inode number that is unique on the system for a given 1270 * superblock. This is used by file systems that have no natural 1271 * permanent inode numbering system. An inode number is returned that 1272 * is higher than the reserved limit but unique. 1273 * 1274 * BUGS: 1275 * With a large number of inodes live on the file system this function 1276 * currently becomes quite slow. 1277 */ 1278ino_t iunique(struct super_block *sb, ino_t max_reserved) 1279{ 1280 /* 1281 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1282 * error if st_ino won't fit in target struct field. Use 32bit counter 1283 * here to attempt to avoid that. 1284 */ 1285 static DEFINE_SPINLOCK(iunique_lock); 1286 static unsigned int counter; 1287 ino_t res; 1288 1289 rcu_read_lock(); 1290 spin_lock(&iunique_lock); 1291 do { 1292 if (counter <= max_reserved) 1293 counter = max_reserved + 1; 1294 res = counter++; 1295 } while (!test_inode_iunique(sb, res)); 1296 spin_unlock(&iunique_lock); 1297 rcu_read_unlock(); 1298 1299 return res; 1300} 1301EXPORT_SYMBOL(iunique); 1302 1303struct inode *igrab(struct inode *inode) 1304{ 1305 spin_lock(&inode->i_lock); 1306 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1307 __iget(inode); 1308 spin_unlock(&inode->i_lock); 1309 } else { 1310 spin_unlock(&inode->i_lock); 1311 /* 1312 * Handle the case where s_op->clear_inode is not been 1313 * called yet, and somebody is calling igrab 1314 * while the inode is getting freed. 1315 */ 1316 inode = NULL; 1317 } 1318 return inode; 1319} 1320EXPORT_SYMBOL(igrab); 1321 1322/** 1323 * ilookup5_nowait - search for an inode in the inode cache 1324 * @sb: super block of file system to search 1325 * @hashval: hash value (usually inode number) to search for 1326 * @test: callback used for comparisons between inodes 1327 * @data: opaque data pointer to pass to @test 1328 * 1329 * Search for the inode specified by @hashval and @data in the inode cache. 1330 * If the inode is in the cache, the inode is returned with an incremented 1331 * reference count. 1332 * 1333 * Note: I_NEW is not waited upon so you have to be very careful what you do 1334 * with the returned inode. You probably should be using ilookup5() instead. 1335 * 1336 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1337 */ 1338struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1339 int (*test)(struct inode *, void *), void *data) 1340{ 1341 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1342 struct inode *inode; 1343 1344 spin_lock(&inode_hash_lock); 1345 inode = find_inode(sb, head, test, data); 1346 spin_unlock(&inode_hash_lock); 1347 1348 return IS_ERR(inode) ? NULL : inode; 1349} 1350EXPORT_SYMBOL(ilookup5_nowait); 1351 1352/** 1353 * ilookup5 - search for an inode in the inode cache 1354 * @sb: super block of file system to search 1355 * @hashval: hash value (usually inode number) to search for 1356 * @test: callback used for comparisons between inodes 1357 * @data: opaque data pointer to pass to @test 1358 * 1359 * Search for the inode specified by @hashval and @data in the inode cache, 1360 * and if the inode is in the cache, return the inode with an incremented 1361 * reference count. Waits on I_NEW before returning the inode. 1362 * returned with an incremented reference count. 1363 * 1364 * This is a generalized version of ilookup() for file systems where the 1365 * inode number is not sufficient for unique identification of an inode. 1366 * 1367 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1368 */ 1369struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1370 int (*test)(struct inode *, void *), void *data) 1371{ 1372 struct inode *inode; 1373again: 1374 inode = ilookup5_nowait(sb, hashval, test, data); 1375 if (inode) { 1376 wait_on_inode(inode); 1377 if (unlikely(inode_unhashed(inode))) { 1378 iput(inode); 1379 goto again; 1380 } 1381 } 1382 return inode; 1383} 1384EXPORT_SYMBOL(ilookup5); 1385 1386/** 1387 * ilookup - search for an inode in the inode cache 1388 * @sb: super block of file system to search 1389 * @ino: inode number to search for 1390 * 1391 * Search for the inode @ino in the inode cache, and if the inode is in the 1392 * cache, the inode is returned with an incremented reference count. 