at v5.14 23 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk). 4 * 5 * (C) SGI 2006, Christoph Lameter 6 * Cleaned up and restructured to ease the addition of alternative 7 * implementations of SLAB allocators. 8 * (C) Linux Foundation 2008-2013 9 * Unified interface for all slab allocators 10 */ 11 12#ifndef _LINUX_SLAB_H 13#define _LINUX_SLAB_H 14 15#include <linux/gfp.h> 16#include <linux/overflow.h> 17#include <linux/types.h> 18#include <linux/workqueue.h> 19#include <linux/percpu-refcount.h> 20 21 22/* 23 * Flags to pass to kmem_cache_create(). 24 * The ones marked DEBUG are only valid if CONFIG_DEBUG_SLAB is set. 25 */ 26/* DEBUG: Perform (expensive) checks on alloc/free */ 27#define SLAB_CONSISTENCY_CHECKS ((slab_flags_t __force)0x00000100U) 28/* DEBUG: Red zone objs in a cache */ 29#define SLAB_RED_ZONE ((slab_flags_t __force)0x00000400U) 30/* DEBUG: Poison objects */ 31#define SLAB_POISON ((slab_flags_t __force)0x00000800U) 32/* Align objs on cache lines */ 33#define SLAB_HWCACHE_ALIGN ((slab_flags_t __force)0x00002000U) 34/* Use GFP_DMA memory */ 35#define SLAB_CACHE_DMA ((slab_flags_t __force)0x00004000U) 36/* Use GFP_DMA32 memory */ 37#define SLAB_CACHE_DMA32 ((slab_flags_t __force)0x00008000U) 38/* DEBUG: Store the last owner for bug hunting */ 39#define SLAB_STORE_USER ((slab_flags_t __force)0x00010000U) 40/* Panic if kmem_cache_create() fails */ 41#define SLAB_PANIC ((slab_flags_t __force)0x00040000U) 42/* 43 * SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS! 44 * 45 * This delays freeing the SLAB page by a grace period, it does _NOT_ 46 * delay object freeing. This means that if you do kmem_cache_free() 47 * that memory location is free to be reused at any time. Thus it may 48 * be possible to see another object there in the same RCU grace period. 49 * 50 * This feature only ensures the memory location backing the object 51 * stays valid, the trick to using this is relying on an independent 52 * object validation pass. Something like: 53 * 54 * rcu_read_lock() 55 * again: 56 * obj = lockless_lookup(key); 57 * if (obj) { 58 * if (!try_get_ref(obj)) // might fail for free objects 59 * goto again; 60 * 61 * if (obj->key != key) { // not the object we expected 62 * put_ref(obj); 63 * goto again; 64 * } 65 * } 66 * rcu_read_unlock(); 67 * 68 * This is useful if we need to approach a kernel structure obliquely, 69 * from its address obtained without the usual locking. We can lock 70 * the structure to stabilize it and check it's still at the given address, 71 * only if we can be sure that the memory has not been meanwhile reused 72 * for some other kind of object (which our subsystem's lock might corrupt). 73 * 74 * rcu_read_lock before reading the address, then rcu_read_unlock after 75 * taking the spinlock within the structure expected at that address. 76 * 77 * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU. 78 */ 79/* Defer freeing slabs to RCU */ 80#define SLAB_TYPESAFE_BY_RCU ((slab_flags_t __force)0x00080000U) 81/* Spread some memory over cpuset */ 82#define SLAB_MEM_SPREAD ((slab_flags_t __force)0x00100000U) 83/* Trace allocations and frees */ 84#define SLAB_TRACE ((slab_flags_t __force)0x00200000U) 85 86/* Flag to prevent checks on free */ 87#ifdef CONFIG_DEBUG_OBJECTS 88# define SLAB_DEBUG_OBJECTS ((slab_flags_t __force)0x00400000U) 89#else 90# define SLAB_DEBUG_OBJECTS 0 91#endif 92 93/* Avoid kmemleak tracing */ 94#define SLAB_NOLEAKTRACE ((slab_flags_t __force)0x00800000U) 95 