at v5.14 13 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * include/linux/writeback.h 4 */ 5#ifndef WRITEBACK_H 6#define WRITEBACK_H 7 8#include <linux/sched.h> 9#include <linux/workqueue.h> 10#include <linux/fs.h> 11#include <linux/flex_proportions.h> 12#include <linux/backing-dev-defs.h> 13#include <linux/blk_types.h> 14#include <linux/blk-cgroup.h> 15 16struct bio; 17 18DECLARE_PER_CPU(int, dirty_throttle_leaks); 19 20/* 21 * The 1/4 region under the global dirty thresh is for smooth dirty throttling: 22 * 23 * (thresh - thresh/DIRTY_FULL_SCOPE, thresh) 24 * 25 * Further beyond, all dirtier tasks will enter a loop waiting (possibly long 26 * time) for the dirty pages to drop, unless written enough pages. 27 * 28 * The global dirty threshold is normally equal to the global dirty limit, 29 * except when the system suddenly allocates a lot of anonymous memory and 30 * knocks down the global dirty threshold quickly, in which case the global 31 * dirty limit will follow down slowly to prevent livelocking all dirtier tasks. 32 */ 33#define DIRTY_SCOPE 8 34#define DIRTY_FULL_SCOPE (DIRTY_SCOPE / 2) 35 36struct backing_dev_info; 37 38/* 39 * fs/fs-writeback.c 40 */ 41enum writeback_sync_modes { 42 WB_SYNC_NONE, /* Don't wait on anything */ 43 WB_SYNC_ALL, /* Wait on every mapping */ 44}; 45 46/* 47 * A control structure which tells the writeback code what to do. These are 48 * always on the stack, and hence need no locking. They are always initialised 49 * in a manner such that unspecified fields are set to zero. 50 */ 51struct writeback_control { 52 long nr_to_write; /* Write this many pages, and decrement 53 this for each page written */ 54 long pages_skipped; /* Pages which were not written */ 55 56 /* 57 * For a_ops->writepages(): if start or end are non-zero then this is 58 * a hint that the filesystem need only write out the pages inside that 59 * byterange. The byte at `end' is included in the writeout request. 60 */ 61 loff_t range_start; 62 loff_t range_end; 63 64 enum writeback_sync_modes sync_mode; 65 66 unsigned for_kupdate:1; /* A kupdate writeback */ 67 unsigned for_background:1; /* A background writeback */ 68 unsigned tagged_writepages:1; /* tag-and-write to avoid livelock */ 69 unsigned for_reclaim:1; /* Invoked from the page allocator */ 70 unsigned range_cyclic:1; /* range_start is cyclic */ 71 unsigned for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 72 73 /* 74 * When writeback IOs are bounced through async layers, only the 75 * initial synchronous phase should be accounted towards inode 76 * cgroup ownership arbitration to avoid confusion. Later stages 77 * can set the following flag to disable the accounting. 78 */ 79 unsigned no_cgroup_owner:1; 80 81 unsigned punt_to_cgroup:1; /* cgrp punting, see __REQ_CGROUP_PUNT */ 82 83#ifdef CONFIG_CGROUP_WRITEBACK 84 struct bdi_writeback *wb; /* wb this writeback is issued under */ 85 struct inode *inode; /* inode being written out */ 86 87 /* foreign inode detection, see wbc_detach_inode() */ 88 int wb_id; /* current wb id */ 89 int wb_lcand_id; /* last foreign candidate wb id */ 90 int wb_tcand_id; /* this foreign candidate wb id */ 91 size_t wb_bytes; /* bytes written by current wb */ 92 size_t wb_lcand_bytes; /* bytes written by last candidate */ 93 size_t wb_tcand_bytes; /* bytes written by this candidate */ 94#endif 95}; 96 97static inline int wbc_to_write_flags(struct writeback_control *wbc) 98{ 99 int flags = 0; 100 101 if (wbc->punt_to_cgroup) 102 flags = REQ_CGROUP_PUNT; 103 104 if (wbc->sync_mode == WB_SYNC_ALL) 105 flags |= REQ_SYNC; 106 else if (wbc->for_kupdate || wbc->for_background) 107 flags |= REQ_BACKGROUND; 108 109 return flags; 110} 111 112static inline struct cgroup_subsys_state * 113wbc_blkcg_css(struct writeback_control *wbc) 114{ 115#ifdef CONFIG_CGROUP_WRITEBACK 116 if (wbc->wb) 117 return wbc->wb->blkcg_css; 118#endif 119 return blkcg_root_css; 120} 121 122/* 123 * A wb_domain represents a domain that wb's (bdi_writeback's) belong to 124 * and are measured against each other in. There always is one global 125 * domain, global_wb_domain, that every wb in the system is a member of. 126 * This allows measuring the relative bandwidth of each wb to distribute 127 * dirtyable memory accordingly. 128 */ 129struct wb_domain { 130 spinlock_t lock; 131 132 /* 133 * Scale the writeback cache size proportional to the relative 134 * writeout speed. 135 * 136 * We do this by keeping a floating proportion between BDIs, based 137 * on page writeback completions [end_page_writeback()]. Those 138 * devices that write out pages fastest will get the larger share, 139 * while the slower will get a smaller share. 