at v5.14 136 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Definitions for the 'struct sk_buff' memory handlers. 4 * 5 * Authors: 6 * Alan Cox, <gw4pts@gw4pts.ampr.org> 7 * Florian La Roche, <rzsfl@rz.uni-sb.de> 8 */ 9 10#ifndef _LINUX_SKBUFF_H 11#define _LINUX_SKBUFF_H 12 13#include <linux/kernel.h> 14#include <linux/compiler.h> 15#include <linux/time.h> 16#include <linux/bug.h> 17#include <linux/bvec.h> 18#include <linux/cache.h> 19#include <linux/rbtree.h> 20#include <linux/socket.h> 21#include <linux/refcount.h> 22 23#include <linux/atomic.h> 24#include <asm/types.h> 25#include <linux/spinlock.h> 26#include <linux/net.h> 27#include <linux/textsearch.h> 28#include <net/checksum.h> 29#include <linux/rcupdate.h> 30#include <linux/hrtimer.h> 31#include <linux/dma-mapping.h> 32#include <linux/netdev_features.h> 33#include <linux/sched.h> 34#include <linux/sched/clock.h> 35#include <net/flow_dissector.h> 36#include <linux/splice.h> 37#include <linux/in6.h> 38#include <linux/if_packet.h> 39#include <net/flow.h> 40#include <net/page_pool.h> 41#if IS_ENABLED(CONFIG_NF_CONNTRACK) 42#include <linux/netfilter/nf_conntrack_common.h> 43#endif 44 45/* The interface for checksum offload between the stack and networking drivers 46 * is as follows... 47 * 48 * A. IP checksum related features 49 * 50 * Drivers advertise checksum offload capabilities in the features of a device. 51 * From the stack's point of view these are capabilities offered by the driver. 52 * A driver typically only advertises features that it is capable of offloading 53 * to its device. 54 * 55 * The checksum related features are: 56 * 57 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one 58 * IP (one's complement) checksum for any combination 59 * of protocols or protocol layering. The checksum is 60 * computed and set in a packet per the CHECKSUM_PARTIAL 61 * interface (see below). 62 * 63 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain 64 * TCP or UDP packets over IPv4. These are specifically 65 * unencapsulated packets of the form IPv4|TCP or 66 * IPv4|UDP where the Protocol field in the IPv4 header 67 * is TCP or UDP. The IPv4 header may contain IP options. 68 * This feature cannot be set in features for a device 69 * with NETIF_F_HW_CSUM also set. This feature is being 70 * DEPRECATED (see below). 71 * 72 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain 73 * TCP or UDP packets over IPv6. These are specifically 74 * unencapsulated packets of the form IPv6|TCP or 75 * IPv6|UDP where the Next Header field in the IPv6 76 * header is either TCP or UDP. IPv6 extension headers 77 * are not supported with this feature. This feature 78 * cannot be set in features for a device with 79 * NETIF_F_HW_CSUM also set. This feature is being 80 * DEPRECATED (see below). 81 * 82 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload. 83 * This flag is only used to disable the RX checksum 84 * feature for a device. The stack will accept receive 85 * checksum indication in packets received on a device 86 * regardless of whether NETIF_F_RXCSUM is set. 87 * 88 * B. Checksumming of received packets by device. Indication of checksum 89 * verification is set in skb->ip_summed. Possible values are: 90 * 91 * CHECKSUM_NONE: 92 * 93 * Device did not checksum this packet e.g. due to lack of capabilities. 94 * The packet contains full (though not verified) checksum in packet but 95 * not in skb->csum. Thus, skb->csum is undefined in this case. 96 * 97 * CHECKSUM_UNNECESSARY: 98 * 99 * The hardware you're dealing with doesn't calculate the full checksum 100 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums 101 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY 102 * if their checksums are okay. skb->csum is still undefined in this case 103 * though. A driver or device must never modify the checksum field in the 104 * packet even if checksum is verified. 105 * 106 * CHECKSUM_UNNECESSARY is applicable to following protocols: 107 * TCP: IPv6 and IPv4. 108 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a 109 * zero UDP checksum for either IPv4 or IPv6, the networking stack 110 * may perform further validation in this case. 111 * GRE: only if the checksum is present in the header. 112 * SCTP: indicates the CRC in SCTP header has been validated. 113 * FCOE: indicates the CRC in FC frame has been validated. 114 * 115 * skb->csum_level indicates the number of consecutive checksums found in 116 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY. 117 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet 118 * and a device is able to verify the checksums for UDP (possibly zero), 119 * GRE (checksum flag is set) and TCP, skb->csum_level would be set to 120 * two. If the device were only able to verify the UDP checksum and not 121 * GRE, either because it doesn't support GRE checksum or because GRE 122 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is 123 * not considered in this case). 124 * 125 * CHECKSUM_COMPLETE: 126 * 127 * This is the most generic way. The device supplied checksum of the _whole_ 128 * packet as seen by netif_rx() and fills in skb->csum. This means the 129 * hardware doesn't need to parse L3/L4 headers to implement this. 130 * 131 * Notes: 132 * - Even if device supports only some protocols, but is able to produce 133 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY. 134 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols. 135 * 136 * CHECKSUM_PARTIAL: 137 * 138 * A checksum is set up to be offloaded to a device as described in the 139 * output description for CHECKSUM_PARTIAL. This may occur on a packet 140 * received directly from another Linux OS, e.g., a virtualized Linux kernel 141 * on the same host, or it may be set in the input path in GRO or remote 142 * checksum offload. For the purposes of checksum verification, the checksum 143 * referred to by skb->csum_start + skb->csum_offset and any preceding 144 * checksums in the packet are considered verified. Any checksums in the 145 * packet that are after the checksum being offloaded are not considered to 146 * be verified. 147 * 148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload 149 * in the skb->ip_summed for a packet. Values are: 150 * 151 * CHECKSUM_PARTIAL: 152 * 153 * The driver is required to checksum the packet as seen by hard_start_xmit() 154 * from skb->csum_start up to the end, and to record/write the checksum at 155 * offset skb->csum_start + skb->csum_offset. A driver may verify that the 156 * csum_start and csum_offset values are valid values given the length and 157 * offset of the packet, but it should not attempt to validate that the 158 * checksum refers to a legitimate transport layer checksum -- it is the 159 * purview of the stack to validate that csum_start and csum_offset are set 160 * correctly. 161 * 162 * When the stack requests checksum offload for a packet, the driver MUST 163 * ensure that the checksum is set correctly. A driver can either offload the 164 * checksum calculation to the device, or call skb_checksum_help (in the case 165 * that the device does not support offload for a particular checksum). 166 * 167 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of 168 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate 169 * checksum offload capability. 170 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based 171 * on network device checksumming capabilities: if a packet does not match 172 * them, skb_checksum_help or skb_crc32c_help (depending on the value of 173 * csum_not_inet, see item D.) is called to resolve the checksum. 174 * 175 * CHECKSUM_NONE: 176 * 177 * The skb was already checksummed by the protocol, or a checksum is not 178 * required. 179 * 180 * CHECKSUM_UNNECESSARY: 181 * 182 * This has the same meaning as CHECKSUM_NONE for checksum offload on 183 * output. 184 * 185 * CHECKSUM_COMPLETE: 186 * Not used in checksum output. If a driver observes a packet with this value 187 * set in skbuff, it should treat the packet as if CHECKSUM_NONE were set. 188 * 189 * D. Non-IP checksum (CRC) offloads 190 * 191 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of 192 * offloading the SCTP CRC in a packet. To perform this offload the stack 193 * will set csum_start and csum_offset accordingly, set ip_summed to 194 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in 195 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c. 196 * A driver that supports both IP checksum offload and SCTP CRC32c offload 197 * must verify which offload is configured for a packet by testing the 198 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve 199 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1. 200 * 201 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of 202 * offloading the FCOE CRC in a packet. To perform this offload the stack 203 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset 204 * accordingly. Note that there is no indication in the skbuff that the 205 * CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports 206 * both IP checksum offload and FCOE CRC offload must verify which offload 207 * is configured for a packet, presumably by inspecting packet headers. 208 * 209 * E. Checksumming on output with GSO. 210 * 211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload 212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the 213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as 214 * part of the GSO operation is implied. If a checksum is being offloaded 215 * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and 216 * csum_offset are set to refer to the outermost checksum being offloaded 217 * (two offloaded checksums are possible with UDP encapsulation). 218 */ 219 220/* Don't change this without changing skb_csum_unnecessary! */ 221#define CHECKSUM_NONE 0 222#define CHECKSUM_UNNECESSARY 1 223#define CHECKSUM_COMPLETE 2 224#define CHECKSUM_PARTIAL 3 225 226/* Maximum value in skb->csum_level */ 227#define SKB_MAX_CSUM_LEVEL 3 228 229#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES) 230#define SKB_WITH_OVERHEAD(X) \ 231 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 232#define SKB_MAX_ORDER(X, ORDER) \ 233 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X)) 234#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0)) 235#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2)) 236 237/* return minimum truesize of one skb containing X bytes of data */ 238#define SKB_TRUESIZE(X) ((X) + \ 239 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \ 240 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 241 242struct ahash_request; 243struct net_device; 244struct scatterlist; 245struct pipe_inode_info; 246struct iov_iter; 247struct napi_struct; 248struct bpf_prog; 249union bpf_attr; 250struct skb_ext; 251 252#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 253struct nf_bridge_info { 254 enum { 255 BRNF_PROTO_UNCHANGED, 256 BRNF_PROTO_8021Q, 257 BRNF_PROTO_PPPOE 258 } orig_proto:8; 259 u8 pkt_otherhost:1; 260 u8 in_prerouting:1; 261 u8 bridged_dnat:1; 262 __u16 frag_max_size; 263 struct net_device *physindev; 264 265 /* always valid & non-NULL from FORWARD on, for physdev match */ 266 struct net_device *physoutdev; 267 union { 268 /* prerouting: detect dnat in orig/reply direction */ 269 __be32 ipv4_daddr; 270 struct in6_addr ipv6_daddr; 271 272 /* after prerouting + nat detected: store original source 273 * mac since neigh resolution overwrites it, only used while 274 * skb is out in neigh layer. 275 */ 276 char neigh_header[8]; 277 }; 278}; 279#endif 280 281#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 282/* Chain in tc_skb_ext will be used to share the tc chain with 283 * ovs recirc_id. It will be set to the current chain by tc 284 * and read by ovs to recirc_id. 285 */ 286struct tc_skb_ext { 287 __u32 chain; 288 __u16 mru; 289 bool post_ct; 290}; 291#endif 292 293struct sk_buff_head { 294 /* These two members must be first. */ 295 struct sk_buff *next; 296 struct sk_buff *prev; 297 298 __u32 qlen; 299 spinlock_t lock; 300}; 301 302struct sk_buff; 303 304/* To allow 64K frame to be packed as single skb without frag_list we 305 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for 306 * buffers which do not start on a page boundary. 307 * 308 * Since GRO uses frags we allocate at least 16 regardless of page 309 * size. 310 */ 311#if (65536/PAGE_SIZE + 1) < 16 312#define MAX_SKB_FRAGS 16UL 313#else 314#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1) 315#endif 316extern int sysctl_max_skb_frags; 317 318/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to 319 * segment using its current segmentation instead. 320 */ 321#define GSO_BY_FRAGS 0xFFFF 322 323typedef struct bio_vec skb_frag_t; 324 325/** 326 * skb_frag_size() - Returns the size of a skb fragment 327 * @frag: skb fragment 328 */ 329static inline unsigned int skb_frag_size(const skb_frag_t *frag) 330{ 331 return frag->bv_len; 332} 333 334/** 335 * skb_frag_size_set() - Sets the size of a skb fragment 336 * @frag: skb fragment 337 * @size: size of fragment 338 */ 339static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size) 340{ 341 frag->bv_len = size; 342} 343 344/** 345 * skb_frag_size_add() - Increments the size of a skb fragment by @delta 346 * @frag: skb fragment 347 * @delta: value to add 348 */ 349static inline void skb_frag_size_add(skb_frag_t *frag, int delta) 350{ 351 frag->bv_len += delta; 352} 353 354/** 355 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta 356 * @frag: skb fragment 357 * @delta: value to subtract 358 */ 359static inline void skb_frag_size_sub(skb_frag_t *frag, int delta) 360{ 361 frag->bv_len -= delta; 362} 363 364/** 365 * skb_frag_must_loop - Test if %p is a high memory page 366 * @p: fragment's page 367 */ 368static inline bool skb_frag_must_loop(struct page *p) 369{ 370#if defined(CONFIG_HIGHMEM) 371 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p)) 372 return true; 373#endif 374 return false; 375} 376 377/** 378 * skb_frag_foreach_page - loop over pages in a fragment 379 * 380 * @f: skb frag to operate on 381 * @f_off: offset from start of f->bv_page 382 * @f_len: length from f_off to loop over 383 * @p: (temp var) current page 384 * @p_off: (temp var) offset from start of current page, 385 * non-zero only on first page. 386 * @p_len: (temp var) length in current page, 387 * < PAGE_SIZE only on first and last page. 388 * @copied: (temp var) length so far, excluding current p_len. 389 * 390 * A fragment can hold a compound page, in which case per-page 391 * operations, notably kmap_atomic, must be called for each 392 * regular page. 393 */ 394#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \ 395 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \ 396 p_off = (f_off) & (PAGE_SIZE - 1), \ 397 p_len = skb_frag_must_loop(p) ? \ 398 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \ 399 copied = 0; \ 400 copied < f_len; \ 401 copied += p_len, p++, p_off = 0, \ 402 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \ 403 404#define HAVE_HW_TIME_STAMP 405 406/** 407 * struct skb_shared_hwtstamps - hardware time stamps 408 * @hwtstamp: hardware time stamp transformed into duration 409 * since arbitrary point in time 410 * 411 * Software time stamps generated by ktime_get_real() are stored in 412 * skb->tstamp. 413 * 414 * hwtstamps can only be compared against other hwtstamps from 415 * the same device. 416 * 417 * This structure is attached to packets as part of the 418 * &skb_shared_info. Use skb_hwtstamps() to get a pointer. 419 */ 420struct skb_shared_hwtstamps { 421 ktime_t hwtstamp; 422}; 423 424/* Definitions for tx_flags in struct skb_shared_info */ 425enum { 426 /* generate hardware time stamp */ 427 SKBTX_HW_TSTAMP = 1 << 0, 428 429 /* generate software time stamp when queueing packet to NIC */ 430 SKBTX_SW_TSTAMP = 1 << 1, 431 432 /* device driver is going to provide hardware time stamp */ 433 SKBTX_IN_PROGRESS = 1 << 2, 434 435 /* generate wifi status information (where possible) */ 436 SKBTX_WIFI_STATUS = 1 << 4, 437 438 /* generate software time stamp when entering packet scheduling */ 439 SKBTX_SCHED_TSTAMP = 1 << 6, 440}; 441 442#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \ 443 SKBTX_SCHED_TSTAMP) 444#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP) 445 446/* Definitions for flags in struct skb_shared_info */ 447enum { 448 /* use zcopy routines */ 449 SKBFL_ZEROCOPY_ENABLE = BIT(0), 450 451 /* This indicates at least one fragment might be overwritten 452 * (as in vmsplice(), sendfile() ...) 453 * If we need to compute a TX checksum, we'll need to copy 454 * all frags to avoid possible bad checksum 455 */ 456 SKBFL_SHARED_FRAG = BIT(1), 457}; 458 459#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG) 460 461/* 462 * The callback notifies userspace to release buffers when skb DMA is done in 463 * lower device, the skb last reference should be 0 when calling this. 464 * The zerocopy_success argument is true if zero copy transmit occurred, 465 * false on data copy or out of memory error caused by data copy attempt. 466 * The ctx field is used to track device context. 467 * The desc field is used to track userspace buffer index. 468 */ 469struct ubuf_info { 470 void (*callback)(struct sk_buff *, struct ubuf_info *, 471 bool zerocopy_success); 472 union { 473 struct { 474 unsigned long desc; 475 void *ctx; 476 }; 477 struct { 478 u32 id; 479 u16 len; 480 u16 zerocopy:1; 481 u32 bytelen; 482 }; 483 }; 484 refcount_t refcnt; 485 u8 flags; 486 487 struct mmpin { 488 struct user_struct *user; 489 unsigned int num_pg; 490 } mmp; 491}; 492 493#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg)) 494 495int mm_account_pinned_pages(struct mmpin *mmp, size_t size); 496void mm_unaccount_pinned_pages(struct mmpin *mmp); 497 498struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size); 499struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size, 500 struct ubuf_info *uarg); 501 502void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref); 503 504void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg, 505 bool success); 506 507int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len); 508int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb, 509 struct msghdr *msg, int len, 510 struct ubuf_info *uarg); 511 512/* This data is invariant across clones and lives at 513 * the end of the header data, ie. at skb->end. 514 */ 515struct skb_shared_info { 516 __u8 flags; 517 __u8 meta_len; 518 __u8 nr_frags; 519 __u8 tx_flags; 520 unsigned short gso_size; 521 /* Warning: this field is not always filled in (UFO)! */ 522 unsigned short gso_segs; 523 struct sk_buff *frag_list; 524 struct skb_shared_hwtstamps hwtstamps; 525 unsigned int gso_type; 526 u32 tskey; 527 528 /* 529 * Warning : all fields before dataref are cleared in __alloc_skb() 530 */ 531 atomic_t dataref; 532 533 /* Intermediate layers must ensure that destructor_arg 534 * remains valid until skb destructor */ 535 void * destructor_arg; 536 537 /* must be last field, see pskb_expand_head() */ 538 skb_frag_t frags[MAX_SKB_FRAGS]; 539}; 540 541/* We divide dataref into two halves. The higher 16 bits hold references 542 * to the payload part of skb->data. The lower 16 bits hold references to 543 * the entire skb->data. A clone of a headerless skb holds the length of 544 * the header in skb->hdr_len. 545 * 546 * All users must obey the rule that the skb->data reference count must be 547 * greater than or equal to the payload reference count. 