at v5.14 44 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_NR_STAT, 37}; 38 39enum memcg_memory_event { 40 MEMCG_LOW, 41 MEMCG_HIGH, 42 MEMCG_MAX, 43 MEMCG_OOM, 44 MEMCG_OOM_KILL, 45 MEMCG_SWAP_HIGH, 46 MEMCG_SWAP_MAX, 47 MEMCG_SWAP_FAIL, 48 MEMCG_NR_MEMORY_EVENTS, 49}; 50 51struct mem_cgroup_reclaim_cookie { 52 pg_data_t *pgdat; 53 unsigned int generation; 54}; 55 56#ifdef CONFIG_MEMCG 57 58#define MEM_CGROUP_ID_SHIFT 16 59#define MEM_CGROUP_ID_MAX USHRT_MAX 60 61struct mem_cgroup_id { 62 int id; 63 refcount_t ref; 64}; 65 66/* 67 * Per memcg event counter is incremented at every pagein/pageout. With THP, 68 * it will be incremented by the number of pages. This counter is used 69 * to trigger some periodic events. This is straightforward and better 70 * than using jiffies etc. to handle periodic memcg event. 71 */ 72enum mem_cgroup_events_target { 73 MEM_CGROUP_TARGET_THRESH, 74 MEM_CGROUP_TARGET_SOFTLIMIT, 75 MEM_CGROUP_NTARGETS, 76}; 77 78struct memcg_vmstats_percpu { 79 /* Local (CPU and cgroup) page state & events */ 80 long state[MEMCG_NR_STAT]; 81 unsigned long events[NR_VM_EVENT_ITEMS]; 82 83 /* Delta calculation for lockless upward propagation */ 84 long state_prev[MEMCG_NR_STAT]; 85 unsigned long events_prev[NR_VM_EVENT_ITEMS]; 86 87 /* Cgroup1: threshold notifications & softlimit tree updates */ 88 unsigned long nr_page_events; 89 unsigned long targets[MEM_CGROUP_NTARGETS]; 90}; 91 92struct memcg_vmstats { 93 /* Aggregated (CPU and subtree) page state & events */ 94 long state[MEMCG_NR_STAT]; 95 unsigned long events[NR_VM_EVENT_ITEMS]; 96 97 /* Pending child counts during tree propagation */ 98 long state_pending[MEMCG_NR_STAT]; 99 unsigned long events_pending[NR_VM_EVENT_ITEMS]; 100}; 101 102struct mem_cgroup_reclaim_iter { 103 struct mem_cgroup *position; 104 /* scan generation, increased every round-trip */ 105 unsigned int generation; 106}; 107 108struct lruvec_stat { 109 long count[NR_VM_NODE_STAT_ITEMS]; 110}; 111 112struct batched_lruvec_stat { 113 s32 count[NR_VM_NODE_STAT_ITEMS]; 114}; 115 116/* 117 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 118 * shrinkers, which have elements charged to this memcg. 119 */ 120struct shrinker_info { 121 struct rcu_head rcu; 122 atomic_long_t *nr_deferred; 123 unsigned long *map; 124}; 125 126/* 127 * per-node information in memory controller. 128 */ 129struct mem_cgroup_per_node { 130 struct lruvec lruvec; 131 132 /* 133 * Legacy local VM stats. This should be struct lruvec_stat and 134 * cannot be optimized to struct batched_lruvec_stat. Because 135 * the threshold of the lruvec_stat_cpu can be as big as 136 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this 137 * filed has no upper limit. 138 */ 139 struct lruvec_stat __percpu *lruvec_stat_local; 140 141 /* Subtree VM stats (batched updates) */ 142 struct batched_lruvec_stat __percpu *lruvec_stat_cpu; 143 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS]; 144 145 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 146 147 struct mem_cgroup_reclaim_iter iter; 148 149 struct shrinker_info __rcu *shrinker_info; 150 151 struct rb_node tree_node; /* RB tree node */ 152 unsigned long usage_in_excess;/* Set to the value by which */ 153 /* the soft limit is exceeded*/ 154 bool on_tree; 155 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 156 /* use container_of */ 157}; 158 159struct mem_cgroup_threshold { 160 struct eventfd_ctx *eventfd; 161 unsigned long threshold; 162}; 163 164/* For threshold */ 165struct mem_cgroup_threshold_ary { 166 /* An array index points to threshold just below or equal to usage. */ 167 int current_threshold; 168 /* Size of entries[] */ 169 unsigned int size; 170 /* Array of thresholds */ 171 struct mem_cgroup_threshold entries[]; 172}; 173 174struct mem_cgroup_thresholds { 175 /* Primary thresholds array */ 176 struct mem_cgroup_threshold_ary *primary; 177 /* 178 * Spare threshold array. 179 * This is needed to make mem_cgroup_unregister_event() "never fail". 180 * It must be able to store at least primary->size - 1 entries. 181 */ 182 struct mem_cgroup_threshold_ary *spare; 183}; 184 185enum memcg_kmem_state { 186 KMEM_NONE, 187 KMEM_ALLOCATED, 188 KMEM_ONLINE, 189}; 190 191#if defined(CONFIG_SMP) 192struct memcg_padding { 193 char x[0]; 194} ____cacheline_internodealigned_in_smp; 195#define MEMCG_PADDING(name) struct memcg_padding name 196#else 197#define MEMCG_PADDING(name) 198#endif 199 200/* 201 * Remember four most recent foreign writebacks with dirty pages in this 202 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 203 * one in a given round, we're likely to catch it later if it keeps 204 * foreign-dirtying, so a fairly low count should be enough. 205 * 206 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 207 */ 208#define MEMCG_CGWB_FRN_CNT 4 209 210struct memcg_cgwb_frn { 211 u64 bdi_id; /* bdi->id of the foreign inode */ 212 int memcg_id; /* memcg->css.id of foreign inode */ 213 u64 at; /* jiffies_64 at the time of dirtying */ 214 struct wb_completion done; /* tracks in-flight foreign writebacks */ 215}; 216 217/* 218 * Bucket for arbitrarily byte-sized objects charged to a memory 219 * cgroup. The bucket can be reparented in one piece when the cgroup 220 * is destroyed, without having to round up the individual references 221 * of all live memory objects in the wild. 222 */ 223struct obj_cgroup { 224 struct percpu_ref refcnt; 225 struct mem_cgroup *memcg; 226 atomic_t nr_charged_bytes; 227 union { 228 struct list_head list; 229 struct rcu_head rcu; 230 }; 231}; 232 233/* 234 * The memory controller data structure. The memory controller controls both 235 * page cache and RSS per cgroup. We would eventually like to provide 236 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 237 * to help the administrator