at v5.14 55 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved. 4 */ 5#ifndef LINUX_DMAENGINE_H 6#define LINUX_DMAENGINE_H 7 8#include <linux/device.h> 9#include <linux/err.h> 10#include <linux/uio.h> 11#include <linux/bug.h> 12#include <linux/scatterlist.h> 13#include <linux/bitmap.h> 14#include <linux/types.h> 15#include <asm/page.h> 16 17/** 18 * typedef dma_cookie_t - an opaque DMA cookie 19 * 20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code 21 */ 22typedef s32 dma_cookie_t; 23#define DMA_MIN_COOKIE 1 24 25static inline int dma_submit_error(dma_cookie_t cookie) 26{ 27 return cookie < 0 ? cookie : 0; 28} 29 30/** 31 * enum dma_status - DMA transaction status 32 * @DMA_COMPLETE: transaction completed 33 * @DMA_IN_PROGRESS: transaction not yet processed 34 * @DMA_PAUSED: transaction is paused 35 * @DMA_ERROR: transaction failed 36 */ 37enum dma_status { 38 DMA_COMPLETE, 39 DMA_IN_PROGRESS, 40 DMA_PAUSED, 41 DMA_ERROR, 42 DMA_OUT_OF_ORDER, 43}; 44 45/** 46 * enum dma_transaction_type - DMA transaction types/indexes 47 * 48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is 49 * automatically set as dma devices are registered. 50 */ 51enum dma_transaction_type { 52 DMA_MEMCPY, 53 DMA_XOR, 54 DMA_PQ, 55 DMA_XOR_VAL, 56 DMA_PQ_VAL, 57 DMA_MEMSET, 58 DMA_MEMSET_SG, 59 DMA_INTERRUPT, 60 DMA_PRIVATE, 61 DMA_ASYNC_TX, 62 DMA_SLAVE, 63 DMA_CYCLIC, 64 DMA_INTERLEAVE, 65 DMA_COMPLETION_NO_ORDER, 66 DMA_REPEAT, 67 DMA_LOAD_EOT, 68/* last transaction type for creation of the capabilities mask */ 69 DMA_TX_TYPE_END, 70}; 71 72/** 73 * enum dma_transfer_direction - dma transfer mode and direction indicator 74 * @DMA_MEM_TO_MEM: Async/Memcpy mode 75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device 76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory 77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device 78 */ 79enum dma_transfer_direction { 80 DMA_MEM_TO_MEM, 81 DMA_MEM_TO_DEV, 82 DMA_DEV_TO_MEM, 83 DMA_DEV_TO_DEV, 84 DMA_TRANS_NONE, 85}; 86 87/** 88 * Interleaved Transfer Request 89 * ---------------------------- 90 * A chunk is collection of contiguous bytes to be transferred. 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG). 92 * ICGs may or may not change between chunks. 93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs, 94 * that when repeated an integral number of times, specifies the transfer. 95 * A transfer template is specification of a Frame, the number of times 96 * it is to be repeated and other per-transfer attributes. 97 * 98 * Practically, a client driver would have ready a template for each 99 * type of transfer it is going to need during its lifetime and 100 * set only 'src_start' and 'dst_start' before submitting the requests. 101 * 102 * 103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' | 104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...| 105 * 106 * == Chunk size 107 * ... ICG 108 */ 109 110/** 111 * struct data_chunk - Element of scatter-gather list that makes a frame. 112 * @size: Number of bytes to read from source. 113 * size_dst := fn(op, size_src), so doesn't mean much for destination. 114 * @icg: Number of bytes to jump after last src/dst address of this 115 * chunk and before first src/dst address for next chunk. 116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false. 117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false. 118 * @dst_icg: Number of bytes to jump after last dst address of this 119 * chunk and before the first dst address for next chunk. 120 * Ignored if dst_inc is true and dst_sgl is false. 121 * @src_icg: Number of bytes to jump after last src address of this 122 * chunk and before the first src address for next chunk. 123 * Ignored if src_inc is true and src_sgl is false. 124 */ 125struct data_chunk { 126 size_t size; 127 size_t icg; 128 size_t dst_icg; 129 size_t src_icg; 130}; 131 132/** 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern 134 * and attributes. 135 * @src_start: Bus address of source for the first chunk. 136 * @dst_start: Bus address of destination for the first chunk. 137 * @dir: Specifies the type of Source and Destination. 138 * @src_inc: If the source address increments after reading from it. 139 * @dst_inc: If the destination address increments after writing to it. 