548 * 549 * Holding a reference to the payload part means that the user does not 550 * care about modifications to the header part of skb->data. 551 */ 552#define SKB_DATAREF_SHIFT 16 553#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1) 554 555 556enum { 557 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */ 558 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */ 559 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */ 560}; 561 562enum { 563 SKB_GSO_TCPV4 = 1 << 0, 564 565 /* This indicates the skb is from an untrusted source. */ 566 SKB_GSO_DODGY = 1 << 1, 567 568 /* This indicates the tcp segment has CWR set. */ 569 SKB_GSO_TCP_ECN = 1 << 2, 570 571 SKB_GSO_TCP_FIXEDID = 1 << 3, 572 573 SKB_GSO_TCPV6 = 1 << 4, 574 575 SKB_GSO_FCOE = 1 << 5, 576 577 SKB_GSO_GRE = 1 << 6, 578 579 SKB_GSO_GRE_CSUM = 1 << 7, 580 581 SKB_GSO_IPXIP4 = 1 << 8, 582 583 SKB_GSO_IPXIP6 = 1 << 9, 584 585 SKB_GSO_UDP_TUNNEL = 1 << 10, 586 587 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11, 588 589 SKB_GSO_PARTIAL = 1 << 12, 590 591 SKB_GSO_TUNNEL_REMCSUM = 1 << 13, 592 593 SKB_GSO_SCTP = 1 << 14, 594 595 SKB_GSO_ESP = 1 << 15, 596 597 SKB_GSO_UDP = 1 << 16, 598 599 SKB_GSO_UDP_L4 = 1 << 17, 600 601 SKB_GSO_FRAGLIST = 1 << 18, 602}; 603 604#if BITS_PER_LONG > 32 605#define NET_SKBUFF_DATA_USES_OFFSET 1 606#endif 607 608#ifdef NET_SKBUFF_DATA_USES_OFFSET 609typedef unsigned int sk_buff_data_t; 610#else 611typedef unsigned char *sk_buff_data_t; 612#endif 613 614/** 615 * struct sk_buff - socket buffer 616 * @next: Next buffer in list 617 * @prev: Previous buffer in list 618 * @tstamp: Time we arrived/left 619 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point 620 * for retransmit timer 621 * @rbnode: RB tree node, alternative to next/prev for netem/tcp 622 * @list: queue head 623 * @sk: Socket we are owned by 624 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in 625 * fragmentation management 626 * @dev: Device we arrived on/are leaving by 627 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL 628 * @cb: Control buffer. Free for use by every layer. Put private vars here 629 * @_skb_refdst: destination entry (with norefcount bit) 630 * @sp: the security path, used for xfrm 631 * @len: Length of actual data 632 * @data_len: Data length 633 * @mac_len: Length of link layer header 634 * @hdr_len: writable header length of cloned skb 635 * @csum: Checksum (must include start/offset pair) 636 * @csum_start: Offset from skb->head where checksumming should start 637 * @csum_offset: Offset from csum_start where checksum should be stored 638 * @priority: Packet queueing priority 639 * @ignore_df: allow local fragmentation 640 * @cloned: Head may be cloned (check refcnt to be sure) 641 * @ip_summed: Driver fed us an IP checksum 642 * @nohdr: Payload reference only, must not modify header 643 * @pkt_type: Packet class 644 * @fclone: skbuff clone status 645 * @ipvs_property: skbuff is owned by ipvs 646 * @inner_protocol_type: whether the inner protocol is 647 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO 648 * @remcsum_offload: remote checksum offload is enabled 649 * @offload_fwd_mark: Packet was L2-forwarded in hardware 650 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware 651 * @tc_skip_classify: do not classify packet. set by IFB device 652 * @tc_at_ingress: used within tc_classify to distinguish in/egress 653 * @redirected: packet was redirected by packet classifier 654 * @from_ingress: packet was redirected from the ingress path 655 * @peeked: this packet has been seen already, so stats have been 656 * done for it, don't do them again 657 * @nf_trace: netfilter packet trace flag 658 * @protocol: Packet protocol from driver 659 * @destructor: Destruct function 660 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue) 661 * @_sk_redir: socket redirection information for skmsg 662 * @_nfct: Associated connection, if any (with nfctinfo bits) 663 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c 664 * @skb_iif: ifindex of device we arrived on 665 * @tc_index: Traffic control index 666 * @hash: the packet hash 667 * @queue_mapping: Queue mapping for multiqueue devices 668 * @head_frag: skb was allocated from page fragments, 669 * not allocated by kmalloc() or vmalloc(). 670 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves 671 * @pp_recycle: mark the packet for recycling instead of freeing (implies 672 * page_pool support on driver) 673 * @active_extensions: active extensions (skb_ext_id types) 674 * @ndisc_nodetype: router type (from link layer) 675 * @ooo_okay: allow the mapping of a socket to a queue to be changed 676 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport 677 * ports. 678 * @sw_hash: indicates hash was computed in software stack 679 * @wifi_acked_valid: wifi_acked was set 680 * @wifi_acked: whether frame was acked on wifi or not 681 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS 682 * @encapsulation: indicates the inner headers in the skbuff are valid 683 * @encap_hdr_csum: software checksum is needed 684 * @csum_valid: checksum is already valid 685 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL 686 * @csum_complete_sw: checksum was completed by software 687 * @csum_level: indicates the number of consecutive checksums found in 688 * the packet minus one that have been verified as 689 * CHECKSUM_UNNECESSARY (max 3) 690 * @dst_pending_confirm: need to confirm neighbour 691 * @decrypted: Decrypted SKB 692 * @napi_id: id of the NAPI struct this skb came from 693 * @sender_cpu: (aka @napi_id) source CPU in XPS 694 * @secmark: security marking 695 * @mark: Generic packet mark 696 * @reserved_tailroom: (aka @mark) number of bytes of free space available 697 * at the tail of an sk_buff 698 * @vlan_present: VLAN tag is present 699 * @vlan_proto: vlan encapsulation protocol 700 * @vlan_tci: vlan tag control information 701 * @inner_protocol: Protocol (encapsulation) 702 * @inner_ipproto: (aka @inner_protocol) stores ipproto when 703 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO; 704 * @inner_transport_header: Inner transport layer header (encapsulation) 705 * @inner_network_header: Network layer header (encapsulation) 706 * @inner_mac_header: Link layer header (encapsulation) 707 * @transport_header: Transport layer header 708 * @network_header: Network layer header 709 * @mac_header: Link layer header 710 * @kcov_handle: KCOV remote handle for remote coverage collection 711 * @tail: Tail pointer 712 * @end: End pointer 713 * @head: Head of buffer 714 * @data: Data head pointer 715 * @truesize: Buffer size 716 * @users: User count - see {datagram,tcp}.c 717 * @extensions: allocated extensions, valid if active_extensions is nonzero 718 */ 719 720struct sk_buff { 721 union { 722 struct { 723 /* These two members must be first. */ 724 struct sk_buff *next; 725 struct sk_buff *prev; 726 727 union { 728 struct net_device *dev; 729 /* Some protocols might use this space to store information, 730 * while device pointer would be NULL. 731 * UDP receive path is one user. 732 */ 733 unsigned long dev_scratch; 734 }; 735 }; 736 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */ 737 struct list_head list; 738 }; 739 740 union { 741 struct sock *sk; 742 int ip_defrag_offset; 743 }; 744 745 union { 746 ktime_t tstamp; 747 u64 skb_mstamp_ns; /* earliest departure time */ 748 }; 749 /* 750 * This is the control buffer. It is free to use for every 751 * layer. Please put your private variables there. If you 752 * want to keep them across layers you have to do a skb_clone() 753 * first. This is owned by whoever has the skb queued ATM. 754 */ 755 char cb[48] __aligned(8); 756 757 union { 758 struct { 759 unsigned long _skb_refdst; 760 void (*destructor)(struct sk_buff *skb); 761 }; 762 struct list_head tcp_tsorted_anchor; 763#ifdef CONFIG_NET_SOCK_MSG 764 unsigned long _sk_redir; 765#endif 766 }; 767 768#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 769 unsigned long _nfct; 770#endif 771 unsigned int len, 772 data_len; 773 __u16 mac_len, 774 hdr_len; 775 776 /* Following fields are _not_ copied in __copy_skb_header() 777 * Note that queue_mapping is here mostly to fill a hole. 778 */ 779 __u16 queue_mapping; 780 781/* if you move cloned around you also must adapt those constants */ 782#ifdef __BIG_ENDIAN_BITFIELD 783#define CLONED_MASK (1 << 7) 784#else 785#define CLONED_MASK 1 786#endif 787#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset) 788 789 /* private: */ 790 __u8 __cloned_offset[0]; 791 /* public: */ 792 __u8 cloned:1, 793 nohdr:1, 794 fclone:2, 795 peeked:1, 796 head_frag:1, 797 pfmemalloc:1, 798 pp_recycle:1; /* page_pool recycle indicator */ 799#ifdef CONFIG_SKB_EXTENSIONS 800 __u8 active_extensions; 801#endif 802 803 /* fields enclosed in headers_start/headers_end are copied 804 * using a single memcpy() in __copy_skb_header() 805 */ 806 /* private: */ 807 __u32 headers_start[0]; 808 /* public: */ 809 810/* if you move pkt_type around you also must adapt those constants */ 811#ifdef __BIG_ENDIAN_BITFIELD 812#define PKT_TYPE_MAX (7 << 5) 813#else 814#define PKT_TYPE_MAX 7 815#endif 816#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset) 817 818 /* private: */ 819 __u8 __pkt_type_offset[0]; 820 /* public: */ 821 __u8 pkt_type:3; 822 __u8 ignore_df:1; 823 __u8 nf_trace:1; 824 __u8 ip_summed:2; 825 __u8 ooo_okay:1; 826 827 __u8 l4_hash:1; 828 __u8 sw_hash:1; 829 __u8 wifi_acked_valid:1; 830 __u8 wifi_acked:1; 831 __u8 no_fcs:1; 832 /* Indicates the inner headers are valid in the skbuff. */ 833 __u8 encapsulation:1; 834 __u8 encap_hdr_csum:1; 835 __u8 csum_valid:1; 836 837#ifdef __BIG_ENDIAN_BITFIELD 838#define PKT_VLAN_PRESENT_BIT 7 839#else 840#define PKT_VLAN_PRESENT_BIT 0 841#endif 842#define PKT_VLAN_PRESENT_OFFSET() offsetof(struct sk_buff, __pkt_vlan_present_offset) 843 /* private: */ 844 __u8 __pkt_vlan_present_offset[0]; 845 /* public: */ 846 __u8 vlan_present:1; 847 __u8 csum_complete_sw:1; 848 __u8 csum_level:2; 849 __u8 csum_not_inet:1; 850 __u8 dst_pending_confirm:1; 851#ifdef CONFIG_IPV6_NDISC_NODETYPE 852 __u8 ndisc_nodetype:2; 853#endif 854 855 __u8 ipvs_property:1; 856 __u8 inner_protocol_type:1; 857 __u8 remcsum_offload:1; 858#ifdef CONFIG_NET_SWITCHDEV 859 __u8 offload_fwd_mark:1; 860 __u8 offload_l3_fwd_mark:1; 861#endif 862#ifdef CONFIG_NET_CLS_ACT 863 __u8 tc_skip_classify:1; 864 __u8 tc_at_ingress:1; 865#endif 866#ifdef CONFIG_NET_REDIRECT 867 __u8 redirected:1; 868 __u8 from_ingress:1; 869#endif 870#ifdef CONFIG_TLS_DEVICE 871 __u8 decrypted:1; 872#endif 873 874#ifdef CONFIG_NET_SCHED 875 __u16 tc_index; /* traffic control index */ 876#endif 877 878 union { 879 __wsum csum; 880 struct { 881 __u16 csum_start; 882 __u16 csum_offset; 883 }; 884 }; 885 __u32 priority; 886 int skb_iif; 887 __u32 hash; 888 __be16 vlan_proto; 889 __u16 vlan_tci; 890#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS) 891 union { 892 unsigned int napi_id; 893 unsigned int sender_cpu; 894 }; 895#endif 896#ifdef CONFIG_NETWORK_SECMARK 897 __u32 secmark; 898#endif 899 900 union { 901 __u32 mark; 902 __u32 reserved_tailroom; 903 }; 904 905 union { 906 __be16 inner_protocol; 907 __u8 inner_ipproto; 908 }; 909 910 __u16 inner_transport_header; 911 __u16 inner_network_header; 912 __u16 inner_mac_header; 913 914 __be16 protocol; 915 __u16 transport_header; 916 __u16 network_header; 917 __u16 mac_header; 918 919#ifdef CONFIG_KCOV 920 u64 kcov_handle; 921#endif 922 923 /* private: */ 924 __u32 headers_end[0]; 925 /* public: */ 926 927 /* These elements must be at the end, see alloc_skb() for details. */ 928 sk_buff_data_t tail; 929 sk_buff_data_t end; 930 unsigned char *head, 931 *data; 932 unsigned int truesize; 933 refcount_t users; 934 935#ifdef CONFIG_SKB_EXTENSIONS 936 /* only useable after checking ->active_extensions != 0 */ 937 struct skb_ext *extensions; 938#endif 939}; 940 941#ifdef __KERNEL__ 942/* 943 * Handling routines are only of interest to the kernel 944 */ 945 946#define SKB_ALLOC_FCLONE 0x01 947#define SKB_ALLOC_RX 0x02 948#define SKB_ALLOC_NAPI 0x04 949 950/** 951 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves 952 * @skb: buffer 953 */ 954static inline bool skb_pfmemalloc(const struct sk_buff *skb) 955{ 956 return unlikely(skb->pfmemalloc); 957} 958 959/* 960 * skb might have a dst pointer attached, refcounted or not. 961 * _skb_refdst low order bit is set if refcount was _not_ taken 962 */ 963#define SKB_DST_NOREF 1UL 964#define SKB_DST_PTRMASK ~(SKB_DST_NOREF) 965 966/** 967 * skb_dst - returns skb dst_entry 968 * @skb: buffer 969 * 970 * Returns skb dst_entry, regardless of reference taken or not. 971 */ 972static inline struct dst_entry *skb_dst(const struct sk_buff *skb) 973{ 974 /* If refdst was not refcounted, check we still are in a 975 * rcu_read_lock section 976 */ 977 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) && 978 !rcu_read_lock_held() && 979 !rcu_read_lock_bh_held()); 980 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK); 981} 982 983/** 984 * skb_dst_set - sets skb dst 985 * @skb: buffer 986 * @dst: dst entry 987 * 988 * Sets skb dst, assuming a reference was taken on dst and should 989 * be released by skb_dst_drop() 990 */ 991static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst) 992{ 993 skb->_skb_refdst = (unsigned long)dst; 994} 995 996/** 997 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference 998 * @skb: buffer 999 * @dst: dst entry 1000 * 1001 * Sets skb dst, assuming a reference was not taken on dst. 1002 * If dst entry is cached, we do not take reference and dst_release 1003 * will be avoided by refdst_drop. If dst entry is not cached, we take 1004 * reference, so that last dst_release can destroy the dst immediately. 1005 */ 1006static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst) 1007{ 1008 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held()); 1009 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF; 1010} 1011 1012/** 1013 * skb_dst_is_noref - Test if skb dst isn't refcounted 1014 * @skb: buffer 1015 */ 1016static inline bool skb_dst_is_noref(const struct sk_buff *skb) 1017{ 1018 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb); 1019} 1020 1021/** 1022 * skb_rtable - Returns the skb &rtable 1023 * @skb: buffer 1024 */ 1025static inline struct rtable *skb_rtable(const struct sk_buff *skb) 1026{ 1027 return (struct rtable *)skb_dst(skb); 1028} 1029 1030/* For mangling skb->pkt_type from user space side from applications 1031 * such as nft, tc, etc, we only allow a conservative subset of 1032 * possible pkt_types to be set. 1033*/ 1034static inline bool skb_pkt_type_ok(u32 ptype) 1035{ 1036 return ptype <= PACKET_OTHERHOST; 1037} 1038 1039/** 1040 * skb_napi_id - Returns the skb's NAPI id 1041 * @skb: buffer 1042 */ 1043static inline unsigned int skb_napi_id(const struct sk_buff *skb) 1044{ 1045#ifdef CONFIG_NET_RX_BUSY_POLL 1046 return skb->napi_id; 1047#else 1048 return 0; 1049#endif 1050} 1051 1052/** 1053 * skb_unref - decrement the skb's reference count 1054 * @skb: buffer 1055 * 1056 * Returns true if we can free the skb. 1057 */ 1058static inline bool skb_unref(struct sk_buff *skb) 1059{ 1060 if (unlikely(!skb)) 1061 return false; 1062 if (likely(refcount_read(&skb->users) == 1)) 1063 smp_rmb(); 1064 else if (likely(!refcount_dec_and_test(&skb->users))) 1065 return false; 1066 1067 return true; 1068} 1069 1070void skb_release_head_state(struct sk_buff *skb); 1071void kfree_skb(struct sk_buff *skb); 1072void kfree_skb_list(struct sk_buff *segs); 1073void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt); 1074void skb_tx_error(struct sk_buff *skb); 1075 1076#ifdef CONFIG_TRACEPOINTS 1077void consume_skb(struct sk_buff *skb); 1078#else 1079static inline void consume_skb(struct sk_buff *skb) 1080{ 1081 return kfree_skb(skb); 1082} 1083#endif 1084 1085void __consume_stateless_skb(struct sk_buff *skb); 1086void __kfree_skb(struct sk_buff *skb); 1087extern struct kmem_cache *skbuff_head_cache; 1088 1089void kfree_skb_partial(struct sk_buff *skb, bool head_stolen); 1090bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from, 1091 bool *fragstolen, int *delta_truesize); 1092 1093struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags, 1094 int node); 1095struct sk_buff *__build_skb(void *data, unsigned int frag_size); 1096struct sk_buff *build_skb(void *data, unsigned int frag_size); 1097struct sk_buff *build_skb_around(struct sk_buff *skb, 1098 void *data, unsigned int frag_size); 1099 1100struct sk_buff *napi_build_skb(void *data, unsigned int frag_size); 1101 1102/** 1103 * alloc_skb - allocate a network buffer 1104 * @size: size to allocate 1105 * @priority: allocation mask 1106 * 1107 * This function is a convenient wrapper around __alloc_skb(). 1108 */ 1109static inline struct sk_buff *alloc_skb(unsigned int size, 1110 gfp_t priority) 1111{ 1112 return __alloc_skb(size, priority, 0, NUMA_NO_NODE); 1113} 1114 1115struct sk_buff *alloc_skb_with_frags(unsigned long header_len, 1116 unsigned long data_len, 1117 int max_page_order, 1118 int *errcode, 1119 gfp_t gfp_mask); 1120struct sk_buff *alloc_skb_for_msg(struct sk_buff *first); 1121 1122/* Layout of fast clones : [skb1][skb2][fclone_ref] */ 1123struct sk_buff_fclones { 1124 struct sk_buff skb1; 1125 1126 struct sk_buff skb2; 1127 1128 refcount_t fclone_ref; 1129}; 1130 1131/** 1132 * skb_fclone_busy - check if fclone is busy 1133 * @sk: socket 1134 * @skb: buffer 1135 * 1136 * Returns true if skb is a fast clone, and its clone is not freed. 