at v5.15-rc2 22 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_BITMAP_H 3#define __LINUX_BITMAP_H 4 5#ifndef __ASSEMBLY__ 6 7#include <linux/align.h> 8#include <linux/bitops.h> 9#include <linux/limits.h> 10#include <linux/string.h> 11#include <linux/types.h> 12 13struct device; 14 15/* 16 * bitmaps provide bit arrays that consume one or more unsigned 17 * longs. The bitmap interface and available operations are listed 18 * here, in bitmap.h 19 * 20 * Function implementations generic to all architectures are in 21 * lib/bitmap.c. Functions implementations that are architecture 22 * specific are in various include/asm-<arch>/bitops.h headers 23 * and other arch/<arch> specific files. 24 * 25 * See lib/bitmap.c for more details. 26 */ 27 28/** 29 * DOC: bitmap overview 30 * 31 * The available bitmap operations and their rough meaning in the 32 * case that the bitmap is a single unsigned long are thus: 33 * 34 * The generated code is more efficient when nbits is known at 35 * compile-time and at most BITS_PER_LONG. 36 * 37 * :: 38 * 39 * bitmap_zero(dst, nbits) *dst = 0UL 40 * bitmap_fill(dst, nbits) *dst = ~0UL 41 * bitmap_copy(dst, src, nbits) *dst = *src 42 * bitmap_and(dst, src1, src2, nbits) *dst = *src1 & *src2 43 * bitmap_or(dst, src1, src2, nbits) *dst = *src1 | *src2 44 * bitmap_xor(dst, src1, src2, nbits) *dst = *src1 ^ *src2 45 * bitmap_andnot(dst, src1, src2, nbits) *dst = *src1 & ~(*src2) 46 * bitmap_complement(dst, src, nbits) *dst = ~(*src) 47 * bitmap_equal(src1, src2, nbits) Are *src1 and *src2 equal? 48 * bitmap_intersects(src1, src2, nbits) Do *src1 and *src2 overlap? 49 * bitmap_subset(src1, src2, nbits) Is *src1 a subset of *src2? 50 * bitmap_empty(src, nbits) Are all bits zero in *src? 51 * bitmap_full(src, nbits) Are all bits set in *src? 52 * bitmap_weight(src, nbits) Hamming Weight: number set bits 53 * bitmap_set(dst, pos, nbits) Set specified bit area 54 * bitmap_clear(dst, pos, nbits) Clear specified bit area 55 * bitmap_find_next_zero_area(buf, len, pos, n, mask) Find bit free area 56 * bitmap_find_next_zero_area_off(buf, len, pos, n, mask, mask_off) as above 57 * bitmap_next_clear_region(map, &start, &end, nbits) Find next clear region 58 * bitmap_next_set_region(map, &start, &end, nbits) Find next set region 59 * bitmap_for_each_clear_region(map, rs, re, start, end) 60 * Iterate over all clear regions 61 * bitmap_for_each_set_region(map, rs, re, start, end) 62 * Iterate over all set regions 63 * bitmap_shift_right(dst, src, n, nbits) *dst = *src >> n 64 * bitmap_shift_left(dst, src, n, nbits) *dst = *src << n 65 * bitmap_cut(dst, src, first, n, nbits) Cut n bits from first, copy rest 66 * bitmap_replace(dst, old, new, mask, nbits) *dst = (*old & ~(*mask)) | (*new & *mask) 67 * bitmap_remap(dst, src, old, new, nbits) *dst = map(old, new)(src) 68 * bitmap_bitremap(oldbit, old, new, nbits) newbit = map(old, new)(oldbit) 69 * bitmap_onto(dst, orig, relmap, nbits) *dst = orig relative to relmap 70 * bitmap_fold(dst, orig, sz, nbits) dst bits = orig bits mod sz 71 * bitmap_parse(buf, buflen, dst, nbits) Parse bitmap dst from kernel buf 72 * bitmap_parse_user(ubuf, ulen, dst, nbits) Parse bitmap dst from user buf 73 * bitmap_parselist(buf, dst, nbits) Parse bitmap dst from kernel buf 74 * bitmap_parselist_user(buf, dst, nbits) Parse bitmap dst from user buf 75 * bitmap_find_free_region(bitmap, bits, order) Find and allocate bit region 76 * bitmap_release_region(bitmap, pos, order) Free specified bit region 77 * bitmap_allocate_region(bitmap, pos, order) Allocate specified bit region 78 * bitmap_from_arr32(dst, buf, nbits) Copy nbits from u32[] buf to dst 79 * bitmap_to_arr32(buf, src, nbits) Copy nbits from buf to u32[] dst 80 * bitmap_get_value8(map, start) Get 8bit value from map at start 81 * bitmap_set_value8(map, value, start) Set 8bit value to map at start 82 * 83 * Note, bitmap_zero() and bitmap_fill() operate over the region of 84 * unsigned longs, that is, bits behind bitmap till the unsigned long 85 * boundary will be zeroed or filled as well. Consider to use 86 * bitmap_clear() or bitmap_set() to make explicit zeroing or filling 87 * respectively. 