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read). 141 * Otherwise, source is read contiguously (icg ignored). 142 * Ignored if src_inc is false. 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write). 144 * Otherwise, destination is filled contiguously (icg ignored). 145 * Ignored if dst_inc is false. 146 * @numf: Number of frames in this template. 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[]. 148 * @sgl: Array of {chunk,icg} pairs that make up a frame. 149 */ 150struct dma_interleaved_template { 151 dma_addr_t src_start; 152 dma_addr_t dst_start; 153 enum dma_transfer_direction dir; 154 bool src_inc; 155 bool dst_inc; 156 bool src_sgl; 157 bool dst_sgl; 158 size_t numf; 159 size_t frame_size; 160 struct data_chunk sgl[]; 161}; 162 163/** 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation, 165 * control completion, and communicate status. 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of 167 * this transaction 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client 169 * acknowledges receipt, i.e. has a chance to establish any dependency 170 * chains 171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q 172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P 173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as 174 * sources that were the result of a previous operation, in the case of a PQ 175 * operation it continues the calculation with new sources 176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend 177 * on the result of this operation 178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till 179 * cleared or freed 180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command 181 * data and the descriptor should be in different format from normal 182 * data descriptors. 183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically 184 * repeated when it ends until a transaction is issued on the same channel 185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to 186 * interleaved transactions and is ignored for all other transaction types. 187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any 188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the 189 * repeated transaction ends. Not setting this flag when the previously queued 190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction 191 * to never be processed and stay in the issued queue forever. The flag is 192 * ignored if the previous transaction is not a repeated transaction. 193 */ 194enum dma_ctrl_flags { 195 DMA_PREP_INTERRUPT = (1 << 0), 196 DMA_CTRL_ACK = (1 << 1), 197 DMA_PREP_PQ_DISABLE_P = (1 << 2), 198 DMA_PREP_PQ_DISABLE_Q = (1 << 3), 199 DMA_PREP_CONTINUE = (1 << 4), 200 DMA_PREP_FENCE = (1 << 5), 201 DMA_CTRL_REUSE = (1 << 6), 202 DMA_PREP_CMD = (1 << 7), 203 DMA_PREP_REPEAT = (1 << 8), 204 DMA_PREP_LOAD_EOT = (1 << 9), 205}; 206 207/** 208 * enum sum_check_bits - bit position of pq_check_flags 209 */ 210enum sum_check_bits { 211 SUM_CHECK_P = 0, 212 SUM_CHECK_Q = 1, 213}; 214 215/** 216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations 217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise 218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise 219 */ 220enum sum_check_flags { 221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P), 222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q), 223}; 224 225 226/** 227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t. 228 * See linux/cpumask.h 229 */ 230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t; 231 232/** 233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported 234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the 235 * client driver and it is attached (via the dmaengine_desc_attach_metadata() 236 * helper) to the descriptor. 237 * 238 * Client drivers interested to use this mode can follow: 239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 240 * 1. prepare the descriptor (dmaengine_prep_*) 241 * construct the metadata in the client's buffer 242 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 243 * descriptor 244 * 3. submit the transfer 245 * - DMA_DEV_TO_MEM: 246 * 1. prepare the descriptor (dmaengine_prep_*) 247 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the 248 * descriptor 249 * 3. submit the transfer 250 * 4. when the transfer is completed, the metadata should be available in the 251 * attached buffer 252 * 253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA 254 * driver. The client driver can ask for the pointer, maximum size and the 255 * currently used size of the metadata and can directly update or read it. 256 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is 257 * provided as helper functions. 