1393 */ 1394struct inode *ilookup(struct super_block *sb, unsigned long ino) 1395{ 1396 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1397 struct inode *inode; 1398again: 1399 spin_lock(&inode_hash_lock); 1400 inode = find_inode_fast(sb, head, ino); 1401 spin_unlock(&inode_hash_lock); 1402 1403 if (inode) { 1404 if (IS_ERR(inode)) 1405 return NULL; 1406 wait_on_inode(inode); 1407 if (unlikely(inode_unhashed(inode))) { 1408 iput(inode); 1409 goto again; 1410 } 1411 } 1412 return inode; 1413} 1414EXPORT_SYMBOL(ilookup); 1415 1416/** 1417 * find_inode_nowait - find an inode in the inode cache 1418 * @sb: super block of file system to search 1419 * @hashval: hash value (usually inode number) to search for 1420 * @match: callback used for comparisons between inodes 1421 * @data: opaque data pointer to pass to @match 1422 * 1423 * Search for the inode specified by @hashval and @data in the inode 1424 * cache, where the helper function @match will return 0 if the inode 1425 * does not match, 1 if the inode does match, and -1 if the search 1426 * should be stopped. The @match function must be responsible for 1427 * taking the i_lock spin_lock and checking i_state for an inode being 1428 * freed or being initialized, and incrementing the reference count 1429 * before returning 1. It also must not sleep, since it is called with 1430 * the inode_hash_lock spinlock held. 1431 * 1432 * This is a even more generalized version of ilookup5() when the 1433 * function must never block --- find_inode() can block in 1434 * __wait_on_freeing_inode() --- or when the caller can not increment 1435 * the reference count because the resulting iput() might cause an 1436 * inode eviction. The tradeoff is that the @match funtion must be 1437 * very carefully implemented. 1438 */ 1439struct inode *find_inode_nowait(struct super_block *sb, 1440 unsigned long hashval, 1441 int (*match)(struct inode *, unsigned long, 1442 void *), 1443 void *data) 1444{ 1445 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1446 struct inode *inode, *ret_inode = NULL; 1447 int mval; 1448 1449 spin_lock(&inode_hash_lock); 1450 hlist_for_each_entry(inode, head, i_hash) { 1451 if (inode->i_sb != sb) 1452 continue; 1453 mval = match(inode, hashval, data); 1454 if (mval == 0) 1455 continue; 1456 if (mval == 1) 1457 ret_inode = inode; 1458 goto out; 1459 } 1460out: 1461 spin_unlock(&inode_hash_lock); 1462 return ret_inode; 1463} 1464EXPORT_SYMBOL(find_inode_nowait); 1465 1466/** 1467 * find_inode_rcu - find an inode in the inode cache 1468 * @sb: Super block of file system to search 1469 * @hashval: Key to hash 1470 * @test: Function to test match on an inode 1471 * @data: Data for test function 1472 * 1473 * Search for the inode specified by @hashval and @data in the inode cache, 1474 * where the helper function @test will return 0 if the inode does not match 1475 * and 1 if it does. The @test function must be responsible for taking the 1476 * i_lock spin_lock and checking i_state for an inode being freed or being 1477 * initialized. 1478 * 1479 * If successful, this will return the inode for which the @test function 1480 * returned 1 and NULL otherwise. 1481 * 1482 * The @test function is not permitted to take a ref on any inode presented. 1483 * It is also not permitted to sleep. 1484 * 1485 * The caller must hold the RCU read lock. 1486 */ 1487struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1488 int (*test)(struct inode *, void *), void *data) 1489{ 1490 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1491 struct inode *inode; 1492 1493 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1494 "suspicious find_inode_rcu() usage"); 1495 1496 hlist_for_each_entry_rcu(inode, head, i_hash) { 1497 if (inode->i_sb == sb && 1498 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1499 test(inode, data)) 1500 return inode; 1501 } 1502 return NULL; 1503} 1504EXPORT_SYMBOL(find_inode_rcu); 1505 1506/** 1507 * find_inode_by_ino_rcu - Find an inode in the inode cache 1508 * @sb: Super block of file system to search 1509 * @ino: The inode number to match 1510 * 1511 * Search for the inode specified by @hashval and @data in the inode cache, 1512 * where the helper function @test will return 0 if the inode does not match 1513 * and 1 if it does. The @test function must be responsible for taking the 1514 * i_lock spin_lock and checking i_state for an inode being freed or being 1515 * initialized. 