1137 * Some drivers call skb_orphan() in their ndo_start_xmit(), 1138 * so we also check that this didnt happen. 1139 */ 1140static inline bool skb_fclone_busy(const struct sock *sk, 1141 const struct sk_buff *skb) 1142{ 1143 const struct sk_buff_fclones *fclones; 1144 1145 fclones = container_of(skb, struct sk_buff_fclones, skb1); 1146 1147 return skb->fclone == SKB_FCLONE_ORIG && 1148 refcount_read(&fclones->fclone_ref) > 1 && 1149 READ_ONCE(fclones->skb2.sk) == sk; 1150} 1151 1152/** 1153 * alloc_skb_fclone - allocate a network buffer from fclone cache 1154 * @size: size to allocate 1155 * @priority: allocation mask 1156 * 1157 * This function is a convenient wrapper around __alloc_skb(). 1158 */ 1159static inline struct sk_buff *alloc_skb_fclone(unsigned int size, 1160 gfp_t priority) 1161{ 1162 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE); 1163} 1164 1165struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src); 1166void skb_headers_offset_update(struct sk_buff *skb, int off); 1167int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask); 1168struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority); 1169void skb_copy_header(struct sk_buff *new, const struct sk_buff *old); 1170struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority); 1171struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom, 1172 gfp_t gfp_mask, bool fclone); 1173static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, 1174 gfp_t gfp_mask) 1175{ 1176 return __pskb_copy_fclone(skb, headroom, gfp_mask, false); 1177} 1178 1179int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask); 1180struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, 1181 unsigned int headroom); 1182struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom, 1183 int newtailroom, gfp_t priority); 1184int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg, 1185 int offset, int len); 1186int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, 1187 int offset, int len); 1188int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer); 1189int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error); 1190 1191/** 1192 * skb_pad - zero pad the tail of an skb 1193 * @skb: buffer to pad 1194 * @pad: space to pad 1195 * 1196 * Ensure that a buffer is followed by a padding area that is zero 1197 * filled. Used by network drivers which may DMA or transfer data 1198 * beyond the buffer end onto the wire. 1199 * 1200 * May return error in out of memory cases. The skb is freed on error. 1201 */ 1202static inline int skb_pad(struct sk_buff *skb, int pad) 1203{ 1204 return __skb_pad(skb, pad, true); 1205} 1206#define dev_kfree_skb(a) consume_skb(a) 1207 1208int skb_append_pagefrags(struct sk_buff *skb, struct page *page, 1209 int offset, size_t size); 1210 1211struct skb_seq_state { 1212 __u32 lower_offset; 1213 __u32 upper_offset; 1214 __u32 frag_idx; 1215 __u32 stepped_offset; 1216 struct sk_buff *root_skb; 1217 struct sk_buff *cur_skb; 1218 __u8 *frag_data; 1219 __u32 frag_off; 1220}; 1221 1222void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from, 1223 unsigned int to, struct skb_seq_state *st); 1224unsigned int skb_seq_read(unsigned int consumed, const u8 **data, 1225 struct skb_seq_state *st); 1226void skb_abort_seq_read(struct skb_seq_state *st); 1227 1228unsigned int skb_find_text(struct sk_buff *skb, unsigned int from, 1229 unsigned int to, struct ts_config *config); 1230 1231/* 1232 * Packet hash types specify the type of hash in skb_set_hash. 1233 * 1234 * Hash types refer to the protocol layer addresses which are used to 1235 * construct a packet's hash. The hashes are used to differentiate or identify 1236 * flows of the protocol layer for the hash type. Hash types are either 1237 * layer-2 (L2), layer-3 (L3), or layer-4 (L4). 1238 * 1239 * Properties of hashes: 1240 * 1241 * 1) Two packets in different flows have different hash values 1242 * 2) Two packets in the same flow should have the same hash value 1243 * 1244 * A hash at a higher layer is considered to be more specific. A driver should 1245 * set the most specific hash possible. 1246 * 1247 * A driver cannot indicate a more specific hash than the layer at which a hash 1248 * was computed. For instance an L3 hash cannot be set as an L4 hash. 1249 * 1250 * A driver may indicate a hash level which is less specific than the 1251 * actual layer the hash was computed on. For instance, a hash computed 1252 * at L4 may be considered an L3 hash. This should only be done if the 1253 * driver can't unambiguously determine that the HW computed the hash at 1254 * the higher layer. Note that the "should" in the second property above 1255 * permits this. 1256 */ 1257enum pkt_hash_types { 1258 PKT_HASH_TYPE_NONE, /* Undefined type */ 1259 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */ 1260 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */ 1261 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */ 1262}; 1263 1264static inline void skb_clear_hash(struct sk_buff *skb) 1265{ 1266 skb->hash = 0; 1267 skb->sw_hash = 0; 1268 skb->l4_hash = 0; 1269} 1270 1271static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb) 1272{ 1273 if (!skb->l4_hash) 1274 skb_clear_hash(skb); 1275} 1276 1277static inline void 1278__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4) 1279{ 1280 skb->l4_hash = is_l4; 1281 skb->sw_hash = is_sw; 1282 skb->hash = hash; 1283} 1284 1285static inline void 1286skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type) 1287{ 1288 /* Used by drivers to set hash from HW */ 1289 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4); 1290} 1291 1292static inline void 1293__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4) 1294{ 1295 __skb_set_hash(skb, hash, true, is_l4); 1296} 1297 1298void __skb_get_hash(struct sk_buff *skb); 1299u32 __skb_get_hash_symmetric(const struct sk_buff *skb); 1300u32 skb_get_poff(const struct sk_buff *skb); 1301u32 __skb_get_poff(const struct sk_buff *skb, const void *data, 1302 const struct flow_keys_basic *keys, int hlen); 1303__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto, 1304 const void *data, int hlen_proto); 1305 1306static inline __be32 skb_flow_get_ports(const struct sk_buff *skb, 1307 int thoff, u8 ip_proto) 1308{ 1309 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0); 1310} 1311 1312void skb_flow_dissector_init(struct flow_dissector *flow_dissector, 1313 const struct flow_dissector_key *key, 1314 unsigned int key_count); 1315 1316struct bpf_flow_dissector; 1317bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx, 1318 __be16 proto, int nhoff, int hlen, unsigned int flags); 1319 1320bool __skb_flow_dissect(const struct net *net, 1321 const struct sk_buff *skb, 1322 struct flow_dissector *flow_dissector, 1323 void *target_container, const void *data, 1324 __be16 proto, int nhoff, int hlen, unsigned int flags); 1325 1326static inline bool skb_flow_dissect(const struct sk_buff *skb, 1327 struct flow_dissector *flow_dissector, 1328 void *target_container, unsigned int flags) 1329{ 1330 return __skb_flow_dissect(NULL, skb, flow_dissector, 1331 target_container, NULL, 0, 0, 0, flags); 1332} 1333 1334static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb, 1335 struct flow_keys *flow, 1336 unsigned int flags) 1337{ 1338 memset(flow, 0, sizeof(*flow)); 1339 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector, 1340 flow, NULL, 0, 0, 0, flags); 1341} 1342 1343static inline bool 1344skb_flow_dissect_flow_keys_basic(const struct net *net, 1345 const struct sk_buff *skb, 1346 struct flow_keys_basic *flow, 1347 const void *data, __be16 proto, 1348 int nhoff, int hlen, unsigned int flags) 1349{ 1350 memset(flow, 0, sizeof(*flow)); 1351 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow, 1352 data, proto, nhoff, hlen, flags); 1353} 1354 1355void skb_flow_dissect_meta(const struct sk_buff *skb, 1356 struct flow_dissector *flow_dissector, 1357 void *target_container); 1358 1359/* Gets a skb connection tracking info, ctinfo map should be a 1360 * map of mapsize to translate enum ip_conntrack_info states 1361 * to user states. 1362 */ 1363void 1364skb_flow_dissect_ct(const struct sk_buff *skb, 1365 struct flow_dissector *flow_dissector, 1366 void *target_container, 1367 u16 *ctinfo_map, size_t mapsize, 1368 bool post_ct); 1369void 1370skb_flow_dissect_tunnel_info(const struct sk_buff *skb, 1371 struct flow_dissector *flow_dissector, 1372 void *target_container); 1373 1374void skb_flow_dissect_hash(const struct sk_buff *skb, 1375 struct flow_dissector *flow_dissector, 1376 void *target_container); 1377 1378static inline __u32 skb_get_hash(struct sk_buff *skb) 1379{ 1380 if (!skb->l4_hash && !skb->sw_hash) 1381 __skb_get_hash(skb); 1382 1383 return skb->hash; 1384} 1385 1386static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6) 1387{ 1388 if (!skb->l4_hash && !skb->sw_hash) { 1389 struct flow_keys keys; 1390 __u32 hash = __get_hash_from_flowi6(fl6, &keys); 1391 1392 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys)); 1393 } 1394 1395 return skb->hash; 1396} 1397 1398__u32 skb_get_hash_perturb(const struct sk_buff *skb, 1399 const siphash_key_t *perturb); 1400 1401static inline __u32 skb_get_hash_raw(const struct sk_buff *skb) 1402{ 1403 return skb->hash; 1404} 1405 1406static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from) 1407{ 1408 to->hash = from->hash; 1409 to->sw_hash = from->sw_hash; 1410 to->l4_hash = from->l4_hash; 1411}; 1412 1413static inline void skb_copy_decrypted(struct sk_buff *to, 1414 const struct sk_buff *from) 1415{ 1416#ifdef CONFIG_TLS_DEVICE 1417 to->decrypted = from->decrypted; 1418#endif 1419} 1420 1421#ifdef NET_SKBUFF_DATA_USES_OFFSET 1422static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1423{ 1424 return skb->head + skb->end; 1425} 1426 1427static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1428{ 1429 return skb->end; 1430} 1431#else 1432static inline unsigned char *skb_end_pointer(const struct sk_buff *skb) 1433{ 1434 return skb->end; 1435} 1436 1437static inline unsigned int skb_end_offset(const struct sk_buff *skb) 1438{ 1439 return skb->end - skb->head; 1440} 1441#endif 1442 1443/* Internal */ 1444#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB))) 1445 1446static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb) 1447{ 1448 return &skb_shinfo(skb)->hwtstamps; 1449} 1450 1451static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb) 1452{ 1453 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE; 1454 1455 return is_zcopy ? skb_uarg(skb) : NULL; 1456} 1457 1458static inline void net_zcopy_get(struct ubuf_info *uarg) 1459{ 1460 refcount_inc(&uarg->refcnt); 1461} 1462 1463static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg) 1464{ 1465 skb_shinfo(skb)->destructor_arg = uarg; 1466 skb_shinfo(skb)->flags |= uarg->flags; 1467} 1468 1469static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg, 1470 bool *have_ref) 1471{ 1472 if (skb && uarg && !skb_zcopy(skb)) { 1473 if (unlikely(have_ref && *have_ref)) 1474 *have_ref = false; 1475 else 1476 net_zcopy_get(uarg); 1477 skb_zcopy_init(skb, uarg); 1478 } 1479} 1480 1481static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val) 1482{ 1483 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL); 1484 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG; 1485} 1486 1487static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb) 1488{ 1489 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL; 1490} 1491 1492static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb) 1493{ 1494 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL); 1495} 1496 1497static inline void net_zcopy_put(struct ubuf_info *uarg) 1498{ 1499 if (uarg) 1500 uarg->callback(NULL, uarg, true); 1501} 1502 1503static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref) 1504{ 1505 if (uarg) { 1506 if (uarg->callback == msg_zerocopy_callback) 1507 msg_zerocopy_put_abort(uarg, have_uref); 1508 else if (have_uref) 1509 net_zcopy_put(uarg); 1510 } 1511} 1512 1513/* Release a reference on a zerocopy structure */ 1514static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success) 1515{ 1516 struct ubuf_info *uarg = skb_zcopy(skb); 1517 1518 if (uarg) { 1519 if (!skb_zcopy_is_nouarg(skb)) 1520 uarg->callback(skb, uarg, zerocopy_success); 1521 1522 skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG; 1523 } 1524} 1525 1526static inline void skb_mark_not_on_list(struct sk_buff *skb) 1527{ 1528 skb->next = NULL; 1529} 1530 1531/* Iterate through singly-linked GSO fragments of an skb. */ 1532#define skb_list_walk_safe(first, skb, next_skb) \ 1533 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \ 1534 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL) 1535 1536static inline void skb_list_del_init(struct sk_buff *skb) 1537{ 1538 __list_del_entry(&skb->list); 1539 skb_mark_not_on_list(skb); 1540} 1541 1542/** 1543 * skb_queue_empty - check if a queue is empty 1544 * @list: queue head 1545 * 1546 * Returns true if the queue is empty, false otherwise. 1547 */ 1548static inline int skb_queue_empty(const struct sk_buff_head *list) 1549{ 1550 return list->next == (const struct sk_buff *) list; 1551} 1552 1553/** 1554 * skb_queue_empty_lockless - check if a queue is empty 1555 * @list: queue head 1556 * 1557 * Returns true if the queue is empty, false otherwise. 1558 * This variant can be used in lockless contexts. 1559 */ 1560static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list) 1561{ 1562 return READ_ONCE(list->next) == (const struct sk_buff *) list; 1563} 1564 1565 1566/** 1567 * skb_queue_is_last - check if skb is the last entry in the queue 1568 * @list: queue head 1569 * @skb: buffer 1570 * 1571 * Returns true if @skb is the last buffer on the list. 1572 */ 1573static inline bool skb_queue_is_last(const struct sk_buff_head *list, 1574 const struct sk_buff *skb) 1575{ 1576 return skb->next == (const struct sk_buff *) list; 1577} 1578 1579/** 1580 * skb_queue_is_first - check if skb is the first entry in the queue 1581 * @list: queue head 1582 * @skb: buffer 1583 * 1584 * Returns true if @skb is the first buffer on the list. 1585 */ 1586static inline bool skb_queue_is_first(const struct sk_buff_head *list, 1587 const struct sk_buff *skb) 1588{ 1589 return skb->prev == (const struct sk_buff *) list; 1590} 1591 1592/** 1593 * skb_queue_next - return the next packet in the queue 1594 * @list: queue head 1595 * @skb: current buffer 1596 * 1597 * Return the next packet in @list after @skb. It is only valid to 1598 * call this if skb_queue_is_last() evaluates to false. 1599 */ 1600static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list, 1601 const struct sk_buff *skb) 1602{ 1603 /* This BUG_ON may seem severe, but if we just return then we 1604 * are going to dereference garbage. 1605 */ 1606 BUG_ON(skb_queue_is_last(list, skb)); 1607 return skb->next; 1608} 1609 1610/** 1611 * skb_queue_prev - return the prev packet in the queue 1612 * @list: queue head 1613 * @skb: current buffer 1614 * 1615 * Return the prev packet in @list before @skb. It is only valid to 1616 * call this if skb_queue_is_first() evaluates to false. 1617 */ 1618static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list, 1619 const struct sk_buff *skb) 1620{ 1621 /* This BUG_ON may seem severe, but if we just return then we 1622 * are going to dereference garbage. 1623 */ 1624 BUG_ON(skb_queue_is_first(list, skb)); 1625 return skb->prev; 1626} 1627 1628/** 1629 * skb_get - reference buffer 1630 * @skb: buffer to reference 1631 * 1632 * Makes another reference to a socket buffer and returns a pointer 1633 * to the buffer. 1634 */ 1635static inline struct sk_buff *skb_get(struct sk_buff *skb) 1636{ 1637 refcount_inc(&skb->users); 1638 return skb; 1639} 1640 1641/* 1642 * If users == 1, we are the only owner and can avoid redundant atomic changes. 1643 */ 1644 1645/** 1646 * skb_cloned - is the buffer a clone 1647 * @skb: buffer to check 1648 * 1649 * Returns true if the buffer was generated with skb_clone() and is 1650 * one of multiple shared copies of the buffer. Cloned buffers are 1651 * shared data so must not be written to under normal circumstances. 1652 */ 1653static inline int skb_cloned(const struct sk_buff *skb) 1654{ 1655 return skb->cloned && 1656 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1; 1657} 1658 1659static inline int skb_unclone(struct sk_buff *skb, gfp_t pri) 1660{ 1661 might_sleep_if(gfpflags_allow_blocking(pri)); 1662 1663 if (skb_cloned(skb)) 1664 return pskb_expand_head(skb, 0, 0, pri); 1665 1666 return 0; 1667} 1668 1669/** 1670 * skb_header_cloned - is the header a clone 1671 * @skb: buffer to check 1672 * 1673 * Returns true if modifying the header part of the buffer requires 1674 * the data to be copied. 1675 */ 1676static inline int skb_header_cloned(const struct sk_buff *skb) 1677{ 1678 int dataref; 1679 1680 if (!skb->cloned) 1681 return 0; 1682 1683 dataref = atomic_read(&skb_shinfo(skb)->dataref); 1684 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT); 1685 return dataref != 1; 1686} 1687 1688static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri) 1689{ 1690 might_sleep_if(gfpflags_allow_blocking(pri)); 1691 1692 if (skb_header_cloned(skb)) 1693 return pskb_expand_head(skb, 0, 0, pri); 1694 1695 return 0; 1696} 1697 1698/** 1699 * __skb_header_release - release reference to header 1700 * @skb: buffer to operate on 1701 */ 1702static inline void __skb_header_release(struct sk_buff *skb) 1703{ 1704 skb->nohdr = 1; 1705 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT)); 1706} 1707 1708 1709/** 1710 * skb_shared - is the buffer shared 1711 * @skb: buffer to check 1712 * 1713 * Returns true if more than one person has a reference to this 1714 * buffer. 1715 */ 1716static inline int skb_shared(const struct sk_buff *skb) 1717{ 1718 return refcount_read(&skb->users) != 1; 1719} 1720 1721/** 1722 * skb_share_check - check if buffer is shared and if so clone it 1723 * @skb: buffer to check 1724 * @pri: priority for memory allocation 1725 * 1726 * If the buffer is shared the buffer is cloned and the old copy 1727 * drops a reference. A new clone with a single reference is returned. 1728 * If the buffer is not shared the original buffer is returned. When 1729 * being called from interrupt status or with spinlocks held pri must 1730 * be GFP_ATOMIC. 1731 * 1732 * NULL is returned on a memory allocation failure. 