258 * 259 * Note: the metadata area for the descriptor is no longer valid after the 260 * transfer has been completed (valid up to the point when the completion 261 * callback returns if used). 262 * 263 * Client drivers interested to use this mode can follow: 264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM: 265 * 1. prepare the descriptor (dmaengine_prep_*) 266 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's 267 * metadata area 268 * 3. update the metadata at the pointer 269 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount 270 * of data the client has placed into the metadata buffer 271 * 5. submit the transfer 272 * - DMA_DEV_TO_MEM: 273 * 1. prepare the descriptor (dmaengine_prep_*) 274 * 2. submit the transfer 275 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the 276 * pointer to the engine's metadata area 277 * 4. Read out the metadata from the pointer 278 * 279 * Note: the two mode is not compatible and clients must use one mode for a 280 * descriptor. 281 */ 282enum dma_desc_metadata_mode { 283 DESC_METADATA_NONE = 0, 284 DESC_METADATA_CLIENT = BIT(0), 285 DESC_METADATA_ENGINE = BIT(1), 286}; 287 288/** 289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan 290 * @memcpy_count: transaction counter 291 * @bytes_transferred: byte counter 292 */ 293struct dma_chan_percpu { 294 /* stats */ 295 unsigned long memcpy_count; 296 unsigned long bytes_transferred; 297}; 298 299/** 300 * struct dma_router - DMA router structure 301 * @dev: pointer to the DMA router device 302 * @route_free: function to be called when the route can be disconnected 303 */ 304struct dma_router { 305 struct device *dev; 306 void (*route_free)(struct device *dev, void *route_data); 307}; 308 309/** 310 * struct dma_chan - devices supply DMA channels, clients use them 311 * @device: ptr to the dma device who supplies this channel, always !%NULL 312 * @slave: ptr to the device using this channel 313 * @cookie: last cookie value returned to client 314 * @completed_cookie: last completed cookie for this channel 315 * @chan_id: channel ID for sysfs 316 * @dev: class device for sysfs 317 * @name: backlink name for sysfs 318 * @dbg_client_name: slave name for debugfs in format: 319 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx" 320 * @device_node: used to add this to the device chan list 321 * @local: per-cpu pointer to a struct dma_chan_percpu 322 * @client_count: how many clients are using this channel 323 * @table_count: number of appearances in the mem-to-mem allocation table 324 * @router: pointer to the DMA router structure 325 * @route_data: channel specific data for the router 326 * @private: private data for certain client-channel associations 327 */ 328struct dma_chan { 329 struct dma_device *device; 330 struct device *slave; 331 dma_cookie_t cookie; 332 dma_cookie_t completed_cookie; 333 334 /* sysfs */ 335 int chan_id; 336 struct dma_chan_dev *dev; 337 const char *name; 338#ifdef CONFIG_DEBUG_FS 339 char *dbg_client_name; 340#endif 341 342 struct list_head device_node; 343 struct dma_chan_percpu __percpu *local; 344 int client_count; 345 int table_count; 346 347 /* DMA router */ 348 struct dma_router *router; 349 void *route_data; 350 351 void *private; 352}; 353 354/** 355 * struct dma_chan_dev - relate sysfs device node to backing channel device 356 * @chan: driver channel device 357 * @device: sysfs device 358 * @dev_id: parent dma_device dev_id 359 * @chan_dma_dev: The channel is using custom/different dma-mapping 360 * compared to the parent dma_device 361 */ 362struct dma_chan_dev { 363 struct dma_chan *chan; 364 struct device device; 365 int dev_id; 366 bool chan_dma_dev; 367}; 368 369/** 370 * enum dma_slave_buswidth - defines bus width of the DMA slave 371 * device, source or target buses 372 */ 373enum dma_slave_buswidth { 374 