1516 * 1517 * If successful, this will return the inode for which the @test function 1518 * returned 1 and NULL otherwise. 1519 * 1520 * The @test function is not permitted to take a ref on any inode presented. 1521 * It is also not permitted to sleep. 1522 * 1523 * The caller must hold the RCU read lock. 1524 */ 1525struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1526 unsigned long ino) 1527{ 1528 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1529 struct inode *inode; 1530 1531 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1532 "suspicious find_inode_by_ino_rcu() usage"); 1533 1534 hlist_for_each_entry_rcu(inode, head, i_hash) { 1535 if (inode->i_ino == ino && 1536 inode->i_sb == sb && 1537 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1538 return inode; 1539 } 1540 return NULL; 1541} 1542EXPORT_SYMBOL(find_inode_by_ino_rcu); 1543 1544int insert_inode_locked(struct inode *inode) 1545{ 1546 struct super_block *sb = inode->i_sb; 1547 ino_t ino = inode->i_ino; 1548 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1549 1550 while (1) { 1551 struct inode *old = NULL; 1552 spin_lock(&inode_hash_lock); 1553 hlist_for_each_entry(old, head, i_hash) { 1554 if (old->i_ino != ino) 1555 continue; 1556 if (old->i_sb != sb) 1557 continue; 1558 spin_lock(&old->i_lock); 1559 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1560 spin_unlock(&old->i_lock); 1561 continue; 1562 } 1563 break; 1564 } 1565 if (likely(!old)) { 1566 spin_lock(&inode->i_lock); 1567 inode->i_state |= I_NEW | I_CREATING; 1568 hlist_add_head_rcu(&inode->i_hash, head); 1569 spin_unlock(&inode->i_lock); 1570 spin_unlock(&inode_hash_lock); 1571 return 0; 1572 } 1573 if (unlikely(old->i_state & I_CREATING)) { 1574 spin_unlock(&old->i_lock); 1575 spin_unlock(&inode_hash_lock); 1576 return -EBUSY; 1577 } 1578 __iget(old); 1579 spin_unlock(&old->i_lock); 1580 spin_unlock(&inode_hash_lock); 1581 wait_on_inode(old); 1582 if (unlikely(!inode_unhashed(old))) { 1583 iput(old); 1584 return -EBUSY; 1585 } 1586 iput(old); 1587 } 1588} 1589EXPORT_SYMBOL(insert_inode_locked); 1590 1591int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1592 int (*test)(struct inode *, void *), void *data) 1593{ 1594 struct inode *old; 1595 1596 inode->i_state |= I_CREATING; 1597 old = inode_insert5(inode, hashval, test, NULL, data); 1598 1599 if (old != inode) { 1600 iput(old); 1601 return -EBUSY; 1602 } 1603 return 0; 1604} 1605EXPORT_SYMBOL(insert_inode_locked4); 1606 1607 1608int generic_delete_inode(struct inode *inode) 1609{ 1610 return 1; 1611} 1612EXPORT_SYMBOL(generic_delete_inode); 1613 1614/* 1615 * Called when we're dropping the last reference 1616 * to an inode. 1617 * 1618 * Call the FS "drop_inode()" function, defaulting to 1619 * the legacy UNIX filesystem behaviour. If it tells 1620 * us to evict inode, do so. Otherwise, retain inode 1621 * in cache if fs is alive, sync and evict if fs is 1622 * shutting down. 1623 */ 1624static void iput_final(struct inode *inode) 1625{ 1626 struct super_block *sb = inode->i_sb; 1627 const struct super_operations *op = inode->i_sb->s_op; 1628 unsigned long state; 1629 int drop; 1630 1631 WARN_ON(inode->i_state & I_NEW); 1632 1633 if (op->drop_inode) 1634 drop = op->drop_inode(inode); 1635 else 1636 drop = generic_drop_inode(inode); 1637 1638 if (!drop && 1639 !