Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_NR_STAT,
37};
38
39enum memcg_memory_event {
40 MEMCG_LOW,
41 MEMCG_HIGH,
42 MEMCG_MAX,
43 MEMCG_OOM,
44 MEMCG_OOM_KILL,
45 MEMCG_SWAP_HIGH,
46 MEMCG_SWAP_MAX,
47 MEMCG_SWAP_FAIL,
48 MEMCG_NR_MEMORY_EVENTS,
49};
50
51struct mem_cgroup_reclaim_cookie {
52 pg_data_t *pgdat;
53 unsigned int generation;
54};
55
56#ifdef CONFIG_MEMCG
57
58#define MEM_CGROUP_ID_SHIFT 16
59#define MEM_CGROUP_ID_MAX USHRT_MAX
60
61struct mem_cgroup_id {
62 int id;
63 refcount_t ref;
64};
65
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
68 * it will be incremented by the number of pages. This counter is used
69 * to trigger some periodic events. This is straightforward and better
70 * than using jiffies etc. to handle periodic memcg event.
71 */
72enum mem_cgroup_events_target {
73 MEM_CGROUP_TARGET_THRESH,
74 MEM_CGROUP_TARGET_SOFTLIMIT,
75 MEM_CGROUP_NTARGETS,
76};
77
78struct memcg_vmstats_percpu {
79 /* Local (CPU and cgroup) page state & events */
80 long state[MEMCG_NR_STAT];
81 unsigned long events[NR_VM_EVENT_ITEMS];
82
83 /* Delta calculation for lockless upward propagation */
84 long state_prev[MEMCG_NR_STAT];
85 unsigned long events_prev[NR_VM_EVENT_ITEMS];
86
87 /* Cgroup1: threshold notifications & softlimit tree updates */
88 unsigned long nr_page_events;
89 unsigned long targets[MEM_CGROUP_NTARGETS];
90};
91
92struct memcg_vmstats {
93 /* Aggregated (CPU and subtree) page state & events */
94 long state[MEMCG_NR_STAT];
95 unsigned long events[NR_VM_EVENT_ITEMS];
96
97 /* Pending child counts during tree propagation */
98 long state_pending[MEMCG_NR_STAT];
99 unsigned long events_pending[NR_VM_EVENT_ITEMS];
100};
101
102struct mem_cgroup_reclaim_iter {
103 struct mem_cgroup *position;
104 /* scan generation, increased every round-trip */
105 unsigned int generation;
106};
107
108struct lruvec_stat {
109 long count[NR_VM_NODE_STAT_ITEMS];
110};
111
112struct batched_lruvec_stat {
113 s32 count[NR_VM_NODE_STAT_ITEMS];
114};
115
116/*
117 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
118 * shrinkers, which have elements charged to this memcg.
119 */
120struct shrinker_info {
121 struct rcu_head rcu;
122 atomic_long_t *nr_deferred;
123 unsigned long *map;
124};
125
126/*
127 * per-node information in memory controller.
128 */
129struct mem_cgroup_per_node {
130 struct lruvec lruvec;
131
132 /*
133 * Legacy local VM stats. This should be struct lruvec_stat and
134 * cannot be optimized to struct batched_lruvec_stat. Because
135 * the threshold of the lruvec_stat_cpu can be as big as
136 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
137 * filed has no upper limit.
138 */
139 struct lruvec_stat __percpu *lruvec_stat_local;
140
141 /* Subtree VM stats (batched updates) */
142 struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
143 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
144
145 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
146
147 struct mem_cgroup_reclaim_iter iter;
148
149 struct shrinker_info __rcu *shrinker_info;
150
151 struct rb_node tree_node; /* RB tree node */
152 unsigned long usage_in_excess;/* Set to the value by which */
153 /* the soft limit is exceeded*/
154 bool on_tree;
155 struct mem_cgroup *memcg; /* Back pointer, we cannot */
156 /* use container_of */
157};
158
159struct mem_cgroup_threshold {
160 struct eventfd_ctx *eventfd;
161 unsigned long threshold;
162};
163
164/* For threshold */
165struct mem_cgroup_threshold_ary {
166 /* An array index points to threshold just below or equal to usage. */
167 int current_threshold;
168 /* Size of entries[] */
169 unsigned int size;
170 /* Array of thresholds */
171 struct mem_cgroup_threshold entries[];
172};
173
174struct mem_cgroup_thresholds {
175 /* Primary thresholds array */
176 struct mem_cgroup_threshold_ary *primary;
177 /*
178 * Spare threshold array.
179 * This is needed to make mem_cgroup_unregister_event() "never fail".
180 * It must be able to store at least primary->size - 1 entries.
181 */
182 struct mem_cgroup_threshold_ary *spare;
183};
184
185enum memcg_kmem_state {
186 KMEM_NONE,
187 KMEM_ALLOCATED,
188 KMEM_ONLINE,
189};
190
191#if defined(CONFIG_SMP)
192struct memcg_padding {
193 char x[0];
194} ____cacheline_internodealigned_in_smp;
195#define MEMCG_PADDING(name) struct memcg_padding name
196#else
197#define MEMCG_PADDING(name)
198#endif
199
200/*
201 * Remember four most recent foreign writebacks with dirty pages in this
202 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
203 * one in a given round, we're likely to catch it later if it keeps
204 * foreign-dirtying, so a fairly low count should be enough.
