at v5.14 106 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MM_H 3#define _LINUX_MM_H 4 5#include <linux/errno.h> 6 7#ifdef __KERNEL__ 8 9#include <linux/mmdebug.h> 10#include <linux/gfp.h> 11#include <linux/bug.h> 12#include <linux/list.h> 13#include <linux/mmzone.h> 14#include <linux/rbtree.h> 15#include <linux/atomic.h> 16#include <linux/debug_locks.h> 17#include <linux/mm_types.h> 18#include <linux/mmap_lock.h> 19#include <linux/range.h> 20#include <linux/pfn.h> 21#include <linux/percpu-refcount.h> 22#include <linux/bit_spinlock.h> 23#include <linux/shrinker.h> 24#include <linux/resource.h> 25#include <linux/page_ext.h> 26#include <linux/err.h> 27#include <linux/page-flags.h> 28#include <linux/page_ref.h> 29#include <linux/memremap.h> 30#include <linux/overflow.h> 31#include <linux/sizes.h> 32#include <linux/sched.h> 33#include <linux/pgtable.h> 34#include <linux/kasan.h> 35 36struct mempolicy; 37struct anon_vma; 38struct anon_vma_chain; 39struct file_ra_state; 40struct user_struct; 41struct writeback_control; 42struct bdi_writeback; 43struct pt_regs; 44 45extern int sysctl_page_lock_unfairness; 46 47void init_mm_internals(void); 48 49#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 50extern unsigned long max_mapnr; 51 52static inline void set_max_mapnr(unsigned long limit) 53{ 54 max_mapnr = limit; 55} 56#else 57static inline void set_max_mapnr(unsigned long limit) { } 58#endif 59 60extern atomic_long_t _totalram_pages; 61static inline unsigned long totalram_pages(void) 62{ 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64} 65 66static inline void totalram_pages_inc(void) 67{ 68 atomic_long_inc(&_totalram_pages); 69} 70 71static inline void totalram_pages_dec(void) 72{ 73 atomic_long_dec(&_totalram_pages); 74} 75 76static inline void totalram_pages_add(long count) 77{ 78 atomic_long_add(count, &_totalram_pages); 79} 80 81extern void * high_memory; 82extern int page_cluster; 83 84#ifdef CONFIG_SYSCTL 85extern int sysctl_legacy_va_layout; 86#else 87#define sysctl_legacy_va_layout 0 88#endif 89 90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91extern const int mmap_rnd_bits_min; 92extern const int mmap_rnd_bits_max; 93extern int mmap_rnd_bits __read_mostly; 94#endif 95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96extern const int mmap_rnd_compat_bits_min; 97extern const int mmap_rnd_compat_bits_max; 98extern int mmap_rnd_compat_bits __read_mostly; 99#endif 100 101#include <asm/page.h> 102#include <asm/processor.h> 103 104/* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for architectures that don't support memory tagging. 110 */ 111#ifndef untagged_addr 112#define untagged_addr(addr) (addr) 113#endif 114 115#ifndef __pa_symbol 116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117#endif 118 119#ifndef page_to_virt 120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121#endif 122 123#ifndef lm_alias 124#define lm_alias(x) __va(__pa_symbol(x)) 125#endif 126 127/* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134#ifndef mm_forbids_zeropage 135#define mm_forbids_zeropage(X) (0) 136#endif 137 138/* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144#if BITS_PER_LONG == 64 145/* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statements if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152static inline void __mm_zero_struct_page(struct page *page) 153{ 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180} 181#else 182#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183#endif 184 185/* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201#define MAPCOUNT_ELF_CORE_MARGIN (5) 202#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204extern int sysctl_max_map_count; 205 206extern unsigned long sysctl_user_reserve_kbytes; 207extern unsigned long sysctl_admin_reserve_kbytes; 208 209extern int sysctl_overcommit_memory; 210extern int sysctl_overcommit_ratio; 211extern unsigned long sysctl_overcommit_kbytes; 212 213int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219/* 220 * Any attempt to mark this function as static leads to build failure 221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 222 * is referred to by BPF code. This must be visible for error injection. 223 */ 224int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 225 pgoff_t index, gfp_t gfp, void **shadowp); 226 227#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 228#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 229#else 230#define nth_page(page,n) ((page) + (n)) 231#endif 232 233/* to align the pointer to the (next) page boundary */ 234#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 235 236/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 239#define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 240 241void setup_initial_init_mm(void *start_code, void *end_code, 242 void *end_data, void *brk); 243 244/* 245 * Linux kernel virtual memory manager primitives. 246 * The idea being to have a "virtual" mm in the same way 247 * we have a virtual fs - giving a cleaner interface to the 248 * mm details, and allowing different kinds of memory mappings 249 * (from shared memory to executable loading to arbitrary 250 * mmap() functions). 251 */ 252 253struct vm_area_struct *vm_area_alloc(struct mm_struct *); 254struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 255void vm_area_free(struct vm_area_struct *); 256 257#ifndef CONFIG_MMU 258extern struct rb_root nommu_region_tree; 259extern struct rw_semaphore nommu_region_sem; 260 261extern unsigned int kobjsize(const void *objp); 262#endif 263 264/* 265 * vm_flags in vm_area_struct, see mm_types.h. 266 * When changing, update also include/trace/events/mmflags.h 267 */ 268#define VM_NONE 0x00000000 269 270#define VM_READ 0x00000001 /* currently active flags */ 271#define VM_WRITE 0x00000002 272#define VM_EXEC 0x00000004 273#define VM_SHARED 0x00000008 274 275/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 276#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 277#define VM_MAYWRITE 0x00000020 278#define VM_MAYEXEC 0x00000040 279#define VM_MAYSHARE 0x00000080 280 281#define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 282#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 283#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 284#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287#define VM_LOCKED 0x00002000 288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300#define VM_SYNC 0x00800000 /* Synchronous page faults */ 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305#ifdef CONFIG_MEM_SOFT_DIRTY 306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307#else 308# define VM_SOFTDIRTY 0 309#endif 310 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 328 329#ifdef CONFIG_ARCH_HAS_PKEYS 330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2 334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335#ifdef CONFIG_PPC 336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4 337#else 338# define VM_PKEY_BIT4 0 339#endif 340#endif /* CONFIG_ARCH_HAS_PKEYS */ 341 342#if defined(CONFIG_X86) 343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 344#elif defined(CONFIG_PPC) 345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 346#elif defined(CONFIG_PARISC) 347# define VM_GROWSUP VM_ARCH_1 348#elif defined(CONFIG_IA64) 349# define VM_GROWSUP VM_ARCH_1 350#elif defined(CONFIG_SPARC64) 351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 352# define VM_ARCH_CLEAR VM_SPARC_ADI 353#elif defined(CONFIG_ARM64) 354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 355# define VM_ARCH_CLEAR VM_ARM64_BTI 356#elif !defined(CONFIG_MMU) 357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 358#endif 359 360#if defined(CONFIG_ARM64_MTE) 361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 363#else 364# define VM_MTE VM_NONE 365# define VM_MTE_ALLOWED VM_NONE 366#endif 367 368#ifndef VM_GROWSUP 369# define VM_GROWSUP VM_NONE 370#endif 371 372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 373# define VM_UFFD_MINOR_BIT 37 374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 376# define VM_UFFD_MINOR VM_NONE 377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378 379/* Bits set in the VMA until the stack is in its final location */ 380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 381 382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 383 384/* Common data flag combinations */ 385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 388 VM_MAYWRITE | VM_MAYEXEC) 389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 391 392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 394#endif 395 396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 398#endif 399 400#ifdef CONFIG_STACK_GROWSUP 401#define VM_STACK VM_GROWSUP 402#else 403#define VM_STACK VM_GROWSDOWN 404#endif 405 406#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 407 408/* VMA basic access permission flags */ 409#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 410 411 412/* 413 * Special vmas that are non-mergable, non-mlock()able. 414 */ 415#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 416 417/* This mask prevents VMA from being scanned with khugepaged */ 418#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 419 420/* This mask defines which mm->def_flags a process can inherit its parent */ 421#define VM_INIT_DEF_MASK VM_NOHUGEPAGE 422 423/* This mask is used to clear all the VMA flags used by mlock */ 424#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 425 426/* Arch-specific flags to clear when updating VM flags on protection change */ 427#ifndef VM_ARCH_CLEAR 428# define VM_ARCH_CLEAR VM_NONE 429#endif 430#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 431 432/* 433 * mapping from the currently active vm_flags protection bits (the 434 * low four bits) to a page protection mask.. 435 */ 436extern pgprot_t protection_map[16]; 437 438/** 439 * enum fault_flag - Fault flag definitions. 440 * @FAULT_FLAG_WRITE: Fault was a write fault. 441 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 442 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 443 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 444 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 445 * @FAULT_FLAG_TRIED: The fault has been tried once. 446 * @FAULT_FLAG_USER: The fault originated in userspace. 447 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 448 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 449 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 450 * 451 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 452 * whether we would allow page faults to retry by specifying these two 453 * fault flags correctly. Currently there can be three legal combinations: 454 * 455 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 456 * this is the first try 457 * 458 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 459 * we've already tried at least once 460 * 461 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 462 * 463 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 464 * be used. Note that page faults can be allowed to retry for multiple times, 465 * in which case we'll have an initial fault with flags (a) then later on 466 * continuous faults with flags (b). We should always try to detect pending 467 * signals before a retry to make sure the continuous page faults can still be 468 * interrupted if necessary. 469 */ 470enum fault_flag { 471 FAULT_FLAG_WRITE = 1 << 0, 472 FAULT_FLAG_MKWRITE = 1 << 1, 473 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 474 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 475 FAULT_FLAG_KILLABLE = 1 << 4, 476 FAULT_FLAG_TRIED = 1 << 5, 477 FAULT_FLAG_USER = 1 << 6, 478 FAULT_FLAG_REMOTE = 1 << 7, 479 FAULT_FLAG_INSTRUCTION = 1 << 8, 480 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 481}; 482 483/* 484 * The default fault flags that should be used by most of the 485 * arch-specific page fault handlers. 486 */ 487#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 488 FAULT_FLAG_KILLABLE | \ 489 FAULT_FLAG_INTERRUPTIBLE) 490 491/** 492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 493 * @flags: Fault flags. 494 * 495 * This is mostly used for places where we want to try to avoid taking 496 * the mmap_lock for too long a time when waiting for another condition 497 * to change, in which case we can try to be polite to release the 498 * mmap_lock in the first round to avoid potential starvation of other 499 * processes that would also want the mmap_lock. 500 * 501 * Return: true if the page fault allows retry and this is the first 502 * attempt of the fault handling; false otherwise. 503 */ 504static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 505{ 506 return (flags & FAULT_FLAG_ALLOW_RETRY) && 507 (!(flags & FAULT_FLAG_TRIED)); 508} 509 510#define FAULT_FLAG_TRACE \ 511 { FAULT_FLAG_WRITE, "WRITE" }, \ 512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 516 { FAULT_FLAG_TRIED, "TRIED" }, \ 517 { FAULT_FLAG_USER, "USER" }, \ 518 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 521 522/* 523 * vm_fault is filled by the pagefault handler and passed to the vma's 524 * ->fault function. The vma's ->fault is responsible for returning a bitmask 525 * of VM_FAULT_xxx flags that give details about how the fault was handled. 