(inode->i_state & I_DONTCACHE) && 1640 (sb->s_flags & SB_ACTIVE)) { 1641 inode_add_lru(inode); 1642 spin_unlock(&inode->i_lock); 1643 return; 1644 } 1645 1646 state = inode->i_state; 1647 if (!drop) { 1648 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1649 spin_unlock(&inode->i_lock); 1650 1651 write_inode_now(inode, 1); 1652 1653 spin_lock(&inode->i_lock); 1654 state = inode->i_state; 1655 WARN_ON(state & I_NEW); 1656 state &= ~I_WILL_FREE; 1657 } 1658 1659 WRITE_ONCE(inode->i_state, state | I_FREEING); 1660 if (!list_empty(&inode->i_lru)) 1661 inode_lru_list_del(inode); 1662 spin_unlock(&inode->i_lock); 1663 1664 evict(inode); 1665} 1666 1667/** 1668 * iput - put an inode 1669 * @inode: inode to put 1670 * 1671 * Puts an inode, dropping its usage count. If the inode use count hits 1672 * zero, the inode is then freed and may also be destroyed. 1673 * 1674 * Consequently, iput() can sleep. 1675 */ 1676void iput(struct inode *inode) 1677{ 1678 if (!inode) 1679 return; 1680 BUG_ON(inode->i_state & I_CLEAR); 1681retry: 1682 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1683 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1684 atomic_inc(&inode->i_count); 1685 spin_unlock(&inode->i_lock); 1686 trace_writeback_lazytime_iput(inode); 1687 mark_inode_dirty_sync(inode); 1688 goto retry; 1689 } 1690 iput_final(inode); 1691 } 1692} 1693EXPORT_SYMBOL(iput); 1694 1695#ifdef CONFIG_BLOCK 1696/** 1697 * bmap - find a block number in a file 1698 * @inode: inode owning the block number being requested 1699 * @block: pointer containing the block to find 1700 * 1701 * Replaces the value in ``*block`` with the block number on the device holding 1702 * corresponding to the requested block number in the file. 1703 * That is, asked for block 4 of inode 1 the function will replace the 1704 * 4 in ``*block``, with disk block relative to the disk start that holds that 1705 * block of the file. 1706 * 1707 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1708 * hole, returns 0 and ``*block`` is also set to 0. 1709 */ 1710int bmap(struct inode *inode, sector_t *block) 1711{ 1712 if (!inode->i_mapping->a_ops->bmap) 1713 return -EINVAL; 1714 1715 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1716 return 0; 1717} 1718EXPORT_SYMBOL(bmap); 1719#endif 1720 1721/* 1722 * With relative atime, only update atime if the previous atime is 1723 * earlier than either the ctime or mtime or if at least a day has 1724 * passed since the last atime update. 1725 */ 1726static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1727 struct timespec64 now) 1728{ 1729 1730 if (!(mnt->mnt_flags & MNT_RELATIME)) 1731 return 1; 1732 /* 1733 * Is mtime younger than atime? If yes, update atime: 1734 */ 1735 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1736 return 1; 1737 /* 1738 * Is ctime younger than atime? If yes, update atime: 1739 */ 1740 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1741 return 1; 1742 1743 /* 1744 * Is the previous atime value older than a day? If yes, 1745 * update atime: 1746 */ 1747 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1748 return 1; 1749 /* 1750 * Good, we can skip the atime update: 1751 */ 1752 return 0; 1753} 1754 1755int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1756{ 1757 int dirty_flags = 0; 1758 1759 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1760 if (flags & S_ATIME) 1761 inode->i_atime = *time; 1762 if (flags & S_CTIME) 1763 inode->i_ctime = *time; 1764 if (flags & S_MTIME) 1765 inode->i_mtime = *time; 1766 1767 if (inode->i_sb->s_flags & SB_LAZYTIME) 1768 dirty_flags |= I_DIRTY_TIME; 1769 else 1770 dirty_flags |= I_DIRTY_SYNC; 1771 } 1772 1773 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1774 dirty_flags |= I_DIRTY_SYNC; 1775 1776 __mark_inode_dirty(inode, dirty_flags); 1777 return 0; 1778} 1779EXPORT_SYMBOL(generic_update_time); 1780 1781/* 1782 * This does the actual work of updating an inodes time or version. Must have 1783 * had called mnt_want_write() before calling this. 1784 */ 1785static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1786{ 1787 if (inode->i_op->update_time) 1788 return inode->i_op->update_time(inode, time, flags); 1789 return generic_update_time(inode, time, flags); 1790} 1791 1792/** 1793 * atime_needs_update - update the access time 1794 * @path: the &struct path to update 1795 * @inode: inode to update 1796 * 1797 * Update the accessed time on an inode and mark it for writeback. 