1733 */ 1734static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri) 1735{ 1736 might_sleep_if(gfpflags_allow_blocking(pri)); 1737 if (skb_shared(skb)) { 1738 struct sk_buff *nskb = skb_clone(skb, pri); 1739 1740 if (likely(nskb)) 1741 consume_skb(skb); 1742 else 1743 kfree_skb(skb); 1744 skb = nskb; 1745 } 1746 return skb; 1747} 1748 1749/* 1750 * Copy shared buffers into a new sk_buff. We effectively do COW on 1751 * packets to handle cases where we have a local reader and forward 1752 * and a couple of other messy ones. The normal one is tcpdumping 1753 * a packet thats being forwarded. 1754 */ 1755 1756/** 1757 * skb_unshare - make a copy of a shared buffer 1758 * @skb: buffer to check 1759 * @pri: priority for memory allocation 1760 * 1761 * If the socket buffer is a clone then this function creates a new 1762 * copy of the data, drops a reference count on the old copy and returns 1763 * the new copy with the reference count at 1. If the buffer is not a clone 1764 * the original buffer is returned. When called with a spinlock held or 1765 * from interrupt state @pri must be %GFP_ATOMIC 1766 * 1767 * %NULL is returned on a memory allocation failure. 1768 */ 1769static inline struct sk_buff *skb_unshare(struct sk_buff *skb, 1770 gfp_t pri) 1771{ 1772 might_sleep_if(gfpflags_allow_blocking(pri)); 1773 if (skb_cloned(skb)) { 1774 struct sk_buff *nskb = skb_copy(skb, pri); 1775 1776 /* Free our shared copy */ 1777 if (likely(nskb)) 1778 consume_skb(skb); 1779 else 1780 kfree_skb(skb); 1781 skb = nskb; 1782 } 1783 return skb; 1784} 1785 1786/** 1787 * skb_peek - peek at the head of an &sk_buff_head 1788 * @list_: list to peek at 1789 * 1790 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1791 * be careful with this one. A peek leaves the buffer on the 1792 * list and someone else may run off with it. You must hold 1793 * the appropriate locks or have a private queue to do this. 1794 * 1795 * Returns %NULL for an empty list or a pointer to the head element. 1796 * The reference count is not incremented and the reference is therefore 1797 * volatile. Use with caution. 1798 */ 1799static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_) 1800{ 1801 struct sk_buff *skb = list_->next; 1802 1803 if (skb == (struct sk_buff *)list_) 1804 skb = NULL; 1805 return skb; 1806} 1807 1808/** 1809 * __skb_peek - peek at the head of a non-empty &sk_buff_head 1810 * @list_: list to peek at 1811 * 1812 * Like skb_peek(), but the caller knows that the list is not empty. 1813 */ 1814static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_) 1815{ 1816 return list_->next; 1817} 1818 1819/** 1820 * skb_peek_next - peek skb following the given one from a queue 1821 * @skb: skb to start from 1822 * @list_: list to peek at 1823 * 1824 * Returns %NULL when the end of the list is met or a pointer to the 1825 * next element. The reference count is not incremented and the 1826 * reference is therefore volatile. Use with caution. 1827 */ 1828static inline struct sk_buff *skb_peek_next(struct sk_buff *skb, 1829 const struct sk_buff_head *list_) 1830{ 1831 struct sk_buff *next = skb->next; 1832 1833 if (next == (struct sk_buff *)list_) 1834 next = NULL; 1835 return next; 1836} 1837 1838/** 1839 * skb_peek_tail - peek at the tail of an &sk_buff_head 1840 * @list_: list to peek at 1841 * 1842 * Peek an &sk_buff. Unlike most other operations you _MUST_ 1843 * be careful with this one. A peek leaves the buffer on the 1844 * list and someone else may run off with it. You must hold 1845 * the appropriate locks or have a private queue to do this. 1846 * 1847 * Returns %NULL for an empty list or a pointer to the tail element. 1848 * The reference count is not incremented and the reference is therefore 1849 * volatile. Use with caution. 1850 */ 1851static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_) 1852{ 1853 struct sk_buff *skb = READ_ONCE(list_->prev); 1854 1855 if (skb == (struct sk_buff *)list_) 1856 skb = NULL; 1857 return skb; 1858 1859} 1860 1861/** 1862 * skb_queue_len - get queue length 1863 * @list_: list to measure 1864 * 1865 * Return the length of an &sk_buff queue. 1866 */ 1867static inline __u32 skb_queue_len(const struct sk_buff_head *list_) 1868{ 1869 return list_->qlen; 1870} 1871 1872/** 1873 * skb_queue_len_lockless - get queue length 1874 * @list_: list to measure 1875 * 1876 * Return the length of an &sk_buff queue. 1877 * This variant can be used in lockless contexts. 1878 */ 1879static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_) 1880{ 1881 return READ_ONCE(list_->qlen); 1882} 1883 1884/** 1885 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head 1886 * @list: queue to initialize 1887 * 1888 * This initializes only the list and queue length aspects of 1889 * an sk_buff_head object. This allows to initialize the list 1890 * aspects of an sk_buff_head without reinitializing things like 1891 * the spinlock. It can also be used for on-stack sk_buff_head 1892 * objects where the spinlock is known to not be used. 1893 */ 1894static inline void __skb_queue_head_init(struct sk_buff_head *list) 1895{ 1896 list->prev = list->next = (struct sk_buff *)list; 1897 list->qlen = 0; 1898} 1899 1900/* 1901 * This function creates a split out lock class for each invocation; 1902 * this is needed for now since a whole lot of users of the skb-queue 1903 * infrastructure in drivers have different locking usage (in hardirq) 1904 * than the networking core (in softirq only). In the long run either the 1905 * network layer or drivers should need annotation to consolidate the 1906 * main types of usage into 3 classes. 1907 */ 1908static inline void skb_queue_head_init(struct sk_buff_head *list) 1909{ 1910 spin_lock_init(&list->lock); 1911 __skb_queue_head_init(list); 1912} 1913 1914static inline void skb_queue_head_init_class(struct sk_buff_head *list, 1915 struct lock_class_key *class) 1916{ 1917 skb_queue_head_init(list); 1918 lockdep_set_class(&list->lock, class); 1919} 1920 1921/* 1922 * Insert an sk_buff on a list. 1923 * 1924 * The "__skb_xxxx()" functions are the non-atomic ones that 1925 * can only be called with interrupts disabled. 1926 */ 1927static inline void __skb_insert(struct sk_buff *newsk, 1928 struct sk_buff *prev, struct sk_buff *next, 1929 struct sk_buff_head *list) 1930{ 1931 /* See skb_queue_empty_lockless() and skb_peek_tail() 1932 * for the opposite READ_ONCE() 1933 */ 1934 WRITE_ONCE(newsk->next, next); 1935 WRITE_ONCE(newsk->prev, prev); 1936 WRITE_ONCE(next->prev, newsk); 1937 WRITE_ONCE(prev->next, newsk); 1938 list->qlen++; 1939} 1940 1941static inline void __skb_queue_splice(const struct sk_buff_head *list, 1942 struct sk_buff *prev, 1943 struct sk_buff *next) 1944{ 1945 struct sk_buff *first = list->next; 1946 struct sk_buff *last = list->prev; 1947 1948 WRITE_ONCE(first->prev, prev); 1949 WRITE_ONCE(prev->next, first); 1950 1951 WRITE_ONCE(last->next, next); 1952 WRITE_ONCE(next->prev, last); 1953} 1954 1955/** 1956 * skb_queue_splice - join two skb lists, this is designed for stacks 1957 * @list: the new list to add 1958 * @head: the place to add it in the first list 1959 */ 1960static inline void skb_queue_splice(const struct sk_buff_head *list, 1961 struct sk_buff_head *head) 1962{ 1963 if (!skb_queue_empty(list)) { 1964 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1965 head->qlen += list->qlen; 1966 } 1967} 1968 1969/** 1970 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list 1971 * @list: the new list to add 1972 * @head: the place to add it in the first list 1973 * 1974 * The list at @list is reinitialised 1975 */ 1976static inline void skb_queue_splice_init(struct sk_buff_head *list, 1977 struct sk_buff_head *head) 1978{ 1979 if (!skb_queue_empty(list)) { 1980 __skb_queue_splice(list, (struct sk_buff *) head, head->next); 1981 head->qlen += list->qlen; 1982 __skb_queue_head_init(list); 1983 } 1984} 1985 1986/** 1987 * skb_queue_splice_tail - join two skb lists, each list being a queue 1988 * @list: the new list to add 1989 * @head: the place to add it in the first list 1990 */ 1991static inline void skb_queue_splice_tail(const struct sk_buff_head *list, 1992 struct sk_buff_head *head) 1993{ 1994 if (!skb_queue_empty(list)) { 1995 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 1996 head->qlen += list->qlen; 1997 } 1998} 1999 2000/** 2001 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list 2002 * @list: the new list to add 2003 * @head: the place to add it in the first list 2004 * 2005 * Each of the lists is a queue. 2006 * The list at @list is reinitialised 2007 */ 2008static inline void skb_queue_splice_tail_init(struct sk_buff_head *list, 2009 struct sk_buff_head *head) 2010{ 2011 if (!skb_queue_empty(list)) { 2012 __skb_queue_splice(list, head->prev, (struct sk_buff *) head); 2013 head->qlen += list->qlen; 2014 __skb_queue_head_init(list); 2015 } 2016} 2017 2018/** 2019 * __skb_queue_after - queue a buffer at the list head 2020 * @list: list to use 2021 * @prev: place after this buffer 2022 * @newsk: buffer to queue 2023 * 2024 * Queue a buffer int the middle of a list. This function takes no locks 2025 * and you must therefore hold required locks before calling it. 2026 * 2027 * A buffer cannot be placed on two lists at the same time. 2028 */ 2029static inline void __skb_queue_after(struct sk_buff_head *list, 2030 struct sk_buff *prev, 2031 struct sk_buff *newsk) 2032{ 2033 __skb_insert(newsk, prev, prev->next, list); 2034} 2035 2036void skb_append(struct sk_buff *old, struct sk_buff *newsk, 2037 struct sk_buff_head *list); 2038 2039static inline void __skb_queue_before(struct sk_buff_head *list, 2040 struct sk_buff *next, 2041 struct sk_buff *newsk) 2042{ 2043 __skb_insert(newsk, next->prev, next, list); 2044} 2045 2046/** 2047 * __skb_queue_head - queue a buffer at the list head 2048 * @list: list to use 2049 * @newsk: buffer to queue 2050 * 2051 * Queue a buffer at the start of a list. This function takes no locks 2052 * and you must therefore hold required locks before calling it. 2053 * 2054 * A buffer cannot be placed on two lists at the same time. 2055 */ 2056static inline void __skb_queue_head(struct sk_buff_head *list, 2057 struct sk_buff *newsk) 2058{ 2059 __skb_queue_after(list, (struct sk_buff *)list, newsk); 2060} 2061void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); 2062 2063/** 2064 * __skb_queue_tail - queue a buffer at the list tail 2065 * @list: list to use 2066 * @newsk: buffer to queue 2067 * 2068 * Queue a buffer at the end of a list. This function takes no locks 2069 * and you must therefore hold required locks before calling it. 2070 * 2071 * A buffer cannot be placed on two lists at the same time. 2072 */ 2073static inline void __skb_queue_tail(struct sk_buff_head *list, 2074 struct sk_buff *newsk) 2075{ 2076 __skb_queue_before(list, (struct sk_buff *)list, newsk); 2077} 2078void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk); 2079 2080/* 2081 * remove sk_buff from list. _Must_ be called atomically, and with 2082 * the list known.. 2083 */ 2084void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list); 2085static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list) 2086{ 2087 struct sk_buff *next, *prev; 2088 2089 WRITE_ONCE(list->qlen, list->qlen - 1); 2090 next = skb->next; 2091 prev = skb->prev; 2092 skb->next = skb->prev = NULL; 2093 WRITE_ONCE(next->prev, prev); 2094 WRITE_ONCE(prev->next, next); 2095} 2096 2097/** 2098 * __skb_dequeue - remove from the head of the queue 2099 * @list: list to dequeue from 2100 * 2101 * Remove the head of the list. This function does not take any locks 2102 * so must be used with appropriate locks held only. The head item is 2103 * returned or %NULL if the list is empty. 2104 */ 2105static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list) 2106{ 2107 struct sk_buff *skb = skb_peek(list); 2108 if (skb) 2109 __skb_unlink(skb, list); 2110 return skb; 2111} 2112struct sk_buff *skb_dequeue(struct sk_buff_head *list); 2113 2114/** 2115 * __skb_dequeue_tail - remove from the tail of the queue 2116 * @list: list to dequeue from 2117 * 2118 * Remove the tail of the list. This function does not take any locks 2119 * so must be used with appropriate locks held only. The tail item is 2120 * returned or %NULL if the list is empty. 2121 */ 2122static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list) 2123{ 2124 struct sk_buff *skb = skb_peek_tail(list); 2125 if (skb) 2126 __skb_unlink(skb, list); 2127 return skb; 2128} 2129struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list); 2130 2131 2132static inline bool skb_is_nonlinear(const struct sk_buff *skb) 2133{ 2134 return skb->data_len; 2135} 2136 2137static inline unsigned int skb_headlen(const struct sk_buff *skb) 2138{ 2139 return skb->len - skb->data_len; 2140} 2141 2142static inline unsigned int __skb_pagelen(const struct sk_buff *skb) 2143{ 2144 unsigned int i, len = 0; 2145 2146 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--) 2147 len += skb_frag_size(&skb_shinfo(skb)->frags[i]); 2148 return len; 2149} 2150 2151static inline unsigned int skb_pagelen(const struct sk_buff *skb) 2152{ 2153 return skb_headlen(skb) + __skb_pagelen(skb); 2154} 2155 2156/** 2157 * __skb_fill_page_desc - initialise a paged fragment in an skb 2158 * @skb: buffer containing fragment to be initialised 2159 * @i: paged fragment index to initialise 2160 * @page: the page to use for this fragment 2161 * @off: the offset to the data with @page 2162 * @size: the length of the data 2163 * 2164 * Initialises the @i'th fragment of @skb to point to &size bytes at 2165 * offset @off within @page. 2166 * 2167 * Does not take any additional reference on the fragment. 2168 */ 2169static inline void __skb_fill_page_desc(struct sk_buff *skb, int i, 2170 struct page *page, int off, int size) 2171{ 2172 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2173 2174 /* 2175 * Propagate page pfmemalloc to the skb if we can. The problem is 2176 * that not all callers have unique ownership of the page but rely 2177 * on page_is_pfmemalloc doing the right thing(tm). 2178 */ 2179 frag->bv_page = page; 2180 frag->bv_offset = off; 2181 skb_frag_size_set(frag, size); 2182 2183 page = compound_head(page); 2184 if (page_is_pfmemalloc(page)) 2185 skb->pfmemalloc = true; 2186} 2187 2188/** 2189 * skb_fill_page_desc - initialise a paged fragment in an skb 2190 * @skb: buffer containing fragment to be initialised 2191 * @i: paged fragment index to initialise 2192 * @page: the page to use for this fragment 2193 * @off: the offset to the data with @page 2194 * @size: the length of the data 2195 * 2196 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of 2197 * @skb to point to @size bytes at offset @off within @page. In 2198 * addition updates @skb such that @i is the last fragment. 2199 * 2200 * Does not take any additional reference on the fragment. 2201 */ 2202static inline void skb_fill_page_desc(struct sk_buff *skb, int i, 2203 struct page *page, int off, int size) 2204{ 2205 __skb_fill_page_desc(skb, i, page, off, size); 2206 skb_shinfo(skb)->nr_frags = i + 1; 2207} 2208 2209void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off, 2210 int size, unsigned int truesize); 2211 2212void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size, 2213 unsigned int truesize); 2214 2215#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb)) 2216 2217#ifdef NET_SKBUFF_DATA_USES_OFFSET 2218static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2219{ 2220 return skb->head + skb->tail; 2221} 2222 2223static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2224{ 2225 skb->tail = skb->data - skb->head; 2226} 2227 2228static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2229{ 2230 skb_reset_tail_pointer(skb); 2231 skb->tail += offset; 2232} 2233 2234#else /* NET_SKBUFF_DATA_USES_OFFSET */ 2235static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb) 2236{ 2237 return skb->tail; 2238} 2239 2240static inline void skb_reset_tail_pointer(struct sk_buff *skb) 2241{ 2242 skb->tail = skb->data; 2243} 2244 2245static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset) 2246{ 2247 skb->tail = skb->data + offset; 2248} 2249 2250#endif /* NET_SKBUFF_DATA_USES_OFFSET */ 2251 2252/* 2253 * Add data to an sk_buff 2254 */ 2255void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len); 2256void *skb_put(struct sk_buff *skb, unsigned int len); 2257static inline void *__skb_put(struct sk_buff *skb, unsigned int len) 2258{ 2259 void *tmp = skb_tail_pointer(skb); 2260 SKB_LINEAR_ASSERT(skb); 2261 skb->tail += len; 2262 skb->len += len; 2263 return tmp; 2264} 2265 2266static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len) 2267{ 2268 void *tmp = __skb_put(skb, len); 2269 2270 memset(tmp, 0, len); 2271 return tmp; 2272} 2273 2274static inline void *__skb_put_data(struct sk_buff *skb, const void *data, 2275 unsigned int len) 2276{ 2277 void *tmp = __skb_put(skb, len); 2278 2279 memcpy(tmp, data, len); 2280 return tmp; 2281} 2282 2283static inline void __skb_put_u8(struct sk_buff *skb, u8 val) 2284{ 2285 *(u8 *)__skb_put(skb, 1) = val; 2286} 2287 2288static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len) 2289{ 2290 void *tmp = skb_put(skb, len); 2291 2292 memset(tmp, 0, len); 2293 2294 return tmp; 2295} 2296 2297static inline void *skb_put_data(struct sk_buff *skb, const void *data, 2298 unsigned int len) 2299{ 2300 void *tmp = skb_put(skb, len); 2301 2302 memcpy(tmp, data, len); 2303 2304 return tmp; 2305} 2306 2307static inline void skb_put_u8(struct sk_buff *skb, u8 val) 2308{ 2309 *(u8 *)skb_put(skb, 1) = val; 2310} 2311 2312void *skb_push(struct sk_buff *skb, unsigned int len); 2313static inline void *__skb_push(struct sk_buff *skb, unsigned int len) 2314{ 2315 skb->data -= len; 2316 skb->len += len; 2317 return skb->data; 2318} 2319 2320void *skb_pull(struct sk_buff *skb, unsigned int len); 2321static inline void *__skb_pull(struct sk_buff *skb, unsigned int len) 2322{ 2323 skb->len -= len; 2324 BUG_ON(skb->len < skb->data_len); 2325 return skb->data += len; 2326} 2327 2328static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len) 2329{ 2330 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len); 2331} 2332 2333void *__pskb_pull_tail(struct sk_buff *skb, int delta); 2334 2335static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len) 2336{ 2337 if (len > skb_headlen(skb) && 2338 !