88 */ 89 90/** 91 * DOC: bitmap bitops 92 * 93 * Also the following operations in asm/bitops.h apply to bitmaps.:: 94 * 95 * set_bit(bit, addr) *addr |= bit 96 * clear_bit(bit, addr) *addr &= ~bit 97 * change_bit(bit, addr) *addr ^= bit 98 * test_bit(bit, addr) Is bit set in *addr? 99 * test_and_set_bit(bit, addr) Set bit and return old value 100 * test_and_clear_bit(bit, addr) Clear bit and return old value 101 * test_and_change_bit(bit, addr) Change bit and return old value 102 * find_first_zero_bit(addr, nbits) Position first zero bit in *addr 103 * find_first_bit(addr, nbits) Position first set bit in *addr 104 * find_next_zero_bit(addr, nbits, bit) 105 * Position next zero bit in *addr >= bit 106 * find_next_bit(addr, nbits, bit) Position next set bit in *addr >= bit 107 * find_next_and_bit(addr1, addr2, nbits, bit) 108 * Same as find_next_bit, but in 109 * (*addr1 & *addr2) 110 * 111 */ 112 113/** 114 * DOC: declare bitmap 115 * The DECLARE_BITMAP(name,bits) macro, in linux/types.h, can be used 116 * to declare an array named 'name' of just enough unsigned longs to 117 * contain all bit positions from 0 to 'bits' - 1. 118 */ 119 120/* 121 * Allocation and deallocation of bitmap. 122 * Provided in lib/bitmap.c to avoid circular dependency. 123 */ 124unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags); 125unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags); 126void bitmap_free(const unsigned long *bitmap); 127 128/* Managed variants of the above. */ 129unsigned long *devm_bitmap_alloc(struct device *dev, 130 unsigned int nbits, gfp_t flags); 131unsigned long *devm_bitmap_zalloc(struct device *dev, 132 unsigned int nbits, gfp_t flags); 133 134/* 135 * lib/bitmap.c provides these functions: 136 */ 137 138int __bitmap_equal(const unsigned long *bitmap1, 139 const unsigned long *bitmap2, unsigned int nbits); 140bool __pure __bitmap_or_equal(const unsigned long *src1, 141 const unsigned long *src2, 142 const unsigned long *src3, 143 unsigned int nbits); 144void __bitmap_complement(unsigned long *dst, const unsigned long *src, 145 unsigned int nbits); 146void __bitmap_shift_right(unsigned long *dst, const unsigned long *src, 147 unsigned int shift, unsigned int nbits); 148void __bitmap_shift_left(unsigned long *dst, const unsigned long *src, 149 unsigned int shift, unsigned int nbits); 150void bitmap_cut(unsigned long *dst, const unsigned long *src, 151 unsigned int first, unsigned int cut, unsigned int nbits); 152int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1, 153 const unsigned long *bitmap2, unsigned int nbits); 154void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1, 155 const unsigned long *bitmap2, unsigned int nbits); 156void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1, 157 const unsigned long *bitmap2, unsigned int nbits); 158int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1, 159 const unsigned long *bitmap2, unsigned int nbits); 160void __bitmap_replace(unsigned long *dst, 161 const unsigned long *old, const unsigned long *new, 162 const unsigned long *mask, unsigned int nbits); 163int __bitmap_intersects(const unsigned long *bitmap1, 164 const unsigned long *bitmap2, unsigned int nbits); 165int __bitmap_subset(const unsigned long *bitmap1, 166 const unsigned long *bitmap2, unsigned int nbits); 167int __bitmap_weight(const unsigned long *bitmap, unsigned