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0, 375 DMA_SLAVE_BUSWIDTH_1_BYTE = 1, 376 DMA_SLAVE_BUSWIDTH_2_BYTES = 2, 377 DMA_SLAVE_BUSWIDTH_3_BYTES = 3, 378 DMA_SLAVE_BUSWIDTH_4_BYTES = 4, 379 DMA_SLAVE_BUSWIDTH_8_BYTES = 8, 380 DMA_SLAVE_BUSWIDTH_16_BYTES = 16, 381 DMA_SLAVE_BUSWIDTH_32_BYTES = 32, 382 DMA_SLAVE_BUSWIDTH_64_BYTES = 64, 383}; 384 385/** 386 * struct dma_slave_config - dma slave channel runtime config 387 * @direction: whether the data shall go in or out on this slave 388 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are 389 * legal values. DEPRECATED, drivers should use the direction argument 390 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or 391 * the dir field in the dma_interleaved_template structure. 392 * @src_addr: this is the physical address where DMA slave data 393 * should be read (RX), if the source is memory this argument is 394 * ignored. 395 * @dst_addr: this is the physical address where DMA slave data 396 * should be written (TX), if the source is memory this argument 397 * is ignored. 398 * @src_addr_width: this is the width in bytes of the source (RX) 399 * register where DMA data shall be read. If the source 400 * is memory this may be ignored depending on architecture. 401 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64. 402 * @dst_addr_width: same as src_addr_width but for destination 403 * target (TX) mutatis mutandis. 404 * @src_maxburst: the maximum number of words (note: words, as in 405 * units of the src_addr_width member, not bytes) that can be sent 406 * in one burst to the device. Typically something like half the 407 * FIFO depth on I/O peripherals so you don't overflow it. This 408 * may or may not be applicable on memory sources. 409 * @dst_maxburst: same as src_maxburst but for destination target 410 * mutatis mutandis. 411 * @src_port_window_size: The length of the register area in words the data need 412 * to be accessed on the device side. It is only used for devices which is using 413 * an area instead of a single register to receive the data. Typically the DMA 414 * loops in this area in order to transfer the data. 415 * @dst_port_window_size: same as src_port_window_size but for the destination 416 * port. 417 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill 418 * with 'true' if peripheral should be flow controller. Direction will be 419 * selected at Runtime. 420 * @slave_id: Slave requester id. Only valid for slave channels. The dma 421 * slave peripheral will have unique id as dma requester which need to be 422 * pass as slave config. 423 * @peripheral_config: peripheral configuration for programming peripheral 424 * for dmaengine transfer 425 * @peripheral_size: peripheral configuration buffer size 426 * 427 * This struct is passed in as configuration data to a DMA engine 428 * in order to set up a certain channel for DMA transport at runtime. 429 * The DMA device/engine has to provide support for an additional 430 * callback in the dma_device structure, device_config and this struct 431 * will then be passed in as an argument to the function. 432 * 433 * The rationale for adding configuration information to this struct is as 434 * follows: if it is likely that more than one DMA slave controllers in 435 * the world will support the configuration option, then make it generic. 436 * If not: if it is fixed so that it be sent in static from the platform 437 * data, then prefer to do that. 438 */ 439struct dma_slave_config { 440 enum dma_transfer_direction direction; 441 phys_addr_t src_addr; 442 phys_addr_t dst_addr; 443 enum dma_slave_buswidth src_addr_width; 444 enum dma_slave_buswidth dst_addr_width; 445 u32 src_maxburst; 446 u32 dst_maxburst; 447 u32 src_port_window_size; 448 u32 dst_port_window_size; 449 bool device_fc; 450 unsigned int slave_id; 451 void *peripheral_config; 452 size_t peripheral_size; 453}; 454 455/** 456 * enum dma_residue_granularity - Granularity of the reported transfer residue 457 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The 458 * DMA channel is only able to tell whether a descriptor has been completed or 459 * not, which means residue reporting is not supported by this channel. The 460 * residue field of the dma_tx_state field will always be 0. 