205 *
206 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
207 */
208#define MEMCG_CGWB_FRN_CNT 4
209
210struct memcg_cgwb_frn {
211 u64 bdi_id; /* bdi->id of the foreign inode */
212 int memcg_id; /* memcg->css.id of foreign inode */
213 u64 at; /* jiffies_64 at the time of dirtying */
214 struct wb_completion done; /* tracks in-flight foreign writebacks */
215};
216
217/*
218 * Bucket for arbitrarily byte-sized objects charged to a memory
219 * cgroup. The bucket can be reparented in one piece when the cgroup
220 * is destroyed, without having to round up the individual references
221 * of all live memory objects in the wild.
222 */
223struct obj_cgroup {
224 struct percpu_ref refcnt;
225 struct mem_cgroup *memcg;
226 atomic_t nr_charged_bytes;
227 union {
228 struct list_head list;
229 struct rcu_head rcu;
230 };
231};
232
233/*
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
238 */
239struct mem_cgroup {
240 struct cgroup_subsys_state css;
241
242 /* Private memcg ID. Used to ID objects that outlive the cgroup */
243 struct mem_cgroup_id id;
244
245 /* Accounted resources */
246 struct page_counter memory; /* Both v1 & v2 */
247
248 union {
249 struct page_counter swap; /* v2 only */
250 struct page_counter memsw; /* v1 only */
251 };
252
253 /* Legacy consumer-oriented counters */
254 struct page_counter kmem; /* v1 only */
255 struct page_counter tcpmem; /* v1 only */
256
257 /* Range enforcement for interrupt charges */
258 struct work_struct high_work;
259
260 unsigned long soft_limit;
261
262 /* vmpressure notifications */
263 struct vmpressure vmpressure;
264
265 /*
266 * Should the OOM killer kill all belonging tasks, had it kill one?
267 */
268 bool oom_group;
269
270 /* protected by memcg_oom_lock */
271 bool oom_lock;
272 int under_oom;
273
274 int swappiness;
275 /* OOM-Killer disable */
276 int oom_kill_disable;
277
278 /* memory.events and memory.events.local */
279 struct cgroup_file events_file;
280 struct cgroup_file events_local_file;
281
282 /* handle for "memory.swap.events" */
283 struct cgroup_file swap_events_file;
284
285 /* protect arrays of thresholds */
286 struct mutex thresholds_lock;
287
288 /* thresholds for memory usage. RCU-protected */
289 struct mem_cgroup_thresholds thresholds;
290
291 /* thresholds for mem+swap usage. RCU-protected */
292 struct mem_cgroup_thresholds memsw_thresholds;
293
294 /* For oom notifier event fd */
295 struct list_head oom_notify;
296
297 /*
298 * Should we move charges of a task when a task is moved into this
299 * mem_cgroup ? And what type of charges should we move ?
300 */
301 unsigned long move_charge_at_immigrate;
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
304 unsigned long move_lock_flags;
305
306 MEMCG_PADDING(_pad1_);
307
308 /* memory.stat */
309 struct memcg_vmstats vmstats;
310
311 /* memory.events */
312 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
313 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
314
315 unsigned long socket_pressure;
316
317 /* Legacy tcp memory accounting */
318 bool tcpmem_active;
319 int tcpmem_pressure;
320
321#ifdef CONFIG_MEMCG_KMEM
322 int kmemcg_id;
323 enum memcg_kmem_state kmem_state;
324 struct obj_cgroup __rcu *objcg;
325 struct list_head objcg_list; /* list of inherited objcgs */
326#endif
327
328 MEMCG_PADDING(_pad2_);
329
330 /*
331 * set > 0 if pages under this cgroup are moving to other cgroup.
332 */
333 atomic_t moving_account;
334 struct task_struct *move_lock_task;
335
336 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
337
338#ifdef CONFIG_CGROUP_WRITEBACK
339 struct list_head cgwb_list;
340 struct wb_domain cgwb_domain;
341 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
342#endif
343
344 /* List of events which userspace want to receive */
345 struct list_head event_list;
346 spinlock_t event_list_lock;
347
348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 struct deferred_split deferred_split_queue;
350#endif
351
352 struct mem_cgroup_per_node *nodeinfo[];
353};
354
355/*
356 * size of first charge trial. "32" comes from vmscan.c's magic value.
357 * TODO: maybe necessary to use big numbers in big irons.
358 */
359#define MEMCG_CHARGE_BATCH 32U
360
361extern struct mem_cgroup *root_mem_cgroup;
362
363enum page_memcg_data_flags {
364 /* page->memcg_data is a pointer to an objcgs vector */
365 MEMCG_DATA_OBJCGS = (1UL << 0),
366 /* page has been accounted as a non-slab kernel page */
367 MEMCG_DATA_KMEM = (1UL << 1),
368 /* the next bit after the last actual flag */
369 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
370};
371
372#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
373
374static inline bool PageMemcgKmem(struct page *page);
375
376/*
377 * After the initialization objcg->memcg is always pointing at
378 * a valid memcg, but can be atomically swapped to the parent memcg.
379 *
380 * The caller must ensure that the returned memcg won't be released:
381 * e.g. acquire the rcu_read_lock or css_set_lock.
382 */
383static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
384{
385 return READ_ONCE(objcg->memcg);
386}
387
388/*
389 * __page_memcg - get the memory cgroup associated with a non-kmem page
390 * @page: a pointer to the page struct
391 *
392 * Returns a pointer to the memory cgroup associated with the page,
393 * or NULL. This function assumes that the page is known to have a
394 * proper memory cgroup pointer. It's not safe to call this function
395 * against some type of pages, e.g. slab pages or ex-slab pages or
396 * kmem pages.
