at v5.14 52 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2#ifndef __KVM_HOST_H 3#define __KVM_HOST_H 4 5 6#include <linux/types.h> 7#include <linux/hardirq.h> 8#include <linux/list.h> 9#include <linux/mutex.h> 10#include <linux/spinlock.h> 11#include <linux/signal.h> 12#include <linux/sched.h> 13#include <linux/sched/stat.h> 14#include <linux/bug.h> 15#include <linux/minmax.h> 16#include <linux/mm.h> 17#include <linux/mmu_notifier.h> 18#include <linux/preempt.h> 19#include <linux/msi.h> 20#include <linux/slab.h> 21#include <linux/vmalloc.h> 22#include <linux/rcupdate.h> 23#include <linux/ratelimit.h> 24#include <linux/err.h> 25#include <linux/irqflags.h> 26#include <linux/context_tracking.h> 27#include <linux/irqbypass.h> 28#include <linux/rcuwait.h> 29#include <linux/refcount.h> 30#include <linux/nospec.h> 31#include <linux/notifier.h> 32#include <asm/signal.h> 33 34#include <linux/kvm.h> 35#include <linux/kvm_para.h> 36 37#include <linux/kvm_types.h> 38 39#include <asm/kvm_host.h> 40#include <linux/kvm_dirty_ring.h> 41 42#ifndef KVM_MAX_VCPU_ID 43#define KVM_MAX_VCPU_ID KVM_MAX_VCPUS 44#endif 45 46/* 47 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used 48 * in kvm, other bits are visible for userspace which are defined in 49 * include/linux/kvm_h. 50 */ 51#define KVM_MEMSLOT_INVALID (1UL << 16) 52 53/* 54 * Bit 63 of the memslot generation number is an "update in-progress flag", 55 * e.g. is temporarily set for the duration of install_new_memslots(). 56 * This flag effectively creates a unique generation number that is used to 57 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale, 58 * i.e. may (or may not) have come from the previous memslots generation. 59 * 60 * This is necessary because the actual memslots update is not atomic with 61 * respect to the generation number update. Updating the generation number 62 * first would allow a vCPU to cache a spte from the old memslots using the 63 * new generation number, and updating the generation number after switching 64 * to the new memslots would allow cache hits using the old generation number 65 * to reference the defunct memslots. 66 * 67 * This mechanism is used to prevent getting hits in KVM's caches while a 68 * memslot update is in-progress, and to prevent cache hits *after* updating 69 * the actual generation number against accesses that were inserted into the 70 * cache *before* the memslots were updated. 71 */ 72#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63) 73 74/* Two fragments for cross MMIO pages. */ 75#define KVM_MAX_MMIO_FRAGMENTS 2 76 77#ifndef KVM_ADDRESS_SPACE_NUM 78#define KVM_ADDRESS_SPACE_NUM 1 79#endif 80 81/* 82 * For the normal pfn, the highest 12 bits should be zero, 83 * so we can mask bit 62 ~ bit 52 to indicate the error pfn, 84 * mask bit 63 to indicate the noslot pfn. 85 */ 86#define KVM_PFN_ERR_MASK (0x7ffULL << 52) 87#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52) 88#define KVM_PFN_NOSLOT (0x1ULL << 63) 89 90#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK) 91#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1) 92#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2) 93 94/* 95 * error pfns indicate that the gfn is in slot but faild to 96 * translate it to pfn on host. 97 */ 98static inline bool is_error_pfn(kvm_pfn_t pfn) 99{ 100 return !!(pfn & KVM_PFN_ERR_MASK); 101} 102 103/* 104 * error_noslot pfns indicate that the gfn can not be 105 * translated to pfn - it is not in slot or failed to 106 * translate it to pfn. 107 */ 108static inline bool is_error_noslot_pfn(kvm_pfn_t pfn) 109{ 110 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK); 111} 112 113/* noslot pfn indicates that the gfn is not in slot. */ 114static inline bool is_noslot_pfn(kvm_pfn_t pfn) 115{ 116 return pfn == KVM_PFN_NOSLOT; 117} 118 119/* 120 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390) 121 * provide own defines and kvm_is_error_hva 122 */ 123#ifndef KVM_HVA_ERR_BAD 124 125#define KVM_HVA_ERR_BAD (PAGE_OFFSET) 126#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE) 127 128static inline bool kvm_is_error_hva(unsigned long addr) 129{ 130 return addr >= PAGE_OFFSET; 131} 132 133#endif 134 135#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT)) 136 137static inline bool is_error_page(struct page *page) 138{ 139 return IS_ERR(page); 140} 141 142#define KVM_REQUEST_MASK GENMASK(7,0) 143#define KVM_REQUEST_NO_WAKEUP BIT(8) 144#define KVM_REQUEST_WAIT BIT(9) 145/* 146 * Architecture-independent vcpu->requests bit members 147 * Bits 4-7 are reserved for more arch-independent bits. 148 */ 149#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 150#define KVM_REQ_MMU_RELOAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP) 151#define KVM_REQ_UNBLOCK 2 152#define KVM_REQ_UNHALT 3 153#define KVM_REQUEST_ARCH_BASE 8 154 155#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \ 156 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \ 157 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \ 158}) 159#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0) 160 161#define KVM_USERSPACE_IRQ_SOURCE_ID 0 162#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1 163 164extern struct mutex kvm_lock; 165extern struct list_head vm_list; 166 167struct kvm_io_range { 168 gpa_t addr; 169 int len; 170 struct kvm_io_device *dev; 171}; 172 173#define NR_IOBUS_DEVS 1000 174 175struct kvm_io_bus { 176 int dev_count; 177 int ioeventfd_count; 178 struct kvm_io_range range[]; 179}; 180 181enum kvm_bus { 182 KVM_MMIO_BUS, 183 KVM_PIO_BUS, 184 KVM_VIRTIO_CCW_NOTIFY_BUS, 185 KVM_FAST_MMIO_BUS, 186 KVM_NR_BUSES 187}; 188 189int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 190 int len, const void *val); 191int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, 192 gpa_t addr, int len, const void *val, long cookie); 193int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr, 194 int len, void *val); 195int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, 196 int len, struct kvm_io_device *dev); 197int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, 198 struct kvm_io_device *dev); 199struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx, 200 gpa_t addr); 201 202#ifdef CONFIG_KVM_ASYNC_PF 203struct kvm_async_pf { 204 struct work_struct work; 205 struct list_head link; 206 struct list_head queue; 207 struct kvm_vcpu *vcpu; 208 struct mm_struct *mm; 209 gpa_t cr2_or_gpa; 210 unsigned long addr; 211 struct kvm_arch_async_pf arch; 212 bool wakeup_all; 213 bool notpresent_injected; 214}; 215 216void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu); 217void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu); 218bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, 219 unsigned long hva, struct kvm_arch_async_pf *arch); 220int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu); 221#endif 222 223#ifdef KVM_ARCH_WANT_MMU_NOTIFIER 224struct kvm_gfn_range { 225 struct kvm_memory_slot *slot; 226 gfn_t start; 227 gfn_t end; 228 pte_t pte; 229 bool may_block; 230}; 231bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range); 232bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 233bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 234bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range); 235#endif 236 237enum { 238 OUTSIDE_GUEST_MODE, 239 IN_GUEST_MODE, 240 EXITING_GUEST_MODE, 241 READING_SHADOW_PAGE_TABLES, 242}; 243 244#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA) 245 246struct kvm_host_map { 247 /* 248 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is 249 * a 'struct page' for it. When using mem= kernel parameter some memory 250 * can be used as guest memory but they are not managed by host 251 * kernel). 