at v5.15-rc2 49 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * 4 * Copyright (c) 2011, Microsoft Corporation. 5 * 6 * Authors: 7 * Haiyang Zhang <haiyangz@microsoft.com> 8 * Hank Janssen <hjanssen@microsoft.com> 9 * K. Y. Srinivasan <kys@microsoft.com> 10 */ 11 12#ifndef _HYPERV_H 13#define _HYPERV_H 14 15#include <uapi/linux/hyperv.h> 16 17#include <linux/mm.h> 18#include <linux/types.h> 19#include <linux/scatterlist.h> 20#include <linux/list.h> 21#include <linux/timer.h> 22#include <linux/completion.h> 23#include <linux/device.h> 24#include <linux/mod_devicetable.h> 25#include <linux/interrupt.h> 26#include <linux/reciprocal_div.h> 27#include <asm/hyperv-tlfs.h> 28 29#define MAX_PAGE_BUFFER_COUNT 32 30#define MAX_MULTIPAGE_BUFFER_COUNT 32 /* 128K */ 31 32#pragma pack(push, 1) 33 34/* 35 * Types for GPADL, decides is how GPADL header is created. 36 * 37 * It doesn't make much difference between BUFFER and RING if PAGE_SIZE is the 38 * same as HV_HYP_PAGE_SIZE. 39 * 40 * If PAGE_SIZE is bigger than HV_HYP_PAGE_SIZE, the headers of ring buffers 41 * will be of PAGE_SIZE, however, only the first HV_HYP_PAGE will be put 42 * into gpadl, therefore the number for HV_HYP_PAGE and the indexes of each 43 * HV_HYP_PAGE will be different between different types of GPADL, for example 44 * if PAGE_SIZE is 64K: 45 * 46 * BUFFER: 47 * 48 * gva: |-- 64k --|-- 64k --| ... | 49 * gpa: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | 50 * index: 0 1 2 15 16 17 18 .. 31 32 ... 51 * | | ... | | | ... | ... 52 * v V V V V V 53 * gpadl: | 4k | 4k | ... | 4k | 4k | 4k | ... | 4k | ... | 54 * index: 0 1 2 ... 15 16 17 18 .. 31 32 ... 55 * 56 * RING: 57 * 58 * | header | data | header | data | 59 * gva: |-- 64k --|-- 64k --| ... |-- 64k --|-- 64k --| ... | 60 * gpa: | 4k | .. | 4k | 4k | ... | 4k | ... | 4k | .. | 4k | .. | ... | 61 * index: 0 1 16 17 18 31 ... n n+1 n+16 ... 2n 62 * | / / / | / / 63 * | / / / | / / 64 * | / / ... / ... | / ... / 65 * | / / / | / / 66 * | / / / | / / 67 * V V V V V V v 68 * gpadl: | 4k | 4k | ... | ... | 4k | 4k | ... | 69 * index: 0 1 2 ... 16 ... n-15 n-14 n-13 ... 2n-30 70 */ 71enum hv_gpadl_type { 72 HV_GPADL_BUFFER, 73 HV_GPADL_RING 74}; 75 76/* Single-page buffer */ 77struct hv_page_buffer { 78 u32 len; 79 u32 offset; 80 u64 pfn; 81}; 82 83/* Multiple-page buffer */ 84struct hv_multipage_buffer { 85 /* Length and Offset determines the # of pfns in the array */ 86 u32 len; 87 u32 offset; 88 u64 pfn_array[MAX_MULTIPAGE_BUFFER_COUNT]; 89}; 90 91/* 92 * Multiple-page buffer array; the pfn array is variable size: 93 * The number of entries in the PFN array is determined by 94 * "len" and "offset". 95 */ 96struct hv_mpb_array { 97 /* Length and Offset determines the # of pfns in the array */ 98 u32 len; 99 u32 offset; 100 u64 pfn_array[]; 101}; 102 103/* 0x18 includes the proprietary packet header */ 104#define MAX_PAGE_BUFFER_PACKET (0x18 + \ 105 (sizeof(struct hv_page_buffer) * \ 106 MAX_PAGE_BUFFER_COUNT)) 107#define MAX_MULTIPAGE_BUFFER_PACKET (0x18 + \ 108 sizeof(struct hv_multipage_buffer)) 109 110 111#pragma pack(pop) 112 113struct hv_ring_buffer { 114 /* Offset in bytes from the start of ring data below */ 115 u32 write_index; 116 117 /* Offset in bytes from the start of ring data below */ 118 u32 read_index; 119 120 u32 interrupt_mask; 121 122 /* 123 * WS2012/Win8 and later versions of Hyper-V implement interrupt 124 * driven flow management. The feature bit feat_pending_send_sz 125 * is set by the host on the host->guest ring buffer, and by the 126 * guest on the guest->host ring buffer. 127 * 128 * The meaning of the feature bit is a bit complex in that it has 129 * semantics that apply to both ring buffers. If the guest sets 130 * the feature bit in the guest->host ring buffer, the guest is 131 * telling the host that: 132 * 1) It will set the pending_send_sz field in the guest->host ring 133 * buffer when it is waiting for space to become available, and 134 * 2) It will read the pending_send_sz field in the host->guest 135 * ring buffer and interrupt the host when it frees enough space 136 * 137 * Similarly, if the host sets the feature bit in the host->guest 138 * ring buffer, the host is telling the guest that: 139 * 1) It will set the pending_send_sz field in the host->guest ring 140 * buffer when it is waiting for space to become available, and 141 * 2) It will read the pending_send_sz field in the guest->host 142 * ring buffer and interrupt the guest when it frees enough space 143 * 144 * If either the guest or host does not set the feature bit that it 145 * owns, that guest or host must do polling if it encounters a full 146 * ring buffer, and not signal the other end with an interrupt. 147 */ 148 u32 pending_send_sz; 149 u32 reserved1[12]; 150 union { 151 struct { 152 u32 feat_pending_send_sz:1; 153 }; 154 u32 value; 155 } feature_bits; 156 157 /* Pad it to PAGE_SIZE so that data starts on page boundary */ 158 u8 reserved2[PAGE_SIZE - 68]; 159 160 /* 161 * Ring data starts here + RingDataStartOffset 162 * !!! DO NOT place any fields below this !!! 163 */ 164 u8 buffer[]; 165} __packed; 166 167/* Calculate the proper size of a ringbuffer, it must be page-aligned */ 168#define VMBUS_RING_SIZE(payload_sz) PAGE_ALIGN(sizeof(struct hv_ring_buffer) + \ 169 (payload_sz)) 170 171struct hv_ring_buffer_info { 172 struct hv_ring_buffer *ring_buffer; 173 u32 ring_size; /* Include the shared header */ 174 struct reciprocal_value ring_size_div10_reciprocal; 175 spinlock_t ring_lock; 176 177 u32 ring_datasize; /* < ring_size */ 178 u32 priv_read_index; 179 /* 180 * The ring buffer mutex lock. This lock prevents the ring buffer from 181 * being freed while the ring buffer is being accessed. 182 */ 183 struct mutex ring_buffer_mutex; 184 185 /* Buffer that holds a copy of an incoming host packet */ 186 void *pkt_buffer; 187 u32 pkt_buffer_size; 188}; 189 190 191static inline u32 hv_get_bytes_to_read(const struct hv_ring_buffer_info *rbi) 192{ 193 u32 read_loc, write_loc, dsize, read; 194 195 dsize = rbi->ring_datasize; 196 read_loc = rbi->ring_buffer->read_index; 197 write_loc = READ_ONCE(rbi->ring_buffer->write_index); 198 199 read = write_loc >= read_loc ? (write_loc - read_loc) : 200 (dsize - read_loc) + write_loc; 201 202 return read; 203} 204 205static inline u32 hv_get_bytes_to_write(const struct hv_ring_buffer_info *rbi) 206{ 207 u32 read_loc, write_loc, dsize, write; 208 209 dsize = rbi->ring_datasize; 210 read_loc = READ_ONCE(rbi->ring_buffer->read_index); 211 write_loc = rbi->ring_buffer->write_index; 212 213 write = write_loc >= read_loc ? dsize - (write_loc - read_loc) : 214 read_loc - write_loc; 215 return write; 216} 217 218static inline u32 hv_get_avail_to_write_percent( 219 const struct hv_ring_buffer_info *rbi) 220{ 221 u32 avail_write = hv_get_bytes_to_write(rbi); 222 223 return reciprocal_divide( 224 (avail_write << 3) + (avail_write << 1), 225 rbi->ring_size_div10_reciprocal); 226} 227 228/* 229 * VMBUS version is 32 bit entity broken up into 230 * two 16 bit quantities: major_number. minor_number. 