int nbits); 168void __bitmap_set(unsigned long *map, unsigned int start, int len); 169void __bitmap_clear(unsigned long *map, unsigned int start, int len); 170 171unsigned long bitmap_find_next_zero_area_off(unsigned long *map, 172 unsigned long size, 173 unsigned long start, 174 unsigned int nr, 175 unsigned long align_mask, 176 unsigned long align_offset); 177 178/** 179 * bitmap_find_next_zero_area - find a contiguous aligned zero area 180 * @map: The address to base the search on 181 * @size: The bitmap size in bits 182 * @start: The bitnumber to start searching at 183 * @nr: The number of zeroed bits we're looking for 184 * @align_mask: Alignment mask for zero area 185 * 186 * The @align_mask should be one less than a power of 2; the effect is that 187 * the bit offset of all zero areas this function finds is multiples of that 188 * power of 2. A @align_mask of 0 means no alignment is required. 189 */ 190static inline unsigned long 191bitmap_find_next_zero_area(unsigned long *map, 192 unsigned long size, 193 unsigned long start, 194 unsigned int nr, 195 unsigned long align_mask) 196{ 197 return bitmap_find_next_zero_area_off(map, size, start, nr, 198 align_mask, 0); 199} 200 201int bitmap_parse(const char *buf, unsigned int buflen, 202 unsigned long *dst, int nbits); 203int bitmap_parse_user(const char __user *ubuf, unsigned int ulen, 204 unsigned long *dst, int nbits); 205int bitmap_parselist(const char *buf, unsigned long *maskp, 206 int nmaskbits); 207int bitmap_parselist_user(const char __user *ubuf, unsigned int ulen, 208 unsigned long *dst, int nbits); 209void bitmap_remap(unsigned long *dst, const unsigned long *src, 210 const unsigned long *old, const unsigned long *new, unsigned int nbits); 211int bitmap_bitremap(int oldbit, 212 const unsigned long *old, const unsigned long *new, int bits); 213void bitmap_onto(unsigned long *dst, const unsigned long *orig, 214 const unsigned long *relmap, unsigned int bits); 215void bitmap_fold(unsigned long *dst, const unsigned long *orig, 216 unsigned int sz, unsigned int nbits); 217int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order); 218void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order); 219int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order); 220 221#ifdef __BIG_ENDIAN 222void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits); 223#else 224#define bitmap_copy_le bitmap_copy 225#endif 226unsigned int bitmap_ord_to_pos(const unsigned long *bitmap, unsigned int ord, unsigned int nbits); 227int bitmap_print_to_pagebuf(bool list, char *buf, 228 const unsigned long *maskp, int nmaskbits); 229 230extern int bitmap_print_bitmask_to_buf(char *buf, const unsigned long *maskp, 231 int nmaskbits, loff_t off, size_t count); 232 233extern int bitmap_print_list_to_buf(char *buf, const unsigned long *maskp, 234 int nmaskbits, loff_t off, size_t count); 235 236#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1))) 237#define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1))) 238 239static inline void bitmap_zero(unsigned long *dst, unsigned int nbits) 240{ 241 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 242 memset(dst, 0, len); 243} 244 245static inline void bitmap_fill(unsigned long *dst, unsigned int nbits) 246{ 247 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 248 memset(dst, 0xff, len); 249} 250 251static inline void bitmap_copy(unsigned long *dst, const unsigned long *src, 252 unsigned int nbits) 253{ 254 unsigned int len = BITS_TO_LONGS(nbits) * sizeof(unsigned long); 255 memcpy(dst, src, len); 256} 257 258/* 259 * Copy bitmap and clear tail bits in last word. 260 */ 261static inline void bitmap_copy_clear_tail(unsigned long *dst, 262 const unsigned long *src, unsigned int nbits) 263{ 264 bitmap_copy(dst, src, nbits); 265 if (nbits % BITS_PER_LONG) 266 dst[nbits / BITS_PER_LONG] &= BITMAP_LAST_WORD_MASK(nbits); 267} 268 269/* 270 * On 32-bit systems bitmaps are represented as u32 arrays internally, and 271 * therefore conversion is not needed when copying data from/to arrays of u32. 