Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Macros for manipulating and testing page->flags
4 */
5
6#ifndef PAGE_FLAGS_H
7#define PAGE_FLAGS_H
8
9#include <linux/types.h>
10#include <linux/bug.h>
11#include <linux/mmdebug.h>
12#ifndef __GENERATING_BOUNDS_H
13#include <linux/mm_types.h>
14#include <generated/bounds.h>
15#endif /* !__GENERATING_BOUNDS_H */
16
17/*
18 * Various page->flags bits:
19 *
20 * PG_reserved is set for special pages. The "struct page" of such a page
21 * should in general not be touched (e.g. set dirty) except by its owner.
22 * Pages marked as PG_reserved include:
23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24 * initrd, HW tables)
25 * - Pages reserved or allocated early during boot (before the page allocator
26 * was initialized). This includes (depending on the architecture) the
27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28 * much more. Once (if ever) freed, PG_reserved is cleared and they will
29 * be given to the page allocator.
30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31 * to read/write these pages might end badly. Don't touch!
32 * - The zero page(s)
33 * - Pages not added to the page allocator when onlining a section because
34 * they were excluded via the online_page_callback() or because they are
35 * PG_hwpoison.
36 * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37 * control pages, vmcoreinfo)
38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39 * not marked PG_reserved (as they might be in use by somebody else who does
40 * not respect the caching strategy).
41 * - Pages part of an offline section (struct pages of offline sections should
42 * not be trusted as they will be initialized when first onlined).
43 * - MCA pages on ia64
44 * - Pages holding CPU notes for POWER Firmware Assisted Dump
45 * - Device memory (e.g. PMEM, DAX, HMM)
46 * Some PG_reserved pages will be excluded from the hibernation image.
47 * PG_reserved does in general not hinder anybody from dumping or swapping
48 * and is no longer required for remap_pfn_range(). ioremap might require it.
49 * Consequently, PG_reserved for a page mapped into user space can indicate
50 * the zero page, the vDSO, MMIO pages or device memory.
51 *
52 * The PG_private bitflag is set on pagecache pages if they contain filesystem
53 * specific data (which is normally at page->private). It can be used by
54 * private allocations for its own usage.
55 *
56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58 * is set before writeback starts and cleared when it finishes.
59 *
60 * PG_locked also pins a page in pagecache, and blocks truncation of the file
61 * while it is held.
62 *
63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64 * to become unlocked.
65 *
66 * PG_swapbacked is set when a page uses swap as a backing storage. This are
67 * usually PageAnon or shmem pages but please note that even anonymous pages
68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69 * a result of MADV_FREE).
70 *
71 * PG_uptodate tells whether the page's contents is valid. When a read
72 * completes, the page becomes uptodate, unless a disk I/O error happened.
73 *
74 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75 * file-backed pagecache (see mm/vmscan.c).
76 *
77 * PG_error is set to indicate that an I/O error occurred on this page.
78 *
79 * PG_arch_1 is an architecture specific page state bit. The generic code
80 * guarantees that this bit is cleared for a page when it first is entered into
81 * the page cache.
82 *
83 * PG_hwpoison indicates that a page got corrupted in hardware and contains
84 * data with incorrect ECC bits that triggered a machine check. Accessing is
85 * not safe since it may cause another machine check. Don't touch!
86 */
87
88/*
89 * Don't use the pageflags directly. Use the PageFoo macros.
90 *
91 * The page flags field is split into two parts, the main flags area
92 * which extends from the low bits upwards, and the fields area which
93 * extends from the high bits downwards.