1798 * This function automatically handles read only file systems and media, 1799 * as well as the "noatime" flag and inode specific "noatime" markers. 1800 */ 1801bool atime_needs_update(const struct path *path, struct inode *inode) 1802{ 1803 struct vfsmount *mnt = path->mnt; 1804 struct timespec64 now; 1805 1806 if (inode->i_flags & S_NOATIME) 1807 return false; 1808 1809 /* Atime updates will likely cause i_uid and i_gid to be written 1810 * back improprely if their true value is unknown to the vfs. 1811 */ 1812 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1813 return false; 1814 1815 if (IS_NOATIME(inode)) 1816 return false; 1817 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1818 return false; 1819 1820 if (mnt->mnt_flags & MNT_NOATIME) 1821 return false; 1822 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1823 return false; 1824 1825 now = current_time(inode); 1826 1827 if (!relatime_need_update(mnt, inode, now)) 1828 return false; 1829 1830 if (timespec64_equal(&inode->i_atime, &now)) 1831 return false; 1832 1833 return true; 1834} 1835 1836void touch_atime(const struct path *path) 1837{ 1838 struct vfsmount *mnt = path->mnt; 1839 struct inode *inode = d_inode(path->dentry); 1840 struct timespec64 now; 1841 1842 if (!atime_needs_update(path, inode)) 1843 return; 1844 1845 if (!sb_start_write_trylock(inode->i_sb)) 1846 return; 1847 1848 if (__mnt_want_write(mnt) != 0) 1849 goto skip_update; 1850 /* 1851 * File systems can error out when updating inodes if they need to 1852 * allocate new space to modify an inode (such is the case for 1853 * Btrfs), but since we touch atime while walking down the path we 1854 * really don't care if we failed to update the atime of the file, 1855 * so just ignore the return value. 1856 * We may also fail on filesystems that have the ability to make parts 1857 * of the fs read only, e.g. subvolumes in Btrfs. 1858 */ 1859 now = current_time(inode); 1860 update_time(inode, &now, S_ATIME); 1861 __mnt_drop_write(mnt); 1862skip_update: 1863 sb_end_write(inode->i_sb); 1864} 1865EXPORT_SYMBOL(touch_atime); 1866 1867/* 1868 * The logic we want is 1869 * 1870 * if suid or (sgid and xgrp) 1871 * remove privs 1872 */ 1873int should_remove_suid(struct dentry *dentry) 1874{ 1875 umode_t mode = d_inode(dentry)->i_mode; 1876 int kill = 0; 1877 1878 /* suid always must be killed */ 1879 if (unlikely(mode & S_ISUID)) 1880 kill = ATTR_KILL_SUID; 1881 1882 /* 1883 * sgid without any exec bits is just a mandatory locking mark; leave 1884 * it alone. If some exec bits are set, it's a real sgid; kill it. 1885 */ 1886 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1887 kill |= ATTR_KILL_SGID; 1888 1889 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1890 return kill; 1891 1892 return 0; 1893} 1894EXPORT_SYMBOL(should_remove_suid); 1895 1896/* 1897 * Return mask of changes for notify_change() that need to be done as a 1898 * response to write or truncate. Return 0 if nothing has to be changed. 1899 * Negative value on error (change should be denied). 1900 */ 1901int dentry_needs_remove_privs(struct dentry *dentry) 1902{ 1903 struct inode *inode = d_inode(dentry); 1904 int mask = 0; 1905 int ret; 1906 1907 if (IS_NOSEC(inode)) 1908 return 0; 1909 1910 mask = should_remove_suid(dentry); 1911 ret = security_inode_need_killpriv(dentry); 1912 if (ret < 0) 1913 return ret; 1914 if (ret) 1915 mask |= ATTR_KILL_PRIV; 1916 return mask; 1917} 1918 1919static int __remove_privs(struct user_namespace *mnt_userns, 1920 struct dentry *dentry, int kill) 1921{ 1922 struct iattr newattrs; 1923 1924 newattrs.ia_valid = ATTR_FORCE | kill; 1925 /* 1926 * Note we call this on write, so notify_change will not 1927 * encounter any conflicting delegations: 1928 */ 1929 return notify_change(mnt_userns, dentry, &newattrs, NULL); 1930} 1931 1932/* 1933 * Remove special file priviledges (suid, capabilities) when file is written 1934 * to or truncated. 