__pskb_pull_tail(skb, len - skb_headlen(skb))) 2339 return NULL; 2340 skb->len -= len; 2341 return skb->data += len; 2342} 2343 2344static inline void *pskb_pull(struct sk_buff *skb, unsigned int len) 2345{ 2346 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len); 2347} 2348 2349static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len) 2350{ 2351 if (likely(len <= skb_headlen(skb))) 2352 return true; 2353 if (unlikely(len > skb->len)) 2354 return false; 2355 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL; 2356} 2357 2358void skb_condense(struct sk_buff *skb); 2359 2360/** 2361 * skb_headroom - bytes at buffer head 2362 * @skb: buffer to check 2363 * 2364 * Return the number of bytes of free space at the head of an &sk_buff. 2365 */ 2366static inline unsigned int skb_headroom(const struct sk_buff *skb) 2367{ 2368 return skb->data - skb->head; 2369} 2370 2371/** 2372 * skb_tailroom - bytes at buffer end 2373 * @skb: buffer to check 2374 * 2375 * Return the number of bytes of free space at the tail of an sk_buff 2376 */ 2377static inline int skb_tailroom(const struct sk_buff *skb) 2378{ 2379 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail; 2380} 2381 2382/** 2383 * skb_availroom - bytes at buffer end 2384 * @skb: buffer to check 2385 * 2386 * Return the number of bytes of free space at the tail of an sk_buff 2387 * allocated by sk_stream_alloc() 2388 */ 2389static inline int skb_availroom(const struct sk_buff *skb) 2390{ 2391 if (skb_is_nonlinear(skb)) 2392 return 0; 2393 2394 return skb->end - skb->tail - skb->reserved_tailroom; 2395} 2396 2397/** 2398 * skb_reserve - adjust headroom 2399 * @skb: buffer to alter 2400 * @len: bytes to move 2401 * 2402 * Increase the headroom of an empty &sk_buff by reducing the tail 2403 * room. This is only allowed for an empty buffer. 2404 */ 2405static inline void skb_reserve(struct sk_buff *skb, int len) 2406{ 2407 skb->data += len; 2408 skb->tail += len; 2409} 2410 2411/** 2412 * skb_tailroom_reserve - adjust reserved_tailroom 2413 * @skb: buffer to alter 2414 * @mtu: maximum amount of headlen permitted 2415 * @needed_tailroom: minimum amount of reserved_tailroom 2416 * 2417 * Set reserved_tailroom so that headlen can be as large as possible but 2418 * not larger than mtu and tailroom cannot be smaller than 2419 * needed_tailroom. 2420 * The required headroom should already have been reserved before using 2421 * this function. 2422 */ 2423static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu, 2424 unsigned int needed_tailroom) 2425{ 2426 SKB_LINEAR_ASSERT(skb); 2427 if (mtu < skb_tailroom(skb) - needed_tailroom) 2428 /* use at most mtu */ 2429 skb->reserved_tailroom = skb_tailroom(skb) - mtu; 2430 else 2431 /* use up to all available space */ 2432 skb->reserved_tailroom = needed_tailroom; 2433} 2434 2435#define ENCAP_TYPE_ETHER 0 2436#define ENCAP_TYPE_IPPROTO 1 2437 2438static inline void skb_set_inner_protocol(struct sk_buff *skb, 2439 __be16 protocol) 2440{ 2441 skb->inner_protocol = protocol; 2442 skb->inner_protocol_type = ENCAP_TYPE_ETHER; 2443} 2444 2445static inline void skb_set_inner_ipproto(struct sk_buff *skb, 2446 __u8 ipproto) 2447{ 2448 skb->inner_ipproto = ipproto; 2449 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO; 2450} 2451 2452static inline void skb_reset_inner_headers(struct sk_buff *skb) 2453{ 2454 skb->inner_mac_header = skb->mac_header; 2455 skb->inner_network_header = skb->network_header; 2456 skb->inner_transport_header = skb->transport_header; 2457} 2458 2459static inline void skb_reset_mac_len(struct sk_buff *skb) 2460{ 2461 skb->mac_len = skb->network_header - skb->mac_header; 2462} 2463 2464static inline unsigned char *skb_inner_transport_header(const struct sk_buff 2465 *skb) 2466{ 2467 return skb->head + skb->inner_transport_header; 2468} 2469 2470static inline int skb_inner_transport_offset(const struct sk_buff *skb) 2471{ 2472 return skb_inner_transport_header(skb) - skb->data; 2473} 2474 2475static inline void skb_reset_inner_transport_header(struct sk_buff *skb) 2476{ 2477 skb->inner_transport_header = skb->data - skb->head; 2478} 2479 2480static inline void skb_set_inner_transport_header(struct sk_buff *skb, 2481 const int offset) 2482{ 2483 skb_reset_inner_transport_header(skb); 2484 skb->inner_transport_header += offset; 2485} 2486 2487static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb) 2488{ 2489 return skb->head + skb->inner_network_header; 2490} 2491 2492static inline void skb_reset_inner_network_header(struct sk_buff *skb) 2493{ 2494 skb->inner_network_header = skb->data - skb->head; 2495} 2496 2497static inline void skb_set_inner_network_header(struct sk_buff *skb, 2498 const int offset) 2499{ 2500 skb_reset_inner_network_header(skb); 2501 skb->inner_network_header += offset; 2502} 2503 2504static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb) 2505{ 2506 return skb->head + skb->inner_mac_header; 2507} 2508 2509static inline void skb_reset_inner_mac_header(struct sk_buff *skb) 2510{ 2511 skb->inner_mac_header = skb->data - skb->head; 2512} 2513 2514static inline void skb_set_inner_mac_header(struct sk_buff *skb, 2515 const int offset) 2516{ 2517 skb_reset_inner_mac_header(skb); 2518 skb->inner_mac_header += offset; 2519} 2520static inline bool skb_transport_header_was_set(const struct sk_buff *skb) 2521{ 2522 return skb->transport_header != (typeof(skb->transport_header))~0U; 2523} 2524 2525static inline unsigned char *skb_transport_header(const struct sk_buff *skb) 2526{ 2527 return skb->head + skb->transport_header; 2528} 2529 2530static inline void skb_reset_transport_header(struct sk_buff *skb) 2531{ 2532 skb->transport_header = skb->data - skb->head; 2533} 2534 2535static inline void skb_set_transport_header(struct sk_buff *skb, 2536 const int offset) 2537{ 2538 skb_reset_transport_header(skb); 2539 skb->transport_header += offset; 2540} 2541 2542static inline unsigned char *skb_network_header(const struct sk_buff *skb) 2543{ 2544 return skb->head + skb->network_header; 2545} 2546 2547static inline void skb_reset_network_header(struct sk_buff *skb) 2548{ 2549 skb->network_header = skb->data - skb->head; 2550} 2551 2552static inline void skb_set_network_header(struct sk_buff *skb, const int offset) 2553{ 2554 skb_reset_network_header(skb); 2555 skb->network_header += offset; 2556} 2557 2558static inline unsigned char *skb_mac_header(const struct sk_buff *skb) 2559{ 2560 return skb->head + skb->mac_header; 2561} 2562 2563static inline int skb_mac_offset(const struct sk_buff *skb) 2564{ 2565 return skb_mac_header(skb) - skb->data; 2566} 2567 2568static inline u32 skb_mac_header_len(const struct sk_buff *skb) 2569{ 2570 return skb->network_header - skb->mac_header; 2571} 2572 2573static inline int skb_mac_header_was_set(const struct sk_buff *skb) 2574{ 2575 return skb->mac_header != (typeof(skb->mac_header))~0U; 2576} 2577 2578static inline void skb_unset_mac_header(struct sk_buff *skb) 2579{ 2580 skb->mac_header = (typeof(skb->mac_header))~0U; 2581} 2582 2583static inline void skb_reset_mac_header(struct sk_buff *skb) 2584{ 2585 skb->mac_header = skb->data - skb->head; 2586} 2587 2588static inline void skb_set_mac_header(struct sk_buff *skb, const int offset) 2589{ 2590 skb_reset_mac_header(skb); 2591 skb->mac_header += offset; 2592} 2593 2594static inline void skb_pop_mac_header(struct sk_buff *skb) 2595{ 2596 skb->mac_header = skb->network_header; 2597} 2598 2599static inline void skb_probe_transport_header(struct sk_buff *skb) 2600{ 2601 struct flow_keys_basic keys; 2602 2603 if (skb_transport_header_was_set(skb)) 2604 return; 2605 2606 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys, 2607 NULL, 0, 0, 0, 0)) 2608 skb_set_transport_header(skb, keys.control.thoff); 2609} 2610 2611static inline void skb_mac_header_rebuild(struct sk_buff *skb) 2612{ 2613 if (skb_mac_header_was_set(skb)) { 2614 const unsigned char *old_mac = skb_mac_header(skb); 2615 2616 skb_set_mac_header(skb, -skb->mac_len); 2617 memmove(skb_mac_header(skb), old_mac, skb->mac_len); 2618 } 2619} 2620 2621static inline int skb_checksum_start_offset(const struct sk_buff *skb) 2622{ 2623 return skb->csum_start - skb_headroom(skb); 2624} 2625 2626static inline unsigned char *skb_checksum_start(const struct sk_buff *skb) 2627{ 2628 return skb->head + skb->csum_start; 2629} 2630 2631static inline int skb_transport_offset(const struct sk_buff *skb) 2632{ 2633 return skb_transport_header(skb) - skb->data; 2634} 2635 2636static inline u32 skb_network_header_len(const struct sk_buff *skb) 2637{ 2638 return skb->transport_header - skb->network_header; 2639} 2640 2641static inline u32 skb_inner_network_header_len(const struct sk_buff *skb) 2642{ 2643 return skb->inner_transport_header - skb->inner_network_header; 2644} 2645 2646static inline int skb_network_offset(const struct sk_buff *skb) 2647{ 2648 return skb_network_header(skb) - skb->data; 2649} 2650 2651static inline int skb_inner_network_offset(const struct sk_buff *skb) 2652{ 2653 return skb_inner_network_header(skb) - skb->data; 2654} 2655 2656static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len) 2657{ 2658 return pskb_may_pull(skb, skb_network_offset(skb) + len); 2659} 2660 2661/* 2662 * CPUs often take a performance hit when accessing unaligned memory 2663 * locations. The actual performance hit varies, it can be small if the 2664 * hardware handles it or large if we have to take an exception and fix it 2665 * in software. 2666 * 2667 * Since an ethernet header is 14 bytes network drivers often end up with 2668 * the IP header at an unaligned offset. The IP header can be aligned by 2669 * shifting the start of the packet by 2 bytes. Drivers should do this 2670 * with: 2671 * 2672 * skb_reserve(skb, NET_IP_ALIGN); 2673 * 2674 * The downside to this alignment of the IP header is that the DMA is now 2675 * unaligned. On some architectures the cost of an unaligned DMA is high 2676 * and this cost outweighs the gains made by aligning the IP header. 2677 * 2678 * Since this trade off varies between architectures, we allow NET_IP_ALIGN 2679 * to be overridden. 2680 */ 2681#ifndef NET_IP_ALIGN 2682#define NET_IP_ALIGN 2 2683#endif 2684 2685/* 2686 * The networking layer reserves some headroom in skb data (via 2687 * dev_alloc_skb). This is used to avoid having to reallocate skb data when 2688 * the header has to grow. In the default case, if the header has to grow 2689 * 32 bytes or less we avoid the reallocation. 2690 * 2691 * Unfortunately this headroom changes the DMA alignment of the resulting 2692 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive 2693 * on some architectures. An architecture can override this value, 2694 * perhaps setting it to a cacheline in size (since that will maintain 2695 * cacheline alignment of the DMA). It must be a power of 2. 2696 * 2697 * Various parts of the networking layer expect at least 32 bytes of 2698 * headroom, you should not reduce this. 2699 * 2700 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS) 2701 * to reduce average number of cache lines per packet. 2702 * get_rps_cpu() for example only access one 64 bytes aligned block : 2703 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8) 2704 */ 2705#ifndef NET_SKB_PAD 2706#define NET_SKB_PAD max(32, L1_CACHE_BYTES) 2707#endif 2708 2709int ___pskb_trim(struct sk_buff *skb, unsigned int len); 2710 2711static inline void __skb_set_length(struct sk_buff *skb, unsigned int len) 2712{ 2713 if (WARN_ON(skb_is_nonlinear(skb))) 2714 return; 2715 skb->len = len; 2716 skb_set_tail_pointer(skb, len); 2717} 2718 2719static inline void __skb_trim(struct sk_buff *skb, unsigned int len) 2720{ 2721 __skb_set_length(skb, len); 2722} 2723 2724void skb_trim(struct sk_buff *skb, unsigned int len); 2725 2726static inline int __pskb_trim(struct sk_buff *skb, unsigned int len) 2727{ 2728 if (skb->data_len) 2729 return ___pskb_trim(skb, len); 2730 __skb_trim(skb, len); 2731 return 0; 2732} 2733 2734static inline int pskb_trim(struct sk_buff *skb, unsigned int len) 2735{ 2736 return (len < skb->len) ? __pskb_trim(skb, len) : 0; 2737} 2738 2739/** 2740 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer 2741 * @skb: buffer to alter 2742 * @len: new length 2743 * 2744 * This is identical to pskb_trim except that the caller knows that 2745 * the skb is not cloned so we should never get an error due to out- 2746 * of-memory. 2747 */ 2748static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len) 2749{ 2750 int err = pskb_trim(skb, len); 2751 BUG_ON(err); 2752} 2753 2754static inline int __skb_grow(struct sk_buff *skb, unsigned int len) 2755{ 2756 unsigned int diff = len - skb->len; 2757 2758 if (skb_tailroom(skb) < diff) { 2759 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb), 2760 GFP_ATOMIC); 2761 if (ret) 2762 return ret; 2763 } 2764 __skb_set_length(skb, len); 2765 return 0; 2766} 2767 2768/** 2769 * skb_orphan - orphan a buffer 2770 * @skb: buffer to orphan 2771 * 2772 * If a buffer currently has an owner then we call the owner's 2773 * destructor function and make the @skb unowned. The buffer continues 2774 * to exist but is no longer charged to its former owner. 2775 */ 2776static inline void skb_orphan(struct sk_buff *skb) 2777{ 2778 if (skb->destructor) { 2779 skb->destructor(skb); 2780 skb->destructor = NULL; 2781 skb->sk = NULL; 2782 } else { 2783 BUG_ON(skb->sk); 2784 } 2785} 2786 2787/** 2788 * skb_orphan_frags - orphan the frags contained in a buffer 2789 * @skb: buffer to orphan frags from 2790 * @gfp_mask: allocation mask for replacement pages 2791 * 2792 * For each frag in the SKB which needs a destructor (i.e. has an 2793 * owner) create a copy of that frag and release the original 2794 * page by calling the destructor. 2795 */ 2796static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask) 2797{ 2798 if (likely(!skb_zcopy(skb))) 2799 return 0; 2800 if (!skb_zcopy_is_nouarg(skb) && 2801 skb_uarg(skb)->callback == msg_zerocopy_callback) 2802 return 0; 2803 return skb_copy_ubufs(skb, gfp_mask); 2804} 2805 2806/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */ 2807static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask) 2808{ 2809 if (likely(!skb_zcopy(skb))) 2810 return 0; 2811 return skb_copy_ubufs(skb, gfp_mask); 2812} 2813 2814/** 2815 * __skb_queue_purge - empty a list 2816 * @list: list to empty 2817 * 2818 * Delete all buffers on an &sk_buff list. Each buffer is removed from 2819 * the list and one reference dropped. This function does not take the 2820 * list lock and the caller must hold the relevant locks to use it. 2821 */ 2822static inline void __skb_queue_purge(struct sk_buff_head *list) 2823{ 2824 struct sk_buff *skb; 2825 while ((skb = __skb_dequeue(list)) != NULL) 2826 kfree_skb(skb); 2827} 2828void skb_queue_purge(struct sk_buff_head *list); 2829 2830unsigned int skb_rbtree_purge(struct rb_root *root); 2831 2832void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 2833 2834/** 2835 * netdev_alloc_frag - allocate a page fragment 2836 * @fragsz: fragment size 2837 * 2838 * Allocates a frag from a page for receive buffer. 2839 * Uses GFP_ATOMIC allocations. 2840 */ 2841static inline void *netdev_alloc_frag(unsigned int fragsz) 2842{ 2843 return __netdev_alloc_frag_align(fragsz, ~0u); 2844} 2845 2846static inline void *netdev_alloc_frag_align(unsigned int fragsz, 2847 unsigned int align) 2848{ 2849 WARN_ON_ONCE(!is_power_of_2(align)); 2850 return __netdev_alloc_frag_align(fragsz, -align); 2851} 2852 2853struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length, 2854 gfp_t gfp_mask); 2855 2856/** 2857 * netdev_alloc_skb - allocate an skbuff for rx on a specific device 2858 * @dev: network device to receive on 2859 * @length: length to allocate 2860 * 2861 * Allocate a new &sk_buff and assign it a usage count of one. The 2862 * buffer has unspecified headroom built in. Users should allocate 2863 * the headroom they think they need without accounting for the 2864 * built in space. The built in space is used for optimisations. 2865 * 2866 * %NULL is returned if there is no free memory. Although this function 2867 * allocates memory it can be called from an interrupt. 2868 */ 2869static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev, 2870 unsigned int length) 2871{ 2872 return __netdev_alloc_skb(dev, length, GFP_ATOMIC); 2873} 2874 2875/* legacy helper around __netdev_alloc_skb() */ 2876static inline struct sk_buff *__dev_alloc_skb(unsigned int length, 2877 gfp_t gfp_mask) 2878{ 2879 return __netdev_alloc_skb(NULL, length, gfp_mask); 2880} 2881 2882/* legacy helper around netdev_alloc_skb() */ 2883static inline struct sk_buff *dev_alloc_skb(unsigned int length) 2884{ 2885 return netdev_alloc_skb(NULL, length); 2886} 2887 2888 2889static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev, 2890 unsigned int length, gfp_t gfp) 2891{ 2892 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp); 2893 2894 if (NET_IP_ALIGN && skb) 2895 skb_reserve(skb, NET_IP_ALIGN); 2896 return skb; 2897} 2898 2899static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev, 2900 unsigned int length) 2901{ 2902 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC); 2903} 2904 2905static inline void skb_free_frag(void *addr) 2906{ 2907 page_frag_free(addr); 2908} 2909 2910void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask); 2911 2912static inline void *napi_alloc_frag(unsigned int fragsz) 2913{ 2914 return __napi_alloc_frag_align(fragsz, ~0u); 2915} 2916 2917static inline void *napi_alloc_frag_align(unsigned int fragsz, 2918 unsigned int align) 2919{ 2920 WARN_ON_ONCE(!is_power_of_2(align)); 2921 return __napi_alloc_frag_align(fragsz, -align); 2922} 2923 2924struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, 2925 unsigned int length, gfp_t gfp_mask); 2926static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi, 2927 unsigned int length) 2928{ 2929 return __napi_alloc_skb(napi, length, GFP_ATOMIC); 2930} 2931void napi_consume_skb(struct sk_buff *skb, int budget); 2932 2933void napi_skb_free_stolen_head(struct sk_buff *skb); 2934void __kfree_skb_defer(struct sk_buff *skb); 2935 2936/** 2937 * __dev_alloc_pages - allocate page for network Rx 2938 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2939 * @order: size of the allocation 2940 * 2941 * Allocate a new page. 2942 * 2943 * %NULL is returned if there is no free memory. 2944*/ 2945static inline struct page *__dev_alloc_pages(gfp_t gfp_mask, 2946 unsigned int order) 2947{ 2948 /* This piece of code contains several assumptions. 2949 * 1. This is for device Rx, therefor a cold page is preferred. 