94 *
95 * | FIELD | ... | FLAGS |
96 * N-1 ^ 0
97 * (NR_PAGEFLAGS)
98 *
99 * The fields area is reserved for fields mapping zone, node (for NUMA) and
100 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
101 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
102 */
103enum pageflags {
104 PG_locked, /* Page is locked. Don't touch. */
105 PG_referenced,
106 PG_uptodate,
107 PG_dirty,
108 PG_lru,
109 PG_active,
110 PG_workingset,
111 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
112 PG_error,
113 PG_slab,
114 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/
115 PG_arch_1,
116 PG_reserved,
117 PG_private, /* If pagecache, has fs-private data */
118 PG_private_2, /* If pagecache, has fs aux data */
119 PG_writeback, /* Page is under writeback */
120 PG_head, /* A head page */
121 PG_mappedtodisk, /* Has blocks allocated on-disk */
122 PG_reclaim, /* To be reclaimed asap */
123 PG_swapbacked, /* Page is backed by RAM/swap */
124 PG_unevictable, /* Page is "unevictable" */
125#ifdef CONFIG_MMU
126 PG_mlocked, /* Page is vma mlocked */
127#endif
128#ifdef CONFIG_ARCH_USES_PG_UNCACHED
129 PG_uncached, /* Page has been mapped as uncached */
130#endif
131#ifdef CONFIG_MEMORY_FAILURE
132 PG_hwpoison, /* hardware poisoned page. Don't touch */
133#endif
134#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
135 PG_young,
136 PG_idle,
137#endif
138#ifdef CONFIG_64BIT
139 PG_arch_2,
140#endif
141#ifdef CONFIG_KASAN_HW_TAGS
142 PG_skip_kasan_poison,
143#endif
144 __NR_PAGEFLAGS,
145
146 /* Filesystems */
147 PG_checked = PG_owner_priv_1,
148
149 /* SwapBacked */
150 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */
151
152 /* Two page bits are conscripted by FS-Cache to maintain local caching
153 * state. These bits are set on pages belonging to the netfs's inodes
154 * when those inodes are being locally cached.
155 */
156 PG_fscache = PG_private_2, /* page backed by cache */
157
158 /* XEN */
159 /* Pinned in Xen as a read-only pagetable page. */
160 PG_pinned = PG_owner_priv_1,
161 /* Pinned as part of domain save (see xen_mm_pin_all()). */
162 PG_savepinned = PG_dirty,
163 /* Has a grant mapping of another (foreign) domain's page. */
164 PG_foreign = PG_owner_priv_1,
165 /* Remapped by swiotlb-xen. */
166 PG_xen_remapped = PG_owner_priv_1,
167
168 /* SLOB */
169 PG_slob_free = PG_private,
170
171 /* Compound pages. Stored in first tail page's flags */
172 PG_double_map = PG_workingset,
173
174 /* non-lru isolated movable page */
175 PG_isolated = PG_reclaim,
176
177 /* Only valid for buddy pages. Used to track pages that are reported */
178 PG_reported = PG_uptodate,
179};
180
181#ifndef __GENERATING_BOUNDS_H
182
183static inline unsigned long _compound_head(const struct page *page)
184{
185 unsigned long head = READ_ONCE(page->compound_head);
186
187 if (unlikely(head & 1))
188 return head - 1;
189 return (unsigned long)page;
190}
191
192#define compound_head(page) ((typeof(page))_compound_head(page))
193
194static __always_inline int PageTail(struct page *page)
195{
196 return READ_ONCE(page->compound_head) & 1;
197}
198
199static __always_inline int PageCompound(struct page *page)
200{
201 return test_bit(PG_head, &page->flags) || PageTail(page);
202}
203
204#define PAGE_POISON_PATTERN -1l
205static inline int PagePoisoned(const struct page *page)
206{
207 return page->flags == PAGE_POISON_PATTERN;
208}
209
210#ifdef CONFIG_DEBUG_VM
211void page_init_poison(struct page *page, size_t size);
212#else
213static inline void page_init_poison(struct page *page, size_t size)
214{
215}
216#endif
217
218/*
219 * Page flags policies wrt compound pages
220 *
221 * PF_POISONED_CHECK
222 * check if this struct page poisoned/uninitialized
223 *
224 * PF_ANY:
225 * the page flag is relevant for small, head and tail pages.
226 *
227 * PF_HEAD:
228 * for compound page all operations related to the page flag applied to
229 * head page.
230 *
231 * PF_ONLY_HEAD:
232 * for compound page, callers only ever operate on the head page.
233 *
234 * PF_NO_TAIL:
235 * modifications of the page flag must be done on small or head pages,
236 * checks can be done on tail pages too.
237 *
238 * PF_NO_COMPOUND:
239 * the page flag is not relevant for compound pages.
240 *
241 * PF_SECOND:
242 * the page flag is stored in the first tail page.