526 * 527 * MM layer fills up gfp_mask for page allocations but fault handler might 528 * alter it if its implementation requires a different allocation context. 529 * 530 * pgoff should be used in favour of virtual_address, if possible. 531 */ 532struct vm_fault { 533 const struct { 534 struct vm_area_struct *vma; /* Target VMA */ 535 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 536 pgoff_t pgoff; /* Logical page offset based on vma */ 537 unsigned long address; /* Faulting virtual address */ 538 }; 539 enum fault_flag flags; /* FAULT_FLAG_xxx flags 540 * XXX: should really be 'const' */ 541 pmd_t *pmd; /* Pointer to pmd entry matching 542 * the 'address' */ 543 pud_t *pud; /* Pointer to pud entry matching 544 * the 'address' 545 */ 546 union { 547 pte_t orig_pte; /* Value of PTE at the time of fault */ 548 pmd_t orig_pmd; /* Value of PMD at the time of fault, 549 * used by PMD fault only. 550 */ 551 }; 552 553 struct page *cow_page; /* Page handler may use for COW fault */ 554 struct page *page; /* ->fault handlers should return a 555 * page here, unless VM_FAULT_NOPAGE 556 * is set (which is also implied by 557 * VM_FAULT_ERROR). 558 */ 559 /* These three entries are valid only while holding ptl lock */ 560 pte_t *pte; /* Pointer to pte entry matching 561 * the 'address'. NULL if the page 562 * table hasn't been allocated. 563 */ 564 spinlock_t *ptl; /* Page table lock. 565 * Protects pte page table if 'pte' 566 * is not NULL, otherwise pmd. 567 */ 568 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 569 * vm_ops->map_pages() sets up a page 570 * table from atomic context. 571 * do_fault_around() pre-allocates 572 * page table to avoid allocation from 573 * atomic context. 574 */ 575}; 576 577/* page entry size for vm->huge_fault() */ 578enum page_entry_size { 579 PE_SIZE_PTE = 0, 580 PE_SIZE_PMD, 581 PE_SIZE_PUD, 582}; 583 584/* 585 * These are the virtual MM functions - opening of an area, closing and 586 * unmapping it (needed to keep files on disk up-to-date etc), pointer 587 * to the functions called when a no-page or a wp-page exception occurs. 588 */ 589struct vm_operations_struct { 590 void (*open)(struct vm_area_struct * area); 591 void (*close)(struct vm_area_struct * area); 592 /* Called any time before splitting to check if it's allowed */ 593 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 594 int (*mremap)(struct vm_area_struct *area); 595 /* 596 * Called by mprotect() to make driver-specific permission 597 * checks before mprotect() is finalised. The VMA must not 598 * be modified. Returns 0 if eprotect() can proceed. 599 */ 600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 601 unsigned long end, unsigned long newflags); 602 vm_fault_t (*fault)(struct vm_fault *vmf); 603 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 604 enum page_entry_size pe_size); 605 vm_fault_t (*map_pages)(struct vm_fault *vmf, 606 pgoff_t start_pgoff, pgoff_t end_pgoff); 607 unsigned long (*pagesize)(struct vm_area_struct * area); 608 609 /* notification that a previously read-only page is about to become 610 * writable, if an error is returned it will cause a SIGBUS */ 611 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 612 613 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 614 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 615 616 /* called by access_process_vm when get_user_pages() fails, typically 617 * for use by special VMAs. See also generic_access_phys() for a generic 618 * implementation useful for any iomem mapping. 619 */ 620 int (*access)(struct vm_area_struct *vma, unsigned long addr, 621 void *buf, int len, int write); 622 623 /* Called by the /proc/PID/maps code to ask the vma whether it 624 * has a special name. Returning non-NULL will also cause this 625 * vma to be dumped unconditionally. */ 626 const char *(*name)(struct vm_area_struct *vma); 627 628#ifdef CONFIG_NUMA 629 /* 630 * set_policy() op must add a reference to any non-NULL @new mempolicy 631 * to hold the policy upon return. Caller should pass NULL @new to 632 * remove a policy and fall back to surrounding context--i.e. do not 633 * install a MPOL_DEFAULT policy, nor the task or system default 634 * mempolicy. 635 */ 636 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 637 638 /* 639 * get_policy() op must add reference [mpol_get()] to any policy at 640 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 641 * in mm/mempolicy.c will do this automatically. 642 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 643 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 644 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 645 * must return NULL--i.e., do not "fallback" to task or system default 646 * policy. 647 */ 648 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 649 unsigned long addr); 650#endif 651 /* 652 * Called by vm_normal_page() for special PTEs to find the 653 * page for @addr. This is useful if the default behavior 654 * (using pte_page()) would not find the correct page. 655 */ 656 struct page *(*find_special_page)(struct vm_area_struct *vma, 657 unsigned long addr); 658}; 659 660static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 661{ 662 static const struct vm_operations_struct dummy_vm_ops = {}; 663 664 memset(vma, 0, sizeof(*vma)); 665 vma->vm_mm = mm; 666 vma->vm_ops = &dummy_vm_ops; 667 INIT_LIST_HEAD(&vma->anon_vma_chain); 668} 669 670static inline void vma_set_anonymous(struct vm_area_struct *vma) 671{ 672 vma->vm_ops = NULL; 673} 674 675static inline bool vma_is_anonymous(struct vm_area_struct *vma) 676{ 677 return !vma->vm_ops; 678} 679 680static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 681{ 682 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 683 684 if (!maybe_stack) 685 return false; 686 687 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 688 VM_STACK_INCOMPLETE_SETUP) 689 return true; 690 691 return false; 692} 693 694static inline bool vma_is_foreign(struct vm_area_struct *vma) 695{ 696 if (!current->mm) 697 return true; 698 699 if (current->mm != vma->vm_mm) 700 return true; 701 702 return false; 703} 704 705static inline bool vma_is_accessible(struct vm_area_struct *vma) 706{ 707 return vma->vm_flags & VM_ACCESS_FLAGS; 708} 709 710#ifdef CONFIG_SHMEM 711/* 712 * The vma_is_shmem is not inline because it is used only by slow 713 * paths in userfault. 714 */ 715bool vma_is_shmem(struct vm_area_struct *vma); 716#else 717static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 718#endif 719 720int vma_is_stack_for_current(struct vm_area_struct *vma); 721 722/* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 723#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 724 725struct mmu_gather; 726struct inode; 727 728#include <linux/huge_mm.h> 729 730/* 731 * Methods to modify the page usage count. 732 * 733 * What counts for a page usage: 734 * - cache mapping (page->mapping) 735 * - private data (page->private) 736 * - page mapped in a task's page tables, each mapping 737 * is counted separately 738 * 739 * Also, many kernel routines increase the page count before a critical 740 * routine so they can be sure the page doesn't go away from under them. 741 */ 742 743/* 744 * Drop a ref, return true if the refcount fell to zero (the page has no users) 745 */ 746static inline int put_page_testzero(struct page *page) 747{ 748 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 749 return page_ref_dec_and_test(page); 750} 751 752/* 753 * Try to grab a ref unless the page has a refcount of zero, return false if 754 * that is the case. 755 * This can be called when MMU is off so it must not access 756 * any of the virtual mappings. 757 */ 758static inline int get_page_unless_zero(struct page *page) 759{ 760 return page_ref_add_unless(page, 1, 0); 761} 762 763extern int page_is_ram(unsigned long pfn); 764 765enum { 766 REGION_INTERSECTS, 767 REGION_DISJOINT, 768 REGION_MIXED, 769}; 770 771int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 772 unsigned long desc); 773 774/* Support for virtually mapped pages */ 775struct page *vmalloc_to_page(const void *addr); 776unsigned long vmalloc_to_pfn(const void *addr); 777 778/* 779 * Determine if an address is within the vmalloc range 780 * 781 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 782 * is no special casing required. 783 */ 784 785#ifndef is_ioremap_addr 786#define is_ioremap_addr(x) is_vmalloc_addr(x) 787#endif 788 789#ifdef CONFIG_MMU 790extern bool is_vmalloc_addr(const void *x); 791extern int is_vmalloc_or_module_addr(const void *x); 792#else 793static inline bool is_vmalloc_addr(const void *x) 794{ 795 return false; 796} 797static inline int is_vmalloc_or_module_addr(const void *x) 798{ 799 return 0; 800} 801#endif 802 803extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 804static inline void *kvmalloc(size_t size, gfp_t flags) 805{ 806 return kvmalloc_node(size, flags, NUMA_NO_NODE); 807} 808static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 809{ 810 return kvmalloc_node(size, flags | __GFP_ZERO, node); 811} 812static inline void *kvzalloc(size_t size, gfp_t flags) 813{ 814 return kvmalloc(size, flags | __GFP_ZERO); 815} 816 817static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 818{ 819 size_t bytes; 820 821 if (unlikely(check_mul_overflow(n, size, &bytes))) 822 return NULL; 823 824 return kvmalloc(bytes, flags); 825} 826 827static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 828{ 829 return kvmalloc_array(n, size, flags | __GFP_ZERO); 830} 831 832extern void kvfree(const void *addr); 833extern void kvfree_sensitive(const void *addr, size_t len); 834 835static inline int head_compound_mapcount(struct page *head) 836{ 837 return atomic_read(compound_mapcount_ptr(head)) + 1; 838} 839 840/* 841 * Mapcount of compound page as a whole, does not include mapped sub-pages. 842 * 843 * Must be called only for compound pages or any their tail sub-pages. 844 */ 845static inline int compound_mapcount(struct page *page) 846{ 847 VM_BUG_ON_PAGE(!PageCompound(page), page); 848 page = compound_head(page); 849 return head_compound_mapcount(page); 850} 851 852/* 853 * The atomic page->_mapcount, starts from -1: so that transitions 854 * both from it and to it can be tracked, using atomic_inc_and_test 855 * and atomic_add_negative(-1). 856 */ 857static inline void page_mapcount_reset(struct page *page) 858{ 859 atomic_set(&(page)->_mapcount, -1); 860} 861 862int __page_mapcount(struct page *page); 863 864/* 865 * Mapcount of 0-order page; when compound sub-page, includes 866 * compound_mapcount(). 867 * 868 * Result is undefined for pages which cannot be mapped into userspace. 869 * For example SLAB or special types of pages. See function page_has_type(). 870 * They use this place in struct page differently. 871 */ 872static inline int page_mapcount(struct page *page) 873{ 874 if (unlikely(PageCompound(page))) 875 return __page_mapcount(page); 876 return atomic_read(&page->_mapcount) + 1; 877} 878 879#ifdef CONFIG_TRANSPARENT_HUGEPAGE 880int total_mapcount(struct page *page); 881int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 882#else 883static inline int total_mapcount(struct page *page) 884{ 885 return page_mapcount(page); 886} 887static inline int page_trans_huge_mapcount(struct page *page, 888 int *total_mapcount) 889{ 890 int mapcount = page_mapcount(page); 891 if (total_mapcount) 892 *total_mapcount = mapcount; 893 return mapcount; 894} 895#endif 896 897static inline struct page *virt_to_head_page(const void *x) 898{ 899 struct page *page = virt_to_page(x); 900 901 return compound_head(page); 902} 903 904void __put_page(struct page *page); 905 906void put_pages_list(struct list_head *pages); 907 908void split_page(struct page *page, unsigned int order); 909void copy_huge_page(struct page *dst, struct page *src); 910 911/* 912 * Compound pages have a destructor function. Provide a 913 * prototype for that function and accessor functions. 