461 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully 462 * completed segment of the transfer (For cyclic transfers this is after each 463 * period). This is typically implemented by having the hardware generate an 464 * interrupt after each transferred segment and then the drivers updates the 465 * outstanding residue by the size of the segment. Another possibility is if 466 * the hardware supports scatter-gather and the segment descriptor has a field 467 * which gets set after the segment has been completed. The driver then counts 468 * the number of segments without the flag set to compute the residue. 469 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred 470 * burst. This is typically only supported if the hardware has a progress 471 * register of some sort (E.g. a register with the current read/write address 472 * or a register with the amount of bursts/beats/bytes that have been 473 * transferred or still need to be transferred). 474 */ 475enum dma_residue_granularity { 476 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0, 477 DMA_RESIDUE_GRANULARITY_SEGMENT = 1, 478 DMA_RESIDUE_GRANULARITY_BURST = 2, 479}; 480 481/** 482 * struct dma_slave_caps - expose capabilities of a slave channel only 483 * @src_addr_widths: bit mask of src addr widths the channel supports. 484 * Width is specified in bytes, e.g. for a channel supporting 485 * a width of 4 the mask should have BIT(4) set. 486 * @dst_addr_widths: bit mask of dst addr widths the channel supports 487 * @directions: bit mask of slave directions the channel supports. 488 * Since the enum dma_transfer_direction is not defined as bit flag for 489 * each type, the dma controller should set BIT(<TYPE>) and same 490 * should be checked by controller as well 491 * @min_burst: min burst capability per-transfer 492 * @max_burst: max burst capability per-transfer 493 * @max_sg_burst: max number of SG list entries executed in a single burst 494 * DMA tansaction with no software intervention for reinitialization. 495 * Zero value means unlimited number of entries. 496 * @cmd_pause: true, if pause is supported (i.e. for reading residue or 497 * for resume later) 498 * @cmd_resume: true, if resume is supported 499 * @cmd_terminate: true, if terminate cmd is supported 500 * @residue_granularity: granularity of the reported transfer residue 501 * @descriptor_reuse: if a descriptor can be reused by client and 502 * resubmitted multiple times 503 */ 504struct dma_slave_caps { 505 u32 src_addr_widths; 506 u32 dst_addr_widths; 507 u32 directions; 508 u32 min_burst; 509 u32 max_burst; 510 u32 max_sg_burst; 511 bool cmd_pause; 512 bool cmd_resume; 513 bool cmd_terminate; 514 enum dma_residue_granularity residue_granularity; 515 bool descriptor_reuse; 516}; 517 518static inline const char *dma_chan_name(struct dma_chan *chan) 519{ 520 return dev_name(&chan->dev->device); 521} 522 523void dma_chan_cleanup(struct kref *kref); 524 525/** 526 * typedef dma_filter_fn - callback filter for dma_request_channel 527 * @chan: channel to be reviewed 528 * @filter_param: opaque parameter passed through dma_request_channel 529 * 530 * When this optional parameter is specified in a call to dma_request_channel a 531 * suitable channel is passed to this routine for further dispositioning before 532 * being returned. Where 'suitable' indicates a non-busy channel that 533 * satisfies the given capability mask. It returns 'true' to indicate that the 534 * channel is suitable. 535 */ 536typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param); 537 538typedef void (*dma_async_tx_callback)(void *dma_async_param); 539 540enum dmaengine_tx_result { 541 DMA_TRANS_NOERROR = 0, /* SUCCESS */ 542 DMA_TRANS_READ_FAILED, /* Source DMA read failed */ 543 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */ 544 DMA_TRANS_ABORTED, /* Op never submitted / aborted */ 545}; 546 547struct dmaengine_result { 548 enum dmaengine_tx_result result; 549 u32 residue; 550}; 551 552typedef void (*dma_async_tx_callback_result)(void *dma_async_param, 553 const struct dmaengine_result *result); 554 555struct dmaengine_unmap_data { 556#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID) 557 u16 map_cnt; 558#else 559 u8 map_cnt; 560#endif 561 u8 to_cnt; 562 u8 from_cnt; 563 