Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42#include <linux/kernel.h>
43#include <linux/init.h>
44#include <linux/errno.h>
45#include <linux/syscalls.h>
46#include <linux/compat.h>
47#include <net/compat.h>
48#include <linux/refcount.h>
49#include <linux/uio.h>
50#include <linux/bits.h>
51
52#include <linux/sched/signal.h>
53#include <linux/fs.h>
54#include <linux/file.h>
55#include <linux/fdtable.h>
56#include <linux/mm.h>
57#include <linux/mman.h>
58#include <linux/percpu.h>
59#include <linux/slab.h>
60#include <linux/blkdev.h>
61#include <linux/bvec.h>
62#include <linux/net.h>
63#include <net/sock.h>
64#include <net/af_unix.h>
65#include <net/scm.h>
66#include <linux/anon_inodes.h>
67#include <linux/sched/mm.h>
68#include <linux/uaccess.h>
69#include <linux/nospec.h>
70#include <linux/sizes.h>
71#include <linux/hugetlb.h>
72#include <linux/highmem.h>
73#include <linux/namei.h>
74#include <linux/fsnotify.h>
75#include <linux/fadvise.h>
76#include <linux/eventpoll.h>
77#include <linux/splice.h>
78#include <linux/task_work.h>
79#include <linux/pagemap.h>
80#include <linux/io_uring.h>
81#include <linux/tracehook.h>
82
83#define CREATE_TRACE_POINTS
84#include <trace/events/io_uring.h>
85
86#include <uapi/linux/io_uring.h>
87
88#include "internal.h"
89#include "io-wq.h"
90
91#define IORING_MAX_ENTRIES 32768
92#define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93#define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95/* only define max */
96#define IORING_MAX_FIXED_FILES (1U << 15)
97#define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100#define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101#define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102#define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104#define IORING_MAX_REG_BUFFERS (1U << 14)
105
106#define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109#define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112#define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117};
118
119/*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195};
196
197enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200};
201
202struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208};
209
210struct io_ring_ctx;
211
212struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215};
216
217struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220};
221
222struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230};
231
232struct io_file_table {
233 struct io_fixed_file *files;
234};
235
236struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243};
244
245typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256};
257
258struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263};
264
265struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271};
272
273enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276};
277
278struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296};
297
298#define IO_COMPL_BATCH 32
299#define IO_REQ_CACHE_SIZE 32
300#define IO_REQ_ALLOC_BATCH 8
301
302struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305};
306
307struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328};
329
330struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 struct fasync_struct *cq_fasync;
407 unsigned cq_last_tm_flush;
408 } ____cacheline_aligned_in_smp;
409
410 struct {
411 spinlock_t completion_lock;
412
413 spinlock_t timeout_lock;
414
415 /*
416 * ->iopoll_list is protected by the ctx->uring_lock for
417 * io_uring instances that don't use IORING_SETUP_SQPOLL.
418 * For SQPOLL, only the single threaded io_sq_thread() will
419 * manipulate the list, hence no extra locking is needed there.
420 */
421 struct list_head iopoll_list;
422 struct hlist_head *cancel_hash;
423 unsigned cancel_hash_bits;
424 bool poll_multi_queue;
425 } ____cacheline_aligned_in_smp;
426
427 struct io_restriction restrictions;
428
429 /* slow path rsrc auxilary data, used by update/register */
430 struct {
431 struct io_rsrc_node *rsrc_backup_node;
432 struct io_mapped_ubuf *dummy_ubuf;
433 struct io_rsrc_data *file_data;
434 struct io_rsrc_data *buf_data;
435
436 struct delayed_work rsrc_put_work;
437 struct llist_head rsrc_put_llist;
438 struct list_head rsrc_ref_list;
439 spinlock_t rsrc_ref_lock;
440 };
441
442 /* Keep this last, we don't need it for the fast path */
443 struct {
444 #if defined(CONFIG_UNIX)
445 struct socket *ring_sock;
446 #endif
447 /* hashed buffered write serialization */
448 struct io_wq_hash *hash_map;
449
450 /* Only used for accounting purposes */
451 struct user_struct *user;
452 struct mm_struct *mm_account;
453
454 /* ctx exit and cancelation */
455 struct llist_head fallback_llist;
456 struct delayed_work fallback_work;
457 struct work_struct exit_work;
458 struct list_head tctx_list;
459 struct completion ref_comp;
460 };
461};
462
463struct io_uring_task {
464 /* submission side */
465 int cached_refs;
466 struct xarray xa;
467 struct wait_queue_head wait;
468 const struct io_ring_ctx *last;
469 struct io_wq *io_wq;
470 struct percpu_counter inflight;
471 atomic_t inflight_tracked;
472 atomic_t in_idle;
473
474 spinlock_t task_lock;
475 struct io_wq_work_list task_list;
476 struct callback_head task_work;
477 bool task_running;
478};
479
480/*
481 * First field must be the file pointer in all the
482 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
483 */
484struct io_poll_iocb {
485 struct file *file;
486 struct wait_queue_head *head;
487 __poll_t events;
488 bool done;
489 bool canceled;
490 struct wait_queue_entry wait;
491};
492
493struct io_poll_update {
494 struct file *file;
495 u64 old_user_data;
496 u64 new_user_data;
497 __poll_t events;
498 bool update_events;
499 bool update_user_data;
500};
501
502struct io_close {
503 struct file *file;
504 int fd;
505};
506
507struct io_timeout_data {
508 struct io_kiocb *req;
509 struct hrtimer timer;
510 struct timespec64 ts;
511 enum hrtimer_mode mode;
512 u32 flags;
513};
514
515struct io_accept {
516 struct file *file;
517 struct sockaddr __user *addr;
518 int __user *addr_len;
519 int flags;
520 u32 file_slot;
521 unsigned long nofile;
522};
523
524struct io_sync {
525 struct file *file;
526 loff_t len;
527 loff_t off;
528 int flags;
529 int mode;
530};
531
532struct io_cancel {
533 struct file *file;
534 u64 addr;
535};
536
537struct io_timeout {
538 struct file *file;
539 u32 off;
540 u32 target_seq;
541 struct list_head list;
542 /* head of the link, used by linked timeouts only */
543 struct io_kiocb *head;
544 /* for linked completions */
545 struct io_kiocb *prev;
546};
547
548struct io_timeout_rem {
549 struct file *file;
550 u64 addr;
551
552 /* timeout update */
553 struct timespec64 ts;
554 u32 flags;
555 bool ltimeout;
556};
557
558struct io_rw {
559 /* NOTE: kiocb has the file as the first member, so don't do it here */
560 struct kiocb kiocb;
561 u64 addr;
562 u64 len;
563};
564
565struct io_connect {
566 struct file *file;
567 struct sockaddr __user *addr;
568 int addr_len;
569};
570
571struct io_sr_msg {
572 struct file *file;
573 union {
574 struct compat_msghdr __user *umsg_compat;
575 struct user_msghdr __user *umsg;
576 void __user *buf;
577 };
578 int msg_flags;
579 int bgid;
580 size_t len;
581 struct io_buffer *kbuf;
582};
583
584struct io_open {
585 struct file *file;
586 int dfd;
587 u32 file_slot;
588 struct filename *filename;
589 struct open_how how;
590 unsigned long nofile;
591};
592
593struct io_rsrc_update {
594 struct file *file;
595 u64 arg;
596 u32 nr_args;
597 u32 offset;
598};
599
600struct io_fadvise {
601 struct file *file;
602 u64 offset;
603 u32 len;
604 u32 advice;
605};
606
607struct io_madvise {
608 struct file *file;
609 u64 addr;
610 u32 len;
611 u32 advice;
612};
613
614struct io_epoll {
615 struct file *file;
616 int epfd;
617 int op;
618 int fd;
619 struct epoll_event event;
620};
621
622struct io_splice {
623 struct file *file_out;
624 struct file *file_in;
625 loff_t off_out;
626 loff_t off_in;
627 u64 len;
628 unsigned int flags;
629};
630
631struct io_provide_buf {
632 struct file *file;
633 __u64 addr;
634 __u32 len;
635 __u32 bgid;
636 __u16 nbufs;
637 __u16 bid;
638};
639
640struct io_statx {
641 struct file *file;
642 int dfd;
643 unsigned int mask;
644 unsigned int flags;
645 const char __user *filename;
646 struct statx __user *buffer;
647};
648
649struct io_shutdown {
650 struct file *file;
651 int how;
652};
653
654struct io_rename {
655 struct file *file;
656 int old_dfd;
657 int new_dfd;
658 struct filename *oldpath;
659 struct filename *newpath;
660 int flags;
661};
662
663struct io_unlink {
664 struct file *file;
665 int dfd;
666 int flags;
667 struct filename *filename;
668};
669
670struct io_mkdir {
671 struct file *file;
672 int dfd;
673 umode_t mode;
674 struct filename *filename;
675};
676
677struct io_symlink {
678 struct file *file;
679 int new_dfd;
680 struct filename *oldpath;
681 struct filename *newpath;
682};
683
684struct io_hardlink {
685 struct file *file;
686 int old_dfd;
687 int new_dfd;
688 struct filename *oldpath;
689 struct filename *newpath;
690 int flags;
691};
692
693struct io_completion {
694 struct file *file;
695 u32 cflags;
696};
697
698struct io_async_connect {
699 struct sockaddr_storage address;
700};
701
702struct io_async_msghdr {
703 struct iovec fast_iov[UIO_FASTIOV];
704 /* points to an allocated iov, if NULL we use fast_iov instead */
705 struct iovec *free_iov;
706 struct sockaddr __user *uaddr;
707 struct msghdr msg;
708 struct sockaddr_storage addr;
709};
710
711struct io_async_rw {
712 struct iovec fast_iov[UIO_FASTIOV];
713 const struct iovec *free_iovec;
714 struct iov_iter iter;
715 size_t bytes_done;
716 struct wait_page_queue wpq;
717};
718
719enum {
720 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
721 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
722 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
723 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
724 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
725 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
726
727 /* first byte is taken by user flags, shift it to not overlap */
728 REQ_F_FAIL_BIT = 8,
729 REQ_F_INFLIGHT_BIT,
730 REQ_F_CUR_POS_BIT,
731 REQ_F_NOWAIT_BIT,
732 REQ_F_LINK_TIMEOUT_BIT,
733 REQ_F_NEED_CLEANUP_BIT,
734 REQ_F_POLLED_BIT,
735 REQ_F_BUFFER_SELECTED_BIT,
736 REQ_F_COMPLETE_INLINE_BIT,
737 REQ_F_REISSUE_BIT,
738 REQ_F_DONT_REISSUE_BIT,
739 REQ_F_CREDS_BIT,
740 REQ_F_REFCOUNT_BIT,
741 REQ_F_ARM_LTIMEOUT_BIT,
742 /* keep async read/write and isreg together and in order */
743 REQ_F_NOWAIT_READ_BIT,
744 REQ_F_NOWAIT_WRITE_BIT,
745 REQ_F_ISREG_BIT,
746
747 /* not a real bit, just to check we're not overflowing the space */
748 __REQ_F_LAST_BIT,
749};
750
751enum {
752 /* ctx owns file */
753 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
754 /* drain existing IO first */
755 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
756 /* linked sqes */
757 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
758 /* doesn't sever on completion < 0 */
759 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
760 /* IOSQE_ASYNC */
761 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
762 /* IOSQE_BUFFER_SELECT */
763 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
764
765 /* fail rest of links */
766 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
767 /* on inflight list, should be cancelled and waited on exit reliably */
768 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
769 /* read/write uses file position */
770 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
771 /* must not punt to workers */
772 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
773 /* has or had linked timeout */
774 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
775 /* needs cleanup */
776 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
777 /* already went through poll handler */
778 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
779 /* buffer already selected */
780 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
781 /* completion is deferred through io_comp_state */
782 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
783 /* caller should reissue async */
784 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
785 /* don't attempt request reissue, see io_rw_reissue() */
786 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799};
800
801struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804};
805
806typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814};
815
816enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819};
820
821/*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888};
889
890struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894};
895
896struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900};
901
902struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922};
923
924static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070};
1071
1072/* requests with any of those set should undergo io_disarm_next() */
1073#define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075static bool io_disarm_next(struct io_kiocb *req);
1076static void io_uring_del_tctx_node(unsigned long index);
1077static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 long res, unsigned int cflags);
1084static void io_put_req(struct io_kiocb *req);
1085static void io_put_req_deferred(struct io_kiocb *req);
1086static void io_dismantle_req(struct io_kiocb *req);
1087static void io_queue_linked_timeout(struct io_kiocb *req);
1088static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091static void io_clean_op(struct io_kiocb *req);
1092static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094static void __io_queue_sqe(struct io_kiocb *req);
1095static void io_rsrc_put_work(struct work_struct *work);
1096
1097static void io_req_task_queue(struct io_kiocb *req);
1098static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099static int io_req_prep_async(struct io_kiocb *req);
1100
1101static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1104
1105static struct kmem_cache *req_cachep;
1106
1107static const struct file_operations io_uring_fops;
1108
1109struct sock *io_uring_get_socket(struct file *file)
1110{
1111#if defined(CONFIG_UNIX)
1112 if (file->f_op == &io_uring_fops) {
1113 struct io_ring_ctx *ctx = file->private_data;
1114
1115 return ctx->ring_sock->sk;
1116 }
1117#endif
1118 return NULL;
1119}
1120EXPORT_SYMBOL(io_uring_get_socket);
1121
1122static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1123{
1124 if (!*locked) {
1125 mutex_lock(&ctx->uring_lock);
1126 *locked = true;
1127 }
1128}
1129
1130#define io_for_each_link(pos, head) \
1131 for (pos = (head); pos; pos = pos->link)
1132
1133/*
1134 * Shamelessly stolen from the mm implementation of page reference checking,
1135 * see commit f958d7b528b1 for details.
1136 */
1137#define req_ref_zero_or_close_to_overflow(req) \
1138 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1139
1140static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1141{
1142 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1143 return atomic_inc_not_zero(&req->refs);
1144}
1145
1146static inline bool req_ref_put_and_test(struct io_kiocb *req)
1147{
1148 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1149 return true;
1150
1151 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1152 return atomic_dec_and_test(&req->refs);
1153}
1154
1155static inline void req_ref_put(struct io_kiocb *req)
1156{
1157 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1158 WARN_ON_ONCE(req_ref_put_and_test(req));
1159}
1160
1161static inline void req_ref_get(struct io_kiocb *req)
1162{
1163 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1164 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1165 atomic_inc(&req->refs);
1166}
1167
1168static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1169{
1170 if (!(req->flags & REQ_F_REFCOUNT)) {
1171 req->flags |= REQ_F_REFCOUNT;
1172 atomic_set(&req->refs, nr);
1173 }
1174}
1175
1176static inline void io_req_set_refcount(struct io_kiocb *req)
1177{
1178 __io_req_set_refcount(req, 1);
1179}
1180
1181static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1182{
1183 struct io_ring_ctx *ctx = req->ctx;
1184
1185 if (!req->fixed_rsrc_refs) {
1186 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1187 percpu_ref_get(req->fixed_rsrc_refs);
1188 }
1189}
1190
1191static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1192{
1193 bool got = percpu_ref_tryget(ref);
1194
1195 /* already at zero, wait for ->release() */
1196 if (!got)
1197 wait_for_completion(compl);
1198 percpu_ref_resurrect(ref);
1199 if (got)
1200 percpu_ref_put(ref);
1201}
1202
1203static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1204 bool cancel_all)
1205{
1206 struct io_kiocb *req;
1207
1208 if (task && head->task != task)
1209 return false;
1210 if (cancel_all)
1211 return true;
1212
1213 io_for_each_link(req, head) {
1214 if (req->flags & REQ_F_INFLIGHT)
1215 return true;
1216 }
1217 return false;
1218}
1219
1220static inline void req_set_fail(struct io_kiocb *req)
1221{
1222 req->flags |= REQ_F_FAIL;
1223}
1224
1225static inline void req_fail_link_node(struct io_kiocb *req, int res)
1226{
1227 req_set_fail(req);
1228 req->result = res;
1229}
1230
1231static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1232{
1233 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1234
1235 complete(&ctx->ref_comp);
1236}
1237
1238static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1239{
1240 return !req->timeout.off;
1241}
1242
1243static void io_fallback_req_func(struct work_struct *work)
1244{
1245 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1246 fallback_work.work);
1247 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1248 struct io_kiocb *req, *tmp;
1249 bool locked = false;
1250
1251 percpu_ref_get(&ctx->refs);
1252 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1253 req->io_task_work.func(req, &locked);
1254
1255 if (locked) {
1256 if (ctx->submit_state.compl_nr)
1257 io_submit_flush_completions(ctx);
1258 mutex_unlock(&ctx->uring_lock);
1259 }
1260 percpu_ref_put(&ctx->refs);
1261
1262}
1263
1264static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1265{
1266 struct io_ring_ctx *ctx;
1267 int hash_bits;
1268
1269 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1270 if (!ctx)
1271 return NULL;
1272
1273 /*
1274 * Use 5 bits less than the max cq entries, that should give us around
1275 * 32 entries per hash list if totally full and uniformly spread.
1276 */
1277 hash_bits = ilog2(p->cq_entries);
1278 hash_bits -= 5;
1279 if (hash_bits <= 0)
1280 hash_bits = 1;
1281 ctx->cancel_hash_bits = hash_bits;
1282 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1283 GFP_KERNEL);
1284 if (!ctx->cancel_hash)
1285 goto err;
1286 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1287
1288 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1289 if (!ctx->dummy_ubuf)
1290 goto err;
1291 /* set invalid range, so io_import_fixed() fails meeting it */
1292 ctx->dummy_ubuf->ubuf = -1UL;
1293
1294 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1295 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1296 goto err;
1297
1298 ctx->flags = p->flags;
1299 init_waitqueue_head(&ctx->sqo_sq_wait);
1300 INIT_LIST_HEAD(&ctx->sqd_list);
1301 init_waitqueue_head(&ctx->poll_wait);
1302 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1303 init_completion(&ctx->ref_comp);
1304 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1305 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1306 mutex_init(&ctx->uring_lock);
1307 init_waitqueue_head(&ctx->cq_wait);
1308 spin_lock_init(&ctx->completion_lock);
1309 spin_lock_init(&ctx->timeout_lock);
1310 INIT_LIST_HEAD(&ctx->iopoll_list);
1311 INIT_LIST_HEAD(&ctx->defer_list);
1312 INIT_LIST_HEAD(&ctx->timeout_list);
1313 INIT_LIST_HEAD(&ctx->ltimeout_list);
1314 spin_lock_init(&ctx->rsrc_ref_lock);
1315 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1316 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1317 init_llist_head(&ctx->rsrc_put_llist);
1318 INIT_LIST_HEAD(&ctx->tctx_list);
1319 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1320 INIT_LIST_HEAD(&ctx->locked_free_list);
1321 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1322 return ctx;
1323err:
1324 kfree(ctx->dummy_ubuf);
1325 kfree(ctx->cancel_hash);
1326 kfree(ctx);
1327 return NULL;
1328}
1329
1330static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1331{
1332 struct io_rings *r = ctx->rings;
1333
1334 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1335 ctx->cq_extra--;
1336}
1337
1338static bool req_need_defer(struct io_kiocb *req, u32 seq)
1339{
1340 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1341 struct io_ring_ctx *ctx = req->ctx;
1342
1343 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1344 }
1345
1346 return false;
1347}
1348
1349#define FFS_ASYNC_READ 0x1UL
1350#define FFS_ASYNC_WRITE 0x2UL
1351#ifdef CONFIG_64BIT
1352#define FFS_ISREG 0x4UL
1353#else
1354#define FFS_ISREG 0x0UL
1355#endif
1356#define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1357
1358static inline bool io_req_ffs_set(struct io_kiocb *req)
1359{
1360 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1361}
1362
1363static void io_req_track_inflight(struct io_kiocb *req)
1364{
1365 if (!(req->flags & REQ_F_INFLIGHT)) {
1366 req->flags |= REQ_F_INFLIGHT;
1367 atomic_inc(¤t->io_uring->inflight_tracked);
1368 }
1369}
1370
1371static inline void io_unprep_linked_timeout(struct io_kiocb *req)
1372{
1373 req->flags &= ~REQ_F_LINK_TIMEOUT;
1374}
1375
1376static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1377{
1378 if (WARN_ON_ONCE(!req->link))
1379 return NULL;
1380
1381 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1382 req->flags |= REQ_F_LINK_TIMEOUT;
1383
1384 /* linked timeouts should have two refs once prep'ed */
1385 io_req_set_refcount(req);
1386 __io_req_set_refcount(req->link, 2);
1387 return req->link;
1388}
1389
1390static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1391{
1392 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1393 return NULL;
1394 return __io_prep_linked_timeout(req);
1395}
1396
1397static void io_prep_async_work(struct io_kiocb *req)
1398{
1399 const struct io_op_def *def = &io_op_defs[req->opcode];
1400 struct io_ring_ctx *ctx = req->ctx;
1401
1402 if (!(req->flags & REQ_F_CREDS)) {
1403 req->flags |= REQ_F_CREDS;
1404 req->creds = get_current_cred();
1405 }
1406
1407 req->work.list.next = NULL;
1408 req->work.flags = 0;
1409 if (req->flags & REQ_F_FORCE_ASYNC)
1410 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1411
1412 if (req->flags & REQ_F_ISREG) {
1413 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1414 io_wq_hash_work(&req->work, file_inode(req->file));
1415 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1416 if (def->unbound_nonreg_file)
1417 req->work.flags |= IO_WQ_WORK_UNBOUND;
1418 }
1419
1420 switch (req->opcode) {
1421 case IORING_OP_SPLICE:
1422 case IORING_OP_TEE:
1423 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1424 req->work.flags |= IO_WQ_WORK_UNBOUND;
1425 break;
1426 }
1427}
1428
1429static void io_prep_async_link(struct io_kiocb *req)
1430{
1431 struct io_kiocb *cur;
1432
1433 if (req->flags & REQ_F_LINK_TIMEOUT) {
1434 struct io_ring_ctx *ctx = req->ctx;
1435
1436 spin_lock(&ctx->completion_lock);
1437 io_for_each_link(cur, req)
1438 io_prep_async_work(cur);
1439 spin_unlock(&ctx->completion_lock);
1440 } else {
1441 io_for_each_link(cur, req)
1442 io_prep_async_work(cur);
1443 }
1444}
1445
1446static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1447{
1448 struct io_ring_ctx *ctx = req->ctx;
1449 struct io_kiocb *link = io_prep_linked_timeout(req);
1450 struct io_uring_task *tctx = req->task->io_uring;
1451
1452 /* must not take the lock, NULL it as a precaution */
1453 locked = NULL;
1454
1455 BUG_ON(!tctx);
1456 BUG_ON(!tctx->io_wq);
1457
1458 /* init ->work of the whole link before punting */
1459 io_prep_async_link(req);
1460
1461 /*
1462 * Not expected to happen, but if we do have a bug where this _can_
1463 * happen, catch it here and ensure the request is marked as
1464 * canceled. That will make io-wq go through the usual work cancel
1465 * procedure rather than attempt to run this request (or create a new
1466 * worker for it).
1467 */
1468 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1469 req->work.flags |= IO_WQ_WORK_CANCEL;
1470
1471 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1472 &req->work, req->flags);
1473 io_wq_enqueue(tctx->io_wq, &req->work);
1474 if (link)
1475 io_queue_linked_timeout(link);
1476}
1477
1478static void io_kill_timeout(struct io_kiocb *req, int status)
1479 __must_hold(&req->ctx->completion_lock)
1480 __must_hold(&req->ctx->timeout_lock)
1481{
1482 struct io_timeout_data *io = req->async_data;
1483
1484 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1485 if (status)
1486 req_set_fail(req);
1487 atomic_set(&req->ctx->cq_timeouts,
1488 atomic_read(&req->ctx->cq_timeouts) + 1);
1489 list_del_init(&req->timeout.list);
1490 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1491 io_put_req_deferred(req);
1492 }
1493}
1494
1495static void io_queue_deferred(struct io_ring_ctx *ctx)
1496{
1497 while (!list_empty(&ctx->defer_list)) {
1498 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1499 struct io_defer_entry, list);
1500
1501 if (req_need_defer(de->req, de->seq))
1502 break;
1503 list_del_init(&de->list);
1504 io_req_task_queue(de->req);
1505 kfree(de);
1506 }
1507}
1508
1509static void io_flush_timeouts(struct io_ring_ctx *ctx)
1510 __must_hold(&ctx->completion_lock)
1511{
1512 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1513
1514 spin_lock_irq(&ctx->timeout_lock);
1515 while (!list_empty(&ctx->timeout_list)) {
1516 u32 events_needed, events_got;
1517 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1518 struct io_kiocb, timeout.list);
1519
1520 if (io_is_timeout_noseq(req))
1521 break;
1522
1523 /*
1524 * Since seq can easily wrap around over time, subtract
1525 * the last seq at which timeouts were flushed before comparing.
1526 * Assuming not more than 2^31-1 events have happened since,
1527 * these subtractions won't have wrapped, so we can check if
1528 * target is in [last_seq, current_seq] by comparing the two.
1529 */
1530 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1531 events_got = seq - ctx->cq_last_tm_flush;
1532 if (events_got < events_needed)
1533 break;
1534
1535 list_del_init(&req->timeout.list);
1536 io_kill_timeout(req, 0);
1537 }
1538 ctx->cq_last_tm_flush = seq;
1539 spin_unlock_irq(&ctx->timeout_lock);
1540}
1541
1542static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1543{
1544 if (ctx->off_timeout_used)
1545 io_flush_timeouts(ctx);
1546 if (ctx->drain_active)
1547 io_queue_deferred(ctx);
1548}
1549
1550static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1551{
1552 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1553 __io_commit_cqring_flush(ctx);
1554 /* order cqe stores with ring update */
1555 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1556}
1557
1558static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1559{
1560 struct io_rings *r = ctx->rings;
1561
1562 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1563}
1564
1565static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1566{
1567 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1568}
1569
1570static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1571{
1572 struct io_rings *rings = ctx->rings;
1573 unsigned tail, mask = ctx->cq_entries - 1;
1574
1575 /*
1576 * writes to the cq entry need to come after reading head; the
1577 * control dependency is enough as we're using WRITE_ONCE to
1578 * fill the cq entry
1579 */
1580 if (__io_cqring_events(ctx) == ctx->cq_entries)
1581 return NULL;
1582
1583 tail = ctx->cached_cq_tail++;
1584 return &rings->cqes[tail & mask];
1585}
1586
1587static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1588{
1589 if (likely(!ctx->cq_ev_fd))
1590 return false;
1591 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1592 return false;
1593 return !ctx->eventfd_async || io_wq_current_is_worker();
1594}
1595
1596/*
1597 * This should only get called when at least one event has been posted.
1598 * Some applications rely on the eventfd notification count only changing
1599 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1600 * 1:1 relationship between how many times this function is called (and
1601 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1602 */
1603static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1604{
1605 /*
1606 * wake_up_all() may seem excessive, but io_wake_function() and
1607 * io_should_wake() handle the termination of the loop and only
1608 * wake as many waiters as we need to.
1609 */
1610 if (wq_has_sleeper(&ctx->cq_wait))
1611 wake_up_all(&ctx->cq_wait);
1612 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1613 wake_up(&ctx->sq_data->wait);
1614 if (io_should_trigger_evfd(ctx))
1615 eventfd_signal(ctx->cq_ev_fd, 1);
1616 if (waitqueue_active(&ctx->poll_wait)) {
1617 wake_up_interruptible(&ctx->poll_wait);
1618 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1619 }
1620}
1621
1622static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1623{
1624 /* see waitqueue_active() comment */
1625 smp_mb();
1626
1627 if (ctx->flags & IORING_SETUP_SQPOLL) {
1628 if (waitqueue_active(&ctx->cq_wait))
1629 wake_up_all(&ctx->cq_wait);
1630 }
1631 if (io_should_trigger_evfd(ctx))
1632 eventfd_signal(ctx->cq_ev_fd, 1);
1633 if (waitqueue_active(&ctx->poll_wait)) {
1634 wake_up_interruptible(&ctx->poll_wait);
1635 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1636 }
1637}
1638
1639/* Returns true if there are no backlogged entries after the flush */
1640static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1641{
1642 bool all_flushed, posted;
1643
1644 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1645 return false;
1646
1647 posted = false;
1648 spin_lock(&ctx->completion_lock);
1649 while (!list_empty(&ctx->cq_overflow_list)) {
1650 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1651 struct io_overflow_cqe *ocqe;
1652
1653 if (!cqe && !force)
1654 break;
1655 ocqe = list_first_entry(&ctx->cq_overflow_list,
1656 struct io_overflow_cqe, list);
1657 if (cqe)
1658 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1659 else
1660 io_account_cq_overflow(ctx);
1661
1662 posted = true;
1663 list_del(&ocqe->list);
1664 kfree(ocqe);
1665 }
1666
1667 all_flushed = list_empty(&ctx->cq_overflow_list);
1668 if (all_flushed) {
1669 clear_bit(0, &ctx->check_cq_overflow);
1670 WRITE_ONCE(ctx->rings->sq_flags,
1671 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1672 }
1673
1674 if (posted)
1675 io_commit_cqring(ctx);
1676 spin_unlock(&ctx->completion_lock);
1677 if (posted)
1678 io_cqring_ev_posted(ctx);
1679 return all_flushed;
1680}
1681
1682static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1683{
1684 bool ret = true;
1685
1686 if (test_bit(0, &ctx->check_cq_overflow)) {
1687 /* iopoll syncs against uring_lock, not completion_lock */
1688 if (ctx->flags & IORING_SETUP_IOPOLL)
1689 mutex_lock(&ctx->uring_lock);
1690 ret = __io_cqring_overflow_flush(ctx, false);
1691 if (ctx->flags & IORING_SETUP_IOPOLL)
1692 mutex_unlock(&ctx->uring_lock);
1693 }
1694
1695 return ret;
1696}
1697
1698/* must to be called somewhat shortly after putting a request */
1699static inline void io_put_task(struct task_struct *task, int nr)
1700{
1701 struct io_uring_task *tctx = task->io_uring;
1702
1703 if (likely(task == current)) {
1704 tctx->cached_refs += nr;
1705 } else {
1706 percpu_counter_sub(&tctx->inflight, nr);
1707 if (unlikely(atomic_read(&tctx->in_idle)))
1708 wake_up(&tctx->wait);
1709 put_task_struct_many(task, nr);
1710 }
1711}
1712
1713static void io_task_refs_refill(struct io_uring_task *tctx)
1714{
1715 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1716
1717 percpu_counter_add(&tctx->inflight, refill);
1718 refcount_add(refill, ¤t->usage);
1719 tctx->cached_refs += refill;
1720}
1721
1722static inline void io_get_task_refs(int nr)
1723{
1724 struct io_uring_task *tctx = current->io_uring;
1725
1726 tctx->cached_refs -= nr;
1727 if (unlikely(tctx->cached_refs < 0))
1728 io_task_refs_refill(tctx);
1729}
1730
1731static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1732 long res, unsigned int cflags)
1733{
1734 struct io_overflow_cqe *ocqe;
1735
1736 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1737 if (!ocqe) {
1738 /*
1739 * If we're in ring overflow flush mode, or in task cancel mode,
1740 * or cannot allocate an overflow entry, then we need to drop it
1741 * on the floor.
1742 */
1743 io_account_cq_overflow(ctx);
1744 return false;
1745 }
1746 if (list_empty(&ctx->cq_overflow_list)) {
1747 set_bit(0, &ctx->check_cq_overflow);
1748 WRITE_ONCE(ctx->rings->sq_flags,
1749 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1750
1751 }
1752 ocqe->cqe.user_data = user_data;
1753 ocqe->cqe.res = res;
1754 ocqe->cqe.flags = cflags;
1755 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1756 return true;
1757}
1758
1759static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1760 long res, unsigned int cflags)
1761{
1762 struct io_uring_cqe *cqe;
1763
1764 trace_io_uring_complete(ctx, user_data, res, cflags);
1765
1766 /*
1767 * If we can't get a cq entry, userspace overflowed the
1768 * submission (by quite a lot). Increment the overflow count in
1769 * the ring.
1770 */
1771 cqe = io_get_cqe(ctx);
1772 if (likely(cqe)) {
1773 WRITE_ONCE(cqe->user_data, user_data);
1774 WRITE_ONCE(cqe->res, res);
1775 WRITE_ONCE(cqe->flags, cflags);
1776 return true;
1777 }
1778 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1779}
1780
1781/* not as hot to bloat with inlining */
1782static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1783 long res, unsigned int cflags)
1784{
1785 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1786}
1787
1788static void io_req_complete_post(struct io_kiocb *req, long res,
1789 unsigned int cflags)
1790{
1791 struct io_ring_ctx *ctx = req->ctx;
1792
1793 spin_lock(&ctx->completion_lock);
1794 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1795 /*
1796 * If we're the last reference to this request, add to our locked
1797 * free_list cache.
1798 */
1799 if (req_ref_put_and_test(req)) {
1800 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1801 if (req->flags & IO_DISARM_MASK)
1802 io_disarm_next(req);
1803 if (req->link) {
1804 io_req_task_queue(req->link);
1805 req->link = NULL;
1806 }
1807 }
1808 io_dismantle_req(req);
1809 io_put_task(req->task, 1);
1810 list_add(&req->inflight_entry, &ctx->locked_free_list);
1811 ctx->locked_free_nr++;
1812 } else {
1813 if (!percpu_ref_tryget(&ctx->refs))
1814 req = NULL;
1815 }
1816 io_commit_cqring(ctx);
1817 spin_unlock(&ctx->completion_lock);
1818
1819 if (req) {
1820 io_cqring_ev_posted(ctx);
1821 percpu_ref_put(&ctx->refs);
1822 }
1823}
1824
1825static inline bool io_req_needs_clean(struct io_kiocb *req)
1826{
1827 return req->flags & IO_REQ_CLEAN_FLAGS;
1828}
1829
1830static void io_req_complete_state(struct io_kiocb *req, long res,
1831 unsigned int cflags)
1832{
1833 if (io_req_needs_clean(req))
1834 io_clean_op(req);
1835 req->result = res;
1836 req->compl.cflags = cflags;
1837 req->flags |= REQ_F_COMPLETE_INLINE;
1838}
1839
1840static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1841 long res, unsigned cflags)
1842{
1843 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1844 io_req_complete_state(req, res, cflags);
1845 else
1846 io_req_complete_post(req, res, cflags);
1847}
1848
1849static inline void io_req_complete(struct io_kiocb *req, long res)
1850{
1851 __io_req_complete(req, 0, res, 0);
1852}
1853
1854static void io_req_complete_failed(struct io_kiocb *req, long res)
1855{
1856 req_set_fail(req);
1857 io_req_complete_post(req, res, 0);
1858}
1859
1860static void io_req_complete_fail_submit(struct io_kiocb *req)
1861{
1862 /*
1863 * We don't submit, fail them all, for that replace hardlinks with
1864 * normal links. Extra REQ_F_LINK is tolerated.
1865 */
1866 req->flags &= ~REQ_F_HARDLINK;
1867 req->flags |= REQ_F_LINK;
1868 io_req_complete_failed(req, req->result);
1869}
1870
1871/*
1872 * Don't initialise the fields below on every allocation, but do that in
1873 * advance and keep them valid across allocations.
1874 */
1875static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1876{
1877 req->ctx = ctx;
1878 req->link = NULL;
1879 req->async_data = NULL;
1880 /* not necessary, but safer to zero */
1881 req->result = 0;
1882}
1883
1884static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1885 struct io_submit_state *state)
1886{
1887 spin_lock(&ctx->completion_lock);
1888 list_splice_init(&ctx->locked_free_list, &state->free_list);
1889 ctx->locked_free_nr = 0;
1890 spin_unlock(&ctx->completion_lock);
1891}
1892
1893/* Returns true IFF there are requests in the cache */
1894static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1895{
1896 struct io_submit_state *state = &ctx->submit_state;
1897 int nr;
1898
1899 /*
1900 * If we have more than a batch's worth of requests in our IRQ side
1901 * locked cache, grab the lock and move them over to our submission
1902 * side cache.
1903 */
1904 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1905 io_flush_cached_locked_reqs(ctx, state);
1906
1907 nr = state->free_reqs;
1908 while (!list_empty(&state->free_list)) {
1909 struct io_kiocb *req = list_first_entry(&state->free_list,
1910 struct io_kiocb, inflight_entry);
1911
1912 list_del(&req->inflight_entry);
1913 state->reqs[nr++] = req;
1914 if (nr == ARRAY_SIZE(state->reqs))
1915 break;
1916 }
1917
1918 state->free_reqs = nr;
1919 return nr != 0;
1920}
1921
1922/*
1923 * A request might get retired back into the request caches even before opcode
1924 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1925 * Because of that, io_alloc_req() should be called only under ->uring_lock
1926 * and with extra caution to not get a request that is still worked on.