determine what knobs to tune. 238 */ 239struct mem_cgroup { 240 struct cgroup_subsys_state css; 241 242 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 243 struct mem_cgroup_id id; 244 245 /* Accounted resources */ 246 struct page_counter memory; /* Both v1 & v2 */ 247 248 union { 249 struct page_counter swap; /* v2 only */ 250 struct page_counter memsw; /* v1 only */ 251 }; 252 253 /* Legacy consumer-oriented counters */ 254 struct page_counter kmem; /* v1 only */ 255 struct page_counter tcpmem; /* v1 only */ 256 257 /* Range enforcement for interrupt charges */ 258 struct work_struct high_work; 259 260 unsigned long soft_limit; 261 262 /* vmpressure notifications */ 263 struct vmpressure vmpressure; 264 265 /* 266 * Should the OOM killer kill all belonging tasks, had it kill one? 267 */ 268 bool oom_group; 269 270 /* protected by memcg_oom_lock */ 271 bool oom_lock; 272 int under_oom; 273 274 int swappiness; 275 /* OOM-Killer disable */ 276 int oom_kill_disable; 277 278 /* memory.events and memory.events.local */ 279 struct cgroup_file events_file; 280 struct cgroup_file events_local_file; 281 282 /* handle for "memory.swap.events" */ 283 struct cgroup_file swap_events_file; 284 285 /* protect arrays of thresholds */ 286 struct mutex thresholds_lock; 287 288 /* thresholds for memory usage. RCU-protected */ 289 struct mem_cgroup_thresholds thresholds; 290 291 /* thresholds for mem+swap usage. RCU-protected */ 292 struct mem_cgroup_thresholds memsw_thresholds; 293 294 /* For oom notifier event fd */ 295 struct list_head oom_notify; 296 297 /* 298 * Should we move charges of a task when a task is moved into this 299 * mem_cgroup ? And what type of charges should we move ? 300 */ 301 unsigned long move_charge_at_immigrate; 302 /* taken only while moving_account > 0 */ 303 spinlock_t move_lock; 304 unsigned long move_lock_flags; 305 306 MEMCG_PADDING(_pad1_); 307 308 /* memory.stat */ 309 struct memcg_vmstats vmstats; 310 311 /* memory.events */ 312 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 313 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 314 315 unsigned long socket_pressure; 316 317 /* Legacy tcp memory accounting */ 318 bool tcpmem_active; 319 int tcpmem_pressure; 320 321#ifdef CONFIG_MEMCG_KMEM 322 int kmemcg_id; 323 enum memcg_kmem_state kmem_state; 324 struct obj_cgroup __rcu *objcg; 325 struct list_head objcg_list; /* list of inherited objcgs */ 326#endif 327 328 MEMCG_PADDING(_pad2_); 329 330 /* 331 * set > 0 if pages under this cgroup are moving to other cgroup. 332 */ 333 atomic_t moving_account; 334 struct task_struct *move_lock_task; 335 336 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 337 338#ifdef CONFIG_CGROUP_WRITEBACK 339 struct list_head cgwb_list; 340 struct wb_domain cgwb_domain; 341 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 342#endif 343 344 /* List of events which userspace want to receive */ 345 struct list_head event_list; 346 spinlock_t event_list_lock; 347 348#ifdef CONFIG_TRANSPARENT_HUGEPAGE 349 struct deferred_split deferred_split_queue; 350#endif 351 352 struct mem_cgroup_per_node *nodeinfo[]; 353}; 354 355/* 356 * size of first charge trial. "32" comes from vmscan.c's magic value. 357 * TODO: maybe necessary to use big numbers in big irons. 358 */ 359#define MEMCG_CHARGE_BATCH 32U 360 361extern struct mem_cgroup *root_mem_cgroup; 362 363enum page_memcg_data_flags { 364 /* page->memcg_data is a pointer to an objcgs vector */ 365 MEMCG_DATA_OBJCGS = (1UL << 0), 366 /* page has been accounted as a non-slab kernel page */ 367 MEMCG_DATA_KMEM = (1UL << 1), 368 /* the next bit after the last actual flag */ 369 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 370}; 371 372#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 373 374static inline bool PageMemcgKmem(struct page *page); 375 376/* 377 * After the initialization objcg->memcg is always pointing at 378 * a valid memcg, but can be atomically swapped to the parent memcg. 379 * 380 * The caller must ensure that the returned memcg won't be released: 381 * e.g. acquire the rcu_read_lock or css_set_lock. 382 */ 383static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 384{ 385 return READ_ONCE(objcg->memcg); 386} 387 388/* 389 * __page_memcg - get the memory cgroup associated with a non-kmem page 390 * @page: a pointer to the page struct 391 * 392 * Returns a pointer to the memory cgroup associated with the page, 393 * or NULL. This function assumes that the page is known to have a 394 * proper memory cgroup pointer. It's not safe to call this function 395 * against some type of pages, e.g. slab pages or ex-slab pages or 396 * kmem pages. 397 */ 398static inline struct mem_cgroup *__page_memcg(struct page *page) 399{ 400 unsigned long memcg_data = page->memcg_data; 401 402 VM_BUG_ON_PAGE(PageSlab(page), page); 403 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 404 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 405 406 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 407} 408 409/* 410 * __page_objcg - get the object cgroup associated with a kmem page 411 * @page: a pointer to the page struct 412 * 413 * Returns a pointer to the object cgroup associated with the page, 414 * or NULL. This function assumes that the page is known to have a 415 * proper object cgroup pointer. It's not safe to call this function 416 * against some type of pages, e.g. slab pages or ex-slab pages or 417 * LRU pages. 