u8 bidi_cnt; 564 struct device *dev; 565 struct kref kref; 566 size_t len; 567 dma_addr_t addr[]; 568}; 569 570struct dma_async_tx_descriptor; 571 572struct dma_descriptor_metadata_ops { 573 int (*attach)(struct dma_async_tx_descriptor *desc, void *data, 574 size_t len); 575 576 void *(*get_ptr)(struct dma_async_tx_descriptor *desc, 577 size_t *payload_len, size_t *max_len); 578 int (*set_len)(struct dma_async_tx_descriptor *desc, 579 size_t payload_len); 580}; 581 582/** 583 * struct dma_async_tx_descriptor - async transaction descriptor 584 * ---dma generic offload fields--- 585 * @cookie: tracking cookie for this transaction, set to -EBUSY if 586 * this tx is sitting on a dependency list 587 * @flags: flags to augment operation preparation, control completion, and 588 * communicate status 589 * @phys: physical address of the descriptor 590 * @chan: target channel for this operation 591 * @tx_submit: accept the descriptor, assign ordered cookie and mark the 592 * descriptor pending. To be pushed on .issue_pending() call 593 * @callback: routine to call after this operation is complete 594 * @callback_param: general parameter to pass to the callback routine 595 * @desc_metadata_mode: core managed metadata mode to protect mixed use of 596 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise 597 * DESC_METADATA_NONE 598 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the 599 * DMA driver if metadata mode is supported with the descriptor 600 * ---async_tx api specific fields--- 601 * @next: at completion submit this descriptor 602 * @parent: pointer to the next level up in the dependency chain 603 * @lock: protect the parent and next pointers 604 */ 605struct dma_async_tx_descriptor { 606 dma_cookie_t cookie; 607 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */ 608 dma_addr_t phys; 609 struct dma_chan *chan; 610 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx); 611 int (*desc_free)(struct dma_async_tx_descriptor *tx); 612 dma_async_tx_callback callback; 613 dma_async_tx_callback_result callback_result; 614 void *callback_param; 615 struct dmaengine_unmap_data *unmap; 616 enum dma_desc_metadata_mode desc_metadata_mode; 617 struct dma_descriptor_metadata_ops *metadata_ops; 618#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 619 struct dma_async_tx_descriptor *next; 620 struct dma_async_tx_descriptor *parent; 621 spinlock_t lock; 622#endif 623}; 624 625#ifdef CONFIG_DMA_ENGINE 626static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 627 struct dmaengine_unmap_data *unmap) 628{ 629 kref_get(&unmap->kref); 630 tx->unmap = unmap; 631} 632 633struct dmaengine_unmap_data * 634dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags); 635void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap); 636#else 637static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx, 638 struct dmaengine_unmap_data *unmap) 639{ 640} 641static inline struct dmaengine_unmap_data * 642dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags) 643{ 644 return NULL; 645} 646static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap) 647{ 648} 649#endif 650 651static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx) 652{ 653 if (!tx->unmap) 654 return; 655 656 dmaengine_unmap_put(tx->unmap); 657 tx->unmap = NULL; 658} 659 660#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 661static inline void txd_lock(struct dma_async_tx_descriptor *txd) 662{ 663} 664static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 665{ 666} 667static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 668{ 669 BUG(); 670} 671static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 672{ 673} 674static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 675{ 676} 677static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 678{ 679 return NULL; 680} 681static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 682{ 683 return NULL; 684} 685 686#else 687static inline void txd_lock(struct dma_async_tx_descriptor *txd) 688{ 689 spin_lock_bh(&txd->lock); 690} 691static inline void txd_unlock(struct dma_async_tx_descriptor *txd) 692{ 693 spin_unlock_bh(&txd->lock); 694} 695static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next) 696{ 697 txd->next = next; 698 next->parent = txd; 699} 700static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd) 701{ 702 txd->parent = NULL; 703} 704static inline void txd_clear_next(struct dma_async_tx_descriptor *txd) 705{ 706 txd->next = NULL; 707} 708static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd) 709{ 710 return txd->parent; 711} 712static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd) 713{ 714 return txd->next; 715} 716#endif 717 718/** 719 * struct dma_tx_state - filled in to report the status of 720 * a transfer. 