914 * These are _only_ valid on the head of a compound page. 915 */ 916typedef void compound_page_dtor(struct page *); 917 918/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 919enum compound_dtor_id { 920 NULL_COMPOUND_DTOR, 921 COMPOUND_PAGE_DTOR, 922#ifdef CONFIG_HUGETLB_PAGE 923 HUGETLB_PAGE_DTOR, 924#endif 925#ifdef CONFIG_TRANSPARENT_HUGEPAGE 926 TRANSHUGE_PAGE_DTOR, 927#endif 928 NR_COMPOUND_DTORS, 929}; 930extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 931 932static inline void set_compound_page_dtor(struct page *page, 933 enum compound_dtor_id compound_dtor) 934{ 935 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 936 page[1].compound_dtor = compound_dtor; 937} 938 939static inline void destroy_compound_page(struct page *page) 940{ 941 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 942 compound_page_dtors[page[1].compound_dtor](page); 943} 944 945static inline unsigned int compound_order(struct page *page) 946{ 947 if (!PageHead(page)) 948 return 0; 949 return page[1].compound_order; 950} 951 952static inline bool hpage_pincount_available(struct page *page) 953{ 954 /* 955 * Can the page->hpage_pinned_refcount field be used? That field is in 956 * the 3rd page of the compound page, so the smallest (2-page) compound 957 * pages cannot support it. 958 */ 959 page = compound_head(page); 960 return PageCompound(page) && compound_order(page) > 1; 961} 962 963static inline int head_compound_pincount(struct page *head) 964{ 965 return atomic_read(compound_pincount_ptr(head)); 966} 967 968static inline int compound_pincount(struct page *page) 969{ 970 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 971 page = compound_head(page); 972 return head_compound_pincount(page); 973} 974 975static inline void set_compound_order(struct page *page, unsigned int order) 976{ 977 page[1].compound_order = order; 978 page[1].compound_nr = 1U << order; 979} 980 981/* Returns the number of pages in this potentially compound page. */ 982static inline unsigned long compound_nr(struct page *page) 983{ 984 if (!PageHead(page)) 985 return 1; 986 return page[1].compound_nr; 987} 988 989/* Returns the number of bytes in this potentially compound page. */ 990static inline unsigned long page_size(struct page *page) 991{ 992 return PAGE_SIZE << compound_order(page); 993} 994 995/* Returns the number of bits needed for the number of bytes in a page */ 996static inline unsigned int page_shift(struct page *page) 997{ 998 return PAGE_SHIFT + compound_order(page); 999} 1000 1001void free_compound_page(struct page *page); 1002 1003#ifdef CONFIG_MMU 1004/* 1005 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1006 * servicing faults for write access. In the normal case, do always want 1007 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1008 * that do not have writing enabled, when used by access_process_vm. 1009 */ 1010static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1011{ 1012 if (likely(vma->vm_flags & VM_WRITE)) 1013 pte = pte_mkwrite(pte); 1014 return pte; 1015} 1016 1017vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1018void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1019 1020vm_fault_t finish_fault(struct vm_fault *vmf); 1021vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1022#endif 1023 1024/* 1025 * Multiple processes may "see" the same page. E.g. for untouched 1026 * mappings of /dev/null, all processes see the same page full of 1027 * zeroes, and text pages of executables and shared libraries have 1028 * only one copy in memory, at most, normally. 1029 * 1030 * For the non-reserved pages, page_count(page) denotes a reference count. 1031 * page_count() == 0 means the page is free. page->lru is then used for 1032 * freelist management in the buddy allocator. 1033 * page_count() > 0 means the page has been allocated. 1034 * 1035 * Pages are allocated by the slab allocator in order to provide memory 1036 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1037 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1038 * unless a particular usage is carefully commented. (the responsibility of 1039 * freeing the kmalloc memory is the caller's, of course). 1040 * 1041 * A page may be used by anyone else who does a __get_free_page(). 1042 * In this case, page_count still tracks the references, and should only 1043 * be used through the normal accessor functions. The top bits of page->flags 1044 * and page->virtual store page management information, but all other fields 1045 * are unused and could be used privately, carefully. The management of this 1046 * page is the responsibility of the one who allocated it, and those who have 1047 * subsequently been given references to it. 1048 * 1049 * The other pages (we may call them "pagecache pages") are completely 1050 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1051 * The following discussion applies only to them. 1052 * 1053 * A pagecache page contains an opaque `private' member, which belongs to the 1054 * page's address_space. Usually, this is the address of a circular list of 1055 * the page's disk buffers. PG_private must be set to tell the VM to call 1056 * into the filesystem to release these pages. 1057 * 1058 * A page may belong to an inode's memory mapping. In this case, page->mapping 1059 * is the pointer to the inode, and page->index is the file offset of the page, 1060 * in units of PAGE_SIZE. 1061 * 1062 * If pagecache pages are not associated with an inode, they are said to be 1063 * anonymous pages. These may become associated with the swapcache, and in that 1064 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1065 * 1066 * In either case (swapcache or inode backed), the pagecache itself holds one 1067 * reference to the page. Setting PG_private should also increment the 1068 * refcount. The each user mapping also has a reference to the page. 1069 * 1070 * The pagecache pages are stored in a per-mapping radix tree, which is 1071 * rooted at mapping->i_pages, and indexed by offset. 1072 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1073 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1074 * 1075 * All pagecache pages may be subject to I/O: 1076 * - inode pages may need to be read from disk, 1077 * - inode pages which have been modified and are MAP_SHARED may need 1078 * to be written back to the inode on disk, 1079 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1080 * modified may need to be swapped out to swap space and (later) to be read 1081 * back into memory. 1082 */ 1083 1084/* 1085 * The zone field is never updated after free_area_init_core() 1086 * sets it, so none of the operations on it need to be atomic. 1087 */ 1088 1089/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1090#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1091#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1092#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1093#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1094#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1095 1096/* 1097 * Define the bit shifts to access each section. For non-existent 1098 * sections we define the shift as 0; that plus a 0 mask ensures 1099 * the compiler will optimise away reference to them. 1100 */ 1101#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1102#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1103#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1104#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1105#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1106 1107/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1108#ifdef NODE_NOT_IN_PAGE_FLAGS 1109#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1110#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1111 SECTIONS_PGOFF : ZONES_PGOFF) 1112#else 1113#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1114#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1115 NODES_PGOFF : ZONES_PGOFF) 1116#endif 1117 1118#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1119 1120#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1121#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1122#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1123#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1124#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1125#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1126 1127static inline enum zone_type page_zonenum(const struct page *page) 1128{ 1129 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1130 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1131} 1132 1133#ifdef CONFIG_ZONE_DEVICE 1134static inline bool is_zone_device_page(const struct page *page) 1135{ 1136 return page_zonenum(page) == ZONE_DEVICE; 1137} 1138extern void memmap_init_zone_device(struct zone *, unsigned long, 1139 unsigned long, struct dev_pagemap *); 1140#else 1141static inline bool is_zone_device_page(const struct page *page) 1142{ 1143 return false; 1144} 1145#endif 1146 1147static inline bool is_zone_movable_page(const struct page *page) 1148{ 1149 return page_zonenum(page) == ZONE_MOVABLE; 1150} 1151 1152#ifdef CONFIG_DEV_PAGEMAP_OPS 1153void free_devmap_managed_page(struct page *page); 1154DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1155 1156static inline bool page_is_devmap_managed(struct page *page) 1157{ 1158 if (!static_branch_unlikely(&devmap_managed_key)) 1159 return false; 1160 if (!is_zone_device_page(page)) 1161 return false; 1162 switch (page->pgmap->type) { 1163 case MEMORY_DEVICE_PRIVATE: 1164 case MEMORY_DEVICE_FS_DAX: 1165 return true; 1166 default: 1167 break; 1168 } 1169 return false; 1170} 1171 1172void put_devmap_managed_page(struct page *page); 1173 1174#else /* CONFIG_DEV_PAGEMAP_OPS */ 1175static inline bool page_is_devmap_managed(struct page *page) 1176{ 1177 return false; 1178} 1179 1180static inline void put_devmap_managed_page(struct page *page) 1181{ 1182} 1183#endif /* CONFIG_DEV_PAGEMAP_OPS */ 1184 1185static inline bool is_device_private_page(const struct page *page) 1186{ 1187 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1188 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1189 is_zone_device_page(page) && 1190 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1191} 1192 1193static inline bool is_pci_p2pdma_page(const struct page *page) 1194{ 1195 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1196 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1197 is_zone_device_page(page) && 1198 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1199} 1200 1201/* 127: arbitrary random number, small enough to assemble well */ 1202#define page_ref_zero_or_close_to_overflow(page) \ 1203 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1204 1205static inline void get_page(struct page *page) 1206{ 1207 page = compound_head(page); 1208 /* 1209 * Getting a normal page or the head of a compound page 1210 * requires to already have an elevated page->_refcount. 1211 */ 1212 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1213 page_ref_inc(page); 1214} 1215 1216bool __must_check try_grab_page(struct page *page, unsigned int flags); 1217__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs, 1218 unsigned int flags); 1219 1220 1221static inline __must_check bool try_get_page(struct page *page) 1222{ 1223 page = compound_head(page); 1224 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1225 return false; 1226 page_ref_inc(page); 1227 return true; 1228} 1229 1230static inline void put_page(struct page *page) 1231{ 1232 page = compound_head(page); 1233 1234 /* 1235 * For devmap managed pages we need to catch refcount transition from 1236 * 2 to 1, when refcount reach one it means the page is free and we 1237 * need to inform the device driver through callback. See 1238 * include/linux/memremap.h and HMM for details. 1239 */ 1240 if (page_is_devmap_managed(page)) { 1241 put_devmap_managed_page(page); 1242 return; 1243 } 1244 1245 if (put_page_testzero(page)) 1246 __put_page(page); 1247} 1248 1249/* 1250 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1251 * the page's refcount so that two separate items are tracked: the original page 1252 * reference count, and also a new count of how many pin_user_pages() calls were 1253 * made against the page. ("gup-pinned" is another term for the latter). 1254 * 1255 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1256 * distinct from normal pages. As such, the unpin_user_page() call (and its 1257 * variants) must be used in order to release gup-pinned pages. 1258 * 1259 * Choice of value: 1260 * 1261 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1262 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1263 * simpler, due to the fact that adding an even power of two to the page 1264 * refcount has the effect of using only the upper N bits, for the code that 1265 * counts up using the bias value. This means that the lower bits are left for 1266 * the exclusive use of the original code that increments and decrements by one 1267 * (or at least, by much smaller values than the bias value). 1268 * 1269 * Of course, once the lower bits overflow into the upper bits (and this is 1270 * OK, because subtraction recovers the original values), then visual inspection 1271 * no longer suffices to directly view the separate counts. However, for normal 1272 * applications that don't have huge page reference counts, this won't be an 1273 * issue. 1274 * 1275 * Locking: the lockless algorithm described in page_cache_get_speculative() 1276 * and page_cache_gup_pin_speculative() provides safe operation for 1277 * get_user_pages and page_mkclean and other calls that race to set up page 1278 * table entries. 1279 */ 1280#define GUP_PIN_COUNTING_BIAS (1U << 10) 1281 1282void unpin_user_page(struct page *page); 1283void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1284 bool make_dirty); 1285void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1286 bool make_dirty); 1287void unpin_user_pages(struct page **pages, unsigned long npages); 1288 1289/** 1290 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1291 * @page: The page. 1292 * 1293 * This function checks if a page has been pinned via a call to 1294 * a function in the pin_user_pages() family. 