1935 */ 1936int file_remove_privs(struct file *file) 1937{ 1938 struct dentry *dentry = file_dentry(file); 1939 struct inode *inode = file_inode(file); 1940 int kill; 1941 int error = 0; 1942 1943 /* 1944 * Fast path for nothing security related. 1945 * As well for non-regular files, e.g. blkdev inodes. 1946 * For example, blkdev_write_iter() might get here 1947 * trying to remove privs which it is not allowed to. 1948 */ 1949 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1950 return 0; 1951 1952 kill = dentry_needs_remove_privs(dentry); 1953 if (kill < 0) 1954 return kill; 1955 if (kill) 1956 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 1957 if (!error) 1958 inode_has_no_xattr(inode); 1959 1960 return error; 1961} 1962EXPORT_SYMBOL(file_remove_privs); 1963 1964/** 1965 * file_update_time - update mtime and ctime time 1966 * @file: file accessed 1967 * 1968 * Update the mtime and ctime members of an inode and mark the inode 1969 * for writeback. Note that this function is meant exclusively for 1970 * usage in the file write path of filesystems, and filesystems may 1971 * choose to explicitly ignore update via this function with the 1972 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1973 * timestamps are handled by the server. This can return an error for 1974 * file systems who need to allocate space in order to update an inode. 1975 */ 1976 1977int file_update_time(struct file *file) 1978{ 1979 struct inode *inode = file_inode(file); 1980 struct timespec64 now; 1981 int sync_it = 0; 1982 int ret; 1983 1984 /* First try to exhaust all avenues to not sync */ 1985 if (IS_NOCMTIME(inode)) 1986 return 0; 1987 1988 now = current_time(inode); 1989 if (!timespec64_equal(&inode->i_mtime, &now)) 1990 sync_it = S_MTIME; 1991 1992 if (!timespec64_equal(&inode->i_ctime, &now)) 1993 sync_it |= S_CTIME; 1994 1995 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1996 sync_it |= S_VERSION; 1997 1998 if (!sync_it) 1999 return 0; 2000 2001 /* Finally allowed to write? Takes lock. */ 2002 if (__mnt_want_write_file(file)) 2003 return 0; 2004 2005 ret = update_time(inode, &now, sync_it); 2006 __mnt_drop_write_file(file); 2007 2008 return ret; 2009} 2010EXPORT_SYMBOL(file_update_time); 2011 2012/* Caller must hold the file's inode lock */ 2013int file_modified(struct file *file) 2014{ 2015 int err; 2016 2017 /* 2018 * Clear the security bits if the process is not being run by root. 2019 * This keeps people from modifying setuid and setgid binaries. 2020 */ 2021 err = file_remove_privs(file); 2022 if (err) 2023 return err; 2024 2025 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2026 return 0; 2027 2028 return file_update_time(file); 2029} 2030EXPORT_SYMBOL(file_modified); 2031 2032int inode_needs_sync(struct inode *inode) 2033{ 2034 if (IS_SYNC(inode)) 2035 return 1; 2036 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2037 return 1; 2038 return 0; 2039} 2040EXPORT_SYMBOL(inode_needs_sync); 2041 2042/* 2043 * If we try to find an inode in the inode hash while it is being 2044 * deleted, we have to wait until the filesystem completes its 2045 * deletion before reporting that it isn't found. This function waits 2046 * until the deletion _might_ have completed. Callers are responsible 2047 * to recheck inode state. 2048 * 2049 * It doesn't matter if I_NEW is not set initially, a call to 2050 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2051 * will DTRT. 2052 */ 2053static void __wait_on_freeing_inode(struct inode *inode) 2054{ 2055 wait_queue_head_t *wq; 2056 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2057 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2058 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2059 spin_unlock(&inode->i_lock); 2060 spin_unlock(&inode_hash_lock); 2061 schedule(); 2062 finish_wait(wq, &wait.wq_entry); 2063 spin_lock(&inode_hash_lock); 2064} 2065 2066static __initdata unsigned long ihash_entries; 2067static int __init set_ihash_entries(char *str) 2068{ 2069 if (!str) 2070 return 0; 2071 ihash_entries = simple_strtoul(str, &str, 0); 2072 return 1; 2073} 2074__setup("ihash_entries=", set_ihash_entries); 2075 2076/* 2077 * Initialize the waitqueues and inode hash table. 