418 */ 419static inline struct obj_cgroup *__page_objcg(struct page *page) 420{ 421 unsigned long memcg_data = page->memcg_data; 422 423 VM_BUG_ON_PAGE(PageSlab(page), page); 424 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page); 425 VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page); 426 427 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 428} 429 430/* 431 * page_memcg - get the memory cgroup associated with a page 432 * @page: a pointer to the page struct 433 * 434 * Returns a pointer to the memory cgroup associated with the page, 435 * or NULL. This function assumes that the page is known to have a 436 * proper memory cgroup pointer. It's not safe to call this function 437 * against some type of pages, e.g. slab pages or ex-slab pages. 438 * 439 * For a non-kmem page any of the following ensures page and memcg binding 440 * stability: 441 * 442 * - the page lock 443 * - LRU isolation 444 * - lock_page_memcg() 445 * - exclusive reference 446 * 447 * For a kmem page a caller should hold an rcu read lock to protect memcg 448 * associated with a kmem page from being released. 449 */ 450static inline struct mem_cgroup *page_memcg(struct page *page) 451{ 452 if (PageMemcgKmem(page)) 453 return obj_cgroup_memcg(__page_objcg(page)); 454 else 455 return __page_memcg(page); 456} 457 458/* 459 * page_memcg_rcu - locklessly get the memory cgroup associated with a page 460 * @page: a pointer to the page struct 461 * 462 * Returns a pointer to the memory cgroup associated with the page, 463 * or NULL. This function assumes that the page is known to have a 464 * proper memory cgroup pointer. It's not safe to call this function 465 * against some type of pages, e.g. slab pages or ex-slab pages. 466 */ 467static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 468{ 469 unsigned long memcg_data = READ_ONCE(page->memcg_data); 470 471 VM_BUG_ON_PAGE(PageSlab(page), page); 472 WARN_ON_ONCE(!rcu_read_lock_held()); 473 474 if (memcg_data & MEMCG_DATA_KMEM) { 475 struct obj_cgroup *objcg; 476 477 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 478 return obj_cgroup_memcg(objcg); 479 } 480 481 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 482} 483 484/* 485 * page_memcg_check - get the memory cgroup associated with a page 486 * @page: a pointer to the page struct 487 * 488 * Returns a pointer to the memory cgroup associated with the page, 489 * or NULL. This function unlike page_memcg() can take any page 490 * as an argument. It has to be used in cases when it's not known if a page 491 * has an associated memory cgroup pointer or an object cgroups vector or 492 * an object cgroup. 493 * 494 * For a non-kmem page any of the following ensures page and memcg binding 495 * stability: 496 * 497 * - the page lock 498 * - LRU isolation 499 * - lock_page_memcg() 500 * - exclusive reference 501 * 502 * For a kmem page a caller should hold an rcu read lock to protect memcg 503 * associated with a kmem page from being released. 504 */ 505static inline struct mem_cgroup *page_memcg_check(struct page *page) 506{ 507 /* 508 * Because page->memcg_data might be changed asynchronously 509 * for slab pages, READ_ONCE() should be used here. 510 */ 511 unsigned long memcg_data = READ_ONCE(page->memcg_data); 512 513 if (memcg_data & MEMCG_DATA_OBJCGS) 514 return NULL; 515 516 if (memcg_data & MEMCG_DATA_KMEM) { 517 struct obj_cgroup *objcg; 518 519 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 520 return obj_cgroup_memcg(objcg); 521 } 522 523 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 524} 525 526#ifdef CONFIG_MEMCG_KMEM 527/* 528 * PageMemcgKmem - check if the page has MemcgKmem flag set 529 * @page: a pointer to the page struct 530 * 531 * Checks if the page has MemcgKmem flag set. The caller must ensure that 532 * the page has an associated memory cgroup. It's not safe to call this function 533 * against some types of pages, e.g. slab pages. 534 */ 535static inline bool PageMemcgKmem(struct page *page) 536{ 537 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page); 538 return page->memcg_data & MEMCG_DATA_KMEM; 539} 540 541/* 542 * page_objcgs - get the object cgroups vector associated with a page 543 * @page: a pointer to the page struct 544 * 545 * Returns a pointer to the object cgroups vector associated with the page, 546 * or NULL. This function assumes that the page is known to have an 547 * associated object cgroups vector. It's not safe to call this function 548 * against pages, which might have an associated memory cgroup: e.g. 549 * kernel stack pages. 550 */ 551static inline struct obj_cgroup **page_objcgs(struct page *page) 552{ 553 unsigned long memcg_data = READ_ONCE(page->memcg_data); 554 555 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page); 556 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 557 558 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 559} 560 561/* 562 * page_objcgs_check - get the object cgroups vector associated with a page 563 * @page: a pointer to the page struct 564 * 565 * Returns a pointer to the object cgroups vector associated with the page, 566 * or NULL. This function is safe to use if the page can be directly associated 567 * with a memory cgroup. 568 */ 569static inline struct obj_cgroup **page_objcgs_check(struct page *page) 570{ 571 unsigned long memcg_data = READ_ONCE(page->memcg_data); 572 573 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS)) 574 return NULL; 575 576 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page); 577 578 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 579} 580 581#else 582static inline bool PageMemcgKmem(struct page *page) 583{ 584 return false; 585} 586 587static inline struct obj_cgroup **page_objcgs(struct page *page) 588{ 589 return NULL; 590} 591 592static inline struct obj_cgroup **page_objcgs_check(struct page *page) 593{ 594 return NULL; 595} 596#endif 597 598static __always_inline bool memcg_stat_item_in_bytes(int idx) 599{ 600 if (idx == MEMCG_PERCPU_B) 601 return true; 602 return vmstat_item_in_bytes(idx); 603} 604 605static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 606{ 607 return (memcg == root_mem_cgroup); 608} 609 610static inline bool mem_cgroup_disabled(void) 611{ 612 return !cgroup_subsys_enabled(memory_cgrp_subsys); 613} 614 615static inline void mem_cgroup_protection(struct mem_cgroup *root, 616 struct mem_cgroup *memcg, 617 unsigned long *min, 618 unsigned long *low) 619{ 620 *min = *low = 0; 621 622 if (mem_cgroup_disabled()) 623 return; 624 625 /* 626 * There is no reclaim protection applied to a targeted reclaim. 