231 * 232 * 0 . 13 (Windows Server 2008) 233 * 1 . 1 (Windows 7) 234 * 2 . 4 (Windows 8) 235 * 3 . 0 (Windows 8 R2) 236 * 4 . 0 (Windows 10) 237 * 4 . 1 (Windows 10 RS3) 238 * 5 . 0 (Newer Windows 10) 239 * 5 . 1 (Windows 10 RS4) 240 * 5 . 2 (Windows Server 2019, RS5) 241 * 5 . 3 (Windows Server 2022) 242 */ 243 244#define VERSION_WS2008 ((0 << 16) | (13)) 245#define VERSION_WIN7 ((1 << 16) | (1)) 246#define VERSION_WIN8 ((2 << 16) | (4)) 247#define VERSION_WIN8_1 ((3 << 16) | (0)) 248#define VERSION_WIN10 ((4 << 16) | (0)) 249#define VERSION_WIN10_V4_1 ((4 << 16) | (1)) 250#define VERSION_WIN10_V5 ((5 << 16) | (0)) 251#define VERSION_WIN10_V5_1 ((5 << 16) | (1)) 252#define VERSION_WIN10_V5_2 ((5 << 16) | (2)) 253#define VERSION_WIN10_V5_3 ((5 << 16) | (3)) 254 255/* Make maximum size of pipe payload of 16K */ 256#define MAX_PIPE_DATA_PAYLOAD (sizeof(u8) * 16384) 257 258/* Define PipeMode values. */ 259#define VMBUS_PIPE_TYPE_BYTE 0x00000000 260#define VMBUS_PIPE_TYPE_MESSAGE 0x00000004 261 262/* The size of the user defined data buffer for non-pipe offers. */ 263#define MAX_USER_DEFINED_BYTES 120 264 265/* The size of the user defined data buffer for pipe offers. */ 266#define MAX_PIPE_USER_DEFINED_BYTES 116 267 268/* 269 * At the center of the Channel Management library is the Channel Offer. This 270 * struct contains the fundamental information about an offer. 271 */ 272struct vmbus_channel_offer { 273 guid_t if_type; 274 guid_t if_instance; 275 276 /* 277 * These two fields are not currently used. 278 */ 279 u64 reserved1; 280 u64 reserved2; 281 282 u16 chn_flags; 283 u16 mmio_megabytes; /* in bytes * 1024 * 1024 */ 284 285 union { 286 /* Non-pipes: The user has MAX_USER_DEFINED_BYTES bytes. */ 287 struct { 288 unsigned char user_def[MAX_USER_DEFINED_BYTES]; 289 } std; 290 291 /* 292 * Pipes: 293 * The following structure is an integrated pipe protocol, which 294 * is implemented on top of standard user-defined data. Pipe 295 * clients have MAX_PIPE_USER_DEFINED_BYTES left for their own 296 * use. 297 */ 298 struct { 299 u32 pipe_mode; 300 unsigned char user_def[MAX_PIPE_USER_DEFINED_BYTES]; 301 } pipe; 302 } u; 303 /* 304 * The sub_channel_index is defined in Win8: a value of zero means a 305 * primary channel and a value of non-zero means a sub-channel. 306 * 307 * Before Win8, the field is reserved, meaning it's always zero. 308 */ 309 u16 sub_channel_index; 310 u16 reserved3; 311} __packed; 312 313/* Server Flags */ 314#define VMBUS_CHANNEL_ENUMERATE_DEVICE_INTERFACE 1 315#define VMBUS_CHANNEL_SERVER_SUPPORTS_TRANSFER_PAGES 2 316#define VMBUS_CHANNEL_SERVER_SUPPORTS_GPADLS 4 317#define VMBUS_CHANNEL_NAMED_PIPE_MODE 0x10 318#define VMBUS_CHANNEL_LOOPBACK_OFFER 0x100 319#define VMBUS_CHANNEL_PARENT_OFFER 0x200 320#define VMBUS_CHANNEL_REQUEST_MONITORED_NOTIFICATION 0x400 321#define VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 0x2000 322 323struct vmpacket_descriptor { 324 u16 type; 325 u16 offset8; 326 u16 len8; 327 u16 flags; 328 u64 trans_id; 329} __packed; 330 331struct vmpacket_header { 332 u32 prev_pkt_start_offset; 333 struct vmpacket_descriptor descriptor; 334} __packed; 335 336struct vmtransfer_page_range { 337 u32 byte_count; 338 u32 byte_offset; 339} __packed; 340 341struct vmtransfer_page_packet_header { 342 struct vmpacket_descriptor d; 343 u16 xfer_pageset_id; 344 u8 sender_owns_set; 345 u8 reserved; 346 u32 range_cnt; 347 struct vmtransfer_page_range ranges[1]; 348} __packed; 349 350struct vmgpadl_packet_header { 351 struct vmpacket_descriptor d; 352 u32 gpadl; 353 u32 reserved; 354} __packed; 355 356struct vmadd_remove_transfer_page_set { 357 struct vmpacket_descriptor d; 358 u32 gpadl; 359 u16 xfer_pageset_id; 360 u16 reserved; 361} __packed; 362 363/* 364 * This structure defines a range in guest physical space that can be made to 365 * look virtually contiguous. 366 */ 367struct gpa_range { 368 u32 byte_count; 369 u32 byte_offset; 370 u64 pfn_array[]; 371}; 372 373/* 374 * This is the format for an Establish Gpadl packet, which contains a handle by 375 * which this GPADL will be known and a set of GPA ranges associated with it. 376 * This can be converted to a MDL by the guest OS. If there are multiple GPA 377 * ranges, then the resulting MDL will be "chained," representing multiple VA 378 * ranges. 379 */ 380struct vmestablish_gpadl { 381 struct vmpacket_descriptor d; 382 u32 gpadl; 383 u32 range_cnt; 384 struct gpa_range range[1]; 385} __packed; 386 387/* 388 * This is the format for a Teardown Gpadl packet, which indicates that the 389 * GPADL handle in the Establish Gpadl packet will never be referenced again. 390 */ 391struct vmteardown_gpadl { 392 struct vmpacket_descriptor d; 393 u32 gpadl; 394 u32 reserved; /* for alignment to a 8-byte boundary */ 395} __packed; 396 397/* 398 * This is the format for a GPA-Direct packet, which contains a set of GPA 399 * ranges, in addition to commands and/or data. 400 */ 401struct vmdata_gpa_direct { 402 struct vmpacket_descriptor d; 403 u32 reserved; 404 u32 range_cnt; 405 struct gpa_range range[1]; 406} __packed; 407 408/* This is the format for a Additional Data Packet. */ 409struct vmadditional_data { 410 struct vmpacket_descriptor d; 411 u64 total_bytes; 412 u32 offset; 413 u32 byte_cnt; 414 unsigned char data[1]; 415} __packed; 416 417union vmpacket_largest_possible_header { 418 struct vmpacket_descriptor simple_hdr; 419 struct vmtransfer_page_packet_header xfer_page_hdr; 420 struct vmgpadl_packet_header gpadl_hdr; 421 struct vmadd_remove_transfer_page_set add_rm_xfer_page_hdr; 422 struct vmestablish_gpadl establish_gpadl_hdr; 423 struct vmteardown_gpadl teardown_gpadl_hdr; 424 struct vmdata_gpa_direct data_gpa_direct_hdr; 425}; 426 427#define VMPACKET_DATA_START_ADDRESS(__packet) \ 428 (void *)(((unsigned char *)__packet) + \ 429 ((struct vmpacket_descriptor)__packet)->offset8 * 8) 430 431#define VMPACKET_DATA_LENGTH(__packet) \ 432 ((((struct vmpacket_descriptor)__packet)->len8 - \ 433 ((struct vmpacket_descriptor)__packet)->offset8) * 8) 434 435#define VMPACKET_TRANSFER_MODE(__packet) \ 436 (((struct IMPACT)__packet)->type) 437 438enum vmbus_packet_type { 439 VM_PKT_INVALID = 0x0, 440 VM_PKT_SYNCH = 0x1, 441 VM_PKT_ADD_XFER_PAGESET = 0x2, 442 VM_PKT_RM_XFER_PAGESET = 0x3, 443 VM_PKT_ESTABLISH_GPADL = 