1927 */
1928static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1929 __must_hold(&ctx->uring_lock)
1930{
1931 struct io_submit_state *state = &ctx->submit_state;
1932 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1933 int ret, i;
1934
1935 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1936
1937 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1938 goto got_req;
1939
1940 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1941 state->reqs);
1942
1943 /*
1944 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1945 * retry single alloc to be on the safe side.
1946 */
1947 if (unlikely(ret <= 0)) {
1948 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1949 if (!state->reqs[0])
1950 return NULL;
1951 ret = 1;
1952 }
1953
1954 for (i = 0; i < ret; i++)
1955 io_preinit_req(state->reqs[i], ctx);
1956 state->free_reqs = ret;
1957got_req:
1958 state->free_reqs--;
1959 return state->reqs[state->free_reqs];
1960}
1961
1962static inline void io_put_file(struct file *file)
1963{
1964 if (file)
1965 fput(file);
1966}
1967
1968static void io_dismantle_req(struct io_kiocb *req)
1969{
1970 unsigned int flags = req->flags;
1971
1972 if (io_req_needs_clean(req))
1973 io_clean_op(req);
1974 if (!(flags & REQ_F_FIXED_FILE))
1975 io_put_file(req->file);
1976 if (req->fixed_rsrc_refs)
1977 percpu_ref_put(req->fixed_rsrc_refs);
1978 if (req->async_data) {
1979 kfree(req->async_data);
1980 req->async_data = NULL;
1981 }
1982}
1983
1984static void __io_free_req(struct io_kiocb *req)
1985{
1986 struct io_ring_ctx *ctx = req->ctx;
1987
1988 io_dismantle_req(req);
1989 io_put_task(req->task, 1);
1990
1991 spin_lock(&ctx->completion_lock);
1992 list_add(&req->inflight_entry, &ctx->locked_free_list);
1993 ctx->locked_free_nr++;
1994 spin_unlock(&ctx->completion_lock);
1995
1996 percpu_ref_put(&ctx->refs);
1997}
1998
1999static inline void io_remove_next_linked(struct io_kiocb *req)
2000{
2001 struct io_kiocb *nxt = req->link;
2002
2003 req->link = nxt->link;
2004 nxt->link = NULL;
2005}
2006
2007static bool io_kill_linked_timeout(struct io_kiocb *req)
2008 __must_hold(&req->ctx->completion_lock)
2009 __must_hold(&req->ctx->timeout_lock)
2010{
2011 struct io_kiocb *link = req->link;
2012
2013 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2014 struct io_timeout_data *io = link->async_data;
2015
2016 io_remove_next_linked(req);
2017 link->timeout.head = NULL;
2018 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2019 list_del(&link->timeout.list);
2020 io_cqring_fill_event(link->ctx, link->user_data,
2021 -ECANCELED, 0);
2022 io_put_req_deferred(link);
2023 return true;
2024 }
2025 }
2026 return false;
2027}
2028
2029static void io_fail_links(struct io_kiocb *req)
2030 __must_hold(&req->ctx->completion_lock)
2031{
2032 struct io_kiocb *nxt, *link = req->link;
2033
2034 req->link = NULL;
2035 while (link) {
2036 long res = -ECANCELED;
2037
2038 if (link->flags & REQ_F_FAIL)
2039 res = link->result;
2040
2041 nxt = link->link;
2042 link->link = NULL;
2043
2044 trace_io_uring_fail_link(req, link);
2045 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2046 io_put_req_deferred(link);
2047 link = nxt;
2048 }
2049}
2050
2051static bool io_disarm_next(struct io_kiocb *req)
2052 __must_hold(&req->ctx->completion_lock)
2053{
2054 bool posted = false;
2055
2056 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2057 struct io_kiocb *link = req->link;
2058
2059 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2060 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2061 io_remove_next_linked(req);
2062 io_cqring_fill_event(link->ctx, link->user_data,
2063 -ECANCELED, 0);
2064 io_put_req_deferred(link);
2065 posted = true;
2066 }
2067 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2068 struct io_ring_ctx *ctx = req->ctx;
2069
2070 spin_lock_irq(&ctx->timeout_lock);
2071 posted = io_kill_linked_timeout(req);
2072 spin_unlock_irq(&ctx->timeout_lock);
2073 }
2074 if (unlikely((req->flags & REQ_F_FAIL) &&
2075 !(req->flags & REQ_F_HARDLINK))) {
2076 posted |= (req->link != NULL);
2077 io_fail_links(req);
2078 }
2079 return posted;
2080}
2081
2082static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2083{
2084 struct io_kiocb *nxt;
2085
2086 /*
2087 * If LINK is set, we have dependent requests in this chain. If we
2088 * didn't fail this request, queue the first one up, moving any other
2089 * dependencies to the next request. In case of failure, fail the rest
2090 * of the chain.
2091 */
2092 if (req->flags & IO_DISARM_MASK) {
2093 struct io_ring_ctx *ctx = req->ctx;
2094 bool posted;
2095
2096 spin_lock(&ctx->completion_lock);
2097 posted = io_disarm_next(req);
2098 if (posted)
2099 io_commit_cqring(req->ctx);
2100 spin_unlock(&ctx->completion_lock);
2101 if (posted)
2102 io_cqring_ev_posted(ctx);
2103 }
2104 nxt = req->link;
2105 req->link = NULL;
2106 return nxt;
2107}
2108
2109static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2110{
2111 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2112 return NULL;
2113 return __io_req_find_next(req);
2114}
2115
2116static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2117{
2118 if (!ctx)
2119 return;
2120 if (*locked) {
2121 if (ctx->submit_state.compl_nr)
2122 io_submit_flush_completions(ctx);
2123 mutex_unlock(&ctx->uring_lock);
2124 *locked = false;
2125 }
2126 percpu_ref_put(&ctx->refs);
2127}
2128
2129static void tctx_task_work(struct callback_head *cb)
2130{
2131 bool locked = false;
2132 struct io_ring_ctx *ctx = NULL;
2133 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2134 task_work);
2135
2136 while (1) {
2137 struct io_wq_work_node *node;
2138
2139 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2140 io_submit_flush_completions(ctx);
2141
2142 spin_lock_irq(&tctx->task_lock);
2143 node = tctx->task_list.first;
2144 INIT_WQ_LIST(&tctx->task_list);
2145 if (!node)
2146 tctx->task_running = false;
2147 spin_unlock_irq(&tctx->task_lock);
2148 if (!node)
2149 break;
2150
2151 do {
2152 struct io_wq_work_node *next = node->next;
2153 struct io_kiocb *req = container_of(node, struct io_kiocb,
2154 io_task_work.node);
2155
2156 if (req->ctx != ctx) {
2157 ctx_flush_and_put(ctx, &locked);
2158 ctx = req->ctx;
2159 /* if not contended, grab and improve batching */
2160 locked = mutex_trylock(&ctx->uring_lock);
2161 percpu_ref_get(&ctx->refs);
2162 }
2163 req->io_task_work.func(req, &locked);
2164 node = next;
2165 } while (node);
2166
2167 cond_resched();
2168 }
2169
2170 ctx_flush_and_put(ctx, &locked);
2171}
2172
2173static void io_req_task_work_add(struct io_kiocb *req)
2174{
2175 struct task_struct *tsk = req->task;
2176 struct io_uring_task *tctx = tsk->io_uring;
2177 enum task_work_notify_mode notify;
2178 struct io_wq_work_node *node;
2179 unsigned long flags;
2180 bool running;
2181
2182 WARN_ON_ONCE(!tctx);
2183
2184 spin_lock_irqsave(&tctx->task_lock, flags);
2185 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2186 running = tctx->task_running;
2187 if (!running)
2188 tctx->task_running = true;
2189 spin_unlock_irqrestore(&tctx->task_lock, flags);
2190
2191 /* task_work already pending, we're done */
2192 if (running)
2193 return;
2194
2195 /*
2196 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2197 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2198 * processing task_work. There's no reliable way to tell if TWA_RESUME
2199 * will do the job.
2200 */
2201 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2202 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2203 wake_up_process(tsk);
2204 return;
2205 }
2206
2207 spin_lock_irqsave(&tctx->task_lock, flags);
2208 tctx->task_running = false;
2209 node = tctx->task_list.first;
2210 INIT_WQ_LIST(&tctx->task_list);
2211 spin_unlock_irqrestore(&tctx->task_lock, flags);
2212
2213 while (node) {
2214 req = container_of(node, struct io_kiocb, io_task_work.node);
2215 node = node->next;
2216 if (llist_add(&req->io_task_work.fallback_node,
2217 &req->ctx->fallback_llist))
2218 schedule_delayed_work(&req->ctx->fallback_work, 1);
2219 }
2220}
2221
2222static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2223{
2224 struct io_ring_ctx *ctx = req->ctx;
2225
2226 /* not needed for normal modes, but SQPOLL depends on it */
2227 io_tw_lock(ctx, locked);
2228 io_req_complete_failed(req, req->result);
2229}
2230
2231static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2232{
2233 struct io_ring_ctx *ctx = req->ctx;
2234
2235 io_tw_lock(ctx, locked);
2236 /* req->task == current here, checking PF_EXITING is safe */
2237 if (likely(!(req->task->flags & PF_EXITING)))
2238 __io_queue_sqe(req);
2239 else
2240 io_req_complete_failed(req, -EFAULT);
2241}
2242
2243static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2244{
2245 req->result = ret;
2246 req->io_task_work.func = io_req_task_cancel;
2247 io_req_task_work_add(req);
2248}
2249
2250static void io_req_task_queue(struct io_kiocb *req)
2251{
2252 req->io_task_work.func = io_req_task_submit;
2253 io_req_task_work_add(req);
2254}
2255
2256static void io_req_task_queue_reissue(struct io_kiocb *req)
2257{
2258 req->io_task_work.func = io_queue_async_work;
2259 io_req_task_work_add(req);
2260}
2261
2262static inline void io_queue_next(struct io_kiocb *req)
2263{
2264 struct io_kiocb *nxt = io_req_find_next(req);
2265
2266 if (nxt)
2267 io_req_task_queue(nxt);
2268}
2269
2270static void io_free_req(struct io_kiocb *req)
2271{
2272 io_queue_next(req);
2273 __io_free_req(req);
2274}
2275
2276static void io_free_req_work(struct io_kiocb *req, bool *locked)
2277{
2278 io_free_req(req);
2279}
2280
2281struct req_batch {
2282 struct task_struct *task;
2283 int task_refs;
2284 int ctx_refs;
2285};
2286
2287static inline void io_init_req_batch(struct req_batch *rb)
2288{
2289 rb->task_refs = 0;
2290 rb->ctx_refs = 0;
2291 rb->task = NULL;
2292}
2293
2294static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2295 struct req_batch *rb)
2296{
2297 if (rb->ctx_refs)
2298 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2299 if (rb->task)
2300 io_put_task(rb->task, rb->task_refs);
2301}
2302
2303static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2304 struct io_submit_state *state)
2305{
2306 io_queue_next(req);
2307 io_dismantle_req(req);
2308
2309 if (req->task != rb->task) {
2310 if (rb->task)
2311 io_put_task(rb->task, rb->task_refs);
2312 rb->task = req->task;
2313 rb->task_refs = 0;
2314 }
2315 rb->task_refs++;
2316 rb->ctx_refs++;
2317
2318 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2319 state->reqs[state->free_reqs++] = req;
2320 else
2321 list_add(&req->inflight_entry, &state->free_list);
2322}
2323
2324static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2325 __must_hold(&ctx->uring_lock)
2326{
2327 struct io_submit_state *state = &ctx->submit_state;
2328 int i, nr = state->compl_nr;
2329 struct req_batch rb;
2330
2331 spin_lock(&ctx->completion_lock);
2332 for (i = 0; i < nr; i++) {
2333 struct io_kiocb *req = state->compl_reqs[i];
2334
2335 __io_cqring_fill_event(ctx, req->user_data, req->result,
2336 req->compl.cflags);
2337 }
2338 io_commit_cqring(ctx);
2339 spin_unlock(&ctx->completion_lock);
2340 io_cqring_ev_posted(ctx);
2341
2342 io_init_req_batch(&rb);
2343 for (i = 0; i < nr; i++) {
2344 struct io_kiocb *req = state->compl_reqs[i];
2345
2346 if (req_ref_put_and_test(req))
2347 io_req_free_batch(&rb, req, &ctx->submit_state);
2348 }
2349
2350 io_req_free_batch_finish(ctx, &rb);
2351 state->compl_nr = 0;
2352}
2353
2354/*
2355 * Drop reference to request, return next in chain (if there is one) if this
2356 * was the last reference to this request.
2357 */
2358static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2359{
2360 struct io_kiocb *nxt = NULL;
2361
2362 if (req_ref_put_and_test(req)) {
2363 nxt = io_req_find_next(req);
2364 __io_free_req(req);
2365 }
2366 return nxt;
2367}
2368
2369static inline void io_put_req(struct io_kiocb *req)
2370{
2371 if (req_ref_put_and_test(req))
2372 io_free_req(req);
2373}
2374
2375static inline void io_put_req_deferred(struct io_kiocb *req)
2376{
2377 if (req_ref_put_and_test(req)) {
2378 req->io_task_work.func = io_free_req_work;
2379 io_req_task_work_add(req);
2380 }
2381}
2382
2383static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2384{
2385 /* See comment at the top of this file */
2386 smp_rmb();
2387 return __io_cqring_events(ctx);
2388}
2389
2390static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2391{
2392 struct io_rings *rings = ctx->rings;
2393
2394 /* make sure SQ entry isn't read before tail */
2395 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2396}
2397
2398static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2399{
2400 unsigned int cflags;
2401
2402 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2403 cflags |= IORING_CQE_F_BUFFER;
2404 req->flags &= ~REQ_F_BUFFER_SELECTED;
2405 kfree(kbuf);
2406 return cflags;
2407}
2408
2409static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2410{
2411 struct io_buffer *kbuf;
2412
2413 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2414 return 0;
2415 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2416 return io_put_kbuf(req, kbuf);
2417}
2418
2419static inline bool io_run_task_work(void)
2420{
2421 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2422 __set_current_state(TASK_RUNNING);
2423 tracehook_notify_signal();
2424 return true;
2425 }
2426
2427 return false;
2428}
2429
2430/*
2431 * Find and free completed poll iocbs
2432 */
2433static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2434 struct list_head *done)
2435{
2436 struct req_batch rb;
2437 struct io_kiocb *req;
2438
2439 /* order with ->result store in io_complete_rw_iopoll() */
2440 smp_rmb();
2441
2442 io_init_req_batch(&rb);
2443 while (!list_empty(done)) {
2444 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2445 list_del(&req->inflight_entry);
2446
2447 if (READ_ONCE(req->result) == -EAGAIN &&
2448 !(req->flags & REQ_F_DONT_REISSUE)) {
2449 req->iopoll_completed = 0;
2450 io_req_task_queue_reissue(req);
2451 continue;
2452 }
2453
2454 __io_cqring_fill_event(ctx, req->user_data, req->result,
2455 io_put_rw_kbuf(req));
2456 (*nr_events)++;
2457
2458 if (req_ref_put_and_test(req))
2459 io_req_free_batch(&rb, req, &ctx->submit_state);
2460 }
2461
2462 io_commit_cqring(ctx);
2463 io_cqring_ev_posted_iopoll(ctx);
2464 io_req_free_batch_finish(ctx, &rb);
2465}
2466
2467static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2468 long min)
2469{
2470 struct io_kiocb *req, *tmp;
2471 LIST_HEAD(done);
2472 bool spin;
2473
2474 /*
2475 * Only spin for completions if we don't have multiple devices hanging
2476 * off our complete list, and we're under the requested amount.
2477 */
2478 spin = !ctx->poll_multi_queue && *nr_events < min;
2479
2480 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2481 struct kiocb *kiocb = &req->rw.kiocb;
2482 int ret;
2483
2484 /*
2485 * Move completed and retryable entries to our local lists.
2486 * If we find a request that requires polling, break out
2487 * and complete those lists first, if we have entries there.
2488 */
2489 if (READ_ONCE(req->iopoll_completed)) {
2490 list_move_tail(&req->inflight_entry, &done);
2491 continue;
2492 }
2493 if (!list_empty(&done))
2494 break;
2495
2496 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2497 if (unlikely(ret < 0))
2498 return ret;
2499 else if (ret)
2500 spin = false;
2501
2502 /* iopoll may have completed current req */
2503 if (READ_ONCE(req->iopoll_completed))
2504 list_move_tail(&req->inflight_entry, &done);
2505 }
2506
2507 if (!list_empty(&done))
2508 io_iopoll_complete(ctx, nr_events, &done);
2509
2510 return 0;
2511}
2512
2513/*
2514 * We can't just wait for polled events to come to us, we have to actively
2515 * find and complete them.
2516 */
2517static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2518{
2519 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2520 return;
2521
2522 mutex_lock(&ctx->uring_lock);
2523 while (!list_empty(&ctx->iopoll_list)) {
2524 unsigned int nr_events = 0;
2525
2526 io_do_iopoll(ctx, &nr_events, 0);
2527
2528 /* let it sleep and repeat later if can't complete a request */
2529 if (nr_events == 0)
2530 break;
2531 /*
2532 * Ensure we allow local-to-the-cpu processing to take place,
2533 * in this case we need to ensure that we reap all events.
2534 * Also let task_work, etc. to progress by releasing the mutex
2535 */
2536 if (need_resched()) {
2537 mutex_unlock(&ctx->uring_lock);
2538 cond_resched();
2539 mutex_lock(&ctx->uring_lock);
2540 }
2541 }
2542 mutex_unlock(&ctx->uring_lock);
2543}
2544
2545static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2546{
2547 unsigned int nr_events = 0;
2548 int ret = 0;
2549
2550 /*
2551 * We disallow the app entering submit/complete with polling, but we
2552 * still need to lock the ring to prevent racing with polled issue
2553 * that got punted to a workqueue.
2554 */
2555 mutex_lock(&ctx->uring_lock);
2556 /*
2557 * Don't enter poll loop if we already have events pending.
2558 * If we do, we can potentially be spinning for commands that
2559 * already triggered a CQE (eg in error).
2560 */
2561 if (test_bit(0, &ctx->check_cq_overflow))
2562 __io_cqring_overflow_flush(ctx, false);
2563 if (io_cqring_events(ctx))
2564 goto out;
2565 do {
2566 /*
2567 * If a submit got punted to a workqueue, we can have the
2568 * application entering polling for a command before it gets
2569 * issued. That app will hold the uring_lock for the duration
2570 * of the poll right here, so we need to take a breather every
2571 * now and then to ensure that the issue has a chance to add
2572 * the poll to the issued list. Otherwise we can spin here
2573 * forever, while the workqueue is stuck trying to acquire the
2574 * very same mutex.
2575 */
2576 if (list_empty(&ctx->iopoll_list)) {
2577 u32 tail = ctx->cached_cq_tail;
2578
2579 mutex_unlock(&ctx->uring_lock);
2580 io_run_task_work();
2581 mutex_lock(&ctx->uring_lock);
2582
2583 /* some requests don't go through iopoll_list */
2584 if (tail != ctx->cached_cq_tail ||
2585 list_empty(&ctx->iopoll_list))
2586 break;
2587 }
2588 ret = io_do_iopoll(ctx, &nr_events, min);
2589 } while (!ret && nr_events < min && !need_resched());
2590out:
2591 mutex_unlock(&ctx->uring_lock);
2592 return ret;
2593}
2594
2595static void kiocb_end_write(struct io_kiocb *req)
2596{
2597 /*
2598 * Tell lockdep we inherited freeze protection from submission
2599 * thread.
2600 */
2601 if (req->flags & REQ_F_ISREG) {
2602 struct super_block *sb = file_inode(req->file)->i_sb;
2603
2604 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2605 sb_end_write(sb);
2606 }
2607}
2608
2609#ifdef CONFIG_BLOCK
2610static bool io_resubmit_prep(struct io_kiocb *req)
2611{
2612 struct io_async_rw *rw = req->async_data;
2613
2614 if (!rw)
2615 return !io_req_prep_async(req);
2616 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2617 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2618 return true;
2619}
2620
2621static bool io_rw_should_reissue(struct io_kiocb *req)
2622{
2623 umode_t mode = file_inode(req->file)->i_mode;
2624 struct io_ring_ctx *ctx = req->ctx;
2625
2626 if (!S_ISBLK(mode) && !S_ISREG(mode))
2627 return false;
2628 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2629 !(ctx->flags & IORING_SETUP_IOPOLL)))
2630 return false;
2631 /*
2632 * If ref is dying, we might be running poll reap from the exit work.
2633 * Don't attempt to reissue from that path, just let it fail with
2634 * -EAGAIN.
2635 */
2636 if (percpu_ref_is_dying(&ctx->refs))
2637 return false;
2638 /*
2639 * Play it safe and assume not safe to re-import and reissue if we're
2640 * not in the original thread group (or in task context).
2641 */
2642 if (!same_thread_group(req->task, current) || !in_task())
2643 return false;
2644 return true;
2645}
2646#else
2647static bool io_resubmit_prep(struct io_kiocb *req)
2648{
2649 return false;
2650}
2651static bool io_rw_should_reissue(struct io_kiocb *req)
2652{
2653 return false;
2654}
2655#endif
2656
2657static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2658{
2659 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2660 kiocb_end_write(req);
2661 if (res != req->result) {
2662 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2663 io_rw_should_reissue(req)) {
2664 req->flags |= REQ_F_REISSUE;
2665 return true;
2666 }
2667 req_set_fail(req);
2668 req->result = res;
2669 }
2670 return false;
2671}
2672
2673static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2674{
2675 unsigned int cflags = io_put_rw_kbuf(req);
2676 long res = req->result;
2677
2678 if (*locked) {
2679 struct io_ring_ctx *ctx = req->ctx;
2680 struct io_submit_state *state = &ctx->submit_state;
2681
2682 io_req_complete_state(req, res, cflags);
2683 state->compl_reqs[state->compl_nr++] = req;
2684 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2685 io_submit_flush_completions(ctx);
2686 } else {
2687 io_req_complete_post(req, res, cflags);
2688 }
2689}
2690
2691static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2692 unsigned int issue_flags)
2693{
2694 if (__io_complete_rw_common(req, res))
2695 return;
2696 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2697}
2698
2699static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2700{
2701 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2702
2703 if (__io_complete_rw_common(req, res))
2704 return;
2705 req->result = res;
2706 req->io_task_work.func = io_req_task_complete;
2707 io_req_task_work_add(req);
2708}
2709
2710static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2711{
2712 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2713
2714 if (kiocb->ki_flags & IOCB_WRITE)
2715 kiocb_end_write(req);
2716 if (unlikely(res != req->result)) {
2717 if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2718 io_resubmit_prep(req))) {
2719 req_set_fail(req);
2720 req->flags |= REQ_F_DONT_REISSUE;
2721 }
2722 }
2723
2724 WRITE_ONCE(req->result, res);
2725 /* order with io_iopoll_complete() checking ->result */
2726 smp_wmb();
2727 WRITE_ONCE(req->iopoll_completed, 1);
2728}
2729
2730/*
2731 * After the iocb has been issued, it's safe to be found on the poll list.
2732 * Adding the kiocb to the list AFTER submission ensures that we don't
2733 * find it from a io_do_iopoll() thread before the issuer is done
2734 * accessing the kiocb cookie.
2735 */
2736static void io_iopoll_req_issued(struct io_kiocb *req)
2737{
2738 struct io_ring_ctx *ctx = req->ctx;
2739 const bool in_async = io_wq_current_is_worker();
2740
2741 /* workqueue context doesn't hold uring_lock, grab it now */
2742 if (unlikely(in_async))
2743 mutex_lock(&ctx->uring_lock);
2744
2745 /*
2746 * Track whether we have multiple files in our lists. This will impact
2747 * how we do polling eventually, not spinning if we're on potentially
2748 * different devices.
2749 */
2750 if (list_empty(&ctx->iopoll_list)) {
2751 ctx->poll_multi_queue = false;
2752 } else if (!ctx->poll_multi_queue) {
2753 struct io_kiocb *list_req;
2754 unsigned int queue_num0, queue_num1;
2755
2756 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2757 inflight_entry);
2758
2759 if (list_req->file != req->file) {
2760 ctx->poll_multi_queue = true;
2761 } else {
2762 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2763 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2764 if (queue_num0 != queue_num1)
2765 ctx->poll_multi_queue = true;
2766 }
2767 }
2768
2769 /*
2770 * For fast devices, IO may have already completed. If it has, add
2771 * it to the front so we find it first.
2772 */
2773 if (READ_ONCE(req->iopoll_completed))
2774 list_add(&req->inflight_entry, &ctx->iopoll_list);
2775 else
2776 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2777
2778 if (unlikely(in_async)) {
2779 /*
2780 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2781 * in sq thread task context or in io worker task context. If
2782 * current task context is sq thread, we don't need to check
2783 * whether should wake up sq thread.
2784 */
2785 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2786 wq_has_sleeper(&ctx->sq_data->wait))
2787 wake_up(&ctx->sq_data->wait);
2788
2789 mutex_unlock(&ctx->uring_lock);
2790 }
2791}
2792
2793static bool io_bdev_nowait(struct block_device *bdev)
2794{
2795 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2796}
2797
2798/*
2799 * If we tracked the file through the SCM inflight mechanism, we could support
2800 * any file. For now, just ensure that anything potentially problematic is done
2801 * inline.
2802 */
2803static bool __io_file_supports_nowait(struct file *file, int rw)
2804{
2805 umode_t mode = file_inode(file)->i_mode;
2806
2807 if (S_ISBLK(mode)) {
2808 if (IS_ENABLED(CONFIG_BLOCK) &&
2809 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2810 return true;
2811 return false;
2812 }
2813 if (S_ISSOCK(mode))
2814 return true;
2815 if (S_ISREG(mode)) {
2816 if (IS_ENABLED(CONFIG_BLOCK) &&
2817 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2818 file->f_op != &io_uring_fops)
2819 return true;
2820 return false;
2821 }
2822
2823 /* any ->read/write should understand O_NONBLOCK */
2824 if (file->f_flags & O_NONBLOCK)
2825 return true;
2826
2827 if (!(file->f_mode & FMODE_NOWAIT))
2828 return false;
2829
2830 if (rw == READ)
2831 return file->f_op->read_iter != NULL;
2832
2833 return file->f_op->write_iter != NULL;
2834}
2835
2836static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2837{
2838 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2839 return true;
2840 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2841 return true;
2842
2843 return __io_file_supports_nowait(req->file, rw);
2844}
2845
2846static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2847{
2848 struct io_ring_ctx *ctx = req->ctx;
2849 struct kiocb *kiocb = &req->rw.kiocb;
2850 struct file *file = req->file;
2851 unsigned ioprio;
2852 int ret;
2853
2854 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2855 req->flags |= REQ_F_ISREG;
2856
2857 kiocb->ki_pos = READ_ONCE(sqe->off);
2858 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2859 req->flags |= REQ_F_CUR_POS;
2860 kiocb->ki_pos = file->f_pos;
2861 }
2862 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2863 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2864 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2865 if (unlikely(ret))
2866 return ret;
2867
2868 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2869 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2870 req->flags |= REQ_F_NOWAIT;
2871
2872 ioprio = READ_ONCE(sqe->ioprio);
2873 if (ioprio) {
2874 ret = ioprio_check_cap(ioprio);
2875 if (ret)
2876 return ret;
2877
2878 kiocb->ki_ioprio = ioprio;
2879 } else
2880 kiocb->ki_ioprio = get_current_ioprio();
2881
2882 if (ctx->flags & IORING_SETUP_IOPOLL) {
2883 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2884 !kiocb->ki_filp->f_op->iopoll)
2885 return -EOPNOTSUPP;
2886
2887 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2888 kiocb->ki_complete = io_complete_rw_iopoll;
2889 req->iopoll_completed = 0;
2890 } else {
2891 if (kiocb->ki_flags & IOCB_HIPRI)
2892 return -EINVAL;
2893 kiocb->ki_complete = io_complete_rw;
2894 }
2895
2896 if (req->opcode == IORING_OP_READ_FIXED ||
2897 req->opcode == IORING_OP_WRITE_FIXED) {
2898 req->imu = NULL;
2899 io_req_set_rsrc_node(req);
2900 }
2901
2902 req->rw.addr = READ_ONCE(sqe->addr);
2903 req->rw.len = READ_ONCE(sqe->len);
2904 req->buf_index = READ_ONCE(sqe->buf_index);
2905 return 0;
2906}
2907
2908static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2909{
2910 switch (ret) {
2911 case -EIOCBQUEUED:
2912 break;
2913 case -ERESTARTSYS:
2914 case -ERESTARTNOINTR:
2915 case -ERESTARTNOHAND:
2916 case -ERESTART_RESTARTBLOCK:
2917 /*
2918 * We can't just restart the syscall, since previously
2919 * submitted sqes may already be in progress. Just fail this
2920 * IO with EINTR.
2921 */
2922 ret = -EINTR;
2923 fallthrough;
2924 default:
2925 kiocb->ki_complete(kiocb, ret, 0);
2926 }
2927}
2928
2929static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2930 unsigned int issue_flags)
2931{
2932 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2933 struct io_async_rw *io = req->async_data;
2934 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2935
2936 /* add previously done IO, if any */
2937 if (io && io->bytes_done > 0) {
2938 if (ret < 0)
2939 ret = io->bytes_done;
2940 else
2941 ret += io->bytes_done;
2942 }
2943
2944 if (req->flags & REQ_F_CUR_POS)
2945 req->file->f_pos = kiocb->ki_pos;
2946 if (ret >= 0 && check_reissue)
2947 __io_complete_rw(req, ret, 0, issue_flags);
2948 else
2949 io_rw_done(kiocb, ret);
2950
2951 if (check_reissue && (req->flags & REQ_F_REISSUE)) {
2952 req->flags &= ~REQ_F_REISSUE;
2953 if (io_resubmit_prep(req)) {
2954 io_req_task_queue_reissue(req);
2955 } else {
2956 req_set_fail(req);
2957 __io_req_complete(req, issue_flags, ret,
2958 io_put_rw_kbuf(req));
2959 }
2960 }
2961}
2962
2963static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2964 struct io_mapped_ubuf *imu)
2965{
2966 size_t len = req->rw.len;
2967 u64 buf_end, buf_addr = req->rw.addr;
2968 size_t offset;
2969
2970 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2971 return -EFAULT;
2972 /* not inside the mapped region */
2973 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2974 return -EFAULT;
2975
2976 /*
2977 * May not be a start of buffer, set size appropriately
2978 * and advance us to the beginning.
2979 */
2980 offset = buf_addr - imu->ubuf;
2981 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2982
2983 if (offset) {
2984 /*
2985 * Don't use iov_iter_advance() here, as it's really slow for
2986 * using the latter parts of a big fixed buffer - it iterates
2987 * over each segment manually. We can cheat a bit here, because
2988 * we know that:
2989 *
2990 * 1) it's a BVEC iter, we set it up
2991 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2992 * first and last bvec
2993 *
2994 * So just find our index, and adjust the iterator afterwards.
2995 * If the offset is within the first bvec (or the whole first
2996 * bvec, just use iov_iter_advance(). This makes it easier
2997 * since we can just skip the first segment, which may not
2998 * be PAGE_SIZE aligned.
2999 */
3000 const struct bio_vec *bvec = imu->bvec;
3001
3002 if (offset <= bvec->bv_len) {
3003 iov_iter_advance(iter, offset);
3004 } else {
3005 unsigned long seg_skip;
3006
3007 /* skip first vec */
3008 offset -= bvec->bv_len;
3009 seg_skip = 1 + (offset >> PAGE_SHIFT);
3010
3011 iter->bvec = bvec + seg_skip;
3012 iter->nr_segs -= seg_skip;
3013 iter->count -= bvec->bv_len + offset;
3014 iter->iov_offset = offset & ~PAGE_MASK;
3015 }
3016 }
3017
3018 return 0;
3019}
3020
3021static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3022{
3023 struct io_ring_ctx *ctx = req->ctx;
3024 struct io_mapped_ubuf *imu = req->imu;
3025 u16 index, buf_index = req->buf_index;
3026
3027 if (likely(!imu)) {
3028 if (unlikely(buf_index >= ctx->nr_user_bufs))
3029 return -EFAULT;
3030 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3031 imu = READ_ONCE(ctx->user_bufs[index]);
3032 req->imu = imu;
3033 }
3034 return __io_import_fixed(req, rw, iter, imu);
3035}
3036
3037static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3038{
3039 if (needs_lock)
3040 mutex_unlock(&ctx->uring_lock);
3041}
3042
3043static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3044{
3045 /*
3046 * "Normal" inline submissions always hold the uring_lock, since we
3047 * grab it from the system call. Same is true for the SQPOLL offload.
3048 * The only exception is when we've detached the request and issue it
3049 * from an async worker thread, grab the lock for that case.
3050 */
3051 if (needs_lock)
3052 mutex_lock(&ctx->uring_lock);
3053}
3054
3055static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3056 int bgid, struct io_buffer *kbuf,
3057 bool needs_lock)
3058{
3059 struct io_buffer *head;
3060
3061 if (req->flags & REQ_F_BUFFER_SELECTED)
3062 return kbuf;
3063
3064 io_ring_submit_lock(req->ctx, needs_lock);
3065
3066 lockdep_assert_held(&req->ctx->uring_lock);
3067
3068 head = xa_load(&req->ctx->io_buffers, bgid);
3069 if (head) {
3070 if (!list_empty(&head->list)) {
3071 kbuf = list_last_entry(&head->list, struct io_buffer,
3072 list);
3073 list_del(&kbuf->list);
3074 } else {
3075 kbuf = head;
3076 xa_erase(&req->ctx->io_buffers, bgid);
3077 }
3078 if (*len > kbuf->len)
3079 *len = kbuf->len;
3080 } else {
3081 kbuf = ERR_PTR(-ENOBUFS);
3082 }
3083
3084 io_ring_submit_unlock(req->ctx, needs_lock);
3085
3086 return kbuf;
3087}
3088
3089static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3090 bool needs_lock)
3091{
3092 struct io_buffer *kbuf;
3093 u16 bgid;
3094
3095 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3096 bgid = req->buf_index;
3097 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3098 if (IS_ERR(kbuf))
3099 return kbuf;
3100 req->rw.addr = (u64) (unsigned long) kbuf;
3101 req->flags |= REQ_F_BUFFER_SELECTED;
3102 return u64_to_user_ptr(kbuf->addr);
3103}
3104
3105#ifdef CONFIG_COMPAT
3106static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3107 bool needs_lock)
3108{
3109 struct compat_iovec __user *uiov;
3110 compat_ssize_t clen;
3111 void __user *buf;
3112 ssize_t len;
3113
3114 uiov = u64_to_user_ptr(req->rw.addr);
3115 if (!access_ok(uiov, sizeof(*uiov)))
3116 return -EFAULT;
3117 if (__get_user(clen, &uiov->iov_len))
3118 return -EFAULT;
3119 if (clen < 0)
3120 return -EINVAL;
3121
3122 len = clen;
3123 buf = io_rw_buffer_select(req, &len, needs_lock);
3124 if (IS_ERR(buf))
3125 return PTR_ERR(buf);
3126 iov[0].iov_base = buf;
3127 iov[0].iov_len = (compat_size_t) len;
3128 return 0;
3129}
3130#endif
3131
3132static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3133 bool needs_lock)
3134{
3135 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3136 void __user *buf;
3137 ssize_t len;
3138
3139 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3140 return -EFAULT;
3141
3142 len = iov[0].iov_len;
3143 if (len < 0)
3144 return -EINVAL;
3145 buf = io_rw_buffer_select(req, &len, needs_lock);
3146 if (IS_ERR(buf))
3147 return PTR_ERR(buf);
3148 iov[0].iov_base = buf;
3149 iov[0].iov_len = len;
3150 return 0;
3151}
3152
3153static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3154 bool needs_lock)
3155{
3156 if (req->flags & REQ_F_BUFFER_SELECTED) {
3157 struct io_buffer *kbuf;
3158
3159 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3160 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3161 iov[0].iov_len = kbuf->len;
3162 return 0;
3163 }
3164 if (req->rw.len != 1)
3165 return -EINVAL;
3166
3167#ifdef CONFIG_COMPAT
3168 if (req->ctx->compat)
3169 return io_compat_import(req, iov, needs_lock);
3170#endif
3171
3172 return __io_iov_buffer_select(req, iov, needs_lock);
3173}
3174
3175static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3176 struct iov_iter *iter, bool needs_lock)
3177{
3178 void __user *buf = u64_to_user_ptr(req->rw.addr);
3179 size_t sqe_len = req->rw.len;
3180 u8 opcode = req->opcode;
3181 ssize_t ret;
3182
3183 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3184 *iovec = NULL;
3185 return io_import_fixed(req, rw, iter);
3186 }
3187
3188 /* buffer index only valid with fixed read/write, or buffer select */
3189 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3190 return -EINVAL;
3191
3192 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3193 if (req->flags & REQ_F_BUFFER_SELECT) {
3194 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3195 if (IS_ERR(buf))
3196 return PTR_ERR(buf);
3197 req->rw.len = sqe_len;
3198 }
3199
3200 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3201 *iovec = NULL;
3202 return ret;
3203 }
3204
3205 if (req->flags & REQ_F_BUFFER_SELECT) {
3206 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3207 if (!ret)
3208 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3209 *iovec = NULL;
3210 return ret;
3211 }
3212
3213 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3214 req->ctx->compat);
3215}
3216
3217static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3218{
3219 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3220}
3221
3222/*
3223 * For files that don't have ->read_iter() and ->write_iter(), handle them
3224 * by looping over ->read() or ->write() manually.