252 * If 'pfn' is not managed by the host kernel, this field is 253 * initialized to KVM_UNMAPPED_PAGE. 254 */ 255 struct page *page; 256 void *hva; 257 kvm_pfn_t pfn; 258 kvm_pfn_t gfn; 259}; 260 261/* 262 * Used to check if the mapping is valid or not. Never use 'kvm_host_map' 263 * directly to check for that. 264 */ 265static inline bool kvm_vcpu_mapped(struct kvm_host_map *map) 266{ 267 return !!map->hva; 268} 269 270static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop) 271{ 272 return single_task_running() && !need_resched() && ktime_before(cur, stop); 273} 274 275/* 276 * Sometimes a large or cross-page mmio needs to be broken up into separate 277 * exits for userspace servicing. 278 */ 279struct kvm_mmio_fragment { 280 gpa_t gpa; 281 void *data; 282 unsigned len; 283}; 284 285struct kvm_vcpu { 286 struct kvm *kvm; 287#ifdef CONFIG_PREEMPT_NOTIFIERS 288 struct preempt_notifier preempt_notifier; 289#endif 290 int cpu; 291 int vcpu_id; /* id given by userspace at creation */ 292 int vcpu_idx; /* index in kvm->vcpus array */ 293 int srcu_idx; 294 int mode; 295 u64 requests; 296 unsigned long guest_debug; 297 298 int pre_pcpu; 299 struct list_head blocked_vcpu_list; 300 301 struct mutex mutex; 302 struct kvm_run *run; 303 304 struct rcuwait wait; 305 struct pid __rcu *pid; 306 int sigset_active; 307 sigset_t sigset; 308 unsigned int halt_poll_ns; 309 bool valid_wakeup; 310 311#ifdef CONFIG_HAS_IOMEM 312 int mmio_needed; 313 int mmio_read_completed; 314 int mmio_is_write; 315 int mmio_cur_fragment; 316 int mmio_nr_fragments; 317 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS]; 318#endif 319 320#ifdef CONFIG_KVM_ASYNC_PF 321 struct { 322 u32 queued; 323 struct list_head queue; 324 struct list_head done; 325 spinlock_t lock; 326 } async_pf; 327#endif 328 329#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 330 /* 331 * Cpu relax intercept or pause loop exit optimization 332 * in_spin_loop: set when a vcpu does a pause loop exit 333 * or cpu relax intercepted. 334 * dy_eligible: indicates whether vcpu is eligible for directed yield. 335 */ 336 struct { 337 bool in_spin_loop; 338 bool dy_eligible; 339 } spin_loop; 340#endif 341 bool preempted; 342 bool ready; 343 struct kvm_vcpu_arch arch; 344 struct kvm_vcpu_stat stat; 345 char stats_id[KVM_STATS_NAME_SIZE]; 346 struct kvm_dirty_ring dirty_ring; 347}; 348 349/* must be called with irqs disabled */ 350static __always_inline void guest_enter_irqoff(void) 351{ 352 /* 353 * This is running in ioctl context so its safe to assume that it's the 354 * stime pending cputime to flush. 355 */ 356 instrumentation_begin(); 357 vtime_account_guest_enter(); 358 instrumentation_end(); 359 360 /* 361 * KVM does not hold any references to rcu protected data when it 362 * switches CPU into a guest mode. In fact switching to a guest mode 363 * is very similar to exiting to userspace from rcu point of view. In 364 * addition CPU may stay in a guest mode for quite a long time (up to 365 * one time slice). Lets treat guest mode as quiescent state, just like 366 * we do with user-mode execution. 367 */ 368 if (!context_tracking_guest_enter()) { 369 instrumentation_begin(); 370 rcu_virt_note_context_switch(smp_processor_id()); 371 instrumentation_end(); 372 } 373} 374 375static __always_inline void guest_exit_irqoff(void) 376{ 377 context_tracking_guest_exit(); 378 379 instrumentation_begin(); 380 /* Flush the guest cputime we spent on the guest */ 381 vtime_account_guest_exit(); 382 instrumentation_end(); 383} 384 385static inline void guest_exit(void) 386{ 387 unsigned long flags; 388 389 local_irq_save(flags); 390 guest_exit_irqoff(); 391 local_irq_restore(flags); 392} 393 394static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu) 395{ 396 /* 397 * The memory barrier ensures a previous write to vcpu->requests cannot 398 * be reordered with the read of vcpu->mode. It pairs with the general 399 * memory barrier following the write of vcpu->mode in VCPU RUN. 400 */ 401 smp_mb__before_atomic(); 402 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE); 403} 404 405/* 406 * Some of the bitops functions do not support too long bitmaps. 407 * This number must be determined not to exceed such limits. 408 */ 409#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1) 410 411struct kvm_memory_slot { 412 gfn_t base_gfn; 413 unsigned long npages; 414 unsigned long *dirty_bitmap; 415 struct kvm_arch_memory_slot arch; 416 unsigned long userspace_addr; 417 u32 flags; 418 short id; 419 u16 as_id; 420}; 421 422static inline bool kvm_slot_dirty_track_enabled(struct kvm_memory_slot *slot) 423{ 424 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES; 425} 426 427static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot) 428{ 429 return ALIGN(memslot->npages, BITS_PER_LONG) / 8; 430} 431 432static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot) 433{ 434 unsigned long len = kvm_dirty_bitmap_bytes(memslot); 435 436 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap); 437} 438 439#ifndef KVM_DIRTY_LOG_MANUAL_CAPS 440#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE 441#endif 442 443struct kvm_s390_adapter_int { 444 u64 ind_addr; 445 u64 summary_addr; 446 u64 ind_offset; 447 u32 summary_offset; 448 u32 adapter_id; 449}; 450 451struct kvm_hv_sint { 452 u32 vcpu; 453 u32 sint; 454}; 455 456struct kvm_kernel_irq_routing_entry { 457 u32 gsi; 458 u32 type; 459 int (*set)(struct kvm_kernel_irq_routing_entry *e, 460 struct kvm *kvm, int irq_source_id, int level, 461 bool line_status); 462 union { 463 struct { 464 unsigned irqchip; 465 unsigned pin; 466 } irqchip; 467 struct { 468 u32 address_lo; 469 u32 address_hi; 470 u32 data; 471 u32 flags; 472 u32 devid; 473 } msi; 474 struct kvm_s390_adapter_int adapter; 475 struct kvm_hv_sint hv_sint; 476 }; 477 struct hlist_node link; 478}; 479 480#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 