397 */
398static inline struct mem_cgroup *__page_memcg(struct page *page)
399{
400 unsigned long memcg_data = page->memcg_data;
401
402 VM_BUG_ON_PAGE(PageSlab(page), page);
403 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
404 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
405
406 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
407}
408
409/*
410 * __page_objcg - get the object cgroup associated with a kmem page
411 * @page: a pointer to the page struct
412 *
413 * Returns a pointer to the object cgroup associated with the page,
414 * or NULL. This function assumes that the page is known to have a
415 * proper object cgroup pointer. It's not safe to call this function
416 * against some type of pages, e.g. slab pages or ex-slab pages or
417 * LRU pages.
418 */
419static inline struct obj_cgroup *__page_objcg(struct page *page)
420{
421 unsigned long memcg_data = page->memcg_data;
422
423 VM_BUG_ON_PAGE(PageSlab(page), page);
424 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
425 VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
426
427 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
428}
429
430/*
431 * page_memcg - get the memory cgroup associated with a page
432 * @page: a pointer to the page struct
433 *
434 * Returns a pointer to the memory cgroup associated with the page,
435 * or NULL. This function assumes that the page is known to have a
436 * proper memory cgroup pointer. It's not safe to call this function
437 * against some type of pages, e.g. slab pages or ex-slab pages.
438 *
439 * For a non-kmem page any of the following ensures page and memcg binding
440 * stability:
441 *
442 * - the page lock
443 * - LRU isolation
444 * - lock_page_memcg()
445 * - exclusive reference
446 *
447 * For a kmem page a caller should hold an rcu read lock to protect memcg
448 * associated with a kmem page from being released.
449 */
450static inline struct mem_cgroup *page_memcg(struct page *page)
451{
452 if (PageMemcgKmem(page))
453 return obj_cgroup_memcg(__page_objcg(page));
454 else
455 return __page_memcg(page);
456}
457
458/*
459 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
460 * @page: a pointer to the page struct
461 *
462 * Returns a pointer to the memory cgroup associated with the page,
463 * or NULL. This function assumes that the page is known to have a
464 * proper memory cgroup pointer. It's not safe to call this function
465 * against some type of pages, e.g. slab pages or ex-slab pages.
466 */
467static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
468{
469 unsigned long memcg_data = READ_ONCE(page->memcg_data);
470
471 VM_BUG_ON_PAGE(PageSlab(page), page);
472 WARN_ON_ONCE(!rcu_read_lock_held());
473
474 if (memcg_data & MEMCG_DATA_KMEM) {
475 struct obj_cgroup *objcg;
476
477 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
478 return obj_cgroup_memcg(objcg);
479 }
480
481 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
482}
483
484/*
485 * page_memcg_check - get the memory cgroup associated with a page
486 * @page: a pointer to the page struct
487 *
488 * Returns a pointer to the memory cgroup associated with the page,
489 * or NULL. This function unlike page_memcg() can take any page
490 * as an argument. It has to be used in cases when it's not known if a page
491 * has an associated memory cgroup pointer or an object cgroups vector or
492 * an object cgroup.
493 *
494 * For a non-kmem page any of the following ensures page and memcg binding
495 * stability:
496 *
497 * - the page lock
498 * - LRU isolation
499 * - lock_page_memcg()
500 * - exclusive reference
501 *
502 * For a kmem page a caller should hold an rcu read lock to protect memcg
503 * associated with a kmem page from being released.
504 */
505static inline struct mem_cgroup *page_memcg_check(struct page *page)
506{
507 /*
508 * Because page->memcg_data might be changed asynchronously
509 * for slab pages, READ_ONCE() should be used here.
510 */
511 unsigned long memcg_data = READ_ONCE(page->memcg_data);
512
513 if (memcg_data & MEMCG_DATA_OBJCGS)
514 return NULL;
515
516 if (memcg_data & MEMCG_DATA_KMEM) {
517 struct obj_cgroup *objcg;
518
519 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
520 return obj_cgroup_memcg(objcg);
521 }
522
523 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
524}
525
526#ifdef CONFIG_MEMCG_KMEM
527/*
528 * PageMemcgKmem - check if the page has MemcgKmem flag set
529 * @page: a pointer to the page struct
530 *
531 * Checks if the page has MemcgKmem flag set. The caller must ensure that
532 * the page has an associated memory cgroup. It's not safe to call this function
533 * against some types of pages, e.g. slab pages.
534 */
535static inline bool PageMemcgKmem(struct page *page)
536{
537 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
538 return page->memcg_data & MEMCG_DATA_KMEM;
539}
540
541/*
542 * page_objcgs - get the object cgroups vector associated with a page
543 * @page: a pointer to the page struct
544 *
545 * Returns a pointer to the object cgroups vector associated with the page,
546 * or NULL. This function assumes that the page is known to have an
547 * associated object cgroups vector. It's not safe to call this function
548 * against pages, which might have an associated memory cgroup: e.g.
549 * kernel stack pages.
550 */
551static inline struct obj_cgroup **page_objcgs(struct page *page)
552{
553 unsigned long memcg_data = READ_ONCE(page->memcg_data);
554
555 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
556 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
557
558 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
559}
560
561/*
562 * page_objcgs_check - get the object cgroups vector associated with a page
563 * @page: a pointer to the page struct
564 *
565 * Returns a pointer to the object cgroups vector associated with the page,
566 * or NULL. This function is safe to use if the page can be directly associated
567 * with a memory cgroup.