272 */ 273#if BITS_PER_LONG == 64 274void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, 275 unsigned int nbits); 276void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, 277 unsigned int nbits); 278#else 279#define bitmap_from_arr32(bitmap, buf, nbits) \ 280 bitmap_copy_clear_tail((unsigned long *) (bitmap), \ 281 (const unsigned long *) (buf), (nbits)) 282#define bitmap_to_arr32(buf, bitmap, nbits) \ 283 bitmap_copy_clear_tail((unsigned long *) (buf), \ 284 (const unsigned long *) (bitmap), (nbits)) 285#endif 286 287static inline int bitmap_and(unsigned long *dst, const unsigned long *src1, 288 const unsigned long *src2, unsigned int nbits) 289{ 290 if (small_const_nbits(nbits)) 291 return (*dst = *src1 & *src2 & BITMAP_LAST_WORD_MASK(nbits)) != 0; 292 return __bitmap_and(dst, src1, src2, nbits); 293} 294 295static inline void bitmap_or(unsigned long *dst, const unsigned long *src1, 296 const unsigned long *src2, unsigned int nbits) 297{ 298 if (small_const_nbits(nbits)) 299 *dst = *src1 | *src2; 300 else 301 __bitmap_or(dst, src1, src2, nbits); 302} 303 304static inline void bitmap_xor(unsigned long *dst, const unsigned long *src1, 305 const unsigned long *src2, unsigned int nbits) 306{ 307 if (small_const_nbits(nbits)) 308 *dst = *src1 ^ *src2; 309 else 310 __bitmap_xor(dst, src1, src2, nbits); 311} 312 313static inline int bitmap_andnot(unsigned long *dst, const unsigned long *src1, 314 const unsigned long *src2, unsigned int nbits) 315{ 316 if (small_const_nbits(nbits)) 317 return (*dst = *src1 & ~(*src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 318 return __bitmap_andnot(dst, src1, src2, nbits); 319} 320 321static inline void bitmap_complement(unsigned long *dst, const unsigned long *src, 322 unsigned int nbits) 323{ 324 if (small_const_nbits(nbits)) 325 *dst = ~(*src); 326 else 327 __bitmap_complement(dst, src, nbits); 328} 329 330#ifdef __LITTLE_ENDIAN 331#define BITMAP_MEM_ALIGNMENT 8 332#else 333#define BITMAP_MEM_ALIGNMENT (8 * sizeof(unsigned long)) 334#endif 335#define BITMAP_MEM_MASK (BITMAP_MEM_ALIGNMENT - 1) 336 337static inline int bitmap_equal(const unsigned long *src1, 338 const unsigned long *src2, unsigned int nbits) 339{ 340 if (small_const_nbits(nbits)) 341 return !((*src1 ^ *src2) & BITMAP_LAST_WORD_MASK(nbits)); 342 if (__builtin_constant_p(nbits & BITMAP_MEM_MASK) && 343 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 344 return !memcmp(src1, src2, nbits / 8); 345 return __bitmap_equal(src1, src2, nbits); 346} 347 348/** 349 * bitmap_or_equal - Check whether the or of two bitmaps is equal to a third 350 * @src1: Pointer to bitmap 1 351 * @src2: Pointer to bitmap 2 will be or'ed with bitmap 1 352 * @src3: Pointer to bitmap 3. Compare to the result of *@src1 | *@src2 353 * @nbits: number of bits in each of these bitmaps 354 * 355 * Returns: True if (*@src1 | *@src2) == *@src3, false otherwise 356 */ 357static inline bool bitmap_or_equal(const unsigned long *src1, 358 const unsigned long *src2, 359 const unsigned long *src3, 360 unsigned int nbits) 361{ 362 if (!small_const_nbits(nbits)) 363 return __bitmap_or_equal(src1, src2, src3, nbits); 364 365 return !