481struct kvm_irq_routing_table { 482 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS]; 483 u32 nr_rt_entries; 484 /* 485 * Array indexed by gsi. Each entry contains list of irq chips 486 * the gsi is connected to. 487 */ 488 struct hlist_head map[]; 489}; 490#endif 491 492#ifndef KVM_PRIVATE_MEM_SLOTS 493#define KVM_PRIVATE_MEM_SLOTS 0 494#endif 495 496#define KVM_MEM_SLOTS_NUM SHRT_MAX 497#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS) 498 499#ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE 500static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu) 501{ 502 return 0; 503} 504#endif 505 506/* 507 * Note: 508 * memslots are not sorted by id anymore, please use id_to_memslot() 509 * to get the memslot by its id. 510 */ 511struct kvm_memslots { 512 u64 generation; 513 /* The mapping table from slot id to the index in memslots[]. */ 514 short id_to_index[KVM_MEM_SLOTS_NUM]; 515 atomic_t lru_slot; 516 int used_slots; 517 struct kvm_memory_slot memslots[]; 518}; 519 520struct kvm { 521#ifdef KVM_HAVE_MMU_RWLOCK 522 rwlock_t mmu_lock; 523#else 524 spinlock_t mmu_lock; 525#endif /* KVM_HAVE_MMU_RWLOCK */ 526 527 struct mutex slots_lock; 528 529 /* 530 * Protects the arch-specific fields of struct kvm_memory_slots in 531 * use by the VM. To be used under the slots_lock (above) or in a 532 * kvm->srcu critical section where acquiring the slots_lock would 533 * lead to deadlock with the synchronize_srcu in 534 * install_new_memslots. 535 */ 536 struct mutex slots_arch_lock; 537 struct mm_struct *mm; /* userspace tied to this vm */ 538 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM]; 539 struct kvm_vcpu *vcpus[KVM_MAX_VCPUS]; 540 541 /* 542 * created_vcpus is protected by kvm->lock, and is incremented 543 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only 544 * incremented after storing the kvm_vcpu pointer in vcpus, 545 * and is accessed atomically. 546 */ 547 atomic_t online_vcpus; 548 int created_vcpus; 549 int last_boosted_vcpu; 550 struct list_head vm_list; 551 struct mutex lock; 552 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES]; 553#ifdef CONFIG_HAVE_KVM_EVENTFD 554 struct { 555 spinlock_t lock; 556 struct list_head items; 557 struct list_head resampler_list; 558 struct mutex resampler_lock; 559 } irqfds; 560 struct list_head ioeventfds; 561#endif 562 struct kvm_vm_stat stat; 563 struct kvm_arch arch; 564 refcount_t users_count; 565#ifdef CONFIG_KVM_MMIO 566 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; 567 spinlock_t ring_lock; 568 struct list_head coalesced_zones; 569#endif 570 571 struct mutex irq_lock; 572#ifdef CONFIG_HAVE_KVM_IRQCHIP 573 /* 574 * Update side is protected by irq_lock. 575 */ 576 struct kvm_irq_routing_table __rcu *irq_routing; 577#endif 578#ifdef CONFIG_HAVE_KVM_IRQFD 579 struct hlist_head irq_ack_notifier_list; 580#endif 581 582#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 583 struct mmu_notifier mmu_notifier; 584 unsigned long mmu_notifier_seq; 585 long mmu_notifier_count; 586 unsigned long mmu_notifier_range_start; 587 unsigned long mmu_notifier_range_end; 588#endif 589 long tlbs_dirty; 590 struct list_head devices; 591 u64 manual_dirty_log_protect; 592 struct dentry *debugfs_dentry; 593 struct kvm_stat_data **debugfs_stat_data; 594 struct srcu_struct srcu; 595 struct srcu_struct irq_srcu; 596 pid_t userspace_pid; 597 unsigned int max_halt_poll_ns; 598 u32 dirty_ring_size; 599 600#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 601 struct notifier_block pm_notifier; 602#endif 603 char stats_id[KVM_STATS_NAME_SIZE]; 604}; 605 606#define kvm_err(fmt, ...) \ 607 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 608#define kvm_info(fmt, ...) \ 609 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 610#define kvm_debug(fmt, ...) \ 611 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__) 612#define kvm_debug_ratelimited(fmt, ...) \ 613 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \ 614 ## __VA_ARGS__) 615#define kvm_pr_unimpl(fmt, ...) \ 616 pr_err_ratelimited("kvm [%i]: " fmt, \ 617 task_tgid_nr(current), ## __VA_ARGS__) 618 619/* The guest did something we don't support. */ 620#define vcpu_unimpl(vcpu, fmt, ...) \ 621 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \ 622 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__) 623 624#define vcpu_debug(vcpu, fmt, ...) \ 625 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 626#define vcpu_debug_ratelimited(vcpu, fmt, ...) \ 627 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \ 628 ## __VA_ARGS__) 629#define vcpu_err(vcpu, fmt, ...) \ 630 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__) 631 632static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm) 633{ 634 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET); 635} 636 637static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx) 638{ 639 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu, 640 lockdep_is_held(&kvm->slots_lock) || 641 !refcount_read(&kvm->users_count)); 642} 643 644static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i) 645{ 646 int num_vcpus = atomic_read(&kvm->online_vcpus); 647 i = array_index_nospec(i, num_vcpus); 648 649 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */ 650 smp_rmb(); 651 return kvm->vcpus[i]; 652} 653 654#define kvm_for_each_vcpu(idx, vcpup, kvm) \ 655 for (idx = 0; \ 656 idx < atomic_read(&kvm->online_vcpus) && \ 657 (vcpup = kvm_get_vcpu(kvm, idx)) != NULL; \ 658 idx++) 659 660static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id) 661{ 662 struct kvm_vcpu *vcpu = NULL; 663 int i; 664 665 if (id < 0) 666 return NULL; 667 if (id < KVM_MAX_VCPUS) 668 vcpu = kvm_get_vcpu(kvm, id); 669 if (vcpu && vcpu->vcpu_id == id) 670 return vcpu; 671 kvm_for_each_vcpu(i, vcpu, kvm) 672 if (vcpu->vcpu_id == id) 673 return vcpu; 674 return NULL; 675} 676 677static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu) 678{ 679 return vcpu->vcpu_idx; 680} 681 682#define kvm_for_each_memslot(memslot, slots) \ 683 for (memslot = &slots->memslots[0]; \ 684 memslot < slots->memslots + slots->used_slots; memslot++) \ 685 if (WARN_ON_ONCE(!memslot->npages)) { \ 686 } else 687 688void kvm_vcpu_destroy(struct kvm_vcpu *vcpu); 689 690void vcpu_load(struct kvm_vcpu *vcpu); 691void vcpu_put(struct kvm_vcpu *vcpu); 692 693#ifdef __KVM_HAVE_IOAPIC 694void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm); 695void kvm_arch_post_irq_routing_update(struct kvm *kvm); 696#else 697static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm) 698{ 699} 700static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm) 701{ 702} 703#endif 704 705#ifdef CONFIG_HAVE_KVM_IRQFD 706int kvm_irqfd_init(void); 707void kvm_irqfd_exit(void); 708#else 709static inline int kvm_irqfd_init(void) 710{ 711 