3225 */
3226static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3227{
3228 struct kiocb *kiocb = &req->rw.kiocb;
3229 struct file *file = req->file;
3230 ssize_t ret = 0;
3231
3232 /*
3233 * Don't support polled IO through this interface, and we can't
3234 * support non-blocking either. For the latter, this just causes
3235 * the kiocb to be handled from an async context.
3236 */
3237 if (kiocb->ki_flags & IOCB_HIPRI)
3238 return -EOPNOTSUPP;
3239 if (kiocb->ki_flags & IOCB_NOWAIT)
3240 return -EAGAIN;
3241
3242 while (iov_iter_count(iter)) {
3243 struct iovec iovec;
3244 ssize_t nr;
3245
3246 if (!iov_iter_is_bvec(iter)) {
3247 iovec = iov_iter_iovec(iter);
3248 } else {
3249 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3250 iovec.iov_len = req->rw.len;
3251 }
3252
3253 if (rw == READ) {
3254 nr = file->f_op->read(file, iovec.iov_base,
3255 iovec.iov_len, io_kiocb_ppos(kiocb));
3256 } else {
3257 nr = file->f_op->write(file, iovec.iov_base,
3258 iovec.iov_len, io_kiocb_ppos(kiocb));
3259 }
3260
3261 if (nr < 0) {
3262 if (!ret)
3263 ret = nr;
3264 break;
3265 }
3266 ret += nr;
3267 if (nr != iovec.iov_len)
3268 break;
3269 req->rw.len -= nr;
3270 req->rw.addr += nr;
3271 iov_iter_advance(iter, nr);
3272 }
3273
3274 return ret;
3275}
3276
3277static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3278 const struct iovec *fast_iov, struct iov_iter *iter)
3279{
3280 struct io_async_rw *rw = req->async_data;
3281
3282 memcpy(&rw->iter, iter, sizeof(*iter));
3283 rw->free_iovec = iovec;
3284 rw->bytes_done = 0;
3285 /* can only be fixed buffers, no need to do anything */
3286 if (iov_iter_is_bvec(iter))
3287 return;
3288 if (!iovec) {
3289 unsigned iov_off = 0;
3290
3291 rw->iter.iov = rw->fast_iov;
3292 if (iter->iov != fast_iov) {
3293 iov_off = iter->iov - fast_iov;
3294 rw->iter.iov += iov_off;
3295 }
3296 if (rw->fast_iov != fast_iov)
3297 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3298 sizeof(struct iovec) * iter->nr_segs);
3299 } else {
3300 req->flags |= REQ_F_NEED_CLEANUP;
3301 }
3302}
3303
3304static inline int io_alloc_async_data(struct io_kiocb *req)
3305{
3306 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3307 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3308 return req->async_data == NULL;
3309}
3310
3311static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3312 const struct iovec *fast_iov,
3313 struct iov_iter *iter, bool force)
3314{
3315 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3316 return 0;
3317 if (!req->async_data) {
3318 if (io_alloc_async_data(req)) {
3319 kfree(iovec);
3320 return -ENOMEM;
3321 }
3322
3323 io_req_map_rw(req, iovec, fast_iov, iter);
3324 }
3325 return 0;
3326}
3327
3328static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3329{
3330 struct io_async_rw *iorw = req->async_data;
3331 struct iovec *iov = iorw->fast_iov;
3332 int ret;
3333
3334 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3335 if (unlikely(ret < 0))
3336 return ret;
3337
3338 iorw->bytes_done = 0;
3339 iorw->free_iovec = iov;
3340 if (iov)
3341 req->flags |= REQ_F_NEED_CLEANUP;
3342 return 0;
3343}
3344
3345static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3346{
3347 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3348 return -EBADF;
3349 return io_prep_rw(req, sqe);
3350}
3351
3352/*
3353 * This is our waitqueue callback handler, registered through lock_page_async()
3354 * when we initially tried to do the IO with the iocb armed our waitqueue.
3355 * This gets called when the page is unlocked, and we generally expect that to
3356 * happen when the page IO is completed and the page is now uptodate. This will
3357 * queue a task_work based retry of the operation, attempting to copy the data
3358 * again. If the latter fails because the page was NOT uptodate, then we will
3359 * do a thread based blocking retry of the operation. That's the unexpected
3360 * slow path.
3361 */
3362static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3363 int sync, void *arg)
3364{
3365 struct wait_page_queue *wpq;
3366 struct io_kiocb *req = wait->private;
3367 struct wait_page_key *key = arg;
3368
3369 wpq = container_of(wait, struct wait_page_queue, wait);
3370
3371 if (!wake_page_match(wpq, key))
3372 return 0;
3373
3374 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3375 list_del_init(&wait->entry);
3376 io_req_task_queue(req);
3377 return 1;
3378}
3379
3380/*
3381 * This controls whether a given IO request should be armed for async page
3382 * based retry. If we return false here, the request is handed to the async
3383 * worker threads for retry. If we're doing buffered reads on a regular file,
3384 * we prepare a private wait_page_queue entry and retry the operation. This
3385 * will either succeed because the page is now uptodate and unlocked, or it
3386 * will register a callback when the page is unlocked at IO completion. Through
3387 * that callback, io_uring uses task_work to setup a retry of the operation.
3388 * That retry will attempt the buffered read again. The retry will generally
3389 * succeed, or in rare cases where it fails, we then fall back to using the
3390 * async worker threads for a blocking retry.
3391 */
3392static bool io_rw_should_retry(struct io_kiocb *req)
3393{
3394 struct io_async_rw *rw = req->async_data;
3395 struct wait_page_queue *wait = &rw->wpq;
3396 struct kiocb *kiocb = &req->rw.kiocb;
3397
3398 /* never retry for NOWAIT, we just complete with -EAGAIN */
3399 if (req->flags & REQ_F_NOWAIT)
3400 return false;
3401
3402 /* Only for buffered IO */
3403 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3404 return false;
3405
3406 /*
3407 * just use poll if we can, and don't attempt if the fs doesn't
3408 * support callback based unlocks
3409 */
3410 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3411 return false;
3412
3413 wait->wait.func = io_async_buf_func;
3414 wait->wait.private = req;
3415 wait->wait.flags = 0;
3416 INIT_LIST_HEAD(&wait->wait.entry);
3417 kiocb->ki_flags |= IOCB_WAITQ;
3418 kiocb->ki_flags &= ~IOCB_NOWAIT;
3419 kiocb->ki_waitq = wait;
3420 return true;
3421}
3422
3423static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3424{
3425 if (req->file->f_op->read_iter)
3426 return call_read_iter(req->file, &req->rw.kiocb, iter);
3427 else if (req->file->f_op->read)
3428 return loop_rw_iter(READ, req, iter);
3429 else
3430 return -EINVAL;
3431}
3432
3433static bool need_read_all(struct io_kiocb *req)
3434{
3435 return req->flags & REQ_F_ISREG ||
3436 S_ISBLK(file_inode(req->file)->i_mode);
3437}
3438
3439static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3440{
3441 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3442 struct kiocb *kiocb = &req->rw.kiocb;
3443 struct iov_iter __iter, *iter = &__iter;
3444 struct io_async_rw *rw = req->async_data;
3445 ssize_t io_size, ret, ret2;
3446 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3447
3448 if (rw) {
3449 iter = &rw->iter;
3450 iovec = NULL;
3451 } else {
3452 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3453 if (ret < 0)
3454 return ret;
3455 }
3456 io_size = iov_iter_count(iter);
3457 req->result = io_size;
3458
3459 /* Ensure we clear previously set non-block flag */
3460 if (!force_nonblock)
3461 kiocb->ki_flags &= ~IOCB_NOWAIT;
3462 else
3463 kiocb->ki_flags |= IOCB_NOWAIT;
3464
3465 /* If the file doesn't support async, just async punt */
3466 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3467 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3468 return ret ?: -EAGAIN;
3469 }
3470
3471 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3472 if (unlikely(ret)) {
3473 kfree(iovec);
3474 return ret;
3475 }
3476
3477 ret = io_iter_do_read(req, iter);
3478
3479 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3480 req->flags &= ~REQ_F_REISSUE;
3481 /* IOPOLL retry should happen for io-wq threads */
3482 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3483 goto done;
3484 /* no retry on NONBLOCK nor RWF_NOWAIT */
3485 if (req->flags & REQ_F_NOWAIT)
3486 goto done;
3487 /* some cases will consume bytes even on error returns */
3488 iov_iter_reexpand(iter, iter->count + iter->truncated);
3489 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3490 ret = 0;
3491 } else if (ret == -EIOCBQUEUED) {
3492 goto out_free;
3493 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3494 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3495 /* read all, failed, already did sync or don't want to retry */
3496 goto done;
3497 }
3498
3499 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3500 if (ret2)
3501 return ret2;
3502
3503 iovec = NULL;
3504 rw = req->async_data;
3505 /* now use our persistent iterator, if we aren't already */
3506 iter = &rw->iter;
3507
3508 do {
3509 io_size -= ret;
3510 rw->bytes_done += ret;
3511 /* if we can retry, do so with the callbacks armed */
3512 if (!io_rw_should_retry(req)) {
3513 kiocb->ki_flags &= ~IOCB_WAITQ;
3514 return -EAGAIN;
3515 }
3516
3517 /*
3518 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3519 * we get -EIOCBQUEUED, then we'll get a notification when the
3520 * desired page gets unlocked. We can also get a partial read
3521 * here, and if we do, then just retry at the new offset.
3522 */
3523 ret = io_iter_do_read(req, iter);
3524 if (ret == -EIOCBQUEUED)
3525 return 0;
3526 /* we got some bytes, but not all. retry. */
3527 kiocb->ki_flags &= ~IOCB_WAITQ;
3528 } while (ret > 0 && ret < io_size);
3529done:
3530 kiocb_done(kiocb, ret, issue_flags);
3531out_free:
3532 /* it's faster to check here then delegate to kfree */
3533 if (iovec)
3534 kfree(iovec);
3535 return 0;
3536}
3537
3538static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3539{
3540 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3541 return -EBADF;
3542 return io_prep_rw(req, sqe);
3543}
3544
3545static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3546{
3547 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3548 struct kiocb *kiocb = &req->rw.kiocb;
3549 struct iov_iter __iter, *iter = &__iter;
3550 struct io_async_rw *rw = req->async_data;
3551 ssize_t ret, ret2, io_size;
3552 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3553
3554 if (rw) {
3555 iter = &rw->iter;
3556 iovec = NULL;
3557 } else {
3558 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3559 if (ret < 0)
3560 return ret;
3561 }
3562 io_size = iov_iter_count(iter);
3563 req->result = io_size;
3564
3565 /* Ensure we clear previously set non-block flag */
3566 if (!force_nonblock)
3567 kiocb->ki_flags &= ~IOCB_NOWAIT;
3568 else
3569 kiocb->ki_flags |= IOCB_NOWAIT;
3570
3571 /* If the file doesn't support async, just async punt */
3572 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3573 goto copy_iov;
3574
3575 /* file path doesn't support NOWAIT for non-direct_IO */
3576 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3577 (req->flags & REQ_F_ISREG))
3578 goto copy_iov;
3579
3580 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3581 if (unlikely(ret))
3582 goto out_free;
3583
3584 /*
3585 * Open-code file_start_write here to grab freeze protection,
3586 * which will be released by another thread in
3587 * io_complete_rw(). Fool lockdep by telling it the lock got
3588 * released so that it doesn't complain about the held lock when
3589 * we return to userspace.
3590 */
3591 if (req->flags & REQ_F_ISREG) {
3592 sb_start_write(file_inode(req->file)->i_sb);
3593 __sb_writers_release(file_inode(req->file)->i_sb,
3594 SB_FREEZE_WRITE);
3595 }
3596 kiocb->ki_flags |= IOCB_WRITE;
3597
3598 if (req->file->f_op->write_iter)
3599 ret2 = call_write_iter(req->file, kiocb, iter);
3600 else if (req->file->f_op->write)
3601 ret2 = loop_rw_iter(WRITE, req, iter);
3602 else
3603 ret2 = -EINVAL;
3604
3605 if (req->flags & REQ_F_REISSUE) {
3606 req->flags &= ~REQ_F_REISSUE;
3607 ret2 = -EAGAIN;
3608 }
3609
3610 /*
3611 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3612 * retry them without IOCB_NOWAIT.
3613 */
3614 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3615 ret2 = -EAGAIN;
3616 /* no retry on NONBLOCK nor RWF_NOWAIT */
3617 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3618 goto done;
3619 if (!force_nonblock || ret2 != -EAGAIN) {
3620 /* IOPOLL retry should happen for io-wq threads */
3621 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3622 goto copy_iov;
3623done:
3624 kiocb_done(kiocb, ret2, issue_flags);
3625 } else {
3626copy_iov:
3627 /* some cases will consume bytes even on error returns */
3628 iov_iter_reexpand(iter, iter->count + iter->truncated);
3629 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3630 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3631 return ret ?: -EAGAIN;
3632 }
3633out_free:
3634 /* it's reportedly faster than delegating the null check to kfree() */
3635 if (iovec)
3636 kfree(iovec);
3637 return ret;
3638}
3639
3640static int io_renameat_prep(struct io_kiocb *req,
3641 const struct io_uring_sqe *sqe)
3642{
3643 struct io_rename *ren = &req->rename;
3644 const char __user *oldf, *newf;
3645
3646 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3647 return -EINVAL;
3648 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3649 return -EINVAL;
3650 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3651 return -EBADF;
3652
3653 ren->old_dfd = READ_ONCE(sqe->fd);
3654 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3655 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3656 ren->new_dfd = READ_ONCE(sqe->len);
3657 ren->flags = READ_ONCE(sqe->rename_flags);
3658
3659 ren->oldpath = getname(oldf);
3660 if (IS_ERR(ren->oldpath))
3661 return PTR_ERR(ren->oldpath);
3662
3663 ren->newpath = getname(newf);
3664 if (IS_ERR(ren->newpath)) {
3665 putname(ren->oldpath);
3666 return PTR_ERR(ren->newpath);
3667 }
3668
3669 req->flags |= REQ_F_NEED_CLEANUP;
3670 return 0;
3671}
3672
3673static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3674{
3675 struct io_rename *ren = &req->rename;
3676 int ret;
3677
3678 if (issue_flags & IO_URING_F_NONBLOCK)
3679 return -EAGAIN;
3680
3681 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3682 ren->newpath, ren->flags);
3683
3684 req->flags &= ~REQ_F_NEED_CLEANUP;
3685 if (ret < 0)
3686 req_set_fail(req);
3687 io_req_complete(req, ret);
3688 return 0;
3689}
3690
3691static int io_unlinkat_prep(struct io_kiocb *req,
3692 const struct io_uring_sqe *sqe)
3693{
3694 struct io_unlink *un = &req->unlink;
3695 const char __user *fname;
3696
3697 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3698 return -EINVAL;
3699 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3700 sqe->splice_fd_in)
3701 return -EINVAL;
3702 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3703 return -EBADF;
3704
3705 un->dfd = READ_ONCE(sqe->fd);
3706
3707 un->flags = READ_ONCE(sqe->unlink_flags);
3708 if (un->flags & ~AT_REMOVEDIR)
3709 return -EINVAL;
3710
3711 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3712 un->filename = getname(fname);
3713 if (IS_ERR(un->filename))
3714 return PTR_ERR(un->filename);
3715
3716 req->flags |= REQ_F_NEED_CLEANUP;
3717 return 0;
3718}
3719
3720static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3721{
3722 struct io_unlink *un = &req->unlink;
3723 int ret;
3724
3725 if (issue_flags & IO_URING_F_NONBLOCK)
3726 return -EAGAIN;
3727
3728 if (un->flags & AT_REMOVEDIR)
3729 ret = do_rmdir(un->dfd, un->filename);
3730 else
3731 ret = do_unlinkat(un->dfd, un->filename);
3732
3733 req->flags &= ~REQ_F_NEED_CLEANUP;
3734 if (ret < 0)
3735 req_set_fail(req);
3736 io_req_complete(req, ret);
3737 return 0;
3738}
3739
3740static int io_mkdirat_prep(struct io_kiocb *req,
3741 const struct io_uring_sqe *sqe)
3742{
3743 struct io_mkdir *mkd = &req->mkdir;
3744 const char __user *fname;
3745
3746 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3747 return -EINVAL;
3748 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3749 sqe->splice_fd_in)
3750 return -EINVAL;
3751 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3752 return -EBADF;
3753
3754 mkd->dfd = READ_ONCE(sqe->fd);
3755 mkd->mode = READ_ONCE(sqe->len);
3756
3757 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3758 mkd->filename = getname(fname);
3759 if (IS_ERR(mkd->filename))
3760 return PTR_ERR(mkd->filename);
3761
3762 req->flags |= REQ_F_NEED_CLEANUP;
3763 return 0;
3764}
3765
3766static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3767{
3768 struct io_mkdir *mkd = &req->mkdir;
3769 int ret;
3770
3771 if (issue_flags & IO_URING_F_NONBLOCK)
3772 return -EAGAIN;
3773
3774 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3775
3776 req->flags &= ~REQ_F_NEED_CLEANUP;
3777 if (ret < 0)
3778 req_set_fail(req);
3779 io_req_complete(req, ret);
3780 return 0;
3781}
3782
3783static int io_symlinkat_prep(struct io_kiocb *req,
3784 const struct io_uring_sqe *sqe)
3785{
3786 struct io_symlink *sl = &req->symlink;
3787 const char __user *oldpath, *newpath;
3788
3789 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3790 return -EINVAL;
3791 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3792 sqe->splice_fd_in)
3793 return -EINVAL;
3794 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3795 return -EBADF;
3796
3797 sl->new_dfd = READ_ONCE(sqe->fd);
3798 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3799 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3800
3801 sl->oldpath = getname(oldpath);
3802 if (IS_ERR(sl->oldpath))
3803 return PTR_ERR(sl->oldpath);
3804
3805 sl->newpath = getname(newpath);
3806 if (IS_ERR(sl->newpath)) {
3807 putname(sl->oldpath);
3808 return PTR_ERR(sl->newpath);
3809 }
3810
3811 req->flags |= REQ_F_NEED_CLEANUP;
3812 return 0;
3813}
3814
3815static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3816{
3817 struct io_symlink *sl = &req->symlink;
3818 int ret;
3819
3820 if (issue_flags & IO_URING_F_NONBLOCK)
3821 return -EAGAIN;
3822
3823 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3824
3825 req->flags &= ~REQ_F_NEED_CLEANUP;
3826 if (ret < 0)
3827 req_set_fail(req);
3828 io_req_complete(req, ret);
3829 return 0;
3830}
3831
3832static int io_linkat_prep(struct io_kiocb *req,
3833 const struct io_uring_sqe *sqe)
3834{
3835 struct io_hardlink *lnk = &req->hardlink;
3836 const char __user *oldf, *newf;
3837
3838 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3839 return -EINVAL;
3840 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3841 return -EINVAL;
3842 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3843 return -EBADF;
3844
3845 lnk->old_dfd = READ_ONCE(sqe->fd);
3846 lnk->new_dfd = READ_ONCE(sqe->len);
3847 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3848 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3849 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3850
3851 lnk->oldpath = getname(oldf);
3852 if (IS_ERR(lnk->oldpath))
3853 return PTR_ERR(lnk->oldpath);
3854
3855 lnk->newpath = getname(newf);
3856 if (IS_ERR(lnk->newpath)) {
3857 putname(lnk->oldpath);
3858 return PTR_ERR(lnk->newpath);
3859 }
3860
3861 req->flags |= REQ_F_NEED_CLEANUP;
3862 return 0;
3863}
3864
3865static int io_linkat(struct io_kiocb *req, int issue_flags)
3866{
3867 struct io_hardlink *lnk = &req->hardlink;
3868 int ret;
3869
3870 if (issue_flags & IO_URING_F_NONBLOCK)
3871 return -EAGAIN;
3872
3873 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3874 lnk->newpath, lnk->flags);
3875
3876 req->flags &= ~REQ_F_NEED_CLEANUP;
3877 if (ret < 0)
3878 req_set_fail(req);
3879 io_req_complete(req, ret);
3880 return 0;
3881}
3882
3883static int io_shutdown_prep(struct io_kiocb *req,
3884 const struct io_uring_sqe *sqe)
3885{
3886#if defined(CONFIG_NET)
3887 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3888 return -EINVAL;
3889 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3890 sqe->buf_index || sqe->splice_fd_in))
3891 return -EINVAL;
3892
3893 req->shutdown.how = READ_ONCE(sqe->len);
3894 return 0;
3895#else
3896 return -EOPNOTSUPP;
3897#endif
3898}
3899
3900static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3901{
3902#if defined(CONFIG_NET)
3903 struct socket *sock;
3904 int ret;
3905
3906 if (issue_flags & IO_URING_F_NONBLOCK)
3907 return -EAGAIN;
3908
3909 sock = sock_from_file(req->file);
3910 if (unlikely(!sock))
3911 return -ENOTSOCK;
3912
3913 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3914 if (ret < 0)
3915 req_set_fail(req);
3916 io_req_complete(req, ret);
3917 return 0;
3918#else
3919 return -EOPNOTSUPP;
3920#endif
3921}
3922
3923static int __io_splice_prep(struct io_kiocb *req,
3924 const struct io_uring_sqe *sqe)
3925{
3926 struct io_splice *sp = &req->splice;
3927 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3928
3929 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3930 return -EINVAL;
3931
3932 sp->file_in = NULL;
3933 sp->len = READ_ONCE(sqe->len);
3934 sp->flags = READ_ONCE(sqe->splice_flags);
3935
3936 if (unlikely(sp->flags & ~valid_flags))
3937 return -EINVAL;
3938
3939 sp->file_in = io_file_get(req->ctx, req, READ_ONCE(sqe->splice_fd_in),
3940 (sp->flags & SPLICE_F_FD_IN_FIXED));
3941 if (!sp->file_in)
3942 return -EBADF;
3943 req->flags |= REQ_F_NEED_CLEANUP;
3944 return 0;
3945}
3946
3947static int io_tee_prep(struct io_kiocb *req,
3948 const struct io_uring_sqe *sqe)
3949{
3950 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3951 return -EINVAL;
3952 return __io_splice_prep(req, sqe);
3953}
3954
3955static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3956{
3957 struct io_splice *sp = &req->splice;
3958 struct file *in = sp->file_in;
3959 struct file *out = sp->file_out;
3960 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3961 long ret = 0;
3962
3963 if (issue_flags & IO_URING_F_NONBLOCK)
3964 return -EAGAIN;
3965 if (sp->len)
3966 ret = do_tee(in, out, sp->len, flags);
3967
3968 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3969 io_put_file(in);
3970 req->flags &= ~REQ_F_NEED_CLEANUP;
3971
3972 if (ret != sp->len)
3973 req_set_fail(req);
3974 io_req_complete(req, ret);
3975 return 0;
3976}
3977
3978static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3979{
3980 struct io_splice *sp = &req->splice;
3981
3982 sp->off_in = READ_ONCE(sqe->splice_off_in);
3983 sp->off_out = READ_ONCE(sqe->off);
3984 return __io_splice_prep(req, sqe);
3985}
3986
3987static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3988{
3989 struct io_splice *sp = &req->splice;
3990 struct file *in = sp->file_in;
3991 struct file *out = sp->file_out;
3992 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3993 loff_t *poff_in, *poff_out;
3994 long ret = 0;
3995
3996 if (issue_flags & IO_URING_F_NONBLOCK)
3997 return -EAGAIN;
3998
3999 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4000 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4001
4002 if (sp->len)
4003 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4004
4005 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4006 io_put_file(in);
4007 req->flags &= ~REQ_F_NEED_CLEANUP;
4008
4009 if (ret != sp->len)
4010 req_set_fail(req);
4011 io_req_complete(req, ret);
4012 return 0;
4013}
4014
4015/*
4016 * IORING_OP_NOP just posts a completion event, nothing else.
4017 */
4018static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4019{
4020 struct io_ring_ctx *ctx = req->ctx;
4021
4022 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4023 return -EINVAL;
4024
4025 __io_req_complete(req, issue_flags, 0, 0);
4026 return 0;
4027}
4028
4029static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4030{
4031 struct io_ring_ctx *ctx = req->ctx;
4032
4033 if (!req->file)
4034 return -EBADF;
4035
4036 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4037 return -EINVAL;
4038 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4039 sqe->splice_fd_in))
4040 return -EINVAL;
4041
4042 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4043 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4044 return -EINVAL;
4045
4046 req->sync.off = READ_ONCE(sqe->off);
4047 req->sync.len = READ_ONCE(sqe->len);
4048 return 0;
4049}
4050
4051static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4052{
4053 loff_t end = req->sync.off + req->sync.len;
4054 int ret;
4055
4056 /* fsync always requires a blocking context */
4057 if (issue_flags & IO_URING_F_NONBLOCK)
4058 return -EAGAIN;
4059
4060 ret = vfs_fsync_range(req->file, req->sync.off,
4061 end > 0 ? end : LLONG_MAX,
4062 req->sync.flags & IORING_FSYNC_DATASYNC);
4063 if (ret < 0)
4064 req_set_fail(req);
4065 io_req_complete(req, ret);
4066 return 0;
4067}
4068
4069static int io_fallocate_prep(struct io_kiocb *req,
4070 const struct io_uring_sqe *sqe)
4071{
4072 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4073 sqe->splice_fd_in)
4074 return -EINVAL;
4075 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4076 return -EINVAL;
4077
4078 req->sync.off = READ_ONCE(sqe->off);
4079 req->sync.len = READ_ONCE(sqe->addr);
4080 req->sync.mode = READ_ONCE(sqe->len);
4081 return 0;
4082}
4083
4084static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4085{
4086 int ret;
4087
4088 /* fallocate always requiring blocking context */
4089 if (issue_flags & IO_URING_F_NONBLOCK)
4090 return -EAGAIN;
4091 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4092 req->sync.len);
4093 if (ret < 0)
4094 req_set_fail(req);
4095 io_req_complete(req, ret);
4096 return 0;
4097}
4098
4099static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4100{
4101 const char __user *fname;
4102 int ret;
4103
4104 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4105 return -EINVAL;
4106 if (unlikely(sqe->ioprio || sqe->buf_index))
4107 return -EINVAL;
4108 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4109 return -EBADF;
4110
4111 /* open.how should be already initialised */
4112 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4113 req->open.how.flags |= O_LARGEFILE;
4114
4115 req->open.dfd = READ_ONCE(sqe->fd);
4116 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4117 req->open.filename = getname(fname);
4118 if (IS_ERR(req->open.filename)) {
4119 ret = PTR_ERR(req->open.filename);
4120 req->open.filename = NULL;
4121 return ret;
4122 }
4123
4124 req->open.file_slot = READ_ONCE(sqe->file_index);
4125 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4126 return -EINVAL;
4127
4128 req->open.nofile = rlimit(RLIMIT_NOFILE);
4129 req->flags |= REQ_F_NEED_CLEANUP;
4130 return 0;
4131}
4132
4133static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4134{
4135 u64 mode = READ_ONCE(sqe->len);
4136 u64 flags = READ_ONCE(sqe->open_flags);
4137
4138 req->open.how = build_open_how(flags, mode);
4139 return __io_openat_prep(req, sqe);
4140}
4141
4142static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4143{
4144 struct open_how __user *how;
4145 size_t len;
4146 int ret;
4147
4148 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4149 len = READ_ONCE(sqe->len);
4150 if (len < OPEN_HOW_SIZE_VER0)
4151 return -EINVAL;
4152
4153 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4154 len);
4155 if (ret)
4156 return ret;
4157
4158 return __io_openat_prep(req, sqe);
4159}
4160
4161static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4162{
4163 struct open_flags op;
4164 struct file *file;
4165 bool resolve_nonblock, nonblock_set;
4166 bool fixed = !!req->open.file_slot;
4167 int ret;
4168
4169 ret = build_open_flags(&req->open.how, &op);
4170 if (ret)
4171 goto err;
4172 nonblock_set = op.open_flag & O_NONBLOCK;
4173 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4174 if (issue_flags & IO_URING_F_NONBLOCK) {
4175 /*
4176 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4177 * it'll always -EAGAIN
4178 */
4179 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4180 return -EAGAIN;
4181 op.lookup_flags |= LOOKUP_CACHED;
4182 op.open_flag |= O_NONBLOCK;
4183 }
4184
4185 if (!fixed) {
4186 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4187 if (ret < 0)
4188 goto err;
4189 }
4190
4191 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4192 if (IS_ERR(file)) {
4193 /*
4194 * We could hang on to this 'fd' on retrying, but seems like
4195 * marginal gain for something that is now known to be a slower
4196 * path. So just put it, and we'll get a new one when we retry.