721 * @last: last completed DMA cookie 722 * @used: last issued DMA cookie (i.e. the one in progress) 723 * @residue: the remaining number of bytes left to transmit 724 * on the selected transfer for states DMA_IN_PROGRESS and 725 * DMA_PAUSED if this is implemented in the driver, else 0 726 * @in_flight_bytes: amount of data in bytes cached by the DMA. 727 */ 728struct dma_tx_state { 729 dma_cookie_t last; 730 dma_cookie_t used; 731 u32 residue; 732 u32 in_flight_bytes; 733}; 734 735/** 736 * enum dmaengine_alignment - defines alignment of the DMA async tx 737 * buffers 738 */ 739enum dmaengine_alignment { 740 DMAENGINE_ALIGN_1_BYTE = 0, 741 DMAENGINE_ALIGN_2_BYTES = 1, 742 DMAENGINE_ALIGN_4_BYTES = 2, 743 DMAENGINE_ALIGN_8_BYTES = 3, 744 DMAENGINE_ALIGN_16_BYTES = 4, 745 DMAENGINE_ALIGN_32_BYTES = 5, 746 DMAENGINE_ALIGN_64_BYTES = 6, 747 DMAENGINE_ALIGN_128_BYTES = 7, 748 DMAENGINE_ALIGN_256_BYTES = 8, 749}; 750 751/** 752 * struct dma_slave_map - associates slave device and it's slave channel with 753 * parameter to be used by a filter function 754 * @devname: name of the device 755 * @slave: slave channel name 756 * @param: opaque parameter to pass to struct dma_filter.fn 757 */ 758struct dma_slave_map { 759 const char *devname; 760 const char *slave; 761 void *param; 762}; 763 764/** 765 * struct dma_filter - information for slave device/channel to filter_fn/param 766 * mapping 767 * @fn: filter function callback 768 * @mapcnt: number of slave device/channel in the map 769 * @map: array of channel to filter mapping data 770 */ 771struct dma_filter { 772 dma_filter_fn fn; 773 int mapcnt; 774 const struct dma_slave_map *map; 775}; 776 777/** 778 * struct dma_device - info on the entity supplying DMA services 779 * @chancnt: how many DMA channels are supported 780 * @privatecnt: how many DMA channels are requested by dma_request_channel 781 * @channels: the list of struct dma_chan 782 * @global_node: list_head for global dma_device_list 783 * @filter: information for device/slave to filter function/param mapping 784 * @cap_mask: one or more dma_capability flags 785 * @desc_metadata_modes: supported metadata modes by the DMA device 786 * @max_xor: maximum number of xor sources, 0 if no capability 787 * @max_pq: maximum number of PQ sources and PQ-continue capability 788 * @copy_align: alignment shift for memcpy operations 789 * @xor_align: alignment shift for xor operations 790 * @pq_align: alignment shift for pq operations 791 * @fill_align: alignment shift for memset operations 792 * @dev_id: unique device ID 793 * @dev: struct device reference for dma mapping api 794 * @owner: owner module (automatically set based on the provided dev) 795 * @src_addr_widths: bit mask of src addr widths the device supports 796 * Width is specified in bytes, e.g. for a device supporting 797 * a width of 4 the mask should have BIT(4) set. 798 * @dst_addr_widths: bit mask of dst addr widths the device supports 799 * @directions: bit mask of slave directions the device supports. 800 * Since the enum dma_transfer_direction is not defined as bit flag for 801 * each type, the dma controller should set BIT(<TYPE>) and same 802 * should be checked by controller as well 803 * @min_burst: min burst capability per-transfer 804 * @max_burst: max burst capability per-transfer 805 * @max_sg_burst: max number of SG list entries executed in a single burst 806 * DMA tansaction with no software intervention for reinitialization. 807 * Zero value means unlimited number of entries. 