243 */
244#define PF_POISONED_CHECK(page) ({ \
245 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \
246 page; })
247#define PF_ANY(page, enforce) PF_POISONED_CHECK(page)
248#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page))
249#define PF_ONLY_HEAD(page, enforce) ({ \
250 VM_BUG_ON_PGFLAGS(PageTail(page), page); \
251 PF_POISONED_CHECK(page); })
252#define PF_NO_TAIL(page, enforce) ({ \
253 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \
254 PF_POISONED_CHECK(compound_head(page)); })
255#define PF_NO_COMPOUND(page, enforce) ({ \
256 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \
257 PF_POISONED_CHECK(page); })
258#define PF_SECOND(page, enforce) ({ \
259 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \
260 PF_POISONED_CHECK(&page[1]); })
261
262/*
263 * Macros to create function definitions for page flags
264 */
265#define TESTPAGEFLAG(uname, lname, policy) \
266static __always_inline int Page##uname(struct page *page) \
267 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
268
269#define SETPAGEFLAG(uname, lname, policy) \
270static __always_inline void SetPage##uname(struct page *page) \
271 { set_bit(PG_##lname, &policy(page, 1)->flags); }
272
273#define CLEARPAGEFLAG(uname, lname, policy) \
274static __always_inline void ClearPage##uname(struct page *page) \
275 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
276
277#define __SETPAGEFLAG(uname, lname, policy) \
278static __always_inline void __SetPage##uname(struct page *page) \
279 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
280
281#define __CLEARPAGEFLAG(uname, lname, policy) \
282static __always_inline void __ClearPage##uname(struct page *page) \
283 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
284
285#define TESTSETFLAG(uname, lname, policy) \
286static __always_inline int TestSetPage##uname(struct page *page) \
287 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
288
289#define TESTCLEARFLAG(uname, lname, policy) \
290static __always_inline int TestClearPage##uname(struct page *page) \
291 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
292
293#define PAGEFLAG(uname, lname, policy) \
294 TESTPAGEFLAG(uname, lname, policy) \
295 SETPAGEFLAG(uname, lname, policy) \
296 CLEARPAGEFLAG(uname, lname, policy)
297
298#define __PAGEFLAG(uname, lname, policy) \
299 TESTPAGEFLAG(uname, lname, policy) \
300 __SETPAGEFLAG(uname, lname, policy) \
301 __CLEARPAGEFLAG(uname, lname, policy)
302
303#define TESTSCFLAG(uname, lname, policy) \
304 TESTSETFLAG(uname, lname, policy) \
305 TESTCLEARFLAG(uname, lname, policy)
306
307#define TESTPAGEFLAG_FALSE(uname) \
308static inline int Page##uname(const struct page *page) { return 0; }
309
310#define SETPAGEFLAG_NOOP(uname) \
311static inline void SetPage##uname(struct page *page) { }
312
313#define CLEARPAGEFLAG_NOOP(uname) \
314static inline void ClearPage##uname(struct page *page) { }
315
316#define __CLEARPAGEFLAG_NOOP(uname) \
317static inline void __ClearPage##uname(struct page *page) { }
318
319#define TESTSETFLAG_FALSE(uname) \
320static inline int TestSetPage##uname(struct page *page) { return 0; }
321
322#define TESTCLEARFLAG_FALSE(uname) \
323static inline int TestClearPage##uname(struct page *page) { return 0; }
324
325#define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname) \
326 SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
327
328#define TESTSCFLAG_FALSE(uname) \
329 TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
330
331__PAGEFLAG(Locked, locked, PF_NO_TAIL)
332PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
333PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
334PAGEFLAG(Referenced, referenced, PF_HEAD)
335 TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
336 __SETPAGEFLAG(Referenced, referenced, PF_HEAD)
337PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
338 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
339PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
340 TESTCLEARFLAG(LRU, lru, PF_HEAD)
341PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
342 TESTCLEARFLAG(Active, active, PF_HEAD)
343PAGEFLAG(Workingset, workingset, PF_HEAD)
344 TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
345__PAGEFLAG(Slab, slab, PF_NO_TAIL)
346__PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
347PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */
348
349/* Xen */
350PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
351 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
352PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
353PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
354PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
355 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
356
357PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
358 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
359 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
360PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
361 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
362 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
363
364/*
365 * Private page markings that may be used by the filesystem that owns the page
366 * for its own purposes.