4197 */
4198 if (!fixed)
4199 put_unused_fd(ret);
4200
4201 ret = PTR_ERR(file);
4202 /* only retry if RESOLVE_CACHED wasn't already set by application */
4203 if (ret == -EAGAIN &&
4204 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4205 return -EAGAIN;
4206 goto err;
4207 }
4208
4209 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4210 file->f_flags &= ~O_NONBLOCK;
4211 fsnotify_open(file);
4212
4213 if (!fixed)
4214 fd_install(ret, file);
4215 else
4216 ret = io_install_fixed_file(req, file, issue_flags,
4217 req->open.file_slot - 1);
4218err:
4219 putname(req->open.filename);
4220 req->flags &= ~REQ_F_NEED_CLEANUP;
4221 if (ret < 0)
4222 req_set_fail(req);
4223 __io_req_complete(req, issue_flags, ret, 0);
4224 return 0;
4225}
4226
4227static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4228{
4229 return io_openat2(req, issue_flags);
4230}
4231
4232static int io_remove_buffers_prep(struct io_kiocb *req,
4233 const struct io_uring_sqe *sqe)
4234{
4235 struct io_provide_buf *p = &req->pbuf;
4236 u64 tmp;
4237
4238 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4239 sqe->splice_fd_in)
4240 return -EINVAL;
4241
4242 tmp = READ_ONCE(sqe->fd);
4243 if (!tmp || tmp > USHRT_MAX)
4244 return -EINVAL;
4245
4246 memset(p, 0, sizeof(*p));
4247 p->nbufs = tmp;
4248 p->bgid = READ_ONCE(sqe->buf_group);
4249 return 0;
4250}
4251
4252static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4253 int bgid, unsigned nbufs)
4254{
4255 unsigned i = 0;
4256
4257 /* shouldn't happen */
4258 if (!nbufs)
4259 return 0;
4260
4261 /* the head kbuf is the list itself */
4262 while (!list_empty(&buf->list)) {
4263 struct io_buffer *nxt;
4264
4265 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4266 list_del(&nxt->list);
4267 kfree(nxt);
4268 if (++i == nbufs)
4269 return i;
4270 }
4271 i++;
4272 kfree(buf);
4273 xa_erase(&ctx->io_buffers, bgid);
4274
4275 return i;
4276}
4277
4278static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4279{
4280 struct io_provide_buf *p = &req->pbuf;
4281 struct io_ring_ctx *ctx = req->ctx;
4282 struct io_buffer *head;
4283 int ret = 0;
4284 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4285
4286 io_ring_submit_lock(ctx, !force_nonblock);
4287
4288 lockdep_assert_held(&ctx->uring_lock);
4289
4290 ret = -ENOENT;
4291 head = xa_load(&ctx->io_buffers, p->bgid);
4292 if (head)
4293 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4294 if (ret < 0)
4295 req_set_fail(req);
4296
4297 /* complete before unlock, IOPOLL may need the lock */
4298 __io_req_complete(req, issue_flags, ret, 0);
4299 io_ring_submit_unlock(ctx, !force_nonblock);
4300 return 0;
4301}
4302
4303static int io_provide_buffers_prep(struct io_kiocb *req,
4304 const struct io_uring_sqe *sqe)
4305{
4306 unsigned long size, tmp_check;
4307 struct io_provide_buf *p = &req->pbuf;
4308 u64 tmp;
4309
4310 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4311 return -EINVAL;
4312
4313 tmp = READ_ONCE(sqe->fd);
4314 if (!tmp || tmp > USHRT_MAX)
4315 return -E2BIG;
4316 p->nbufs = tmp;
4317 p->addr = READ_ONCE(sqe->addr);
4318 p->len = READ_ONCE(sqe->len);
4319
4320 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4321 &size))
4322 return -EOVERFLOW;
4323 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4324 return -EOVERFLOW;
4325
4326 size = (unsigned long)p->len * p->nbufs;
4327 if (!access_ok(u64_to_user_ptr(p->addr), size))
4328 return -EFAULT;
4329
4330 p->bgid = READ_ONCE(sqe->buf_group);
4331 tmp = READ_ONCE(sqe->off);
4332 if (tmp > USHRT_MAX)
4333 return -E2BIG;
4334 p->bid = tmp;
4335 return 0;
4336}
4337
4338static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4339{
4340 struct io_buffer *buf;
4341 u64 addr = pbuf->addr;
4342 int i, bid = pbuf->bid;
4343
4344 for (i = 0; i < pbuf->nbufs; i++) {
4345 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4346 if (!buf)
4347 break;
4348
4349 buf->addr = addr;
4350 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4351 buf->bid = bid;
4352 addr += pbuf->len;
4353 bid++;
4354 if (!*head) {
4355 INIT_LIST_HEAD(&buf->list);
4356 *head = buf;
4357 } else {
4358 list_add_tail(&buf->list, &(*head)->list);
4359 }
4360 }
4361
4362 return i ? i : -ENOMEM;
4363}
4364
4365static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4366{
4367 struct io_provide_buf *p = &req->pbuf;
4368 struct io_ring_ctx *ctx = req->ctx;
4369 struct io_buffer *head, *list;
4370 int ret = 0;
4371 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4372
4373 io_ring_submit_lock(ctx, !force_nonblock);
4374
4375 lockdep_assert_held(&ctx->uring_lock);
4376
4377 list = head = xa_load(&ctx->io_buffers, p->bgid);
4378
4379 ret = io_add_buffers(p, &head);
4380 if (ret >= 0 && !list) {
4381 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4382 if (ret < 0)
4383 __io_remove_buffers(ctx, head, p->bgid, -1U);
4384 }
4385 if (ret < 0)
4386 req_set_fail(req);
4387 /* complete before unlock, IOPOLL may need the lock */
4388 __io_req_complete(req, issue_flags, ret, 0);
4389 io_ring_submit_unlock(ctx, !force_nonblock);
4390 return 0;
4391}
4392
4393static int io_epoll_ctl_prep(struct io_kiocb *req,
4394 const struct io_uring_sqe *sqe)
4395{
4396#if defined(CONFIG_EPOLL)
4397 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4398 return -EINVAL;
4399 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4400 return -EINVAL;
4401
4402 req->epoll.epfd = READ_ONCE(sqe->fd);
4403 req->epoll.op = READ_ONCE(sqe->len);
4404 req->epoll.fd = READ_ONCE(sqe->off);
4405
4406 if (ep_op_has_event(req->epoll.op)) {
4407 struct epoll_event __user *ev;
4408
4409 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4410 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4411 return -EFAULT;
4412 }
4413
4414 return 0;
4415#else
4416 return -EOPNOTSUPP;
4417#endif
4418}
4419
4420static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4421{
4422#if defined(CONFIG_EPOLL)
4423 struct io_epoll *ie = &req->epoll;
4424 int ret;
4425 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4426
4427 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4428 if (force_nonblock && ret == -EAGAIN)
4429 return -EAGAIN;
4430
4431 if (ret < 0)
4432 req_set_fail(req);
4433 __io_req_complete(req, issue_flags, ret, 0);
4434 return 0;
4435#else
4436 return -EOPNOTSUPP;
4437#endif
4438}
4439
4440static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4441{
4442#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4443 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4444 return -EINVAL;
4445 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4446 return -EINVAL;
4447
4448 req->madvise.addr = READ_ONCE(sqe->addr);
4449 req->madvise.len = READ_ONCE(sqe->len);
4450 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4451 return 0;
4452#else
4453 return -EOPNOTSUPP;
4454#endif
4455}
4456
4457static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4458{
4459#if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4460 struct io_madvise *ma = &req->madvise;
4461 int ret;
4462
4463 if (issue_flags & IO_URING_F_NONBLOCK)
4464 return -EAGAIN;
4465
4466 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4467 if (ret < 0)
4468 req_set_fail(req);
4469 io_req_complete(req, ret);
4470 return 0;
4471#else
4472 return -EOPNOTSUPP;
4473#endif
4474}
4475
4476static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4477{
4478 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4479 return -EINVAL;
4480 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4481 return -EINVAL;
4482
4483 req->fadvise.offset = READ_ONCE(sqe->off);
4484 req->fadvise.len = READ_ONCE(sqe->len);
4485 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4486 return 0;
4487}
4488
4489static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4490{
4491 struct io_fadvise *fa = &req->fadvise;
4492 int ret;
4493
4494 if (issue_flags & IO_URING_F_NONBLOCK) {
4495 switch (fa->advice) {
4496 case POSIX_FADV_NORMAL:
4497 case POSIX_FADV_RANDOM:
4498 case POSIX_FADV_SEQUENTIAL:
4499 break;
4500 default:
4501 return -EAGAIN;
4502 }
4503 }
4504
4505 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4506 if (ret < 0)
4507 req_set_fail(req);
4508 __io_req_complete(req, issue_flags, ret, 0);
4509 return 0;
4510}
4511
4512static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4513{
4514 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4515 return -EINVAL;
4516 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4517 return -EINVAL;
4518 if (req->flags & REQ_F_FIXED_FILE)
4519 return -EBADF;
4520
4521 req->statx.dfd = READ_ONCE(sqe->fd);
4522 req->statx.mask = READ_ONCE(sqe->len);
4523 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4524 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4525 req->statx.flags = READ_ONCE(sqe->statx_flags);
4526
4527 return 0;
4528}
4529
4530static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4531{
4532 struct io_statx *ctx = &req->statx;
4533 int ret;
4534
4535 if (issue_flags & IO_URING_F_NONBLOCK)
4536 return -EAGAIN;
4537
4538 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4539 ctx->buffer);
4540
4541 if (ret < 0)
4542 req_set_fail(req);
4543 io_req_complete(req, ret);
4544 return 0;
4545}
4546
4547static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4548{
4549 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4550 return -EINVAL;
4551 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4552 sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4553 return -EINVAL;
4554 if (req->flags & REQ_F_FIXED_FILE)
4555 return -EBADF;
4556
4557 req->close.fd = READ_ONCE(sqe->fd);
4558 return 0;
4559}
4560
4561static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4562{
4563 struct files_struct *files = current->files;
4564 struct io_close *close = &req->close;
4565 struct fdtable *fdt;
4566 struct file *file = NULL;
4567 int ret = -EBADF;
4568
4569 spin_lock(&files->file_lock);
4570 fdt = files_fdtable(files);
4571 if (close->fd >= fdt->max_fds) {
4572 spin_unlock(&files->file_lock);
4573 goto err;
4574 }
4575 file = fdt->fd[close->fd];
4576 if (!file || file->f_op == &io_uring_fops) {
4577 spin_unlock(&files->file_lock);
4578 file = NULL;
4579 goto err;
4580 }
4581
4582 /* if the file has a flush method, be safe and punt to async */
4583 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4584 spin_unlock(&files->file_lock);
4585 return -EAGAIN;
4586 }
4587
4588 ret = __close_fd_get_file(close->fd, &file);
4589 spin_unlock(&files->file_lock);
4590 if (ret < 0) {
4591 if (ret == -ENOENT)
4592 ret = -EBADF;
4593 goto err;
4594 }
4595
4596 /* No ->flush() or already async, safely close from here */
4597 ret = filp_close(file, current->files);
4598err:
4599 if (ret < 0)
4600 req_set_fail(req);
4601 if (file)
4602 fput(file);
4603 __io_req_complete(req, issue_flags, ret, 0);
4604 return 0;
4605}
4606
4607static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4608{
4609 struct io_ring_ctx *ctx = req->ctx;
4610
4611 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4612 return -EINVAL;
4613 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4614 sqe->splice_fd_in))
4615 return -EINVAL;
4616
4617 req->sync.off = READ_ONCE(sqe->off);
4618 req->sync.len = READ_ONCE(sqe->len);
4619 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4620 return 0;
4621}
4622
4623static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4624{
4625 int ret;
4626
4627 /* sync_file_range always requires a blocking context */
4628 if (issue_flags & IO_URING_F_NONBLOCK)
4629 return -EAGAIN;
4630
4631 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4632 req->sync.flags);
4633 if (ret < 0)
4634 req_set_fail(req);
4635 io_req_complete(req, ret);
4636 return 0;
4637}
4638
4639#if defined(CONFIG_NET)
4640static int io_setup_async_msg(struct io_kiocb *req,
4641 struct io_async_msghdr *kmsg)
4642{
4643 struct io_async_msghdr *async_msg = req->async_data;
4644
4645 if (async_msg)
4646 return -EAGAIN;
4647 if (io_alloc_async_data(req)) {
4648 kfree(kmsg->free_iov);
4649 return -ENOMEM;
4650 }
4651 async_msg = req->async_data;
4652 req->flags |= REQ_F_NEED_CLEANUP;
4653 memcpy(async_msg, kmsg, sizeof(*kmsg));
4654 async_msg->msg.msg_name = &async_msg->addr;
4655 /* if were using fast_iov, set it to the new one */
4656 if (!async_msg->free_iov)
4657 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4658
4659 return -EAGAIN;
4660}
4661
4662static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4663 struct io_async_msghdr *iomsg)
4664{
4665 iomsg->msg.msg_name = &iomsg->addr;
4666 iomsg->free_iov = iomsg->fast_iov;
4667 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4668 req->sr_msg.msg_flags, &iomsg->free_iov);
4669}
4670
4671static int io_sendmsg_prep_async(struct io_kiocb *req)
4672{
4673 int ret;
4674
4675 ret = io_sendmsg_copy_hdr(req, req->async_data);
4676 if (!ret)
4677 req->flags |= REQ_F_NEED_CLEANUP;
4678 return ret;
4679}
4680
4681static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4682{
4683 struct io_sr_msg *sr = &req->sr_msg;
4684
4685 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4686 return -EINVAL;
4687
4688 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4689 sr->len = READ_ONCE(sqe->len);
4690 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4691 if (sr->msg_flags & MSG_DONTWAIT)
4692 req->flags |= REQ_F_NOWAIT;
4693
4694#ifdef CONFIG_COMPAT
4695 if (req->ctx->compat)
4696 sr->msg_flags |= MSG_CMSG_COMPAT;
4697#endif
4698 return 0;
4699}
4700
4701static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4702{
4703 struct io_async_msghdr iomsg, *kmsg;
4704 struct socket *sock;
4705 unsigned flags;
4706 int min_ret = 0;
4707 int ret;
4708
4709 sock = sock_from_file(req->file);
4710 if (unlikely(!sock))
4711 return -ENOTSOCK;
4712
4713 kmsg = req->async_data;
4714 if (!kmsg) {
4715 ret = io_sendmsg_copy_hdr(req, &iomsg);
4716 if (ret)
4717 return ret;
4718 kmsg = &iomsg;
4719 }
4720
4721 flags = req->sr_msg.msg_flags;
4722 if (issue_flags & IO_URING_F_NONBLOCK)
4723 flags |= MSG_DONTWAIT;
4724 if (flags & MSG_WAITALL)
4725 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4726
4727 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4728 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4729 return io_setup_async_msg(req, kmsg);
4730 if (ret == -ERESTARTSYS)
4731 ret = -EINTR;
4732
4733 /* fast path, check for non-NULL to avoid function call */
4734 if (kmsg->free_iov)
4735 kfree(kmsg->free_iov);
4736 req->flags &= ~REQ_F_NEED_CLEANUP;
4737 if (ret < min_ret)
4738 req_set_fail(req);
4739 __io_req_complete(req, issue_flags, ret, 0);
4740 return 0;
4741}
4742
4743static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4744{
4745 struct io_sr_msg *sr = &req->sr_msg;
4746 struct msghdr msg;
4747 struct iovec iov;
4748 struct socket *sock;
4749 unsigned flags;
4750 int min_ret = 0;
4751 int ret;
4752
4753 sock = sock_from_file(req->file);
4754 if (unlikely(!sock))
4755 return -ENOTSOCK;
4756
4757 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4758 if (unlikely(ret))
4759 return ret;
4760
4761 msg.msg_name = NULL;
4762 msg.msg_control = NULL;
4763 msg.msg_controllen = 0;
4764 msg.msg_namelen = 0;
4765
4766 flags = req->sr_msg.msg_flags;
4767 if (issue_flags & IO_URING_F_NONBLOCK)
4768 flags |= MSG_DONTWAIT;
4769 if (flags & MSG_WAITALL)
4770 min_ret = iov_iter_count(&msg.msg_iter);
4771
4772 msg.msg_flags = flags;
4773 ret = sock_sendmsg(sock, &msg);
4774 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4775 return -EAGAIN;
4776 if (ret == -ERESTARTSYS)
4777 ret = -EINTR;
4778
4779 if (ret < min_ret)
4780 req_set_fail(req);
4781 __io_req_complete(req, issue_flags, ret, 0);
4782 return 0;
4783}
4784
4785static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4786 struct io_async_msghdr *iomsg)
4787{
4788 struct io_sr_msg *sr = &req->sr_msg;
4789 struct iovec __user *uiov;
4790 size_t iov_len;
4791 int ret;
4792
4793 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4794 &iomsg->uaddr, &uiov, &iov_len);
4795 if (ret)
4796 return ret;
4797
4798 if (req->flags & REQ_F_BUFFER_SELECT) {
4799 if (iov_len > 1)
4800 return -EINVAL;
4801 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4802 return -EFAULT;
4803 sr->len = iomsg->fast_iov[0].iov_len;
4804 iomsg->free_iov = NULL;
4805 } else {
4806 iomsg->free_iov = iomsg->fast_iov;
4807 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4808 &iomsg->free_iov, &iomsg->msg.msg_iter,
4809 false);
4810 if (ret > 0)
4811 ret = 0;
4812 }
4813
4814 return ret;
4815}
4816
4817#ifdef CONFIG_COMPAT
4818static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4819 struct io_async_msghdr *iomsg)
4820{
4821 struct io_sr_msg *sr = &req->sr_msg;
4822 struct compat_iovec __user *uiov;
4823 compat_uptr_t ptr;
4824 compat_size_t len;
4825 int ret;
4826
4827 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4828 &ptr, &len);
4829 if (ret)
4830 return ret;
4831
4832 uiov = compat_ptr(ptr);
4833 if (req->flags & REQ_F_BUFFER_SELECT) {
4834 compat_ssize_t clen;
4835
4836 if (len > 1)
4837 return -EINVAL;
4838 if (!access_ok(uiov, sizeof(*uiov)))
4839 return -EFAULT;
4840 if (__get_user(clen, &uiov->iov_len))
4841 return -EFAULT;
4842 if (clen < 0)
4843 return -EINVAL;
4844 sr->len = clen;
4845 iomsg->free_iov = NULL;
4846 } else {
4847 iomsg->free_iov = iomsg->fast_iov;
4848 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4849 UIO_FASTIOV, &iomsg->free_iov,
4850 &iomsg->msg.msg_iter, true);
4851 if (ret < 0)
4852 return ret;
4853 }
4854
4855 return 0;
4856}
4857#endif
4858
4859static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4860 struct io_async_msghdr *iomsg)
4861{
4862 iomsg->msg.msg_name = &iomsg->addr;
4863
4864#ifdef CONFIG_COMPAT
4865 if (req->ctx->compat)
4866 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4867#endif
4868
4869 return __io_recvmsg_copy_hdr(req, iomsg);
4870}
4871
4872static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4873 bool needs_lock)
4874{
4875 struct io_sr_msg *sr = &req->sr_msg;
4876 struct io_buffer *kbuf;
4877
4878 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4879 if (IS_ERR(kbuf))
4880 return kbuf;
4881
4882 sr->kbuf = kbuf;
4883 req->flags |= REQ_F_BUFFER_SELECTED;
4884 return kbuf;
4885}
4886
4887static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4888{
4889 return io_put_kbuf(req, req->sr_msg.kbuf);
4890}
4891
4892static int io_recvmsg_prep_async(struct io_kiocb *req)
4893{
4894 int ret;
4895
4896 ret = io_recvmsg_copy_hdr(req, req->async_data);
4897 if (!ret)
4898 req->flags |= REQ_F_NEED_CLEANUP;
4899 return ret;
4900}
4901
4902static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4903{
4904 struct io_sr_msg *sr = &req->sr_msg;
4905
4906 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4907 return -EINVAL;
4908
4909 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4910 sr->len = READ_ONCE(sqe->len);
4911 sr->bgid = READ_ONCE(sqe->buf_group);
4912 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4913 if (sr->msg_flags & MSG_DONTWAIT)
4914 req->flags |= REQ_F_NOWAIT;
4915
4916#ifdef CONFIG_COMPAT
4917 if (req->ctx->compat)
4918 sr->msg_flags |= MSG_CMSG_COMPAT;
4919#endif
4920 return 0;
4921}
4922
4923static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4924{
4925 struct io_async_msghdr iomsg, *kmsg;
4926 struct socket *sock;
4927 struct io_buffer *kbuf;
4928 unsigned flags;
4929 int min_ret = 0;
4930 int ret, cflags = 0;
4931 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4932
4933 sock = sock_from_file(req->file);
4934 if (unlikely(!sock))
4935 return -ENOTSOCK;
4936
4937 kmsg = req->async_data;
4938 if (!kmsg) {
4939 ret = io_recvmsg_copy_hdr(req, &iomsg);
4940 if (ret)
4941 return ret;
4942 kmsg = &iomsg;
4943 }
4944
4945 if (req->flags & REQ_F_BUFFER_SELECT) {
4946 kbuf = io_recv_buffer_select(req, !force_nonblock);
4947 if (IS_ERR(kbuf))
4948 return PTR_ERR(kbuf);
4949 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4950 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4951 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4952 1, req->sr_msg.len);
4953 }
4954
4955 flags = req->sr_msg.msg_flags;
4956 if (force_nonblock)
4957 flags |= MSG_DONTWAIT;
4958 if (flags & MSG_WAITALL)
4959 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4960
4961 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4962 kmsg->uaddr, flags);
4963 if (force_nonblock && ret == -EAGAIN)
4964 return io_setup_async_msg(req, kmsg);
4965 if (ret == -ERESTARTSYS)
4966 ret = -EINTR;
4967
4968 if (req->flags & REQ_F_BUFFER_SELECTED)
4969 cflags = io_put_recv_kbuf(req);
4970 /* fast path, check for non-NULL to avoid function call */
4971 if (kmsg->free_iov)
4972 kfree(kmsg->free_iov);
4973 req->flags &= ~REQ_F_NEED_CLEANUP;
4974 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4975 req_set_fail(req);
4976 __io_req_complete(req, issue_flags, ret, cflags);
4977 return 0;
4978}
4979
4980static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4981{
4982 struct io_buffer *kbuf;
4983 struct io_sr_msg *sr = &req->sr_msg;
4984 struct msghdr msg;
4985 void __user *buf = sr->buf;
4986 struct socket *sock;
4987 struct iovec iov;
4988 unsigned flags;
4989 int min_ret = 0;
4990 int ret, cflags = 0;
4991 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4992
4993 sock = sock_from_file(req->file);
4994 if (unlikely(!sock))
4995 return -ENOTSOCK;
4996
4997 if (req->flags & REQ_F_BUFFER_SELECT) {
4998 kbuf = io_recv_buffer_select(req, !force_nonblock);
4999 if (IS_ERR(kbuf))
5000 return PTR_ERR(kbuf);
5001 buf = u64_to_user_ptr(kbuf->addr);
5002 }
5003
5004 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5005 if (unlikely(ret))
5006 goto out_free;
5007
5008 msg.msg_name = NULL;
5009 msg.msg_control = NULL;
5010 msg.msg_controllen = 0;
5011 msg.msg_namelen = 0;
5012 msg.msg_iocb = NULL;
5013 msg.msg_flags = 0;
5014
5015 flags = req->sr_msg.msg_flags;
5016 if (force_nonblock)
5017 flags |= MSG_DONTWAIT;
5018 if (flags & MSG_WAITALL)
5019 min_ret = iov_iter_count(&msg.msg_iter);
5020
5021 ret = sock_recvmsg(sock, &msg, flags);
5022 if (force_nonblock && ret == -EAGAIN)
5023 return -EAGAIN;
5024 if (ret == -ERESTARTSYS)
5025 ret = -EINTR;
5026out_free:
5027 if (req->flags & REQ_F_BUFFER_SELECTED)
5028 cflags = io_put_recv_kbuf(req);
5029 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5030 req_set_fail(req);
5031 __io_req_complete(req, issue_flags, ret, cflags);
5032 return 0;
5033}
5034
5035static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5036{
5037 struct io_accept *accept = &req->accept;
5038
5039 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5040 return -EINVAL;
5041 if (sqe->ioprio || sqe->len || sqe->buf_index)
5042 return -EINVAL;
5043
5044 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5045 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5046 accept->flags = READ_ONCE(sqe->accept_flags);
5047 accept->nofile = rlimit(RLIMIT_NOFILE);
5048
5049 accept->file_slot = READ_ONCE(sqe->file_index);
5050 if (accept->file_slot && ((req->open.how.flags & O_CLOEXEC) ||
5051 (accept->flags & SOCK_CLOEXEC)))
5052 return -EINVAL;
5053 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5054 return -EINVAL;
5055 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5056 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5057 return 0;
5058}
5059
5060static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5061{
5062 struct io_accept *accept = &req->accept;
5063 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5064 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5065 bool fixed = !!accept->file_slot;
5066 struct file *file;
5067 int ret, fd;
5068
5069 if (req->file->f_flags & O_NONBLOCK)
5070 req->flags |= REQ_F_NOWAIT;
5071
5072 if (!fixed) {
5073 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5074 if (unlikely(fd < 0))
5075 return fd;
5076 }
5077 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5078 accept->flags);
5079 if (IS_ERR(file)) {
5080 if (!fixed)
5081 put_unused_fd(fd);
5082 ret = PTR_ERR(file);
5083 if (ret == -EAGAIN && force_nonblock)
5084 return -EAGAIN;
5085 if (ret == -ERESTARTSYS)
5086 ret = -EINTR;
5087 req_set_fail(req);
5088 } else if (!fixed) {
5089 fd_install(fd, file);
5090 ret = fd;
5091 } else {
5092 ret = io_install_fixed_file(req, file, issue_flags,
5093 accept->file_slot - 1);
5094 }
5095 __io_req_complete(req, issue_flags, ret, 0);
5096 return 0;
5097}
5098
5099static int io_connect_prep_async(struct io_kiocb *req)
5100{
5101 struct io_async_connect *io = req->async_data;
5102 struct io_connect *conn = &req->connect;
5103
5104 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5105}
5106
5107static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5108{
5109 struct io_connect *conn = &req->connect;
5110
5111 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5112 return -EINVAL;
5113 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5114 sqe->splice_fd_in)
5115 return -EINVAL;
5116
5117 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5118 conn->addr_len = READ_ONCE(sqe->addr2);
5119 return 0;
5120}
5121
5122static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5123{
5124 struct io_async_connect __io, *io;
5125 unsigned file_flags;
5126 int ret;
5127 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5128
5129 if (req->async_data) {
5130 io = req->async_data;
5131 } else {
5132 ret = move_addr_to_kernel(req->connect.addr,
5133 req->connect.addr_len,
5134 &__io.address);
5135 if (ret)
5136 goto out;
5137 io = &__io;
5138 }
5139
5140 file_flags = force_nonblock ? O_NONBLOCK : 0;
5141
5142 ret = __sys_connect_file(req->file, &io->address,
5143 req->connect.addr_len, file_flags);
5144 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5145 if (req->async_data)
5146 return -EAGAIN;
5147 if (io_alloc_async_data(req)) {
5148 ret = -ENOMEM;
5149 goto out;
5150 }
5151 memcpy(req->async_data, &__io, sizeof(__io));
5152 return -EAGAIN;
5153 }
5154 if (ret == -ERESTARTSYS)
5155 ret = -EINTR;
5156out:
5157 if (ret < 0)
5158 req_set_fail(req);
5159 __io_req_complete(req, issue_flags, ret, 0);
5160 return 0;
5161}
5162#else /* !CONFIG_NET */
5163#define IO_NETOP_FN(op) \
5164static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5165{ \
5166 return -EOPNOTSUPP; \
5167}
5168
5169#define IO_NETOP_PREP(op) \
5170IO_NETOP_FN(op) \
5171static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5172{ \
5173 return -EOPNOTSUPP; \
5174} \
5175
5176#define IO_NETOP_PREP_ASYNC(op) \
5177IO_NETOP_PREP(op) \
5178static int io_##op##_prep_async(struct io_kiocb *req) \
5179{ \
5180 return -EOPNOTSUPP; \
5181}
5182
5183IO_NETOP_PREP_ASYNC(sendmsg);
5184IO_NETOP_PREP_ASYNC(recvmsg);
5185IO_NETOP_PREP_ASYNC(connect);
5186IO_NETOP_PREP(accept);
5187IO_NETOP_FN(send);
5188IO_NETOP_FN(recv);
5189#endif /* CONFIG_NET */
5190
5191struct io_poll_table {
5192 struct poll_table_struct pt;
5193 struct io_kiocb *req;
5194 int nr_entries;
5195 int error;
5196};
5197
5198static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5199 __poll_t mask, io_req_tw_func_t func)
5200{
5201 /* for instances that support it check for an event match first: */
5202 if (mask && !(mask & poll->events))
5203 return 0;
5204
5205 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5206
5207 list_del_init(&poll->wait.entry);
5208
5209 req->result = mask;
5210 req->io_task_work.func = func;
5211
5212 /*
5213 * If this fails, then the task is exiting. When a task exits, the
5214 * work gets canceled, so just cancel this request as well instead
5215 * of executing it. We can't safely execute it anyway, as we may not
5216 * have the needed state needed for it anyway.
5217 */
5218 io_req_task_work_add(req);
5219 return 1;
5220}
5221
5222static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5223 __acquires(&req->ctx->completion_lock)
5224{
5225 struct io_ring_ctx *ctx = req->ctx;
5226
5227 /* req->task == current here, checking PF_EXITING is safe */
5228 if (unlikely(req->task->flags & PF_EXITING))
5229 WRITE_ONCE(poll->canceled, true);
5230
5231 if (!req->result && !READ_ONCE(poll->canceled)) {
5232 struct poll_table_struct pt = { ._key = poll->events };
5233
5234 req->result = vfs_poll(req->file, &pt) & poll->events;
5235 }
5236
5237 spin_lock(&ctx->completion_lock);
5238 if (!req->result && !READ_ONCE(poll->canceled)) {
5239 add_wait_queue(poll->head, &poll->wait);
5240 return true;
5241 }
5242
5243 return false;
5244}
5245
5246static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5247{
5248 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5249 if (req->opcode == IORING_OP_POLL_ADD)
5250 return req->async_data;
5251 return req->apoll->double_poll;
5252}
5253
5254static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5255{
5256 if (req->opcode == IORING_OP_POLL_ADD)
5257 return &req->poll;
5258 return &req->apoll->poll;
5259}
5260
5261static void io_poll_remove_double(struct io_kiocb *req)
5262 __must_hold(&req->ctx->completion_lock)
5263{
5264 struct io_poll_iocb *poll = io_poll_get_double(req);
5265
5266 lockdep_assert_held(&req->ctx->completion_lock);
5267
5268 if (poll && poll->head) {
5269 struct wait_queue_head *head = poll->head;
5270
5271 spin_lock_irq(&head->lock);
5272 list_del_init(&poll->wait.entry);
5273 if (poll->wait.private)
5274 req_ref_put(req);
5275 poll->head = NULL;
5276 spin_unlock_irq(&head->lock);
5277 }
5278}
5279
5280static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5281 __must_hold(&req->ctx->completion_lock)
5282{
5283 struct io_ring_ctx *ctx = req->ctx;
5284 unsigned flags = IORING_CQE_F_MORE;
5285 int error;
5286
5287 if (READ_ONCE(req->poll.canceled)) {
5288 error = -ECANCELED;
5289 req->poll.events |= EPOLLONESHOT;
5290 } else {
5291 error = mangle_poll(mask);
5292 }
5293 if (req->poll.events & EPOLLONESHOT)
5294 flags = 0;
5295 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5296 req->poll.done = true;
5297 flags = 0;
5298 }
5299 if (flags & IORING_CQE_F_MORE)
5300 ctx->cq_extra++;
5301
5302 return !(flags & IORING_CQE_F_MORE);
5303}
5304
5305static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5306 __must_hold(&req->ctx->completion_lock)
5307{
5308 bool done;
5309
5310 done = __io_poll_complete(req, mask);
5311 io_commit_cqring(req->ctx);
5312 return done;
5313}
5314
5315static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5316{
5317 struct io_ring_ctx *ctx = req->ctx;
5318 struct io_kiocb *nxt;
5319
5320 if (io_poll_rewait(req, &req->poll)) {
5321 spin_unlock(&ctx->completion_lock);
5322 } else {
5323 bool done;
5324
5325 done = __io_poll_complete(req, req->result);
5326 if (done) {
5327 io_poll_remove_double(req);
5328 hash_del(&req->hash_node);
5329 } else {
5330 req->result = 0;
5331 add_wait_queue(req->poll.head, &req->poll.wait);
5332 }
5333 io_commit_cqring(ctx);
5334 spin_unlock(&ctx->completion_lock);
5335 io_cqring_ev_posted(ctx);
5336
5337 if (done) {
5338 nxt = io_put_req_find_next(req);
5339 if (nxt)
5340 io_req_task_submit(nxt, locked);
5341 }
5342 }
5343}
5344
5345static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5346 int sync, void *key)
5347{
5348 struct io_kiocb *req = wait->private;
5349 struct io_poll_iocb *poll = io_poll_get_single(req);
5350 __poll_t mask = key_to_poll(key);
5351 unsigned long flags;
5352
5353 /* for instances that support it check for an event match first: */
5354 if (mask && !(mask & poll->events))
5355 return 0;
5356 if (!(poll->events & EPOLLONESHOT))
5357 return poll->wait.func(&poll->wait, mode, sync, key);
5358
5359 list_del_init(&wait->entry);
5360
5361 if (poll->head) {
5362 bool done;
5363
5364 spin_lock_irqsave(&poll->head->lock, flags);
5365 done = list_empty(&poll->wait.entry);
5366 if (!done)
5367 list_del_init(&poll->wait.entry);
5368 /* make sure double remove sees this as being gone */
5369 wait->private = NULL;
5370 spin_unlock_irqrestore(&poll->head->lock, flags);
5371 if (!done) {
5372 /* use wait func handler, so it matches the rq type */
5373 poll->wait.func(&poll->wait, mode, sync, key);
5374 }
5375 }
5376 req_ref_put(req);
5377 return 1;
5378}
5379
5380static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5381 wait_queue_func_t wake_func)
5382{
5383 poll->head = NULL;
5384 poll->done = false;
5385 poll->canceled = false;
5386#define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5387 /* mask in events that we always want/need */
5388 poll->events = events | IO_POLL_UNMASK;
5389 INIT_LIST_HEAD(&poll->wait.entry);
5390 init_waitqueue_func_entry(&poll->wait, wake_func);
5391}
5392
5393static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5394 struct wait_queue_head *head,
5395 struct io_poll_iocb **poll_ptr)
5396{
5397 struct io_kiocb *req = pt->req;
5398
5399 /*
5400 * The file being polled uses multiple waitqueues for poll handling
5401 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5402 * if this happens.
5403 */
5404 if (unlikely(pt->nr_entries)) {
5405 struct io_poll_iocb *poll_one = poll;
5406
5407 /* double add on the same waitqueue head, ignore */
5408 if (poll_one->head == head)
5409 return;
5410 /* already have a 2nd entry, fail a third attempt */
5411 if (*poll_ptr) {
5412 if ((*poll_ptr)->head == head)
5413 return;
5414 pt->error = -EINVAL;
5415 return;
5416 }
5417 /*
5418 * Can't handle multishot for double wait for now, turn it
5419 * into one-shot mode.
5420 */
5421 if (!(poll_one->events & EPOLLONESHOT))
5422 poll_one->events |= EPOLLONESHOT;
5423 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5424 if (!poll) {
5425 pt->error = -ENOMEM;
5426 return;
5427 }
5428 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5429 req_ref_get(req);
5430 poll->wait.private = req;
5431 *poll_ptr = poll;
5432 }
5433
5434 pt->nr_entries++;
5435 poll->head = head;
5436
5437 if (poll->events & EPOLLEXCLUSIVE)
5438 add_wait_queue_exclusive(head, &poll->wait);
5439 else
5440 add_wait_queue(head, &poll->wait);
5441}
5442
5443static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5444 struct poll_table_struct *p)
5445{
5446 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5447 struct async_poll *apoll = pt->req->apoll;
5448
5449 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5450}
5451
5452static void io_async_task_func(struct io_kiocb *req, bool *locked)
5453{
5454 struct async_poll *apoll = req->apoll;
5455 struct io_ring_ctx *ctx = req->ctx;
5456
5457 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5458
5459 if (io_poll_rewait(req, &apoll->poll)) {
5460 spin_unlock(&ctx->completion_lock);
5461 return;
5462 }
5463
5464 hash_del(&req->hash_node);
5465 io_poll_remove_double(req);
5466 spin_unlock(&ctx->completion_lock);
5467
5468 if (!READ_ONCE(apoll->poll.canceled))
5469 io_req_task_submit(req, locked);
5470 else
5471 io_req_complete_failed(req, -ECANCELED);
5472}
5473
5474static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5475 void *key)
5476{
5477 struct io_kiocb *req = wait->private;
5478 struct io_poll_iocb *poll = &req->apoll->poll;
5479
5480 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5481 key_to_poll(key));
5482
5483 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5484}
5485
5486static void io_poll_req_insert(struct io_kiocb *req)
5487{
5488 struct io_ring_ctx *ctx = req->ctx;
5489 struct hlist_head *list;
5490
5491 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5492 hlist_add_head(&req->hash_node, list);
5493}
5494
5495static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5496 struct io_poll_iocb *poll,
5497 struct io_poll_table *ipt, __poll_t mask,
5498 wait_queue_func_t wake_func)
5499 __acquires(&ctx->completion_lock)
5500{
5501 struct io_ring_ctx *ctx = req->ctx;
5502 bool cancel = false;
5503
5504 INIT_HLIST_NODE(&req->hash_node);
5505 io_init_poll_iocb(poll, mask, wake_func);
5506 poll->file = req->file;
5507 poll->wait.private = req;
5508
5509 ipt->pt._key = mask;
5510 ipt->req = req;
5511 ipt->error = 0;
5512 ipt->nr_entries = 0;
5513
5514 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5515 if (unlikely(!ipt->nr_entries) && !ipt->error)
5516 ipt->error = -EINVAL;
5517
5518 spin_lock(&ctx->completion_lock);
5519 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5520 io_poll_remove_double(req);
5521 if (likely(poll->head)) {
5522 spin_lock_irq(&poll->head->lock);
5523 if (unlikely(list_empty(&poll->wait.entry))) {
5524 if (ipt->error)
5525 cancel = true;
5526 ipt->error = 0;
5527 mask = 0;
5528 }
5529 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5530 list_del_init(&poll->wait.entry);
5531 else if (cancel)
5532 WRITE_ONCE(poll->canceled, true);
5533 else if (!poll->done) /* actually waiting for an event */
5534 io_poll_req_insert(req);
5535 spin_unlock_irq(&poll->head->lock);
5536 }
5537
5538 return mask;
5539}
5540
5541enum {
5542 IO_APOLL_OK,
5543 IO_APOLL_ABORTED,
5544 IO_APOLL_READY
5545};
5546
5547static int io_arm_poll_handler(struct io_kiocb *req)
5548{
5549 const struct io_op_def *def = &io_op_defs[req->opcode];
5550 struct io_ring_ctx *ctx = req->ctx;
5551 struct async_poll *apoll;
5552 struct io_poll_table ipt;
5553 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5554 int rw;
5555
5556 if (!req->file || !file_can_poll(req->file))
5557 return IO_APOLL_ABORTED;
5558 if (req->flags & REQ_F_POLLED)
5559 return IO_APOLL_ABORTED;
5560 if (!def->pollin && !def->pollout)
5561 return IO_APOLL_ABORTED;
5562
5563 if (def->pollin) {
5564 rw = READ;
5565 mask |= POLLIN | POLLRDNORM;
5566
5567 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5568 if ((req->opcode == IORING_OP_RECVMSG) &&
5569 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5570 mask &= ~POLLIN;
5571 } else {
5572 rw = WRITE;
5573 mask |= POLLOUT | POLLWRNORM;
5574 }
5575
5576 /* if we can't nonblock try, then no point in arming a poll handler */
5577 if (!io_file_supports_nowait(req, rw))
5578 return IO_APOLL_ABORTED;
5579
5580 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5581 if (unlikely(!apoll))
5582 return IO_APOLL_ABORTED;
5583 apoll->double_poll = NULL;
5584 req->apoll = apoll;
5585 req->flags |= REQ_F_POLLED;
5586 ipt.pt._qproc = io_async_queue_proc;
5587 io_req_set_refcount(req);
5588
5589 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5590 io_async_wake);
5591 spin_unlock(&ctx->completion_lock);
5592 if (ret || ipt.error)
5593 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5594
5595 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5596 mask, apoll->poll.events);
5597 return IO_APOLL_OK;
5598}
5599
5600static bool __io_poll_remove_one(struct io_kiocb *req,
5601 struct io_poll_iocb *poll, bool do_cancel)
5602 __must_hold(&req->ctx->completion_lock)
5603{
5604 bool do_complete = false;
5605
5606 if (!poll->head)
5607 return false;
5608 spin_lock_irq(&poll->head->lock);
5609 if (do_cancel)
5610 WRITE_ONCE(poll->canceled, true);
5611 if (!list_empty(&poll->wait.entry)) {
5612 list_del_init(&poll->wait.entry);
5613 do_complete = true;
5614 }
5615 spin_unlock_irq(&poll->head->lock);
5616 hash_del(&req->hash_node);
5617 return do_complete;
5618}
5619
5620static bool io_poll_remove_one(struct io_kiocb *req)
5621 __must_hold(&req->ctx->completion_lock)
5622{
5623 bool do_complete;
5624
5625 io_poll_remove_double(req);
5626 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5627
5628 if (do_complete) {
5629 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5630 io_commit_cqring(req->ctx);
5631 req_set_fail(req);
5632 io_put_req_deferred(req);
5633 }
5634 return do_complete;
5635}
5636
5637/*
5638 * Returns true if we found and killed one or more poll requests
5639 */
5640static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5641 bool cancel_all)
5642{
5643 struct hlist_node *tmp;
5644 struct io_kiocb *req;
5645 int posted = 0, i;
5646
5647 spin_lock(&ctx->completion_lock);
5648 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5649 struct hlist_head *list;
5650
5651 list = &ctx->cancel_hash[i];
5652 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5653 if (io_match_task(req, tsk, cancel_all))
5654 posted += io_poll_remove_one(req);
5655 }
5656 }
5657 spin_unlock(&ctx->completion_lock);
5658
5659 if (posted)
5660 io_cqring_ev_posted(ctx);
5661
5662 return posted != 0;
5663}
5664
5665static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5666 bool poll_only)
5667 __must_hold(&ctx->completion_lock)
5668{
5669 struct hlist_head *list;
5670 struct io_kiocb *req;
5671
5672 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5673 hlist_for_each_entry(req, list, hash_node) {
5674 if (sqe_addr != req->user_data)
5675 continue;
5676 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5677 continue;
5678 return req;
5679 }
5680 return NULL;
5681}
5682
5683static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5684 bool poll_only)
5685 __must_hold(&ctx->completion_lock)
5686{
5687 struct io_kiocb *req;
5688
5689 req = io_poll_find(ctx, sqe_addr, poll_only);
5690 if (!req)
5691 return -ENOENT;
5692 if (io_poll_remove_one(req))
5693 return 0;
5694
5695 return -EALREADY;
5696}
5697
5698static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5699 unsigned int flags)
5700{
5701 u32 events;
5702
5703 events = READ_ONCE(sqe->poll32_events);
5704#ifdef __BIG_ENDIAN
5705 events = swahw32(events);
5706#endif
5707 if (!(flags & IORING_POLL_ADD_MULTI))
5708 events |= EPOLLONESHOT;
5709 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5710}
5711
5712static int io_poll_update_prep(struct io_kiocb *req,
5713 const struct io_uring_sqe *sqe)
5714{
5715 struct io_poll_update *upd = &req->poll_update;
5716 u32 flags;
5717
5718 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5719 return -EINVAL;
5720 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5721 return -EINVAL;
5722 flags = READ_ONCE(sqe->len);
5723 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5724 IORING_POLL_ADD_MULTI))
5725 return -EINVAL;
5726 /* meaningless without update */
5727 if (flags == IORING_POLL_ADD_MULTI)
5728 return -EINVAL;
5729
5730 upd->old_user_data = READ_ONCE(sqe->addr);
5731 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5732 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5733
5734 upd->new_user_data = READ_ONCE(sqe->off);
5735 if (!upd->update_user_data && upd->new_user_data)
5736 return -EINVAL;
5737 if (upd->update_events)
5738 upd->events = io_poll_parse_events(sqe, flags);
5739 else if (sqe->poll32_events)
5740 return -EINVAL;
5741
5742 return 0;
5743}
5744
5745static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5746 void *key)
5747{
5748 struct io_kiocb *req = wait->private;
5749 struct io_poll_iocb *poll = &req->poll;
5750
5751 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5752}
5753
5754static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5755 struct poll_table_struct *p)
5756{
5757 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5758
5759 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5760}
5761
5762static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5763{
5764 struct io_poll_iocb *poll = &req->poll;
5765 u32 flags;
5766
5767 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5768 return -EINVAL;
5769 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5770 return -EINVAL;
5771 flags = READ_ONCE(sqe->len);
5772 if (flags & ~IORING_POLL_ADD_MULTI)
5773 return -EINVAL;
5774
5775 io_req_set_refcount(req);
5776 poll->events = io_poll_parse_events(sqe, flags);
5777 return 0;
5778}
5779
5780static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5781{
5782 struct io_poll_iocb *poll = &req->poll;
5783 struct io_ring_ctx *ctx = req->ctx;
5784 struct io_poll_table ipt;
5785 __poll_t mask;
5786
5787 ipt.pt._qproc = io_poll_queue_proc;
5788
5789 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5790 io_poll_wake);
5791
5792 if (mask) { /* no async, we'd stolen it */
5793 ipt.error = 0;
5794 io_poll_complete(req, mask);
5795 }
5796 spin_unlock(&ctx->completion_lock);
5797
5798 if (mask) {
5799 io_cqring_ev_posted(ctx);
5800 if (poll->events & EPOLLONESHOT)
5801 io_put_req(req);
5802 }
5803 return ipt.error;
5804}
5805
5806static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5807{
5808 struct io_ring_ctx *ctx = req->ctx;
5809 struct io_kiocb *preq;
5810 bool completing;
5811 int ret;
5812
5813 spin_lock(&ctx->completion_lock);
5814 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5815 if (!preq) {
5816 ret = -ENOENT;
5817 goto err;
5818 }
5819
5820 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5821 completing = true;
5822 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5823 goto err;
5824 }
5825
5826 /*
5827 * Don't allow racy completion with singleshot, as we cannot safely
5828 * update those. For multishot, if we're racing with completion, just
5829 * let completion re-add it.