0x4, 444 VM_PKT_TEARDOWN_GPADL = 0x5, 445 VM_PKT_DATA_INBAND = 0x6, 446 VM_PKT_DATA_USING_XFER_PAGES = 0x7, 447 VM_PKT_DATA_USING_GPADL = 0x8, 448 VM_PKT_DATA_USING_GPA_DIRECT = 0x9, 449 VM_PKT_CANCEL_REQUEST = 0xa, 450 VM_PKT_COMP = 0xb, 451 VM_PKT_DATA_USING_ADDITIONAL_PKT = 0xc, 452 VM_PKT_ADDITIONAL_DATA = 0xd 453}; 454 455#define VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED 1 456 457 458/* Version 1 messages */ 459enum vmbus_channel_message_type { 460 CHANNELMSG_INVALID = 0, 461 CHANNELMSG_OFFERCHANNEL = 1, 462 CHANNELMSG_RESCIND_CHANNELOFFER = 2, 463 CHANNELMSG_REQUESTOFFERS = 3, 464 CHANNELMSG_ALLOFFERS_DELIVERED = 4, 465 CHANNELMSG_OPENCHANNEL = 5, 466 CHANNELMSG_OPENCHANNEL_RESULT = 6, 467 CHANNELMSG_CLOSECHANNEL = 7, 468 CHANNELMSG_GPADL_HEADER = 8, 469 CHANNELMSG_GPADL_BODY = 9, 470 CHANNELMSG_GPADL_CREATED = 10, 471 CHANNELMSG_GPADL_TEARDOWN = 11, 472 CHANNELMSG_GPADL_TORNDOWN = 12, 473 CHANNELMSG_RELID_RELEASED = 13, 474 CHANNELMSG_INITIATE_CONTACT = 14, 475 CHANNELMSG_VERSION_RESPONSE = 15, 476 CHANNELMSG_UNLOAD = 16, 477 CHANNELMSG_UNLOAD_RESPONSE = 17, 478 CHANNELMSG_18 = 18, 479 CHANNELMSG_19 = 19, 480 CHANNELMSG_20 = 20, 481 CHANNELMSG_TL_CONNECT_REQUEST = 21, 482 CHANNELMSG_MODIFYCHANNEL = 22, 483 CHANNELMSG_TL_CONNECT_RESULT = 23, 484 CHANNELMSG_MODIFYCHANNEL_RESPONSE = 24, 485 CHANNELMSG_COUNT 486}; 487 488/* Hyper-V supports about 2048 channels, and the RELIDs start with 1. */ 489#define INVALID_RELID U32_MAX 490 491struct vmbus_channel_message_header { 492 enum vmbus_channel_message_type msgtype; 493 u32 padding; 494} __packed; 495 496/* Query VMBus Version parameters */ 497struct vmbus_channel_query_vmbus_version { 498 struct vmbus_channel_message_header header; 499 u32 version; 500} __packed; 501 502/* VMBus Version Supported parameters */ 503struct vmbus_channel_version_supported { 504 struct vmbus_channel_message_header header; 505 u8 version_supported; 506} __packed; 507 508/* Offer Channel parameters */ 509struct vmbus_channel_offer_channel { 510 struct vmbus_channel_message_header header; 511 struct vmbus_channel_offer offer; 512 u32 child_relid; 513 u8 monitorid; 514 /* 515 * win7 and beyond splits this field into a bit field. 516 */ 517 u8 monitor_allocated:1; 518 u8 reserved:7; 519 /* 520 * These are new fields added in win7 and later. 521 * Do not access these fields without checking the 522 * negotiated protocol. 523 * 524 * If "is_dedicated_interrupt" is set, we must not set the 525 * associated bit in the channel bitmap while sending the 526 * interrupt to the host. 527 * 528 * connection_id is to be used in signaling the host. 529 */ 530 u16 is_dedicated_interrupt:1; 531 u16 reserved1:15; 532 u32 connection_id; 533} __packed; 534 535/* Rescind Offer parameters */ 536struct vmbus_channel_rescind_offer { 537 struct vmbus_channel_message_header header; 538 u32 child_relid; 539} __packed; 540 541/* 542 * Request Offer -- no parameters, SynIC message contains the partition ID 543 * Set Snoop -- no parameters, SynIC message contains the partition ID 544 * Clear Snoop -- no parameters, SynIC message contains the partition ID 545 * All Offers Delivered -- no parameters, SynIC message contains the partition 546 * ID 547 * Flush Client -- no parameters, SynIC message contains the partition ID 548 */ 549 550/* Open Channel parameters */ 551struct vmbus_channel_open_channel { 552 struct vmbus_channel_message_header header; 553 554 /* Identifies the specific VMBus channel that is being opened. */ 555 u32 child_relid; 556 557 /* ID making a particular open request at a channel offer unique. */ 558 u32 openid; 559 560 /* GPADL for the channel's ring buffer. */ 561 u32 ringbuffer_gpadlhandle; 562 563 /* 564 * Starting with win8, this field will be used to specify 565 * the target virtual processor on which to deliver the interrupt for 566 * the host to guest communication. 567 * Prior to win8, incoming channel interrupts would only 568 * be delivered on cpu 0. Setting this value to 0 would 569 * preserve the earlier behavior. 570 */ 571 u32 target_vp; 572 573 /* 574 * The upstream ring buffer begins at offset zero in the memory 575 * described by RingBufferGpadlHandle. The downstream ring buffer 576 * follows it at this offset (in pages). 577 */ 578 u32 downstream_ringbuffer_pageoffset; 579 580 /* User-specific data to be passed along to the server endpoint. */ 581 unsigned char userdata[MAX_USER_DEFINED_BYTES]; 582} __packed; 583 584/* Open Channel Result parameters */ 585struct vmbus_channel_open_result { 586 struct vmbus_channel_message_header header; 587 u32 child_relid; 588 u32 openid; 589 u32 status; 590} __packed; 591 592/* Modify Channel Result parameters */ 593struct vmbus_channel_modifychannel_response { 594 struct vmbus_channel_message_header header; 595 u32 child_relid; 596 u32 status; 597} __packed; 598 599/* Close channel parameters; */ 600struct vmbus_channel_close_channel { 601 struct vmbus_channel_message_header header; 602 u32 child_relid; 603} __packed; 604 605/* Channel Message GPADL */ 606#define GPADL_TYPE_RING_BUFFER 1 607#define GPADL_TYPE_SERVER_SAVE_AREA 2 608#define GPADL_TYPE_TRANSACTION 8 609 610/* 611 * The number of PFNs in a GPADL message is defined by the number of 612 * pages that would be spanned by ByteCount and ByteOffset. If the 613 * implied number of PFNs won't fit in this packet, there will be a 614 * follow-up packet that contains more. 615 */ 616struct vmbus_channel_gpadl_header { 617 struct vmbus_channel_message_header header; 618 u32 child_relid; 619 u32 gpadl; 620 u16 range_buflen; 621 u16 rangecount; 622 struct gpa_range range[]; 623} __packed; 624 625/* This is the followup packet that contains more PFNs. */ 626struct vmbus_channel_gpadl_body { 627 struct vmbus_channel_message_header header; 628 u32 msgnumber; 629 u32 gpadl; 630 u64 pfn[]; 631} __packed; 632 633struct vmbus_channel_gpadl_created { 634 struct vmbus_channel_message_header header; 635 u32 child_relid; 636 u32 gpadl; 637 u32 creation_status; 638} __packed; 639 640struct vmbus_channel_gpadl_teardown { 641 struct vmbus_channel_message_header header; 642 u32 child_relid; 643 u32 gpadl; 644} __packed; 645 646struct vmbus_channel_gpadl_torndown { 647 struct vmbus_channel_message_header header; 648 u32 gpadl; 649} __packed; 650 651struct vmbus_channel_relid_released { 652 struct vmbus_channel_message_header header; 653 u32 child_relid; 654} __packed; 655 656struct vmbus_channel_initiate_contact { 657 struct vmbus_channel_message_header header; 658 u32 vmbus_version_requested; 659 u32 target_vcpu; /* The VCPU the host should respond to */ 660 union { 661 u64 interrupt_page; 662 struct { 663 u8 msg_sint; 664 u8 padding1[3]; 665 u32 padding2; 666 }; 667 }; 668 u64 monitor_page1; 669 u64 monitor_page2; 670} __packed; 671 672/* Hyper-V socket: guest's connect()-ing to host */ 673struct vmbus_channel_tl_connect_request { 674 struct vmbus_channel_message_header header; 675 guid_t guest_endpoint_id; 676 guid_t host_service_id; 677} __packed; 678 679/* Modify Channel parameters, cf. vmbus_send_modifychannel() */ 680struct vmbus_channel_modifychannel { 681 struct vmbus_channel_message_header header; 682 u32 child_relid; 683 u32 target_vp; 684} __packed; 685 686struct vmbus_channel_version_response { 687 struct vmbus_channel_message_header header; 688 u8 version_supported; 689 690 u8 connection_state; 691 u16 padding; 692 693 /* 694 * On new hosts that support VMBus protocol 5.0, we must use 695 * VMBUS_MESSAGE_CONNECTION_ID_4 for the Initiate Contact Message, 696 * and for subsequent messages, we must use the Message Connection ID 697 * field in the host-returned Version Response Message. 