2950 * 2. The expectation is the user wants a compound page. 2951 * 3. If requesting a order 0 page it will not be compound 2952 * due to the check to see if order has a value in prep_new_page 2953 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to 2954 * code in gfp_to_alloc_flags that should be enforcing this. 2955 */ 2956 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC; 2957 2958 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order); 2959} 2960 2961static inline struct page *dev_alloc_pages(unsigned int order) 2962{ 2963 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order); 2964} 2965 2966/** 2967 * __dev_alloc_page - allocate a page for network Rx 2968 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx 2969 * 2970 * Allocate a new page. 2971 * 2972 * %NULL is returned if there is no free memory. 2973 */ 2974static inline struct page *__dev_alloc_page(gfp_t gfp_mask) 2975{ 2976 return __dev_alloc_pages(gfp_mask, 0); 2977} 2978 2979static inline struct page *dev_alloc_page(void) 2980{ 2981 return dev_alloc_pages(0); 2982} 2983 2984/** 2985 * dev_page_is_reusable - check whether a page can be reused for network Rx 2986 * @page: the page to test 2987 * 2988 * A page shouldn't be considered for reusing/recycling if it was allocated 2989 * under memory pressure or at a distant memory node. 2990 * 2991 * Returns false if this page should be returned to page allocator, true 2992 * otherwise. 2993 */ 2994static inline bool dev_page_is_reusable(const struct page *page) 2995{ 2996 return likely(page_to_nid(page) == numa_mem_id() && 2997 !page_is_pfmemalloc(page)); 2998} 2999 3000/** 3001 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page 3002 * @page: The page that was allocated from skb_alloc_page 3003 * @skb: The skb that may need pfmemalloc set 3004 */ 3005static inline void skb_propagate_pfmemalloc(const struct page *page, 3006 struct sk_buff *skb) 3007{ 3008 if (page_is_pfmemalloc(page)) 3009 skb->pfmemalloc = true; 3010} 3011 3012/** 3013 * skb_frag_off() - Returns the offset of a skb fragment 3014 * @frag: the paged fragment 3015 */ 3016static inline unsigned int skb_frag_off(const skb_frag_t *frag) 3017{ 3018 return frag->bv_offset; 3019} 3020 3021/** 3022 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta 3023 * @frag: skb fragment 3024 * @delta: value to add 3025 */ 3026static inline void skb_frag_off_add(skb_frag_t *frag, int delta) 3027{ 3028 frag->bv_offset += delta; 3029} 3030 3031/** 3032 * skb_frag_off_set() - Sets the offset of a skb fragment 3033 * @frag: skb fragment 3034 * @offset: offset of fragment 3035 */ 3036static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset) 3037{ 3038 frag->bv_offset = offset; 3039} 3040 3041/** 3042 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment 3043 * @fragto: skb fragment where offset is set 3044 * @fragfrom: skb fragment offset is copied from 3045 */ 3046static inline void skb_frag_off_copy(skb_frag_t *fragto, 3047 const skb_frag_t *fragfrom) 3048{ 3049 fragto->bv_offset = fragfrom->bv_offset; 3050} 3051 3052/** 3053 * skb_frag_page - retrieve the page referred to by a paged fragment 3054 * @frag: the paged fragment 3055 * 3056 * Returns the &struct page associated with @frag. 3057 */ 3058static inline struct page *skb_frag_page(const skb_frag_t *frag) 3059{ 3060 return frag->bv_page; 3061} 3062 3063/** 3064 * __skb_frag_ref - take an addition reference on a paged fragment. 3065 * @frag: the paged fragment 3066 * 3067 * Takes an additional reference on the paged fragment @frag. 3068 */ 3069static inline void __skb_frag_ref(skb_frag_t *frag) 3070{ 3071 get_page(skb_frag_page(frag)); 3072} 3073 3074/** 3075 * skb_frag_ref - take an addition reference on a paged fragment of an skb. 3076 * @skb: the buffer 3077 * @f: the fragment offset. 3078 * 3079 * Takes an additional reference on the @f'th paged fragment of @skb. 3080 */ 3081static inline void skb_frag_ref(struct sk_buff *skb, int f) 3082{ 3083 __skb_frag_ref(&skb_shinfo(skb)->frags[f]); 3084} 3085 3086/** 3087 * __skb_frag_unref - release a reference on a paged fragment. 3088 * @frag: the paged fragment 3089 * @recycle: recycle the page if allocated via page_pool 3090 * 3091 * Releases a reference on the paged fragment @frag 3092 * or recycles the page via the page_pool API. 3093 */ 3094static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle) 3095{ 3096 struct page *page = skb_frag_page(frag); 3097 3098#ifdef CONFIG_PAGE_POOL 3099 if (recycle && page_pool_return_skb_page(page)) 3100 return; 3101#endif 3102 put_page(page); 3103} 3104 3105/** 3106 * skb_frag_unref - release a reference on a paged fragment of an skb. 3107 * @skb: the buffer 3108 * @f: the fragment offset 3109 * 3110 * Releases a reference on the @f'th paged fragment of @skb. 3111 */ 3112static inline void skb_frag_unref(struct sk_buff *skb, int f) 3113{ 3114 __skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle); 3115} 3116 3117/** 3118 * skb_frag_address - gets the address of the data contained in a paged fragment 3119 * @frag: the paged fragment buffer 3120 * 3121 * Returns the address of the data within @frag. The page must already 3122 * be mapped. 3123 */ 3124static inline void *skb_frag_address(const skb_frag_t *frag) 3125{ 3126 return page_address(skb_frag_page(frag)) + skb_frag_off(frag); 3127} 3128 3129/** 3130 * skb_frag_address_safe - gets the address of the data contained in a paged fragment 3131 * @frag: the paged fragment buffer 3132 * 3133 * Returns the address of the data within @frag. Checks that the page 3134 * is mapped and returns %NULL otherwise. 3135 */ 3136static inline void *skb_frag_address_safe(const skb_frag_t *frag) 3137{ 3138 void *ptr = page_address(skb_frag_page(frag)); 3139 if (unlikely(!ptr)) 3140 return NULL; 3141 3142 return ptr + skb_frag_off(frag); 3143} 3144 3145/** 3146 * skb_frag_page_copy() - sets the page in a fragment from another fragment 3147 * @fragto: skb fragment where page is set 3148 * @fragfrom: skb fragment page is copied from 3149 */ 3150static inline void skb_frag_page_copy(skb_frag_t *fragto, 3151 const skb_frag_t *fragfrom) 3152{ 3153 fragto->bv_page = fragfrom->bv_page; 3154} 3155 3156/** 3157 * __skb_frag_set_page - sets the page contained in a paged fragment 3158 * @frag: the paged fragment 3159 * @page: the page to set 3160 * 3161 * Sets the fragment @frag to contain @page. 3162 */ 3163static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page) 3164{ 3165 frag->bv_page = page; 3166} 3167 3168/** 3169 * skb_frag_set_page - sets the page contained in a paged fragment of an skb 3170 * @skb: the buffer 3171 * @f: the fragment offset 3172 * @page: the page to set 3173 * 3174 * Sets the @f'th fragment of @skb to contain @page. 3175 */ 3176static inline void skb_frag_set_page(struct sk_buff *skb, int f, 3177 struct page *page) 3178{ 3179 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page); 3180} 3181 3182bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio); 3183 3184/** 3185 * skb_frag_dma_map - maps a paged fragment via the DMA API 3186 * @dev: the device to map the fragment to 3187 * @frag: the paged fragment to map 3188 * @offset: the offset within the fragment (starting at the 3189 * fragment's own offset) 3190 * @size: the number of bytes to map 3191 * @dir: the direction of the mapping (``PCI_DMA_*``) 3192 * 3193 * Maps the page associated with @frag to @device. 3194 */ 3195static inline dma_addr_t skb_frag_dma_map(struct device *dev, 3196 const skb_frag_t *frag, 3197 size_t offset, size_t size, 3198 enum dma_data_direction dir) 3199{ 3200 return dma_map_page(dev, skb_frag_page(frag), 3201 skb_frag_off(frag) + offset, size, dir); 3202} 3203 3204static inline struct sk_buff *pskb_copy(struct sk_buff *skb, 3205 gfp_t gfp_mask) 3206{ 3207 return __pskb_copy(skb, skb_headroom(skb), gfp_mask); 3208} 3209 3210 3211static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb, 3212 gfp_t gfp_mask) 3213{ 3214 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true); 3215} 3216 3217 3218/** 3219 * skb_clone_writable - is the header of a clone writable 3220 * @skb: buffer to check 3221 * @len: length up to which to write 3222 * 3223 * Returns true if modifying the header part of the cloned buffer 3224 * does not requires the data to be copied. 3225 */ 3226static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len) 3227{ 3228 return !skb_header_cloned(skb) && 3229 skb_headroom(skb) + len <= skb->hdr_len; 3230} 3231 3232static inline int skb_try_make_writable(struct sk_buff *skb, 3233 unsigned int write_len) 3234{ 3235 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) && 3236 pskb_expand_head(skb, 0, 0, GFP_ATOMIC); 3237} 3238 3239static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom, 3240 int cloned) 3241{ 3242 int delta = 0; 3243 3244 if (headroom > skb_headroom(skb)) 3245 delta = headroom - skb_headroom(skb); 3246 3247 if (delta || cloned) 3248 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0, 3249 GFP_ATOMIC); 3250 return 0; 3251} 3252 3253/** 3254 * skb_cow - copy header of skb when it is required 3255 * @skb: buffer to cow 3256 * @headroom: needed headroom 3257 * 3258 * If the skb passed lacks sufficient headroom or its data part 3259 * is shared, data is reallocated. If reallocation fails, an error 3260 * is returned and original skb is not changed. 3261 * 3262 * The result is skb with writable area skb->head...skb->tail 3263 * and at least @headroom of space at head. 3264 */ 3265static inline int skb_cow(struct sk_buff *skb, unsigned int headroom) 3266{ 3267 return __skb_cow(skb, headroom, skb_cloned(skb)); 3268} 3269 3270/** 3271 * skb_cow_head - skb_cow but only making the head writable 3272 * @skb: buffer to cow 3273 * @headroom: needed headroom 3274 * 3275 * This function is identical to skb_cow except that we replace the 3276 * skb_cloned check by skb_header_cloned. It should be used when 3277 * you only need to push on some header and do not need to modify 3278 * the data. 3279 */ 3280static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom) 3281{ 3282 return __skb_cow(skb, headroom, skb_header_cloned(skb)); 3283} 3284 3285/** 3286 * skb_padto - pad an skbuff up to a minimal size 3287 * @skb: buffer to pad 3288 * @len: minimal length 3289 * 3290 * Pads up a buffer to ensure the trailing bytes exist and are 3291 * blanked. If the buffer already contains sufficient data it 3292 * is untouched. Otherwise it is extended. Returns zero on 3293 * success. The skb is freed on error. 3294 */ 3295static inline int skb_padto(struct sk_buff *skb, unsigned int len) 3296{ 3297 unsigned int size = skb->len; 3298 if (likely(size >= len)) 3299 return 0; 3300 return skb_pad(skb, len - size); 3301} 3302 3303/** 3304 * __skb_put_padto - increase size and pad an skbuff up to a minimal size 3305 * @skb: buffer to pad 3306 * @len: minimal length 3307 * @free_on_error: free buffer on error 3308 * 3309 * Pads up a buffer to ensure the trailing bytes exist and are 3310 * blanked. If the buffer already contains sufficient data it 3311 * is untouched. Otherwise it is extended. Returns zero on 3312 * success. The skb is freed on error if @free_on_error is true. 3313 */ 3314static inline int __must_check __skb_put_padto(struct sk_buff *skb, 3315 unsigned int len, 3316 bool free_on_error) 3317{ 3318 unsigned int size = skb->len; 3319 3320 if (unlikely(size < len)) { 3321 len -= size; 3322 if (__skb_pad(skb, len, free_on_error)) 3323 return -ENOMEM; 3324 __skb_put(skb, len); 3325 } 3326 return 0; 3327} 3328 3329/** 3330 * skb_put_padto - increase size and pad an skbuff up to a minimal size 3331 * @skb: buffer to pad 3332 * @len: minimal length 3333 * 3334 * Pads up a buffer to ensure the trailing bytes exist and are 3335 * blanked. If the buffer already contains sufficient data it 3336 * is untouched. Otherwise it is extended. Returns zero on 3337 * success. The skb is freed on error. 3338 */ 3339static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len) 3340{ 3341 return __skb_put_padto(skb, len, true); 3342} 3343 3344static inline int skb_add_data(struct sk_buff *skb, 3345 struct iov_iter *from, int copy) 3346{ 3347 const int off = skb->len; 3348 3349 if (skb->ip_summed == CHECKSUM_NONE) { 3350 __wsum csum = 0; 3351 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy, 3352 &csum, from)) { 3353 skb->csum = csum_block_add(skb->csum, csum, off); 3354 return 0; 3355 } 3356 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from)) 3357 return 0; 3358 3359 __skb_trim(skb, off); 3360 return -EFAULT; 3361} 3362 3363static inline bool skb_can_coalesce(struct sk_buff *skb, int i, 3364 const struct page *page, int off) 3365{ 3366 if (skb_zcopy(skb)) 3367 return false; 3368 if (i) { 3369 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1]; 3370 3371 return page == skb_frag_page(frag) && 3372 off == skb_frag_off(frag) + skb_frag_size(frag); 3373 } 3374 return false; 3375} 3376 3377static inline int __skb_linearize(struct sk_buff *skb) 3378{ 3379 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM; 3380} 3381 3382/** 3383 * skb_linearize - convert paged skb to linear one 3384 * @skb: buffer to linarize 3385 * 3386 * If there is no free memory -ENOMEM is returned, otherwise zero 3387 * is returned and the old skb data released. 3388 */ 3389static inline int skb_linearize(struct sk_buff *skb) 3390{ 3391 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0; 3392} 3393 3394/** 3395 * skb_has_shared_frag - can any frag be overwritten 3396 * @skb: buffer to test 3397 * 3398 * Return true if the skb has at least one frag that might be modified 3399 * by an external entity (as in vmsplice()/sendfile()) 3400 */ 3401static inline bool skb_has_shared_frag(const struct sk_buff *skb) 3402{ 3403 return skb_is_nonlinear(skb) && 3404 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG; 3405} 3406 3407/** 3408 * skb_linearize_cow - make sure skb is linear and writable 3409 * @skb: buffer to process 3410 * 3411 * If there is no free memory -ENOMEM is returned, otherwise zero 3412 * is returned and the old skb data released. 3413 */ 3414static inline int skb_linearize_cow(struct sk_buff *skb) 3415{ 3416 return skb_is_nonlinear(skb) || skb_cloned(skb) ? 3417 __skb_linearize(skb) : 0; 3418} 3419 3420static __always_inline void 3421__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3422 unsigned int off) 3423{ 3424 if (skb->ip_summed == CHECKSUM_COMPLETE) 3425 skb->csum = csum_block_sub(skb->csum, 3426 csum_partial(start, len, 0), off); 3427 else if (skb->ip_summed == CHECKSUM_PARTIAL && 3428 skb_checksum_start_offset(skb) < 0) 3429 skb->ip_summed = CHECKSUM_NONE; 3430} 3431 3432/** 3433 * skb_postpull_rcsum - update checksum for received skb after pull 3434 * @skb: buffer to update 3435 * @start: start of data before pull 3436 * @len: length of data pulled 3437 * 3438 * After doing a pull on a received packet, you need to call this to 3439 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to 3440 * CHECKSUM_NONE so that it can be recomputed from scratch. 3441 */ 3442static inline void skb_postpull_rcsum(struct sk_buff *skb, 3443 const void *start, unsigned int len) 3444{ 3445 __skb_postpull_rcsum(skb, start, len, 0); 3446} 3447 3448static __always_inline void 3449__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len, 3450 unsigned int off) 3451{ 3452 if (skb->ip_summed == CHECKSUM_COMPLETE) 3453 skb->csum = csum_block_add(skb->csum, 3454 csum_partial(start, len, 0), off); 3455} 3456 3457/** 3458 * skb_postpush_rcsum - update checksum for received skb after push 3459 * @skb: buffer to update 3460 * @start: start of data after push 3461 * @len: length of data pushed 3462 * 3463 * After doing a push on a received packet, you need to call this to 3464 * update the CHECKSUM_COMPLETE checksum. 3465 */ 3466static inline void skb_postpush_rcsum(struct sk_buff *skb, 3467 const void *start, unsigned int len) 3468{ 3469 __skb_postpush_rcsum(skb, start, len, 0); 3470} 3471 3472void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len); 3473 3474/** 3475 * skb_push_rcsum - push skb and update receive checksum 3476 * @skb: buffer to update 3477 * @len: length of data pulled 3478 * 3479 * This function performs an skb_push on the packet and updates 3480 * the CHECKSUM_COMPLETE checksum. It should be used on 3481 * receive path processing instead of skb_push unless you know 3482 * that the checksum difference is zero (e.g., a valid IP header) 3483 * or you are setting ip_summed to CHECKSUM_NONE. 3484 */ 3485static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len) 3486{ 3487 skb_push(skb, len); 3488 skb_postpush_rcsum(skb, skb->data, len); 3489 return skb->data; 3490} 3491 3492int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len); 3493/** 3494 * pskb_trim_rcsum - trim received skb and update checksum 3495 * @skb: buffer to trim 3496 * @len: new length 3497 * 3498 * This is exactly the same as pskb_trim except that it ensures the 3499 * checksum of received packets are still valid after the operation. 3500 * It can change skb pointers. 