5830 */
5831 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5832 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5833 ret = -EALREADY;
5834 goto err;
5835 }
5836 /* we now have a detached poll request. reissue. */
5837 ret = 0;
5838err:
5839 if (ret < 0) {
5840 spin_unlock(&ctx->completion_lock);
5841 req_set_fail(req);
5842 io_req_complete(req, ret);
5843 return 0;
5844 }
5845 /* only mask one event flags, keep behavior flags */
5846 if (req->poll_update.update_events) {
5847 preq->poll.events &= ~0xffff;
5848 preq->poll.events |= req->poll_update.events & 0xffff;
5849 preq->poll.events |= IO_POLL_UNMASK;
5850 }
5851 if (req->poll_update.update_user_data)
5852 preq->user_data = req->poll_update.new_user_data;
5853 spin_unlock(&ctx->completion_lock);
5854
5855 /* complete update request, we're done with it */
5856 io_req_complete(req, ret);
5857
5858 if (!completing) {
5859 ret = io_poll_add(preq, issue_flags);
5860 if (ret < 0) {
5861 req_set_fail(preq);
5862 io_req_complete(preq, ret);
5863 }
5864 }
5865 return 0;
5866}
5867
5868static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5869{
5870 req_set_fail(req);
5871 io_req_complete_post(req, -ETIME, 0);
5872}
5873
5874static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5875{
5876 struct io_timeout_data *data = container_of(timer,
5877 struct io_timeout_data, timer);
5878 struct io_kiocb *req = data->req;
5879 struct io_ring_ctx *ctx = req->ctx;
5880 unsigned long flags;
5881
5882 spin_lock_irqsave(&ctx->timeout_lock, flags);
5883 list_del_init(&req->timeout.list);
5884 atomic_set(&req->ctx->cq_timeouts,
5885 atomic_read(&req->ctx->cq_timeouts) + 1);
5886 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5887
5888 req->io_task_work.func = io_req_task_timeout;
5889 io_req_task_work_add(req);
5890 return HRTIMER_NORESTART;
5891}
5892
5893static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5894 __u64 user_data)
5895 __must_hold(&ctx->timeout_lock)
5896{
5897 struct io_timeout_data *io;
5898 struct io_kiocb *req;
5899 bool found = false;
5900
5901 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5902 found = user_data == req->user_data;
5903 if (found)
5904 break;
5905 }
5906 if (!found)
5907 return ERR_PTR(-ENOENT);
5908
5909 io = req->async_data;
5910 if (hrtimer_try_to_cancel(&io->timer) == -1)
5911 return ERR_PTR(-EALREADY);
5912 list_del_init(&req->timeout.list);
5913 return req;
5914}
5915
5916static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5917 __must_hold(&ctx->completion_lock)
5918 __must_hold(&ctx->timeout_lock)
5919{
5920 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5921
5922 if (IS_ERR(req))
5923 return PTR_ERR(req);
5924
5925 req_set_fail(req);
5926 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5927 io_put_req_deferred(req);
5928 return 0;
5929}
5930
5931static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
5932{
5933 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
5934 case IORING_TIMEOUT_BOOTTIME:
5935 return CLOCK_BOOTTIME;
5936 case IORING_TIMEOUT_REALTIME:
5937 return CLOCK_REALTIME;
5938 default:
5939 /* can't happen, vetted at prep time */
5940 WARN_ON_ONCE(1);
5941 fallthrough;
5942 case 0:
5943 return CLOCK_MONOTONIC;
5944 }
5945}
5946
5947static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5948 struct timespec64 *ts, enum hrtimer_mode mode)
5949 __must_hold(&ctx->timeout_lock)
5950{
5951 struct io_timeout_data *io;
5952 struct io_kiocb *req;
5953 bool found = false;
5954
5955 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
5956 found = user_data == req->user_data;
5957 if (found)
5958 break;
5959 }
5960 if (!found)
5961 return -ENOENT;
5962
5963 io = req->async_data;
5964 if (hrtimer_try_to_cancel(&io->timer) == -1)
5965 return -EALREADY;
5966 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
5967 io->timer.function = io_link_timeout_fn;
5968 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
5969 return 0;
5970}
5971
5972static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5973 struct timespec64 *ts, enum hrtimer_mode mode)
5974 __must_hold(&ctx->timeout_lock)
5975{
5976 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5977 struct io_timeout_data *data;
5978
5979 if (IS_ERR(req))
5980 return PTR_ERR(req);
5981
5982 req->timeout.off = 0; /* noseq */
5983 data = req->async_data;
5984 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5985 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
5986 data->timer.function = io_timeout_fn;
5987 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5988 return 0;
5989}
5990
5991static int io_timeout_remove_prep(struct io_kiocb *req,
5992 const struct io_uring_sqe *sqe)
5993{
5994 struct io_timeout_rem *tr = &req->timeout_rem;
5995
5996 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5997 return -EINVAL;
5998 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5999 return -EINVAL;
6000 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6001 return -EINVAL;
6002
6003 tr->ltimeout = false;
6004 tr->addr = READ_ONCE(sqe->addr);
6005 tr->flags = READ_ONCE(sqe->timeout_flags);
6006 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6007 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6008 return -EINVAL;
6009 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6010 tr->ltimeout = true;
6011 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6012 return -EINVAL;
6013 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6014 return -EFAULT;
6015 } else if (tr->flags) {
6016 /* timeout removal doesn't support flags */
6017 return -EINVAL;
6018 }
6019
6020 return 0;
6021}
6022
6023static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6024{
6025 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6026 : HRTIMER_MODE_REL;
6027}
6028
6029/*
6030 * Remove or update an existing timeout command
6031 */
6032static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6033{
6034 struct io_timeout_rem *tr = &req->timeout_rem;
6035 struct io_ring_ctx *ctx = req->ctx;
6036 int ret;
6037
6038 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6039 spin_lock(&ctx->completion_lock);
6040 spin_lock_irq(&ctx->timeout_lock);
6041 ret = io_timeout_cancel(ctx, tr->addr);
6042 spin_unlock_irq(&ctx->timeout_lock);
6043 spin_unlock(&ctx->completion_lock);
6044 } else {
6045 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6046
6047 spin_lock_irq(&ctx->timeout_lock);
6048 if (tr->ltimeout)
6049 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6050 else
6051 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6052 spin_unlock_irq(&ctx->timeout_lock);
6053 }
6054
6055 if (ret < 0)
6056 req_set_fail(req);
6057 io_req_complete_post(req, ret, 0);
6058 return 0;
6059}
6060
6061static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6062 bool is_timeout_link)
6063{
6064 struct io_timeout_data *data;
6065 unsigned flags;
6066 u32 off = READ_ONCE(sqe->off);
6067
6068 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6069 return -EINVAL;
6070 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6071 sqe->splice_fd_in)
6072 return -EINVAL;
6073 if (off && is_timeout_link)
6074 return -EINVAL;
6075 flags = READ_ONCE(sqe->timeout_flags);
6076 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6077 return -EINVAL;
6078 /* more than one clock specified is invalid, obviously */
6079 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6080 return -EINVAL;
6081
6082 INIT_LIST_HEAD(&req->timeout.list);
6083 req->timeout.off = off;
6084 if (unlikely(off && !req->ctx->off_timeout_used))
6085 req->ctx->off_timeout_used = true;
6086
6087 if (!req->async_data && io_alloc_async_data(req))
6088 return -ENOMEM;
6089
6090 data = req->async_data;
6091 data->req = req;
6092 data->flags = flags;
6093
6094 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6095 return -EFAULT;
6096
6097 data->mode = io_translate_timeout_mode(flags);
6098 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6099
6100 if (is_timeout_link) {
6101 struct io_submit_link *link = &req->ctx->submit_state.link;
6102
6103 if (!link->head)
6104 return -EINVAL;
6105 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6106 return -EINVAL;
6107 req->timeout.head = link->last;
6108 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6109 }
6110 return 0;
6111}
6112
6113static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6114{
6115 struct io_ring_ctx *ctx = req->ctx;
6116 struct io_timeout_data *data = req->async_data;
6117 struct list_head *entry;
6118 u32 tail, off = req->timeout.off;
6119
6120 spin_lock_irq(&ctx->timeout_lock);
6121
6122 /*
6123 * sqe->off holds how many events that need to occur for this
6124 * timeout event to be satisfied. If it isn't set, then this is
6125 * a pure timeout request, sequence isn't used.
6126 */
6127 if (io_is_timeout_noseq(req)) {
6128 entry = ctx->timeout_list.prev;
6129 goto add;
6130 }
6131
6132 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6133 req->timeout.target_seq = tail + off;
6134
6135 /* Update the last seq here in case io_flush_timeouts() hasn't.
6136 * This is safe because ->completion_lock is held, and submissions
6137 * and completions are never mixed in the same ->completion_lock section.
6138 */
6139 ctx->cq_last_tm_flush = tail;
6140
6141 /*
6142 * Insertion sort, ensuring the first entry in the list is always
6143 * the one we need first.
6144 */
6145 list_for_each_prev(entry, &ctx->timeout_list) {
6146 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6147 timeout.list);
6148
6149 if (io_is_timeout_noseq(nxt))
6150 continue;
6151 /* nxt.seq is behind @tail, otherwise would've been completed */
6152 if (off >= nxt->timeout.target_seq - tail)
6153 break;
6154 }
6155add:
6156 list_add(&req->timeout.list, entry);
6157 data->timer.function = io_timeout_fn;
6158 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6159 spin_unlock_irq(&ctx->timeout_lock);
6160 return 0;
6161}
6162
6163struct io_cancel_data {
6164 struct io_ring_ctx *ctx;
6165 u64 user_data;
6166};
6167
6168static bool io_cancel_cb(struct io_wq_work *work, void *data)
6169{
6170 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6171 struct io_cancel_data *cd = data;
6172
6173 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6174}
6175
6176static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6177 struct io_ring_ctx *ctx)
6178{
6179 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6180 enum io_wq_cancel cancel_ret;
6181 int ret = 0;
6182
6183 if (!tctx || !tctx->io_wq)
6184 return -ENOENT;
6185
6186 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6187 switch (cancel_ret) {
6188 case IO_WQ_CANCEL_OK:
6189 ret = 0;
6190 break;
6191 case IO_WQ_CANCEL_RUNNING:
6192 ret = -EALREADY;
6193 break;
6194 case IO_WQ_CANCEL_NOTFOUND:
6195 ret = -ENOENT;
6196 break;
6197 }
6198
6199 return ret;
6200}
6201
6202static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6203{
6204 struct io_ring_ctx *ctx = req->ctx;
6205 int ret;
6206
6207 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6208
6209 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6210 if (ret != -ENOENT)
6211 return ret;
6212
6213 spin_lock(&ctx->completion_lock);
6214 spin_lock_irq(&ctx->timeout_lock);
6215 ret = io_timeout_cancel(ctx, sqe_addr);
6216 spin_unlock_irq(&ctx->timeout_lock);
6217 if (ret != -ENOENT)
6218 goto out;
6219 ret = io_poll_cancel(ctx, sqe_addr, false);
6220out:
6221 spin_unlock(&ctx->completion_lock);
6222 return ret;
6223}
6224
6225static int io_async_cancel_prep(struct io_kiocb *req,
6226 const struct io_uring_sqe *sqe)
6227{
6228 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6229 return -EINVAL;
6230 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6231 return -EINVAL;
6232 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6233 sqe->splice_fd_in)
6234 return -EINVAL;
6235
6236 req->cancel.addr = READ_ONCE(sqe->addr);
6237 return 0;
6238}
6239
6240static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6241{
6242 struct io_ring_ctx *ctx = req->ctx;
6243 u64 sqe_addr = req->cancel.addr;
6244 struct io_tctx_node *node;
6245 int ret;
6246
6247 ret = io_try_cancel_userdata(req, sqe_addr);
6248 if (ret != -ENOENT)
6249 goto done;
6250
6251 /* slow path, try all io-wq's */
6252 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6253 ret = -ENOENT;
6254 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6255 struct io_uring_task *tctx = node->task->io_uring;
6256
6257 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6258 if (ret != -ENOENT)
6259 break;
6260 }
6261 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6262done:
6263 if (ret < 0)
6264 req_set_fail(req);
6265 io_req_complete_post(req, ret, 0);
6266 return 0;
6267}
6268
6269static int io_rsrc_update_prep(struct io_kiocb *req,
6270 const struct io_uring_sqe *sqe)
6271{
6272 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6273 return -EINVAL;
6274 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6275 return -EINVAL;
6276
6277 req->rsrc_update.offset = READ_ONCE(sqe->off);
6278 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6279 if (!req->rsrc_update.nr_args)
6280 return -EINVAL;
6281 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6282 return 0;
6283}
6284
6285static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6286{
6287 struct io_ring_ctx *ctx = req->ctx;
6288 struct io_uring_rsrc_update2 up;
6289 int ret;
6290
6291 if (issue_flags & IO_URING_F_NONBLOCK)
6292 return -EAGAIN;
6293
6294 up.offset = req->rsrc_update.offset;
6295 up.data = req->rsrc_update.arg;
6296 up.nr = 0;
6297 up.tags = 0;
6298 up.resv = 0;
6299
6300 mutex_lock(&ctx->uring_lock);
6301 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6302 &up, req->rsrc_update.nr_args);
6303 mutex_unlock(&ctx->uring_lock);
6304
6305 if (ret < 0)
6306 req_set_fail(req);
6307 __io_req_complete(req, issue_flags, ret, 0);
6308 return 0;
6309}
6310
6311static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6312{
6313 switch (req->opcode) {
6314 case IORING_OP_NOP:
6315 return 0;
6316 case IORING_OP_READV:
6317 case IORING_OP_READ_FIXED:
6318 case IORING_OP_READ:
6319 return io_read_prep(req, sqe);
6320 case IORING_OP_WRITEV:
6321 case IORING_OP_WRITE_FIXED:
6322 case IORING_OP_WRITE:
6323 return io_write_prep(req, sqe);
6324 case IORING_OP_POLL_ADD:
6325 return io_poll_add_prep(req, sqe);
6326 case IORING_OP_POLL_REMOVE:
6327 return io_poll_update_prep(req, sqe);
6328 case IORING_OP_FSYNC:
6329 return io_fsync_prep(req, sqe);
6330 case IORING_OP_SYNC_FILE_RANGE:
6331 return io_sfr_prep(req, sqe);
6332 case IORING_OP_SENDMSG:
6333 case IORING_OP_SEND:
6334 return io_sendmsg_prep(req, sqe);
6335 case IORING_OP_RECVMSG:
6336 case IORING_OP_RECV:
6337 return io_recvmsg_prep(req, sqe);
6338 case IORING_OP_CONNECT:
6339 return io_connect_prep(req, sqe);
6340 case IORING_OP_TIMEOUT:
6341 return io_timeout_prep(req, sqe, false);
6342 case IORING_OP_TIMEOUT_REMOVE:
6343 return io_timeout_remove_prep(req, sqe);
6344 case IORING_OP_ASYNC_CANCEL:
6345 return io_async_cancel_prep(req, sqe);
6346 case IORING_OP_LINK_TIMEOUT:
6347 return io_timeout_prep(req, sqe, true);
6348 case IORING_OP_ACCEPT:
6349 return io_accept_prep(req, sqe);
6350 case IORING_OP_FALLOCATE:
6351 return io_fallocate_prep(req, sqe);
6352 case IORING_OP_OPENAT:
6353 return io_openat_prep(req, sqe);
6354 case IORING_OP_CLOSE:
6355 return io_close_prep(req, sqe);
6356 case IORING_OP_FILES_UPDATE:
6357 return io_rsrc_update_prep(req, sqe);
6358 case IORING_OP_STATX:
6359 return io_statx_prep(req, sqe);
6360 case IORING_OP_FADVISE:
6361 return io_fadvise_prep(req, sqe);
6362 case IORING_OP_MADVISE:
6363 return io_madvise_prep(req, sqe);
6364 case IORING_OP_OPENAT2:
6365 return io_openat2_prep(req, sqe);
6366 case IORING_OP_EPOLL_CTL:
6367 return io_epoll_ctl_prep(req, sqe);
6368 case IORING_OP_SPLICE:
6369 return io_splice_prep(req, sqe);
6370 case IORING_OP_PROVIDE_BUFFERS:
6371 return io_provide_buffers_prep(req, sqe);
6372 case IORING_OP_REMOVE_BUFFERS:
6373 return io_remove_buffers_prep(req, sqe);
6374 case IORING_OP_TEE:
6375 return io_tee_prep(req, sqe);
6376 case IORING_OP_SHUTDOWN:
6377 return io_shutdown_prep(req, sqe);
6378 case IORING_OP_RENAMEAT:
6379 return io_renameat_prep(req, sqe);
6380 case IORING_OP_UNLINKAT:
6381 return io_unlinkat_prep(req, sqe);
6382 case IORING_OP_MKDIRAT:
6383 return io_mkdirat_prep(req, sqe);
6384 case IORING_OP_SYMLINKAT:
6385 return io_symlinkat_prep(req, sqe);
6386 case IORING_OP_LINKAT:
6387 return io_linkat_prep(req, sqe);
6388 }
6389
6390 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6391 req->opcode);
6392 return -EINVAL;
6393}
6394
6395static int io_req_prep_async(struct io_kiocb *req)
6396{
6397 if (!io_op_defs[req->opcode].needs_async_setup)
6398 return 0;
6399 if (WARN_ON_ONCE(req->async_data))
6400 return -EFAULT;
6401 if (io_alloc_async_data(req))
6402 return -EAGAIN;
6403
6404 switch (req->opcode) {
6405 case IORING_OP_READV:
6406 return io_rw_prep_async(req, READ);
6407 case IORING_OP_WRITEV:
6408 return io_rw_prep_async(req, WRITE);
6409 case IORING_OP_SENDMSG:
6410 return io_sendmsg_prep_async(req);
6411 case IORING_OP_RECVMSG:
6412 return io_recvmsg_prep_async(req);
6413 case IORING_OP_CONNECT:
6414 return io_connect_prep_async(req);
6415 }
6416 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6417 req->opcode);
6418 return -EFAULT;
6419}
6420
6421static u32 io_get_sequence(struct io_kiocb *req)
6422{
6423 u32 seq = req->ctx->cached_sq_head;
6424
6425 /* need original cached_sq_head, but it was increased for each req */
6426 io_for_each_link(req, req)
6427 seq--;
6428 return seq;
6429}
6430
6431static bool io_drain_req(struct io_kiocb *req)
6432{
6433 struct io_kiocb *pos;
6434 struct io_ring_ctx *ctx = req->ctx;
6435 struct io_defer_entry *de;
6436 int ret;
6437 u32 seq;
6438
6439 if (req->flags & REQ_F_FAIL) {
6440 io_req_complete_fail_submit(req);
6441 return true;
6442 }
6443
6444 /*
6445 * If we need to drain a request in the middle of a link, drain the
6446 * head request and the next request/link after the current link.
6447 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6448 * maintained for every request of our link.
6449 */
6450 if (ctx->drain_next) {
6451 req->flags |= REQ_F_IO_DRAIN;
6452 ctx->drain_next = false;
6453 }
6454 /* not interested in head, start from the first linked */
6455 io_for_each_link(pos, req->link) {
6456 if (pos->flags & REQ_F_IO_DRAIN) {
6457 ctx->drain_next = true;
6458 req->flags |= REQ_F_IO_DRAIN;
6459 break;
6460 }
6461 }
6462
6463 /* Still need defer if there is pending req in defer list. */
6464 if (likely(list_empty_careful(&ctx->defer_list) &&
6465 !(req->flags & REQ_F_IO_DRAIN))) {
6466 ctx->drain_active = false;
6467 return false;
6468 }
6469
6470 seq = io_get_sequence(req);
6471 /* Still a chance to pass the sequence check */
6472 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6473 return false;
6474
6475 ret = io_req_prep_async(req);
6476 if (ret)
6477 goto fail;
6478 io_prep_async_link(req);
6479 de = kmalloc(sizeof(*de), GFP_KERNEL);
6480 if (!de) {
6481 ret = -ENOMEM;
6482fail:
6483 io_req_complete_failed(req, ret);
6484 return true;
6485 }
6486
6487 spin_lock(&ctx->completion_lock);
6488 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6489 spin_unlock(&ctx->completion_lock);
6490 kfree(de);
6491 io_queue_async_work(req, NULL);
6492 return true;
6493 }
6494
6495 trace_io_uring_defer(ctx, req, req->user_data);
6496 de->req = req;
6497 de->seq = seq;
6498 list_add_tail(&de->list, &ctx->defer_list);
6499 spin_unlock(&ctx->completion_lock);
6500 return true;
6501}
6502
6503static void io_clean_op(struct io_kiocb *req)
6504{
6505 if (req->flags & REQ_F_BUFFER_SELECTED) {
6506 switch (req->opcode) {
6507 case IORING_OP_READV:
6508 case IORING_OP_READ_FIXED:
6509 case IORING_OP_READ:
6510 kfree((void *)(unsigned long)req->rw.addr);
6511 break;
6512 case IORING_OP_RECVMSG:
6513 case IORING_OP_RECV:
6514 kfree(req->sr_msg.kbuf);
6515 break;
6516 }
6517 }
6518
6519 if (req->flags & REQ_F_NEED_CLEANUP) {
6520 switch (req->opcode) {
6521 case IORING_OP_READV:
6522 case IORING_OP_READ_FIXED:
6523 case IORING_OP_READ:
6524 case IORING_OP_WRITEV:
6525 case IORING_OP_WRITE_FIXED:
6526 case IORING_OP_WRITE: {
6527 struct io_async_rw *io = req->async_data;
6528
6529 kfree(io->free_iovec);
6530 break;
6531 }
6532 case IORING_OP_RECVMSG:
6533 case IORING_OP_SENDMSG: {
6534 struct io_async_msghdr *io = req->async_data;
6535
6536 kfree(io->free_iov);
6537 break;
6538 }
6539 case IORING_OP_SPLICE:
6540 case IORING_OP_TEE:
6541 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6542 io_put_file(req->splice.file_in);
6543 break;
6544 case IORING_OP_OPENAT:
6545 case IORING_OP_OPENAT2:
6546 if (req->open.filename)
6547 putname(req->open.filename);
6548 break;
6549 case IORING_OP_RENAMEAT:
6550 putname(req->rename.oldpath);
6551 putname(req->rename.newpath);
6552 break;
6553 case IORING_OP_UNLINKAT:
6554 putname(req->unlink.filename);
6555 break;
6556 case IORING_OP_MKDIRAT:
6557 putname(req->mkdir.filename);
6558 break;
6559 case IORING_OP_SYMLINKAT:
6560 putname(req->symlink.oldpath);
6561 putname(req->symlink.newpath);
6562 break;
6563 case IORING_OP_LINKAT:
6564 putname(req->hardlink.oldpath);
6565 putname(req->hardlink.newpath);
6566 break;
6567 }
6568 }
6569 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6570 kfree(req->apoll->double_poll);
6571 kfree(req->apoll);
6572 req->apoll = NULL;
6573 }
6574 if (req->flags & REQ_F_INFLIGHT) {
6575 struct io_uring_task *tctx = req->task->io_uring;
6576
6577 atomic_dec(&tctx->inflight_tracked);
6578 }
6579 if (req->flags & REQ_F_CREDS)
6580 put_cred(req->creds);
6581
6582 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6583}
6584
6585static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6586{
6587 struct io_ring_ctx *ctx = req->ctx;
6588 const struct cred *creds = NULL;
6589 int ret;
6590
6591 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6592 creds = override_creds(req->creds);
6593
6594 switch (req->opcode) {
6595 case IORING_OP_NOP:
6596 ret = io_nop(req, issue_flags);
6597 break;
6598 case IORING_OP_READV:
6599 case IORING_OP_READ_FIXED:
6600 case IORING_OP_READ:
6601 ret = io_read(req, issue_flags);
6602 break;
6603 case IORING_OP_WRITEV:
6604 case IORING_OP_WRITE_FIXED:
6605 case IORING_OP_WRITE:
6606 ret = io_write(req, issue_flags);
6607 break;
6608 case IORING_OP_FSYNC:
6609 ret = io_fsync(req, issue_flags);
6610 break;
6611 case IORING_OP_POLL_ADD:
6612 ret = io_poll_add(req, issue_flags);
6613 break;
6614 case IORING_OP_POLL_REMOVE:
6615 ret = io_poll_update(req, issue_flags);
6616 break;
6617 case IORING_OP_SYNC_FILE_RANGE:
6618 ret = io_sync_file_range(req, issue_flags);
6619 break;
6620 case IORING_OP_SENDMSG:
6621 ret = io_sendmsg(req, issue_flags);
6622 break;
6623 case IORING_OP_SEND:
6624 ret = io_send(req, issue_flags);
6625 break;
6626 case IORING_OP_RECVMSG:
6627 ret = io_recvmsg(req, issue_flags);
6628 break;
6629 case IORING_OP_RECV:
6630 ret = io_recv(req, issue_flags);
6631 break;
6632 case IORING_OP_TIMEOUT:
6633 ret = io_timeout(req, issue_flags);
6634 break;
6635 case IORING_OP_TIMEOUT_REMOVE:
6636 ret = io_timeout_remove(req, issue_flags);
6637 break;
6638 case IORING_OP_ACCEPT:
6639 ret = io_accept(req, issue_flags);
6640 break;
6641 case IORING_OP_CONNECT:
6642 ret = io_connect(req, issue_flags);
6643 break;
6644 case IORING_OP_ASYNC_CANCEL:
6645 ret = io_async_cancel(req, issue_flags);
6646 break;
6647 case IORING_OP_FALLOCATE:
6648 ret = io_fallocate(req, issue_flags);
6649 break;
6650 case IORING_OP_OPENAT:
6651 ret = io_openat(req, issue_flags);
6652 break;
6653 case IORING_OP_CLOSE:
6654 ret = io_close(req, issue_flags);
6655 break;
6656 case IORING_OP_FILES_UPDATE:
6657 ret = io_files_update(req, issue_flags);
6658 break;
6659 case IORING_OP_STATX:
6660 ret = io_statx(req, issue_flags);
6661 break;
6662 case IORING_OP_FADVISE:
6663 ret = io_fadvise(req, issue_flags);
6664 break;
6665 case IORING_OP_MADVISE:
6666 ret = io_madvise(req, issue_flags);
6667 break;
6668 case IORING_OP_OPENAT2:
6669 ret = io_openat2(req, issue_flags);
6670 break;
6671 case IORING_OP_EPOLL_CTL:
6672 ret = io_epoll_ctl(req, issue_flags);
6673 break;
6674 case IORING_OP_SPLICE:
6675 ret = io_splice(req, issue_flags);
6676 break;
6677 case IORING_OP_PROVIDE_BUFFERS:
6678 ret = io_provide_buffers(req, issue_flags);
6679 break;
6680 case IORING_OP_REMOVE_BUFFERS:
6681 ret = io_remove_buffers(req, issue_flags);
6682 break;
6683 case IORING_OP_TEE:
6684 ret = io_tee(req, issue_flags);
6685 break;
6686 case IORING_OP_SHUTDOWN:
6687 ret = io_shutdown(req, issue_flags);
6688 break;
6689 case IORING_OP_RENAMEAT:
6690 ret = io_renameat(req, issue_flags);
6691 break;
6692 case IORING_OP_UNLINKAT:
6693 ret = io_unlinkat(req, issue_flags);
6694 break;
6695 case IORING_OP_MKDIRAT:
6696 ret = io_mkdirat(req, issue_flags);
6697 break;
6698 case IORING_OP_SYMLINKAT:
6699 ret = io_symlinkat(req, issue_flags);
6700 break;
6701 case IORING_OP_LINKAT:
6702 ret = io_linkat(req, issue_flags);
6703 break;
6704 default:
6705 ret = -EINVAL;
6706 break;
6707 }
6708
6709 if (creds)
6710 revert_creds(creds);
6711 if (ret)
6712 return ret;
6713 /* If the op doesn't have a file, we're not polling for it */
6714 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6715 io_iopoll_req_issued(req);
6716
6717 return 0;
6718}
6719
6720static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6721{
6722 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6723
6724 req = io_put_req_find_next(req);
6725 return req ? &req->work : NULL;
6726}
6727
6728static void io_wq_submit_work(struct io_wq_work *work)
6729{
6730 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6731 struct io_kiocb *timeout;
6732 int ret = 0;
6733
6734 /* one will be dropped by ->io_free_work() after returning to io-wq */
6735 if (!(req->flags & REQ_F_REFCOUNT))
6736 __io_req_set_refcount(req, 2);
6737 else
6738 req_ref_get(req);
6739
6740 timeout = io_prep_linked_timeout(req);
6741 if (timeout)
6742 io_queue_linked_timeout(timeout);
6743
6744 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6745 if (work->flags & IO_WQ_WORK_CANCEL)
6746 ret = -ECANCELED;
6747
6748 if (!ret) {
6749 do {
6750 ret = io_issue_sqe(req, 0);
6751 /*
6752 * We can get EAGAIN for polled IO even though we're
6753 * forcing a sync submission from here, since we can't
6754 * wait for request slots on the block side.
6755 */
6756 if (ret != -EAGAIN)
6757 break;
6758 cond_resched();
6759 } while (1);
6760 }
6761
6762 /* avoid locking problems by failing it from a clean context */
6763 if (ret)
6764 io_req_task_queue_fail(req, ret);
6765}
6766
6767static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6768 unsigned i)
6769{
6770 return &table->files[i];
6771}
6772
6773static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6774 int index)
6775{
6776 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6777
6778 return (struct file *) (slot->file_ptr & FFS_MASK);
6779}
6780
6781static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6782{
6783 unsigned long file_ptr = (unsigned long) file;
6784
6785 if (__io_file_supports_nowait(file, READ))
6786 file_ptr |= FFS_ASYNC_READ;
6787 if (__io_file_supports_nowait(file, WRITE))
6788 file_ptr |= FFS_ASYNC_WRITE;
6789 if (S_ISREG(file_inode(file)->i_mode))
6790 file_ptr |= FFS_ISREG;
6791 file_slot->file_ptr = file_ptr;
6792}
6793
6794static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6795 struct io_kiocb *req, int fd)
6796{
6797 struct file *file;
6798 unsigned long file_ptr;
6799
6800 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6801 return NULL;
6802 fd = array_index_nospec(fd, ctx->nr_user_files);
6803 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6804 file = (struct file *) (file_ptr & FFS_MASK);
6805 file_ptr &= ~FFS_MASK;
6806 /* mask in overlapping REQ_F and FFS bits */
6807 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6808 io_req_set_rsrc_node(req);
6809 return file;
6810}
6811
6812static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6813 struct io_kiocb *req, int fd)
6814{
6815 struct file *file = fget(fd);
6816
6817 trace_io_uring_file_get(ctx, fd);
6818
6819 /* we don't allow fixed io_uring files */
6820 if (file && unlikely(file->f_op == &io_uring_fops))
6821 io_req_track_inflight(req);
6822 return file;
6823}
6824
6825static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6826 struct io_kiocb *req, int fd, bool fixed)
6827{
6828 if (fixed)
6829 return io_file_get_fixed(ctx, req, fd);
6830 else
6831 return io_file_get_normal(ctx, req, fd);
6832}
6833
6834static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6835{
6836 struct io_kiocb *prev = req->timeout.prev;
6837 int ret;
6838
6839 if (prev) {
6840 ret = io_try_cancel_userdata(req, prev->user_data);
6841 io_req_complete_post(req, ret ?: -ETIME, 0);
6842 io_put_req(prev);
6843 } else {
6844 io_req_complete_post(req, -ETIME, 0);
6845 }
6846}
6847
6848static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6849{
6850 struct io_timeout_data *data = container_of(timer,
6851 struct io_timeout_data, timer);
6852 struct io_kiocb *prev, *req = data->req;
6853 struct io_ring_ctx *ctx = req->ctx;
6854 unsigned long flags;
6855
6856 spin_lock_irqsave(&ctx->timeout_lock, flags);
6857 prev = req->timeout.head;
6858 req->timeout.head = NULL;
6859
6860 /*
6861 * We don't expect the list to be empty, that will only happen if we
6862 * race with the completion of the linked work.
6863 */
6864 if (prev) {
6865 io_remove_next_linked(prev);
6866 if (!req_ref_inc_not_zero(prev))
6867 prev = NULL;
6868 }
6869 list_del(&req->timeout.list);
6870 req->timeout.prev = prev;
6871 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6872
6873 req->io_task_work.func = io_req_task_link_timeout;
6874 io_req_task_work_add(req);
6875 return HRTIMER_NORESTART;
6876}
6877
6878static void io_queue_linked_timeout(struct io_kiocb *req)
6879{
6880 struct io_ring_ctx *ctx = req->ctx;
6881
6882 spin_lock_irq(&ctx->timeout_lock);
6883 /*
6884 * If the back reference is NULL, then our linked request finished
6885 * before we got a chance to setup the timer
6886 */
6887 if (req->timeout.head) {
6888 struct io_timeout_data *data = req->async_data;
6889
6890 data->timer.function = io_link_timeout_fn;
6891 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6892 data->mode);
6893 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6894 }
6895 spin_unlock_irq(&ctx->timeout_lock);
6896 /* drop submission reference */
6897 io_put_req(req);
6898}
6899
6900static void __io_queue_sqe(struct io_kiocb *req)
6901 __must_hold(&req->ctx->uring_lock)
6902{
6903 struct io_kiocb *linked_timeout;
6904 int ret;
6905
6906issue_sqe:
6907 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6908
6909 /*
6910 * We async punt it if the file wasn't marked NOWAIT, or if the file
6911 * doesn't support non-blocking read/write attempts
6912 */
6913 if (likely(!ret)) {
6914 if (req->flags & REQ_F_COMPLETE_INLINE) {
6915 struct io_ring_ctx *ctx = req->ctx;
6916 struct io_submit_state *state = &ctx->submit_state;
6917
6918 state->compl_reqs[state->compl_nr++] = req;
6919 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
6920 io_submit_flush_completions(ctx);
6921 return;
6922 }
6923
6924 linked_timeout = io_prep_linked_timeout(req);
6925 if (linked_timeout)
6926 io_queue_linked_timeout(linked_timeout);
6927 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6928 linked_timeout = io_prep_linked_timeout(req);
6929
6930 switch (io_arm_poll_handler(req)) {
6931 case IO_APOLL_READY:
6932 if (linked_timeout)
6933 io_unprep_linked_timeout(req);
6934 goto issue_sqe;
6935 case IO_APOLL_ABORTED:
6936 /*
6937 * Queued up for async execution, worker will release
6938 * submit reference when the iocb is actually submitted.