1295 * 1296 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1297 * because it means "definitely not pinned for DMA", but true means "probably 1298 * pinned for DMA, but possibly a false positive due to having at least 1299 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1300 * 1301 * False positives are OK, because: a) it's unlikely for a page to get that many 1302 * refcounts, and b) all the callers of this routine are expected to be able to 1303 * deal gracefully with a false positive. 1304 * 1305 * For huge pages, the result will be exactly correct. That's because we have 1306 * more tracking data available: the 3rd struct page in the compound page is 1307 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1308 * scheme). 1309 * 1310 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1311 * 1312 * Return: True, if it is likely that the page has been "dma-pinned". 1313 * False, if the page is definitely not dma-pinned. 1314 */ 1315static inline bool page_maybe_dma_pinned(struct page *page) 1316{ 1317 if (hpage_pincount_available(page)) 1318 return compound_pincount(page) > 0; 1319 1320 /* 1321 * page_ref_count() is signed. If that refcount overflows, then 1322 * page_ref_count() returns a negative value, and callers will avoid 1323 * further incrementing the refcount. 1324 * 1325 * Here, for that overflow case, use the signed bit to count a little 1326 * bit higher via unsigned math, and thus still get an accurate result. 1327 */ 1328 return ((unsigned int)page_ref_count(compound_head(page))) >= 1329 GUP_PIN_COUNTING_BIAS; 1330} 1331 1332static inline bool is_cow_mapping(vm_flags_t flags) 1333{ 1334 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1335} 1336 1337/* 1338 * This should most likely only be called during fork() to see whether we 1339 * should break the cow immediately for a page on the src mm. 1340 */ 1341static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1342 struct page *page) 1343{ 1344 if (!is_cow_mapping(vma->vm_flags)) 1345 return false; 1346 1347 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1348 return false; 1349 1350 return page_maybe_dma_pinned(page); 1351} 1352 1353#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1354#define SECTION_IN_PAGE_FLAGS 1355#endif 1356 1357/* 1358 * The identification function is mainly used by the buddy allocator for 1359 * determining if two pages could be buddies. We are not really identifying 1360 * the zone since we could be using the section number id if we do not have 1361 * node id available in page flags. 1362 * We only guarantee that it will return the same value for two combinable 1363 * pages in a zone. 1364 */ 1365static inline int page_zone_id(struct page *page) 1366{ 1367 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1368} 1369 1370#ifdef NODE_NOT_IN_PAGE_FLAGS 1371extern int page_to_nid(const struct page *page); 1372#else 1373static inline int page_to_nid(const struct page *page) 1374{ 1375 struct page *p = (struct page *)page; 1376 1377 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1378} 1379#endif 1380 1381#ifdef CONFIG_NUMA_BALANCING 1382static inline int cpu_pid_to_cpupid(int cpu, int pid) 1383{ 1384 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1385} 1386 1387static inline int cpupid_to_pid(int cpupid) 1388{ 1389 return cpupid & LAST__PID_MASK; 1390} 1391 1392static inline int cpupid_to_cpu(int cpupid) 1393{ 1394 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1395} 1396 1397static inline int cpupid_to_nid(int cpupid) 1398{ 1399 return cpu_to_node(cpupid_to_cpu(cpupid)); 1400} 1401 1402static inline bool cpupid_pid_unset(int cpupid) 1403{ 1404 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1405} 1406 1407static inline bool cpupid_cpu_unset(int cpupid) 1408{ 1409 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1410} 1411 1412static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1413{ 1414 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1415} 1416 1417#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1418#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1419static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1420{ 1421 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1422} 1423 1424static inline int page_cpupid_last(struct page *page) 1425{ 1426 return page->_last_cpupid; 1427} 1428static inline void page_cpupid_reset_last(struct page *page) 1429{ 1430 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1431} 1432#else 1433static inline int page_cpupid_last(struct page *page) 1434{ 1435 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1436} 1437 1438extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1439 1440static inline void page_cpupid_reset_last(struct page *page) 1441{ 1442 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1443} 1444#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1445#else /* !CONFIG_NUMA_BALANCING */ 1446static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1447{ 1448 return page_to_nid(page); /* XXX */ 1449} 1450 1451static inline int page_cpupid_last(struct page *page) 1452{ 1453 return page_to_nid(page); /* XXX */ 1454} 1455 1456static inline int cpupid_to_nid(int cpupid) 1457{ 1458 return -1; 1459} 1460 1461static inline int cpupid_to_pid(int cpupid) 1462{ 1463 return -1; 1464} 1465 1466static inline int cpupid_to_cpu(int cpupid) 1467{ 1468 return -1; 1469} 1470 1471static inline int cpu_pid_to_cpupid(int nid, int pid) 1472{ 1473 return -1; 1474} 1475 1476static inline bool cpupid_pid_unset(int cpupid) 1477{ 1478 return true; 1479} 1480 1481static inline void page_cpupid_reset_last(struct page *page) 1482{ 1483} 1484 1485static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1486{ 1487 return false; 1488} 1489#endif /* CONFIG_NUMA_BALANCING */ 1490 1491#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1492 1493/* 1494 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1495 * setting tags for all pages to native kernel tag value 0xff, as the default 1496 * value 0x00 maps to 0xff. 1497 */ 1498 1499static inline u8 page_kasan_tag(const struct page *page) 1500{ 1501 u8 tag = 0xff; 1502 1503 if (kasan_enabled()) { 1504 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1505 tag ^= 0xff; 1506 } 1507 1508 return tag; 1509} 1510 1511static inline void page_kasan_tag_set(struct page *page, u8 tag) 1512{ 1513 if (kasan_enabled()) { 1514 tag ^= 0xff; 1515 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1516 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1517 } 1518} 1519 1520static inline void page_kasan_tag_reset(struct page *page) 1521{ 1522 if (kasan_enabled()) 1523 page_kasan_tag_set(page, 0xff); 1524} 1525 1526#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1527 1528static inline u8 page_kasan_tag(const struct page *page) 1529{ 1530 return 0xff; 1531} 1532 1533static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1534static inline void page_kasan_tag_reset(struct page *page) { } 1535 1536#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1537 1538static inline struct zone *page_zone(const struct page *page) 1539{ 1540 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1541} 1542 1543static inline pg_data_t *page_pgdat(const struct page *page) 1544{ 1545 return NODE_DATA(page_to_nid(page)); 1546} 1547 1548#ifdef SECTION_IN_PAGE_FLAGS 1549static inline void set_page_section(struct page *page, unsigned long section) 1550{ 1551 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1552 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1553} 1554 1555static inline unsigned long page_to_section(const struct page *page) 1556{ 1557 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1558} 1559#endif 1560 1561/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1562#ifdef CONFIG_MIGRATION 1563static inline bool is_pinnable_page(struct page *page) 1564{ 1565 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1566 is_zero_pfn(page_to_pfn(page)); 1567} 1568#else 1569static inline bool is_pinnable_page(struct page *page) 1570{ 1571 return true; 1572} 1573#endif 1574 1575static inline void set_page_zone(struct page *page, enum zone_type zone) 1576{ 1577 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1578 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1579} 1580 1581static inline void set_page_node(struct page *page, unsigned long node) 1582{ 1583 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1584 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1585} 1586 1587static inline void set_page_links(struct page *page, enum zone_type zone, 1588 unsigned long node, unsigned long pfn) 1589{ 1590 set_page_zone(page, zone); 1591 set_page_node(page, node); 1592#ifdef SECTION_IN_PAGE_FLAGS 1593 set_page_section(page, pfn_to_section_nr(pfn)); 1594#endif 1595} 1596 1597/* 1598 * Some inline functions in vmstat.h depend on page_zone() 1599 */ 1600#include <linux/vmstat.h> 1601 1602static __always_inline void *lowmem_page_address(const struct page *page) 1603{ 1604 return page_to_virt(page); 1605} 1606 1607#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1608#define HASHED_PAGE_VIRTUAL 1609#endif 1610 1611#if defined(WANT_PAGE_VIRTUAL) 1612static inline void *page_address(const struct page *page) 1613{ 1614 return page->virtual; 1615} 1616static inline void set_page_address(struct page *page, void *address) 1617{ 1618 page->virtual = address; 1619} 1620#define page_address_init() do { } while(0) 1621#endif 1622 1623#if defined(HASHED_PAGE_VIRTUAL) 1624void *page_address(const struct page *page); 1625void set_page_address(struct page *page, void *virtual); 1626void page_address_init(void); 1627#endif 1628 1629#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1630#define page_address(page) lowmem_page_address(page) 1631#define set_page_address(page, address) do { } while(0) 1632#define page_address_init() do { } while(0) 1633#endif 1634 1635extern void *page_rmapping(struct page *page); 1636extern struct anon_vma *page_anon_vma(struct page *page); 1637extern struct address_space *page_mapping(struct page *page); 1638 1639extern struct address_space *__page_file_mapping(struct page *); 1640 1641static inline 1642struct address_space *page_file_mapping(struct page *page) 1643{ 1644 if (unlikely(PageSwapCache(page))) 1645 return __page_file_mapping(page); 1646 1647 return page->mapping; 1648} 1649 1650extern pgoff_t __page_file_index(struct page *page); 1651 1652/* 1653 * Return the pagecache index of the passed page. Regular pagecache pages 1654 * use ->index whereas swapcache pages use swp_offset(->private) 1655 */ 1656static inline pgoff_t page_index(struct page *page) 1657{ 1658 if (unlikely(PageSwapCache(page))) 1659 return __page_file_index(page); 1660 return page->index; 1661} 1662 1663bool page_mapped(struct page *page); 1664struct address_space *page_mapping(struct page *page); 1665 1666/* 1667 * Return true only if the page has been allocated with 1668 * ALLOC_NO_WATERMARKS and the low watermark was not 1669 * met implying that the system is under some pressure. 1670 */ 1671static inline bool page_is_pfmemalloc(const struct page *page) 1672{ 1673 /* 1674 * lru.next has bit 1 set if the page is allocated from the 1675 * pfmemalloc reserves. Callers may simply overwrite it if 1676 * they do not need to preserve that information. 1677 */ 1678 return (uintptr_t)page->lru.next & BIT(1); 1679} 1680 1681/* 1682 * Only to be called by the page allocator on a freshly allocated 1683 * page. 1684 */ 1685static inline void set_page_pfmemalloc(struct page *page) 1686{ 1687 page->lru.next = (void *)BIT(1); 1688} 1689 1690static inline void clear_page_pfmemalloc(struct page *page) 1691{ 1692 page->lru.next = NULL; 1693} 1694 1695/* 1696 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1697 */ 1698extern void pagefault_out_of_memory(void); 1699 1700#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1701#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1702 1703/* 1704 * Flags passed to show_mem() and show_free_areas() to suppress output in 1705 * various contexts. 1706 */ 1707#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1708 1709extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1710 1711#ifdef CONFIG_MMU 1712extern bool can_do_mlock(void); 1713#else 1714static inline bool can_do_mlock(void) { return false; } 1715#endif 1716extern int user_shm_lock(size_t, struct ucounts *); 1717extern void user_shm_unlock(size_t, struct ucounts *); 1718 1719/* 1720 * Parameter block passed down to zap_pte_range in exceptional cases. 