698 * 699 * On old hosts, we should always use VMBUS_MESSAGE_CONNECTION_ID (1). 700 */ 701 u32 msg_conn_id; 702} __packed; 703 704enum vmbus_channel_state { 705 CHANNEL_OFFER_STATE, 706 CHANNEL_OPENING_STATE, 707 CHANNEL_OPEN_STATE, 708 CHANNEL_OPENED_STATE, 709}; 710 711/* 712 * Represents each channel msg on the vmbus connection This is a 713 * variable-size data structure depending on the msg type itself 714 */ 715struct vmbus_channel_msginfo { 716 /* Bookkeeping stuff */ 717 struct list_head msglistentry; 718 719 /* So far, this is only used to handle gpadl body message */ 720 struct list_head submsglist; 721 722 /* Synchronize the request/response if needed */ 723 struct completion waitevent; 724 struct vmbus_channel *waiting_channel; 725 union { 726 struct vmbus_channel_version_supported version_supported; 727 struct vmbus_channel_open_result open_result; 728 struct vmbus_channel_gpadl_torndown gpadl_torndown; 729 struct vmbus_channel_gpadl_created gpadl_created; 730 struct vmbus_channel_version_response version_response; 731 struct vmbus_channel_modifychannel_response modify_response; 732 } response; 733 734 u32 msgsize; 735 /* 736 * The channel message that goes out on the "wire". 737 * It will contain at minimum the VMBUS_CHANNEL_MESSAGE_HEADER header 738 */ 739 unsigned char msg[]; 740}; 741 742struct vmbus_close_msg { 743 struct vmbus_channel_msginfo info; 744 struct vmbus_channel_close_channel msg; 745}; 746 747/* Define connection identifier type. */ 748union hv_connection_id { 749 u32 asu32; 750 struct { 751 u32 id:24; 752 u32 reserved:8; 753 } u; 754}; 755 756enum vmbus_device_type { 757 HV_IDE = 0, 758 HV_SCSI, 759 HV_FC, 760 HV_NIC, 761 HV_ND, 762 HV_PCIE, 763 HV_FB, 764 HV_KBD, 765 HV_MOUSE, 766 HV_KVP, 767 HV_TS, 768 HV_HB, 769 HV_SHUTDOWN, 770 HV_FCOPY, 771 HV_BACKUP, 772 HV_DM, 773 HV_UNKNOWN, 774}; 775 776/* 777 * Provides request ids for VMBus. Encapsulates guest memory 778 * addresses and stores the next available slot in req_arr 779 * to generate new ids in constant time. 780 */ 781struct vmbus_requestor { 782 u64 *req_arr; 783 unsigned long *req_bitmap; /* is a given slot available? */ 784 u32 size; 785 u64 next_request_id; 786 spinlock_t req_lock; /* provides atomicity */ 787}; 788 789#define VMBUS_NO_RQSTOR U64_MAX 790#define VMBUS_RQST_ERROR (U64_MAX - 1) 791/* NetVSC-specific */ 792#define VMBUS_RQST_ID_NO_RESPONSE (U64_MAX - 2) 793/* StorVSC-specific */ 794#define VMBUS_RQST_INIT (U64_MAX - 2) 795#define VMBUS_RQST_RESET (U64_MAX - 3) 796 797struct vmbus_device { 798 u16 dev_type; 799 guid_t guid; 800 bool perf_device; 801 bool allowed_in_isolated; 802}; 803 804#define VMBUS_DEFAULT_MAX_PKT_SIZE 4096 805 806struct vmbus_channel { 807 struct list_head listentry; 808 809 struct hv_device *device_obj; 810 811 enum vmbus_channel_state state; 812 813 struct vmbus_channel_offer_channel offermsg; 814 /* 815 * These are based on the OfferMsg.MonitorId. 816 * Save it here for easy access. 817 */ 818 u8 monitor_grp; 819 u8 monitor_bit; 820 821 bool rescind; /* got rescind msg */ 822 bool rescind_ref; /* got rescind msg, got channel reference */ 823 struct completion rescind_event; 824 825 u32 ringbuffer_gpadlhandle; 826 827 /* Allocated memory for ring buffer */ 828 struct page *ringbuffer_page; 829 u32 ringbuffer_pagecount; 830 u32 ringbuffer_send_offset; 831 struct hv_ring_buffer_info outbound; /* send to parent */ 832 struct hv_ring_buffer_info inbound; /* receive from parent */ 833 834 struct vmbus_close_msg close_msg; 835 836 /* Statistics */ 837 u64 interrupts; /* Host to Guest interrupts */ 838 u64 sig_events; /* Guest to Host events */ 839 840 /* 841 * Guest to host interrupts caused by the outbound ring buffer changing 842 * from empty to not empty. 843 */ 844 u64 intr_out_empty; 845 846 /* 847 * Indicates that a full outbound ring buffer was encountered. The flag 848 * is set to true when a full outbound ring buffer is encountered and 849 * set to false when a write to the outbound ring buffer is completed. 850 */ 851 bool out_full_flag; 852 853 /* Channel callback's invoked in softirq context */ 854 struct tasklet_struct callback_event; 855 void (*onchannel_callback)(void *context); 856 void *channel_callback_context; 857 858 void (*change_target_cpu_callback)(struct vmbus_channel *channel, 859 u32 old, u32 new); 860 861 /* 862 * Synchronize channel scheduling and channel removal; see the inline 863 * comments in vmbus_chan_sched() and vmbus_reset_channel_cb(). 864 */ 865 spinlock_t sched_lock; 866 867 /* 868 * A channel can be marked for one of three modes of reading: 869 * BATCHED - callback called from taslket and should read 870 * channel until empty. Interrupts from the host 871 * are masked while read is in process (default). 872 * DIRECT - callback called from tasklet (softirq). 873 * ISR - callback called in interrupt context and must 874 * invoke its own deferred processing. 875 * Host interrupts are disabled and must be re-enabled 876 * when ring is empty. 877 */ 878 enum hv_callback_mode { 879 HV_CALL_BATCHED, 880 HV_CALL_DIRECT, 881 HV_CALL_ISR 882 } callback_mode; 883 884 bool is_dedicated_interrupt; 885 u64 sig_event; 886 887 /* 888 * Starting with win8, this field will be used to specify the 889 * target CPU on which to deliver the interrupt for the host 890 * to guest communication. 891 * 892 * Prior to win8, incoming channel interrupts would only be 893 * delivered on CPU 0. Setting this value to 0 would preserve 894 * the earlier behavior. 895 */ 896 u32 target_cpu; 897 /* 898 * Support for sub-channels. For high performance devices, 899 * it will be useful to have multiple sub-channels to support 900 * a scalable communication infrastructure with the host. 901 * The support for sub-channels is implemented as an extension 902 * to the current infrastructure. 