6939 */
6940 io_queue_async_work(req, NULL);
6941 break;
6942 }
6943
6944 if (linked_timeout)
6945 io_queue_linked_timeout(linked_timeout);
6946 } else {
6947 io_req_complete_failed(req, ret);
6948 }
6949}
6950
6951static inline void io_queue_sqe(struct io_kiocb *req)
6952 __must_hold(&req->ctx->uring_lock)
6953{
6954 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
6955 return;
6956
6957 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
6958 __io_queue_sqe(req);
6959 } else if (req->flags & REQ_F_FAIL) {
6960 io_req_complete_fail_submit(req);
6961 } else {
6962 int ret = io_req_prep_async(req);
6963
6964 if (unlikely(ret))
6965 io_req_complete_failed(req, ret);
6966 else
6967 io_queue_async_work(req, NULL);
6968 }
6969}
6970
6971/*
6972 * Check SQE restrictions (opcode and flags).
6973 *
6974 * Returns 'true' if SQE is allowed, 'false' otherwise.
6975 */
6976static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6977 struct io_kiocb *req,
6978 unsigned int sqe_flags)
6979{
6980 if (likely(!ctx->restricted))
6981 return true;
6982
6983 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6984 return false;
6985
6986 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6987 ctx->restrictions.sqe_flags_required)
6988 return false;
6989
6990 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6991 ctx->restrictions.sqe_flags_required))
6992 return false;
6993
6994 return true;
6995}
6996
6997static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6998 const struct io_uring_sqe *sqe)
6999 __must_hold(&ctx->uring_lock)
7000{
7001 struct io_submit_state *state;
7002 unsigned int sqe_flags;
7003 int personality, ret = 0;
7004
7005 /* req is partially pre-initialised, see io_preinit_req() */
7006 req->opcode = READ_ONCE(sqe->opcode);
7007 /* same numerical values with corresponding REQ_F_*, safe to copy */
7008 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7009 req->user_data = READ_ONCE(sqe->user_data);
7010 req->file = NULL;
7011 req->fixed_rsrc_refs = NULL;
7012 req->task = current;
7013
7014 /* enforce forwards compatibility on users */
7015 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7016 return -EINVAL;
7017 if (unlikely(req->opcode >= IORING_OP_LAST))
7018 return -EINVAL;
7019 if (!io_check_restriction(ctx, req, sqe_flags))
7020 return -EACCES;
7021
7022 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7023 !io_op_defs[req->opcode].buffer_select)
7024 return -EOPNOTSUPP;
7025 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7026 ctx->drain_active = true;
7027
7028 personality = READ_ONCE(sqe->personality);
7029 if (personality) {
7030 req->creds = xa_load(&ctx->personalities, personality);
7031 if (!req->creds)
7032 return -EINVAL;
7033 get_cred(req->creds);
7034 req->flags |= REQ_F_CREDS;
7035 }
7036 state = &ctx->submit_state;
7037
7038 /*
7039 * Plug now if we have more than 1 IO left after this, and the target
7040 * is potentially a read/write to block based storage.
7041 */
7042 if (!state->plug_started && state->ios_left > 1 &&
7043 io_op_defs[req->opcode].plug) {
7044 blk_start_plug(&state->plug);
7045 state->plug_started = true;
7046 }
7047
7048 if (io_op_defs[req->opcode].needs_file) {
7049 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7050 (sqe_flags & IOSQE_FIXED_FILE));
7051 if (unlikely(!req->file))
7052 ret = -EBADF;
7053 }
7054
7055 state->ios_left--;
7056 return ret;
7057}
7058
7059static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7060 const struct io_uring_sqe *sqe)
7061 __must_hold(&ctx->uring_lock)
7062{
7063 struct io_submit_link *link = &ctx->submit_state.link;
7064 int ret;
7065
7066 ret = io_init_req(ctx, req, sqe);
7067 if (unlikely(ret)) {
7068fail_req:
7069 /* fail even hard links since we don't submit */
7070 if (link->head) {
7071 /*
7072 * we can judge a link req is failed or cancelled by if
7073 * REQ_F_FAIL is set, but the head is an exception since
7074 * it may be set REQ_F_FAIL because of other req's failure
7075 * so let's leverage req->result to distinguish if a head
7076 * is set REQ_F_FAIL because of its failure or other req's
7077 * failure so that we can set the correct ret code for it.
7078 * init result here to avoid affecting the normal path.
7079 */
7080 if (!(link->head->flags & REQ_F_FAIL))
7081 req_fail_link_node(link->head, -ECANCELED);
7082 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7083 /*
7084 * the current req is a normal req, we should return
7085 * error and thus break the submittion loop.
7086 */
7087 io_req_complete_failed(req, ret);
7088 return ret;
7089 }
7090 req_fail_link_node(req, ret);
7091 } else {
7092 ret = io_req_prep(req, sqe);
7093 if (unlikely(ret))
7094 goto fail_req;
7095 }
7096
7097 /* don't need @sqe from now on */
7098 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7099 req->flags, true,
7100 ctx->flags & IORING_SETUP_SQPOLL);
7101
7102 /*
7103 * If we already have a head request, queue this one for async
7104 * submittal once the head completes. If we don't have a head but
7105 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7106 * submitted sync once the chain is complete. If none of those
7107 * conditions are true (normal request), then just queue it.
7108 */
7109 if (link->head) {
7110 struct io_kiocb *head = link->head;
7111
7112 if (!(req->flags & REQ_F_FAIL)) {
7113 ret = io_req_prep_async(req);
7114 if (unlikely(ret)) {
7115 req_fail_link_node(req, ret);
7116 if (!(head->flags & REQ_F_FAIL))
7117 req_fail_link_node(head, -ECANCELED);
7118 }
7119 }
7120 trace_io_uring_link(ctx, req, head);
7121 link->last->link = req;
7122 link->last = req;
7123
7124 /* last request of a link, enqueue the link */
7125 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7126 link->head = NULL;
7127 io_queue_sqe(head);
7128 }
7129 } else {
7130 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7131 link->head = req;
7132 link->last = req;
7133 } else {
7134 io_queue_sqe(req);
7135 }
7136 }
7137
7138 return 0;
7139}
7140
7141/*
7142 * Batched submission is done, ensure local IO is flushed out.
7143 */
7144static void io_submit_state_end(struct io_submit_state *state,
7145 struct io_ring_ctx *ctx)
7146{
7147 if (state->link.head)
7148 io_queue_sqe(state->link.head);
7149 if (state->compl_nr)
7150 io_submit_flush_completions(ctx);
7151 if (state->plug_started)
7152 blk_finish_plug(&state->plug);
7153}
7154
7155/*
7156 * Start submission side cache.
7157 */
7158static void io_submit_state_start(struct io_submit_state *state,
7159 unsigned int max_ios)
7160{
7161 state->plug_started = false;
7162 state->ios_left = max_ios;
7163 /* set only head, no need to init link_last in advance */
7164 state->link.head = NULL;
7165}
7166
7167static void io_commit_sqring(struct io_ring_ctx *ctx)
7168{
7169 struct io_rings *rings = ctx->rings;
7170
7171 /*
7172 * Ensure any loads from the SQEs are done at this point,
7173 * since once we write the new head, the application could
7174 * write new data to them.
7175 */
7176 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7177}
7178
7179/*
7180 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7181 * that is mapped by userspace. This means that care needs to be taken to
7182 * ensure that reads are stable, as we cannot rely on userspace always
7183 * being a good citizen. If members of the sqe are validated and then later
7184 * used, it's important that those reads are done through READ_ONCE() to
7185 * prevent a re-load down the line.
7186 */
7187static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7188{
7189 unsigned head, mask = ctx->sq_entries - 1;
7190 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7191
7192 /*
7193 * The cached sq head (or cq tail) serves two purposes:
7194 *
7195 * 1) allows us to batch the cost of updating the user visible
7196 * head updates.
7197 * 2) allows the kernel side to track the head on its own, even
7198 * though the application is the one updating it.
7199 */
7200 head = READ_ONCE(ctx->sq_array[sq_idx]);
7201 if (likely(head < ctx->sq_entries))
7202 return &ctx->sq_sqes[head];
7203
7204 /* drop invalid entries */
7205 ctx->cq_extra--;
7206 WRITE_ONCE(ctx->rings->sq_dropped,
7207 READ_ONCE(ctx->rings->sq_dropped) + 1);
7208 return NULL;
7209}
7210
7211static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7212 __must_hold(&ctx->uring_lock)
7213{
7214 int submitted = 0;
7215
7216 /* make sure SQ entry isn't read before tail */
7217 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7218 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7219 return -EAGAIN;
7220 io_get_task_refs(nr);
7221
7222 io_submit_state_start(&ctx->submit_state, nr);
7223 while (submitted < nr) {
7224 const struct io_uring_sqe *sqe;
7225 struct io_kiocb *req;
7226
7227 req = io_alloc_req(ctx);
7228 if (unlikely(!req)) {
7229 if (!submitted)
7230 submitted = -EAGAIN;
7231 break;
7232 }
7233 sqe = io_get_sqe(ctx);
7234 if (unlikely(!sqe)) {
7235 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7236 break;
7237 }
7238 /* will complete beyond this point, count as submitted */
7239 submitted++;
7240 if (io_submit_sqe(ctx, req, sqe))
7241 break;
7242 }
7243
7244 if (unlikely(submitted != nr)) {
7245 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7246 int unused = nr - ref_used;
7247
7248 current->io_uring->cached_refs += unused;
7249 percpu_ref_put_many(&ctx->refs, unused);
7250 }
7251
7252 io_submit_state_end(&ctx->submit_state, ctx);
7253 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7254 io_commit_sqring(ctx);
7255
7256 return submitted;
7257}
7258
7259static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7260{
7261 return READ_ONCE(sqd->state);
7262}
7263
7264static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7265{
7266 /* Tell userspace we may need a wakeup call */
7267 spin_lock(&ctx->completion_lock);
7268 WRITE_ONCE(ctx->rings->sq_flags,
7269 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7270 spin_unlock(&ctx->completion_lock);
7271}
7272
7273static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7274{
7275 spin_lock(&ctx->completion_lock);
7276 WRITE_ONCE(ctx->rings->sq_flags,
7277 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7278 spin_unlock(&ctx->completion_lock);
7279}
7280
7281static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7282{
7283 unsigned int to_submit;
7284 int ret = 0;
7285
7286 to_submit = io_sqring_entries(ctx);
7287 /* if we're handling multiple rings, cap submit size for fairness */
7288 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7289 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7290
7291 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7292 unsigned nr_events = 0;
7293 const struct cred *creds = NULL;
7294
7295 if (ctx->sq_creds != current_cred())
7296 creds = override_creds(ctx->sq_creds);
7297
7298 mutex_lock(&ctx->uring_lock);
7299 if (!list_empty(&ctx->iopoll_list))
7300 io_do_iopoll(ctx, &nr_events, 0);
7301
7302 /*
7303 * Don't submit if refs are dying, good for io_uring_register(),
7304 * but also it is relied upon by io_ring_exit_work()
7305 */
7306 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7307 !(ctx->flags & IORING_SETUP_R_DISABLED))
7308 ret = io_submit_sqes(ctx, to_submit);
7309 mutex_unlock(&ctx->uring_lock);
7310
7311 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7312 wake_up(&ctx->sqo_sq_wait);
7313 if (creds)
7314 revert_creds(creds);
7315 }
7316
7317 return ret;
7318}
7319
7320static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7321{
7322 struct io_ring_ctx *ctx;
7323 unsigned sq_thread_idle = 0;
7324
7325 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7326 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7327 sqd->sq_thread_idle = sq_thread_idle;
7328}
7329
7330static bool io_sqd_handle_event(struct io_sq_data *sqd)
7331{
7332 bool did_sig = false;
7333 struct ksignal ksig;
7334
7335 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7336 signal_pending(current)) {
7337 mutex_unlock(&sqd->lock);
7338 if (signal_pending(current))
7339 did_sig = get_signal(&ksig);
7340 cond_resched();
7341 mutex_lock(&sqd->lock);
7342 }
7343 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7344}
7345
7346static int io_sq_thread(void *data)
7347{
7348 struct io_sq_data *sqd = data;
7349 struct io_ring_ctx *ctx;
7350 unsigned long timeout = 0;
7351 char buf[TASK_COMM_LEN];
7352 DEFINE_WAIT(wait);
7353
7354 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7355 set_task_comm(current, buf);
7356
7357 if (sqd->sq_cpu != -1)
7358 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7359 else
7360 set_cpus_allowed_ptr(current, cpu_online_mask);
7361 current->flags |= PF_NO_SETAFFINITY;
7362
7363 mutex_lock(&sqd->lock);
7364 while (1) {
7365 bool cap_entries, sqt_spin = false;
7366
7367 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7368 if (io_sqd_handle_event(sqd))
7369 break;
7370 timeout = jiffies + sqd->sq_thread_idle;
7371 }
7372
7373 cap_entries = !list_is_singular(&sqd->ctx_list);
7374 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7375 int ret = __io_sq_thread(ctx, cap_entries);
7376
7377 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7378 sqt_spin = true;
7379 }
7380 if (io_run_task_work())
7381 sqt_spin = true;
7382
7383 if (sqt_spin || !time_after(jiffies, timeout)) {
7384 cond_resched();
7385 if (sqt_spin)
7386 timeout = jiffies + sqd->sq_thread_idle;
7387 continue;
7388 }
7389
7390 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7391 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7392 bool needs_sched = true;
7393
7394 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7395 io_ring_set_wakeup_flag(ctx);
7396
7397 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7398 !list_empty_careful(&ctx->iopoll_list)) {
7399 needs_sched = false;
7400 break;
7401 }
7402 if (io_sqring_entries(ctx)) {
7403 needs_sched = false;
7404 break;
7405 }
7406 }
7407
7408 if (needs_sched) {
7409 mutex_unlock(&sqd->lock);
7410 schedule();
7411 mutex_lock(&sqd->lock);
7412 }
7413 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7414 io_ring_clear_wakeup_flag(ctx);
7415 }
7416
7417 finish_wait(&sqd->wait, &wait);
7418 timeout = jiffies + sqd->sq_thread_idle;
7419 }
7420
7421 io_uring_cancel_generic(true, sqd);
7422 sqd->thread = NULL;
7423 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7424 io_ring_set_wakeup_flag(ctx);
7425 io_run_task_work();
7426 mutex_unlock(&sqd->lock);
7427
7428 complete(&sqd->exited);
7429 do_exit(0);
7430}
7431
7432struct io_wait_queue {
7433 struct wait_queue_entry wq;
7434 struct io_ring_ctx *ctx;
7435 unsigned cq_tail;
7436 unsigned nr_timeouts;
7437};
7438
7439static inline bool io_should_wake(struct io_wait_queue *iowq)
7440{
7441 struct io_ring_ctx *ctx = iowq->ctx;
7442 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7443
7444 /*
7445 * Wake up if we have enough events, or if a timeout occurred since we
7446 * started waiting. For timeouts, we always want to return to userspace,
7447 * regardless of event count.
7448 */
7449 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7450}
7451
7452static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7453 int wake_flags, void *key)
7454{
7455 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7456 wq);
7457
7458 /*
7459 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7460 * the task, and the next invocation will do it.
7461 */
7462 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7463 return autoremove_wake_function(curr, mode, wake_flags, key);
7464 return -1;
7465}
7466
7467static int io_run_task_work_sig(void)
7468{
7469 if (io_run_task_work())
7470 return 1;
7471 if (!signal_pending(current))
7472 return 0;
7473 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7474 return -ERESTARTSYS;
7475 return -EINTR;
7476}
7477
7478/* when returns >0, the caller should retry */
7479static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7480 struct io_wait_queue *iowq,
7481 signed long *timeout)
7482{
7483 int ret;
7484
7485 /* make sure we run task_work before checking for signals */
7486 ret = io_run_task_work_sig();
7487 if (ret || io_should_wake(iowq))
7488 return ret;
7489 /* let the caller flush overflows, retry */
7490 if (test_bit(0, &ctx->check_cq_overflow))
7491 return 1;
7492
7493 *timeout = schedule_timeout(*timeout);
7494 return !*timeout ? -ETIME : 1;
7495}
7496
7497/*
7498 * Wait until events become available, if we don't already have some. The
7499 * application must reap them itself, as they reside on the shared cq ring.
7500 */
7501static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7502 const sigset_t __user *sig, size_t sigsz,
7503 struct __kernel_timespec __user *uts)
7504{
7505 struct io_wait_queue iowq;
7506 struct io_rings *rings = ctx->rings;
7507 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7508 int ret;
7509
7510 do {
7511 io_cqring_overflow_flush(ctx);
7512 if (io_cqring_events(ctx) >= min_events)
7513 return 0;
7514 if (!io_run_task_work())
7515 break;
7516 } while (1);
7517
7518 if (sig) {
7519#ifdef CONFIG_COMPAT
7520 if (in_compat_syscall())
7521 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7522 sigsz);
7523 else
7524#endif
7525 ret = set_user_sigmask(sig, sigsz);
7526
7527 if (ret)
7528 return ret;
7529 }
7530
7531 if (uts) {
7532 struct timespec64 ts;
7533
7534 if (get_timespec64(&ts, uts))
7535 return -EFAULT;
7536 timeout = timespec64_to_jiffies(&ts);
7537 }
7538
7539 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7540 iowq.wq.private = current;
7541 INIT_LIST_HEAD(&iowq.wq.entry);
7542 iowq.ctx = ctx;
7543 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7544 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7545
7546 trace_io_uring_cqring_wait(ctx, min_events);
7547 do {
7548 /* if we can't even flush overflow, don't wait for more */
7549 if (!io_cqring_overflow_flush(ctx)) {
7550 ret = -EBUSY;
7551 break;
7552 }
7553 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7554 TASK_INTERRUPTIBLE);
7555 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7556 finish_wait(&ctx->cq_wait, &iowq.wq);
7557 cond_resched();
7558 } while (ret > 0);
7559
7560 restore_saved_sigmask_unless(ret == -EINTR);
7561
7562 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7563}
7564
7565static void io_free_page_table(void **table, size_t size)
7566{
7567 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7568
7569 for (i = 0; i < nr_tables; i++)
7570 kfree(table[i]);
7571 kfree(table);
7572}
7573
7574static void **io_alloc_page_table(size_t size)
7575{
7576 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7577 size_t init_size = size;
7578 void **table;
7579
7580 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7581 if (!table)
7582 return NULL;
7583
7584 for (i = 0; i < nr_tables; i++) {
7585 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7586
7587 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7588 if (!table[i]) {
7589 io_free_page_table(table, init_size);
7590 return NULL;
7591 }
7592 size -= this_size;
7593 }
7594 return table;
7595}
7596
7597static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7598{
7599 percpu_ref_exit(&ref_node->refs);
7600 kfree(ref_node);
7601}
7602
7603static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7604{
7605 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7606 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7607 unsigned long flags;
7608 bool first_add = false;
7609
7610 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7611 node->done = true;
7612
7613 while (!list_empty(&ctx->rsrc_ref_list)) {
7614 node = list_first_entry(&ctx->rsrc_ref_list,
7615 struct io_rsrc_node, node);
7616 /* recycle ref nodes in order */
7617 if (!node->done)
7618 break;
7619 list_del(&node->node);
7620 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7621 }
7622 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7623
7624 if (first_add)
7625 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7626}
7627
7628static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7629{
7630 struct io_rsrc_node *ref_node;
7631
7632 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7633 if (!ref_node)
7634 return NULL;
7635
7636 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7637 0, GFP_KERNEL)) {
7638 kfree(ref_node);
7639 return NULL;
7640 }
7641 INIT_LIST_HEAD(&ref_node->node);
7642 INIT_LIST_HEAD(&ref_node->rsrc_list);
7643 ref_node->done = false;
7644 return ref_node;
7645}
7646
7647static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7648 struct io_rsrc_data *data_to_kill)
7649{
7650 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7651 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7652
7653 if (data_to_kill) {
7654 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7655
7656 rsrc_node->rsrc_data = data_to_kill;
7657 spin_lock_irq(&ctx->rsrc_ref_lock);
7658 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7659 spin_unlock_irq(&ctx->rsrc_ref_lock);
7660
7661 atomic_inc(&data_to_kill->refs);
7662 percpu_ref_kill(&rsrc_node->refs);
7663 ctx->rsrc_node = NULL;
7664 }
7665
7666 if (!ctx->rsrc_node) {
7667 ctx->rsrc_node = ctx->rsrc_backup_node;
7668 ctx->rsrc_backup_node = NULL;
7669 }
7670}
7671
7672static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7673{
7674 if (ctx->rsrc_backup_node)
7675 return 0;
7676 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7677 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7678}
7679
7680static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7681{
7682 int ret;
7683
7684 /* As we may drop ->uring_lock, other task may have started quiesce */
7685 if (data->quiesce)
7686 return -ENXIO;
7687
7688 data->quiesce = true;
7689 do {
7690 ret = io_rsrc_node_switch_start(ctx);
7691 if (ret)
7692 break;
7693 io_rsrc_node_switch(ctx, data);
7694
7695 /* kill initial ref, already quiesced if zero */
7696 if (atomic_dec_and_test(&data->refs))
7697 break;
7698 mutex_unlock(&ctx->uring_lock);
7699 flush_delayed_work(&ctx->rsrc_put_work);
7700 ret = wait_for_completion_interruptible(&data->done);
7701 if (!ret) {
7702 mutex_lock(&ctx->uring_lock);
7703 break;
7704 }
7705
7706 atomic_inc(&data->refs);
7707 /* wait for all works potentially completing data->done */
7708 flush_delayed_work(&ctx->rsrc_put_work);
7709 reinit_completion(&data->done);
7710
7711 ret = io_run_task_work_sig();
7712 mutex_lock(&ctx->uring_lock);
7713 } while (ret >= 0);
7714 data->quiesce = false;
7715
7716 return ret;
7717}
7718
7719static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7720{
7721 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7722 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7723
7724 return &data->tags[table_idx][off];
7725}
7726
7727static void io_rsrc_data_free(struct io_rsrc_data *data)
7728{
7729 size_t size = data->nr * sizeof(data->tags[0][0]);
7730
7731 if (data->tags)
7732 io_free_page_table((void **)data->tags, size);
7733 kfree(data);
7734}
7735
7736static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7737 u64 __user *utags, unsigned nr,
7738 struct io_rsrc_data **pdata)
7739{
7740 struct io_rsrc_data *data;
7741 int ret = -ENOMEM;
7742 unsigned i;
7743
7744 data = kzalloc(sizeof(*data), GFP_KERNEL);
7745 if (!data)
7746 return -ENOMEM;
7747 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7748 if (!data->tags) {
7749 kfree(data);
7750 return -ENOMEM;
7751 }
7752
7753 data->nr = nr;
7754 data->ctx = ctx;
7755 data->do_put = do_put;
7756 if (utags) {
7757 ret = -EFAULT;
7758 for (i = 0; i < nr; i++) {
7759 u64 *tag_slot = io_get_tag_slot(data, i);
7760
7761 if (copy_from_user(tag_slot, &utags[i],
7762 sizeof(*tag_slot)))
7763 goto fail;
7764 }
7765 }
7766
7767 atomic_set(&data->refs, 1);
7768 init_completion(&data->done);
7769 *pdata = data;
7770 return 0;
7771fail:
7772 io_rsrc_data_free(data);
7773 return ret;
7774}
7775
7776static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7777{
7778 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7779 GFP_KERNEL_ACCOUNT);
7780 return !!table->files;
7781}
7782
7783static void io_free_file_tables(struct io_file_table *table)
7784{
7785 kvfree(table->files);
7786 table->files = NULL;
7787}
7788
7789static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7790{
7791#if defined(CONFIG_UNIX)
7792 if (ctx->ring_sock) {
7793 struct sock *sock = ctx->ring_sock->sk;
7794 struct sk_buff *skb;
7795
7796 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7797 kfree_skb(skb);
7798 }
7799#else
7800 int i;
7801
7802 for (i = 0; i < ctx->nr_user_files; i++) {
7803 struct file *file;
7804
7805 file = io_file_from_index(ctx, i);
7806 if (file)
7807 fput(file);
7808 }
7809#endif
7810 io_free_file_tables(&ctx->file_table);
7811 io_rsrc_data_free(ctx->file_data);
7812 ctx->file_data = NULL;
7813 ctx->nr_user_files = 0;
7814}
7815
7816static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7817{
7818 int ret;
7819
7820 if (!ctx->file_data)
7821 return -ENXIO;
7822 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7823 if (!ret)
7824 __io_sqe_files_unregister(ctx);
7825 return ret;
7826}
7827
7828static void io_sq_thread_unpark(struct io_sq_data *sqd)
7829 __releases(&sqd->lock)
7830{
7831 WARN_ON_ONCE(sqd->thread == current);
7832
7833 /*
7834 * Do the dance but not conditional clear_bit() because it'd race with
7835 * other threads incrementing park_pending and setting the bit.
7836 */
7837 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7838 if (atomic_dec_return(&sqd->park_pending))
7839 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7840 mutex_unlock(&sqd->lock);
7841}
7842
7843static void io_sq_thread_park(struct io_sq_data *sqd)
7844 __acquires(&sqd->lock)
7845{
7846 WARN_ON_ONCE(sqd->thread == current);
7847
7848 atomic_inc(&sqd->park_pending);
7849 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7850 mutex_lock(&sqd->lock);
7851 if (sqd->thread)
7852 wake_up_process(sqd->thread);
7853}
7854
7855static void io_sq_thread_stop(struct io_sq_data *sqd)
7856{
7857 WARN_ON_ONCE(sqd->thread == current);
7858 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7859
7860 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7861 mutex_lock(&sqd->lock);
7862 if (sqd->thread)
7863 wake_up_process(sqd->thread);
7864 mutex_unlock(&sqd->lock);
7865 wait_for_completion(&sqd->exited);
7866}
7867
7868static void io_put_sq_data(struct io_sq_data *sqd)
7869{
7870 if (refcount_dec_and_test(&sqd->refs)) {
7871 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7872
7873 io_sq_thread_stop(sqd);
7874 kfree(sqd);
7875 }
7876}
7877
7878static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7879{
7880 struct io_sq_data *sqd = ctx->sq_data;
7881
7882 if (sqd) {
7883 io_sq_thread_park(sqd);
7884 list_del_init(&ctx->sqd_list);
7885 io_sqd_update_thread_idle(sqd);
7886 io_sq_thread_unpark(sqd);
7887
7888 io_put_sq_data(sqd);
7889 ctx->sq_data = NULL;
7890 }
7891}
7892
7893static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7894{
7895 struct io_ring_ctx *ctx_attach;
7896 struct io_sq_data *sqd;
7897 struct fd f;
7898
7899 f = fdget(p->wq_fd);
7900 if (!f.file)
7901 return ERR_PTR(-ENXIO);
7902 if (f.file->f_op != &io_uring_fops) {
7903 fdput(f);
7904 return ERR_PTR(-EINVAL);
7905 }
7906
7907 ctx_attach = f.file->private_data;
7908 sqd = ctx_attach->sq_data;
7909 if (!sqd) {
7910 fdput(f);
7911 return ERR_PTR(-EINVAL);
7912 }
7913 if (sqd->task_tgid != current->tgid) {
7914 fdput(f);
7915 return ERR_PTR(-EPERM);
7916 }
7917
7918 refcount_inc(&sqd->refs);
7919 fdput(f);
7920 return sqd;
7921}
7922
7923static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7924 bool *attached)
7925{
7926 struct io_sq_data *sqd;
7927
7928 *attached = false;
7929 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7930 sqd = io_attach_sq_data(p);
7931 if (!IS_ERR(sqd)) {
7932 *attached = true;
7933 return sqd;
7934 }
7935 /* fall through for EPERM case, setup new sqd/task */
7936 if (PTR_ERR(sqd) != -EPERM)
7937 return sqd;
7938 }
7939
7940 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7941 if (!sqd)
7942 return ERR_PTR(-ENOMEM);
7943
7944 atomic_set(&sqd->park_pending, 0);
7945 refcount_set(&sqd->refs, 1);
7946 INIT_LIST_HEAD(&sqd->ctx_list);
7947 mutex_init(&sqd->lock);
7948 init_waitqueue_head(&sqd->wait);
7949 init_completion(&sqd->exited);
7950 return sqd;
7951}
7952
7953#if defined(CONFIG_UNIX)
7954/*
7955 * Ensure the UNIX gc is aware of our file set, so we are certain that
7956 * the io_uring can be safely unregistered on process exit, even if we have
7957 * loops in the file referencing.
7958 */
7959static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7960{
7961 struct sock *sk = ctx->ring_sock->sk;
7962 struct scm_fp_list *fpl;
7963 struct sk_buff *skb;
7964 int i, nr_files;
7965
7966 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7967 if (!fpl)
7968 return -ENOMEM;
7969
7970 skb = alloc_skb(0, GFP_KERNEL);
7971 if (!skb) {
7972 kfree(fpl);
7973 return -ENOMEM;
7974 }
7975
7976 skb->sk = sk;
7977
7978 nr_files = 0;
7979 fpl->user = get_uid(current_user());
7980 for (i = 0; i < nr; i++) {
7981 struct file *file = io_file_from_index(ctx, i + offset);
7982
7983 if (!file)
7984 continue;
7985 fpl->fp[nr_files] = get_file(file);
7986 unix_inflight(fpl->user, fpl->fp[nr_files]);
7987 nr_files++;
7988 }
7989
7990 if (nr_files) {
7991 fpl->max = SCM_MAX_FD;
7992 fpl->count = nr_files;
7993 UNIXCB(skb).fp = fpl;
7994 skb->destructor = unix_destruct_scm;
7995 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7996 skb_queue_head(&sk->sk_receive_queue, skb);
7997
7998 for (i = 0; i < nr_files; i++)
7999 fput(fpl->fp[i]);
8000 } else {
8001 kfree_skb(skb);
8002 kfree(fpl);
8003 }
8004
8005 return 0;
8006}
8007
8008/*
8009 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8010 * causes regular reference counting to break down. We rely on the UNIX
8011 * garbage collection to take care of this problem for us.
8012 */
8013static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8014{
8015 unsigned left, total;
8016 int ret = 0;
8017
8018 total = 0;
8019 left = ctx->nr_user_files;
8020 while (left) {
8021 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8022
8023 ret = __io_sqe_files_scm(ctx, this_files, total);
8024 if (ret)
8025 break;
8026 left -= this_files;
8027 total += this_files;
8028 }
8029
8030 if (!ret)
8031 return 0;
8032
8033 while (total < ctx->nr_user_files) {
8034 struct file *file = io_file_from_index(ctx, total);
8035
8036 if (file)
8037 fput(file);
8038 total++;
8039 }
8040
8041 return ret;
8042}
8043#else
8044static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8045{
8046 return 0;
8047}
8048#endif
8049
8050static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8051{
8052 struct file *file = prsrc->file;
8053#if defined(CONFIG_UNIX)
8054 struct sock *sock = ctx->ring_sock->sk;
8055 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8056 struct sk_buff *skb;
8057 int i;
8058
8059 __skb_queue_head_init(&list);
8060
8061 /*
8062 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8063 * remove this entry and rearrange the file array.
8064 */
8065 skb = skb_dequeue(head);
8066 while (skb) {
8067 struct scm_fp_list *fp;
8068
8069 fp = UNIXCB(skb).fp;
8070 for (i = 0; i < fp->count; i++) {
8071 int left;
8072
8073 if (fp->fp[i] != file)
8074 continue;
8075
8076 unix_notinflight(fp->user, fp->fp[i]);
8077 left = fp->count - 1 - i;
8078 if (left) {
8079 memmove(&fp->fp[i], &fp->fp[i + 1],
8080 left * sizeof(struct file *));
8081 }
8082 fp->count--;
8083 if (!fp->count) {
8084 kfree_skb(skb);
8085 skb = NULL;
8086 } else {
8087 __skb_queue_tail(&list, skb);
8088 }
8089 fput(file);
8090 file = NULL;
8091 break;
8092 }
8093
8094 if (!file)
8095 break;
8096
8097 __skb_queue_tail(&list, skb);
8098
8099 skb = skb_dequeue(head);
8100 }
8101
8102 if (skb_peek(&list)) {
8103 spin_lock_irq(&head->lock);
8104 while ((skb = __skb_dequeue(&list)) != NULL)
8105 __skb_queue_tail(head, skb);
8106 spin_unlock_irq(&head->lock);
8107 }
8108#else
8109 fput(file);
8110#endif
8111}
8112
8113static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8114{
8115 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8116 struct io_ring_ctx *ctx = rsrc_data->ctx;
8117 struct io_rsrc_put *prsrc, *tmp;
8118
8119 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8120 list_del(&prsrc->list);
8121
8122 if (prsrc->tag) {
8123 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8124
8125 io_ring_submit_lock(ctx, lock_ring);
8126 spin_lock(&ctx->completion_lock);
8127 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8128 ctx->cq_extra++;
8129 io_commit_cqring(ctx);
8130 spin_unlock(&ctx->completion_lock);
8131 io_cqring_ev_posted(ctx);
8132 io_ring_submit_unlock(ctx, lock_ring);
8133 }
8134
8135 rsrc_data->do_put(ctx, prsrc);
8136 kfree(prsrc);
8137 }
8138
8139 io_rsrc_node_destroy(ref_node);
8140 if (atomic_dec_and_test(&rsrc_data->refs))
8141 complete(&rsrc_data->done);
8142}
8143
8144static void io_rsrc_put_work(struct work_struct *work)
8145{
8146 struct io_ring_ctx *ctx;
8147 struct llist_node *node;
8148
8149 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8150 node = llist_del_all(&ctx->rsrc_put_llist);
8151
8152 while (node) {
8153 struct io_rsrc_node *ref_node;
8154 struct llist_node *next = node->next;
8155
8156 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8157 __io_rsrc_put_work(ref_node);
8158 node = next;
8159 }
8160}
8161
8162static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8163 unsigned nr_args, u64 __user *tags)
8164{
8165 __s32 __user *fds = (__s32 __user *) arg;
8166 struct file *file;
8167 int fd, ret;
8168 unsigned i;
8169
8170 if (ctx->file_data)
8171 return -EBUSY;
8172 if (!nr_args)
8173 return -EINVAL;
8174 if (nr_args > IORING_MAX_FIXED_FILES)
8175 return -EMFILE;
8176 if (nr_args > rlimit(RLIMIT_NOFILE))
8177 return -EMFILE;
8178 ret = io_rsrc_node_switch_start(ctx);
8179 if (ret)
8180 return ret;
8181 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8182 &ctx->file_data);
8183 if (ret)
8184 return ret;
8185
8186 ret = -ENOMEM;
8187 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8188 goto out_free;
8189
8190 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8191 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8192 ret = -EFAULT;
8193 goto out_fput;
8194 }
8195 /* allow sparse sets */
8196 if (fd == -1) {
8197 ret = -EINVAL;
8198 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8199 goto out_fput;
8200 continue;
8201 }
8202
8203 file = fget(fd);
8204 ret = -EBADF;
8205 if (unlikely(!file))
8206 goto out_fput;
8207
8208 /*
8209 * Don't allow io_uring instances to be registered. If UNIX
8210 * isn't enabled, then this causes a reference cycle and this
8211 * instance can never get freed. If UNIX is enabled we'll
8212 * handle it just fine, but there's still no point in allowing
8213 * a ring fd as it doesn't support regular read/write anyway.
8214 */
8215 if (file->f_op == &io_uring_fops) {
8216 fput(file);
8217 goto out_fput;
8218 }
8219 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8220 }
8221
8222 ret = io_sqe_files_scm(ctx);
8223 if (ret) {
8224 __io_sqe_files_unregister(ctx);
8225 return ret;
8226 }
8227
8228 io_rsrc_node_switch(ctx, NULL);
8229 return ret;
8230out_fput:
8231 for (i = 0; i < ctx->nr_user_files; i++) {
8232 file = io_file_from_index(ctx, i);
8233 if (file)
8234 fput(file);
8235 }
8236 io_free_file_tables(&ctx->file_table);
8237 ctx->nr_user_files = 0;
8238out_free:
8239 io_rsrc_data_free(ctx->file_data);
8240 ctx->file_data = NULL;
8241 return ret;
8242}
8243
8244static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8245 int index)
8246{
8247#if defined(CONFIG_UNIX)
8248 struct sock *sock = ctx->ring_sock->sk;
8249 struct sk_buff_head *head = &sock->sk_receive_queue;
8250 struct sk_buff *skb;
8251
8252 /*
8253 * See if we can merge this file into an existing skb SCM_RIGHTS
8254 * file set. If there's no room, fall back to allocating a new skb
8255 * and filling it in.