627 * We are special casing this specific case here because 628 * mem_cgroup_protected calculation is not robust enough to keep 629 * the protection invariant for calculated effective values for 630 * parallel reclaimers with different reclaim target. This is 631 * especially a problem for tail memcgs (as they have pages on LRU) 632 * which would want to have effective values 0 for targeted reclaim 633 * but a different value for external reclaim. 634 * 635 * Example 636 * Let's have global and A's reclaim in parallel: 637 * | 638 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 639 * |\ 640 * | C (low = 1G, usage = 2.5G) 641 * B (low = 1G, usage = 0.5G) 642 * 643 * For the global reclaim 644 * A.elow = A.low 645 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 646 * C.elow = min(C.usage, C.low) 647 * 648 * With the effective values resetting we have A reclaim 649 * A.elow = 0 650 * B.elow = B.low 651 * C.elow = C.low 652 * 653 * If the global reclaim races with A's reclaim then 654 * B.elow = C.elow = 0 because children_low_usage > A.elow) 655 * is possible and reclaiming B would be violating the protection. 656 * 657 */ 658 if (root == memcg) 659 return; 660 661 *min = READ_ONCE(memcg->memory.emin); 662 *low = READ_ONCE(memcg->memory.elow); 663} 664 665void mem_cgroup_calculate_protection(struct mem_cgroup *root, 666 struct mem_cgroup *memcg); 667 668static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg) 669{ 670 /* 671 * The root memcg doesn't account charges, and doesn't support 672 * protection. 673 */ 674 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg); 675 676} 677 678static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 679{ 680 if (!mem_cgroup_supports_protection(memcg)) 681 return false; 682 683 return READ_ONCE(memcg->memory.elow) >= 684 page_counter_read(&memcg->memory); 685} 686 687static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 688{ 689 if (!mem_cgroup_supports_protection(memcg)) 690 return false; 691 692 return READ_ONCE(memcg->memory.emin) >= 693 page_counter_read(&memcg->memory); 694} 695 696int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask); 697int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm, 698 gfp_t gfp, swp_entry_t entry); 699void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 700 701void mem_cgroup_uncharge(struct page *page); 702void mem_cgroup_uncharge_list(struct list_head *page_list); 703 704void mem_cgroup_migrate(struct page *oldpage, struct page *newpage); 705 706/** 707 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 708 * @memcg: memcg of the wanted lruvec 709 * @pgdat: pglist_data 710 * 711 * Returns the lru list vector holding pages for a given @memcg & 712 * @pgdat combination. This can be the node lruvec, if the memory 713 * controller is disabled. 714 */ 715static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 716 struct pglist_data *pgdat) 717{ 718 struct mem_cgroup_per_node *mz; 719 struct lruvec *lruvec; 720 721 if (mem_cgroup_disabled()) { 722 lruvec = &pgdat->__lruvec; 723 goto out; 724 } 725 726 if (!memcg) 727 memcg = root_mem_cgroup; 728 729 mz = memcg->nodeinfo[pgdat->node_id]; 730 lruvec = &mz->lruvec; 731out: 732 /* 733 * Since a node can be onlined after the mem_cgroup was created, 734 * we have to be prepared to initialize lruvec->pgdat here; 735 * and if offlined then reonlined, we need to reinitialize it. 736 */ 737 if (unlikely(lruvec->pgdat != pgdat)) 738 lruvec->pgdat = pgdat; 739 return lruvec; 740} 741 742/** 743 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page 744 * @page: the page 745 * 746 * This function relies on page->mem_cgroup being stable. 747 */ 748static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) 749{ 750 pg_data_t *pgdat = page_pgdat(page); 751 struct mem_cgroup *memcg = page_memcg(page); 752 753 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page); 754 return mem_cgroup_lruvec(memcg, pgdat); 755} 756 757struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 758 759struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 760 761struct lruvec *lock_page_lruvec(struct page *page); 762struct lruvec *lock_page_lruvec_irq(struct page *page); 763struct lruvec *lock_page_lruvec_irqsave(struct page *page, 764 unsigned long *flags); 765 766#ifdef CONFIG_DEBUG_VM 767void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page); 768#else 769static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 770{ 771} 772#endif 773 774static inline 775struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 776 return css ? container_of(css, struct mem_cgroup, css) : NULL; 777} 778 779static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 780{ 781 return percpu_ref_tryget(&objcg->refcnt); 782} 783 784static inline void obj_cgroup_get(struct obj_cgroup *objcg) 785{ 786 percpu_ref_get(&objcg->refcnt); 787} 788 789static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 790 unsigned long nr) 791{ 792 percpu_ref_get_many(&objcg->refcnt, nr); 793} 794 795static inline void obj_cgroup_put(struct obj_cgroup *objcg) 796{ 797 percpu_ref_put(&objcg->refcnt); 798} 799 800static inline void mem_cgroup_put(struct mem_cgroup *memcg) 801{ 802 if (memcg) 803 css_put(&memcg->css); 804} 805 806#define mem_cgroup_from_counter(counter, member) \ 807 container_of(counter, struct mem_cgroup, member) 808 809struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 810 struct mem_cgroup *, 811 struct mem_cgroup_reclaim_cookie *); 812void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 813int mem_cgroup_scan_tasks(struct mem_cgroup *, 814 int (*)(struct task_struct *, void *), void *); 815 816static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 817{ 818 if (mem_cgroup_disabled()) 819 return 0; 820 821 return memcg->id.id; 822} 823struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 824 825static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 826{ 827 return mem_cgroup_from_css(seq_css(m)); 828} 829 830static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 831{ 832 struct mem_cgroup_per_node *mz; 833 834 if (mem_cgroup_disabled()) 835 return NULL; 836 837 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 838 return mz->memcg; 839} 840 841/** 842 * parent_mem_cgroup - find the accounting parent of a memcg 843 * @memcg: memcg whose parent to find 844 * 845 * Returns the parent memcg, or NULL if this is the root or the memory 846 * controller is in legacy no-hierarchy mode. 847 */ 848static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 849{ 850 if (!memcg->memory.parent) 851 return NULL; 852 return mem_cgroup_from_counter(memcg->memory.parent, memory); 853} 854 855static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 856 struct mem_cgroup *root) 857{ 858 if (root == memcg) 859 return true; 860 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 861} 862 863static inline bool mm_match_cgroup(struct mm_struct *mm, 864 struct mem_cgroup *memcg) 865{ 866 struct mem_cgroup *task_memcg; 867 bool match = false; 868 869 rcu_read_lock(); 870 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 871 if (task_memcg) 872 match = mem_cgroup_is_descendant(task_memcg, memcg); 873 rcu_read_unlock(); 874 return match; 875} 876 877struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page); 878ino_t page_cgroup_ino(struct page *page); 879 880static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 881{ 882 if (mem_cgroup_disabled()) 883 return true; 884 return !!(memcg->css.flags & CSS_ONLINE); 885} 886 887/* 888 * For memory reclaim. 889 */ 890int mem_cgroup_select_victim_node(struct mem_cgroup *memcg); 891 892void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 893 int zid, int nr_pages); 894 895static inline 896unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 897 enum lru_list lru, int zone_idx) 898{ 899 struct mem_cgroup_per_node *mz; 900 901 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 902 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 903} 904 905void mem_cgroup_handle_over_high(void); 906 907unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 908 909unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 910 911void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 912 struct task_struct *p); 913 914void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 915 916static inline void mem_cgroup_enter_user_fault(void) 917{ 918 WARN_ON(current->in_user_fault); 919 current->in_user_fault = 1; 920} 921 922static inline void mem_cgroup_exit_user_fault(void) 923{ 924 WARN_ON(!current->in_user_fault); 925 current->in_user_fault = 0; 926} 927 928static inline bool task_in_memcg_oom(struct task_struct *p) 929{ 930 return p->memcg_in_oom; 931} 932 933bool mem_cgroup_oom_synchronize(bool wait); 934struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 935 struct mem_cgroup *oom_domain); 936void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 937 938#ifdef CONFIG_MEMCG_SWAP 939extern bool cgroup_memory_noswap; 940#endif 941 942void lock_page_memcg(struct page *page); 943void unlock_page_memcg(struct page *page); 944 945void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 946 947/* idx can be of type enum memcg_stat_item or node_stat_item */ 948static inline void mod_memcg_state(struct mem_cgroup *memcg, 949 int idx, int val) 950{ 951 unsigned long flags; 952 953 local_irq_save(flags); 954 __mod_memcg_state(memcg, idx, val); 955 local_irq_restore(flags); 956} 957 958static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 959 enum node_stat_item idx) 960{ 961 struct mem_cgroup_per_node *pn; 962 long x; 963 964 if (mem_cgroup_disabled()) 965 return node_page_state(lruvec_pgdat(lruvec), idx); 966 967 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 968 x = atomic_long_read(&pn->lruvec_stat[idx]); 969#ifdef CONFIG_SMP 970 if (x < 0) 971 x = 0; 972#endif 973 return x; 974} 975 976static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 977 enum node_stat_item idx) 978{ 979 struct mem_cgroup_per_node *pn; 980 long x = 0; 981 int cpu; 982 983 if (mem_cgroup_disabled()) 984 return node_page_state(lruvec_pgdat(lruvec), idx); 985 986 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 987 for_each_possible_cpu(cpu) 988 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu); 989#ifdef CONFIG_SMP 990 if (x < 0) 991 x = 0; 992#endif 993 return x; 994} 995 996void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 997 int val); 998void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 999 1000static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1001 int val) 1002{ 1003 unsigned long flags; 1004 1005 local_irq_save(flags); 1006 __mod_lruvec_kmem_state(p, idx, val); 1007 local_irq_restore(flags); 1008} 1009 1010static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1011 enum node_stat_item idx, int val) 1012{ 1013 unsigned long flags; 1014 1015 local_irq_save(flags); 1016 __mod_memcg_lruvec_state(lruvec, idx, val); 1017 local_irq_restore(flags); 1018} 1019 1020void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1021 unsigned long count); 1022 1023static inline void count_memcg_events(struct mem_cgroup *memcg, 1024 enum vm_event_item idx, 1025 unsigned long count) 1026{ 1027 unsigned long flags; 1028 1029 local_irq_save(flags); 1030 __count_memcg_events(memcg, idx, count); 1031 local_irq_restore(flags); 1032} 1033 1034static inline void count_memcg_page_event(struct page *page, 1035 enum vm_event_item idx) 1036{ 1037 struct mem_cgroup *memcg = page_memcg(page); 1038 1039 if (memcg) 1040 count_memcg_events(memcg, idx, 1); 1041} 1042 1043static inline void count_memcg_event_mm(struct mm_struct *mm, 1044 enum vm_event_item idx) 1045{ 1046 struct mem_cgroup *memcg; 1047 1048 if (mem_cgroup_disabled()) 1049 return; 1050 1051 rcu_read_lock(); 1052 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1053 if (likely(memcg)) 1054 count_memcg_events(memcg, idx, 1); 1055 rcu_read_unlock(); 1056} 1057 1058static inline void memcg_memory_event(struct mem_cgroup *memcg, 1059 enum memcg_memory_event event) 1060{ 1061 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1062 event == MEMCG_SWAP_FAIL; 1063 1064 atomic_long_inc(&memcg->memory_events_local[event]); 1065 if (!swap_event) 1066 cgroup_file_notify(&memcg->events_local_file); 1067 1068 do { 1069 atomic_long_inc(&memcg->memory_events[event]); 1070 if (swap_event) 1071 cgroup_file_notify(&memcg->swap_events_file); 1072 else 1073 cgroup_file_notify(&memcg->events_file); 1074 1075 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1076 break; 1077 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1078 break; 1079 } while ((memcg = parent_mem_cgroup(memcg)) && 1080 !mem_cgroup_is_root(memcg)); 1081} 1082 1083static inline void memcg_memory_event_mm(struct mm_struct *mm, 1084 enum memcg_memory_event event) 1085{ 1086 struct mem_cgroup *memcg; 1087 1088 if (mem_cgroup_disabled()) 1089 return; 1090 1091 rcu_read_lock(); 1092 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1093 if (likely(memcg)) 1094 memcg_memory_event(memcg, event); 1095 rcu_read_unlock(); 1096} 1097 1098void split_page_memcg(struct page *head, unsigned int nr); 1099 1100unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1101 gfp_t gfp_mask, 1102 unsigned long *total_scanned); 1103 1104#else /* CONFIG_MEMCG */ 1105 1106#define MEM_CGROUP_ID_SHIFT 0 1107#define MEM_CGROUP_ID_MAX 0 1108 1109static inline struct mem_cgroup *page_memcg(struct page *page) 1110{ 1111 return NULL; 1112} 1113 1114static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1115{ 1116 WARN_ON_ONCE(!rcu_read_lock_held()); 1117 return NULL; 1118} 1119 1120static inline struct mem_cgroup *page_memcg_check(struct page *page) 1121{ 1122 return NULL; 1123} 1124 1125static inline bool PageMemcgKmem(struct page *page) 1126{ 1127 return false; 1128} 1129 1130static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1131{ 1132 return true; 1133} 1134 1135static inline bool mem_cgroup_disabled(void) 1136{ 1137 return true; 1138} 1139 1140static inline void memcg_memory_event(struct mem_cgroup *memcg, 1141 enum memcg_memory_event event) 1142{ 1143} 1144 1145static inline void memcg_memory_event_mm(struct mm_struct *mm, 1146 enum memcg_memory_event event) 1147{ 1148} 1149 1150static inline void mem_cgroup_protection(struct mem_cgroup *root, 1151 struct mem_cgroup *memcg, 1152 unsigned long *min, 1153 unsigned long *low) 1154{ 1155 *min = *low = 0; 1156} 1157 1158static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1159 struct mem_cgroup *memcg) 1160{ 1161} 1162 1163static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg) 1164{ 1165 return false; 1166} 1167 1168static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg) 1169{ 1170 return false; 1171} 1172 1173static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm, 1174 gfp_t gfp_mask) 1175{ 1176 return 0; 1177} 1178 1179static inline int mem_cgroup_swapin_charge_page(struct page *page, 1180 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1181{ 1182 return 0; 1183} 1184 1185static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1186{ 1187} 1188 1189static inline void mem_cgroup_uncharge(struct page *page) 1190{ 1191} 1192 1193static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1194{ 1195} 1196 1197static inline void mem_cgroup_migrate(struct page *old, struct page *new) 1198{ 1199} 1200 1201static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1202 struct pglist_data *pgdat) 1203{ 1204 return &pgdat->__lruvec; 1205} 1206 1207static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page) 1208{ 1209 pg_data_t *pgdat = page_pgdat(page); 1210 1211 return &pgdat->__lruvec; 1212} 1213 1214static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page) 1215{ 1216} 1217 1218static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1219{ 1220 return NULL; 1221} 1222 1223static inline bool mm_match_cgroup(struct mm_struct *mm, 1224 struct mem_cgroup *memcg) 1225{ 1226 return true; 1227} 1228 1229static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1230{ 1231 return NULL; 1232} 1233 1234static inline 1235struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1236{ 1237 return NULL; 1238} 1239 1240static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1241{ 1242} 1243 1244static inline struct lruvec *lock_page_lruvec(struct page *page) 1245{ 1246 struct pglist_data *pgdat = page_pgdat(page); 1247 1248 spin_lock(&pgdat->__lruvec.lru_lock); 1249 return &pgdat->__lruvec; 1250} 1251 1252static inline struct lruvec *lock_page_lruvec_irq(struct page *page) 1253{ 1254 struct pglist_data *pgdat = page_pgdat(page); 1255 1256 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1257 return &pgdat->__lruvec; 1258} 1259 1260static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page, 1261 unsigned long *flagsp) 1262{ 1263 struct pglist_data *pgdat = page_pgdat(page); 1264 1265 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1266 