367 * - PG_private and PG_private_2 cause releasepage() and co to be invoked
368 */
369PAGEFLAG(Private, private, PF_ANY)
370PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
371PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
372 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
373
374/*
375 * Only test-and-set exist for PG_writeback. The unconditional operators are
376 * risky: they bypass page accounting.
377 */
378TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
379 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
380PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
381
382/* PG_readahead is only used for reads; PG_reclaim is only for writes */
383PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
384 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
385PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
386 TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
387
388#ifdef CONFIG_HIGHMEM
389/*
390 * Must use a macro here due to header dependency issues. page_zone() is not
391 * available at this point.
392 */
393#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
394#else
395PAGEFLAG_FALSE(HighMem)
396#endif
397
398#ifdef CONFIG_SWAP
399static __always_inline int PageSwapCache(struct page *page)
400{
401#ifdef CONFIG_THP_SWAP
402 page = compound_head(page);
403#endif
404 return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
405
406}
407SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
408CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
409#else
410PAGEFLAG_FALSE(SwapCache)
411#endif
412
413PAGEFLAG(Unevictable, unevictable, PF_HEAD)
414 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
415 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
416
417#ifdef CONFIG_MMU
418PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
419 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
420 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
421#else
422PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
423 TESTSCFLAG_FALSE(Mlocked)
424#endif
425
426#ifdef CONFIG_ARCH_USES_PG_UNCACHED
427PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
428#else
429PAGEFLAG_FALSE(Uncached)
430#endif
431
432#ifdef CONFIG_MEMORY_FAILURE
433PAGEFLAG(HWPoison, hwpoison, PF_ANY)
434TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
435#define __PG_HWPOISON (1UL << PG_hwpoison)
436extern bool take_page_off_buddy(struct page *page);
437#else
438PAGEFLAG_FALSE(HWPoison)
439#define __PG_HWPOISON 0
440#endif
441
442#if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
443TESTPAGEFLAG(Young, young, PF_ANY)
444SETPAGEFLAG(Young, young, PF_ANY)
445TESTCLEARFLAG(Young, young, PF_ANY)
446PAGEFLAG(Idle, idle, PF_ANY)
447#endif
448
449#ifdef CONFIG_KASAN_HW_TAGS
450PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
451#else
452PAGEFLAG_FALSE(SkipKASanPoison)
453#endif
454
455/*
456 * PageReported() is used to track reported free pages within the Buddy
457 * allocator. We can use the non-atomic version of the test and set
458 * operations as both should be shielded with the zone lock to prevent
459 * any possible races on the setting or clearing of the bit.
460 */
461__PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
462
463/*
464 * On an anonymous page mapped into a user virtual memory area,
465 * page->mapping points to its anon_vma, not to a struct address_space;
466 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
467 *
468 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
469 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
470 * bit; and then page->mapping points, not to an anon_vma, but to a private
471 * structure which KSM associates with that merged page. See ksm.h.
472 *
473 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
474 * page and then page->mapping points a struct address_space.
475 *
476 * Please note that, confusingly, "page_mapping" refers to the inode
477 * address_space which maps the page from disk; whereas "page_mapped"
478 * refers to user virtual address space into which the page is mapped.
479 */
480#define PAGE_MAPPING_ANON 0x1
481#define PAGE_MAPPING_MOVABLE 0x2
482#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
483#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
484
485static __always_inline int PageMappingFlags(struct page *page)
486{
487 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
488}
489
490static __always_inline int PageAnon(struct page *page)
491{
492 page = compound_head(page);
493 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
494}
495
496static __always_inline int __PageMovable(struct page *page)
497{
498 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
499 PAGE_MAPPING_MOVABLE;
500}
501
502#ifdef CONFIG_KSM
503/*
504 * A KSM page is one of those write-protected "shared pages" or "merged pages"
505 * which KSM maps into multiple mms, wherever identical anonymous page content
506 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any
507 * anon_vma, but to that page's node of the stable tree.