568 */
569static inline struct obj_cgroup **page_objcgs_check(struct page *page)
570{
571 unsigned long memcg_data = READ_ONCE(page->memcg_data);
572
573 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
574 return NULL;
575
576 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
577
578 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
579}
580
581#else
582static inline bool PageMemcgKmem(struct page *page)
583{
584 return false;
585}
586
587static inline struct obj_cgroup **page_objcgs(struct page *page)
588{
589 return NULL;
590}
591
592static inline struct obj_cgroup **page_objcgs_check(struct page *page)
593{
594 return NULL;
595}
596#endif
597
598static __always_inline bool memcg_stat_item_in_bytes(int idx)
599{
600 if (idx == MEMCG_PERCPU_B)
601 return true;
602 return vmstat_item_in_bytes(idx);
603}
604
605static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
606{
607 return (memcg == root_mem_cgroup);
608}
609
610static inline bool mem_cgroup_disabled(void)
611{
612 return !cgroup_subsys_enabled(memory_cgrp_subsys);
613}
614
615static inline void mem_cgroup_protection(struct mem_cgroup *root,
616 struct mem_cgroup *memcg,
617 unsigned long *min,
618 unsigned long *low)
619{
620 *min = *low = 0;
621
622 if (mem_cgroup_disabled())
623 return;
624
625 /*
626 * There is no reclaim protection applied to a targeted reclaim.
627 * We are special casing this specific case here because
628 * mem_cgroup_protected calculation is not robust enough to keep
629 * the protection invariant for calculated effective values for
630 * parallel reclaimers with different reclaim target. This is
631 * especially a problem for tail memcgs (as they have pages on LRU)
632 * which would want to have effective values 0 for targeted reclaim
633 * but a different value for external reclaim.
634 *
635 * Example
636 * Let's have global and A's reclaim in parallel:
637 * |
638 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
639 * |\
640 * | C (low = 1G, usage = 2.5G)
641 * B (low = 1G, usage = 0.5G)
642 *
643 * For the global reclaim
644 * A.elow = A.low
645 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
646 * C.elow = min(C.usage, C.low)
647 *
648 * With the effective values resetting we have A reclaim
649 * A.elow = 0
650 * B.elow = B.low
651 * C.elow = C.low
652 *
653 * If the global reclaim races with A's reclaim then
654 * B.elow = C.elow = 0 because children_low_usage > A.elow)
655 * is possible and reclaiming B would be violating the protection.
656 *
657 */
658 if (root == memcg)
659 return;
660
661 *min = READ_ONCE(memcg->memory.emin);
662 *low = READ_ONCE(memcg->memory.elow);
663}
664
665void mem_cgroup_calculate_protection(struct mem_cgroup *root,
666 struct mem_cgroup *memcg);
667
668static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
669{
670 /*
671 * The root memcg doesn't account charges, and doesn't support
672 * protection.
673 */
674 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
675
676}
677
678static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
679{
680 if (!mem_cgroup_supports_protection(memcg))
681 return false;
682
683 return READ_ONCE(memcg->memory.elow) >=
684 page_counter_read(&memcg->memory);
685}
686
687static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
688{
689 if (!mem_cgroup_supports_protection(memcg))
690 return false;
691
692 return READ_ONCE(memcg->memory.emin) >=
693 page_counter_read(&memcg->memory);
694}
695
696int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
697int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
698 gfp_t gfp, swp_entry_t entry);
699void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
700
701void mem_cgroup_uncharge(struct page *page);
702void mem_cgroup_uncharge_list(struct list_head *page_list);
703
704void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
705
706/**
707 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
708 * @memcg: memcg of the wanted lruvec
709 * @pgdat: pglist_data
710 *
711 * Returns the lru list vector holding pages for a given @memcg &
712 * @pgdat combination. This can be the node lruvec, if the memory
713 * controller is disabled.
714 */
715static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
716 struct pglist_data *pgdat)
717{
718 struct mem_cgroup_per_node *mz;
719 struct lruvec *lruvec;
720
721 if (mem_cgroup_disabled()) {
722 lruvec = &pgdat->__lruvec;
723 goto out;
724 }
725
726 if (!memcg)
727 memcg = root_mem_cgroup;
728
729 mz = memcg->nodeinfo[pgdat->node_id];
730 lruvec = &mz->lruvec;
731out:
732 /*
733 * Since a node can be onlined after the mem_cgroup was created,
734 * we have to be prepared to initialize lruvec->pgdat here;
735 * and if offlined then reonlined, we need to reinitialize it.
736 */
737 if (unlikely(lruvec->pgdat != pgdat))
738 lruvec->pgdat = pgdat;
739 return lruvec;
740}
741
742/**
743 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
744 * @page: the page
745 *
746 * This function relies on page->mem_cgroup being stable.