return &pgdat->__lruvec; 1267} 1268 1269static inline struct mem_cgroup * 1270mem_cgroup_iter(struct mem_cgroup *root, 1271 struct mem_cgroup *prev, 1272 struct mem_cgroup_reclaim_cookie *reclaim) 1273{ 1274 return NULL; 1275} 1276 1277static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1278 struct mem_cgroup *prev) 1279{ 1280} 1281 1282static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1283 int (*fn)(struct task_struct *, void *), void *arg) 1284{ 1285 return 0; 1286} 1287 1288static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1289{ 1290 return 0; 1291} 1292 1293static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1294{ 1295 WARN_ON_ONCE(id); 1296 /* XXX: This should always return root_mem_cgroup */ 1297 return NULL; 1298} 1299 1300static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1301{ 1302 return NULL; 1303} 1304 1305static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1306{ 1307 return NULL; 1308} 1309 1310static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1311{ 1312 return true; 1313} 1314 1315static inline 1316unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1317 enum lru_list lru, int zone_idx) 1318{ 1319 return 0; 1320} 1321 1322static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1323{ 1324 return 0; 1325} 1326 1327static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1328{ 1329 return 0; 1330} 1331 1332static inline void 1333mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1334{ 1335} 1336 1337static inline void 1338mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1339{ 1340} 1341 1342static inline void lock_page_memcg(struct page *page) 1343{ 1344} 1345 1346static inline void unlock_page_memcg(struct page *page) 1347{ 1348} 1349 1350static inline void mem_cgroup_handle_over_high(void) 1351{ 1352} 1353 1354static inline void mem_cgroup_enter_user_fault(void) 1355{ 1356} 1357 1358static inline void mem_cgroup_exit_user_fault(void) 1359{ 1360} 1361 1362static inline bool task_in_memcg_oom(struct task_struct *p) 1363{ 1364 return false; 1365} 1366 1367static inline bool mem_cgroup_oom_synchronize(bool wait) 1368{ 1369 return false; 1370} 1371 1372static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1373 struct task_struct *victim, struct mem_cgroup *oom_domain) 1374{ 1375 return NULL; 1376} 1377 1378static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1379{ 1380} 1381 1382static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1383 int idx, 1384 int nr) 1385{ 1386} 1387 1388static inline void mod_memcg_state(struct mem_cgroup *memcg, 1389 int idx, 1390 int nr) 1391{ 1392} 1393 1394static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1395 enum node_stat_item idx) 1396{ 1397 return node_page_state(lruvec_pgdat(lruvec), idx); 1398} 1399 1400static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1401 enum node_stat_item idx) 1402{ 1403 return node_page_state(lruvec_pgdat(lruvec), idx); 1404} 1405 1406static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1407 enum node_stat_item idx, int val) 1408{ 1409} 1410 1411static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1412 int val) 1413{ 1414 struct page *page = virt_to_head_page(p); 1415 1416 __mod_node_page_state(page_pgdat(page), idx, val); 1417} 1418 1419static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1420 int val) 1421{ 1422 struct page *page = virt_to_head_page(p); 1423 1424 mod_node_page_state(page_pgdat(page), idx, val); 1425} 1426 1427static inline void count_memcg_events(struct mem_cgroup *memcg, 1428 enum vm_event_item idx, 1429 unsigned long count) 1430{ 1431} 1432 1433static inline void __count_memcg_events(struct mem_cgroup *memcg, 1434 enum vm_event_item idx, 1435 unsigned long count) 1436{ 1437} 1438 1439static inline void count_memcg_page_event(struct page *page, 1440 int idx) 1441{ 1442} 1443 1444static inline 1445void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1446{ 1447} 1448 1449static inline void split_page_memcg(struct page *head, unsigned int nr) 1450{ 1451} 1452 1453static inline 1454unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1455 gfp_t gfp_mask, 1456 unsigned long *total_scanned) 1457{ 1458 return 0; 1459} 1460#endif /* CONFIG_MEMCG */ 1461 1462static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1463{ 1464 __mod_lruvec_kmem_state(p, idx, 1); 1465} 1466 1467static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1468{ 1469 __mod_lruvec_kmem_state(p, idx, -1); 1470} 1471 1472static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1473{ 1474 struct mem_cgroup *memcg; 1475 1476 memcg = lruvec_memcg(lruvec); 1477 if (!memcg) 1478 return NULL; 1479 memcg = parent_mem_cgroup(memcg); 1480 if (!memcg) 1481 return NULL; 1482 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1483} 1484 1485static inline void unlock_page_lruvec(struct lruvec *lruvec) 1486{ 1487 spin_unlock(&lruvec->lru_lock); 1488} 1489 1490static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1491{ 1492 spin_unlock_irq(&lruvec->lru_lock); 1493} 1494 1495static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1496 unsigned long flags) 1497{ 1498 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1499} 1500 1501/* Test requires a stable page->memcg binding, see page_memcg() */ 1502static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec) 1503{ 1504 return lruvec_pgdat(lruvec) == page_pgdat(page) && 1505 lruvec_memcg(lruvec) == page_memcg(page); 1506} 1507 1508/* Don't lock again iff page's lruvec locked */ 1509static inline struct lruvec *relock_page_lruvec_irq(struct page *page, 1510 struct lruvec *locked_lruvec) 1511{ 1512 if (locked_lruvec) { 1513 if (page_matches_lruvec(page, locked_lruvec)) 1514 return locked_lruvec; 1515 1516 unlock_page_lruvec_irq(locked_lruvec); 1517 } 1518 1519 