96/* Fault injection mark */ 97#ifdef CONFIG_FAILSLAB 98# define SLAB_FAILSLAB ((slab_flags_t __force)0x02000000U) 99#else 100# define SLAB_FAILSLAB 0 101#endif 102/* Account to memcg */ 103#ifdef CONFIG_MEMCG_KMEM 104# define SLAB_ACCOUNT ((slab_flags_t __force)0x04000000U) 105#else 106# define SLAB_ACCOUNT 0 107#endif 108 109#ifdef CONFIG_KASAN 110#define SLAB_KASAN ((slab_flags_t __force)0x08000000U) 111#else 112#define SLAB_KASAN 0 113#endif 114 115/* The following flags affect the page allocator grouping pages by mobility */ 116/* Objects are reclaimable */ 117#define SLAB_RECLAIM_ACCOUNT ((slab_flags_t __force)0x00020000U) 118#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */ 119 120/* Slab deactivation flag */ 121#define SLAB_DEACTIVATED ((slab_flags_t __force)0x10000000U) 122 123/* 124 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests. 125 * 126 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault. 127 * 128 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can. 129 * Both make kfree a no-op. 130 */ 131#define ZERO_SIZE_PTR ((void *)16) 132 133#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \ 134 (unsigned long)ZERO_SIZE_PTR) 135 136#include <linux/kasan.h> 137 138struct mem_cgroup; 139/* 140 * struct kmem_cache related prototypes 141 */ 142void __init kmem_cache_init(void); 143bool slab_is_available(void); 144 145extern bool usercopy_fallback; 146 147struct kmem_cache *kmem_cache_create(const char *name, unsigned int size, 148 unsigned int align, slab_flags_t flags, 149 void (*ctor)(void *)); 150struct kmem_cache *kmem_cache_create_usercopy(const char *name, 151 unsigned int size, unsigned int align, 152 slab_flags_t flags, 153 unsigned int useroffset, unsigned int usersize, 154 void (*ctor)(void *)); 155void kmem_cache_destroy(struct kmem_cache *); 156int kmem_cache_shrink(struct kmem_cache *); 157 158/* 159 * Please use this macro to create slab caches. Simply specify the 160 * name of the structure and maybe some flags that are listed above. 161 * 162 * The alignment of the struct determines object alignment. If you 163 * f.e. add ____cacheline_aligned_in_smp to the struct declaration 164 * then the objects will be properly aligned in SMP configurations. 165 */ 166#define KMEM_CACHE(__struct, __flags) \ 167 kmem_cache_create(#__struct, sizeof(struct __struct), \ 168 __alignof__(struct __struct), (__flags), NULL) 169 170/* 171 * To whitelist a single field for copying to/from usercopy, use this 172 * macro instead for KMEM_CACHE() above. 173 */ 174#define KMEM_CACHE_USERCOPY(__struct, __flags, __field) \ 175 kmem_cache_create_usercopy(#__struct, \ 176 sizeof(struct __struct), \ 177 __alignof__(struct __struct), (__flags), \ 178 offsetof(struct __struct, __field), \ 179 sizeof_field(struct __struct, __field), NULL) 180 181/* 182 * Common kmalloc functions provided by all allocators 183 */ 184void * __must_check krealloc(const void *, size_t, gfp_t); 185void kfree(const void *); 186void kfree_sensitive(const void *); 187size_t __ksize(const void *); 188size_t ksize(const void *); 189#ifdef CONFIG_PRINTK 190bool kmem_valid_obj(void *object); 191void kmem_dump_obj(void *object); 192#endif 193 194#ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR 195void __check_heap_object(const void *ptr, unsigned long n, struct page *page, 196 bool to_user); 197#else 198static inline void __check_heap_object(const void *ptr, unsigned long n, 199 struct page *page, bool to_user) { } 200#endif 201 202/* 203 * Some archs want to perform DMA into kmalloc caches and need a guaranteed 204 * alignment larger than the alignment of a 64-bit integer. 