3501 */ 3502 3503static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3504{ 3505 if (likely(len >= skb->len)) 3506 return 0; 3507 return pskb_trim_rcsum_slow(skb, len); 3508} 3509 3510static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len) 3511{ 3512 if (skb->ip_summed == CHECKSUM_COMPLETE) 3513 skb->ip_summed = CHECKSUM_NONE; 3514 __skb_trim(skb, len); 3515 return 0; 3516} 3517 3518static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len) 3519{ 3520 if (skb->ip_summed == CHECKSUM_COMPLETE) 3521 skb->ip_summed = CHECKSUM_NONE; 3522 return __skb_grow(skb, len); 3523} 3524 3525#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode) 3526#define skb_rb_first(root) rb_to_skb(rb_first(root)) 3527#define skb_rb_last(root) rb_to_skb(rb_last(root)) 3528#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode)) 3529#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode)) 3530 3531#define skb_queue_walk(queue, skb) \ 3532 for (skb = (queue)->next; \ 3533 skb != (struct sk_buff *)(queue); \ 3534 skb = skb->next) 3535 3536#define skb_queue_walk_safe(queue, skb, tmp) \ 3537 for (skb = (queue)->next, tmp = skb->next; \ 3538 skb != (struct sk_buff *)(queue); \ 3539 skb = tmp, tmp = skb->next) 3540 3541#define skb_queue_walk_from(queue, skb) \ 3542 for (; skb != (struct sk_buff *)(queue); \ 3543 skb = skb->next) 3544 3545#define skb_rbtree_walk(skb, root) \ 3546 for (skb = skb_rb_first(root); skb != NULL; \ 3547 skb = skb_rb_next(skb)) 3548 3549#define skb_rbtree_walk_from(skb) \ 3550 for (; skb != NULL; \ 3551 skb = skb_rb_next(skb)) 3552 3553#define skb_rbtree_walk_from_safe(skb, tmp) \ 3554 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \ 3555 skb = tmp) 3556 3557#define skb_queue_walk_from_safe(queue, skb, tmp) \ 3558 for (tmp = skb->next; \ 3559 skb != (struct sk_buff *)(queue); \ 3560 skb = tmp, tmp = skb->next) 3561 3562#define skb_queue_reverse_walk(queue, skb) \ 3563 for (skb = (queue)->prev; \ 3564 skb != (struct sk_buff *)(queue); \ 3565 skb = skb->prev) 3566 3567#define skb_queue_reverse_walk_safe(queue, skb, tmp) \ 3568 for (skb = (queue)->prev, tmp = skb->prev; \ 3569 skb != (struct sk_buff *)(queue); \ 3570 skb = tmp, tmp = skb->prev) 3571 3572#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \ 3573 for (tmp = skb->prev; \ 3574 skb != (struct sk_buff *)(queue); \ 3575 skb = tmp, tmp = skb->prev) 3576 3577static inline bool skb_has_frag_list(const struct sk_buff *skb) 3578{ 3579 return skb_shinfo(skb)->frag_list != NULL; 3580} 3581 3582static inline void skb_frag_list_init(struct sk_buff *skb) 3583{ 3584 skb_shinfo(skb)->frag_list = NULL; 3585} 3586 3587#define skb_walk_frags(skb, iter) \ 3588 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next) 3589 3590 3591int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue, 3592 int *err, long *timeo_p, 3593 const struct sk_buff *skb); 3594struct sk_buff *__skb_try_recv_from_queue(struct sock *sk, 3595 struct sk_buff_head *queue, 3596 unsigned int flags, 3597 int *off, int *err, 3598 struct sk_buff **last); 3599struct sk_buff *__skb_try_recv_datagram(struct sock *sk, 3600 struct sk_buff_head *queue, 3601 unsigned int flags, int *off, int *err, 3602 struct sk_buff **last); 3603struct sk_buff *__skb_recv_datagram(struct sock *sk, 3604 struct sk_buff_head *sk_queue, 3605 unsigned int flags, int *off, int *err); 3606struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, 3607 int *err); 3608__poll_t datagram_poll(struct file *file, struct socket *sock, 3609 struct poll_table_struct *wait); 3610int skb_copy_datagram_iter(const struct sk_buff *from, int offset, 3611 struct iov_iter *to, int size); 3612static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset, 3613 struct msghdr *msg, int size) 3614{ 3615 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size); 3616} 3617int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen, 3618 struct msghdr *msg); 3619int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset, 3620 struct iov_iter *to, int len, 3621 struct ahash_request *hash); 3622int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset, 3623 struct iov_iter *from, int len); 3624int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm); 3625void skb_free_datagram(struct sock *sk, struct sk_buff *skb); 3626void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len); 3627static inline void skb_free_datagram_locked(struct sock *sk, 3628 struct sk_buff *skb) 3629{ 3630 __skb_free_datagram_locked(sk, skb, 0); 3631} 3632int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags); 3633int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len); 3634int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len); 3635__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to, 3636 int len); 3637int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset, 3638 struct pipe_inode_info *pipe, unsigned int len, 3639 unsigned int flags); 3640int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset, 3641 int len); 3642int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len); 3643void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to); 3644unsigned int skb_zerocopy_headlen(const struct sk_buff *from); 3645int skb_zerocopy(struct sk_buff *to, struct sk_buff *from, 3646 int len, int hlen); 3647void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len); 3648int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen); 3649void skb_scrub_packet(struct sk_buff *skb, bool xnet); 3650bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu); 3651bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len); 3652struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features); 3653struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features, 3654 unsigned int offset); 3655struct sk_buff *skb_vlan_untag(struct sk_buff *skb); 3656int skb_ensure_writable(struct sk_buff *skb, int write_len); 3657int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci); 3658int skb_vlan_pop(struct sk_buff *skb); 3659int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci); 3660int skb_eth_pop(struct sk_buff *skb); 3661int skb_eth_push(struct sk_buff *skb, const unsigned char *dst, 3662 const unsigned char *src); 3663int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto, 3664 int mac_len, bool ethernet); 3665int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len, 3666 bool ethernet); 3667int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse); 3668int skb_mpls_dec_ttl(struct sk_buff *skb); 3669struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy, 3670 gfp_t gfp); 3671 3672static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len) 3673{ 3674 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT; 3675} 3676 3677static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len) 3678{ 3679 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT; 3680} 3681 3682struct skb_checksum_ops { 3683 __wsum (*update)(const void *mem, int len, __wsum wsum); 3684 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len); 3685}; 3686 3687extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly; 3688 3689__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len, 3690 __wsum csum, const struct skb_checksum_ops *ops); 3691__wsum skb_checksum(const struct sk_buff *skb, int offset, int len, 3692 __wsum csum); 3693 3694static inline void * __must_check 3695__skb_header_pointer(const struct sk_buff *skb, int offset, int len, 3696 const void *data, int hlen, void *buffer) 3697{ 3698 if (likely(hlen - offset >= len)) 3699 return (void *)data + offset; 3700 3701 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0)) 3702 return NULL; 3703 3704 return buffer; 3705} 3706 3707static inline void * __must_check 3708skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer) 3709{ 3710 return __skb_header_pointer(skb, offset, len, skb->data, 3711 skb_headlen(skb), buffer); 3712} 3713 3714/** 3715 * skb_needs_linearize - check if we need to linearize a given skb 3716 * depending on the given device features. 3717 * @skb: socket buffer to check 3718 * @features: net device features 3719 * 3720 * Returns true if either: 3721 * 1. skb has frag_list and the device doesn't support FRAGLIST, or 3722 * 2. skb is fragmented and the device does not support SG. 3723 */ 3724static inline bool skb_needs_linearize(struct sk_buff *skb, 3725 netdev_features_t features) 3726{ 3727 return skb_is_nonlinear(skb) && 3728 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) || 3729 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG))); 3730} 3731 3732static inline void skb_copy_from_linear_data(const struct sk_buff *skb, 3733 void *to, 3734 const unsigned int len) 3735{ 3736 memcpy(to, skb->data, len); 3737} 3738 3739static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb, 3740 const int offset, void *to, 3741 const unsigned int len) 3742{ 3743 memcpy(to, skb->data + offset, len); 3744} 3745 3746static inline void skb_copy_to_linear_data(struct sk_buff *skb, 3747 const void *from, 3748 const unsigned int len) 3749{ 3750 memcpy(skb->data, from, len); 3751} 3752 3753static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb, 3754 const int offset, 3755 const void *from, 3756 const unsigned int len) 3757{ 3758 memcpy(skb->data + offset, from, len); 3759} 3760 3761void skb_init(void); 3762 3763static inline ktime_t skb_get_ktime(const struct sk_buff *skb) 3764{ 3765 return skb->tstamp; 3766} 3767 3768/** 3769 * skb_get_timestamp - get timestamp from a skb 3770 * @skb: skb to get stamp from 3771 * @stamp: pointer to struct __kernel_old_timeval to store stamp in 3772 * 3773 * Timestamps are stored in the skb as offsets to a base timestamp. 3774 * This function converts the offset back to a struct timeval and stores 3775 * it in stamp. 3776 */ 3777static inline void skb_get_timestamp(const struct sk_buff *skb, 3778 struct __kernel_old_timeval *stamp) 3779{ 3780 *stamp = ns_to_kernel_old_timeval(skb->tstamp); 3781} 3782 3783static inline void skb_get_new_timestamp(const struct sk_buff *skb, 3784 struct __kernel_sock_timeval *stamp) 3785{ 3786 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3787 3788 stamp->tv_sec = ts.tv_sec; 3789 stamp->tv_usec = ts.tv_nsec / 1000; 3790} 3791 3792static inline void skb_get_timestampns(const struct sk_buff *skb, 3793 struct __kernel_old_timespec *stamp) 3794{ 3795 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3796 3797 stamp->tv_sec = ts.tv_sec; 3798 stamp->tv_nsec = ts.tv_nsec; 3799} 3800 3801static inline void skb_get_new_timestampns(const struct sk_buff *skb, 3802 struct __kernel_timespec *stamp) 3803{ 3804 struct timespec64 ts = ktime_to_timespec64(skb->tstamp); 3805 3806 stamp->tv_sec = ts.tv_sec; 3807 stamp->tv_nsec = ts.tv_nsec; 3808} 3809 3810static inline void __net_timestamp(struct sk_buff *skb) 3811{ 3812 skb->tstamp = ktime_get_real(); 3813} 3814 3815static inline ktime_t net_timedelta(ktime_t t) 3816{ 3817 return ktime_sub(ktime_get_real(), t); 3818} 3819 3820static inline ktime_t net_invalid_timestamp(void) 3821{ 3822 return 0; 3823} 3824 3825static inline u8 skb_metadata_len(const struct sk_buff *skb) 3826{ 3827 return skb_shinfo(skb)->meta_len; 3828} 3829 3830static inline void *skb_metadata_end(const struct sk_buff *skb) 3831{ 3832 return skb_mac_header(skb); 3833} 3834 3835static inline bool __skb_metadata_differs(const struct sk_buff *skb_a, 3836 const struct sk_buff *skb_b, 3837 u8 meta_len) 3838{ 3839 const void *a = skb_metadata_end(skb_a); 3840 const void *b = skb_metadata_end(skb_b); 3841 /* Using more efficient varaiant than plain call to memcmp(). */ 3842#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64 3843 u64 diffs = 0; 3844 3845 switch (meta_len) { 3846#define __it(x, op) (x -= sizeof(u##op)) 3847#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op)) 3848 case 32: diffs |= __it_diff(a, b, 64); 3849 fallthrough; 3850 case 24: diffs |= __it_diff(a, b, 64); 3851 fallthrough; 3852 case 16: diffs |= __it_diff(a, b, 64); 3853 fallthrough; 3854 case 8: diffs |= __it_diff(a, b, 64); 3855 break; 3856 case 28: diffs |= __it_diff(a, b, 64); 3857 fallthrough; 3858 case 20: diffs |= __it_diff(a, b, 64); 3859 fallthrough; 3860 case 12: diffs |= __it_diff(a, b, 64); 3861 fallthrough; 3862 case 4: diffs |= __it_diff(a, b, 32); 3863 break; 3864 } 3865 return diffs; 3866#else 3867 return memcmp(a - meta_len, b - meta_len, meta_len); 3868#endif 3869} 3870 3871static inline bool skb_metadata_differs(const struct sk_buff *skb_a, 3872 const struct sk_buff *skb_b) 3873{ 3874 u8 len_a = skb_metadata_len(skb_a); 3875 u8 len_b = skb_metadata_len(skb_b); 3876 3877 if (!(len_a | len_b)) 3878 return false; 3879 3880 return len_a != len_b ? 3881 true : __skb_metadata_differs(skb_a, skb_b, len_a); 3882} 3883 3884static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len) 3885{ 3886 skb_shinfo(skb)->meta_len = meta_len; 3887} 3888 3889static inline void skb_metadata_clear(struct sk_buff *skb) 3890{ 3891 skb_metadata_set(skb, 0); 3892} 3893 3894struct sk_buff *skb_clone_sk(struct sk_buff *skb); 3895 3896#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING 3897 3898void skb_clone_tx_timestamp(struct sk_buff *skb); 3899bool skb_defer_rx_timestamp(struct sk_buff *skb); 3900 3901#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */ 3902 3903static inline void skb_clone_tx_timestamp(struct sk_buff *skb) 3904{ 3905} 3906 3907static inline bool skb_defer_rx_timestamp(struct sk_buff *skb) 3908{ 3909 return false; 3910} 3911 3912#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */ 3913 3914/** 3915 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps 3916 * 3917 * PHY drivers may accept clones of transmitted packets for 3918 * timestamping via their phy_driver.txtstamp method. These drivers 3919 * must call this function to return the skb back to the stack with a 3920 * timestamp. 3921 * 3922 * @skb: clone of the original outgoing packet 3923 * @hwtstamps: hardware time stamps 3924 * 3925 */ 3926void skb_complete_tx_timestamp(struct sk_buff *skb, 3927 struct skb_shared_hwtstamps *hwtstamps); 3928 3929void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb, 3930 struct skb_shared_hwtstamps *hwtstamps, 3931 struct sock *sk, int tstype); 3932 3933/** 3934 * skb_tstamp_tx - queue clone of skb with send time stamps 3935 * @orig_skb: the original outgoing packet 3936 * @hwtstamps: hardware time stamps, may be NULL if not available 3937 * 3938 * If the skb has a socket associated, then this function clones the 3939 * skb (thus sharing the actual data and optional structures), stores 3940 * the optional hardware time stamping information (if non NULL) or 3941 * generates a software time stamp (otherwise), then queues the clone 3942 * to the error queue of the socket. Errors are silently ignored. 3943 */ 3944void skb_tstamp_tx(struct sk_buff *orig_skb, 3945 struct skb_shared_hwtstamps *hwtstamps); 3946 3947/** 3948 * skb_tx_timestamp() - Driver hook for transmit timestamping 3949 * 3950 * Ethernet MAC Drivers should call this function in their hard_xmit() 3951 * function immediately before giving the sk_buff to the MAC hardware. 3952 * 3953 * Specifically, one should make absolutely sure that this function is 3954 * called before TX completion of this packet can trigger. Otherwise 3955 * the packet could potentially already be freed. 3956 * 3957 * @skb: A socket buffer. 3958 */ 3959static inline void skb_tx_timestamp(struct sk_buff *skb) 3960{ 3961 skb_clone_tx_timestamp(skb); 3962 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP) 3963 skb_tstamp_tx(skb, NULL); 3964} 3965 3966/** 3967 * skb_complete_wifi_ack - deliver skb with wifi status 3968 * 3969 * @skb: the original outgoing packet 3970 * @acked: ack status 3971 * 3972 */ 3973void skb_complete_wifi_ack(struct sk_buff *skb, bool acked); 3974 3975__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len); 3976__sum16 __skb_checksum_complete(struct sk_buff *skb); 3977 3978static inline int skb_csum_unnecessary(const struct sk_buff *skb) 3979{ 3980 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) || 3981 skb->csum_valid || 3982 (skb->ip_summed == CHECKSUM_PARTIAL && 3983 skb_checksum_start_offset(skb) >= 0)); 3984} 3985 3986/** 3987 * skb_checksum_complete - Calculate checksum of an entire packet 3988 * @skb: packet to process 3989 * 3990 * This function calculates the checksum over the entire packet plus 3991 * the value of skb->csum. The latter can be used to supply the 3992 * checksum of a pseudo header as used by TCP/UDP. It returns the 3993 * checksum. 3994 * 3995 * For protocols that contain complete checksums such as ICMP/TCP/UDP, 3996 * this function can be used to verify that checksum on received 3997 * packets. In that case the function should return zero if the 3998 * checksum is correct. In particular, this function will return zero 3999 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the 4000 * hardware has already verified the correctness of the checksum. 4001 */ 4002static inline __sum16 skb_checksum_complete(struct sk_buff *skb) 4003{ 4004 return skb_csum_unnecessary(skb) ? 4005 0 : __skb_checksum_complete(skb); 4006} 4007 4008static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb) 4009{ 4010 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4011 if (skb->csum_level == 0) 4012 skb->ip_summed = CHECKSUM_NONE; 4013 else 4014 skb->csum_level--; 4015 } 4016} 4017 4018static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb) 4019{ 4020 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4021 if (skb->csum_level < SKB_MAX_CSUM_LEVEL) 4022 skb->csum_level++; 4023 } else if (skb->ip_summed == CHECKSUM_NONE) { 4024 skb->ip_summed = CHECKSUM_UNNECESSARY; 4025 skb->csum_level = 0; 4026 } 4027} 4028 4029static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb) 4030{ 4031 if (skb->ip_summed == CHECKSUM_UNNECESSARY) { 4032 skb->ip_summed = CHECKSUM_NONE; 4033 skb->csum_level = 0; 4034 } 4035} 4036 4037/* Check if we need to perform checksum complete validation. 4038 * 4039 * Returns true if checksum complete is needed, false otherwise 4040 * (either checksum is unnecessary or zero checksum is allowed). 4041 */ 4042static inline bool __skb_checksum_validate_needed(struct sk_buff *skb, 4043 bool zero_okay, 4044 __sum16 check) 4045{ 4046 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) { 4047 skb->csum_valid = 1; 4048 __skb_decr_checksum_unnecessary(skb); 4049 return false; 4050 } 4051 4052 return true; 4053} 4054 4055/* For small packets <= CHECKSUM_BREAK perform checksum complete directly 4056 * in checksum_init. 4057 */ 4058#define CHECKSUM_BREAK 76 4059 4060/* Unset checksum-complete 4061 * 4062 * Unset checksum complete can be done when packet is being modified 4063 * (uncompressed for instance) and checksum-complete value is 4064 * invalidated. 4065 */ 4066static inline void skb_checksum_complete_unset(struct sk_buff *skb) 4067{ 4068 if (skb->ip_summed == CHECKSUM_COMPLETE) 4069 skb->ip_summed = CHECKSUM_NONE; 4070} 4071 4072/* Validate (init) checksum based on checksum complete. 4073 * 4074 * Return values: 4075 * 0: checksum is validated or try to in skb_checksum_complete. In the latter 4076 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo 4077 * checksum is stored in skb->csum for use in __skb_checksum_complete 4078 * non-zero: value of invalid checksum 4079 * 4080 */ 4081static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb, 4082 bool complete, 4083 __wsum psum) 4084{ 4085 if (skb->ip_summed == CHECKSUM_COMPLETE) { 4086 if (!csum_fold(csum_add(psum, skb->csum))) { 4087 skb->csum_valid = 1; 4088 return 0; 4089 } 4090 } 4091 4092 skb->csum = psum; 4093 4094 if (complete || skb->len <= CHECKSUM_BREAK) { 4095 __sum16 csum; 4096 4097 csum = __skb_checksum_complete(skb); 4098 skb->csum_valid = !csum; 4099 return csum; 4100 } 4101 4102 return 0; 4103} 4104 4105static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto) 4106{ 4107 return 0; 4108} 4109 4110/* Perform checksum validate (init). Note that this is a macro since we only 4111 * want to calculate the pseudo header which is an input function if necessary. 