return 0; 712} 713 714static inline void kvm_irqfd_exit(void) 715{ 716} 717#endif 718int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, 719 struct module *module); 720void kvm_exit(void); 721 722void kvm_get_kvm(struct kvm *kvm); 723void kvm_put_kvm(struct kvm *kvm); 724bool file_is_kvm(struct file *file); 725void kvm_put_kvm_no_destroy(struct kvm *kvm); 726 727static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id) 728{ 729 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM); 730 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu, 731 lockdep_is_held(&kvm->slots_lock) || 732 !refcount_read(&kvm->users_count)); 733} 734 735static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm) 736{ 737 return __kvm_memslots(kvm, 0); 738} 739 740static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu) 741{ 742 int as_id = kvm_arch_vcpu_memslots_id(vcpu); 743 744 return __kvm_memslots(vcpu->kvm, as_id); 745} 746 747static inline 748struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id) 749{ 750 int index = slots->id_to_index[id]; 751 struct kvm_memory_slot *slot; 752 753 if (index < 0) 754 return NULL; 755 756 slot = &slots->memslots[index]; 757 758 WARN_ON(slot->id != id); 759 return slot; 760} 761 762/* 763 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations: 764 * - create a new memory slot 765 * - delete an existing memory slot 766 * - modify an existing memory slot 767 * -- move it in the guest physical memory space 768 * -- just change its flags 769 * 770 * Since flags can be changed by some of these operations, the following 771 * differentiation is the best we can do for __kvm_set_memory_region(): 772 */ 773enum kvm_mr_change { 774 KVM_MR_CREATE, 775 KVM_MR_DELETE, 776 KVM_MR_MOVE, 777 KVM_MR_FLAGS_ONLY, 778}; 779 780int kvm_set_memory_region(struct kvm *kvm, 781 const struct kvm_userspace_memory_region *mem); 782int __kvm_set_memory_region(struct kvm *kvm, 783 const struct kvm_userspace_memory_region *mem); 784void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot); 785void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen); 786int kvm_arch_prepare_memory_region(struct kvm *kvm, 787 struct kvm_memory_slot *memslot, 788 const struct kvm_userspace_memory_region *mem, 789 enum kvm_mr_change change); 790void kvm_arch_commit_memory_region(struct kvm *kvm, 791 const struct kvm_userspace_memory_region *mem, 792 struct kvm_memory_slot *old, 793 const struct kvm_memory_slot *new, 794 enum kvm_mr_change change); 795/* flush all memory translations */ 796void kvm_arch_flush_shadow_all(struct kvm *kvm); 797/* flush memory translations pointing to 'slot' */ 798void kvm_arch_flush_shadow_memslot(struct kvm *kvm, 799 struct kvm_memory_slot *slot); 800 801int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn, 802 struct page **pages, int nr_pages); 803 804struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn); 805unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn); 806unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable); 807unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 808unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn, 809 bool *writable); 810void kvm_release_page_clean(struct page *page); 811void kvm_release_page_dirty(struct page *page); 812void kvm_set_page_accessed(struct page *page); 813 814kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn); 815kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, 816 bool *writable); 817kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn); 818kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn); 819kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, 820 bool atomic, bool *async, bool write_fault, 821 bool *writable, hva_t *hva); 822 823void kvm_release_pfn_clean(kvm_pfn_t pfn); 824void kvm_release_pfn_dirty(kvm_pfn_t pfn); 825void kvm_set_pfn_dirty(kvm_pfn_t pfn); 826void kvm_set_pfn_accessed(kvm_pfn_t pfn); 827void kvm_get_pfn(kvm_pfn_t pfn); 828 829void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache); 830int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, 831 int len); 832int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len); 833int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 834 void *data, unsigned long len); 835int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 836 void *data, unsigned int offset, 837 unsigned long len); 838int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, 839 int offset, int len); 840int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, 841 unsigned long len); 842int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 843 void *data, unsigned long len); 844int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 845 void *data, unsigned int offset, 846 unsigned long len); 847int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, 848 gpa_t gpa, unsigned long len); 849 850#define __kvm_get_guest(kvm, gfn, offset, v) \ 851({ \ 852 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 853 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 854 int __ret = -EFAULT; \ 855 \ 856 if (!kvm_is_error_hva(__addr)) \ 857 __ret = get_user(v, __uaddr); \ 858 __ret; \ 859}) 860 861#define kvm_get_guest(kvm, gpa, v) \ 862({ \ 863 gpa_t __gpa = gpa; \ 864 struct kvm *__kvm = kvm; \ 865 \ 866 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \ 867 offset_in_page(__gpa), v); \ 868}) 869 870#define __kvm_put_guest(kvm, gfn, offset, v) \ 871({ \ 872 unsigned long __addr = gfn_to_hva(kvm, gfn); \ 873 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \ 874 int __ret = -EFAULT; \ 875 \ 876 if (!kvm_is_error_hva(__addr)) \ 877 __ret = put_user(v, __uaddr); \ 878 if (!__ret) \ 879 mark_page_dirty(kvm, gfn); \ 880 __ret; \ 881}) 882 883#define kvm_put_guest(kvm, gpa, v) \ 884({ \ 885 gpa_t __gpa = gpa; \ 886 struct kvm *__kvm = kvm; \ 887 \ 888 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \ 889 offset_in_page(__gpa), v); \ 890}) 891 892int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len); 893struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn); 894bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn); 895bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn); 896unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn); 897void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, gfn_t gfn); 898void mark_page_dirty(struct kvm *kvm, gfn_t gfn); 899 900struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu); 901struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn); 902kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn); 903kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn); 904int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map); 905int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map, 906 struct gfn_to_pfn_cache *cache, bool