205 * Setting ARCH_KMALLOC_MINALIGN in arch headers allows that. 206 */ 207#if defined(ARCH_DMA_MINALIGN) && ARCH_DMA_MINALIGN > 8 208#define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN 209#define KMALLOC_MIN_SIZE ARCH_DMA_MINALIGN 210#define KMALLOC_SHIFT_LOW ilog2(ARCH_DMA_MINALIGN) 211#else 212#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long) 213#endif 214 215/* 216 * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment. 217 * Intended for arches that get misalignment faults even for 64 bit integer 218 * aligned buffers. 219 */ 220#ifndef ARCH_SLAB_MINALIGN 221#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long) 222#endif 223 224/* 225 * kmalloc and friends return ARCH_KMALLOC_MINALIGN aligned 226 * pointers. kmem_cache_alloc and friends return ARCH_SLAB_MINALIGN 227 * aligned pointers. 228 */ 229#define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN) 230#define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN) 231#define __assume_page_alignment __assume_aligned(PAGE_SIZE) 232 233/* 234 * Kmalloc array related definitions 235 */ 236 237#ifdef CONFIG_SLAB 238/* 239 * The largest kmalloc size supported by the SLAB allocators is 240 * 32 megabyte (2^25) or the maximum allocatable page order if that is 241 * less than 32 MB. 242 * 243 * WARNING: Its not easy to increase this value since the allocators have 244 * to do various tricks to work around compiler limitations in order to 245 * ensure proper constant folding. 246 */ 247#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \ 248 (MAX_ORDER + PAGE_SHIFT - 1) : 25) 249#define KMALLOC_SHIFT_MAX KMALLOC_SHIFT_HIGH 250#ifndef KMALLOC_SHIFT_LOW 251#define KMALLOC_SHIFT_LOW 5 252#endif 253#endif 254 255#ifdef CONFIG_SLUB 256/* 257 * SLUB directly allocates requests fitting in to an order-1 page 258 * (PAGE_SIZE*2). Larger requests are passed to the page allocator. 259 */ 260#define KMALLOC_SHIFT_HIGH (PAGE_SHIFT + 1) 261#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 262#ifndef KMALLOC_SHIFT_LOW 263#define KMALLOC_SHIFT_LOW 3 264#endif 265#endif 266 267#ifdef CONFIG_SLOB 268/* 269 * SLOB passes all requests larger than one page to the page allocator. 270 * No kmalloc array is necessary since objects of different sizes can 271 * be allocated from the same page. 272 */ 273#define KMALLOC_SHIFT_HIGH PAGE_SHIFT 274#define KMALLOC_SHIFT_MAX (MAX_ORDER + PAGE_SHIFT - 1) 275#ifndef KMALLOC_SHIFT_LOW 276#define KMALLOC_SHIFT_LOW 3 277#endif 278#endif 279 280/* Maximum allocatable size */ 281#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_MAX) 282/* Maximum size for which we actually use a slab cache */ 283#define KMALLOC_MAX_CACHE_SIZE (1UL << KMALLOC_SHIFT_HIGH) 284/* Maximum order allocatable via the slab allocator */ 285#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_MAX - PAGE_SHIFT) 286 287/* 288 * Kmalloc subsystem. 289 */ 290#ifndef KMALLOC_MIN_SIZE 291#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW) 292#endif 293 294/* 295 * This restriction comes from byte sized index implementation. 296 * Page size is normally 2^12 bytes and, in this case, if we want to use 297 * byte sized index which can represent 2^8 entries, the size of the object 298 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16. 