2078 */ 2079void __init inode_init_early(void) 2080{ 2081 /* If hashes are distributed across NUMA nodes, defer 2082 * hash allocation until vmalloc space is available. 2083 */ 2084 if (hashdist) 2085 return; 2086 2087 inode_hashtable = 2088 alloc_large_system_hash("Inode-cache", 2089 sizeof(struct hlist_head), 2090 ihash_entries, 2091 14, 2092 HASH_EARLY | HASH_ZERO, 2093 &i_hash_shift, 2094 &i_hash_mask, 2095 0, 2096 0); 2097} 2098 2099void __init inode_init(void) 2100{ 2101 /* inode slab cache */ 2102 inode_cachep = kmem_cache_create("inode_cache", 2103 sizeof(struct inode), 2104 0, 2105 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2106 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2107 init_once); 2108 2109 /* Hash may have been set up in inode_init_early */ 2110 if (!hashdist) 2111 return; 2112 2113 inode_hashtable = 2114 alloc_large_system_hash("Inode-cache", 2115 sizeof(struct hlist_head), 2116 ihash_entries, 2117 14, 2118 HASH_ZERO, 2119 &i_hash_shift, 2120 &i_hash_mask, 2121 0, 2122 0); 2123} 2124 2125void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2126{ 2127 inode->i_mode = mode; 2128 if (S_ISCHR(mode)) { 2129 inode->i_fop = &def_chr_fops; 2130 inode->i_rdev = rdev; 2131 } else if (S_ISBLK(mode)) { 2132 inode->i_fop = &def_blk_fops; 2133 inode->i_rdev = rdev; 2134 } else if (S_ISFIFO(mode)) 2135 inode->i_fop = &pipefifo_fops; 2136 else if (S_ISSOCK(mode)) 2137 ; /* leave it no_open_fops */ 2138 else 2139 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2140 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2141 inode->i_ino); 2142} 2143EXPORT_SYMBOL(init_special_inode); 2144 2145/** 2146 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2147 * @mnt_userns: User namespace of the mount the inode was created from 2148 * @inode: New inode 2149 * @dir: Directory inode 2150 * @mode: mode of the new inode 2151 * 2152 * If the inode has been created through an idmapped mount the user namespace of 2153 * the vfsmount must be passed through @mnt_userns. This function will then take 2154 * care to map the inode according to @mnt_userns before checking permissions 2155 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2156 * checking is to be performed on the raw inode simply passs init_user_ns. 2157 */ 2158void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2159 const struct inode *dir, umode_t mode) 2160{ 2161 inode_fsuid_set(inode, mnt_userns); 2162 if (dir && dir->i_mode & S_ISGID) { 2163 inode->i_gid = dir->i_gid; 2164 2165 /* Directories are special, and always inherit S_ISGID */ 2166 if (S_ISDIR(mode)) 2167 mode |= S_ISGID; 2168 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2169 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) && 2170 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID)) 2171 mode &= ~S_ISGID; 2172 } else 2173 inode_fsgid_set(inode, mnt_userns); 2174 inode->i_mode = mode; 2175} 2176EXPORT_SYMBOL(inode_init_owner); 2177 2178/** 2179 * inode_owner_or_capable - check current task permissions to inode 2180 * @mnt_userns: user namespace of the mount the inode was found from 2181 * @inode: inode being checked 2182 * 2183 * Return true if current either has CAP_FOWNER in a namespace with the 2184 * inode owner uid mapped, or owns the file. 2185 * 2186 * If the inode has been found through an idmapped mount the user namespace of 2187 * the vfsmount must be passed through @mnt_userns. This function will then take 2188 * care to map the inode according to @mnt_userns before checking permissions. 