1721 */ 1722struct zap_details { 1723 struct address_space *check_mapping; /* Check page->mapping if set */ 1724 pgoff_t first_index; /* Lowest page->index to unmap */ 1725 pgoff_t last_index; /* Highest page->index to unmap */ 1726 struct page *single_page; /* Locked page to be unmapped */ 1727}; 1728 1729struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1730 pte_t pte); 1731struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1732 pmd_t pmd); 1733 1734void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1735 unsigned long size); 1736void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1737 unsigned long size); 1738void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1739 unsigned long start, unsigned long end); 1740 1741struct mmu_notifier_range; 1742 1743void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1744 unsigned long end, unsigned long floor, unsigned long ceiling); 1745int 1746copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1747int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1748 struct mmu_notifier_range *range, pte_t **ptepp, 1749 pmd_t **pmdpp, spinlock_t **ptlp); 1750int follow_pte(struct mm_struct *mm, unsigned long address, 1751 pte_t **ptepp, spinlock_t **ptlp); 1752int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1753 unsigned long *pfn); 1754int follow_phys(struct vm_area_struct *vma, unsigned long address, 1755 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1756int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1757 void *buf, int len, int write); 1758 1759extern void truncate_pagecache(struct inode *inode, loff_t new); 1760extern void truncate_setsize(struct inode *inode, loff_t newsize); 1761void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1762void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1763int truncate_inode_page(struct address_space *mapping, struct page *page); 1764int generic_error_remove_page(struct address_space *mapping, struct page *page); 1765int invalidate_inode_page(struct page *page); 1766 1767#ifdef CONFIG_MMU 1768extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1769 unsigned long address, unsigned int flags, 1770 struct pt_regs *regs); 1771extern int fixup_user_fault(struct mm_struct *mm, 1772 unsigned long address, unsigned int fault_flags, 1773 bool *unlocked); 1774void unmap_mapping_page(struct page *page); 1775void unmap_mapping_pages(struct address_space *mapping, 1776 pgoff_t start, pgoff_t nr, bool even_cows); 1777void unmap_mapping_range(struct address_space *mapping, 1778 loff_t const holebegin, loff_t const holelen, int even_cows); 1779#else 1780static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1781 unsigned long address, unsigned int flags, 1782 struct pt_regs *regs) 1783{ 1784 /* should never happen if there's no MMU */ 1785 BUG(); 1786 return VM_FAULT_SIGBUS; 1787} 1788static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1789 unsigned int fault_flags, bool *unlocked) 1790{ 1791 /* should never happen if there's no MMU */ 1792 BUG(); 1793 return -EFAULT; 1794} 1795static inline void unmap_mapping_page(struct page *page) { } 1796static inline void unmap_mapping_pages(struct address_space *mapping, 1797 pgoff_t start, pgoff_t nr, bool even_cows) { } 1798static inline void unmap_mapping_range(struct address_space *mapping, 1799 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1800#endif 1801 1802static inline void unmap_shared_mapping_range(struct address_space *mapping, 1803 loff_t const holebegin, loff_t const holelen) 1804{ 1805 unmap_mapping_range(mapping, holebegin, holelen, 0); 1806} 1807 1808extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1809 void *buf, int len, unsigned int gup_flags); 1810extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1811 void *buf, int len, unsigned int gup_flags); 1812extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1813 void *buf, int len, unsigned int gup_flags); 1814 1815long get_user_pages_remote(struct mm_struct *mm, 1816 unsigned long start, unsigned long nr_pages, 1817 unsigned int gup_flags, struct page **pages, 1818 struct vm_area_struct **vmas, int *locked); 1819long pin_user_pages_remote(struct mm_struct *mm, 1820 unsigned long start, unsigned long nr_pages, 1821 unsigned int gup_flags, struct page **pages, 1822 struct vm_area_struct **vmas, int *locked); 1823long get_user_pages(unsigned long start, unsigned long nr_pages, 1824 unsigned int gup_flags, struct page **pages, 1825 struct vm_area_struct **vmas); 1826long pin_user_pages(unsigned long start, unsigned long nr_pages, 1827 unsigned int gup_flags, struct page **pages, 1828 struct vm_area_struct **vmas); 1829long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1830 unsigned int gup_flags, struct page **pages, int *locked); 1831long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1832 unsigned int gup_flags, struct page **pages, int *locked); 1833long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1834 struct page **pages, unsigned int gup_flags); 1835long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1836 struct page **pages, unsigned int gup_flags); 1837 1838int get_user_pages_fast(unsigned long start, int nr_pages, 1839 unsigned int gup_flags, struct page **pages); 1840int pin_user_pages_fast(unsigned long start, int nr_pages, 1841 unsigned int gup_flags, struct page **pages); 1842 1843int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1844int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1845 struct task_struct *task, bool bypass_rlim); 1846 1847struct kvec; 1848int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1849 struct page **pages); 1850int get_kernel_page(unsigned long start, int write, struct page **pages); 1851struct page *get_dump_page(unsigned long addr); 1852 1853extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1854extern void do_invalidatepage(struct page *page, unsigned int offset, 1855 unsigned int length); 1856 1857int redirty_page_for_writepage(struct writeback_control *wbc, 1858 struct page *page); 1859void account_page_cleaned(struct page *page, struct address_space *mapping, 1860 struct bdi_writeback *wb); 1861int set_page_dirty(struct page *page); 1862int set_page_dirty_lock(struct page *page); 1863void __cancel_dirty_page(struct page *page); 1864static inline void cancel_dirty_page(struct page *page) 1865{ 1866 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1867 if (PageDirty(page)) 1868 __cancel_dirty_page(page); 1869} 1870int clear_page_dirty_for_io(struct page *page); 1871 1872int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1873 1874extern unsigned long move_page_tables(struct vm_area_struct *vma, 1875 unsigned long old_addr, struct vm_area_struct *new_vma, 1876 unsigned long new_addr, unsigned long len, 1877 bool need_rmap_locks); 1878 1879/* 1880 * Flags used by change_protection(). For now we make it a bitmap so 1881 * that we can pass in multiple flags just like parameters. However 1882 * for now all the callers are only use one of the flags at the same 1883 * time. 1884 */ 1885/* Whether we should allow dirty bit accounting */ 1886#define MM_CP_DIRTY_ACCT (1UL << 0) 1887/* Whether this protection change is for NUMA hints */ 1888#define MM_CP_PROT_NUMA (1UL << 1) 1889/* Whether this change is for write protecting */ 1890#define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1891#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1892#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1893 MM_CP_UFFD_WP_RESOLVE) 1894 1895extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1896 unsigned long end, pgprot_t newprot, 1897 unsigned long cp_flags); 1898extern int mprotect_fixup(struct vm_area_struct *vma, 1899 struct vm_area_struct **pprev, unsigned long start, 1900 unsigned long end, unsigned long newflags); 1901 1902/* 1903 * doesn't attempt to fault and will return short. 1904 */ 1905int get_user_pages_fast_only(unsigned long start, int nr_pages, 1906 unsigned int gup_flags, struct page **pages); 1907int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1908 unsigned int gup_flags, struct page **pages); 1909 1910static inline bool get_user_page_fast_only(unsigned long addr, 1911 unsigned int gup_flags, struct page **pagep) 1912{ 1913 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1914} 1915/* 1916 * per-process(per-mm_struct) statistics. 1917 */ 1918static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1919{ 1920 long val = atomic_long_read(&mm->rss_stat.count[member]); 1921 1922#ifdef SPLIT_RSS_COUNTING 1923 /* 1924 * counter is updated in asynchronous manner and may go to minus. 1925 * But it's never be expected number for users. 1926 */ 1927 if (val < 0) 1928 val = 0; 1929#endif 1930 return (unsigned long)val; 1931} 1932 1933void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1934 1935static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1936{ 1937 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1938 1939 mm_trace_rss_stat(mm, member, count); 1940} 1941 1942static inline void inc_mm_counter(struct mm_struct *mm, int member) 1943{ 1944 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1945 1946 mm_trace_rss_stat(mm, member, count); 1947} 1948 1949static inline void dec_mm_counter(struct mm_struct *mm, int member) 1950{ 1951 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1952 1953 mm_trace_rss_stat(mm, member, count); 1954} 1955 1956/* Optimized variant when page is already known not to be PageAnon */ 1957static inline int mm_counter_file(struct page *page) 1958{ 1959 if (PageSwapBacked(page)) 1960 return MM_SHMEMPAGES; 1961 return MM_FILEPAGES; 1962} 1963 1964static inline int mm_counter(struct page *page) 1965{ 1966 if (PageAnon(page)) 1967 return MM_ANONPAGES; 1968 return mm_counter_file(page); 1969} 1970 1971static inline unsigned long get_mm_rss(struct mm_struct *mm) 1972{ 1973 return get_mm_counter(mm, MM_FILEPAGES) + 1974 get_mm_counter(mm, MM_ANONPAGES) + 1975 get_mm_counter(mm, MM_SHMEMPAGES); 1976} 1977 1978static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1979{ 1980 return max(mm->hiwater_rss, get_mm_rss(mm)); 1981} 1982 1983static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1984{ 1985 return max(mm->hiwater_vm, mm->total_vm); 1986} 1987 1988static inline void update_hiwater_rss(struct mm_struct *mm) 1989{ 1990 unsigned long _rss = get_mm_rss(mm); 1991 1992 if ((mm)->hiwater_rss < _rss) 1993 (mm)->hiwater_rss = _rss; 1994} 1995 1996static inline void update_hiwater_vm(struct mm_struct *mm) 1997{ 1998 if (mm->hiwater_vm < mm->total_vm) 1999 mm->hiwater_vm = mm->total_vm; 2000} 2001 2002static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2003{ 2004 mm->hiwater_rss = get_mm_rss(mm); 2005} 2006 2007static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2008 struct mm_struct *mm) 2009{ 2010 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2011 2012 if (*maxrss < hiwater_rss) 2013 *maxrss = hiwater_rss; 2014} 2015 2016#if defined(SPLIT_RSS_COUNTING) 2017void sync_mm_rss(struct mm_struct *mm); 2018#else 2019static inline void sync_mm_rss(struct mm_struct *mm) 2020{ 2021} 2022#endif 2023 2024#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2025static inline int pte_special(pte_t pte) 2026{ 2027 return 0; 2028} 2029 2030static inline pte_t pte_mkspecial(pte_t pte) 2031{ 2032 return pte; 2033} 2034#endif 2035 2036#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2037static inline int pte_devmap(pte_t pte) 2038{ 2039 return 0; 2040} 2041#endif 2042 2043int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2044 2045extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2046 spinlock_t **ptl); 2047static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2048 spinlock_t **ptl) 2049{ 2050 pte_t *ptep; 2051 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2052 return ptep; 2053} 2054 2055#ifdef __PAGETABLE_P4D_FOLDED 2056static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2057 unsigned long address) 2058{ 2059 return 0; 2060} 2061#else 2062int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2063#endif 2064 2065#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2066static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2067 unsigned long address) 2068{ 2069 return 0; 2070} 2071static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2072static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2073 2074#else 2075int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2076 2077static inline void mm_inc_nr_puds(struct mm_struct *mm) 2078{ 2079 if (mm_pud_folded(mm)) 2080 return; 2081 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2082} 2083 2084static inline void mm_dec_nr_puds(struct mm_struct *mm) 2085{ 2086 if (mm_pud_folded(mm)) 2087 return; 2088 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2089} 2090#endif 2091 2092#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2093static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2094 unsigned long address) 2095{ 2096 return 0; 2097} 2098 2099static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2100static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2101 2102#else 2103int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2104 2105static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2106{ 2107 if (mm_pmd_folded(mm)) 2108 return; 2109 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2110} 2111 2112static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2113{ 2114 if (mm_pmd_folded(mm)) 2115 return; 2116 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2117} 2118#endif 2119 2120#ifdef CONFIG_MMU 2121static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2122{ 2123 atomic_long_set(&mm->pgtables_bytes, 0); 2124} 2125 2126static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2127{ 2128 return atomic_long_read(&mm->pgtables_bytes); 2129} 2130 2131static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2132{ 