508 */
509static __always_inline int PageKsm(struct page *page)
510{
511 page = compound_head(page);
512 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
513 PAGE_MAPPING_KSM;
514}
515#else
516TESTPAGEFLAG_FALSE(Ksm)
517#endif
518
519u64 stable_page_flags(struct page *page);
520
521static inline int PageUptodate(struct page *page)
522{
523 int ret;
524 page = compound_head(page);
525 ret = test_bit(PG_uptodate, &(page)->flags);
526 /*
527 * Must ensure that the data we read out of the page is loaded
528 * _after_ we've loaded page->flags to check for PageUptodate.
529 * We can skip the barrier if the page is not uptodate, because
530 * we wouldn't be reading anything from it.
531 *
532 * See SetPageUptodate() for the other side of the story.
533 */
534 if (ret)
535 smp_rmb();
536
537 return ret;
538}
539
540static __always_inline void __SetPageUptodate(struct page *page)
541{
542 VM_BUG_ON_PAGE(PageTail(page), page);
543 smp_wmb();
544 __set_bit(PG_uptodate, &page->flags);
545}
546
547static __always_inline void SetPageUptodate(struct page *page)
548{
549 VM_BUG_ON_PAGE(PageTail(page), page);
550 /*
551 * Memory barrier must be issued before setting the PG_uptodate bit,
552 * so that all previous stores issued in order to bring the page
553 * uptodate are actually visible before PageUptodate becomes true.
554 */
555 smp_wmb();
556 set_bit(PG_uptodate, &page->flags);
557}
558
559CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
560
561int test_clear_page_writeback(struct page *page);
562int __test_set_page_writeback(struct page *page, bool keep_write);
563
564#define test_set_page_writeback(page) \
565 __test_set_page_writeback(page, false)
566#define test_set_page_writeback_keepwrite(page) \
567 __test_set_page_writeback(page, true)
568
569static inline void set_page_writeback(struct page *page)
570{
571 test_set_page_writeback(page);
572}
573
574static inline void set_page_writeback_keepwrite(struct page *page)
575{
576 test_set_page_writeback_keepwrite(page);
577}
578
579__PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
580
581static __always_inline void set_compound_head(struct page *page, struct page *head)
582{
583 WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
584}
585
586static __always_inline void clear_compound_head(struct page *page)
587{
588 WRITE_ONCE(page->compound_head, 0);
589}
590
591#ifdef CONFIG_TRANSPARENT_HUGEPAGE
592static inline void ClearPageCompound(struct page *page)
593{
594 BUG_ON(!PageHead(page));
595 ClearPageHead(page);
596}
597#endif
598
599#define PG_head_mask ((1UL << PG_head))
600
601#ifdef CONFIG_HUGETLB_PAGE
602int PageHuge(struct page *page);
603int PageHeadHuge(struct page *page);
604#else
605TESTPAGEFLAG_FALSE(Huge)
606TESTPAGEFLAG_FALSE(HeadHuge)
607#endif
608
609
610#ifdef CONFIG_TRANSPARENT_HUGEPAGE
611/*
612 * PageHuge() only returns true for hugetlbfs pages, but not for
613 * normal or transparent huge pages.
614 *
615 * PageTransHuge() returns true for both transparent huge and
616 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
617 * called only in the core VM paths where hugetlbfs pages can't exist.
618 */
619static inline int PageTransHuge(struct page *page)
620{
621 VM_BUG_ON_PAGE(PageTail(page), page);
622 return PageHead(page);
623}
624
625/*
626 * PageTransCompound returns true for both transparent huge pages
627 * and hugetlbfs pages, so it should only be called when it's known
628 * that hugetlbfs pages aren't involved.
629 */
630static inline int PageTransCompound(struct page *page)
631{
632 return PageCompound(page);
633}
634
635/*
636 * PageTransCompoundMap is the same as PageTransCompound, but it also
637 * guarantees the primary MMU has the entire compound page mapped
638 * through pmd_trans_huge, which in turn guarantees the secondary MMUs
639 * can also map the entire compound page. This allows the secondary
640 * MMUs to call get_user_pages() only once for each compound page and
641 * to immediately map the entire compound page with a single secondary
642 * MMU fault. If there will be a pmd split later, the secondary MMUs
643 * will get an update through the MMU notifier invalidation through
644 * split_huge_pmd().