747 */
748static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
749{
750 pg_data_t *pgdat = page_pgdat(page);
751 struct mem_cgroup *memcg = page_memcg(page);
752
753 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
754 return mem_cgroup_lruvec(memcg, pgdat);
755}
756
757struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
758
759struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
760
761struct lruvec *lock_page_lruvec(struct page *page);
762struct lruvec *lock_page_lruvec_irq(struct page *page);
763struct lruvec *lock_page_lruvec_irqsave(struct page *page,
764 unsigned long *flags);
765
766#ifdef CONFIG_DEBUG_VM
767void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
768#else
769static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
770{
771}
772#endif
773
774static inline
775struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
776 return css ? container_of(css, struct mem_cgroup, css) : NULL;
777}
778
779static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
780{
781 return percpu_ref_tryget(&objcg->refcnt);
782}
783
784static inline void obj_cgroup_get(struct obj_cgroup *objcg)
785{
786 percpu_ref_get(&objcg->refcnt);
787}
788
789static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
790 unsigned long nr)
791{
792 percpu_ref_get_many(&objcg->refcnt, nr);
793}
794
795static inline void obj_cgroup_put(struct obj_cgroup *objcg)
796{
797 percpu_ref_put(&objcg->refcnt);
798}
799
800static inline void mem_cgroup_put(struct mem_cgroup *memcg)
801{
802 if (memcg)
803 css_put(&memcg->css);
804}
805
806#define mem_cgroup_from_counter(counter, member) \
807 container_of(counter, struct mem_cgroup, member)
808
809struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
810 struct mem_cgroup *,
811 struct mem_cgroup_reclaim_cookie *);
812void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
813int mem_cgroup_scan_tasks(struct mem_cgroup *,
814 int (*)(struct task_struct *, void *), void *);
815
816static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
817{
818 if (mem_cgroup_disabled())
819 return 0;
820
821 return memcg->id.id;
822}
823struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
824
825static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
826{
827 return mem_cgroup_from_css(seq_css(m));
828}
829
830static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
831{
832 struct mem_cgroup_per_node *mz;
833
834 if (mem_cgroup_disabled())
835 return NULL;
836
837 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
838 return mz->memcg;
839}
840
841/**
842 * parent_mem_cgroup - find the accounting parent of a memcg
843 * @memcg: memcg whose parent to find
844 *
845 * Returns the parent memcg, or NULL if this is the root or the memory
846 * controller is in legacy no-hierarchy mode.
847 */
848static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
849{
850 if (!memcg->memory.parent)
851 return NULL;
852 return mem_cgroup_from_counter(memcg->memory.parent, memory);
853}
854
855static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
856 struct mem_cgroup *root)
857{
858 if (root == memcg)
859 return true;
860 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
861}
862
863static inline bool mm_match_cgroup(struct mm_struct *mm,
864 struct mem_cgroup *memcg)
865{
866 struct mem_cgroup *task_memcg;
867 bool match = false;
868
869 rcu_read_lock();
870 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 if (task_memcg)
872 match = mem_cgroup_is_descendant(task_memcg, memcg);
873 rcu_read_unlock();
874 return match;
875}
876
877struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
878ino_t page_cgroup_ino(struct page *page);
879
880static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
881{
882 if (mem_cgroup_disabled())
883 return true;
884 return !!(memcg->css.flags & CSS_ONLINE);
885}
886
887/*
888 * For memory reclaim.
889 */
890int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
891
892void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
893 int zid, int nr_pages);
894
895static inline
896unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
897 enum lru_list lru, int zone_idx)
898{
899 struct mem_cgroup_per_node *mz;
900
901 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
902 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
903}
904
905void mem_cgroup_handle_over_high(void);
906
907unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
908
909unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
910
911void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
912 struct task_struct *p);
913
914void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
915
916static inline void mem_cgroup_enter_user_fault(void)
917{
918 WARN_ON(current->in_user_fault);
919 current->in_user_fault = 1;
920}
921
922static inline void mem_cgroup_exit_user_fault(void)
923{
924 WARN_ON(!current->in_user_fault);
925 current->in_user_fault = 0;
926}
927
928static inline bool task_in_memcg_oom(struct task_struct *p)
929{
930 return p->memcg_in_oom;
931}
932
933bool mem_cgroup_oom_synchronize(bool wait);
934struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
935 struct mem_cgroup *oom_domain);
936void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
937
938#ifdef CONFIG_MEMCG_SWAP
939extern bool cgroup_memory_noswap;
940#endif
941
942void lock_page_memcg(struct page *page);
943void unlock_page_memcg(struct page *page);
944
945void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
946
947/* idx can be of type enum memcg_stat_item or node_stat_item */
948static inline void mod_memcg_state(struct mem_cgroup *memcg,
949 int idx, int val)
950{
951 unsigned long flags;
952
953 local_irq_save(flags);
954 __mod_memcg_state(memcg, idx, val);
955 local_irq_restore(flags);
956}
957
958static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
959 enum node_stat_item idx)
960{
961 struct mem_cgroup_per_node *pn;
962 long x;
963
964 if (mem_cgroup_disabled())
965 return node_page_state(lruvec_pgdat(lruvec), idx);
966
967 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
968 x = atomic_long_read(&pn->lruvec_stat[idx]);
969#ifdef CONFIG_SMP
970 if (x < 0)
971 x = 0;
972#endif
973 return x;
974}
975