903 * The initial offer is considered the primary channel and this 904 * offer message will indicate if the host supports sub-channels. 905 * The guest is free to ask for sub-channels to be offered and can 906 * open these sub-channels as a normal "primary" channel. However, 907 * all sub-channels will have the same type and instance guids as the 908 * primary channel. Requests sent on a given channel will result in a 909 * response on the same channel. 910 */ 911 912 /* 913 * Sub-channel creation callback. This callback will be called in 914 * process context when a sub-channel offer is received from the host. 915 * The guest can open the sub-channel in the context of this callback. 916 */ 917 void (*sc_creation_callback)(struct vmbus_channel *new_sc); 918 919 /* 920 * Channel rescind callback. Some channels (the hvsock ones), need to 921 * register a callback which is invoked in vmbus_onoffer_rescind(). 922 */ 923 void (*chn_rescind_callback)(struct vmbus_channel *channel); 924 925 /* 926 * All Sub-channels of a primary channel are linked here. 927 */ 928 struct list_head sc_list; 929 /* 930 * The primary channel this sub-channel belongs to. 931 * This will be NULL for the primary channel. 932 */ 933 struct vmbus_channel *primary_channel; 934 /* 935 * Support per-channel state for use by vmbus drivers. 936 */ 937 void *per_channel_state; 938 939 /* 940 * Defer freeing channel until after all cpu's have 941 * gone through grace period. 942 */ 943 struct rcu_head rcu; 944 945 /* 946 * For sysfs per-channel properties. 947 */ 948 struct kobject kobj; 949 950 /* 951 * For performance critical channels (storage, networking 952 * etc,), Hyper-V has a mechanism to enhance the throughput 953 * at the expense of latency: 954 * When the host is to be signaled, we just set a bit in a shared page 955 * and this bit will be inspected by the hypervisor within a certain 956 * window and if the bit is set, the host will be signaled. The window 957 * of time is the monitor latency - currently around 100 usecs. This 958 * mechanism improves throughput by: 959 * 960 * A) Making the host more efficient - each time it wakes up, 961 * potentially it will process morev number of packets. The 962 * monitor latency allows a batch to build up. 963 * B) By deferring the hypercall to signal, we will also minimize 964 * the interrupts. 965 * 966 * Clearly, these optimizations improve throughput at the expense of 967 * latency. Furthermore, since the channel is shared for both 968 * control and data messages, control messages currently suffer 969 * unnecessary latency adversely impacting performance and boot 970 * time. To fix this issue, permit tagging the channel as being 971 * in "low latency" mode. In this mode, we will bypass the monitor 972 * mechanism. 973 */ 974 bool low_latency; 975 976 bool probe_done; 977 978 /* 979 * Cache the device ID here for easy access; this is useful, in 980 * particular, in situations where the channel's device_obj has 981 * not been allocated/initialized yet. 982 */ 983 u16 device_id; 984 985 /* 986 * We must offload the handling of the primary/sub channels 987 * from the single-threaded vmbus_connection.work_queue to 988 * two different workqueue, otherwise we can block 989 * vmbus_connection.work_queue and hang: see vmbus_process_offer(). 990 */ 991 struct work_struct add_channel_work; 992 993 /* 994 * Guest to host interrupts caused by the inbound ring buffer changing 995 * from full to not full while a packet is waiting. 996 */ 997 u64 intr_in_full; 998 999 /* 1000 * The total number of write operations that encountered a full 1001 * outbound ring buffer. 1002 */ 1003 u64 out_full_total; 1004 1005 /* 1006 * The number of write operations that were the first to encounter a 1007 * full outbound ring buffer. 1008 */ 1009 u64 out_full_first; 1010 1011 /* enabling/disabling fuzz testing on the channel (default is false)*/ 1012 bool fuzz_testing_state; 1013 1014 /* 1015 * Interrupt delay will delay the guest from emptying the ring buffer 1016 * for a specific amount of time. The delay is in microseconds and will 1017 * be between 1 to a maximum of 1000, its default is 0 (no delay). 1018 * The Message delay will delay guest reading on a per message basis 1019 * in microseconds between 1 to 1000 with the default being 0 1020 * (no delay). 1021 */ 1022 u32 fuzz_testing_interrupt_delay; 1023 u32 fuzz_testing_message_delay; 1024 1025 /* callback to generate a request ID from a request address */ 1026 u64 (*next_request_id_callback)(struct vmbus_channel *channel, u64 rqst_addr); 1027 /* callback to retrieve a request address from a request ID */ 1028 u64 (*request_addr_callback)(struct vmbus_channel *channel, u64 rqst_id); 1029 1030 /* request/transaction ids for VMBus */ 1031 struct vmbus_requestor requestor; 1032 u32 rqstor_size; 1033 1034 /* The max size of a packet on this channel */ 1035 u32 max_pkt_size; 1036}; 1037 1038u64 vmbus_next_request_id(struct vmbus_channel *channel, u64 rqst_addr); 1039u64 vmbus_request_addr(struct vmbus_channel *channel, u64 trans_id); 1040 1041static inline bool is_hvsock_channel(const struct vmbus_channel *c) 1042{ 1043 return !!(c->offermsg.offer.chn_flags & 1044 VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER); 1045} 1046 1047static inline bool is_sub_channel(const struct vmbus_channel *c) 1048{ 1049 return c->offermsg.offer.sub_channel_index != 0; 1050} 1051 1052static inline void set_channel_read_mode(struct vmbus_channel *c, 1053 enum hv_callback_mode mode) 1054{ 1055 c->callback_mode = mode; 1056} 1057 1058static inline void set_per_channel_state(struct vmbus_channel *c, void *s) 1059{ 1060 c->per_channel_state = s; 1061} 1062 1063static inline void *get_per_channel_state(struct vmbus_channel *c) 1064{ 1065 return c->per_channel_state; 1066} 1067 1068static inline void set_channel_pending_send_size(struct vmbus_channel *c, 1069 u32 size) 1070{ 1071 unsigned long flags; 1072 1073 if (size) { 1074 spin_lock_irqsave(&c->outbound.ring_lock, flags); 1075 ++c->out_full_total; 1076 1077 if (!c->out_full_flag) { 1078 ++c->out_full_first; 1079 c->out_full_flag = true; 1080 } 1081 spin_unlock_irqrestore(&c->outbound.ring_lock, flags); 1082 } else { 1083 c->out_full_flag = false; 1084 } 1085 1086 c->outbound.ring_buffer->pending_send_sz = size; 1087} 1088 1089void vmbus_onmessage(struct vmbus_channel_message_header *hdr); 1090 1091int vmbus_request_offers(void); 1092 1093/* 1094 * APIs for managing sub-channels. 