2133 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2134} 2135 2136static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2137{ 2138 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2139} 2140#else 2141 2142static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2143static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2144{ 2145 return 0; 2146} 2147 2148static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2149static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2150#endif 2151 2152int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2153int __pte_alloc_kernel(pmd_t *pmd); 2154 2155#if defined(CONFIG_MMU) 2156 2157static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2158 unsigned long address) 2159{ 2160 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2161 NULL : p4d_offset(pgd, address); 2162} 2163 2164static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2165 unsigned long address) 2166{ 2167 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2168 NULL : pud_offset(p4d, address); 2169} 2170 2171static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2172{ 2173 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2174 NULL: pmd_offset(pud, address); 2175} 2176#endif /* CONFIG_MMU */ 2177 2178#if USE_SPLIT_PTE_PTLOCKS 2179#if ALLOC_SPLIT_PTLOCKS 2180void __init ptlock_cache_init(void); 2181extern bool ptlock_alloc(struct page *page); 2182extern void ptlock_free(struct page *page); 2183 2184static inline spinlock_t *ptlock_ptr(struct page *page) 2185{ 2186 return page->ptl; 2187} 2188#else /* ALLOC_SPLIT_PTLOCKS */ 2189static inline void ptlock_cache_init(void) 2190{ 2191} 2192 2193static inline bool ptlock_alloc(struct page *page) 2194{ 2195 return true; 2196} 2197 2198static inline void ptlock_free(struct page *page) 2199{ 2200} 2201 2202static inline spinlock_t *ptlock_ptr(struct page *page) 2203{ 2204 return &page->ptl; 2205} 2206#endif /* ALLOC_SPLIT_PTLOCKS */ 2207 2208static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2209{ 2210 return ptlock_ptr(pmd_page(*pmd)); 2211} 2212 2213static inline bool ptlock_init(struct page *page) 2214{ 2215 /* 2216 * prep_new_page() initialize page->private (and therefore page->ptl) 2217 * with 0. Make sure nobody took it in use in between. 2218 * 2219 * It can happen if arch try to use slab for page table allocation: 2220 * slab code uses page->slab_cache, which share storage with page->ptl. 2221 */ 2222 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2223 if (!ptlock_alloc(page)) 2224 return false; 2225 spin_lock_init(ptlock_ptr(page)); 2226 return true; 2227} 2228 2229#else /* !USE_SPLIT_PTE_PTLOCKS */ 2230/* 2231 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2232 */ 2233static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2234{ 2235 return &mm->page_table_lock; 2236} 2237static inline void ptlock_cache_init(void) {} 2238static inline bool ptlock_init(struct page *page) { return true; } 2239static inline void ptlock_free(struct page *page) {} 2240#endif /* USE_SPLIT_PTE_PTLOCKS */ 2241 2242static inline void pgtable_init(void) 2243{ 2244 ptlock_cache_init(); 2245 pgtable_cache_init(); 2246} 2247 2248static inline bool pgtable_pte_page_ctor(struct page *page) 2249{ 2250 if (!ptlock_init(page)) 2251 return false; 2252 __SetPageTable(page); 2253 inc_lruvec_page_state(page, NR_PAGETABLE); 2254 return true; 2255} 2256 2257static inline void pgtable_pte_page_dtor(struct page *page) 2258{ 2259 ptlock_free(page); 2260 __ClearPageTable(page); 2261 dec_lruvec_page_state(page, NR_PAGETABLE); 2262} 2263 2264#define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2265({ \ 2266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2267 pte_t *__pte = pte_offset_map(pmd, address); \ 2268 *(ptlp) = __ptl; \ 2269 spin_lock(__ptl); \ 2270 __pte; \ 2271}) 2272 2273#define pte_unmap_unlock(pte, ptl) do { \ 2274 spin_unlock(ptl); \ 2275 pte_unmap(pte); \ 2276} while (0) 2277 2278#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2279 2280#define pte_alloc_map(mm, pmd, address) \ 2281 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2282 2283#define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2284 (pte_alloc(mm, pmd) ? \ 2285 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2286 2287#define pte_alloc_kernel(pmd, address) \ 2288 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2289 NULL: pte_offset_kernel(pmd, address)) 2290 2291#if USE_SPLIT_PMD_PTLOCKS 2292 2293static struct page *pmd_to_page(pmd_t *pmd) 2294{ 2295 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2296 return virt_to_page((void *)((unsigned long) pmd & mask)); 2297} 2298 2299static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2300{ 2301 return ptlock_ptr(pmd_to_page(pmd)); 2302} 2303 2304static inline bool pmd_ptlock_init(struct page *page) 2305{ 2306#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2307 page->pmd_huge_pte = NULL; 2308#endif 2309 return ptlock_init(page); 2310} 2311 2312static inline void pmd_ptlock_free(struct page *page) 2313{ 2314#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2315 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2316#endif 2317 ptlock_free(page); 2318} 2319 2320#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2321 2322#else 2323 2324static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2325{ 2326 return &mm->page_table_lock; 2327} 2328 2329static inline bool pmd_ptlock_init(struct page *page) { return true; } 2330static inline void pmd_ptlock_free(struct page *page) {} 2331 2332#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2333 2334#endif 2335 2336static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2337{ 2338 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2339 spin_lock(ptl); 2340 return ptl; 2341} 2342 2343static inline bool pgtable_pmd_page_ctor(struct page *page) 2344{ 2345 if (!pmd_ptlock_init(page)) 2346 return false; 2347 __SetPageTable(page); 2348 inc_lruvec_page_state(page, NR_PAGETABLE); 2349 return true; 2350} 2351 2352static inline void pgtable_pmd_page_dtor(struct page *page) 2353{ 2354 pmd_ptlock_free(page); 2355 __ClearPageTable(page); 2356 dec_lruvec_page_state(page, NR_PAGETABLE); 2357} 2358 2359/* 2360 * No scalability reason to split PUD locks yet, but follow the same pattern 2361 * as the PMD locks to make it easier if we decide to. The VM should not be 2362 * considered ready to switch to split PUD locks yet; there may be places 2363 * which need to be converted from page_table_lock. 2364 */ 2365static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2366{ 2367 return &mm->page_table_lock; 2368} 2369 2370static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2371{ 2372 spinlock_t *ptl = pud_lockptr(mm, pud); 2373 2374 spin_lock(ptl); 2375 return ptl; 2376} 2377 2378extern void __init pagecache_init(void); 2379extern void __init free_area_init_memoryless_node(int nid); 2380extern void free_initmem(void); 2381 2382/* 2383 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2384 * into the buddy system. The freed pages will be poisoned with pattern 2385 * "poison" if it's within range [0, UCHAR_MAX]. 2386 * Return pages freed into the buddy system. 2387 */ 2388extern unsigned long free_reserved_area(void *start, void *end, 2389 int poison, const char *s); 2390 2391extern void adjust_managed_page_count(struct page *page, long count); 2392extern void mem_init_print_info(void); 2393 2394extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2395 2396/* Free the reserved page into the buddy system, so it gets managed. */ 2397static inline void free_reserved_page(struct page *page) 2398{ 2399 ClearPageReserved(page); 2400 init_page_count(page); 2401 __free_page(page); 2402 adjust_managed_page_count(page, 1); 2403} 2404#define free_highmem_page(page) free_reserved_page(page) 2405 2406static inline void mark_page_reserved(struct page *page) 2407{ 2408 SetPageReserved(page); 2409 adjust_managed_page_count(page, -1); 2410} 2411 2412/* 2413 * Default method to free all the __init memory into the buddy system. 2414 * The freed pages will be poisoned with pattern "poison" if it's within 2415 * range [0, UCHAR_MAX]. 2416 * Return pages freed into the buddy system. 2417 */ 2418static inline unsigned long free_initmem_default(int poison) 2419{ 2420 extern char __init_begin[], __init_end[]; 2421 2422 return free_reserved_area(&__init_begin, &__init_end, 2423 poison, "unused kernel image (initmem)"); 2424} 2425 2426static inline unsigned long get_num_physpages(void) 2427{ 2428 int nid; 2429 unsigned long phys_pages = 0; 2430 2431 for_each_online_node(nid) 2432 phys_pages += node_present_pages(nid); 2433 2434 return phys_pages; 2435} 2436 2437/* 2438 * Using memblock node mappings, an architecture may initialise its 2439 * zones, allocate the backing mem_map and account for memory holes in an 2440 * architecture independent manner. 2441 * 2442 * An architecture is expected to register range of page frames backed by 2443 * physical memory with memblock_add[_node]() before calling 2444 * free_area_init() passing in the PFN each zone ends at. At a basic 2445 * usage, an architecture is expected to do something like 2446 * 2447 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2448 * max_highmem_pfn}; 2449 * for_each_valid_physical_page_range() 2450 * memblock_add_node(base, size, nid) 2451 * free_area_init(max_zone_pfns); 2452 */ 2453void free_area_init(unsigned long *max_zone_pfn); 2454unsigned long node_map_pfn_alignment(void); 2455unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2456 unsigned long end_pfn); 2457extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2458 unsigned long end_pfn); 2459extern void get_pfn_range_for_nid(unsigned int nid, 2460 unsigned long *start_pfn, unsigned long *end_pfn); 2461extern unsigned long find_min_pfn_with_active_regions(void); 2462 2463#ifndef CONFIG_NUMA 2464static inline int early_pfn_to_nid(unsigned long pfn) 2465{ 2466 return 0; 2467} 2468#else 2469/* please see mm/page_alloc.c */ 2470extern int __meminit early_pfn_to_nid(unsigned long pfn); 2471#endif 2472 2473extern void set_dma_reserve(unsigned long new_dma_reserve); 2474extern void memmap_init_range(unsigned long, int, unsigned long, 2475 unsigned long, unsigned long, enum meminit_context, 2476 struct vmem_altmap *, int migratetype); 2477extern void setup_per_zone_wmarks(void); 2478extern int __meminit init_per_zone_wmark_min(void); 2479extern void mem_init(void); 2480extern void __init mmap_init(void); 2481extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2482extern long si_mem_available(void); 2483extern void si_meminfo(struct sysinfo * val); 2484extern void si_meminfo_node(struct sysinfo *val, int nid); 2485#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2486extern unsigned long arch_reserved_kernel_pages(void); 2487#endif 2488 2489extern __printf(3, 4) 2490void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2491 2492extern void setup_per_cpu_pageset(void); 2493 2494/* page_alloc.c */ 2495extern int min_free_kbytes; 2496extern int watermark_boost_factor; 2497extern int watermark_scale_factor; 2498extern bool arch_has_descending_max_zone_pfns(void); 2499 2500/* nommu.c */ 2501extern atomic_long_t mmap_pages_allocated; 2502extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2503 2504/* interval_tree.c */ 2505void vma_interval_tree_insert(struct vm_area_struct *node, 2506 struct rb_root_cached *root); 2507void vma_interval_tree_insert_after(struct vm_area_struct *node, 2508 struct vm_area_struct *prev, 2509 struct rb_root_cached *root); 2510void vma_interval_tree_remove(struct vm_area_struct *node, 2511 struct rb_root_cached *root); 2512struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2513 unsigned long start, unsigned long last); 2514struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2515 unsigned long start, unsigned long last); 2516 2517#define vma_interval_tree_foreach(vma, root, start, last) \ 2518 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2519 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2520 2521void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2522 struct rb_root_cached *root); 2523void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2524 struct rb_root_cached *root); 2525struct anon_vma_chain * 2526anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2527 unsigned long start, unsigned long last); 2528struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2529 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2530#ifdef CONFIG_DEBUG_VM_RB 2531void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2532#endif 2533 2534#define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2535 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2536 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2537 2538/* mmap.c */ 2539extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2540extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2541 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2542 struct vm_area_struct *expand); 2543static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2544 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2545{ 2546 