atomic); 907struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn); 908void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty); 909int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 910 struct gfn_to_pfn_cache *cache, bool dirty, bool atomic); 911unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn); 912unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable); 913int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset, 914 int len); 915int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 916 unsigned long len); 917int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, 918 unsigned long len); 919int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data, 920 int offset, int len); 921int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data, 922 unsigned long len); 923void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn); 924 925void kvm_sigset_activate(struct kvm_vcpu *vcpu); 926void kvm_sigset_deactivate(struct kvm_vcpu *vcpu); 927 928void kvm_vcpu_block(struct kvm_vcpu *vcpu); 929void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu); 930void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu); 931bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu); 932void kvm_vcpu_kick(struct kvm_vcpu *vcpu); 933int kvm_vcpu_yield_to(struct kvm_vcpu *target); 934void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible); 935 936void kvm_flush_remote_tlbs(struct kvm *kvm); 937void kvm_reload_remote_mmus(struct kvm *kvm); 938 939#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE 940int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min); 941int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc); 942void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc); 943void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc); 944#endif 945 946bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req, 947 struct kvm_vcpu *except, 948 unsigned long *vcpu_bitmap, cpumask_var_t tmp); 949bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req); 950bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req, 951 struct kvm_vcpu *except); 952bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req, 953 unsigned long *vcpu_bitmap); 954 955long kvm_arch_dev_ioctl(struct file *filp, 956 unsigned int ioctl, unsigned long arg); 957long kvm_arch_vcpu_ioctl(struct file *filp, 958 unsigned int ioctl, unsigned long arg); 959vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf); 960 961int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext); 962 963void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, 964 struct kvm_memory_slot *slot, 965 gfn_t gfn_offset, 966 unsigned long mask); 967void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot); 968 969#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT 970void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm, 971 const struct kvm_memory_slot *memslot); 972#else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */ 973int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log); 974int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log, 975 int *is_dirty, struct kvm_memory_slot **memslot); 976#endif 977 978int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level, 979 bool line_status); 980int kvm_vm_ioctl_enable_cap(struct kvm *kvm, 981 struct kvm_enable_cap *cap); 982long kvm_arch_vm_ioctl(struct file *filp, 983 unsigned int ioctl, unsigned long arg); 984 985int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 986int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu); 987 988int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, 989 struct kvm_translation *tr); 990 991int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 992int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs); 993int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, 994 struct kvm_sregs *sregs); 995int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, 996 struct kvm_sregs *sregs); 997int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, 998 struct kvm_mp_state *mp_state); 999int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, 1000 struct kvm_mp_state *mp_state); 1001int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, 1002 struct kvm_guest_debug *dbg); 1003int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu); 1004 1005int kvm_arch_init(void *opaque); 1006void kvm_arch_exit(void); 1007 1008void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu); 1009 1010void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu); 1011void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu); 1012int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id); 1013int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu); 1014void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu); 1015void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu); 1016 1017#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER 1018int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state); 1019#endif 1020 1021#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS 1022void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry); 1023#endif 1024 1025int kvm_arch_hardware_enable(void); 1026void kvm_arch_hardware_disable(void); 1027int kvm_arch_hardware_setup(void *opaque); 1028void kvm_arch_hardware_unsetup(void); 1029int kvm_arch_check_processor_compat(void *opaque); 1030int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu); 1031bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu); 1032int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu); 1033bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu); 1034bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu); 1035int kvm_arch_post_init_vm(struct kvm *kvm); 1036void kvm_arch_pre_destroy_vm(struct kvm *kvm); 1037 1038#ifndef __KVM_HAVE_ARCH_VM_ALLOC 1039/* 1040 * All architectures that want to use vzalloc currently also 1041 * need their own kvm_arch_alloc_vm implementation. 