1095 */ 1096 1097void vmbus_set_sc_create_callback(struct vmbus_channel *primary_channel, 1098 void (*sc_cr_cb)(struct vmbus_channel *new_sc)); 1099 1100void vmbus_set_chn_rescind_callback(struct vmbus_channel *channel, 1101 void (*chn_rescind_cb)(struct vmbus_channel *)); 1102 1103/* 1104 * Check if sub-channels have already been offerred. This API will be useful 1105 * when the driver is unloaded after establishing sub-channels. In this case, 1106 * when the driver is re-loaded, the driver would have to check if the 1107 * subchannels have already been established before attempting to request 1108 * the creation of sub-channels. 1109 * This function returns TRUE to indicate that subchannels have already been 1110 * created. 1111 * This function should be invoked after setting the callback function for 1112 * sub-channel creation. 1113 */ 1114bool vmbus_are_subchannels_present(struct vmbus_channel *primary); 1115 1116/* The format must be the same as struct vmdata_gpa_direct */ 1117struct vmbus_channel_packet_page_buffer { 1118 u16 type; 1119 u16 dataoffset8; 1120 u16 length8; 1121 u16 flags; 1122 u64 transactionid; 1123 u32 reserved; 1124 u32 rangecount; 1125 struct hv_page_buffer range[MAX_PAGE_BUFFER_COUNT]; 1126} __packed; 1127 1128/* The format must be the same as struct vmdata_gpa_direct */ 1129struct vmbus_channel_packet_multipage_buffer { 1130 u16 type; 1131 u16 dataoffset8; 1132 u16 length8; 1133 u16 flags; 1134 u64 transactionid; 1135 u32 reserved; 1136 u32 rangecount; /* Always 1 in this case */ 1137 struct hv_multipage_buffer range; 1138} __packed; 1139 1140/* The format must be the same as struct vmdata_gpa_direct */ 1141struct vmbus_packet_mpb_array { 1142 u16 type; 1143 u16 dataoffset8; 1144 u16 length8; 1145 u16 flags; 1146 u64 transactionid; 1147 u32 reserved; 1148 u32 rangecount; /* Always 1 in this case */ 1149 struct hv_mpb_array range; 1150} __packed; 1151 1152int vmbus_alloc_ring(struct vmbus_channel *channel, 1153 u32 send_size, u32 recv_size); 1154void vmbus_free_ring(struct vmbus_channel *channel); 1155 1156int vmbus_connect_ring(struct vmbus_channel *channel, 1157 void (*onchannel_callback)(void *context), 1158 void *context); 1159int vmbus_disconnect_ring(struct vmbus_channel *channel); 1160 1161extern int vmbus_open(struct vmbus_channel *channel, 1162 u32 send_ringbuffersize, 1163 u32 recv_ringbuffersize, 1164 void *userdata, 1165 u32 userdatalen, 1166 void (*onchannel_callback)(void *context), 1167 void *context); 1168 1169extern void vmbus_close(struct vmbus_channel *channel); 1170 1171extern int vmbus_sendpacket(struct vmbus_channel *channel, 1172 void *buffer, 1173 u32 bufferLen, 1174 u64 requestid, 1175 enum vmbus_packet_type type, 1176 u32 flags); 1177 1178extern int vmbus_sendpacket_pagebuffer(struct vmbus_channel *channel, 1179 struct hv_page_buffer pagebuffers[], 1180 u32 pagecount, 1181 void *buffer, 1182 u32 bufferlen, 1183 u64 requestid); 1184 1185extern int vmbus_sendpacket_mpb_desc(struct vmbus_channel *channel, 1186 struct vmbus_packet_mpb_array *mpb, 1187 u32 desc_size, 1188 void *buffer, 1189 u32 bufferlen, 1190 u64 requestid); 1191 1192extern int vmbus_establish_gpadl(struct vmbus_channel *channel, 1193 void *kbuffer, 1194 u32 size, 1195 u32 *gpadl_handle); 1196 1197extern int vmbus_teardown_gpadl(struct vmbus_channel *channel, 1198 u32 gpadl_handle); 1199 1200void vmbus_reset_channel_cb(struct vmbus_channel *channel); 1201 1202extern int vmbus_recvpacket(struct vmbus_channel *channel, 1203 void *buffer, 1204 u32 bufferlen, 1205 u32 *buffer_actual_len, 1206 u64 *requestid); 1207 1208extern int vmbus_recvpacket_raw(struct vmbus_channel *channel, 1209 void *buffer, 1210 u32 bufferlen, 1211 u32 *buffer_actual_len, 1212 u64 *requestid); 1213 1214 1215extern void vmbus_ontimer(unsigned long data); 1216 1217/* Base driver object */ 1218struct hv_driver { 1219 const char *name; 1220 1221 /* 1222 * A hvsock offer, which has a VMBUS_CHANNEL_TLNPI_PROVIDER_OFFER 1223 * channel flag, actually doesn't mean a synthetic device because the 1224 * offer's if_type/if_instance can change for every new hvsock 1225 * connection. 1226 * 1227 * However, to facilitate the notification of new-offer/rescind-offer 1228 * from vmbus driver to hvsock driver, we can handle hvsock offer as 1229 * a special vmbus device, and hence we need the below flag to 1230 * indicate if the driver is the hvsock driver or not: we need to 1231 * specially treat the hvosck offer & driver in vmbus_match(). 1232 */ 1233 bool hvsock; 1234 1235 /* the device type supported by this driver */ 1236 guid_t dev_type; 1237 const struct hv_vmbus_device_id *id_table; 1238 1239 struct device_driver driver; 1240 1241 /* dynamic device GUID's */ 1242 struct { 1243 spinlock_t lock; 1244 struct list_head list; 1245 } dynids; 1246 1247 int (*probe)(struct hv_device *, const struct hv_vmbus_device_id *); 1248 int (*remove)(struct hv_device *); 1249 void (*shutdown)(struct hv_device *); 1250 1251 int (*suspend)(struct hv_device *); 1252 int (*resume)(struct hv_device *); 1253 1254}; 1255 1256/* Base device object */ 1257struct hv_device { 1258 /* the device type id of this device */ 1259 guid_t dev_type; 1260 1261 /* the device instance id of this device */ 1262 guid_t dev_instance; 1263 u16 vendor_id; 1264 u16 device_id; 1265 1266 struct device device; 1267 char *driver_override; /* Driver name to force a match */ 1268 1269 struct vmbus_channel *channel; 1270 struct kset *channels_kset; 1271 1272 /* place holder to keep track of the dir for hv device in debugfs */ 1273 struct dentry *debug_dir; 1274 1275}; 1276 1277 1278static inline struct hv_device *device_to_hv_device(struct device *d) 1279{ 1280 return container_of(d, struct hv_device, device); 1281} 1282 1283static inline struct hv_driver *drv_to_hv_drv(struct device_driver *d) 1284{ 1285 return container_of(d, struct hv_driver, driver); 1286} 1287 1288static inline void hv_set_drvdata(struct hv_device *dev, void *data) 1289{ 1290 dev_set_drvdata(&dev->device, data); 1291} 1292 1293static inline void *hv_get_drvdata(struct hv_device *dev) 1294{ 1295 return dev_get_drvdata(&dev->device); 1296} 1297 1298struct hv_ring_buffer_debug_info { 1299 u32 current_interrupt_mask; 1300 u32 current_read_index; 1301 u32 current_write_index; 1302 u32 bytes_avail_toread; 1303 u32 bytes_avail_towrite; 1304}; 1305 1306 1307int hv_ringbuffer_get_debuginfo(struct hv_ring_buffer_info *ring_info, 1308 struct hv_ring_buffer_debug_info *debug_info); 1309 1310/* Vmbus interface */ 1311#define vmbus_driver_register(driver) \ 1312 __vmbus_driver_register(driver, THIS_MODULE, KBUILD_MODNAME) 1313int __must_check __vmbus_driver_register(struct hv_driver *hv_driver, 1314 struct module *owner, 1315 const char *mod_name); 1316void vmbus_driver_unregister(struct hv_driver *hv_driver); 1317 1318void vmbus_hvsock_device_unregister(struct vmbus_channel *channel); 1319 1320int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj, 1321 resource_size_t min, resource_size_t max, 1322 resource_size_t size, resource_size_t align, 1323 bool fb_overlap_ok); 1324void vmbus_free_mmio(resource_size_t start, resource_size_t size); 1325 1326/* 1327 * GUID definitions of various offer types - services offered to the guest. 