(((*src1 | *src2) ^ *src3) & BITMAP_LAST_WORD_MASK(nbits)); 366} 367 368static inline int bitmap_intersects(const unsigned long *src1, 369 const unsigned long *src2, unsigned int nbits) 370{ 371 if (small_const_nbits(nbits)) 372 return ((*src1 & *src2) & BITMAP_LAST_WORD_MASK(nbits)) != 0; 373 else 374 return __bitmap_intersects(src1, src2, nbits); 375} 376 377static inline int bitmap_subset(const unsigned long *src1, 378 const unsigned long *src2, unsigned int nbits) 379{ 380 if (small_const_nbits(nbits)) 381 return ! ((*src1 & ~(*src2)) & BITMAP_LAST_WORD_MASK(nbits)); 382 else 383 return __bitmap_subset(src1, src2, nbits); 384} 385 386static inline bool bitmap_empty(const unsigned long *src, unsigned nbits) 387{ 388 if (small_const_nbits(nbits)) 389 return ! (*src & BITMAP_LAST_WORD_MASK(nbits)); 390 391 return find_first_bit(src, nbits) == nbits; 392} 393 394static inline bool bitmap_full(const unsigned long *src, unsigned int nbits) 395{ 396 if (small_const_nbits(nbits)) 397 return ! (~(*src) & BITMAP_LAST_WORD_MASK(nbits)); 398 399 return find_first_zero_bit(src, nbits) == nbits; 400} 401 402static __always_inline int bitmap_weight(const unsigned long *src, unsigned int nbits) 403{ 404 if (small_const_nbits(nbits)) 405 return hweight_long(*src & BITMAP_LAST_WORD_MASK(nbits)); 406 return __bitmap_weight(src, nbits); 407} 408 409static __always_inline void bitmap_set(unsigned long *map, unsigned int start, 410 unsigned int nbits) 411{ 412 if (__builtin_constant_p(nbits) && nbits == 1) 413 __set_bit(start, map); 414 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 415 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 416 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 417 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 418 memset((char *)map + start / 8, 0xff, nbits / 8); 419 else 420 __bitmap_set(map, start, nbits); 421} 422 423static __always_inline void bitmap_clear(unsigned long *map, unsigned int start, 424 unsigned int nbits) 425{ 426 if (__builtin_constant_p(nbits) && nbits == 1) 427 __clear_bit(start, map); 428 else if (__builtin_constant_p(start & BITMAP_MEM_MASK) && 429 IS_ALIGNED(start, BITMAP_MEM_ALIGNMENT) && 430 __builtin_constant_p(nbits & BITMAP_MEM_MASK) && 431 IS_ALIGNED(nbits, BITMAP_MEM_ALIGNMENT)) 432 memset((char *)map + start / 8, 0, nbits / 8); 433 else 434 __bitmap_clear(map, start, nbits); 435} 436 437static inline void bitmap_shift_right(unsigned long *dst, const unsigned long *src, 438 unsigned int shift, unsigned int nbits) 439{ 440 if (small_const_nbits(nbits)) 441 *dst = (*src & BITMAP_LAST_WORD_MASK(nbits)) >> shift; 442 else 443 __bitmap_shift_right(dst, src, shift, nbits); 444} 445 446static inline void bitmap_shift_left(unsigned long *dst, const unsigned long *src, 447 unsigned int shift, unsigned int nbits) 448{ 449 if (small_const_nbits(nbits)) 450 *dst = (*src << shift) & BITMAP_LAST_WORD_MASK(nbits); 451 else 452 __bitmap_shift_left(dst, src, shift, nbits); 453} 454 455static inline void bitmap_replace(unsigned long *dst, 456 const unsigned long *old, 457 const unsigned long *new, 458 const unsigned long *mask, 459 unsigned int nbits) 460{ 461 if (small_const_nbits(nbits)) 462 *dst = (*old & ~(*mask)) | (*new & *mask); 463 else 464 __bitmap_replace(dst, old, new, mask, nbits); 465} 466 467static inline void bitmap_next_clear_region(unsigned long *bitmap, 468 unsigned int *rs, unsigned int *re, 469 unsigned int end) 470{ 471 *rs = find_next_zero_bit(bitmap, end, *rs); 472 *re = find_next_bit(bitmap, end, *rs + 1); 473} 474 475static inline void bitmap_next_set_region(unsigned long *bitmap, 476 unsigned int *rs, unsigned int *re, 477 unsigned int end) 478{ 479 *rs = find_next_bit(bitmap, end, *rs); 480 *re = find_next_zero_bit(bitmap, end, *rs + 1); 481} 482 483/* 484 * Bitmap region iterators. Iterates over the bitmap between [@start, @end). 485 * @rs and @re should be integer variables and will be set to start and end 486 * index of the current clear or set region. 