299 * If minimum size of kmalloc is less than 16, we use it as minimum object 300 * size and give up to use byte sized index. 301 */ 302#define SLAB_OBJ_MIN_SIZE (KMALLOC_MIN_SIZE < 16 ? \ 303 (KMALLOC_MIN_SIZE) : 16) 304 305/* 306 * Whenever changing this, take care of that kmalloc_type() and 307 * create_kmalloc_caches() still work as intended. 308 * 309 * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP 310 * is for accounted but unreclaimable and non-dma objects. All the other 311 * kmem caches can have both accounted and unaccounted objects. 312 */ 313enum kmalloc_cache_type { 314 KMALLOC_NORMAL = 0, 315#ifndef CONFIG_ZONE_DMA 316 KMALLOC_DMA = KMALLOC_NORMAL, 317#endif 318#ifndef CONFIG_MEMCG_KMEM 319 KMALLOC_CGROUP = KMALLOC_NORMAL, 320#else 321 KMALLOC_CGROUP, 322#endif 323 KMALLOC_RECLAIM, 324#ifdef CONFIG_ZONE_DMA 325 KMALLOC_DMA, 326#endif 327 NR_KMALLOC_TYPES 328}; 329 330#ifndef CONFIG_SLOB 331extern struct kmem_cache * 332kmalloc_caches[NR_KMALLOC_TYPES][KMALLOC_SHIFT_HIGH + 1]; 333 334/* 335 * Define gfp bits that should not be set for KMALLOC_NORMAL. 336 */ 337#define KMALLOC_NOT_NORMAL_BITS \ 338 (__GFP_RECLAIMABLE | \ 339 (IS_ENABLED(CONFIG_ZONE_DMA) ? __GFP_DMA : 0) | \ 340 (IS_ENABLED(CONFIG_MEMCG_KMEM) ? __GFP_ACCOUNT : 0)) 341 342static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags) 343{ 344 /* 345 * The most common case is KMALLOC_NORMAL, so test for it 346 * with a single branch for all the relevant flags. 347 */ 348 if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0)) 349 return KMALLOC_NORMAL; 350 351 /* 352 * At least one of the flags has to be set. Their priorities in 353 * decreasing order are: 354 * 1) __GFP_DMA 355 * 2) __GFP_RECLAIMABLE 356 * 3) __GFP_ACCOUNT 357 */ 358 if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA)) 359 return KMALLOC_DMA; 360 if (!IS_ENABLED(CONFIG_MEMCG_KMEM) || (flags & __GFP_RECLAIMABLE)) 361 return KMALLOC_RECLAIM; 362 else 363 return KMALLOC_CGROUP; 364} 365 366/* 367 * Figure out which kmalloc slab an allocation of a certain size 368 * belongs to. 369 * 0 = zero alloc 370 * 1 = 65 .. 96 bytes 371 * 2 = 129 .. 192 bytes 372 * n = 2^(n-1)+1 .. 2^n 373 * 374 * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized; 375 * typical usage is via kmalloc_index() and therefore evaluated at compile-time. 376 * Callers where !size_is_constant should only be test modules, where runtime 377 * overheads of __kmalloc_index() can be tolerated. Also see kmalloc_slab(). 378 */ 379static __always_inline unsigned int __kmalloc_index(size_t size, 380 bool size_is_constant) 381{ 382 if (!size) 383 return 0; 384 385 if (size <= KMALLOC_MIN_SIZE) 386 return KMALLOC_SHIFT_LOW; 387 388 if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96) 389 return 1; 390 if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192) 391 return 2; 392 if (size <= 8) return 3; 393 if (size <= 16) return 4; 394 if (size <= 32) return 5; 395 if (size <= 64) return 6; 396 if (size <= 128) return 7; 397 if (size <= 256) return 8; 398 if (size <= 512) return 9; 399 if (size <= 1024) return 10; 400 if (size <= 2 * 1024) return 11; 401 if (size <= 4 * 1024) return 12; 402 if (size <= 8 * 1024) return 13; 403 if (size <= 16 * 1024) return 14; 404 if (size <= 32 * 1024) return 15; 405 if (size <= 64 * 1024) return 16; 406 if (size <= 128 * 1024) return 17; 407 if (size <= 256 * 1024) return 18; 408 if (size <= 512 * 1024) return 19; 409 if (size <= 1024 * 1024) return 20; 410 if (size <= 2 * 1024 * 1024) return 21; 411 if (size <= 4 * 1024 * 1024) return 22; 412 if (size <= 8 * 1024 * 1024) return 23; 413 if (size <= 16 * 1024 * 1024) return 24; 414 if (size <= 32 * 1024 * 1024) return 25; 415 416 if ((IS_ENABLED(CONFIG_CC_IS_GCC) || CONFIG_CLANG_VERSION >= 110000) 417 && !IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant) 418 BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()"); 419 else 420 BUG(); 421 422 /* Will never be reached. Needed because the compiler may complain */ 423 return -1; 424} 425#define kmalloc_index(s) __kmalloc_index(s, true) 426#endif /* !CONFIG_SLOB */ 427 428void *__kmalloc(size_t size, gfp_t flags) __assume_kmalloc_alignment __malloc; 429void *kmem_cache_alloc(struct kmem_cache *, gfp_t flags) __assume_slab_alignment __malloc; 430void kmem_cache_free(struct kmem_cache *, void *); 431 432/* 433 * Bulk allocation and freeing operations. These are accelerated in an 434 * allocator specific way to avoid taking locks repeatedly or building 435 * metadata structures unnecessarily. 436 * 437 * Note that interrupts must be enabled when calling these functions. 438 */ 439void kmem_cache_free_bulk(struct kmem_cache *, size_t, void **); 440int kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **); 441 442/* 443 * Caller must not use kfree_bulk() on memory not originally allocated 444 * by kmalloc(), because the SLOB allocator cannot handle this. 445 */ 446static __always_inline void kfree_bulk(size_t size, void **p) 447{ 448 kmem_cache_free_bulk(NULL, size, p); 449} 450 451#ifdef CONFIG_NUMA 452void *__kmalloc_node(size_t size, gfp_t flags, int node) __assume_kmalloc_alignment __malloc; 453void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node) __assume_slab_alignment __malloc; 454#else 455static __always_inline void *__kmalloc_node(size_t size, gfp_t flags, int node) 456{ 457 return __kmalloc(size, flags); 458} 459 460static __always_inline void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t flags, int node) 461{ 462 return kmem_cache_alloc(s, flags); 463} 464#endif 465 466#ifdef CONFIG_TRACING 467extern void *kmem_cache_alloc_trace(struct kmem_cache *, gfp_t, size_t) __assume_slab_alignment __malloc; 468 469#ifdef CONFIG_NUMA 470extern void *kmem_cache_alloc_node_trace(struct kmem_cache *s, 471 gfp_t gfpflags, 472 int node, size_t size) __assume_slab_alignment __malloc; 473#else 474static __always_inline void * 475kmem_cache_alloc_node_trace(struct kmem_cache *s, 476 gfp_t gfpflags, 477 int node, size_t size) 478{ 479 return kmem_cache_alloc_trace(s, gfpflags, size); 480} 481#endif /* CONFIG_NUMA */ 482 483#else /* CONFIG_TRACING */ 484static __always_inline void *kmem_cache_alloc_trace(struct kmem_cache *s, 485 gfp_t flags, size_t size) 486{ 487 void *ret = kmem_cache_alloc(s, flags); 488 489 ret = kasan_kmalloc(s, ret, size, flags); 490 return ret; 491} 492 493static __always_inline void * 494kmem_cache_alloc_node_trace(struct kmem_cache *s, 495 gfp_t gfpflags, 496 int node, size_t size) 497{ 498 void *ret = kmem_cache_alloc_node(s, gfpflags, node); 499 500 ret = kasan_kmalloc(s, ret, size, gfpflags); 501 return ret; 502} 503#endif /* CONFIG_TRACING */ 504 505extern void *kmalloc_order(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 506 507#ifdef CONFIG_TRACING 508extern void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) __assume_page_alignment __malloc; 509#else 510static __always_inline void * 511kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order) 512{ 513 return kmalloc_order(size, flags, order); 514} 515#endif 516 517static __always_inline void *kmalloc_large(size_t size, gfp_t flags) 518{ 519 unsigned int order = get_order(size); 520 return kmalloc_order_trace(size, flags, order); 521} 522 523/** 524 * kmalloc - allocate memory 525 * @size: how many bytes of memory are required. 