1328 */ 1329 1330/* 1331 * Network GUID 1332 * {f8615163-df3e-46c5-913f-f2d2f965ed0e} 1333 */ 1334#define HV_NIC_GUID \ 1335 .guid = GUID_INIT(0xf8615163, 0xdf3e, 0x46c5, 0x91, 0x3f, \ 1336 0xf2, 0xd2, 0xf9, 0x65, 0xed, 0x0e) 1337 1338/* 1339 * IDE GUID 1340 * {32412632-86cb-44a2-9b5c-50d1417354f5} 1341 */ 1342#define HV_IDE_GUID \ 1343 .guid = GUID_INIT(0x32412632, 0x86cb, 0x44a2, 0x9b, 0x5c, \ 1344 0x50, 0xd1, 0x41, 0x73, 0x54, 0xf5) 1345 1346/* 1347 * SCSI GUID 1348 * {ba6163d9-04a1-4d29-b605-72e2ffb1dc7f} 1349 */ 1350#define HV_SCSI_GUID \ 1351 .guid = GUID_INIT(0xba6163d9, 0x04a1, 0x4d29, 0xb6, 0x05, \ 1352 0x72, 0xe2, 0xff, 0xb1, 0xdc, 0x7f) 1353 1354/* 1355 * Shutdown GUID 1356 * {0e0b6031-5213-4934-818b-38d90ced39db} 1357 */ 1358#define HV_SHUTDOWN_GUID \ 1359 .guid = GUID_INIT(0x0e0b6031, 0x5213, 0x4934, 0x81, 0x8b, \ 1360 0x38, 0xd9, 0x0c, 0xed, 0x39, 0xdb) 1361 1362/* 1363 * Time Synch GUID 1364 * {9527E630-D0AE-497b-ADCE-E80AB0175CAF} 1365 */ 1366#define HV_TS_GUID \ 1367 .guid = GUID_INIT(0x9527e630, 0xd0ae, 0x497b, 0xad, 0xce, \ 1368 0xe8, 0x0a, 0xb0, 0x17, 0x5c, 0xaf) 1369 1370/* 1371 * Heartbeat GUID 1372 * {57164f39-9115-4e78-ab55-382f3bd5422d} 1373 */ 1374#define HV_HEART_BEAT_GUID \ 1375 .guid = GUID_INIT(0x57164f39, 0x9115, 0x4e78, 0xab, 0x55, \ 1376 0x38, 0x2f, 0x3b, 0xd5, 0x42, 0x2d) 1377 1378/* 1379 * KVP GUID 1380 * {a9a0f4e7-5a45-4d96-b827-8a841e8c03e6} 1381 */ 1382#define HV_KVP_GUID \ 1383 .guid = GUID_INIT(0xa9a0f4e7, 0x5a45, 0x4d96, 0xb8, 0x27, \ 1384 0x8a, 0x84, 0x1e, 0x8c, 0x03, 0xe6) 1385 1386/* 1387 * Dynamic memory GUID 1388 * {525074dc-8985-46e2-8057-a307dc18a502} 1389 */ 1390#define HV_DM_GUID \ 1391 .guid = GUID_INIT(0x525074dc, 0x8985, 0x46e2, 0x80, 0x57, \ 1392 0xa3, 0x07, 0xdc, 0x18, 0xa5, 0x02) 1393 1394/* 1395 * Mouse GUID 1396 * {cfa8b69e-5b4a-4cc0-b98b-8ba1a1f3f95a} 1397 */ 1398#define HV_MOUSE_GUID \ 1399 .guid = GUID_INIT(0xcfa8b69e, 0x5b4a, 0x4cc0, 0xb9, 0x8b, \ 1400 0x8b, 0xa1, 0xa1, 0xf3, 0xf9, 0x5a) 1401 1402/* 1403 * Keyboard GUID 1404 * {f912ad6d-2b17-48ea-bd65-f927a61c7684} 1405 */ 1406#define HV_KBD_GUID \ 1407 .guid = GUID_INIT(0xf912ad6d, 0x2b17, 0x48ea, 0xbd, 0x65, \ 1408 0xf9, 0x27, 0xa6, 0x1c, 0x76, 0x84) 1409 1410/* 1411 * VSS (Backup/Restore) GUID 1412 */ 1413#define HV_VSS_GUID \ 1414 .guid = GUID_INIT(0x35fa2e29, 0xea23, 0x4236, 0x96, 0xae, \ 1415 0x3a, 0x6e, 0xba, 0xcb, 0xa4, 0x40) 1416/* 1417 * Synthetic Video GUID 1418 * {DA0A7802-E377-4aac-8E77-0558EB1073F8} 1419 */ 1420#define HV_SYNTHVID_GUID \ 1421 .guid = GUID_INIT(0xda0a7802, 0xe377, 0x4aac, 0x8e, 0x77, \ 1422 0x05, 0x58, 0xeb, 0x10, 0x73, 0xf8) 1423 1424/* 1425 * Synthetic FC GUID 1426 * {2f9bcc4a-0069-4af3-b76b-6fd0be528cda} 1427 */ 1428#define HV_SYNTHFC_GUID \ 1429 .guid = GUID_INIT(0x2f9bcc4a, 0x0069, 0x4af3, 0xb7, 0x6b, \ 1430 0x6f, 0xd0, 0xbe, 0x52, 0x8c, 0xda) 1431 1432/* 1433 * Guest File Copy Service 1434 * {34D14BE3-DEE4-41c8-9AE7-6B174977C192} 1435 */ 1436 1437#define HV_FCOPY_GUID \ 1438 .guid = GUID_INIT(0x34d14be3, 0xdee4, 0x41c8, 0x9a, 0xe7, \ 1439 0x6b, 0x17, 0x49, 0x77, 0xc1, 0x92) 1440 1441/* 1442 * NetworkDirect. This is the guest RDMA service. 1443 * {8c2eaf3d-32a7-4b09-ab99-bd1f1c86b501} 1444 */ 1445#define HV_ND_GUID \ 1446 .guid = GUID_INIT(0x8c2eaf3d, 0x32a7, 0x4b09, 0xab, 0x99, \ 1447 0xbd, 0x1f, 0x1c, 0x86, 0xb5, 0x01) 1448 1449/* 1450 * PCI Express Pass Through 1451 * {44C4F61D-4444-4400-9D52-802E27EDE19F} 1452 */ 1453 1454#define HV_PCIE_GUID \ 1455 .guid = GUID_INIT(0x44c4f61d, 0x4444, 0x4400, 0x9d, 0x52, \ 1456 0x80, 0x2e, 0x27, 0xed, 0xe1, 0x9f) 1457 1458/* 1459 * Linux doesn't support the 3 devices: the first two are for 1460 * Automatic Virtual Machine Activation, and the third is for 1461 * Remote Desktop Virtualization. 1462 * {f8e65716-3cb3-4a06-9a60-1889c5cccab5} 1463 * {3375baf4-9e15-4b30-b765-67acb10d607b} 1464 * {276aacf4-ac15-426c-98dd-7521ad3f01fe} 1465 */ 1466 1467#define HV_AVMA1_GUID \ 1468 .guid = GUID_INIT(0xf8e65716, 0x3cb3, 0x4a06, 0x9a, 0x60, \ 1469 0x18, 0x89, 0xc5, 0xcc, 0xca, 0xb5) 1470 1471#define HV_AVMA2_GUID \ 1472 .guid = GUID_INIT(0x3375baf4, 0x9e15, 0x4b30, 0xb7, 0x65, \ 1473 0x67, 0xac, 0xb1, 0x0d, 0x60, 0x7b) 1474 1475#define HV_RDV_GUID \ 1476 .guid = GUID_INIT(0x276aacf4, 0xac15, 0x426c, 0x98, 0xdd, \ 1477 0x75, 0x21, 0xad, 0x3f, 0x01, 0xfe) 1478 1479/* 1480 * Common header for Hyper-V ICs 1481 */ 1482 1483#define ICMSGTYPE_NEGOTIATE 0 1484#define ICMSGTYPE_HEARTBEAT 1 1485#define ICMSGTYPE_KVPEXCHANGE 2 1486#define ICMSGTYPE_SHUTDOWN 3 1487#define ICMSGTYPE_TIMESYNC 4 1488#define ICMSGTYPE_VSS 5 1489#define ICMSGTYPE_FCOPY 7 1490 1491#define ICMSGHDRFLAG_TRANSACTION 1 1492#define ICMSGHDRFLAG_REQUEST 2 1493#define ICMSGHDRFLAG_RESPONSE 4 1494 1495 1496/* 1497 * While we want to handle util services as regular devices, 1498 * there is only one instance of each of these services; so 1499 * we statically allocate the service specific state. 1500 */ 1501 1502struct hv_util_service { 1503 u8 *recv_buffer; 1504 void *channel; 1505 void (*util_cb)(void *); 1506 int (*util_init)(struct hv_util_service *); 1507 void (*util_deinit)(void); 1508 int (*util_pre_suspend)(void); 1509 int (*util_pre_resume)(void); 1510}; 1511 1512struct vmbuspipe_hdr { 1513 u32 flags; 1514 u32 msgsize; 1515} __packed; 1516 1517struct ic_version { 1518 u16 major; 1519 u16 minor; 1520} __packed; 1521 1522struct icmsg_hdr { 1523 struct ic_version icverframe; 1524 u16 icmsgtype; 1525 struct ic_version icvermsg; 1526 u16 icmsgsize; 1527 u32 status; 1528 u8 ictransaction_id; 1529 u8 icflags; 1530 u8 reserved[2]; 1531} __packed; 1532 1533#define IC_VERSION_NEGOTIATION_MAX_VER_COUNT 100 1534#define ICMSG_HDR (sizeof(struct vmbuspipe_hdr) + sizeof(struct icmsg_hdr)) 1535#define ICMSG_NEGOTIATE_PKT_SIZE(icframe_vercnt, icmsg_vercnt) \ 1536 (ICMSG_HDR + sizeof(struct icmsg_negotiate) + \ 1537 (((icframe_vercnt) + (icmsg_vercnt)) * sizeof(struct ic_version))) 1538 1539struct icmsg_negotiate { 1540 u16 icframe_vercnt; 1541 u16 icmsg_vercnt; 1542 u32 reserved; 1543 struct ic_version icversion_data[]; /* any size array */ 1544} __packed; 1545 1546struct shutdown_msg_data { 1547 u32 reason_code; 1548 u32 timeout_seconds; 1549 u32 flags; 1550 u8 display_message[2048]; 1551} __packed; 1552 1553struct