976static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
977 enum node_stat_item idx)
978{
979 struct mem_cgroup_per_node *pn;
980 long x = 0;
981 int cpu;
982
983 if (mem_cgroup_disabled())
984 return node_page_state(lruvec_pgdat(lruvec), idx);
985
986 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
987 for_each_possible_cpu(cpu)
988 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
989#ifdef CONFIG_SMP
990 if (x < 0)
991 x = 0;
992#endif
993 return x;
994}
995
996void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
997 int val);
998void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
999
1000static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1001 int val)
1002{
1003 unsigned long flags;
1004
1005 local_irq_save(flags);
1006 __mod_lruvec_kmem_state(p, idx, val);
1007 local_irq_restore(flags);
1008}
1009
1010static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1011 enum node_stat_item idx, int val)
1012{
1013 unsigned long flags;
1014
1015 local_irq_save(flags);
1016 __mod_memcg_lruvec_state(lruvec, idx, val);
1017 local_irq_restore(flags);
1018}
1019
1020void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1021 unsigned long count);
1022
1023static inline void count_memcg_events(struct mem_cgroup *memcg,
1024 enum vm_event_item idx,
1025 unsigned long count)
1026{
1027 unsigned long flags;
1028
1029 local_irq_save(flags);
1030 __count_memcg_events(memcg, idx, count);
1031 local_irq_restore(flags);
1032}
1033
1034static inline void count_memcg_page_event(struct page *page,
1035 enum vm_event_item idx)
1036{
1037 struct mem_cgroup *memcg = page_memcg(page);
1038
1039 if (memcg)
1040 count_memcg_events(memcg, idx, 1);
1041}
1042
1043static inline void count_memcg_event_mm(struct mm_struct *mm,
1044 enum vm_event_item idx)
1045{
1046 struct mem_cgroup *memcg;
1047
1048 if (mem_cgroup_disabled())
1049 return;
1050
1051 rcu_read_lock();
1052 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1053 if (likely(memcg))
1054 count_memcg_events(memcg, idx, 1);
1055 rcu_read_unlock();
1056}
1057
1058static inline void memcg_memory_event(struct mem_cgroup *memcg,
1059 enum memcg_memory_event event)
1060{
1061 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1062 event == MEMCG_SWAP_FAIL;
1063
1064 atomic_long_inc(&memcg->memory_events_local[event]);
1065 if (!swap_event)
1066 cgroup_file_notify(&memcg->events_local_file);
1067
1068 do {
1069 atomic_long_inc(&memcg->memory_events[event]);
1070 if (swap_event)
1071 cgroup_file_notify(&memcg->swap_events_file);
1072 else
1073 cgroup_file_notify(&memcg->events_file);
1074
1075 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1076 break;
1077 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1078 break;
1079 } while ((memcg = parent_mem_cgroup(memcg)) &&
1080 !mem_cgroup_is_root(memcg));
1081}
1082
1083static inline void memcg_memory_event_mm(struct mm_struct *mm,
1084 enum memcg_memory_event event)
1085{
1086 struct mem_cgroup *memcg;
1087
1088 if (mem_cgroup_disabled())
1089 return;
1090
1091 rcu_read_lock();
1092 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1093 if (likely(memcg))
1094 memcg_memory_event(memcg, event);
1095 rcu_read_unlock();
1096}
1097
1098void split_page_memcg(struct page *head, unsigned int nr);
1099
1100unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1101 gfp_t gfp_mask,
1102 unsigned long *total_scanned);
1103
1104#else /* CONFIG_MEMCG */
1105
1106#define MEM_CGROUP_ID_SHIFT 0
1107#define MEM_CGROUP_ID_MAX 0
1108
1109static inline struct mem_cgroup *page_memcg(struct page *page)
1110{
1111 return NULL;
1112}
1113
1114static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1115{
1116 WARN_ON_ONCE(!rcu_read_lock_held());
1117 return NULL;
1118}
1119
1120static inline struct mem_cgroup *page_memcg_check(struct page *page)
1121{
1122 return NULL;
1123}
1124
1125static inline bool PageMemcgKmem(struct page *page)
1126{
1127 return false;
1128}
1129
1130static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1131{
1132 return true;
1133}
1134
1135static inline bool mem_cgroup_disabled(void)
1136{
1137 return true;
1138}
1139
1140static inline void memcg_memory_event(struct mem_cgroup *memcg,
1141 enum memcg_memory_event event)
1142{
1143}
1144
1145static inline void memcg_memory_event_mm(struct mm_struct *mm,
1146 enum memcg_memory_event event)
1147{
1148}
1149
1150static inline void mem_cgroup_protection(struct mem_cgroup *root,
1151 struct mem_cgroup *memcg,
1152 unsigned long *min,
1153 unsigned long *low)
1154{
1155 *min = *low = 0;
1156}
1157
1158static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1159 struct mem_cgroup *memcg)
1160{
1161}
1162
1163static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1164{
1165 return false;
1166}
1167
1168static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1169{
1170 return false;
1171}
1172
1173static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
1174 gfp_t gfp_mask)
1175{
1176 return 0;
1177}
1178
1179static inline int mem_cgroup_swapin_charge_page(struct page *page,
1180 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1181{
1182 return 0;
1183}
1184
1185static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1186{
1187}
1188
1189static inline void mem_cgroup_uncharge(struct page *page)
1190{
1191}
1192
1193static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1194{
1195}
1196
1197static inline void mem_cgroup_migrate(struct page *old, struct page *new)
1198{
1199}
1200
1201static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1202 struct pglist_data *pgdat)
1203{
1204 return &pgdat->__lruvec;
1205}
1206
1207static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
1208{
1209 pg_data_t *pgdat = page_pgdat(page);
1210
1211 return &pgdat->__lruvec;
1212}
1213
1214static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1215{
1216}
1217
1218static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1219{
1220 return NULL;
1221}
1222
1223static inline bool mm_match_cgroup(struct mm_struct *mm,
1224 struct mem_cgroup *memcg)
1225{
1226 return true;
1227}
1228
1229static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1230{
1231 return NULL;
1232}
1233
1234static inline