4112 * First we try to validate without any computation (checksum unnecessary) and 4113 * then calculate based on checksum complete calling the function to compute 4114 * pseudo header. 4115 * 4116 * Return values: 4117 * 0: checksum is validated or try to in skb_checksum_complete 4118 * non-zero: value of invalid checksum 4119 */ 4120#define __skb_checksum_validate(skb, proto, complete, \ 4121 zero_okay, check, compute_pseudo) \ 4122({ \ 4123 __sum16 __ret = 0; \ 4124 skb->csum_valid = 0; \ 4125 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \ 4126 __ret = __skb_checksum_validate_complete(skb, \ 4127 complete, compute_pseudo(skb, proto)); \ 4128 __ret; \ 4129}) 4130 4131#define skb_checksum_init(skb, proto, compute_pseudo) \ 4132 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo) 4133 4134#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \ 4135 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo) 4136 4137#define skb_checksum_validate(skb, proto, compute_pseudo) \ 4138 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo) 4139 4140#define skb_checksum_validate_zero_check(skb, proto, check, \ 4141 compute_pseudo) \ 4142 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo) 4143 4144#define skb_checksum_simple_validate(skb) \ 4145 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo) 4146 4147static inline bool __skb_checksum_convert_check(struct sk_buff *skb) 4148{ 4149 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid); 4150} 4151 4152static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo) 4153{ 4154 skb->csum = ~pseudo; 4155 skb->ip_summed = CHECKSUM_COMPLETE; 4156} 4157 4158#define skb_checksum_try_convert(skb, proto, compute_pseudo) \ 4159do { \ 4160 if (__skb_checksum_convert_check(skb)) \ 4161 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \ 4162} while (0) 4163 4164static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr, 4165 u16 start, u16 offset) 4166{ 4167 skb->ip_summed = CHECKSUM_PARTIAL; 4168 skb->csum_start = ((unsigned char *)ptr + start) - skb->head; 4169 skb->csum_offset = offset - start; 4170} 4171 4172/* Update skbuf and packet to reflect the remote checksum offload operation. 4173 * When called, ptr indicates the starting point for skb->csum when 4174 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete 4175 * here, skb_postpull_rcsum is done so skb->csum start is ptr. 4176 */ 4177static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr, 4178 int start, int offset, bool nopartial) 4179{ 4180 __wsum delta; 4181 4182 if (!nopartial) { 4183 skb_remcsum_adjust_partial(skb, ptr, start, offset); 4184 return; 4185 } 4186 4187 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) { 4188 __skb_checksum_complete(skb); 4189 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data); 4190 } 4191 4192 delta = remcsum_adjust(ptr, skb->csum, start, offset); 4193 4194 /* Adjust skb->csum since we changed the packet */ 4195 skb->csum = csum_add(skb->csum, delta); 4196} 4197 4198static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb) 4199{ 4200#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4201 return (void *)(skb->_nfct & NFCT_PTRMASK); 4202#else 4203 return NULL; 4204#endif 4205} 4206 4207static inline unsigned long skb_get_nfct(const struct sk_buff *skb) 4208{ 4209#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4210 return skb->_nfct; 4211#else 4212 return 0UL; 4213#endif 4214} 4215 4216static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct) 4217{ 4218#if IS_ENABLED(CONFIG_NF_CONNTRACK) 4219 skb->_nfct = nfct; 4220#endif 4221} 4222 4223#ifdef CONFIG_SKB_EXTENSIONS 4224enum skb_ext_id { 4225#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER) 4226 SKB_EXT_BRIDGE_NF, 4227#endif 4228#ifdef CONFIG_XFRM 4229 SKB_EXT_SEC_PATH, 4230#endif 4231#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT) 4232 TC_SKB_EXT, 4233#endif 4234#if IS_ENABLED(CONFIG_MPTCP) 4235 SKB_EXT_MPTCP, 4236#endif 4237 SKB_EXT_NUM, /* must be last */ 4238}; 4239 4240/** 4241 * struct skb_ext - sk_buff extensions 4242 * @refcnt: 1 on allocation, deallocated on 0 4243 * @offset: offset to add to @data to obtain extension address 4244 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units 4245 * @data: start of extension data, variable sized 4246 * 4247 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows 4248 * to use 'u8' types while allowing up to 2kb worth of extension data. 4249 */ 4250struct skb_ext { 4251 refcount_t refcnt; 4252 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */ 4253 u8 chunks; /* same */ 4254 char data[] __aligned(8); 4255}; 4256 4257struct skb_ext *__skb_ext_alloc(gfp_t flags); 4258void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id, 4259 struct skb_ext *ext); 4260void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id); 4261void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id); 4262void __skb_ext_put(struct skb_ext *ext); 4263 4264static inline void skb_ext_put(struct sk_buff *skb) 4265{ 4266 if (skb->active_extensions) 4267 __skb_ext_put(skb->extensions); 4268} 4269 4270static inline void __skb_ext_copy(struct sk_buff *dst, 4271 const struct sk_buff *src) 4272{ 4273 dst->active_extensions = src->active_extensions; 4274 4275 if (src->active_extensions) { 4276 struct skb_ext *ext = src->extensions; 4277 4278 refcount_inc(&ext->refcnt); 4279 dst->extensions = ext; 4280 } 4281} 4282 4283static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src) 4284{ 4285 skb_ext_put(dst); 4286 __skb_ext_copy(dst, src); 4287} 4288 4289static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i) 4290{ 4291 return !!ext->offset[i]; 4292} 4293 4294static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id) 4295{ 4296 return skb->active_extensions & (1 << id); 4297} 4298 4299static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id) 4300{ 4301 if (skb_ext_exist(skb, id)) 4302 __skb_ext_del(skb, id); 4303} 4304 4305static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id) 4306{ 4307 if (skb_ext_exist(skb, id)) { 4308 struct skb_ext *ext = skb->extensions; 4309 4310 return (void *)ext + (ext->offset[id] << 3); 4311 } 4312 4313 return NULL; 4314} 4315 4316static inline void skb_ext_reset(struct sk_buff *skb) 4317{ 4318 if (unlikely(skb->active_extensions)) { 4319 __skb_ext_put(skb->extensions); 4320 skb->active_extensions = 0; 4321 } 4322} 4323 4324static inline bool skb_has_extensions(struct sk_buff *skb) 4325{ 4326 return unlikely(skb->active_extensions); 4327} 4328#else 4329static inline void skb_ext_put(struct sk_buff *skb) {} 4330static inline void skb_ext_reset(struct sk_buff *skb) {} 4331static inline void skb_ext_del(struct sk_buff *skb, int unused) {} 4332static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {} 4333static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {} 4334static inline bool skb_has_extensions(struct sk_buff *skb) { return false; } 4335#endif /* CONFIG_SKB_EXTENSIONS */ 4336 4337static inline void nf_reset_ct(struct sk_buff *skb) 4338{ 4339#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4340 nf_conntrack_put(skb_nfct(skb)); 4341 skb->_nfct = 0; 4342#endif 4343} 4344 4345static inline void nf_reset_trace(struct sk_buff *skb) 4346{ 4347#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4348 skb->nf_trace = 0; 4349#endif 4350} 4351 4352static inline void ipvs_reset(struct sk_buff *skb) 4353{ 4354#if IS_ENABLED(CONFIG_IP_VS) 4355 skb->ipvs_property = 0; 4356#endif 4357} 4358 4359/* Note: This doesn't put any conntrack info in dst. */ 4360static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src, 4361 bool copy) 4362{ 4363#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4364 dst->_nfct = src->_nfct; 4365 nf_conntrack_get(skb_nfct(src)); 4366#endif 4367#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES) 4368 if (copy) 4369 dst->nf_trace = src->nf_trace; 4370#endif 4371} 4372 4373static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src) 4374{ 4375#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE) 4376 nf_conntrack_put(skb_nfct(dst)); 4377#endif 4378 __nf_copy(dst, src, true); 4379} 4380 4381#ifdef CONFIG_NETWORK_SECMARK 4382static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4383{ 4384 to->secmark = from->secmark; 4385} 4386 4387static inline void skb_init_secmark(struct sk_buff *skb) 4388{ 4389 skb->secmark = 0; 4390} 4391#else 4392static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from) 4393{ } 4394 4395static inline void skb_init_secmark(struct sk_buff *skb) 4396{ } 4397#endif 4398 4399static inline int secpath_exists(const struct sk_buff *skb) 4400{ 4401#ifdef CONFIG_XFRM 4402 return skb_ext_exist(skb, SKB_EXT_SEC_PATH); 4403#else 4404 return 0; 4405#endif 4406} 4407 4408static inline bool skb_irq_freeable(const struct sk_buff *skb) 4409{ 4410 return !skb->destructor && 4411 !secpath_exists(skb) && 4412 !skb_nfct(skb) && 4413 !skb->_skb_refdst && 4414 !skb_has_frag_list(skb); 4415} 4416 4417static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping) 4418{ 4419 skb->queue_mapping = queue_mapping; 4420} 4421 4422static inline u16 skb_get_queue_mapping(const struct sk_buff *skb) 4423{ 4424 return skb->queue_mapping; 4425} 4426 4427static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from) 4428{ 4429 to->queue_mapping = from->queue_mapping; 4430} 4431 4432static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue) 4433{ 4434 skb->queue_mapping = rx_queue + 1; 4435} 4436 4437static inline u16 skb_get_rx_queue(const struct sk_buff *skb) 4438{ 4439 return skb->queue_mapping - 1; 4440} 4441 4442static inline bool skb_rx_queue_recorded(const struct sk_buff *skb) 4443{ 4444 return skb->queue_mapping != 0; 4445} 4446 4447static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val) 4448{ 4449 skb->dst_pending_confirm = val; 4450} 4451 4452static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb) 4453{ 4454 return skb->dst_pending_confirm != 0; 4455} 4456 4457static inline struct sec_path *skb_sec_path(const struct sk_buff *skb) 4458{ 4459#ifdef CONFIG_XFRM 4460 return skb_ext_find(skb, SKB_EXT_SEC_PATH); 4461#else 4462 return NULL; 4463#endif 4464} 4465 4466/* Keeps track of mac header offset relative to skb->head. 4467 * It is useful for TSO of Tunneling protocol. e.g. GRE. 4468 * For non-tunnel skb it points to skb_mac_header() and for 4469 * tunnel skb it points to outer mac header. 4470 * Keeps track of level of encapsulation of network headers. 4471 */ 4472struct skb_gso_cb { 4473 union { 4474 int mac_offset; 4475 int data_offset; 4476 }; 4477 int encap_level; 4478 __wsum csum; 4479 __u16 csum_start; 4480}; 4481#define SKB_GSO_CB_OFFSET 32 4482#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET)) 4483 4484static inline int skb_tnl_header_len(const struct sk_buff *inner_skb) 4485{ 4486 return (skb_mac_header(inner_skb) - inner_skb->head) - 4487 SKB_GSO_CB(inner_skb)->mac_offset; 4488} 4489 4490static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra) 4491{ 4492 int new_headroom, headroom; 4493 int ret; 4494 4495 headroom = skb_headroom(skb); 4496 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC); 4497 if (ret) 4498 return ret; 4499 4500 new_headroom = skb_headroom(skb); 4501 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom); 4502 return 0; 4503} 4504 4505static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res) 4506{ 4507 /* Do not update partial checksums if remote checksum is enabled. */ 4508 if (skb->remcsum_offload) 4509 return; 4510 4511 SKB_GSO_CB(skb)->csum = res; 4512 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head; 4513} 4514 4515/* Compute the checksum for a gso segment. First compute the checksum value 4516 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and 4517 * then add in skb->csum (checksum from csum_start to end of packet). 4518 * skb->csum and csum_start are then updated to reflect the checksum of the 4519 * resultant packet starting from the transport header-- the resultant checksum 4520 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo 4521 * header. 4522 */ 4523static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res) 4524{ 4525 unsigned char *csum_start = skb_transport_header(skb); 4526 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start; 4527 __wsum partial = SKB_GSO_CB(skb)->csum; 4528 4529 SKB_GSO_CB(skb)->csum = res; 4530 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head; 4531 4532 return csum_fold(csum_partial(csum_start, plen, partial)); 4533} 4534 4535static inline bool skb_is_gso(const struct sk_buff *skb) 4536{ 4537 return skb_shinfo(skb)->gso_size; 4538} 4539 4540/* Note: Should be called only if skb_is_gso(skb) is true */ 4541static inline bool skb_is_gso_v6(const struct sk_buff *skb) 4542{ 4543 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6; 4544} 4545 4546/* Note: Should be called only if skb_is_gso(skb) is true */ 4547static inline bool skb_is_gso_sctp(const struct sk_buff *skb) 4548{ 4549 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP; 4550} 4551 4552/* Note: Should be called only if skb_is_gso(skb) is true */ 4553static inline bool skb_is_gso_tcp(const struct sk_buff *skb) 4554{ 4555 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6); 4556} 4557 4558static inline void skb_gso_reset(struct sk_buff *skb) 4559{ 4560 skb_shinfo(skb)->gso_size = 0; 4561 skb_shinfo(skb)->gso_segs = 0; 4562 skb_shinfo(skb)->gso_type = 0; 4563} 4564 4565static inline void skb_increase_gso_size(struct skb_shared_info *shinfo, 4566 u16 increment) 4567{ 4568 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4569 return; 4570 shinfo->gso_size += increment; 4571} 4572 4573static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo, 4574 u16 decrement) 4575{ 4576 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS)) 4577 return; 4578 shinfo->gso_size -= decrement; 4579} 4580 4581void __skb_warn_lro_forwarding(const struct sk_buff *skb); 4582 4583static inline bool skb_warn_if_lro(const struct sk_buff *skb) 4584{ 4585 /* LRO sets gso_size but not gso_type, whereas if GSO is really 4586 * wanted then gso_type will be set. */ 4587 const struct skb_shared_info *shinfo = skb_shinfo(skb); 4588 4589 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 && 4590 unlikely(shinfo->gso_type == 0)) { 4591 __skb_warn_lro_forwarding(skb); 4592 return true; 4593 } 4594 return false; 4595} 4596 4597static inline void skb_forward_csum(struct sk_buff *skb) 4598{ 4599 /* Unfortunately we don't support this one. Any brave souls? */ 4600 if (skb->ip_summed == CHECKSUM_COMPLETE) 4601 skb->ip_summed = CHECKSUM_NONE; 4602} 4603 4604/** 4605 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE 4606 * @skb: skb to check 4607 * 4608 * fresh skbs have their ip_summed set to CHECKSUM_NONE. 4609 * Instead of forcing ip_summed to CHECKSUM_NONE, we can 4610 * use this helper, to document places where we make this assertion. 4611 */ 4612static inline void skb_checksum_none_assert(const struct sk_buff *skb) 4613{ 4614#ifdef DEBUG 4615 BUG_ON(skb->ip_summed != CHECKSUM_NONE); 4616#endif 4617} 4618 4619bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off); 4620 4621int skb_checksum_setup(struct sk_buff *skb, bool recalculate); 4622struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb, 4623 unsigned int transport_len, 4624 __sum16(*skb_chkf)(struct sk_buff *skb)); 4625 4626/** 4627 * skb_head_is_locked - Determine if the skb->head is locked down 4628 * @skb: skb to check 4629 * 4630 * The head on skbs build around a head frag can be removed if they are 4631 * not cloned. This function returns true if the skb head is locked down 4632 * due to either being allocated via kmalloc, or by being a clone with 4633 * multiple references to the head. 4634 */ 4635static inline bool skb_head_is_locked(const struct sk_buff *skb) 4636{ 4637 return !skb->head_frag || skb_cloned(skb); 4638} 4639 4640/* Local Checksum Offload. 4641 * Compute outer checksum based on the assumption that the 4642 * inner checksum will be offloaded later. 4643 * See Documentation/networking/checksum-offloads.rst for 4644 * explanation of how this works. 4645 * Fill in outer checksum adjustment (e.g. with sum of outer 4646 * pseudo-header) before calling. 4647 * Also ensure that inner checksum is in linear data area. 4648 */ 4649static inline __wsum lco_csum(struct sk_buff *skb) 4650{ 4651 unsigned char *csum_start = skb_checksum_start(skb); 4652 unsigned char *l4_hdr = skb_transport_header(skb); 4653 __wsum partial; 4654 4655 /* Start with complement of inner checksum adjustment */ 4656 partial = ~csum_unfold(*(__force __sum16 *)(csum_start + 4657 skb->csum_offset)); 4658 4659 /* Add in checksum of our headers (incl. outer checksum 4660 * adjustment filled in by caller) and return result. 4661 */ 4662 return csum_partial(l4_hdr, csum_start - l4_hdr, partial); 4663} 4664 4665static inline bool skb_is_redirected(const struct sk_buff *skb) 4666{ 4667#ifdef CONFIG_NET_REDIRECT 4668 return skb->redirected; 4669#else 4670 return false; 4671#endif 4672} 4673 4674static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress) 4675{ 4676#ifdef CONFIG_NET_REDIRECT 4677 skb->redirected = 1; 4678 skb->from_ingress = from_ingress; 4679 if (skb->from_ingress) 4680 skb->tstamp = 0; 4681#endif 4682} 4683 4684static inline void skb_reset_redirect(struct sk_buff *skb) 4685{ 4686#ifdef CONFIG_NET_REDIRECT 4687 skb->redirected = 0; 4688#endif 4689} 4690 4691static inline bool skb_csum_is_sctp(struct sk_buff *skb) 4692{ 4693 return skb->csum_not_inet; 4694} 4695 4696static inline void skb_set_kcov_handle(struct sk_buff *skb, 4697 const u64 kcov_handle) 4698{ 4699#ifdef CONFIG_KCOV 4700 skb->kcov_handle = kcov_handle; 4701#endif 4702} 4703 4704static inline u64 skb_get_kcov_handle(struct sk_buff *skb) 4705{ 4706#ifdef CONFIG_KCOV 4707 return skb->kcov_handle; 4708#else 4709 return 0; 4710#endif 4711} 4712 4713#ifdef CONFIG_PAGE_POOL 4714static inline void skb_mark_for_recycle(struct sk_buff *skb, struct page *page, 4715 struct page_pool *pp) 4716{ 4717 skb->pp_recycle = 1; 4718 page_pool_store_mem_info(page, pp); 4719} 4720#endif 4721 4722static inline bool skb_pp_recycle(struct sk_buff *skb, void *data) 4723{ 4724 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle) 4725 return false; 4726 return page_pool_return_skb_page(virt_to_page(data)); 4727} 4728 4729#endif /* __KERNEL__ */ 4730#endif /* _LINUX_SKBUFF_H */