heartbeat_msg_data { 1554 u64 seq_num; 1555 u32 reserved[8]; 1556} __packed; 1557 1558/* Time Sync IC defs */ 1559#define ICTIMESYNCFLAG_PROBE 0 1560#define ICTIMESYNCFLAG_SYNC 1 1561#define ICTIMESYNCFLAG_SAMPLE 2 1562 1563#ifdef __x86_64__ 1564#define WLTIMEDELTA 116444736000000000L /* in 100ns unit */ 1565#else 1566#define WLTIMEDELTA 116444736000000000LL 1567#endif 1568 1569struct ictimesync_data { 1570 u64 parenttime; 1571 u64 childtime; 1572 u64 roundtriptime; 1573 u8 flags; 1574} __packed; 1575 1576struct ictimesync_ref_data { 1577 u64 parenttime; 1578 u64 vmreferencetime; 1579 u8 flags; 1580 char leapflags; 1581 char stratum; 1582 u8 reserved[3]; 1583} __packed; 1584 1585struct hyperv_service_callback { 1586 u8 msg_type; 1587 char *log_msg; 1588 guid_t data; 1589 struct vmbus_channel *channel; 1590 void (*callback)(void *context); 1591}; 1592 1593#define MAX_SRV_VER 0x7ffffff 1594extern bool vmbus_prep_negotiate_resp(struct icmsg_hdr *icmsghdrp, u8 *buf, u32 buflen, 1595 const int *fw_version, int fw_vercnt, 1596 const int *srv_version, int srv_vercnt, 1597 int *nego_fw_version, int *nego_srv_version); 1598 1599void hv_process_channel_removal(struct vmbus_channel *channel); 1600 1601void vmbus_setevent(struct vmbus_channel *channel); 1602/* 1603 * Negotiated version with the Host. 1604 */ 1605 1606extern __u32 vmbus_proto_version; 1607 1608int vmbus_send_tl_connect_request(const guid_t *shv_guest_servie_id, 1609 const guid_t *shv_host_servie_id); 1610int vmbus_send_modifychannel(struct vmbus_channel *channel, u32 target_vp); 1611void vmbus_set_event(struct vmbus_channel *channel); 1612 1613/* Get the start of the ring buffer. */ 1614static inline void * 1615hv_get_ring_buffer(const struct hv_ring_buffer_info *ring_info) 1616{ 1617 return ring_info->ring_buffer->buffer; 1618} 1619 1620/* 1621 * Mask off host interrupt callback notifications 1622 */ 1623static inline void hv_begin_read(struct hv_ring_buffer_info *rbi) 1624{ 1625 rbi->ring_buffer->interrupt_mask = 1; 1626 1627 /* make sure mask update is not reordered */ 1628 virt_mb(); 1629} 1630 1631/* 1632 * Re-enable host callback and return number of outstanding bytes 1633 */ 1634static inline u32 hv_end_read(struct hv_ring_buffer_info *rbi) 1635{ 1636 1637 rbi->ring_buffer->interrupt_mask = 0; 1638 1639 /* make sure mask update is not reordered */ 1640 virt_mb(); 1641 1642 /* 1643 * Now check to see if the ring buffer is still empty. 1644 * If it is not, we raced and we need to process new 1645 * incoming messages. 1646 */ 1647 return hv_get_bytes_to_read(rbi); 1648} 1649 1650/* 1651 * An API to support in-place processing of incoming VMBUS packets. 1652 */ 1653 1654/* Get data payload associated with descriptor */ 1655static inline void *hv_pkt_data(const struct vmpacket_descriptor *desc) 1656{ 1657 return (void *)((unsigned long)desc + (desc->offset8 << 3)); 1658} 1659 1660/* Get data size associated with descriptor */ 1661static inline u32 hv_pkt_datalen(const struct vmpacket_descriptor *desc) 1662{ 1663 return (desc->len8 << 3) - (desc->offset8 << 3); 1664} 1665 1666 1667struct vmpacket_descriptor * 1668hv_pkt_iter_first_raw(struct vmbus_channel *channel); 1669 1670struct vmpacket_descriptor * 1671hv_pkt_iter_first(struct vmbus_channel *channel); 1672 1673struct vmpacket_descriptor * 1674__hv_pkt_iter_next(struct vmbus_channel *channel, 1675 const struct vmpacket_descriptor *pkt, 1676 bool copy); 1677 1678void hv_pkt_iter_close(struct vmbus_channel *channel); 1679 1680static inline struct vmpacket_descriptor * 1681hv_pkt_iter_next_pkt(struct vmbus_channel *channel, 1682 const struct vmpacket_descriptor *pkt, 1683 bool copy) 1684{ 1685 struct vmpacket_descriptor *nxt; 1686 1687 nxt = __hv_pkt_iter_next(channel, pkt, copy); 1688 if (!nxt) 1689 hv_pkt_iter_close(channel); 1690 1691 return nxt; 1692} 1693 1694/* 1695 * Get next packet descriptor without copying it out of the ring buffer 1696 * If at end of list, return NULL and update host. 1697 */ 1698static inline struct vmpacket_descriptor * 1699hv_pkt_iter_next_raw(struct vmbus_channel *channel, 1700 const struct vmpacket_descriptor *pkt) 1701{ 1702 return hv_pkt_iter_next_pkt(channel, pkt, false); 1703} 1704 1705/* 1706 * Get next packet descriptor from iterator 1707 * If at end of list, return NULL and update host. 1708 */ 1709static inline struct vmpacket_descriptor * 1710hv_pkt_iter_next(struct vmbus_channel *channel, 1711 const struct vmpacket_descriptor *pkt) 1712{ 1713 return hv_pkt_iter_next_pkt(channel, pkt, true); 1714} 1715 1716#define foreach_vmbus_pkt(pkt, channel) \ 1717 for (pkt = hv_pkt_iter_first(channel); pkt; \ 1718 pkt = hv_pkt_iter_next(channel, pkt)) 1719 1720/* 1721 * Interface for passing data between SR-IOV PF and VF drivers. The VF driver 1722 * sends requests to read and write blocks. Each block must be 128 bytes or 1723 * smaller. Optionally, the VF driver can register a callback function which 1724 * will be invoked when the host says that one or more of the first 64 block 1725 * IDs is "invalid" which means that the VF driver should reread them. 1726 */ 1727#define HV_CONFIG_BLOCK_SIZE_MAX 128 1728 1729int hyperv_read_cfg_blk(struct pci_dev *dev, void *buf, unsigned int buf_len, 1730 unsigned int block_id, unsigned int *bytes_returned); 1731int hyperv_write_cfg_blk(struct pci_dev *dev, void *buf, unsigned int len, 1732 unsigned int block_id); 1733int hyperv_reg_block_invalidate(struct pci_dev *dev, void *context, 1734 void (*block_invalidate)(void *context, 1735 u64 block_mask)); 1736 1737struct hyperv_pci_block_ops { 1738 int (*read_block)(struct pci_dev *dev, void *buf, unsigned int buf_len, 1739 unsigned int block_id, unsigned int *bytes_returned); 1740 int (*write_block)(struct pci_dev *dev, void *buf, unsigned int len, 1741 unsigned int block_id); 1742 int (*reg_blk_invalidate)(struct pci_dev *dev, void *context, 1743 void (*block_invalidate)(void *context, 1744 u64 block_mask)); 1745}; 1746 1747extern struct hyperv_pci_block_ops hvpci_block_ops; 1748 1749static inline unsigned long virt_to_hvpfn(void *addr) 1750{ 1751 phys_addr_t paddr; 1752 1753 if (is_vmalloc_addr(addr)) 1754 paddr = page_to_phys(vmalloc_to_page(addr)) + 1755 offset_in_page(addr); 1756 else 1757 paddr = __pa(addr); 1758 1759 return paddr >> HV_HYP_PAGE_SHIFT; 1760} 1761 1762#define NR_HV_HYP_PAGES_IN_PAGE (PAGE_SIZE / HV_HYP_PAGE_SIZE) 1763#define offset_in_hvpage(ptr) ((unsigned long)(ptr) & ~HV_HYP_PAGE_MASK) 1764#define HVPFN_UP(x) (((x) + HV_HYP_PAGE_SIZE-1) >> HV_HYP_PAGE_SHIFT) 1765#define HVPFN_DOWN(x) ((x) >> HV_HYP_PAGE_SHIFT) 1766#define page_to_hvpfn(page) (page_to_pfn(page) * NR_HV_HYP_PAGES_IN_PAGE) 1767 1768#endif /* _HYPERV_H */