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2547} 2548extern struct vm_area_struct *vma_merge(struct mm_struct *, 2549 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2550 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2551 struct mempolicy *, struct vm_userfaultfd_ctx); 2552extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2553extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2554 unsigned long addr, int new_below); 2555extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2556 unsigned long addr, int new_below); 2557extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2558extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2559 struct rb_node **, struct rb_node *); 2560extern void unlink_file_vma(struct vm_area_struct *); 2561extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2562 unsigned long addr, unsigned long len, pgoff_t pgoff, 2563 bool *need_rmap_locks); 2564extern void exit_mmap(struct mm_struct *); 2565 2566static inline int check_data_rlimit(unsigned long rlim, 2567 unsigned long new, 2568 unsigned long start, 2569 unsigned long end_data, 2570 unsigned long start_data) 2571{ 2572 if (rlim < RLIM_INFINITY) { 2573 if (((new - start) + (end_data - start_data)) > rlim) 2574 return -ENOSPC; 2575 } 2576 2577 return 0; 2578} 2579 2580extern int mm_take_all_locks(struct mm_struct *mm); 2581extern void mm_drop_all_locks(struct mm_struct *mm); 2582 2583extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2584extern struct file *get_mm_exe_file(struct mm_struct *mm); 2585extern struct file *get_task_exe_file(struct task_struct *task); 2586 2587extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2588extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2589 2590extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2591 const struct vm_special_mapping *sm); 2592extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2593 unsigned long addr, unsigned long len, 2594 unsigned long flags, 2595 const struct vm_special_mapping *spec); 2596/* This is an obsolete alternative to _install_special_mapping. */ 2597extern int install_special_mapping(struct mm_struct *mm, 2598 unsigned long addr, unsigned long len, 2599 unsigned long flags, struct page **pages); 2600 2601unsigned long randomize_stack_top(unsigned long stack_top); 2602 2603extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2604 2605extern unsigned long mmap_region(struct file *file, unsigned long addr, 2606 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2607 struct list_head *uf); 2608extern unsigned long do_mmap(struct file *file, unsigned long addr, 2609 unsigned long len, unsigned long prot, unsigned long flags, 2610 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2611extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2612 struct list_head *uf, bool downgrade); 2613extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2614 struct list_head *uf); 2615extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2616 2617#ifdef CONFIG_MMU 2618extern int __mm_populate(unsigned long addr, unsigned long len, 2619 int ignore_errors); 2620static inline void mm_populate(unsigned long addr, unsigned long len) 2621{ 2622 /* Ignore errors */ 2623 (void) __mm_populate(addr, len, 1); 2624} 2625#else 2626static inline void mm_populate(unsigned long addr, unsigned long len) {} 2627#endif 2628 2629/* These take the mm semaphore themselves */ 2630extern int __must_check vm_brk(unsigned long, unsigned long); 2631extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2632extern int vm_munmap(unsigned long, size_t); 2633extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2634 unsigned long, unsigned long, 2635 unsigned long, unsigned long); 2636 2637struct vm_unmapped_area_info { 2638#define VM_UNMAPPED_AREA_TOPDOWN 1 2639 unsigned long flags; 2640 unsigned long length; 2641 unsigned long low_limit; 2642 unsigned long high_limit; 2643 unsigned long align_mask; 2644 unsigned long align_offset; 2645}; 2646 2647extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2648 2649/* truncate.c */ 2650extern void truncate_inode_pages(struct address_space *, loff_t); 2651extern void truncate_inode_pages_range(struct address_space *, 2652 loff_t lstart, loff_t lend); 2653extern void truncate_inode_pages_final(struct address_space *); 2654 2655/* generic vm_area_ops exported for stackable file systems */ 2656extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2657extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2658 pgoff_t start_pgoff, pgoff_t end_pgoff); 2659extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2660 2661/* mm/page-writeback.c */ 2662int __must_check write_one_page(struct page *page); 2663void task_dirty_inc(struct task_struct *tsk); 2664 2665extern unsigned long stack_guard_gap; 2666/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2667extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2668 2669/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2670extern int expand_downwards(struct vm_area_struct *vma, 2671 unsigned long address); 2672#if VM_GROWSUP 2673extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2674#else 2675 #define expand_upwards(vma, address) (0) 2676#endif 2677 2678/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2679extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2680extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2681 struct vm_area_struct **pprev); 2682 2683/** 2684 * find_vma_intersection() - Look up the first VMA which intersects the interval 2685 * @mm: The process address space. 2686 * @start_addr: The inclusive start user address. 2687 * @end_addr: The exclusive end user address. 2688 * 2689 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2690 * start_addr < end_addr. 2691 */ 2692static inline 2693struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2694 unsigned long start_addr, 2695 unsigned long end_addr) 2696{ 2697 struct vm_area_struct *vma = find_vma(mm, start_addr); 2698 2699 if (vma && end_addr <= vma->vm_start) 2700 vma = NULL; 2701 return vma; 2702} 2703 2704/** 2705 * vma_lookup() - Find a VMA at a specific address 2706 * @mm: The process address space. 2707 * @addr: The user address. 2708 * 2709 * Return: The vm_area_struct at the given address, %NULL otherwise. 2710 */ 2711static inline 2712struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2713{ 2714 struct vm_area_struct *vma = find_vma(mm, addr); 2715 2716 if (vma && addr < vma->vm_start) 2717 vma = NULL; 2718 2719 return vma; 2720} 2721 2722static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2723{ 2724 unsigned long vm_start = vma->vm_start; 2725 2726 if (vma->vm_flags & VM_GROWSDOWN) { 2727 vm_start -= stack_guard_gap; 2728 if (vm_start > vma->vm_start) 2729 vm_start = 0; 2730 } 2731 return vm_start; 2732} 2733 2734static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2735{ 2736 unsigned long vm_end = vma->vm_end; 2737 2738 if (vma->vm_flags & VM_GROWSUP) { 2739 vm_end += stack_guard_gap; 2740 if (vm_end < vma->vm_end) 2741 vm_end = -PAGE_SIZE; 2742 } 2743 return vm_end; 2744} 2745 2746static inline unsigned long vma_pages(struct vm_area_struct *vma) 2747{ 2748 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2749} 2750 2751/* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2752static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2753 unsigned long vm_start, unsigned long vm_end) 2754{ 2755 struct vm_area_struct *vma = find_vma(mm, vm_start); 2756 2757 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2758 vma = NULL; 2759 2760 return vma; 2761} 2762 2763static inline bool range_in_vma(struct vm_area_struct *vma, 2764 unsigned long start, unsigned long end) 2765{ 2766 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2767} 2768 2769#ifdef CONFIG_MMU 2770pgprot_t vm_get_page_prot(unsigned long vm_flags); 2771void vma_set_page_prot(struct vm_area_struct *vma); 2772#else 2773static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2774{ 2775 return __pgprot(0); 2776} 2777static inline void vma_set_page_prot(struct vm_area_struct *vma) 2778{ 2779 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2780} 2781#endif 2782 2783void vma_set_file(struct vm_area_struct *vma, struct file *file); 2784 2785#ifdef CONFIG_NUMA_BALANCING 2786unsigned long change_prot_numa(struct vm_area_struct *vma, 2787 unsigned long start, unsigned long end); 2788#endif 2789 2790struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2791int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2792 unsigned long pfn, unsigned long size, pgprot_t); 2793int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2794 unsigned long pfn, unsigned long size, pgprot_t prot); 2795int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2796int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2797 struct page **pages, unsigned long *num); 2798int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2799 unsigned long num); 2800int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2801 unsigned long num); 2802vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2803 unsigned long pfn); 2804vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2805 unsigned long pfn, pgprot_t pgprot); 2806vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2807 pfn_t pfn); 2808vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2809 pfn_t pfn, pgprot_t pgprot); 2810vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2811 unsigned long addr, pfn_t pfn); 2812int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2813 2814static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2815 unsigned long addr, struct page *page) 2816{ 2817 int err = vm_insert_page(vma, addr, page); 2818 2819 if (err == -ENOMEM) 2820 return VM_FAULT_OOM; 2821 if (err < 0 && err != -EBUSY) 2822 return VM_FAULT_SIGBUS; 2823 2824 return VM_FAULT_NOPAGE; 2825} 2826 2827#ifndef io_remap_pfn_range 2828static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2829 unsigned long addr, unsigned long pfn, 2830 unsigned long size, pgprot_t prot) 2831{ 2832 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2833} 2834#endif 2835 2836static inline vm_fault_t vmf_error(int err) 2837{ 2838 if (err == -ENOMEM) 2839 return VM_FAULT_OOM; 2840 return VM_FAULT_SIGBUS; 2841} 2842 2843struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2844 unsigned int foll_flags); 2845 2846#define FOLL_WRITE 0x01 /* check pte is writable */ 2847#define FOLL_TOUCH 0x02 /* mark page accessed */ 2848#define FOLL_GET 0x04 /* do get_page on page */ 2849#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2850#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2851#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2852 * and return without waiting upon it */ 2853#define FOLL_POPULATE 0x40 /* fault in page */ 2854#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2855#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2856#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2857#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2858#define FOLL_MLOCK 0x1000 /* lock present pages */ 2859#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2860#define FOLL_COW 0x4000 /* internal GUP flag */ 2861#define FOLL_ANON 0x8000 /* don't do file mappings */ 2862#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2863#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2864#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2865#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2866 2867/* 2868 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2869 * other. Here is what they mean, and how to use them: 2870 * 2871 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2872 * period _often_ under userspace control. This is in contrast to 2873 * iov_iter_get_pages(), whose usages are transient. 2874 * 2875 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2876 * lifetime enforced by the filesystem and we need guarantees that longterm 2877 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2878 * the filesystem. Ideas for this coordination include revoking the longterm 2879 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2880 * added after the problem with filesystems was found FS DAX VMAs are 2881 * specifically failed. Filesystem pages are still subject to bugs and use of 2882 * FOLL_LONGTERM should be avoided on those pages. 2883 * 2884 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2885 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2886 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2887 * is due to an incompatibility with the FS DAX check and 2888 * FAULT_FLAG_ALLOW_RETRY. 2889 * 2890 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2891 * that region. And so, CMA attempts to migrate the page before pinning, when 2892 * FOLL_LONGTERM is specified. 2893 * 2894 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2895 * but an additional pin counting system) will be invoked. This is intended for 2896 * anything that gets a page reference and then touches page data (for example, 2897 * Direct IO). This lets the filesystem know that some non-file-system entity is 2898 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2899 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2900 * a call to unpin_user_page(). 