8256 */
8257 spin_lock_irq(&head->lock);
8258 skb = skb_peek(head);
8259 if (skb) {
8260 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8261
8262 if (fpl->count < SCM_MAX_FD) {
8263 __skb_unlink(skb, head);
8264 spin_unlock_irq(&head->lock);
8265 fpl->fp[fpl->count] = get_file(file);
8266 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8267 fpl->count++;
8268 spin_lock_irq(&head->lock);
8269 __skb_queue_head(head, skb);
8270 } else {
8271 skb = NULL;
8272 }
8273 }
8274 spin_unlock_irq(&head->lock);
8275
8276 if (skb) {
8277 fput(file);
8278 return 0;
8279 }
8280
8281 return __io_sqe_files_scm(ctx, 1, index);
8282#else
8283 return 0;
8284#endif
8285}
8286
8287static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8288 unsigned int issue_flags, u32 slot_index)
8289{
8290 struct io_ring_ctx *ctx = req->ctx;
8291 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8292 struct io_fixed_file *file_slot;
8293 int ret = -EBADF;
8294
8295 io_ring_submit_lock(ctx, !force_nonblock);
8296 if (file->f_op == &io_uring_fops)
8297 goto err;
8298 ret = -ENXIO;
8299 if (!ctx->file_data)
8300 goto err;
8301 ret = -EINVAL;
8302 if (slot_index >= ctx->nr_user_files)
8303 goto err;
8304
8305 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8306 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8307 ret = -EBADF;
8308 if (file_slot->file_ptr)
8309 goto err;
8310
8311 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8312 io_fixed_file_set(file_slot, file);
8313 ret = io_sqe_file_register(ctx, file, slot_index);
8314 if (ret) {
8315 file_slot->file_ptr = 0;
8316 goto err;
8317 }
8318
8319 ret = 0;
8320err:
8321 io_ring_submit_unlock(ctx, !force_nonblock);
8322 if (ret)
8323 fput(file);
8324 return ret;
8325}
8326
8327static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8328 struct io_rsrc_node *node, void *rsrc)
8329{
8330 struct io_rsrc_put *prsrc;
8331
8332 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8333 if (!prsrc)
8334 return -ENOMEM;
8335
8336 prsrc->tag = *io_get_tag_slot(data, idx);
8337 prsrc->rsrc = rsrc;
8338 list_add(&prsrc->list, &node->rsrc_list);
8339 return 0;
8340}
8341
8342static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8343 struct io_uring_rsrc_update2 *up,
8344 unsigned nr_args)
8345{
8346 u64 __user *tags = u64_to_user_ptr(up->tags);
8347 __s32 __user *fds = u64_to_user_ptr(up->data);
8348 struct io_rsrc_data *data = ctx->file_data;
8349 struct io_fixed_file *file_slot;
8350 struct file *file;
8351 int fd, i, err = 0;
8352 unsigned int done;
8353 bool needs_switch = false;
8354
8355 if (!ctx->file_data)
8356 return -ENXIO;
8357 if (up->offset + nr_args > ctx->nr_user_files)
8358 return -EINVAL;
8359
8360 for (done = 0; done < nr_args; done++) {
8361 u64 tag = 0;
8362
8363 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8364 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8365 err = -EFAULT;
8366 break;
8367 }
8368 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8369 err = -EINVAL;
8370 break;
8371 }
8372 if (fd == IORING_REGISTER_FILES_SKIP)
8373 continue;
8374
8375 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8376 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8377
8378 if (file_slot->file_ptr) {
8379 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8380 err = io_queue_rsrc_removal(data, up->offset + done,
8381 ctx->rsrc_node, file);
8382 if (err)
8383 break;
8384 file_slot->file_ptr = 0;
8385 needs_switch = true;
8386 }
8387 if (fd != -1) {
8388 file = fget(fd);
8389 if (!file) {
8390 err = -EBADF;
8391 break;
8392 }
8393 /*
8394 * Don't allow io_uring instances to be registered. If
8395 * UNIX isn't enabled, then this causes a reference
8396 * cycle and this instance can never get freed. If UNIX
8397 * is enabled we'll handle it just fine, but there's
8398 * still no point in allowing a ring fd as it doesn't
8399 * support regular read/write anyway.
8400 */
8401 if (file->f_op == &io_uring_fops) {
8402 fput(file);
8403 err = -EBADF;
8404 break;
8405 }
8406 *io_get_tag_slot(data, up->offset + done) = tag;
8407 io_fixed_file_set(file_slot, file);
8408 err = io_sqe_file_register(ctx, file, i);
8409 if (err) {
8410 file_slot->file_ptr = 0;
8411 fput(file);
8412 break;
8413 }
8414 }
8415 }
8416
8417 if (needs_switch)
8418 io_rsrc_node_switch(ctx, data);
8419 return done ? done : err;
8420}
8421
8422static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8423 struct task_struct *task)
8424{
8425 struct io_wq_hash *hash;
8426 struct io_wq_data data;
8427 unsigned int concurrency;
8428
8429 mutex_lock(&ctx->uring_lock);
8430 hash = ctx->hash_map;
8431 if (!hash) {
8432 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8433 if (!hash) {
8434 mutex_unlock(&ctx->uring_lock);
8435 return ERR_PTR(-ENOMEM);
8436 }
8437 refcount_set(&hash->refs, 1);
8438 init_waitqueue_head(&hash->wait);
8439 ctx->hash_map = hash;
8440 }
8441 mutex_unlock(&ctx->uring_lock);
8442
8443 data.hash = hash;
8444 data.task = task;
8445 data.free_work = io_wq_free_work;
8446 data.do_work = io_wq_submit_work;
8447
8448 /* Do QD, or 4 * CPUS, whatever is smallest */
8449 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8450
8451 return io_wq_create(concurrency, &data);
8452}
8453
8454static int io_uring_alloc_task_context(struct task_struct *task,
8455 struct io_ring_ctx *ctx)
8456{
8457 struct io_uring_task *tctx;
8458 int ret;
8459
8460 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8461 if (unlikely(!tctx))
8462 return -ENOMEM;
8463
8464 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8465 if (unlikely(ret)) {
8466 kfree(tctx);
8467 return ret;
8468 }
8469
8470 tctx->io_wq = io_init_wq_offload(ctx, task);
8471 if (IS_ERR(tctx->io_wq)) {
8472 ret = PTR_ERR(tctx->io_wq);
8473 percpu_counter_destroy(&tctx->inflight);
8474 kfree(tctx);
8475 return ret;
8476 }
8477
8478 xa_init(&tctx->xa);
8479 init_waitqueue_head(&tctx->wait);
8480 atomic_set(&tctx->in_idle, 0);
8481 atomic_set(&tctx->inflight_tracked, 0);
8482 task->io_uring = tctx;
8483 spin_lock_init(&tctx->task_lock);
8484 INIT_WQ_LIST(&tctx->task_list);
8485 init_task_work(&tctx->task_work, tctx_task_work);
8486 return 0;
8487}
8488
8489void __io_uring_free(struct task_struct *tsk)
8490{
8491 struct io_uring_task *tctx = tsk->io_uring;
8492
8493 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8494 WARN_ON_ONCE(tctx->io_wq);
8495 WARN_ON_ONCE(tctx->cached_refs);
8496
8497 percpu_counter_destroy(&tctx->inflight);
8498 kfree(tctx);
8499 tsk->io_uring = NULL;
8500}
8501
8502static int io_sq_offload_create(struct io_ring_ctx *ctx,
8503 struct io_uring_params *p)
8504{
8505 int ret;
8506
8507 /* Retain compatibility with failing for an invalid attach attempt */
8508 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8509 IORING_SETUP_ATTACH_WQ) {
8510 struct fd f;
8511
8512 f = fdget(p->wq_fd);
8513 if (!f.file)
8514 return -ENXIO;
8515 if (f.file->f_op != &io_uring_fops) {
8516 fdput(f);
8517 return -EINVAL;
8518 }
8519 fdput(f);
8520 }
8521 if (ctx->flags & IORING_SETUP_SQPOLL) {
8522 struct task_struct *tsk;
8523 struct io_sq_data *sqd;
8524 bool attached;
8525
8526 sqd = io_get_sq_data(p, &attached);
8527 if (IS_ERR(sqd)) {
8528 ret = PTR_ERR(sqd);
8529 goto err;
8530 }
8531
8532 ctx->sq_creds = get_current_cred();
8533 ctx->sq_data = sqd;
8534 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8535 if (!ctx->sq_thread_idle)
8536 ctx->sq_thread_idle = HZ;
8537
8538 io_sq_thread_park(sqd);
8539 list_add(&ctx->sqd_list, &sqd->ctx_list);
8540 io_sqd_update_thread_idle(sqd);
8541 /* don't attach to a dying SQPOLL thread, would be racy */
8542 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8543 io_sq_thread_unpark(sqd);
8544
8545 if (ret < 0)
8546 goto err;
8547 if (attached)
8548 return 0;
8549
8550 if (p->flags & IORING_SETUP_SQ_AFF) {
8551 int cpu = p->sq_thread_cpu;
8552
8553 ret = -EINVAL;
8554 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8555 goto err_sqpoll;
8556 sqd->sq_cpu = cpu;
8557 } else {
8558 sqd->sq_cpu = -1;
8559 }
8560
8561 sqd->task_pid = current->pid;
8562 sqd->task_tgid = current->tgid;
8563 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8564 if (IS_ERR(tsk)) {
8565 ret = PTR_ERR(tsk);
8566 goto err_sqpoll;
8567 }
8568
8569 sqd->thread = tsk;
8570 ret = io_uring_alloc_task_context(tsk, ctx);
8571 wake_up_new_task(tsk);
8572 if (ret)
8573 goto err;
8574 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8575 /* Can't have SQ_AFF without SQPOLL */
8576 ret = -EINVAL;
8577 goto err;
8578 }
8579
8580 return 0;
8581err_sqpoll:
8582 complete(&ctx->sq_data->exited);
8583err:
8584 io_sq_thread_finish(ctx);
8585 return ret;
8586}
8587
8588static inline void __io_unaccount_mem(struct user_struct *user,
8589 unsigned long nr_pages)
8590{
8591 atomic_long_sub(nr_pages, &user->locked_vm);
8592}
8593
8594static inline int __io_account_mem(struct user_struct *user,
8595 unsigned long nr_pages)
8596{
8597 unsigned long page_limit, cur_pages, new_pages;
8598
8599 /* Don't allow more pages than we can safely lock */
8600 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8601
8602 do {
8603 cur_pages = atomic_long_read(&user->locked_vm);
8604 new_pages = cur_pages + nr_pages;
8605 if (new_pages > page_limit)
8606 return -ENOMEM;
8607 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8608 new_pages) != cur_pages);
8609
8610 return 0;
8611}
8612
8613static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8614{
8615 if (ctx->user)
8616 __io_unaccount_mem(ctx->user, nr_pages);
8617
8618 if (ctx->mm_account)
8619 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8620}
8621
8622static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8623{
8624 int ret;
8625
8626 if (ctx->user) {
8627 ret = __io_account_mem(ctx->user, nr_pages);
8628 if (ret)
8629 return ret;
8630 }
8631
8632 if (ctx->mm_account)
8633 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8634
8635 return 0;
8636}
8637
8638static void io_mem_free(void *ptr)
8639{
8640 struct page *page;
8641
8642 if (!ptr)
8643 return;
8644
8645 page = virt_to_head_page(ptr);
8646 if (put_page_testzero(page))
8647 free_compound_page(page);
8648}
8649
8650static void *io_mem_alloc(size_t size)
8651{
8652 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8653 __GFP_NORETRY | __GFP_ACCOUNT;
8654
8655 return (void *) __get_free_pages(gfp_flags, get_order(size));
8656}
8657
8658static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8659 size_t *sq_offset)
8660{
8661 struct io_rings *rings;
8662 size_t off, sq_array_size;
8663
8664 off = struct_size(rings, cqes, cq_entries);
8665 if (off == SIZE_MAX)
8666 return SIZE_MAX;
8667
8668#ifdef CONFIG_SMP
8669 off = ALIGN(off, SMP_CACHE_BYTES);
8670 if (off == 0)
8671 return SIZE_MAX;
8672#endif
8673
8674 if (sq_offset)
8675 *sq_offset = off;
8676
8677 sq_array_size = array_size(sizeof(u32), sq_entries);
8678 if (sq_array_size == SIZE_MAX)
8679 return SIZE_MAX;
8680
8681 if (check_add_overflow(off, sq_array_size, &off))
8682 return SIZE_MAX;
8683
8684 return off;
8685}
8686
8687static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8688{
8689 struct io_mapped_ubuf *imu = *slot;
8690 unsigned int i;
8691
8692 if (imu != ctx->dummy_ubuf) {
8693 for (i = 0; i < imu->nr_bvecs; i++)
8694 unpin_user_page(imu->bvec[i].bv_page);
8695 if (imu->acct_pages)
8696 io_unaccount_mem(ctx, imu->acct_pages);
8697 kvfree(imu);
8698 }
8699 *slot = NULL;
8700}
8701
8702static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8703{
8704 io_buffer_unmap(ctx, &prsrc->buf);
8705 prsrc->buf = NULL;
8706}
8707
8708static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8709{
8710 unsigned int i;
8711
8712 for (i = 0; i < ctx->nr_user_bufs; i++)
8713 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8714 kfree(ctx->user_bufs);
8715 io_rsrc_data_free(ctx->buf_data);
8716 ctx->user_bufs = NULL;
8717 ctx->buf_data = NULL;
8718 ctx->nr_user_bufs = 0;
8719}
8720
8721static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8722{
8723 int ret;
8724
8725 if (!ctx->buf_data)
8726 return -ENXIO;
8727
8728 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8729 if (!ret)
8730 __io_sqe_buffers_unregister(ctx);
8731 return ret;
8732}
8733
8734static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8735 void __user *arg, unsigned index)
8736{
8737 struct iovec __user *src;
8738
8739#ifdef CONFIG_COMPAT
8740 if (ctx->compat) {
8741 struct compat_iovec __user *ciovs;
8742 struct compat_iovec ciov;
8743
8744 ciovs = (struct compat_iovec __user *) arg;
8745 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8746 return -EFAULT;
8747
8748 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8749 dst->iov_len = ciov.iov_len;
8750 return 0;
8751 }
8752#endif
8753 src = (struct iovec __user *) arg;
8754 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8755 return -EFAULT;
8756 return 0;
8757}
8758
8759/*
8760 * Not super efficient, but this is just a registration time. And we do cache
8761 * the last compound head, so generally we'll only do a full search if we don't
8762 * match that one.
8763 *
8764 * We check if the given compound head page has already been accounted, to
8765 * avoid double accounting it. This allows us to account the full size of the
8766 * page, not just the constituent pages of a huge page.
8767 */
8768static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8769 int nr_pages, struct page *hpage)
8770{
8771 int i, j;
8772
8773 /* check current page array */
8774 for (i = 0; i < nr_pages; i++) {
8775 if (!PageCompound(pages[i]))
8776 continue;
8777 if (compound_head(pages[i]) == hpage)
8778 return true;
8779 }
8780
8781 /* check previously registered pages */
8782 for (i = 0; i < ctx->nr_user_bufs; i++) {
8783 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8784
8785 for (j = 0; j < imu->nr_bvecs; j++) {
8786 if (!PageCompound(imu->bvec[j].bv_page))
8787 continue;
8788 if (compound_head(imu->bvec[j].bv_page) == hpage)
8789 return true;
8790 }
8791 }
8792
8793 return false;
8794}
8795
8796static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8797 int nr_pages, struct io_mapped_ubuf *imu,
8798 struct page **last_hpage)
8799{
8800 int i, ret;
8801
8802 imu->acct_pages = 0;
8803 for (i = 0; i < nr_pages; i++) {
8804 if (!PageCompound(pages[i])) {
8805 imu->acct_pages++;
8806 } else {
8807 struct page *hpage;
8808
8809 hpage = compound_head(pages[i]);
8810 if (hpage == *last_hpage)
8811 continue;
8812 *last_hpage = hpage;
8813 if (headpage_already_acct(ctx, pages, i, hpage))
8814 continue;
8815 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8816 }
8817 }
8818
8819 if (!imu->acct_pages)
8820 return 0;
8821
8822 ret = io_account_mem(ctx, imu->acct_pages);
8823 if (ret)
8824 imu->acct_pages = 0;
8825 return ret;
8826}
8827
8828static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8829 struct io_mapped_ubuf **pimu,
8830 struct page **last_hpage)
8831{
8832 struct io_mapped_ubuf *imu = NULL;
8833 struct vm_area_struct **vmas = NULL;
8834 struct page **pages = NULL;
8835 unsigned long off, start, end, ubuf;
8836 size_t size;
8837 int ret, pret, nr_pages, i;
8838
8839 if (!iov->iov_base) {
8840 *pimu = ctx->dummy_ubuf;
8841 return 0;
8842 }
8843
8844 ubuf = (unsigned long) iov->iov_base;
8845 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8846 start = ubuf >> PAGE_SHIFT;
8847 nr_pages = end - start;
8848
8849 *pimu = NULL;
8850 ret = -ENOMEM;
8851
8852 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8853 if (!pages)
8854 goto done;
8855
8856 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8857 GFP_KERNEL);
8858 if (!vmas)
8859 goto done;
8860
8861 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8862 if (!imu)
8863 goto done;
8864
8865 ret = 0;
8866 mmap_read_lock(current->mm);
8867 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8868 pages, vmas);
8869 if (pret == nr_pages) {
8870 /* don't support file backed memory */
8871 for (i = 0; i < nr_pages; i++) {
8872 struct vm_area_struct *vma = vmas[i];
8873
8874 if (vma_is_shmem(vma))
8875 continue;
8876 if (vma->vm_file &&
8877 !is_file_hugepages(vma->vm_file)) {
8878 ret = -EOPNOTSUPP;
8879 break;
8880 }
8881 }
8882 } else {
8883 ret = pret < 0 ? pret : -EFAULT;
8884 }
8885 mmap_read_unlock(current->mm);
8886 if (ret) {
8887 /*
8888 * if we did partial map, or found file backed vmas,
8889 * release any pages we did get
8890 */
8891 if (pret > 0)
8892 unpin_user_pages(pages, pret);
8893 goto done;
8894 }
8895
8896 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8897 if (ret) {
8898 unpin_user_pages(pages, pret);
8899 goto done;
8900 }
8901
8902 off = ubuf & ~PAGE_MASK;
8903 size = iov->iov_len;
8904 for (i = 0; i < nr_pages; i++) {
8905 size_t vec_len;
8906
8907 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8908 imu->bvec[i].bv_page = pages[i];
8909 imu->bvec[i].bv_len = vec_len;
8910 imu->bvec[i].bv_offset = off;
8911 off = 0;
8912 size -= vec_len;
8913 }
8914 /* store original address for later verification */
8915 imu->ubuf = ubuf;
8916 imu->ubuf_end = ubuf + iov->iov_len;
8917 imu->nr_bvecs = nr_pages;
8918 *pimu = imu;
8919 ret = 0;
8920done:
8921 if (ret)
8922 kvfree(imu);
8923 kvfree(pages);
8924 kvfree(vmas);
8925 return ret;
8926}
8927
8928static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8929{
8930 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8931 return ctx->user_bufs ? 0 : -ENOMEM;
8932}
8933
8934static int io_buffer_validate(struct iovec *iov)
8935{
8936 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8937
8938 /*
8939 * Don't impose further limits on the size and buffer
8940 * constraints here, we'll -EINVAL later when IO is
8941 * submitted if they are wrong.
8942 */
8943 if (!iov->iov_base)
8944 return iov->iov_len ? -EFAULT : 0;
8945 if (!iov->iov_len)
8946 return -EFAULT;
8947
8948 /* arbitrary limit, but we need something */
8949 if (iov->iov_len > SZ_1G)
8950 return -EFAULT;
8951
8952 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8953 return -EOVERFLOW;
8954
8955 return 0;
8956}
8957
8958static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8959 unsigned int nr_args, u64 __user *tags)
8960{
8961 struct page *last_hpage = NULL;
8962 struct io_rsrc_data *data;
8963 int i, ret;
8964 struct iovec iov;
8965
8966 if (ctx->user_bufs)
8967 return -EBUSY;
8968 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
8969 return -EINVAL;
8970 ret = io_rsrc_node_switch_start(ctx);
8971 if (ret)
8972 return ret;
8973 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
8974 if (ret)
8975 return ret;
8976 ret = io_buffers_map_alloc(ctx, nr_args);
8977 if (ret) {
8978 io_rsrc_data_free(data);
8979 return ret;
8980 }
8981
8982 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8983 ret = io_copy_iov(ctx, &iov, arg, i);
8984 if (ret)
8985 break;
8986 ret = io_buffer_validate(&iov);
8987 if (ret)
8988 break;
8989 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
8990 ret = -EINVAL;
8991 break;
8992 }
8993
8994 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8995 &last_hpage);
8996 if (ret)
8997 break;
8998 }
8999
9000 WARN_ON_ONCE(ctx->buf_data);
9001
9002 ctx->buf_data = data;
9003 if (ret)
9004 __io_sqe_buffers_unregister(ctx);
9005 else
9006 io_rsrc_node_switch(ctx, NULL);
9007 return ret;
9008}
9009
9010static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9011 struct io_uring_rsrc_update2 *up,
9012 unsigned int nr_args)
9013{
9014 u64 __user *tags = u64_to_user_ptr(up->tags);
9015 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9016 struct page *last_hpage = NULL;
9017 bool needs_switch = false;
9018 __u32 done;
9019 int i, err;
9020
9021 if (!ctx->buf_data)
9022 return -ENXIO;
9023 if (up->offset + nr_args > ctx->nr_user_bufs)
9024 return -EINVAL;
9025
9026 for (done = 0; done < nr_args; done++) {
9027 struct io_mapped_ubuf *imu;
9028 int offset = up->offset + done;
9029 u64 tag = 0;
9030
9031 err = io_copy_iov(ctx, &iov, iovs, done);
9032 if (err)
9033 break;
9034 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9035 err = -EFAULT;
9036 break;
9037 }
9038 err = io_buffer_validate(&iov);
9039 if (err)
9040 break;
9041 if (!iov.iov_base && tag) {
9042 err = -EINVAL;
9043 break;
9044 }
9045 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9046 if (err)
9047 break;
9048
9049 i = array_index_nospec(offset, ctx->nr_user_bufs);
9050 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9051 err = io_queue_rsrc_removal(ctx->buf_data, offset,
9052 ctx->rsrc_node, ctx->user_bufs[i]);
9053 if (unlikely(err)) {
9054 io_buffer_unmap(ctx, &imu);
9055 break;
9056 }
9057 ctx->user_bufs[i] = NULL;
9058 needs_switch = true;
9059 }
9060
9061 ctx->user_bufs[i] = imu;
9062 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9063 }
9064
9065 if (needs_switch)
9066 io_rsrc_node_switch(ctx, ctx->buf_data);
9067 return done ? done : err;
9068}
9069
9070static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9071{
9072 __s32 __user *fds = arg;
9073 int fd;
9074
9075 if (ctx->cq_ev_fd)
9076 return -EBUSY;
9077
9078 if (copy_from_user(&fd, fds, sizeof(*fds)))
9079 return -EFAULT;
9080
9081 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9082 if (IS_ERR(ctx->cq_ev_fd)) {
9083 int ret = PTR_ERR(ctx->cq_ev_fd);
9084
9085 ctx->cq_ev_fd = NULL;
9086 return ret;
9087 }
9088
9089 return 0;
9090}
9091
9092static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9093{
9094 if (ctx->cq_ev_fd) {
9095 eventfd_ctx_put(ctx->cq_ev_fd);
9096 ctx->cq_ev_fd = NULL;
9097 return 0;
9098 }
9099
9100 return -ENXIO;
9101}
9102
9103static void io_destroy_buffers(struct io_ring_ctx *ctx)
9104{
9105 struct io_buffer *buf;
9106 unsigned long index;
9107
9108 xa_for_each(&ctx->io_buffers, index, buf)
9109 __io_remove_buffers(ctx, buf, index, -1U);
9110}
9111
9112static void io_req_cache_free(struct list_head *list)
9113{
9114 struct io_kiocb *req, *nxt;
9115
9116 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9117 list_del(&req->inflight_entry);
9118 kmem_cache_free(req_cachep, req);
9119 }
9120}
9121
9122static void io_req_caches_free(struct io_ring_ctx *ctx)
9123{
9124 struct io_submit_state *state = &ctx->submit_state;
9125
9126 mutex_lock(&ctx->uring_lock);
9127
9128 if (state->free_reqs) {
9129 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9130 state->free_reqs = 0;
9131 }
9132
9133 io_flush_cached_locked_reqs(ctx, state);
9134 io_req_cache_free(&state->free_list);
9135 mutex_unlock(&ctx->uring_lock);
9136}
9137
9138static void io_wait_rsrc_data(struct io_rsrc_data *data)
9139{
9140 if (data && !atomic_dec_and_test(&data->refs))
9141 wait_for_completion(&data->done);
9142}
9143
9144static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9145{
9146 io_sq_thread_finish(ctx);
9147
9148 if (ctx->mm_account) {
9149 mmdrop(ctx->mm_account);
9150 ctx->mm_account = NULL;
9151 }
9152
9153 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9154 io_wait_rsrc_data(ctx->buf_data);
9155 io_wait_rsrc_data(ctx->file_data);
9156
9157 mutex_lock(&ctx->uring_lock);
9158 if (ctx->buf_data)
9159 __io_sqe_buffers_unregister(ctx);
9160 if (ctx->file_data)
9161 __io_sqe_files_unregister(ctx);
9162 if (ctx->rings)
9163 __io_cqring_overflow_flush(ctx, true);
9164 mutex_unlock(&ctx->uring_lock);
9165 io_eventfd_unregister(ctx);
9166 io_destroy_buffers(ctx);
9167 if (ctx->sq_creds)
9168 put_cred(ctx->sq_creds);
9169
9170 /* there are no registered resources left, nobody uses it */
9171 if (ctx->rsrc_node)
9172 io_rsrc_node_destroy(ctx->rsrc_node);
9173 if (ctx->rsrc_backup_node)
9174 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9175 flush_delayed_work(&ctx->rsrc_put_work);
9176
9177 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9178 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9179
9180#if defined(CONFIG_UNIX)
9181 if (ctx->ring_sock) {
9182 ctx->ring_sock->file = NULL; /* so that iput() is called */
9183 sock_release(ctx->ring_sock);
9184 }
9185#endif
9186 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9187
9188 io_mem_free(ctx->rings);
9189 io_mem_free(ctx->sq_sqes);
9190
9191 percpu_ref_exit(&ctx->refs);
9192 free_uid(ctx->user);
9193 io_req_caches_free(ctx);
9194 if (ctx->hash_map)
9195 io_wq_put_hash(ctx->hash_map);
9196 kfree(ctx->cancel_hash);
9197 kfree(ctx->dummy_ubuf);
9198 kfree(ctx);
9199}
9200
9201static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9202{
9203 struct io_ring_ctx *ctx = file->private_data;
9204 __poll_t mask = 0;
9205
9206 poll_wait(file, &ctx->poll_wait, wait);
9207 /*
9208 * synchronizes with barrier from wq_has_sleeper call in
9209 * io_commit_cqring
9210 */
9211 smp_rmb();
9212 if (!io_sqring_full(ctx))
9213 mask |= EPOLLOUT | EPOLLWRNORM;
9214
9215 /*
9216 * Don't flush cqring overflow list here, just do a simple check.
9217 * Otherwise there could possible be ABBA deadlock:
9218 * CPU0 CPU1
9219 * ---- ----
9220 * lock(&ctx->uring_lock);
9221 * lock(&ep->mtx);
9222 * lock(&ctx->uring_lock);
9223 * lock(&ep->mtx);
9224 *
9225 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9226 * pushs them to do the flush.
9227 */
9228 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9229 mask |= EPOLLIN | EPOLLRDNORM;
9230
9231 return mask;
9232}
9233
9234static int io_uring_fasync(int fd, struct file *file, int on)
9235{
9236 struct io_ring_ctx *ctx = file->private_data;
9237
9238 return fasync_helper(fd, file, on, &ctx->cq_fasync);
9239}
9240
9241static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9242{
9243 const struct cred *creds;
9244
9245 creds = xa_erase(&ctx->personalities, id);
9246 if (creds) {
9247 put_cred(creds);
9248 return 0;
9249 }
9250
9251 return -EINVAL;
9252}
9253
9254struct io_tctx_exit {
9255 struct callback_head task_work;
9256 struct completion completion;
9257 struct io_ring_ctx *ctx;
9258};
9259
9260static void io_tctx_exit_cb(struct callback_head *cb)
9261{
9262 struct io_uring_task *tctx = current->io_uring;
9263 struct io_tctx_exit *work;
9264
9265 work = container_of(cb, struct io_tctx_exit, task_work);
9266 /*
9267 * When @in_idle, we're in cancellation and it's racy to remove the
9268 * node. It'll be removed by the end of cancellation, just ignore it.
9269 */
9270 if (!atomic_read(&tctx->in_idle))
9271 io_uring_del_tctx_node((unsigned long)work->ctx);
9272 complete(&work->completion);
9273}
9274
9275static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9276{
9277 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9278
9279 return req->ctx == data;
9280}
9281
9282static void io_ring_exit_work(struct work_struct *work)
9283{
9284 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9285 unsigned long timeout = jiffies + HZ * 60 * 5;
9286 unsigned long interval = HZ / 20;
9287 struct io_tctx_exit exit;
9288 struct io_tctx_node *node;
9289 int ret;
9290
9291 /*
9292 * If we're doing polled IO and end up having requests being
9293 * submitted async (out-of-line), then completions can come in while
9294 * we're waiting for refs to drop. We need to reap these manually,
9295 * as nobody else will be looking for them.
9296 */
9297 do {
9298 io_uring_try_cancel_requests(ctx, NULL, true);
9299 if (ctx->sq_data) {
9300 struct io_sq_data *sqd = ctx->sq_data;
9301 struct task_struct *tsk;
9302
9303 io_sq_thread_park(sqd);
9304 tsk = sqd->thread;
9305 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9306 io_wq_cancel_cb(tsk->io_uring->io_wq,
9307 io_cancel_ctx_cb, ctx, true);
9308 io_sq_thread_unpark(sqd);
9309 }
9310
9311 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9312 /* there is little hope left, don't run it too often */
9313 interval = HZ * 60;
9314 }
9315 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9316
9317 init_completion(&exit.completion);
9318 init_task_work(&exit.task_work, io_tctx_exit_cb);
9319 exit.ctx = ctx;
9320 /*
9321 * Some may use context even when all refs and requests have been put,
9322 * and they are free to do so while still holding uring_lock or
9323 * completion_lock, see io_req_task_submit(). Apart from other work,
9324 * this lock/unlock section also waits them to finish.
9325 */
9326 mutex_lock(&ctx->uring_lock);
9327 while (!list_empty(&ctx->tctx_list)) {
9328 WARN_ON_ONCE(time_after(jiffies, timeout));
9329
9330 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9331 ctx_node);
9332 /* don't spin on a single task if cancellation failed */
9333 list_rotate_left(&ctx->tctx_list);
9334 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9335 if (WARN_ON_ONCE(ret))
9336 continue;
9337 wake_up_process(node->task);
9338
9339 mutex_unlock(&ctx->uring_lock);
9340 wait_for_completion(&exit.completion);
9341 mutex_lock(&ctx->uring_lock);
9342 }
9343 mutex_unlock(&ctx->uring_lock);
9344 spin_lock(&ctx->completion_lock);
9345 spin_unlock(&ctx->completion_lock);
9346
9347 io_ring_ctx_free(ctx);
9348}
9349
9350/* Returns true if we found and killed one or more timeouts */
9351static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9352 bool cancel_all)
9353{
9354 struct io_kiocb *req, *tmp;
9355 int canceled = 0;
9356
9357 spin_lock(&ctx->completion_lock);
9358 spin_lock_irq(&ctx->timeout_lock);
9359 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9360 if (io_match_task(req, tsk, cancel_all)) {
9361 io_kill_timeout(req, -ECANCELED);
9362 canceled++;
9363 }
9364 }
9365 spin_unlock_irq(&ctx->timeout_lock);
9366 if (canceled != 0)
9367 io_commit_cqring(ctx);
9368 spin_unlock(&ctx->completion_lock);
9369 if (canceled != 0)
9370 io_cqring_ev_posted(ctx);
9371 return canceled != 0;
9372}
9373
9374static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9375{
9376 unsigned long index;
9377 struct creds *creds;
9378
9379 mutex_lock(&ctx->uring_lock);
9380 percpu_ref_kill(&ctx->refs);
9381 if (ctx->rings)
9382 __io_cqring_overflow_flush(ctx, true);
9383 xa_for_each(&ctx->personalities, index, creds)
9384 io_unregister_personality(ctx, index);
9385 mutex_unlock(&ctx->uring_lock);
9386
9387 io_kill_timeouts(ctx, NULL, true);
9388 io_poll_remove_all(ctx, NULL, true);
9389
9390 /* if we failed setting up the ctx, we might not have any rings */
9391 io_iopoll_try_reap_events(ctx);
9392
9393 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9394 /*
9395 * Use system_unbound_wq to avoid spawning tons of event kworkers
9396 * if we're exiting a ton of rings at the same time. It just adds
9397 * noise and overhead, there's no discernable change in runtime
9398 * over using system_wq.
9399 */
9400 queue_work(system_unbound_wq, &ctx->exit_work);
9401}
9402
9403static int io_uring_release(struct inode *inode, struct file *file)
9404{
9405 struct io_ring_ctx *ctx = file->private_data;
9406
9407 file->private_data = NULL;
9408 io_ring_ctx_wait_and_kill(ctx);
9409 return 0;
9410}
9411
9412struct io_task_cancel {
9413 struct task_struct *task;
9414 bool all;
9415};
9416
9417static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9418{
9419 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9420 struct io_task_cancel *cancel = data;
9421 bool ret;
9422
9423 if (!cancel->all && (req->flags & REQ_F_LINK_TIMEOUT)) {
9424 struct io_ring_ctx *ctx = req->ctx;
9425
9426 /* protect against races with linked timeouts */
9427 spin_lock(&ctx->completion_lock);
9428 ret = io_match_task(req, cancel->task, cancel->all);
9429 spin_unlock(&ctx->completion_lock);
9430 } else {
9431 ret = io_match_task(req, cancel->task, cancel->all);
9432 }
9433 return ret;
9434}
9435
9436static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9437 struct task_struct *task, bool cancel_all)
9438{
9439 struct io_defer_entry *de;
9440 LIST_HEAD(list);
9441
9442 spin_lock(&ctx->completion_lock);
9443 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9444 if (io_match_task(de->req, task, cancel_all)) {
9445 list_cut_position(&list, &ctx->defer_list, &de->list);
9446 break;
9447 }
9448 }
9449 spin_unlock(&ctx->completion_lock);
9450 if (list_empty(&list))
9451 return false;
9452
9453 while (!list_empty(&list)) {
9454 de = list_first_entry(&list, struct io_defer_entry, list);
9455 list_del_init(&de->list);
9456 io_req_complete_failed(de->req, -ECANCELED);
9457 kfree(de);
9458 }
9459 return true;
9460}
9461
9462static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9463{
9464 struct io_tctx_node *node;
9465 enum io_wq_cancel cret;
9466 bool ret = false;
9467
9468 mutex_lock(&ctx->uring_lock);
9469 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9470 struct io_uring_task *tctx = node->task->io_uring;
9471
9472 /*
9473 * io_wq will stay alive while we hold uring_lock, because it's
9474 * killed after ctx nodes, which requires to take the lock.
9475 */
9476 if (!tctx || !tctx->io_wq)
9477 continue;
9478 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9479 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9480 }
9481 mutex_unlock(&ctx->uring_lock);
9482
9483 return ret;
9484}
9485
9486static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9487 struct task_struct *task,
9488 bool cancel_all)
9489{
9490 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9491 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9492
9493 while (1) {
9494 enum io_wq_cancel cret;
9495 bool ret = false;
9496
9497 if (!task) {
9498 ret |= io_uring_try_cancel_iowq(ctx);
9499 } else if (tctx && tctx->io_wq) {
9500 /*
9501 * Cancels requests of all rings, not only @ctx, but
9502 * it's fine as the task is in exit/exec.
9503 */
9504 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9505 &cancel, true);
9506 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9507 }
9508
9509 /* SQPOLL thread does its own polling */
9510 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9511 (ctx->sq_data && ctx->sq_data->thread == current)) {
9512 while (!list_empty_careful(&ctx->iopoll_list)) {
9513 io_iopoll_try_reap_events(ctx);
9514 ret = true;
9515 }
9516 }
9517
9518 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9519 ret |= io_poll_remove_all(ctx, task, cancel_all);
9520 ret |= io_kill_timeouts(ctx, task, cancel_all);
9521 if (task)
9522 ret |= io_run_task_work();
9523 if (!ret)
9524 break;
9525 cond_resched();
9526 }
9527}
9528
9529static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9530{
9531 struct io_uring_task *tctx = current->io_uring;
9532 struct io_tctx_node *node;
9533 int ret;
9534
9535 if (unlikely(!tctx)) {
9536 ret = io_uring_alloc_task_context(current, ctx);
9537 if (unlikely(ret))
9538 return ret;
9539 tctx = current->io_uring;
9540 }
9541 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9542 node = kmalloc(sizeof(*node), GFP_KERNEL);
9543 if (!node)
9544 return -ENOMEM;
9545 node->ctx = ctx;
9546 node->task = current;
9547
9548 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9549 node, GFP_KERNEL));
9550 if (ret) {
9551 kfree(node);
9552 return ret;
9553 }
9554
9555 mutex_lock(&ctx->uring_lock);
9556 list_add(&node->ctx_node, &ctx->tctx_list);
9557 mutex_unlock(&ctx->uring_lock);
9558 }
9559 tctx->last = ctx;
9560 return 0;
9561}
9562
9563/*
9564 * Note that this task has used io_uring. We use it for cancelation purposes.