487 */ 488#define bitmap_for_each_clear_region(bitmap, rs, re, start, end) \ 489 for ((rs) = (start), \ 490 bitmap_next_clear_region((bitmap), &(rs), &(re), (end)); \ 491 (rs) < (re); \ 492 (rs) = (re) + 1, \ 493 bitmap_next_clear_region((bitmap), &(rs), &(re), (end))) 494 495#define bitmap_for_each_set_region(bitmap, rs, re, start, end) \ 496 for ((rs) = (start), \ 497 bitmap_next_set_region((bitmap), &(rs), &(re), (end)); \ 498 (rs) < (re); \ 499 (rs) = (re) + 1, \ 500 bitmap_next_set_region((bitmap), &(rs), &(re), (end))) 501 502/** 503 * BITMAP_FROM_U64() - Represent u64 value in the format suitable for bitmap. 504 * @n: u64 value 505 * 506 * Linux bitmaps are internally arrays of unsigned longs, i.e. 32-bit 507 * integers in 32-bit environment, and 64-bit integers in 64-bit one. 508 * 509 * There are four combinations of endianness and length of the word in linux 510 * ABIs: LE64, BE64, LE32 and BE32. 511 * 512 * On 64-bit kernels 64-bit LE and BE numbers are naturally ordered in 513 * bitmaps and therefore don't require any special handling. 514 * 515 * On 32-bit kernels 32-bit LE ABI orders lo word of 64-bit number in memory 516 * prior to hi, and 32-bit BE orders hi word prior to lo. The bitmap on the 517 * other hand is represented as an array of 32-bit words and the position of 518 * bit N may therefore be calculated as: word #(N/32) and bit #(N%32) in that 519 * word. For example, bit #42 is located at 10th position of 2nd word. 520 * It matches 32-bit LE ABI, and we can simply let the compiler store 64-bit 521 * values in memory as it usually does. But for BE we need to swap hi and lo 522 * words manually. 523 * 524 * With all that, the macro BITMAP_FROM_U64() does explicit reordering of hi and 525 * lo parts of u64. For LE32 it does nothing, and for BE environment it swaps 526 * hi and lo words, as is expected by bitmap. 527 */ 528#if __BITS_PER_LONG == 64 529#define BITMAP_FROM_U64(n) (n) 530#else 531#define BITMAP_FROM_U64(n) ((unsigned long) ((u64)(n) & ULONG_MAX)), \ 532 ((unsigned long) ((u64)(n) >> 32)) 533#endif 534 535/** 536 * bitmap_from_u64 - Check and swap words within u64. 537 * @mask: source bitmap 538 * @dst: destination bitmap 539 * 540 * In 32-bit Big Endian kernel, when using ``(u32 *)(&val)[*]`` 541 * to read u64 mask, we will get the wrong word. 542 * That is ``(u32 *)(&val)[0]`` gets the upper 32 bits, 543 * but we expect the lower 32-bits of u64. 544 */ 545static inline void bitmap_from_u64(unsigned long *dst, u64 mask) 546{ 547 dst[0] = mask & ULONG_MAX; 548 549 if (sizeof(mask) > sizeof(unsigned long)) 550 dst[1] = mask >> 32; 551} 552 553/** 554 * bitmap_get_value8 - get an 8-bit value within a memory region 555 * @map: address to the bitmap memory region 556 * @start: bit offset of the 8-bit value; must be a multiple of 8 557 * 558 * Returns the 8-bit value located at the @start bit offset within the @src 559 * memory region. 560 */ 561static inline unsigned long bitmap_get_value8(const unsigned long *map, 562 unsigned long start) 563{ 564 const size_t index = BIT_WORD(start); 565 const unsigned long offset = start % BITS_PER_LONG; 566 567 return (map[index] >> offset) & 0xFF; 568} 569 570/** 571 * bitmap_set_value8 - set an 8-bit value within a memory region 572 * @map: address to the bitmap memory region 573 * @value: the 8-bit value; values wider than 8 bits may clobber bitmap 574 * @start: bit offset of the 8-bit value; must be a multiple of 8 575 */ 576static inline void bitmap_set_value8(unsigned long *map, unsigned long value, 577 unsigned long start) 578{ 579 const size_t index = BIT_WORD(start); 580 const unsigned long offset = start % BITS_PER_LONG; 581 582 map[index] &= ~(0xFFUL << offset); 583 map[index] |= value << offset; 584} 585 586#endif /* __ASSEMBLY__ */ 587 588#endif /* __LINUX_BITMAP_H */