2901 * 2902 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2903 * and separate refcounting mechanisms, however, and that means that each has 2904 * its own acquire and release mechanisms: 2905 * 2906 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2907 * 2908 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2909 * 2910 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2911 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2912 * calls applied to them, and that's perfectly OK. This is a constraint on the 2913 * callers, not on the pages.) 2914 * 2915 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2916 * directly by the caller. That's in order to help avoid mismatches when 2917 * releasing pages: get_user_pages*() pages must be released via put_page(), 2918 * while pin_user_pages*() pages must be released via unpin_user_page(). 2919 * 2920 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2921 */ 2922 2923static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2924{ 2925 if (vm_fault & VM_FAULT_OOM) 2926 return -ENOMEM; 2927 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2928 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2929 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2930 return -EFAULT; 2931 return 0; 2932} 2933 2934typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2935extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2936 unsigned long size, pte_fn_t fn, void *data); 2937extern int apply_to_existing_page_range(struct mm_struct *mm, 2938 unsigned long address, unsigned long size, 2939 pte_fn_t fn, void *data); 2940 2941extern void init_mem_debugging_and_hardening(void); 2942#ifdef CONFIG_PAGE_POISONING 2943extern void __kernel_poison_pages(struct page *page, int numpages); 2944extern void __kernel_unpoison_pages(struct page *page, int numpages); 2945extern bool _page_poisoning_enabled_early; 2946DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2947static inline bool page_poisoning_enabled(void) 2948{ 2949 return _page_poisoning_enabled_early; 2950} 2951/* 2952 * For use in fast paths after init_mem_debugging() has run, or when a 2953 * false negative result is not harmful when called too early. 2954 */ 2955static inline bool page_poisoning_enabled_static(void) 2956{ 2957 return static_branch_unlikely(&_page_poisoning_enabled); 2958} 2959static inline void kernel_poison_pages(struct page *page, int numpages) 2960{ 2961 if (page_poisoning_enabled_static()) 2962 __kernel_poison_pages(page, numpages); 2963} 2964static inline void kernel_unpoison_pages(struct page *page, int numpages) 2965{ 2966 if (page_poisoning_enabled_static()) 2967 __kernel_unpoison_pages(page, numpages); 2968} 2969#else 2970static inline bool page_poisoning_enabled(void) { return false; } 2971static inline bool page_poisoning_enabled_static(void) { return false; } 2972static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2973static inline void kernel_poison_pages(struct page *page, int numpages) { } 2974static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2975#endif 2976 2977DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2978static inline bool want_init_on_alloc(gfp_t flags) 2979{ 2980 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 2981 &init_on_alloc)) 2982 return true; 2983 return flags & __GFP_ZERO; 2984} 2985 2986DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2987static inline bool want_init_on_free(void) 2988{ 2989 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 2990 &init_on_free); 2991} 2992 2993extern bool _debug_pagealloc_enabled_early; 2994DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2995 2996static inline bool debug_pagealloc_enabled(void) 2997{ 2998 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2999 _debug_pagealloc_enabled_early; 3000} 3001 3002/* 3003 * For use in fast paths after init_debug_pagealloc() has run, or when a 3004 * false negative result is not harmful when called too early. 3005 */ 3006static inline bool debug_pagealloc_enabled_static(void) 3007{ 3008 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3009 return false; 3010 3011 return static_branch_unlikely(&_debug_pagealloc_enabled); 3012} 3013 3014#ifdef CONFIG_DEBUG_PAGEALLOC 3015/* 3016 * To support DEBUG_PAGEALLOC architecture must ensure that 3017 * __kernel_map_pages() never fails 3018 */ 3019extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3020 3021static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3022{ 3023 if (debug_pagealloc_enabled_static()) 3024 __kernel_map_pages(page, numpages, 1); 3025} 3026 3027static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3028{ 3029 if (debug_pagealloc_enabled_static()) 3030 __kernel_map_pages(page, numpages, 0); 3031} 3032#else /* CONFIG_DEBUG_PAGEALLOC */ 3033static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3034static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3035#endif /* CONFIG_DEBUG_PAGEALLOC */ 3036 3037#ifdef __HAVE_ARCH_GATE_AREA 3038extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3039extern int in_gate_area_no_mm(unsigned long addr); 3040extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3041#else 3042static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3043{ 3044 return NULL; 3045} 3046static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3047static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3048{ 3049 return 0; 3050} 3051#endif /* __HAVE_ARCH_GATE_AREA */ 3052 3053extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3054 3055#ifdef CONFIG_SYSCTL 3056extern int sysctl_drop_caches; 3057int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3058 loff_t *); 3059#endif 3060 3061void drop_slab(void); 3062void drop_slab_node(int nid); 3063 3064#ifndef CONFIG_MMU 3065#define randomize_va_space 0 3066#else 3067extern int randomize_va_space; 3068#endif 3069 3070const char * arch_vma_name(struct vm_area_struct *vma); 3071#ifdef CONFIG_MMU 3072void print_vma_addr(char *prefix, unsigned long rip); 3073#else 3074static inline void print_vma_addr(char *prefix, unsigned long rip) 3075{ 3076} 3077#endif 3078 3079int vmemmap_remap_free(unsigned long start, unsigned long end, 3080 unsigned long reuse); 3081int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3082 unsigned long reuse, gfp_t gfp_mask); 3083 3084void *sparse_buffer_alloc(unsigned long size); 3085struct page * __populate_section_memmap(unsigned long pfn, 3086 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3087pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3088p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3089pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3090pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3091pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3092 struct vmem_altmap *altmap); 3093void *vmemmap_alloc_block(unsigned long size, int node); 3094struct vmem_altmap; 3095void *vmemmap_alloc_block_buf(unsigned long size, int node, 3096 struct vmem_altmap *altmap); 3097void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3098int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3099 int node, struct vmem_altmap *altmap); 3100int vmemmap_populate(unsigned long start, unsigned long end, int node, 3101 struct vmem_altmap *altmap); 3102void vmemmap_populate_print_last(void); 3103#ifdef CONFIG_MEMORY_HOTPLUG 3104void vmemmap_free(unsigned long start, unsigned long end, 3105 struct vmem_altmap *altmap); 3106#endif 3107void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3108 unsigned long nr_pages); 3109 3110enum mf_flags { 3111 MF_COUNT_INCREASED = 1 << 0, 3112 MF_ACTION_REQUIRED = 1 << 1, 3113 MF_MUST_KILL = 1 << 2, 3114 MF_SOFT_OFFLINE = 1 << 3, 3115}; 3116extern int memory_failure(unsigned long pfn, int flags); 3117extern void memory_failure_queue(unsigned long pfn, int flags); 3118extern void memory_failure_queue_kick(int cpu); 3119extern int unpoison_memory(unsigned long pfn); 3120extern int sysctl_memory_failure_early_kill; 3121extern int sysctl_memory_failure_recovery; 3122extern void shake_page(struct page *p, int access); 3123extern atomic_long_t num_poisoned_pages __read_mostly; 3124extern int soft_offline_page(unsigned long pfn, int flags); 3125 3126 3127/* 3128 * Error handlers for various types of pages. 3129 */ 3130enum mf_result { 3131 MF_IGNORED, /* Error: cannot be handled */ 3132 MF_FAILED, /* Error: handling failed */ 3133 MF_DELAYED, /* Will be handled later */ 3134 MF_RECOVERED, /* Successfully recovered */ 3135}; 3136 3137enum mf_action_page_type { 3138 MF_MSG_KERNEL, 3139 MF_MSG_KERNEL_HIGH_ORDER, 3140 MF_MSG_SLAB, 3141 MF_MSG_DIFFERENT_COMPOUND, 3142 MF_MSG_POISONED_HUGE, 3143 MF_MSG_HUGE, 3144 MF_MSG_FREE_HUGE, 3145 MF_MSG_NON_PMD_HUGE, 3146 MF_MSG_UNMAP_FAILED, 3147 MF_MSG_DIRTY_SWAPCACHE, 3148 MF_MSG_CLEAN_SWAPCACHE, 3149 MF_MSG_DIRTY_MLOCKED_LRU, 3150 MF_MSG_CLEAN_MLOCKED_LRU, 3151 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3152 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3153 MF_MSG_DIRTY_LRU, 3154 MF_MSG_CLEAN_LRU, 3155 MF_MSG_TRUNCATED_LRU, 3156 MF_MSG_BUDDY, 3157 MF_MSG_BUDDY_2ND, 3158 MF_MSG_DAX, 3159 MF_MSG_UNSPLIT_THP, 3160 MF_MSG_UNKNOWN, 3161}; 3162 3163#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3164extern void clear_huge_page(struct page *page, 3165 unsigned long addr_hint, 3166 unsigned int pages_per_huge_page); 3167extern void copy_user_huge_page(struct page *dst, struct page *src, 3168 unsigned long addr_hint, 3169 struct vm_area_struct *vma, 3170 unsigned int pages_per_huge_page); 3171extern long copy_huge_page_from_user(struct page *dst_page, 3172 const void __user *usr_src, 3173 unsigned int pages_per_huge_page, 3174 bool allow_pagefault); 3175 3176/** 3177 * vma_is_special_huge - Are transhuge page-table entries considered special? 3178 * @vma: Pointer to the struct vm_area_struct to consider 3179 * 3180 * Whether transhuge page-table entries are considered "special" following 3181 * the definition in vm_normal_page(). 3182 * 3183 * Return: true if transhuge page-table entries should be considered special, 3184 * false otherwise. 3185 */ 3186static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3187{ 3188 return vma_is_dax(vma) || (vma->vm_file && 3189 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3190} 3191 3192#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3193 3194#ifdef CONFIG_DEBUG_PAGEALLOC 3195extern unsigned int _debug_guardpage_minorder; 3196DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3197 3198static inline unsigned int debug_guardpage_minorder(void) 3199{ 3200 return _debug_guardpage_minorder; 3201} 3202 3203static inline bool debug_guardpage_enabled(void) 3204{ 3205 return static_branch_unlikely(&_debug_guardpage_enabled); 3206} 3207 3208static inline bool page_is_guard(struct page *page) 3209{ 3210 if (!debug_guardpage_enabled()) 3211 return false; 3212 3213 return PageGuard(page); 3214} 3215#else 3216static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3217static inline bool debug_guardpage_enabled(void) { return false; } 3218static inline bool page_is_guard(struct page *page) { return false; } 3219#endif /* CONFIG_DEBUG_PAGEALLOC */ 3220 3221#if MAX_NUMNODES > 1 3222void __init setup_nr_node_ids(void); 3223#else 3224static inline void setup_nr_node_ids(void) {} 3225#endif 3226 3227extern int memcmp_pages(struct page *page1, struct page *page2); 3228 3229static inline int pages_identical(struct page *page1, struct page *page2) 3230{ 3231 return !memcmp_pages(page1, page2); 3232} 3233 3234#ifdef CONFIG_MAPPING_DIRTY_HELPERS 3235unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3236 pgoff_t first_index, pgoff_t nr, 3237 pgoff_t bitmap_pgoff, 3238 unsigned long *bitmap, 3239 pgoff_t *start, 3240 pgoff_t *end); 3241 3242unsigned long wp_shared_mapping_range(struct address_space *mapping, 3243 pgoff_t first_index, pgoff_t nr); 3244#endif 3245 3246extern int sysctl_nr_trim_pages; 3247 3248#ifdef CONFIG_PRINTK 3249void mem_dump_obj(void *object); 3250#else 3251static inline void mem_dump_obj(void *object) {} 3252#endif 3253 3254/** 3255 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3256 * @seals: the seals to check 3257 * @vma: the vma to operate on 3258 * 3259 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3260 * the vma flags. Return 0 if check pass, or <0 for errors. 3261 */ 3262static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3263{ 3264 if (seals & F_SEAL_FUTURE_WRITE) { 3265 /* 3266 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3267 * "future write" seal active. 3268 */ 3269 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3270 return -EPERM; 3271 3272 /* 3273 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3274 * MAP_SHARED and read-only, take care to not allow mprotect to 3275 * revert protections on such mappings. Do this only for shared 3276 * mappings. For private mappings, don't need to mask 3277 * VM_MAYWRITE as we still want them to be COW-writable. 3278 */ 3279 if (vma->vm_flags & VM_SHARED) 3280 vma->vm_flags &= ~(VM_MAYWRITE); 3281 } 3282 3283 return 0; 3284} 3285 3286#endif /* __KERNEL__ */ 3287#endif /* _LINUX_MM_H */