9565 */
9566static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9567{
9568 struct io_uring_task *tctx = current->io_uring;
9569
9570 if (likely(tctx && tctx->last == ctx))
9571 return 0;
9572 return __io_uring_add_tctx_node(ctx);
9573}
9574
9575/*
9576 * Remove this io_uring_file -> task mapping.
9577 */
9578static void io_uring_del_tctx_node(unsigned long index)
9579{
9580 struct io_uring_task *tctx = current->io_uring;
9581 struct io_tctx_node *node;
9582
9583 if (!tctx)
9584 return;
9585 node = xa_erase(&tctx->xa, index);
9586 if (!node)
9587 return;
9588
9589 WARN_ON_ONCE(current != node->task);
9590 WARN_ON_ONCE(list_empty(&node->ctx_node));
9591
9592 mutex_lock(&node->ctx->uring_lock);
9593 list_del(&node->ctx_node);
9594 mutex_unlock(&node->ctx->uring_lock);
9595
9596 if (tctx->last == node->ctx)
9597 tctx->last = NULL;
9598 kfree(node);
9599}
9600
9601static void io_uring_clean_tctx(struct io_uring_task *tctx)
9602{
9603 struct io_wq *wq = tctx->io_wq;
9604 struct io_tctx_node *node;
9605 unsigned long index;
9606
9607 xa_for_each(&tctx->xa, index, node)
9608 io_uring_del_tctx_node(index);
9609 if (wq) {
9610 /*
9611 * Must be after io_uring_del_task_file() (removes nodes under
9612 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9613 */
9614 io_wq_put_and_exit(wq);
9615 tctx->io_wq = NULL;
9616 }
9617}
9618
9619static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9620{
9621 if (tracked)
9622 return atomic_read(&tctx->inflight_tracked);
9623 return percpu_counter_sum(&tctx->inflight);
9624}
9625
9626static void io_uring_drop_tctx_refs(struct task_struct *task)
9627{
9628 struct io_uring_task *tctx = task->io_uring;
9629 unsigned int refs = tctx->cached_refs;
9630
9631 if (refs) {
9632 tctx->cached_refs = 0;
9633 percpu_counter_sub(&tctx->inflight, refs);
9634 put_task_struct_many(task, refs);
9635 }
9636}
9637
9638/*
9639 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9640 * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9641 */
9642static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9643{
9644 struct io_uring_task *tctx = current->io_uring;
9645 struct io_ring_ctx *ctx;
9646 s64 inflight;
9647 DEFINE_WAIT(wait);
9648
9649 WARN_ON_ONCE(sqd && sqd->thread != current);
9650
9651 if (!current->io_uring)
9652 return;
9653 if (tctx->io_wq)
9654 io_wq_exit_start(tctx->io_wq);
9655
9656 atomic_inc(&tctx->in_idle);
9657 do {
9658 io_uring_drop_tctx_refs(current);
9659 /* read completions before cancelations */
9660 inflight = tctx_inflight(tctx, !cancel_all);
9661 if (!inflight)
9662 break;
9663
9664 if (!sqd) {
9665 struct io_tctx_node *node;
9666 unsigned long index;
9667
9668 xa_for_each(&tctx->xa, index, node) {
9669 /* sqpoll task will cancel all its requests */
9670 if (node->ctx->sq_data)
9671 continue;
9672 io_uring_try_cancel_requests(node->ctx, current,
9673 cancel_all);
9674 }
9675 } else {
9676 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9677 io_uring_try_cancel_requests(ctx, current,
9678 cancel_all);
9679 }
9680
9681 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9682 io_uring_drop_tctx_refs(current);
9683 /*
9684 * If we've seen completions, retry without waiting. This
9685 * avoids a race where a completion comes in before we did
9686 * prepare_to_wait().
9687 */
9688 if (inflight == tctx_inflight(tctx, !cancel_all))
9689 schedule();
9690 finish_wait(&tctx->wait, &wait);
9691 } while (1);
9692 atomic_dec(&tctx->in_idle);
9693
9694 io_uring_clean_tctx(tctx);
9695 if (cancel_all) {
9696 /* for exec all current's requests should be gone, kill tctx */
9697 __io_uring_free(current);
9698 }
9699}
9700
9701void __io_uring_cancel(bool cancel_all)
9702{
9703 io_uring_cancel_generic(cancel_all, NULL);
9704}
9705
9706static void *io_uring_validate_mmap_request(struct file *file,
9707 loff_t pgoff, size_t sz)
9708{
9709 struct io_ring_ctx *ctx = file->private_data;
9710 loff_t offset = pgoff << PAGE_SHIFT;
9711 struct page *page;
9712 void *ptr;
9713
9714 switch (offset) {
9715 case IORING_OFF_SQ_RING:
9716 case IORING_OFF_CQ_RING:
9717 ptr = ctx->rings;
9718 break;
9719 case IORING_OFF_SQES:
9720 ptr = ctx->sq_sqes;
9721 break;
9722 default:
9723 return ERR_PTR(-EINVAL);
9724 }
9725
9726 page = virt_to_head_page(ptr);
9727 if (sz > page_size(page))
9728 return ERR_PTR(-EINVAL);
9729
9730 return ptr;
9731}
9732
9733#ifdef CONFIG_MMU
9734
9735static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9736{
9737 size_t sz = vma->vm_end - vma->vm_start;
9738 unsigned long pfn;
9739 void *ptr;
9740
9741 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9742 if (IS_ERR(ptr))
9743 return PTR_ERR(ptr);
9744
9745 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9746 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9747}
9748
9749#else /* !CONFIG_MMU */
9750
9751static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9752{
9753 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9754}
9755
9756static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9757{
9758 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9759}
9760
9761static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9762 unsigned long addr, unsigned long len,
9763 unsigned long pgoff, unsigned long flags)
9764{
9765 void *ptr;
9766
9767 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9768 if (IS_ERR(ptr))
9769 return PTR_ERR(ptr);
9770
9771 return (unsigned long) ptr;
9772}
9773
9774#endif /* !CONFIG_MMU */
9775
9776static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9777{
9778 DEFINE_WAIT(wait);
9779
9780 do {
9781 if (!io_sqring_full(ctx))
9782 break;
9783 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9784
9785 if (!io_sqring_full(ctx))
9786 break;
9787 schedule();
9788 } while (!signal_pending(current));
9789
9790 finish_wait(&ctx->sqo_sq_wait, &wait);
9791 return 0;
9792}
9793
9794static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9795 struct __kernel_timespec __user **ts,
9796 const sigset_t __user **sig)
9797{
9798 struct io_uring_getevents_arg arg;
9799
9800 /*
9801 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9802 * is just a pointer to the sigset_t.
9803 */
9804 if (!(flags & IORING_ENTER_EXT_ARG)) {
9805 *sig = (const sigset_t __user *) argp;
9806 *ts = NULL;
9807 return 0;
9808 }
9809
9810 /*
9811 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9812 * timespec and sigset_t pointers if good.
9813 */
9814 if (*argsz != sizeof(arg))
9815 return -EINVAL;
9816 if (copy_from_user(&arg, argp, sizeof(arg)))
9817 return -EFAULT;
9818 *sig = u64_to_user_ptr(arg.sigmask);
9819 *argsz = arg.sigmask_sz;
9820 *ts = u64_to_user_ptr(arg.ts);
9821 return 0;
9822}
9823
9824SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9825 u32, min_complete, u32, flags, const void __user *, argp,
9826 size_t, argsz)
9827{
9828 struct io_ring_ctx *ctx;
9829 int submitted = 0;
9830 struct fd f;
9831 long ret;
9832
9833 io_run_task_work();
9834
9835 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9836 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9837 return -EINVAL;
9838
9839 f = fdget(fd);
9840 if (unlikely(!f.file))
9841 return -EBADF;
9842
9843 ret = -EOPNOTSUPP;
9844 if (unlikely(f.file->f_op != &io_uring_fops))
9845 goto out_fput;
9846
9847 ret = -ENXIO;
9848 ctx = f.file->private_data;
9849 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9850 goto out_fput;
9851
9852 ret = -EBADFD;
9853 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9854 goto out;
9855
9856 /*
9857 * For SQ polling, the thread will do all submissions and completions.
9858 * Just return the requested submit count, and wake the thread if
9859 * we were asked to.
9860 */
9861 ret = 0;
9862 if (ctx->flags & IORING_SETUP_SQPOLL) {
9863 io_cqring_overflow_flush(ctx);
9864
9865 if (unlikely(ctx->sq_data->thread == NULL)) {
9866 ret = -EOWNERDEAD;
9867 goto out;
9868 }
9869 if (flags & IORING_ENTER_SQ_WAKEUP)
9870 wake_up(&ctx->sq_data->wait);
9871 if (flags & IORING_ENTER_SQ_WAIT) {
9872 ret = io_sqpoll_wait_sq(ctx);
9873 if (ret)
9874 goto out;
9875 }
9876 submitted = to_submit;
9877 } else if (to_submit) {
9878 ret = io_uring_add_tctx_node(ctx);
9879 if (unlikely(ret))
9880 goto out;
9881 mutex_lock(&ctx->uring_lock);
9882 submitted = io_submit_sqes(ctx, to_submit);
9883 mutex_unlock(&ctx->uring_lock);
9884
9885 if (submitted != to_submit)
9886 goto out;
9887 }
9888 if (flags & IORING_ENTER_GETEVENTS) {
9889 const sigset_t __user *sig;
9890 struct __kernel_timespec __user *ts;
9891
9892 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9893 if (unlikely(ret))
9894 goto out;
9895
9896 min_complete = min(min_complete, ctx->cq_entries);
9897
9898 /*
9899 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9900 * space applications don't need to do io completion events
9901 * polling again, they can rely on io_sq_thread to do polling
9902 * work, which can reduce cpu usage and uring_lock contention.
9903 */
9904 if (ctx->flags & IORING_SETUP_IOPOLL &&
9905 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9906 ret = io_iopoll_check(ctx, min_complete);
9907 } else {
9908 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9909 }
9910 }
9911
9912out:
9913 percpu_ref_put(&ctx->refs);
9914out_fput:
9915 fdput(f);
9916 return submitted ? submitted : ret;
9917}
9918
9919#ifdef CONFIG_PROC_FS
9920static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9921 const struct cred *cred)
9922{
9923 struct user_namespace *uns = seq_user_ns(m);
9924 struct group_info *gi;
9925 kernel_cap_t cap;
9926 unsigned __capi;
9927 int g;
9928
9929 seq_printf(m, "%5d\n", id);
9930 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9931 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9932 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9933 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9934 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9935 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9936 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9937 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9938 seq_puts(m, "\n\tGroups:\t");
9939 gi = cred->group_info;
9940 for (g = 0; g < gi->ngroups; g++) {
9941 seq_put_decimal_ull(m, g ? " " : "",
9942 from_kgid_munged(uns, gi->gid[g]));
9943 }
9944 seq_puts(m, "\n\tCapEff:\t");
9945 cap = cred->cap_effective;
9946 CAP_FOR_EACH_U32(__capi)
9947 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9948 seq_putc(m, '\n');
9949 return 0;
9950}
9951
9952static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9953{
9954 struct io_sq_data *sq = NULL;
9955 bool has_lock;
9956 int i;
9957
9958 /*
9959 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9960 * since fdinfo case grabs it in the opposite direction of normal use
9961 * cases. If we fail to get the lock, we just don't iterate any
9962 * structures that could be going away outside the io_uring mutex.
9963 */
9964 has_lock = mutex_trylock(&ctx->uring_lock);
9965
9966 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9967 sq = ctx->sq_data;
9968 if (!sq->thread)
9969 sq = NULL;
9970 }
9971
9972 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9973 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9974 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9975 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9976 struct file *f = io_file_from_index(ctx, i);
9977
9978 if (f)
9979 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9980 else
9981 seq_printf(m, "%5u: <none>\n", i);
9982 }
9983 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9984 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9985 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9986 unsigned int len = buf->ubuf_end - buf->ubuf;
9987
9988 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9989 }
9990 if (has_lock && !xa_empty(&ctx->personalities)) {
9991 unsigned long index;
9992 const struct cred *cred;
9993
9994 seq_printf(m, "Personalities:\n");
9995 xa_for_each(&ctx->personalities, index, cred)
9996 io_uring_show_cred(m, index, cred);
9997 }
9998 seq_printf(m, "PollList:\n");
9999 spin_lock(&ctx->completion_lock);
10000 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10001 struct hlist_head *list = &ctx->cancel_hash[i];
10002 struct io_kiocb *req;
10003
10004 hlist_for_each_entry(req, list, hash_node)
10005 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10006 req->task->task_works != NULL);
10007 }
10008 spin_unlock(&ctx->completion_lock);
10009 if (has_lock)
10010 mutex_unlock(&ctx->uring_lock);
10011}
10012
10013static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10014{
10015 struct io_ring_ctx *ctx = f->private_data;
10016
10017 if (percpu_ref_tryget(&ctx->refs)) {
10018 __io_uring_show_fdinfo(ctx, m);
10019 percpu_ref_put(&ctx->refs);
10020 }
10021}
10022#endif
10023
10024static const struct file_operations io_uring_fops = {
10025 .release = io_uring_release,
10026 .mmap = io_uring_mmap,
10027#ifndef CONFIG_MMU
10028 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10029 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10030#endif
10031 .poll = io_uring_poll,
10032 .fasync = io_uring_fasync,
10033#ifdef CONFIG_PROC_FS
10034 .show_fdinfo = io_uring_show_fdinfo,
10035#endif
10036};
10037
10038static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10039 struct io_uring_params *p)
10040{
10041 struct io_rings *rings;
10042 size_t size, sq_array_offset;
10043
10044 /* make sure these are sane, as we already accounted them */
10045 ctx->sq_entries = p->sq_entries;
10046 ctx->cq_entries = p->cq_entries;
10047
10048 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10049 if (size == SIZE_MAX)
10050 return -EOVERFLOW;
10051
10052 rings = io_mem_alloc(size);
10053 if (!rings)
10054 return -ENOMEM;
10055
10056 ctx->rings = rings;
10057 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10058 rings->sq_ring_mask = p->sq_entries - 1;
10059 rings->cq_ring_mask = p->cq_entries - 1;
10060 rings->sq_ring_entries = p->sq_entries;
10061 rings->cq_ring_entries = p->cq_entries;
10062
10063 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10064 if (size == SIZE_MAX) {
10065 io_mem_free(ctx->rings);
10066 ctx->rings = NULL;
10067 return -EOVERFLOW;
10068 }
10069
10070 ctx->sq_sqes = io_mem_alloc(size);
10071 if (!ctx->sq_sqes) {
10072 io_mem_free(ctx->rings);
10073 ctx->rings = NULL;
10074 return -ENOMEM;
10075 }
10076
10077 return 0;
10078}
10079
10080static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10081{
10082 int ret, fd;
10083
10084 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10085 if (fd < 0)
10086 return fd;
10087
10088 ret = io_uring_add_tctx_node(ctx);
10089 if (ret) {
10090 put_unused_fd(fd);
10091 return ret;
10092 }
10093 fd_install(fd, file);
10094 return fd;
10095}
10096
10097/*
10098 * Allocate an anonymous fd, this is what constitutes the application
10099 * visible backing of an io_uring instance. The application mmaps this
10100 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10101 * we have to tie this fd to a socket for file garbage collection purposes.
10102 */
10103static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10104{
10105 struct file *file;
10106#if defined(CONFIG_UNIX)
10107 int ret;
10108
10109 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10110 &ctx->ring_sock);
10111 if (ret)
10112 return ERR_PTR(ret);
10113#endif
10114
10115 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10116 O_RDWR | O_CLOEXEC);
10117#if defined(CONFIG_UNIX)
10118 if (IS_ERR(file)) {
10119 sock_release(ctx->ring_sock);
10120 ctx->ring_sock = NULL;
10121 } else {
10122 ctx->ring_sock->file = file;
10123 }
10124#endif
10125 return file;
10126}
10127
10128static int io_uring_create(unsigned entries, struct io_uring_params *p,
10129 struct io_uring_params __user *params)
10130{
10131 struct io_ring_ctx *ctx;
10132 struct file *file;
10133 int ret;
10134
10135 if (!entries)
10136 return -EINVAL;
10137 if (entries > IORING_MAX_ENTRIES) {
10138 if (!(p->flags & IORING_SETUP_CLAMP))
10139 return -EINVAL;
10140 entries = IORING_MAX_ENTRIES;
10141 }
10142
10143 /*
10144 * Use twice as many entries for the CQ ring. It's possible for the
10145 * application to drive a higher depth than the size of the SQ ring,
10146 * since the sqes are only used at submission time. This allows for
10147 * some flexibility in overcommitting a bit. If the application has
10148 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10149 * of CQ ring entries manually.
10150 */
10151 p->sq_entries = roundup_pow_of_two(entries);
10152 if (p->flags & IORING_SETUP_CQSIZE) {
10153 /*
10154 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10155 * to a power-of-two, if it isn't already. We do NOT impose
10156 * any cq vs sq ring sizing.
10157 */
10158 if (!p->cq_entries)
10159 return -EINVAL;
10160 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10161 if (!(p->flags & IORING_SETUP_CLAMP))
10162 return -EINVAL;
10163 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10164 }
10165 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10166 if (p->cq_entries < p->sq_entries)
10167 return -EINVAL;
10168 } else {
10169 p->cq_entries = 2 * p->sq_entries;
10170 }
10171
10172 ctx = io_ring_ctx_alloc(p);
10173 if (!ctx)
10174 return -ENOMEM;
10175 ctx->compat = in_compat_syscall();
10176 if (!capable(CAP_IPC_LOCK))
10177 ctx->user = get_uid(current_user());
10178
10179 /*
10180 * This is just grabbed for accounting purposes. When a process exits,
10181 * the mm is exited and dropped before the files, hence we need to hang
10182 * on to this mm purely for the purposes of being able to unaccount
10183 * memory (locked/pinned vm). It's not used for anything else.
10184 */
10185 mmgrab(current->mm);
10186 ctx->mm_account = current->mm;
10187
10188 ret = io_allocate_scq_urings(ctx, p);
10189 if (ret)
10190 goto err;
10191
10192 ret = io_sq_offload_create(ctx, p);
10193 if (ret)
10194 goto err;
10195 /* always set a rsrc node */
10196 ret = io_rsrc_node_switch_start(ctx);
10197 if (ret)
10198 goto err;
10199 io_rsrc_node_switch(ctx, NULL);
10200
10201 memset(&p->sq_off, 0, sizeof(p->sq_off));
10202 p->sq_off.head = offsetof(struct io_rings, sq.head);
10203 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10204 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10205 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10206 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10207 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10208 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10209
10210 memset(&p->cq_off, 0, sizeof(p->cq_off));
10211 p->cq_off.head = offsetof(struct io_rings, cq.head);
10212 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10213 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10214 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10215 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10216 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10217 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10218
10219 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10220 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10221 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10222 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10223 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10224 IORING_FEAT_RSRC_TAGS;
10225
10226 if (copy_to_user(params, p, sizeof(*p))) {
10227 ret = -EFAULT;
10228 goto err;
10229 }
10230
10231 file = io_uring_get_file(ctx);
10232 if (IS_ERR(file)) {
10233 ret = PTR_ERR(file);
10234 goto err;
10235 }
10236
10237 /*
10238 * Install ring fd as the very last thing, so we don't risk someone
10239 * having closed it before we finish setup
10240 */
10241 ret = io_uring_install_fd(ctx, file);
10242 if (ret < 0) {
10243 /* fput will clean it up */
10244 fput(file);
10245 return ret;
10246 }
10247
10248 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10249 return ret;
10250err:
10251 io_ring_ctx_wait_and_kill(ctx);
10252 return ret;
10253}
10254
10255/*
10256 * Sets up an aio uring context, and returns the fd. Applications asks for a
10257 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10258 * params structure passed in.
10259 */
10260static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10261{
10262 struct io_uring_params p;
10263 int i;
10264
10265 if (copy_from_user(&p, params, sizeof(p)))
10266 return -EFAULT;
10267 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10268 if (p.resv[i])
10269 return -EINVAL;
10270 }
10271
10272 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10273 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10274 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10275 IORING_SETUP_R_DISABLED))
10276 return -EINVAL;
10277
10278 return io_uring_create(entries, &p, params);
10279}
10280
10281SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10282 struct io_uring_params __user *, params)
10283{
10284 return io_uring_setup(entries, params);
10285}
10286
10287static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10288{
10289 struct io_uring_probe *p;
10290 size_t size;
10291 int i, ret;
10292
10293 size = struct_size(p, ops, nr_args);
10294 if (size == SIZE_MAX)
10295 return -EOVERFLOW;
10296 p = kzalloc(size, GFP_KERNEL);
10297 if (!p)
10298 return -ENOMEM;
10299
10300 ret = -EFAULT;
10301 if (copy_from_user(p, arg, size))
10302 goto out;
10303 ret = -EINVAL;
10304 if (memchr_inv(p, 0, size))
10305 goto out;
10306
10307 p->last_op = IORING_OP_LAST - 1;
10308 if (nr_args > IORING_OP_LAST)
10309 nr_args = IORING_OP_LAST;
10310
10311 for (i = 0; i < nr_args; i++) {
10312 p->ops[i].op = i;
10313 if (!io_op_defs[i].not_supported)
10314 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10315 }
10316 p->ops_len = i;
10317
10318 ret = 0;
10319 if (copy_to_user(arg, p, size))
10320 ret = -EFAULT;
10321out:
10322 kfree(p);
10323 return ret;
10324}
10325
10326static int io_register_personality(struct io_ring_ctx *ctx)
10327{
10328 const struct cred *creds;
10329 u32 id;
10330 int ret;
10331
10332 creds = get_current_cred();
10333
10334 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10335 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10336 if (ret < 0) {
10337 put_cred(creds);
10338 return ret;
10339 }
10340 return id;
10341}
10342
10343static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10344 unsigned int nr_args)
10345{
10346 struct io_uring_restriction *res;
10347 size_t size;
10348 int i, ret;
10349
10350 /* Restrictions allowed only if rings started disabled */
10351 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10352 return -EBADFD;
10353
10354 /* We allow only a single restrictions registration */
10355 if (ctx->restrictions.registered)
10356 return -EBUSY;
10357
10358 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10359 return -EINVAL;
10360
10361 size = array_size(nr_args, sizeof(*res));
10362 if (size == SIZE_MAX)
10363 return -EOVERFLOW;
10364
10365 res = memdup_user(arg, size);
10366 if (IS_ERR(res))
10367 return PTR_ERR(res);
10368
10369 ret = 0;
10370
10371 for (i = 0; i < nr_args; i++) {
10372 switch (res[i].opcode) {
10373 case IORING_RESTRICTION_REGISTER_OP:
10374 if (res[i].register_op >= IORING_REGISTER_LAST) {
10375 ret = -EINVAL;
10376 goto out;
10377 }
10378
10379 __set_bit(res[i].register_op,
10380 ctx->restrictions.register_op);
10381 break;
10382 case IORING_RESTRICTION_SQE_OP:
10383 if (res[i].sqe_op >= IORING_OP_LAST) {
10384 ret = -EINVAL;
10385 goto out;
10386 }
10387
10388 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10389 break;
10390 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10391 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10392 break;
10393 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10394 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10395 break;
10396 default:
10397 ret = -EINVAL;
10398 goto out;
10399 }
10400 }
10401
10402out:
10403 /* Reset all restrictions if an error happened */
10404 if (ret != 0)
10405 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10406 else
10407 ctx->restrictions.registered = true;
10408
10409 kfree(res);
10410 return ret;
10411}
10412
10413static int io_register_enable_rings(struct io_ring_ctx *ctx)
10414{
10415 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10416 return -EBADFD;
10417
10418 if (ctx->restrictions.registered)
10419 ctx->restricted = 1;
10420
10421 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10422 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10423 wake_up(&ctx->sq_data->wait);
10424 return 0;
10425}
10426
10427static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10428 struct io_uring_rsrc_update2 *up,
10429 unsigned nr_args)
10430{
10431 __u32 tmp;
10432 int err;
10433
10434 if (up->resv)
10435 return -EINVAL;
10436 if (check_add_overflow(up->offset, nr_args, &tmp))
10437 return -EOVERFLOW;
10438 err = io_rsrc_node_switch_start(ctx);
10439 if (err)
10440 return err;
10441
10442 switch (type) {
10443 case IORING_RSRC_FILE:
10444 return __io_sqe_files_update(ctx, up, nr_args);
10445 case IORING_RSRC_BUFFER:
10446 return __io_sqe_buffers_update(ctx, up, nr_args);
10447 }
10448 return -EINVAL;
10449}
10450
10451static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10452 unsigned nr_args)
10453{
10454 struct io_uring_rsrc_update2 up;
10455
10456 if (!nr_args)
10457 return -EINVAL;
10458 memset(&up, 0, sizeof(up));
10459 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10460 return -EFAULT;
10461 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10462}
10463
10464static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10465 unsigned size, unsigned type)
10466{
10467 struct io_uring_rsrc_update2 up;
10468
10469 if (size != sizeof(up))
10470 return -EINVAL;
10471 if (copy_from_user(&up, arg, sizeof(up)))
10472 return -EFAULT;
10473 if (!up.nr || up.resv)
10474 return -EINVAL;
10475 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10476}
10477
10478static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10479 unsigned int size, unsigned int type)
10480{
10481 struct io_uring_rsrc_register rr;
10482
10483 /* keep it extendible */
10484 if (size != sizeof(rr))
10485 return -EINVAL;
10486
10487 memset(&rr, 0, sizeof(rr));
10488 if (copy_from_user(&rr, arg, size))
10489 return -EFAULT;
10490 if (!rr.nr || rr.resv || rr.resv2)
10491 return -EINVAL;
10492
10493 switch (type) {
10494 case IORING_RSRC_FILE:
10495 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10496 rr.nr, u64_to_user_ptr(rr.tags));
10497 case IORING_RSRC_BUFFER:
10498 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10499 rr.nr, u64_to_user_ptr(rr.tags));
10500 }
10501 return -EINVAL;
10502}
10503
10504static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10505 unsigned len)
10506{
10507 struct io_uring_task *tctx = current->io_uring;
10508 cpumask_var_t new_mask;
10509 int ret;
10510
10511 if (!tctx || !tctx->io_wq)
10512 return -EINVAL;
10513
10514 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10515 return -ENOMEM;
10516
10517 cpumask_clear(new_mask);
10518 if (len > cpumask_size())
10519 len = cpumask_size();
10520
10521 if (copy_from_user(new_mask, arg, len)) {
10522 free_cpumask_var(new_mask);
10523 return -EFAULT;
10524 }
10525
10526 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10527 free_cpumask_var(new_mask);
10528 return ret;
10529}
10530
10531static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10532{
10533 struct io_uring_task *tctx = current->io_uring;
10534
10535 if (!tctx || !tctx->io_wq)
10536 return -EINVAL;
10537
10538 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10539}
10540
10541static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10542 void __user *arg)
10543{
10544 struct io_uring_task *tctx = NULL;
10545 struct io_sq_data *sqd = NULL;
10546 __u32 new_count[2];
10547 int i, ret;
10548
10549 if (copy_from_user(new_count, arg, sizeof(new_count)))
10550 return -EFAULT;
10551 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10552 if (new_count[i] > INT_MAX)
10553 return -EINVAL;
10554
10555 if (ctx->flags & IORING_SETUP_SQPOLL) {
10556 sqd = ctx->sq_data;
10557 if (sqd) {
10558 /*
10559 * Observe the correct sqd->lock -> ctx->uring_lock
10560 * ordering. Fine to drop uring_lock here, we hold
10561 * a ref to the ctx.
10562 */
10563 mutex_unlock(&ctx->uring_lock);
10564 mutex_lock(&sqd->lock);
10565 mutex_lock(&ctx->uring_lock);
10566 tctx = sqd->thread->io_uring;
10567 }
10568 } else {
10569 tctx = current->io_uring;
10570 }
10571
10572 ret = -EINVAL;
10573 if (!tctx || !tctx->io_wq)
10574 goto err;
10575
10576 ret = io_wq_max_workers(tctx->io_wq, new_count);
10577 if (ret)
10578 goto err;
10579
10580 if (sqd)
10581 mutex_unlock(&sqd->lock);
10582
10583 if (copy_to_user(arg, new_count, sizeof(new_count)))
10584 return -EFAULT;
10585
10586 return 0;
10587err:
10588 if (sqd)
10589 mutex_unlock(&sqd->lock);
10590 return ret;
10591}
10592
10593static bool io_register_op_must_quiesce(int op)
10594{
10595 switch (op) {
10596 case IORING_REGISTER_BUFFERS:
10597 case IORING_UNREGISTER_BUFFERS:
10598 case IORING_REGISTER_FILES:
10599 case IORING_UNREGISTER_FILES:
10600 case IORING_REGISTER_FILES_UPDATE:
10601 case IORING_REGISTER_PROBE:
10602 case IORING_REGISTER_PERSONALITY:
10603 case IORING_UNREGISTER_PERSONALITY:
10604 case IORING_REGISTER_FILES2:
10605 case IORING_REGISTER_FILES_UPDATE2:
10606 case IORING_REGISTER_BUFFERS2:
10607 case IORING_REGISTER_BUFFERS_UPDATE:
10608 case IORING_REGISTER_IOWQ_AFF:
10609 case IORING_UNREGISTER_IOWQ_AFF:
10610 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10611 return false;
10612 default:
10613 return true;
10614 }
10615}
10616
10617static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10618{
10619 long ret;
10620
10621 percpu_ref_kill(&ctx->refs);
10622
10623 /*
10624 * Drop uring mutex before waiting for references to exit. If another
10625 * thread is currently inside io_uring_enter() it might need to grab the
10626 * uring_lock to make progress. If we hold it here across the drain
10627 * wait, then we can deadlock. It's safe to drop the mutex here, since
10628 * no new references will come in after we've killed the percpu ref.
10629 */
10630 mutex_unlock(&ctx->uring_lock);
10631 do {
10632 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10633 if (!ret)
10634 break;
10635 ret = io_run_task_work_sig();
10636 } while (ret >= 0);
10637 mutex_lock(&ctx->uring_lock);
10638
10639 if (ret)
10640 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10641 return ret;
10642}
10643
10644static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10645 void __user *arg, unsigned nr_args)
10646 __releases(ctx->uring_lock)
10647 __acquires(ctx->uring_lock)
10648{
10649 int ret;
10650
10651 /*
10652 * We're inside the ring mutex, if the ref is already dying, then
10653 * someone else killed the ctx or is already going through
10654 * io_uring_register().
10655 */
10656 if (percpu_ref_is_dying(&ctx->refs))
10657 return -ENXIO;
10658
10659 if (ctx->restricted) {
10660 if (opcode >= IORING_REGISTER_LAST)
10661 return -EINVAL;
10662 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10663 if (!test_bit(opcode, ctx->restrictions.register_op))
10664 return -EACCES;
10665 }
10666
10667 if (io_register_op_must_quiesce(opcode)) {
10668 ret = io_ctx_quiesce(ctx);
10669 if (ret)
10670 return ret;
10671 }
10672
10673 switch (opcode) {
10674 case IORING_REGISTER_BUFFERS:
10675 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10676 break;
10677 case IORING_UNREGISTER_BUFFERS:
10678 ret = -EINVAL;
10679 if (arg || nr_args)
10680 break;
10681 ret = io_sqe_buffers_unregister(ctx);
10682 break;
10683 case IORING_REGISTER_FILES:
10684 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10685 break;
10686 case IORING_UNREGISTER_FILES:
10687 ret = -EINVAL;
10688 if (arg || nr_args)
10689 break;
10690 ret = io_sqe_files_unregister(ctx);
10691 break;
10692 case IORING_REGISTER_FILES_UPDATE:
10693 ret = io_register_files_update(ctx, arg, nr_args);
10694 break;
10695 case IORING_REGISTER_EVENTFD:
10696 case IORING_REGISTER_EVENTFD_ASYNC:
10697 ret = -EINVAL;
10698 if (nr_args != 1)
10699 break;
10700 ret = io_eventfd_register(ctx, arg);
10701 if (ret)
10702 break;
10703 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10704 ctx->eventfd_async = 1;
10705 else
10706 ctx->eventfd_async = 0;
10707 break;
10708 case IORING_UNREGISTER_EVENTFD:
10709 ret = -EINVAL;
10710 if (arg || nr_args)
10711 break;
10712 ret = io_eventfd_unregister(ctx);
10713 break;
10714 case IORING_REGISTER_PROBE:
10715 ret = -EINVAL;
10716 if (!arg || nr_args > 256)
10717 break;
10718 ret = io_probe(ctx, arg, nr_args);
10719 break;
10720 case IORING_REGISTER_PERSONALITY:
10721 ret = -EINVAL;
10722 if (arg || nr_args)
10723 break;
10724 ret = io_register_personality(ctx);
10725 break;
10726 case IORING_UNREGISTER_PERSONALITY:
10727 ret = -EINVAL;
10728 if (arg)
10729 break;
10730 ret = io_unregister_personality(ctx, nr_args);
10731 break;
10732 case IORING_REGISTER_ENABLE_RINGS:
10733 ret = -EINVAL;
10734 if (arg || nr_args)
10735 break;
10736 ret = io_register_enable_rings(ctx);
10737 break;
10738 case IORING_REGISTER_RESTRICTIONS:
10739 ret = io_register_restrictions(ctx, arg, nr_args);
10740 break;
10741 case IORING_REGISTER_FILES2:
10742 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10743 break;
10744 case IORING_REGISTER_FILES_UPDATE2:
10745 ret = io_register_rsrc_update(ctx, arg, nr_args,
10746 IORING_RSRC_FILE);
10747 break;
10748 case IORING_REGISTER_BUFFERS2:
10749 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10750 break;
10751 case IORING_REGISTER_BUFFERS_UPDATE:
10752 ret = io_register_rsrc_update(ctx, arg, nr_args,
10753 IORING_RSRC_BUFFER);
10754 break;
10755 case IORING_REGISTER_IOWQ_AFF:
10756 ret = -EINVAL;
10757 if (!arg || !nr_args)
10758 break;
10759 ret = io_register_iowq_aff(ctx, arg, nr_args);
10760 break;
10761 case IORING_UNREGISTER_IOWQ_AFF:
10762 ret = -EINVAL;
10763 if (arg || nr_args)
10764 break;
10765 ret = io_unregister_iowq_aff(ctx);
10766 break;
10767 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10768 ret = -EINVAL;
10769 if (!arg || nr_args != 2)
10770 break;
10771 ret = io_register_iowq_max_workers(ctx, arg);
10772 break;
10773 default:
10774 ret = -EINVAL;
10775 break;
10776 }
10777
10778 if (io_register_op_must_quiesce(opcode)) {
10779 /* bring the ctx back to life */
10780 percpu_ref_reinit(&ctx->refs);
10781 reinit_completion(&ctx->ref_comp);
10782 }
10783 return ret;
10784}
10785
10786SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10787 void __user *, arg, unsigned int, nr_args)
10788{
10789 struct io_ring_ctx *ctx;
10790 long ret = -EBADF;
10791 struct fd f;
10792
10793 f = fdget(fd);
10794 if (!f.file)
10795 return -EBADF;
10796
10797 ret = -EOPNOTSUPP;
10798 if (f.file->f_op != &io_uring_fops)
10799 goto out_fput;
10800
10801 ctx = f.file->private_data;
10802
10803 io_run_task_work();
10804
10805 mutex_lock(&ctx->uring_lock);
10806 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10807 mutex_unlock(&ctx->uring_lock);
10808 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10809 ctx->cq_ev_fd != NULL, ret);
10810out_fput:
10811 fdput(f);
10812 return ret;
10813}
10814
10815static int __init io_uring_init(void)
10816{
10817#define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10818 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10819 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10820} while (0)
10821
10822#define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10823 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10824 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10825 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10826 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10827 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10828 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10829 BUILD_BUG_SQE_ELEM(8, __u64, off);
10830 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10831 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10832 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10833 BUILD_BUG_SQE_ELEM(24, __u32, len);
10834 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10835 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10836 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10837 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10838 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10839 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10840 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10841 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10842 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10843 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10844 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10845 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10846 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10847 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10848 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10849 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10850 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10851 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
10852 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10853 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10854 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
10855
10856 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10857 sizeof(struct io_uring_rsrc_update));
10858 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10859 sizeof(struct io_uring_rsrc_update2));
10860
10861 /* ->buf_index is u16 */
10862 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
10863
10864 /* should fit into one byte */
10865 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10866
10867 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10868 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
10869
10870 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10871 SLAB_ACCOUNT);
10872 return 0;
10873};
10874__initcall(io_uring_init);