1235struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1236{
1237 return NULL;
1238}
1239
1240static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1241{
1242}
1243
1244static inline struct lruvec *lock_page_lruvec(struct page *page)
1245{
1246 struct pglist_data *pgdat = page_pgdat(page);
1247
1248 spin_lock(&pgdat->__lruvec.lru_lock);
1249 return &pgdat->__lruvec;
1250}
1251
1252static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1253{
1254 struct pglist_data *pgdat = page_pgdat(page);
1255
1256 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1257 return &pgdat->__lruvec;
1258}
1259
1260static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1261 unsigned long *flagsp)
1262{
1263 struct pglist_data *pgdat = page_pgdat(page);
1264
1265 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1266 return &pgdat->__lruvec;
1267}
1268
1269static inline struct mem_cgroup *
1270mem_cgroup_iter(struct mem_cgroup *root,
1271 struct mem_cgroup *prev,
1272 struct mem_cgroup_reclaim_cookie *reclaim)
1273{
1274 return NULL;
1275}
1276
1277static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1278 struct mem_cgroup *prev)
1279{
1280}
1281
1282static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1283 int (*fn)(struct task_struct *, void *), void *arg)
1284{
1285 return 0;
1286}
1287
1288static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1289{
1290 return 0;
1291}
1292
1293static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1294{
1295 WARN_ON_ONCE(id);
1296 /* XXX: This should always return root_mem_cgroup */
1297 return NULL;
1298}
1299
1300static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1301{
1302 return NULL;
1303}
1304
1305static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1306{
1307 return NULL;
1308}
1309
1310static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1311{
1312 return true;
1313}
1314
1315static inline
1316unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1317 enum lru_list lru, int zone_idx)
1318{
1319 return 0;
1320}
1321
1322static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1323{
1324 return 0;
1325}
1326
1327static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1328{
1329 return 0;
1330}
1331
1332static inline void
1333mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1334{
1335}
1336
1337static inline void
1338mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1339{
1340}
1341
1342static inline void lock_page_memcg(struct page *page)
1343{
1344}
1345
1346static inline void unlock_page_memcg(struct page *page)
1347{
1348}
1349
1350static inline void mem_cgroup_handle_over_high(void)
1351{
1352}
1353
1354static inline void mem_cgroup_enter_user_fault(void)
1355{
1356}
1357
1358static inline void mem_cgroup_exit_user_fault(void)
1359{
1360}
1361
1362static inline bool task_in_memcg_oom(struct task_struct *p)
1363{
1364 return false;
1365}
1366
1367static inline bool mem_cgroup_oom_synchronize(bool wait)
1368{
1369 return false;
1370}
1371
1372static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1373 struct task_struct *victim, struct mem_cgroup *oom_domain)
1374{
1375 return NULL;
1376}
1377
1378static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1379{
1380}
1381
1382static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1383 int idx,
1384 int nr)
1385{
1386}
1387
1388static inline void mod_memcg_state(struct mem_cgroup *memcg,
1389 int idx,
1390 int nr)
1391{
1392}
1393
1394static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1395 enum node_stat_item idx)
1396{
1397 return node_page_state(lruvec_pgdat(lruvec), idx);
1398}
1399
1400static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1401 enum node_stat_item idx)
1402{
1403 return node_page_state(lruvec_pgdat(lruvec), idx);
1404}
1405
1406static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1407 enum node_stat_item idx, int val)
1408{
1409}
1410
1411static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1412 int val)
1413{
1414 struct page *page = virt_to_head_page(p);
1415
1416 __mod_node_page_state(page_pgdat(page), idx, val);
1417}
1418
1419static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1420 int val)
1421{
1422 struct page *page = virt_to_head_page(p);
1423
1424 mod_node_page_state(page_pgdat(page), idx, val);
1425}
1426
1427static inline void count_memcg_events(struct mem_cgroup *memcg,
1428 enum vm_event_item idx,
1429 unsigned long count)
1430{
1431}
1432
1433static inline void __count_memcg_events(struct mem_cgroup *memcg,
1434 enum vm_event_item idx,
1435 unsigned long count)
1436{
1437}
1438
1439static inline void count_memcg_page_event(struct page *page,
1440 int idx)
1441{
1442}
1443
1444static inline
1445void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1446{
1447}
1448
1449static inline void split_page_memcg(struct page *head, unsigned int nr)
1450{
1451}
1452
1453static inline
1454unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1455 gfp_t gfp_mask,
1456 unsigned long *total_scanned)
1457{
1458 return 0;
1459}
1460#endif /* CONFIG_MEMCG */
1461
1462static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1463{
1464 __mod_lruvec_kmem_state(p, idx, 1);
1465}
1466
1467static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1468{
1469 __mod_lruvec_kmem_state(p, idx, -1);
1470}
1471
1472static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1473{
1474 struct mem_cgroup *memcg;
1475
1476 memcg = lruvec_memcg(lruvec);
1477 if (!memcg)
1478 return NULL;
1479 memcg = parent_mem_cgroup(memcg);
1480 if (!memcg)
1481 return NULL;
1482 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1483}
1484
1485static inline void unlock_page_lruvec(struct lruvec *lruvec)
1486{
1487 spin_unlock(&lruvec->lru_lock);
1488}
1489
1490static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1491{
1492 spin_unlock_irq(&lruvec->lru_lock);
1493}
1494
1495static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1496 unsigned long flags)
1497{
1498 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1499}
1500
1501/* Test requires a stable page->memcg binding, see page_memcg() */
1502static inline bool page_matches_lruvec(struct page *page, struct lruvec *lruvec)
1503{