1042 */ 1043static inline struct kvm *kvm_arch_alloc_vm(void) 1044{ 1045 return kzalloc(sizeof(struct kvm), GFP_KERNEL); 1046} 1047 1048static inline void kvm_arch_free_vm(struct kvm *kvm) 1049{ 1050 kfree(kvm); 1051} 1052#endif 1053 1054#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB 1055static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm) 1056{ 1057 return -ENOTSUPP; 1058} 1059#endif 1060 1061#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA 1062void kvm_arch_register_noncoherent_dma(struct kvm *kvm); 1063void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm); 1064bool kvm_arch_has_noncoherent_dma(struct kvm *kvm); 1065#else 1066static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm) 1067{ 1068} 1069 1070static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) 1071{ 1072} 1073 1074static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) 1075{ 1076 return false; 1077} 1078#endif 1079#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE 1080void kvm_arch_start_assignment(struct kvm *kvm); 1081void kvm_arch_end_assignment(struct kvm *kvm); 1082bool kvm_arch_has_assigned_device(struct kvm *kvm); 1083#else 1084static inline void kvm_arch_start_assignment(struct kvm *kvm) 1085{ 1086} 1087 1088static inline void kvm_arch_end_assignment(struct kvm *kvm) 1089{ 1090} 1091 1092static inline bool kvm_arch_has_assigned_device(struct kvm *kvm) 1093{ 1094 return false; 1095} 1096#endif 1097 1098static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu) 1099{ 1100#ifdef __KVM_HAVE_ARCH_WQP 1101 return vcpu->arch.waitp; 1102#else 1103 return &vcpu->wait; 1104#endif 1105} 1106 1107#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED 1108/* 1109 * returns true if the virtual interrupt controller is initialized and 1110 * ready to accept virtual IRQ. On some architectures the virtual interrupt 1111 * controller is dynamically instantiated and this is not always true. 1112 */ 1113bool kvm_arch_intc_initialized(struct kvm *kvm); 1114#else 1115static inline bool kvm_arch_intc_initialized(struct kvm *kvm) 1116{ 1117 return true; 1118} 1119#endif 1120 1121int kvm_arch_init_vm(struct kvm *kvm, unsigned long type); 1122void kvm_arch_destroy_vm(struct kvm *kvm); 1123void kvm_arch_sync_events(struct kvm *kvm); 1124 1125int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu); 1126 1127bool kvm_is_reserved_pfn(kvm_pfn_t pfn); 1128bool kvm_is_zone_device_pfn(kvm_pfn_t pfn); 1129bool kvm_is_transparent_hugepage(kvm_pfn_t pfn); 1130 1131struct kvm_irq_ack_notifier { 1132 struct hlist_node link; 1133 unsigned gsi; 1134 void (*irq_acked)(struct kvm_irq_ack_notifier *kian); 1135}; 1136 1137int kvm_irq_map_gsi(struct kvm *kvm, 1138 struct kvm_kernel_irq_routing_entry *entries, int gsi); 1139int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin); 1140 1141int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, 1142 bool line_status); 1143int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm, 1144 int irq_source_id, int level, bool line_status); 1145int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e, 1146 struct kvm *kvm, int irq_source_id, 1147 int level, bool line_status); 1148bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin); 1149void kvm_notify_acked_gsi(struct kvm *kvm, int gsi); 1150void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin); 1151void kvm_register_irq_ack_notifier(struct kvm *kvm, 1152 struct kvm_irq_ack_notifier *kian); 1153void kvm_unregister_irq_ack_notifier(struct kvm *kvm, 1154 struct kvm_irq_ack_notifier *kian); 1155int kvm_request_irq_source_id(struct kvm *kvm); 1156void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id); 1157bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args); 1158 1159/* 1160 * search_memslots() and __gfn_to_memslot() are here because they are 1161 * used in non-modular code in arch/powerpc/kvm/book3s_hv_rm_mmu.c. 1162 * gfn_to_memslot() itself isn't here as an inline because that would 1163 * bloat other code too much. 1164 * 1165 * IMPORTANT: Slots are sorted from highest GFN to lowest GFN! 1166 */ 1167static inline struct kvm_memory_slot * 1168search_memslots(struct kvm_memslots *slots, gfn_t gfn) 1169{ 1170 int start = 0, end = slots->used_slots; 1171 int slot = atomic_read(&slots->lru_slot); 1172 struct kvm_memory_slot *memslots = slots->memslots; 1173 1174 if (unlikely(!slots->used_slots)) 1175 return NULL; 1176 1177 if (gfn >= memslots[slot].base_gfn && 1178 gfn < memslots[slot].base_gfn + memslots[slot].npages) 1179 return &memslots[slot]; 1180 1181 while (start < end) { 1182 slot = start + (end - start) / 2; 1183 1184 if (gfn >= memslots[slot].base_gfn) 1185 end = slot; 1186 else 1187 start = slot + 1; 1188 } 1189 1190 if (start < slots->used_slots && gfn >= memslots[start].base_gfn && 1191 gfn < memslots[start].base_gfn + memslots[start].npages) { 1192 atomic_set(&slots->lru_slot, start); 1193 return &memslots[start]; 1194 } 1195 1196 return NULL; 1197} 1198 1199static inline struct kvm_memory_slot * 1200__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn) 1201{ 1202 return search_memslots(slots, gfn); 1203} 1204 1205static inline unsigned long 1206__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn) 1207{ 1208 /* 1209 * The index was checked originally in search_memslots. To avoid 1210 * that a malicious guest builds a Spectre gadget out of e.g. page 1211 * table walks, do not let the processor speculate loads outside 1212 * the guest's registered memslots. 1213 */ 1214 unsigned long offset = gfn - slot->base_gfn; 1215 offset = array_index_nospec(offset, slot->npages); 1216 return slot->userspace_addr + offset * PAGE_SIZE; 1217} 1218 1219static inline int memslot_id(struct kvm *kvm, gfn_t gfn) 1220{ 1221 return gfn_to_memslot(kvm, gfn)->id; 1222} 1223 1224static inline gfn_t 1225hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot) 1226{ 1227 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT; 1228 1229 return slot->base_gfn + gfn_offset; 1230} 1231 1232static inline gpa_t gfn_to_gpa(gfn_t gfn) 1233{ 1234 return (gpa_t)gfn << PAGE_SHIFT; 1235} 1236 1237static inline gfn_t gpa_to_gfn(gpa_t gpa) 1238{ 1239 return (gfn_t)(gpa >> PAGE_SHIFT); 1240} 1241 1242static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn) 1243{ 1244 return (hpa_t)pfn << PAGE_SHIFT; 1245} 1246 1247static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu, 1248 gpa_t gpa) 1249{ 1250 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa)); 1251} 1252 1253static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa) 1254{ 1255 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa)); 1256 1257 return kvm_is_error_hva(hva); 1258} 1259 1260enum kvm_stat_kind { 1261 KVM_STAT_VM, 1262 KVM_STAT_VCPU, 1263}; 1264 1265struct kvm_stat_data { 1266 struct kvm *kvm; 1267 const struct _kvm_stats_desc *desc; 1268 enum kvm_stat_kind kind; 1269}; 1270 1271struct _kvm_stats_desc { 1272 struct kvm_stats_desc desc; 1273 char name[KVM_STATS_NAME_SIZE]; 1274}; 1275 1276#define STATS_DESC_COMMON(type, unit, base, exp) \ 1277 .flags = type | unit | base | \ 1278 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \ 1279 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \ 1280 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \ 1281 .exponent = exp, \ 1282 .size = 1 1283 1284#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp) \ 1285 { \ 1286 { \ 1287 STATS_DESC_COMMON(type, unit, base, exp), \ 1288 .offset = offsetof(struct kvm_vm_stat, generic.stat) \ 1289 }, \ 1290 .name = #stat, \ 1291 } 1292#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp) \ 1293 { \ 1294 { \ 1295 STATS_DESC_COMMON(type, unit, base, exp), \ 