526 * @flags: the type of memory to allocate. 527 * 528 * kmalloc is the normal method of allocating memory 529 * for objects smaller than page size in the kernel. 530 * 531 * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN 532 * bytes. For @size of power of two bytes, the alignment is also guaranteed 533 * to be at least to the size. 534 * 535 * The @flags argument may be one of the GFP flags defined at 536 * include/linux/gfp.h and described at 537 * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>` 538 * 539 * The recommended usage of the @flags is described at 540 * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>` 541 * 542 * Below is a brief outline of the most useful GFP flags 543 * 544 * %GFP_KERNEL 545 * Allocate normal kernel ram. May sleep. 546 * 547 * %GFP_NOWAIT 548 * Allocation will not sleep. 549 * 550 * %GFP_ATOMIC 551 * Allocation will not sleep. May use emergency pools. 552 * 553 * %GFP_HIGHUSER 554 * Allocate memory from high memory on behalf of user. 555 * 556 * Also it is possible to set different flags by OR'ing 557 * in one or more of the following additional @flags: 558 * 559 * %__GFP_HIGH 560 * This allocation has high priority and may use emergency pools. 561 * 562 * %__GFP_NOFAIL 563 * Indicate that this allocation is in no way allowed to fail 564 * (think twice before using). 565 * 566 * %__GFP_NORETRY 567 * If memory is not immediately available, 568 * then give up at once. 569 * 570 * %__GFP_NOWARN 571 * If allocation fails, don't issue any warnings. 572 * 573 * %__GFP_RETRY_MAYFAIL 574 * Try really hard to succeed the allocation but fail 575 * eventually. 576 */ 577static __always_inline void *kmalloc(size_t size, gfp_t flags) 578{ 579 if (__builtin_constant_p(size)) { 580#ifndef CONFIG_SLOB 581 unsigned int index; 582#endif 583 if (size > KMALLOC_MAX_CACHE_SIZE) 584 return kmalloc_large(size, flags); 585#ifndef CONFIG_SLOB 586 index = kmalloc_index(size); 587 588 if (!index) 589 return ZERO_SIZE_PTR; 590 591 return kmem_cache_alloc_trace( 592 kmalloc_caches[kmalloc_type(flags)][index], 593 flags, size); 594#endif 595 } 596 return __kmalloc(size, flags); 597} 598 599static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node) 600{ 601#ifndef CONFIG_SLOB 602 if (__builtin_constant_p(size) && 603 size <= KMALLOC_MAX_CACHE_SIZE) { 604 unsigned int i = kmalloc_index(size); 605 606 if (!i) 607 return ZERO_SIZE_PTR; 608 609 return kmem_cache_alloc_node_trace( 610 kmalloc_caches[kmalloc_type(flags)][i], 611 flags, node, size); 612 } 613#endif 614 return __kmalloc_node(size, flags, node); 615} 616 617/** 618 * kmalloc_array - allocate memory for an array. 619 * @n: number of elements. 620 * @size: element size. 621 * @flags: the type of memory to allocate (see kmalloc). 622 */ 623static inline void *kmalloc_array(size_t n, size_t size, gfp_t flags) 624{ 625 size_t bytes; 626 627 if (unlikely(check_mul_overflow(n, size, &bytes))) 628 return NULL; 629 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 630 return kmalloc(bytes, flags); 631 return __kmalloc(bytes, flags); 632} 633 634/** 635 * krealloc_array - reallocate memory for an array. 