return lock_page_lruvec_irq(page); 1520} 1521 1522/* Don't lock again iff page's lruvec locked */ 1523static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page, 1524 struct lruvec *locked_lruvec, unsigned long *flags) 1525{ 1526 if (locked_lruvec) { 1527 if (page_matches_lruvec(page, locked_lruvec)) 1528 return locked_lruvec; 1529 1530 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1531 } 1532 1533 return lock_page_lruvec_irqsave(page, flags); 1534} 1535 1536#ifdef CONFIG_CGROUP_WRITEBACK 1537 1538struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1539void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1540 unsigned long *pheadroom, unsigned long *pdirty, 1541 unsigned long *pwriteback); 1542 1543void mem_cgroup_track_foreign_dirty_slowpath(struct page *page, 1544 struct bdi_writeback *wb); 1545 1546static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1547 struct bdi_writeback *wb) 1548{ 1549 if (mem_cgroup_disabled()) 1550 return; 1551 1552 if (unlikely(&page_memcg(page)->css != wb->memcg_css)) 1553 mem_cgroup_track_foreign_dirty_slowpath(page, wb); 1554} 1555 1556void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1557 1558#else /* CONFIG_CGROUP_WRITEBACK */ 1559 1560static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1561{ 1562 return NULL; 1563} 1564 1565static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1566 unsigned long *pfilepages, 1567 unsigned long *pheadroom, 1568 unsigned long *pdirty, 1569 unsigned long *pwriteback) 1570{ 1571} 1572 1573static inline void mem_cgroup_track_foreign_dirty(struct page *page, 1574 struct bdi_writeback *wb) 1575{ 1576} 1577 1578static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1579{ 1580} 1581 1582#endif /* CONFIG_CGROUP_WRITEBACK */ 1583 1584struct sock; 1585bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1586void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1587#ifdef CONFIG_MEMCG 1588extern struct static_key_false memcg_sockets_enabled_key; 1589#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1590void mem_cgroup_sk_alloc(struct sock *sk); 1591void mem_cgroup_sk_free(struct sock *sk); 1592static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1593{ 1594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1595 return true; 1596 do { 1597 if (time_before(jiffies, memcg->socket_pressure)) 1598 return true; 1599 } while ((memcg = parent_mem_cgroup(memcg))); 1600 return false; 1601} 1602 1603int alloc_shrinker_info(struct mem_cgroup *memcg); 1604void free_shrinker_info(struct mem_cgroup *memcg); 1605void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1606void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1607#else 1608#define mem_cgroup_sockets_enabled 0 1609static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1610static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1611static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1612{ 1613 return false; 1614} 1615 1616static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1617 int nid, int shrinker_id) 1618{ 1619} 1620#endif 1621 1622#ifdef CONFIG_MEMCG_KMEM 1623bool mem_cgroup_kmem_disabled(void); 1624int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1625void __memcg_kmem_uncharge_page(struct page *page, int order); 1626 1627struct obj_cgroup *get_obj_cgroup_from_current(void); 1628 1629int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1630void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1631 1632extern struct static_key_false memcg_kmem_enabled_key; 1633 1634extern int memcg_nr_cache_ids; 1635void memcg_get_cache_ids(void); 1636void memcg_put_cache_ids(void); 1637 1638/* 1639 * Helper macro to loop through all memcg-specific caches. Callers must still 1640 * check if the cache is valid (it is either valid or NULL). 1641 * the slab_mutex must be held when looping through those caches 1642 */ 1643#define for_each_memcg_cache_index(_idx) \ 1644 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++) 1645 1646static inline bool memcg_kmem_enabled(void) 1647{ 1648 return static_branch_likely(&memcg_kmem_enabled_key); 1649} 1650 1651static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1652 int order) 1653{ 1654 if (memcg_kmem_enabled()) 1655 return __memcg_kmem_charge_page(page, gfp, order); 1656 return 0; 1657} 1658 1659static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1660{ 1661 if (memcg_kmem_enabled()) 1662 __memcg_kmem_uncharge_page(page, order); 1663} 1664 1665/* 1666 * A helper for accessing memcg's kmem_id, used for getting 1667 * corresponding LRU lists. 1668 */ 1669static inline int memcg_cache_id(struct mem_cgroup *memcg) 1670{ 1671 return memcg ? memcg->kmemcg_id : -1; 1672} 1673 1674struct mem_cgroup *mem_cgroup_from_obj(void *p); 1675 1676#else 1677static inline bool mem_cgroup_kmem_disabled(void) 1678{ 1679 return true; 1680} 1681 1682static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1683 int order) 1684{ 1685 return 0; 1686} 1687 1688static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1689{ 1690} 1691 1692static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1693 int order) 1694{ 1695 return 0; 1696} 1697 1698static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1699{ 1700} 1701 1702#define for_each_memcg_cache_index(_idx) \ 1703 for (; NULL; ) 1704 1705static inline bool memcg_kmem_enabled(void) 1706{ 1707 return false; 1708} 1709 1710static inline int memcg_cache_id(struct mem_cgroup *memcg) 1711{ 1712 return -1; 1713} 1714 1715static inline void memcg_get_cache_ids(void) 1716{ 1717} 1718 1719static inline void memcg_put_cache_ids(void) 1720{ 1721} 1722 1723static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1724{ 1725 return NULL; 1726} 1727 1728#endif /* CONFIG_MEMCG_KMEM */ 1729 1730#endif /* _LINUX_MEMCONTROL_H */