1504 return lruvec_pgdat(lruvec) == page_pgdat(page) &&
1505 lruvec_memcg(lruvec) == page_memcg(page);
1506}
1507
1508/* Don't lock again iff page's lruvec locked */
1509static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1510 struct lruvec *locked_lruvec)
1511{
1512 if (locked_lruvec) {
1513 if (page_matches_lruvec(page, locked_lruvec))
1514 return locked_lruvec;
1515
1516 unlock_page_lruvec_irq(locked_lruvec);
1517 }
1518
1519 return lock_page_lruvec_irq(page);
1520}
1521
1522/* Don't lock again iff page's lruvec locked */
1523static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1524 struct lruvec *locked_lruvec, unsigned long *flags)
1525{
1526 if (locked_lruvec) {
1527 if (page_matches_lruvec(page, locked_lruvec))
1528 return locked_lruvec;
1529
1530 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1531 }
1532
1533 return lock_page_lruvec_irqsave(page, flags);
1534}
1535
1536#ifdef CONFIG_CGROUP_WRITEBACK
1537
1538struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1539void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1540 unsigned long *pheadroom, unsigned long *pdirty,
1541 unsigned long *pwriteback);
1542
1543void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1544 struct bdi_writeback *wb);
1545
1546static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1547 struct bdi_writeback *wb)
1548{
1549 if (mem_cgroup_disabled())
1550 return;
1551
1552 if (unlikely(&page_memcg(page)->css != wb->memcg_css))
1553 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1554}
1555
1556void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1557
1558#else /* CONFIG_CGROUP_WRITEBACK */
1559
1560static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1561{
1562 return NULL;
1563}
1564
1565static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1566 unsigned long *pfilepages,
1567 unsigned long *pheadroom,
1568 unsigned long *pdirty,
1569 unsigned long *pwriteback)
1570{
1571}
1572
1573static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1574 struct bdi_writeback *wb)
1575{
1576}
1577
1578static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1579{
1580}
1581
1582#endif /* CONFIG_CGROUP_WRITEBACK */
1583
1584struct sock;
1585bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1586void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1587#ifdef CONFIG_MEMCG
1588extern struct static_key_false memcg_sockets_enabled_key;
1589#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1590void mem_cgroup_sk_alloc(struct sock *sk);
1591void mem_cgroup_sk_free(struct sock *sk);
1592static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1593{
1594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1595 return true;
1596 do {
1597 if (time_before(jiffies, memcg->socket_pressure))
1598 return true;
1599 } while ((memcg = parent_mem_cgroup(memcg)));
1600 return false;
1601}
1602
1603int alloc_shrinker_info(struct mem_cgroup *memcg);
1604void free_shrinker_info(struct mem_cgroup *memcg);
1605void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1606void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1607#else
1608#define mem_cgroup_sockets_enabled 0
1609static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1610static inline void mem_cgroup_sk_free(struct sock *sk) { };
1611static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1612{
1613 return false;
1614}
1615
1616static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1617 int nid, int shrinker_id)
1618{
1619}
1620#endif
1621
1622#ifdef CONFIG_MEMCG_KMEM
1623bool mem_cgroup_kmem_disabled(void);
1624int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1625void __memcg_kmem_uncharge_page(struct page *page, int order);
1626
1627struct obj_cgroup *get_obj_cgroup_from_current(void);
1628
1629int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1630void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1631
1632extern struct static_key_false memcg_kmem_enabled_key;
1633
1634extern int memcg_nr_cache_ids;
1635void memcg_get_cache_ids(void);
1636void memcg_put_cache_ids(void);
1637
1638/*
1639 * Helper macro to loop through all memcg-specific caches. Callers must still
1640 * check if the cache is valid (it is either valid or NULL).
1641 * the slab_mutex must be held when looping through those caches
1642 */
1643#define for_each_memcg_cache_index(_idx) \
1644 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1645
1646static inline bool memcg_kmem_enabled(void)
1647{
1648 return static_branch_likely(&memcg_kmem_enabled_key);
1649}
1650
1651static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1652 int order)
1653{
1654 if (memcg_kmem_enabled())
1655 return __memcg_kmem_charge_page(page, gfp, order);
1656 return 0;
1657}
1658
1659static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1660{
1661 if (memcg_kmem_enabled())
1662 __memcg_kmem_uncharge_page(page, order);
1663}
1664
1665/*
1666 * A helper for accessing memcg's kmem_id, used for getting
1667 * corresponding LRU lists.
1668 */
1669static inline int memcg_cache_id(struct mem_cgroup *memcg)
1670{
1671 return memcg ? memcg->kmemcg_id : -1;
1672}
1673
1674struct mem_cgroup *mem_cgroup_from_obj(void *p);
1675
1676#else
1677static inline bool mem_cgroup_kmem_disabled(void)
1678{
1679 return true;
1680}
1681
1682static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1683 int order)
1684{
1685 return 0;
1686}
1687
1688static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1689{
1690}
1691
1692static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1693 int order)
1694{
1695 return 0;
1696}
1697
1698static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1699{
1700}
1701
1702#define for_each_memcg_cache_index(_idx) \
1703 for (; NULL; )
1704
1705static inline bool memcg_kmem_enabled(void)
1706{
1707 return false;
1708}
1709
1710static inline int memcg_cache_id(struct mem_cgroup *memcg)
1711{
1712 return -1;
1713}
1714
1715static inline void memcg_get_cache_ids(void)
1716{
1717}
1718
1719static inline void memcg_put_cache_ids(void)
1720{
1721}
1722
1723static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1724{
1725 return NULL;
1726}
1727
1728#endif /* CONFIG_MEMCG_KMEM */
1729
1730#endif /* _LINUX_MEMCONTROL_H */