1296 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \ 1297 }, \ 1298 .name = #stat, \ 1299 } 1300#define VM_STATS_DESC(stat, type, unit, base, exp) \ 1301 { \ 1302 { \ 1303 STATS_DESC_COMMON(type, unit, base, exp), \ 1304 .offset = offsetof(struct kvm_vm_stat, stat) \ 1305 }, \ 1306 .name = #stat, \ 1307 } 1308#define VCPU_STATS_DESC(stat, type, unit, base, exp) \ 1309 { \ 1310 { \ 1311 STATS_DESC_COMMON(type, unit, base, exp), \ 1312 .offset = offsetof(struct kvm_vcpu_stat, stat) \ 1313 }, \ 1314 .name = #stat, \ 1315 } 1316/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */ 1317#define STATS_DESC(SCOPE, stat, type, unit, base, exp) \ 1318 SCOPE##_STATS_DESC(stat, type, unit, base, exp) 1319 1320#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \ 1321 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, unit, base, exponent) 1322#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \ 1323 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, unit, base, exponent) 1324#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \ 1325 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, unit, base, exponent) 1326 1327/* Cumulative counter, read/write */ 1328#define STATS_DESC_COUNTER(SCOPE, name) \ 1329 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1330 KVM_STATS_BASE_POW10, 0) 1331/* Instantaneous counter, read only */ 1332#define STATS_DESC_ICOUNTER(SCOPE, name) \ 1333 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1334 KVM_STATS_BASE_POW10, 0) 1335/* Peak counter, read/write */ 1336#define STATS_DESC_PCOUNTER(SCOPE, name) \ 1337 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \ 1338 KVM_STATS_BASE_POW10, 0) 1339 1340/* Cumulative time in nanosecond */ 1341#define STATS_DESC_TIME_NSEC(SCOPE, name) \ 1342 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \ 1343 KVM_STATS_BASE_POW10, -9) 1344 1345#define KVM_GENERIC_VM_STATS() \ 1346 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush) 1347 1348#define KVM_GENERIC_VCPU_STATS() \ 1349 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \ 1350 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \ 1351 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \ 1352 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \ 1353 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \ 1354 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns) 1355 1356extern struct dentry *kvm_debugfs_dir; 1357ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header, 1358 const struct _kvm_stats_desc *desc, 1359 void *stats, size_t size_stats, 1360 char __user *user_buffer, size_t size, loff_t *offset); 1361extern const struct kvm_stats_header kvm_vm_stats_header; 1362extern const struct _kvm_stats_desc kvm_vm_stats_desc[]; 1363extern const struct kvm_stats_header kvm_vcpu_stats_header; 1364extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[]; 1365 1366#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) 1367static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq) 1368{ 1369 if (unlikely(kvm->mmu_notifier_count)) 1370 return 1; 1371 /* 1372 * Ensure the read of mmu_notifier_count happens before the read 1373 * of mmu_notifier_seq. This interacts with the smp_wmb() in 1374 * mmu_notifier_invalidate_range_end to make sure that the caller 1375 * either sees the old (non-zero) value of mmu_notifier_count or 1376 * the new (incremented) value of mmu_notifier_seq. 1377 * PowerPC Book3s HV KVM calls this under a per-page lock 1378 * rather than under kvm->mmu_lock, for scalability, so 1379 * can't rely on kvm->mmu_lock to keep things ordered. 1380 */ 1381 smp_rmb(); 1382 if (kvm->mmu_notifier_seq != mmu_seq) 1383 return 1; 1384 return 0; 1385} 1386 1387static inline int mmu_notifier_retry_hva(struct kvm *kvm, 1388 unsigned long mmu_seq, 1389 unsigned long hva) 1390{ 1391 lockdep_assert_held(&kvm->mmu_lock); 1392 /* 1393 * If mmu_notifier_count is non-zero, then the range maintained by 1394 * kvm_mmu_notifier_invalidate_range_start contains all addresses that 1395 * might be being invalidated. Note that it may include some false 1396 * positives, due to shortcuts when handing concurrent invalidations. 1397 */ 1398 if (unlikely(kvm->mmu_notifier_count) && 1399 hva >= kvm->mmu_notifier_range_start && 1400 hva < kvm->mmu_notifier_range_end) 1401 return 1; 1402 if (kvm->mmu_notifier_seq != mmu_seq) 1403 return 1; 1404 return 0; 1405} 1406#endif 1407 1408#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING 1409 1410#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */ 1411 1412bool kvm_arch_can_set_irq_routing(struct kvm *kvm); 1413int kvm_set_irq_routing(struct kvm *kvm, 1414 const struct kvm_irq_routing_entry *entries, 1415 unsigned nr, 1416 unsigned flags); 1417int kvm_set_routing_entry(struct kvm *kvm, 1418 struct kvm_kernel_irq_routing_entry *e, 1419 const struct kvm_irq_routing_entry *ue); 1420void kvm_free_irq_routing(struct kvm *kvm); 1421 1422#else 1423 1424static inline void kvm_free_irq_routing(struct kvm *kvm) {} 1425 1426#endif 1427 1428int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi); 1429 1430#ifdef CONFIG_HAVE_KVM_EVENTFD 1431 1432void kvm_eventfd_init(struct kvm *kvm); 1433int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args); 1434 1435#ifdef CONFIG_HAVE_KVM_IRQFD 1436int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args); 1437void kvm_irqfd_release(struct kvm *kvm); 1438void kvm_irq_routing_update(struct kvm *); 1439#else 1440static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1441{ 1442 return -EINVAL; 1443} 1444 1445static inline void kvm_irqfd_release(struct kvm *kvm) {} 1446#endif 1447 1448#else 1449 1450static inline void kvm_eventfd_init(struct kvm *kvm) {} 1451 1452static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args) 1453{ 1454 return -EINVAL; 1455} 1456 1457static inline void kvm_irqfd_release(struct kvm *kvm) {} 1458 1459#ifdef CONFIG_HAVE_KVM_IRQCHIP 1460static inline void kvm_irq_routing_update(struct kvm *kvm) 1461{ 1462} 1463#endif 1464 1465static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args) 1466{ 1467 return -ENOSYS; 1468} 1469 1470#endif /* CONFIG_HAVE_KVM_EVENTFD */ 1471 1472void kvm_arch_irq_routing_update(struct kvm *kvm); 1473 1474static inline void kvm_make_request(int req, struct kvm_vcpu *vcpu) 1475{ 1476 /* 1477 * Ensure the rest of the request is published to kvm_check_request's 1478 * caller. Paired with the smp_mb__after_atomic in kvm_check_request. 