645 *
646 * Unlike PageTransCompound, this is safe to be called only while
647 * split_huge_pmd() cannot run from under us, like if protected by the
648 * MMU notifier, otherwise it may result in page->_mapcount check false
649 * positives.
650 *
651 * We have to treat page cache THP differently since every subpage of it
652 * would get _mapcount inc'ed once it is PMD mapped. But, it may be PTE
653 * mapped in the current process so comparing subpage's _mapcount to
654 * compound_mapcount to filter out PTE mapped case.
655 */
656static inline int PageTransCompoundMap(struct page *page)
657{
658 struct page *head;
659
660 if (!PageTransCompound(page))
661 return 0;
662
663 if (PageAnon(page))
664 return atomic_read(&page->_mapcount) < 0;
665
666 head = compound_head(page);
667 /* File THP is PMD mapped and not PTE mapped */
668 return atomic_read(&page->_mapcount) ==
669 atomic_read(compound_mapcount_ptr(head));
670}
671
672/*
673 * PageTransTail returns true for both transparent huge pages
674 * and hugetlbfs pages, so it should only be called when it's known
675 * that hugetlbfs pages aren't involved.
676 */
677static inline int PageTransTail(struct page *page)
678{
679 return PageTail(page);
680}
681
682/*
683 * PageDoubleMap indicates that the compound page is mapped with PTEs as well
684 * as PMDs.
685 *
686 * This is required for optimization of rmap operations for THP: we can postpone
687 * per small page mapcount accounting (and its overhead from atomic operations)
688 * until the first PMD split.
689 *
690 * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
691 * by one. This reference will go away with last compound_mapcount.
692 *
693 * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
694 */
695PAGEFLAG(DoubleMap, double_map, PF_SECOND)
696 TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
697#else
698TESTPAGEFLAG_FALSE(TransHuge)
699TESTPAGEFLAG_FALSE(TransCompound)
700TESTPAGEFLAG_FALSE(TransCompoundMap)
701TESTPAGEFLAG_FALSE(TransTail)
702PAGEFLAG_FALSE(DoubleMap)
703 TESTSCFLAG_FALSE(DoubleMap)
704#endif
705
706/*
707 * Check if a page is currently marked HWPoisoned. Note that this check is
708 * best effort only and inherently racy: there is no way to synchronize with
709 * failing hardware.
710 */
711static inline bool is_page_hwpoison(struct page *page)
712{
713 if (PageHWPoison(page))
714 return true;
715 return PageHuge(page) && PageHWPoison(compound_head(page));
716}
717
718/*
719 * For pages that are never mapped to userspace (and aren't PageSlab),
720 * page_type may be used. Because it is initialised to -1, we invert the
721 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
722 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and
723 * low bits so that an underflow or overflow of page_mapcount() won't be
724 * mistaken for a page type value.
725 */
726
727#define PAGE_TYPE_BASE 0xf0000000
728/* Reserve 0x0000007f to catch underflows of page_mapcount */
729#define PAGE_MAPCOUNT_RESERVE -128
730#define PG_buddy 0x00000080
731#define PG_offline 0x00000100
732#define PG_table 0x00000200
733#define PG_guard 0x00000400
734
735#define PageType(page, flag) \
736 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
737
738static inline int page_has_type(struct page *page)
739{
740 return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
741}
742
743#define PAGE_TYPE_OPS(uname, lname) \
744static __always_inline int Page##uname(struct page *page) \
745{ \
746 return PageType(page, PG_##lname); \
747} \
748static __always_inline void __SetPage##uname(struct page *page) \
749{ \
750 VM_BUG_ON_PAGE(!PageType(page, 0), page); \
751 page->page_type &= ~PG_##lname; \
752} \
753static __always_inline void __ClearPage##uname(struct page *page) \
754{ \
755 VM_BUG_ON_PAGE(!Page##uname(page), page); \
756 page->page_type |= PG_##lname; \
757}
758
759/*
760 * PageBuddy() indicates that the page is free and in the buddy system
761 * (see mm/page_alloc.c).
762 */
763PAGE_TYPE_OPS(Buddy, buddy)
764
765/*
766 * PageOffline() indicates that the page is logically offline although the
767 * containing section is online. (e.g. inflated in a balloon driver or
768 * not onlined when onlining the section).