140 * 141 * We use page writeout completions because we are interested in 142 * getting rid of dirty pages. Having them written out is the 143 * primary goal. 144 * 145 * We introduce a concept of time, a period over which we measure 146 * these events, because demand can/will vary over time. The length 147 * of this period itself is measured in page writeback completions. 148 */ 149 struct fprop_global completions; 150 struct timer_list period_timer; /* timer for aging of completions */ 151 unsigned long period_time; 152 153 /* 154 * The dirtyable memory and dirty threshold could be suddenly 155 * knocked down by a large amount (eg. on the startup of KVM in a 156 * swapless system). This may throw the system into deep dirty 157 * exceeded state and throttle heavy/light dirtiers alike. To 158 * retain good responsiveness, maintain global_dirty_limit for 159 * tracking slowly down to the knocked down dirty threshold. 160 * 161 * Both fields are protected by ->lock. 162 */ 163 unsigned long dirty_limit_tstamp; 164 unsigned long dirty_limit; 165}; 166 167/** 168 * wb_domain_size_changed - memory available to a wb_domain has changed 169 * @dom: wb_domain of interest 170 * 171 * This function should be called when the amount of memory available to 172 * @dom has changed. It resets @dom's dirty limit parameters to prevent 173 * the past values which don't match the current configuration from skewing 174 * dirty throttling. Without this, when memory size of a wb_domain is 175 * greatly reduced, the dirty throttling logic may allow too many pages to 176 * be dirtied leading to consecutive unnecessary OOMs and may get stuck in 177 * that situation. 178 */ 179static inline void wb_domain_size_changed(struct wb_domain *dom) 180{ 181 spin_lock(&dom->lock); 182 dom->dirty_limit_tstamp = jiffies; 183 dom->dirty_limit = 0; 184 spin_unlock(&dom->lock); 185} 186 187/* 188 * fs/fs-writeback.c 189 */ 190struct bdi_writeback; 191void writeback_inodes_sb(struct super_block *, enum wb_reason reason); 192void writeback_inodes_sb_nr(struct super_block *, unsigned long nr, 193 enum wb_reason reason); 194void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason); 195void sync_inodes_sb(struct super_block *); 196void wakeup_flusher_threads(enum wb_reason reason); 197void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 198 enum wb_reason reason); 199void inode_wait_for_writeback(struct inode *inode); 200void inode_io_list_del(struct inode *inode); 201 202/* writeback.h requires fs.h; it, too, is not included from here. */ 203static inline void wait_on_inode(struct inode *inode) 204{ 205 might_sleep(); 206 wait_on_bit(&inode->i_state, __I_NEW, TASK_UNINTERRUPTIBLE); 207} 208 209#ifdef CONFIG_CGROUP_WRITEBACK 210 211#include <linux/cgroup.h> 212#include <linux/bio.h> 213 214void __inode_attach_wb(struct inode *inode, struct page *page); 215void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 216 struct inode *inode) 217 __releases(&inode->i_lock); 218void wbc_detach_inode(struct writeback_control *wbc); 219void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 220 size_t bytes); 221int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr_pages, 222 enum wb_reason reason, struct wb_completion *done); 223void cgroup_writeback_umount(void); 224bool cleanup_offline_cgwb(struct bdi_writeback *wb); 225 226/** 227 * inode_attach_wb - associate an inode with its wb 228 * @inode: inode of interest 229 * @page: page being dirtied (may be NULL) 230 * 231 * If @inode doesn't have its wb, associate it with the wb matching the 232 * memcg of @page or, if @page is NULL, %current. May be called w/ or w/o 233 * @inode->i_lock. 234 */ 235static inline void inode_attach_wb(struct inode *inode, struct page *page) 236{ 237 if (!inode->i_wb) 238 __inode_attach_wb(inode, page); 239} 240 241/** 242 * inode_detach_wb - disassociate an inode from its wb 243 * @inode: inode of interest 244 * 245 * @inode is being freed. Detach from its wb. 246 */ 247static inline void inode_detach_wb(struct inode *inode) 248{ 249 if (inode->i_wb) { 250 WARN_ON_ONCE(!(inode->i_state & I_CLEAR)); 251 wb_put(inode->i_wb); 252 inode->i_wb = NULL; 253 } 254} 255 256/** 257 * wbc_attach_fdatawrite_inode - associate wbc and inode for fdatawrite 258 * @wbc: writeback_control of interest 259 * @inode: target inode 260 * 261 * This function is to be used by __filemap_fdatawrite_range(), which is an 262 * alternative entry point into writeback code, and first ensures @inode is 263 * associated with a bdi_writeback and attaches it to @wbc. 264 */ 265static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 266 struct inode *inode) 267{ 268 spin_lock(&inode->i_lock); 269 inode_attach_wb(inode, NULL); 270 wbc_attach_and_unlock_inode(wbc, inode); 271} 272 273/** 274 * wbc_init_bio - writeback specific initializtion of bio 275 * @wbc: writeback_control for the writeback in progress 276 * @bio: bio to be initialized 277 * 278 * @bio is a part of the writeback in progress controlled by @wbc. Perform 279 * writeback specific initialization. This is used to apply the cgroup 280 * writeback context. Must be called after the bio has been associated with 281 * a device. 