636 * @p: pointer to the memory chunk to reallocate 637 * @new_n: new number of elements to alloc 638 * @new_size: new size of a single member of the array 639 * @flags: the type of memory to allocate (see kmalloc) 640 */ 641static __must_check inline void * 642krealloc_array(void *p, size_t new_n, size_t new_size, gfp_t flags) 643{ 644 size_t bytes; 645 646 if (unlikely(check_mul_overflow(new_n, new_size, &bytes))) 647 return NULL; 648 649 return krealloc(p, bytes, flags); 650} 651 652/** 653 * kcalloc - allocate memory for an array. The memory is set to zero. 654 * @n: number of elements. 655 * @size: element size. 656 * @flags: the type of memory to allocate (see kmalloc). 657 */ 658static inline void *kcalloc(size_t n, size_t size, gfp_t flags) 659{ 660 return kmalloc_array(n, size, flags | __GFP_ZERO); 661} 662 663/* 664 * kmalloc_track_caller is a special version of kmalloc that records the 665 * calling function of the routine calling it for slab leak tracking instead 666 * of just the calling function (confusing, eh?). 667 * It's useful when the call to kmalloc comes from a widely-used standard 668 * allocator where we care about the real place the memory allocation 669 * request comes from. 670 */ 671extern void *__kmalloc_track_caller(size_t, gfp_t, unsigned long); 672#define kmalloc_track_caller(size, flags) \ 673 __kmalloc_track_caller(size, flags, _RET_IP_) 674 675static inline void *kmalloc_array_node(size_t n, size_t size, gfp_t flags, 676 int node) 677{ 678 size_t bytes; 679 680 if (unlikely(check_mul_overflow(n, size, &bytes))) 681 return NULL; 682 if (__builtin_constant_p(n) && __builtin_constant_p(size)) 683 return kmalloc_node(bytes, flags, node); 684 return __kmalloc_node(bytes, flags, node); 685} 686 687static inline void *kcalloc_node(size_t n, size_t size, gfp_t flags, int node) 688{ 689 return kmalloc_array_node(n, size, flags | __GFP_ZERO, node); 690} 691 692 693#ifdef CONFIG_NUMA 694extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, unsigned long); 695#define kmalloc_node_track_caller(size, flags, node) \ 696 __kmalloc_node_track_caller(size, flags, node, \ 697 _RET_IP_) 698 699#else /* CONFIG_NUMA */ 700 701#define kmalloc_node_track_caller(size, flags, node) \ 702 kmalloc_track_caller(size, flags) 703 704#endif /* CONFIG_NUMA */ 705 706/* 707 * Shortcuts 708 */ 709static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags) 710{ 711 return kmem_cache_alloc(k, flags | __GFP_ZERO); 712} 713 714/** 715 * kzalloc - allocate memory. The memory is set to zero. 716 * @size: how many bytes of memory are required. 717 * @flags: the type of memory to allocate (see kmalloc). 718 */ 719static inline void *kzalloc(size_t size, gfp_t flags) 720{ 721 return kmalloc(size, flags | __GFP_ZERO); 722} 723 724/** 725 * kzalloc_node - allocate zeroed memory from a particular memory node. 726 * @size: how many bytes of memory are required. 727 * @flags: the type of memory to allocate (see kmalloc). 728 * @node: memory node from which to allocate 729 */ 730static inline void *kzalloc_node(size_t size, gfp_t flags, int node) 731{ 732 return kmalloc_node(size, flags | __GFP_ZERO, node); 733} 734 735unsigned int kmem_cache_size(struct kmem_cache *s); 736void __init kmem_cache_init_late(void); 737 738#if defined(CONFIG_SMP) && defined(CONFIG_SLAB) 739int slab_prepare_cpu(unsigned int cpu); 740int slab_dead_cpu(unsigned int cpu); 741#else 742#define slab_prepare_cpu NULL 743#define slab_dead_cpu NULL 744#endif 745 746#endif /* _LINUX_SLAB_H */