2189 * On non-idmapped mounts or if permission checking is to be performed on the 2190 * raw inode simply passs init_user_ns. 2191 */ 2192bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2193 const struct inode *inode) 2194{ 2195 kuid_t i_uid; 2196 struct user_namespace *ns; 2197 2198 i_uid = i_uid_into_mnt(mnt_userns, inode); 2199 if (uid_eq(current_fsuid(), i_uid)) 2200 return true; 2201 2202 ns = current_user_ns(); 2203 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER)) 2204 return true; 2205 return false; 2206} 2207EXPORT_SYMBOL(inode_owner_or_capable); 2208 2209/* 2210 * Direct i/o helper functions 2211 */ 2212static void __inode_dio_wait(struct inode *inode) 2213{ 2214 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2215 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2216 2217 do { 2218 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2219 if (atomic_read(&inode->i_dio_count)) 2220 schedule(); 2221 } while (atomic_read(&inode->i_dio_count)); 2222 finish_wait(wq, &q.wq_entry); 2223} 2224 2225/** 2226 * inode_dio_wait - wait for outstanding DIO requests to finish 2227 * @inode: inode to wait for 2228 * 2229 * Waits for all pending direct I/O requests to finish so that we can 2230 * proceed with a truncate or equivalent operation. 2231 * 2232 * Must be called under a lock that serializes taking new references 2233 * to i_dio_count, usually by inode->i_mutex. 2234 */ 2235void inode_dio_wait(struct inode *inode) 2236{ 2237 if (atomic_read(&inode->i_dio_count)) 2238 __inode_dio_wait(inode); 2239} 2240EXPORT_SYMBOL(inode_dio_wait); 2241 2242/* 2243 * inode_set_flags - atomically set some inode flags 2244 * 2245 * Note: the caller should be holding i_mutex, or else be sure that 2246 * they have exclusive access to the inode structure (i.e., while the 2247 * inode is being instantiated). The reason for the cmpxchg() loop 2248 * --- which wouldn't be necessary if all code paths which modify 2249 * i_flags actually followed this rule, is that there is at least one 2250 * code path which doesn't today so we use cmpxchg() out of an abundance 2251 * of caution. 2252 * 2253 * In the long run, i_mutex is overkill, and we should probably look 2254 * at using the i_lock spinlock to protect i_flags, and then make sure 2255 * it is so documented in include/linux/fs.h and that all code follows 2256 * the locking convention!! 2257 */ 2258void inode_set_flags(struct inode *inode, unsigned int flags, 2259 unsigned int mask) 2260{ 2261 WARN_ON_ONCE(flags & ~mask); 2262 set_mask_bits(&inode->i_flags, mask, flags); 2263} 2264EXPORT_SYMBOL(inode_set_flags); 2265 2266void inode_nohighmem(struct inode *inode) 2267{ 2268 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2269} 2270EXPORT_SYMBOL(inode_nohighmem); 2271 2272/** 2273 * timestamp_truncate - Truncate timespec to a granularity 2274 * @t: Timespec 2275 * @inode: inode being updated 2276 * 2277 * Truncate a timespec to the granularity supported by the fs 2278 * containing the inode. Always rounds down. gran must 2279 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2280 */ 2281struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2282{ 2283 struct super_block *sb = inode->i_sb; 2284 unsigned int gran = sb->s_time_gran; 2285 2286 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2287 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2288 t.tv_nsec = 0; 2289 2290 /* Avoid division in the common cases 1 ns and 1 s. */ 2291 if (gran == 1) 2292 ; /* nothing */ 2293 else if (gran == NSEC_PER_SEC) 2294 t.tv_nsec = 0; 2295 else if (gran > 1 && gran < NSEC_PER_SEC) 2296 t.tv_nsec -= t.tv_nsec % gran; 2297 else 2298 WARN(1, "invalid file time granularity: %u", gran); 2299 return t; 2300} 2301EXPORT_SYMBOL(timestamp_truncate); 2302 2303/** 2304 * current_time - Return FS time 2305 * @inode: inode. 2306 * 2307 * Return the current time truncated to the time granularity supported by 2308 * the fs. 2309 * 2310 * Note that inode and inode->sb cannot be NULL. 2311 * Otherwise, the function warns and returns time without truncation. 2312 */ 2313struct timespec64 current_time(struct inode *inode) 2314{ 2315 struct timespec64 now; 2316 2317 ktime_get_coarse_real_ts64(&now); 2318 2319 if (unlikely(!inode->i_sb)) { 2320 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2321 return now; 2322 } 2323 2324 return timestamp_truncate(now, inode); 2325} 2326EXPORT_SYMBOL(current_time);