769 * The content of these pages is effectively stale. Such pages should not
770 * be touched (read/write/dump/save) except by their owner.
771 *
772 * If a driver wants to allow to offline unmovable PageOffline() pages without
773 * putting them back to the buddy, it can do so via the memory notifier by
774 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
775 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
776 * pages (now with a reference count of zero) are treated like free pages,
777 * allowing the containing memory block to get offlined. A driver that
778 * relies on this feature is aware that re-onlining the memory block will
779 * require to re-set the pages PageOffline() and not giving them to the
780 * buddy via online_page_callback_t.
781 *
782 * There are drivers that mark a page PageOffline() and expect there won't be
783 * any further access to page content. PFN walkers that read content of random
784 * pages should check PageOffline() and synchronize with such drivers using
785 * page_offline_freeze()/page_offline_thaw().
786 */
787PAGE_TYPE_OPS(Offline, offline)
788
789extern void page_offline_freeze(void);
790extern void page_offline_thaw(void);
791extern void page_offline_begin(void);
792extern void page_offline_end(void);
793
794/*
795 * Marks pages in use as page tables.
796 */
797PAGE_TYPE_OPS(Table, table)
798
799/*
800 * Marks guardpages used with debug_pagealloc.
801 */
802PAGE_TYPE_OPS(Guard, guard)
803
804extern bool is_free_buddy_page(struct page *page);
805
806__PAGEFLAG(Isolated, isolated, PF_ANY);
807
808/*
809 * If network-based swap is enabled, sl*b must keep track of whether pages
810 * were allocated from pfmemalloc reserves.
811 */
812static inline int PageSlabPfmemalloc(struct page *page)
813{
814 VM_BUG_ON_PAGE(!PageSlab(page), page);
815 return PageActive(page);
816}
817
818static inline void SetPageSlabPfmemalloc(struct page *page)
819{
820 VM_BUG_ON_PAGE(!PageSlab(page), page);
821 SetPageActive(page);
822}
823
824static inline void __ClearPageSlabPfmemalloc(struct page *page)
825{
826 VM_BUG_ON_PAGE(!PageSlab(page), page);
827 __ClearPageActive(page);
828}
829
830static inline void ClearPageSlabPfmemalloc(struct page *page)
831{
832 VM_BUG_ON_PAGE(!PageSlab(page), page);
833 ClearPageActive(page);
834}
835
836#ifdef CONFIG_MMU
837#define __PG_MLOCKED (1UL << PG_mlocked)
838#else
839#define __PG_MLOCKED 0
840#endif
841
842/*
843 * Flags checked when a page is freed. Pages being freed should not have
844 * these flags set. If they are, there is a problem.
845 */
846#define PAGE_FLAGS_CHECK_AT_FREE \
847 (1UL << PG_lru | 1UL << PG_locked | \
848 1UL << PG_private | 1UL << PG_private_2 | \
849 1UL << PG_writeback | 1UL << PG_reserved | \
850 1UL << PG_slab | 1UL << PG_active | \
851 1UL << PG_unevictable | __PG_MLOCKED)
852
853/*
854 * Flags checked when a page is prepped for return by the page allocator.
855 * Pages being prepped should not have these flags set. If they are set,
856 * there has been a kernel bug or struct page corruption.
857 *
858 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
859 * alloc-free cycle to prevent from reusing the page.
860 */
861#define PAGE_FLAGS_CHECK_AT_PREP \
862 (((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
863
864#define PAGE_FLAGS_PRIVATE \
865 (1UL << PG_private | 1UL << PG_private_2)
866/**
867 * page_has_private - Determine if page has private stuff
868 * @page: The page to be checked
869 *
870 * Determine if a page has private stuff, indicating that release routines
871 * should be invoked upon it.
872 */
873static inline int page_has_private(struct page *page)
874{
875 return !!(page->flags & PAGE_FLAGS_PRIVATE);
876}
877
878#undef PF_ANY
879#undef PF_HEAD
880#undef PF_ONLY_HEAD
881#undef PF_NO_TAIL
882#undef PF_NO_COMPOUND
883#undef PF_SECOND
884#endif /* !__GENERATING_BOUNDS_H */
885
886#endif /* PAGE_FLAGS_H */