282 */ 283static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 284{ 285 /* 286 * pageout() path doesn't attach @wbc to the inode being written 287 * out. This is intentional as we don't want the function to block 288 * behind a slow cgroup. Ultimately, we want pageout() to kick off 289 * regular writeback instead of writing things out itself. 290 */ 291 if (wbc->wb) 292 bio_associate_blkg_from_css(bio, wbc->wb->blkcg_css); 293} 294 295#else /* CONFIG_CGROUP_WRITEBACK */ 296 297static inline void inode_attach_wb(struct inode *inode, struct page *page) 298{ 299} 300 301static inline void inode_detach_wb(struct inode *inode) 302{ 303} 304 305static inline void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 306 struct inode *inode) 307 __releases(&inode->i_lock) 308{ 309 spin_unlock(&inode->i_lock); 310} 311 312static inline void wbc_attach_fdatawrite_inode(struct writeback_control *wbc, 313 struct inode *inode) 314{ 315} 316 317static inline void wbc_detach_inode(struct writeback_control *wbc) 318{ 319} 320 321static inline void wbc_init_bio(struct writeback_control *wbc, struct bio *bio) 322{ 323} 324 325static inline void wbc_account_cgroup_owner(struct writeback_control *wbc, 326 struct page *page, size_t bytes) 327{ 328} 329 330static inline void cgroup_writeback_umount(void) 331{ 332} 333 334#endif /* CONFIG_CGROUP_WRITEBACK */ 335 336/* 337 * mm/page-writeback.c 338 */ 339#ifdef CONFIG_BLOCK 340void laptop_io_completion(struct backing_dev_info *info); 341void laptop_sync_completion(void); 342void laptop_mode_sync(struct work_struct *work); 343void laptop_mode_timer_fn(struct timer_list *t); 344#else 345static inline void laptop_sync_completion(void) { } 346#endif 347bool node_dirty_ok(struct pglist_data *pgdat); 348int wb_domain_init(struct wb_domain *dom, gfp_t gfp); 349#ifdef CONFIG_CGROUP_WRITEBACK 350void wb_domain_exit(struct wb_domain *dom); 351#endif 352 353extern struct wb_domain global_wb_domain; 354 355/* These are exported to sysctl. */ 356extern int dirty_background_ratio; 357extern unsigned long dirty_background_bytes; 358extern int vm_dirty_ratio; 359extern unsigned long vm_dirty_bytes; 360extern unsigned int dirty_writeback_interval; 361extern unsigned int dirty_expire_interval; 362extern unsigned int dirtytime_expire_interval; 363extern int vm_highmem_is_dirtyable; 364extern int laptop_mode; 365 366int dirty_background_ratio_handler(struct ctl_table *table, int write, 367 void *buffer, size_t *lenp, loff_t *ppos); 368int dirty_background_bytes_handler(struct ctl_table *table, int write, 369 void *buffer, size_t *lenp, loff_t *ppos); 370int dirty_ratio_handler(struct ctl_table *table, int write, 371 void *buffer, size_t *lenp, loff_t *ppos); 372int dirty_bytes_handler(struct ctl_table *table, int write, 373 void *buffer, size_t *lenp, loff_t *ppos); 374int dirtytime_interval_handler(struct ctl_table *table, int write, 375 void *buffer, size_t *lenp, loff_t *ppos); 376int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 377 void *buffer, size_t *lenp, loff_t *ppos); 378 379void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty); 380unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh); 381 382void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time); 383void balance_dirty_pages_ratelimited(struct address_space *mapping); 384bool wb_over_bg_thresh(struct bdi_writeback *wb); 385 386typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc, 387 void *data); 388 389int generic_writepages(struct address_space *mapping, 390 struct writeback_control *wbc); 391void tag_pages_for_writeback(struct address_space *mapping, 392 pgoff_t start, pgoff_t end); 393int write_cache_pages(struct address_space *mapping, 394 struct writeback_control *wbc, writepage_t writepage, 395 void *data); 396int do_writepages(struct address_space *mapping, struct writeback_control *wbc); 397void writeback_set_ratelimit(void); 398void tag_pages_for_writeback(struct address_space *mapping, 399 pgoff_t start, pgoff_t end); 400 401void account_page_redirty(struct page *page); 402 403void sb_mark_inode_writeback(struct inode *inode); 404void sb_clear_inode_writeback(struct inode *inode); 405 406#endif /* WRITEBACK_H */