1479 */ 1480 smp_wmb(); 1481 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1482} 1483 1484static inline bool kvm_request_pending(struct kvm_vcpu *vcpu) 1485{ 1486 return READ_ONCE(vcpu->requests); 1487} 1488 1489static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu) 1490{ 1491 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1492} 1493 1494static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu) 1495{ 1496 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests); 1497} 1498 1499static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu) 1500{ 1501 if (kvm_test_request(req, vcpu)) { 1502 kvm_clear_request(req, vcpu); 1503 1504 /* 1505 * Ensure the rest of the request is visible to kvm_check_request's 1506 * caller. Paired with the smp_wmb in kvm_make_request. 1507 */ 1508 smp_mb__after_atomic(); 1509 return true; 1510 } else { 1511 return false; 1512 } 1513} 1514 1515extern bool kvm_rebooting; 1516 1517extern unsigned int halt_poll_ns; 1518extern unsigned int halt_poll_ns_grow; 1519extern unsigned int halt_poll_ns_grow_start; 1520extern unsigned int halt_poll_ns_shrink; 1521 1522struct kvm_device { 1523 const struct kvm_device_ops *ops; 1524 struct kvm *kvm; 1525 void *private; 1526 struct list_head vm_node; 1527}; 1528 1529/* create, destroy, and name are mandatory */ 1530struct kvm_device_ops { 1531 const char *name; 1532 1533 /* 1534 * create is called holding kvm->lock and any operations not suitable 1535 * to do while holding the lock should be deferred to init (see 1536 * below). 1537 */ 1538 int (*create)(struct kvm_device *dev, u32 type); 1539 1540 /* 1541 * init is called after create if create is successful and is called 1542 * outside of holding kvm->lock. 1543 */ 1544 void (*init)(struct kvm_device *dev); 1545 1546 /* 1547 * Destroy is responsible for freeing dev. 1548 * 1549 * Destroy may be called before or after destructors are called 1550 * on emulated I/O regions, depending on whether a reference is 1551 * held by a vcpu or other kvm component that gets destroyed 1552 * after the emulated I/O. 1553 */ 1554 void (*destroy)(struct kvm_device *dev); 1555 1556 /* 1557 * Release is an alternative method to free the device. It is 1558 * called when the device file descriptor is closed. Once 1559 * release is called, the destroy method will not be called 1560 * anymore as the device is removed from the device list of 1561 * the VM. kvm->lock is held. 1562 */ 1563 void (*release)(struct kvm_device *dev); 1564 1565 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1566 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1567 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr); 1568 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl, 1569 unsigned long arg); 1570 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma); 1571}; 1572 1573void kvm_device_get(struct kvm_device *dev); 1574void kvm_device_put(struct kvm_device *dev); 1575struct kvm_device *kvm_device_from_filp(struct file *filp); 1576int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type); 1577void kvm_unregister_device_ops(u32 type); 1578 1579extern struct kvm_device_ops kvm_mpic_ops; 1580extern struct kvm_device_ops kvm_arm_vgic_v2_ops; 1581extern struct kvm_device_ops kvm_arm_vgic_v3_ops; 1582 1583#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT 1584 1585static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1586{ 1587 vcpu->spin_loop.in_spin_loop = val; 1588} 1589static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1590{ 1591 vcpu->spin_loop.dy_eligible = val; 1592} 1593 1594#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1595 1596static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val) 1597{ 1598} 1599 1600static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val) 1601{ 1602} 1603#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */ 1604 1605static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot) 1606{ 1607 return (memslot && memslot->id < KVM_USER_MEM_SLOTS && 1608 !(memslot->flags & KVM_MEMSLOT_INVALID)); 1609} 1610 1611struct kvm_vcpu *kvm_get_running_vcpu(void); 1612struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void); 1613 1614#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS 1615bool kvm_arch_has_irq_bypass(void); 1616int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *, 1617 struct irq_bypass_producer *); 1618void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *, 1619 struct irq_bypass_producer *); 1620void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *); 1621void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *); 1622int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, 1623 uint32_t guest_irq, bool set); 1624#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */ 1625 1626#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS 1627/* If we wakeup during the poll time, was it a sucessful poll? */ 1628static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1629{ 1630 return vcpu->valid_wakeup; 1631} 1632 1633#else 1634static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu) 1635{ 1636 return true; 1637} 1638#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */ 1639 1640#ifdef CONFIG_HAVE_KVM_NO_POLL 1641/* Callback that tells if we must not poll */ 1642bool kvm_arch_no_poll(struct kvm_vcpu *vcpu); 1643#else 1644static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) 1645{ 1646 return false; 1647} 1648#endif /* CONFIG_HAVE_KVM_NO_POLL */ 1649 1650#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL 1651long kvm_arch_vcpu_async_ioctl(struct file *filp, 1652 unsigned int ioctl, unsigned long arg); 1653#else 1654static inline long kvm_arch_vcpu_async_ioctl(struct file *filp, 1655 unsigned int ioctl, 1656 unsigned long arg) 1657{ 1658 return -ENOIOCTLCMD; 1659} 1660#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */ 1661 1662void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm, 1663 unsigned long start, unsigned long end); 1664 1665#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE 1666int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu); 1667#else 1668static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu) 1669{ 1670 return 0; 1671} 1672#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */ 1673 1674typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data); 1675 1676int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn, 1677 uintptr_t data, const char *name, 1678 struct task_struct **thread_ptr); 1679 1680#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK 1681static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu) 1682{ 1683 vcpu->run->exit_reason = KVM_EXIT_INTR; 1684 vcpu->stat.signal_exits++; 1685} 1686#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */ 1687 1688/* 1689 * This defines how many reserved entries we want to keep before we 1690 * kick the vcpu to the userspace to avoid dirty ring full. This 1691 * value can be tuned to higher if e.g. PML is enabled on the host. 1692 */ 1693#define KVM_DIRTY_RING_RSVD_ENTRIES 64 1694 1695/* Max number of entries allowed for each kvm dirty ring */ 1696#define KVM_DIRTY_RING_MAX_ENTRIES 65536 1697 1698#endif