808 * @residue_granularity: granularity of the transfer residue reported 809 * by tx_status 810 * @device_alloc_chan_resources: allocate resources and return the 811 * number of allocated descriptors 812 * @device_router_config: optional callback for DMA router configuration 813 * @device_free_chan_resources: release DMA channel's resources 814 * @device_prep_dma_memcpy: prepares a memcpy operation 815 * @device_prep_dma_xor: prepares a xor operation 816 * @device_prep_dma_xor_val: prepares a xor validation operation 817 * @device_prep_dma_pq: prepares a pq operation 818 * @device_prep_dma_pq_val: prepares a pqzero_sum operation 819 * @device_prep_dma_memset: prepares a memset operation 820 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list 821 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation 822 * @device_prep_slave_sg: prepares a slave dma operation 823 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio. 824 * The function takes a buffer of size buf_len. The callback function will 825 * be called after period_len bytes have been transferred. 826 * @device_prep_interleaved_dma: Transfer expression in a generic way. 827 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address 828 * @device_caps: May be used to override the generic DMA slave capabilities 829 * with per-channel specific ones 830 * @device_config: Pushes a new configuration to a channel, return 0 or an error 831 * code 832 * @device_pause: Pauses any transfer happening on a channel. Returns 833 * 0 or an error code 834 * @device_resume: Resumes any transfer on a channel previously 835 * paused. Returns 0 or an error code 836 * @device_terminate_all: Aborts all transfers on a channel. Returns 0 837 * or an error code 838 * @device_synchronize: Synchronizes the termination of a transfers to the 839 * current context. 840 * @device_tx_status: poll for transaction completion, the optional 841 * txstate parameter can be supplied with a pointer to get a 842 * struct with auxiliary transfer status information, otherwise the call 843 * will just return a simple status code 844 * @device_issue_pending: push pending transactions to hardware 845 * @descriptor_reuse: a submitted transfer can be resubmitted after completion 846 * @device_release: called sometime atfer dma_async_device_unregister() is 847 * called and there are no further references to this structure. This 848 * must be implemented to free resources however many existing drivers 849 * do not and are therefore not safe to unbind while in use. 850 * @dbg_summary_show: optional routine to show contents in debugfs; default code 851 * will be used when this is omitted, but custom code can show extra, 852 * controller specific information. 853 */ 854struct dma_device { 855 struct kref ref; 856 unsigned int chancnt; 857 unsigned int privatecnt; 858 struct list_head channels; 859 struct list_head global_node; 860 struct dma_filter filter; 861 dma_cap_mask_t cap_mask; 862 enum dma_desc_metadata_mode desc_metadata_modes; 863 unsigned short max_xor; 864 unsigned short max_pq; 865 enum dmaengine_alignment copy_align; 866 enum dmaengine_alignment xor_align; 867 enum dmaengine_alignment pq_align; 868 enum dmaengine_alignment fill_align; 869 #define DMA_HAS_PQ_CONTINUE (1 << 15) 870 871 int dev_id; 872 struct device *dev; 873 struct module *owner; 874 struct ida chan_ida; 875 struct mutex chan_mutex; /* to protect chan_ida */ 876 877 u32 src_addr_widths; 878 u32 dst_addr_widths; 879 u32 directions; 880 u32 min_burst; 881 u32 max_burst; 882 u32 max_sg_burst; 883 bool descriptor_reuse; 884 enum dma_residue_granularity residue_granularity; 885 886 int (*device_alloc_chan_resources)(struct dma_chan *chan); 887 int (*device_router_config)(struct dma_chan *chan); 888 void (*device_free_chan_resources)(struct dma_chan *chan); 889 890 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)( 891 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, 892 size_t len, unsigned long flags); 893 struct dma_async_tx_descriptor *(*device_prep_dma_xor)( 894 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src, 895 unsigned int src_cnt, size_t len, unsigned long flags); 896 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)( 897 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt, 898 size_t len, enum sum_check_flags *result, unsigned long flags); 899 struct dma_async_tx_descriptor *(*device_prep_dma_pq)( 900 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src, 901 unsigned int src_cnt, const unsigned char *scf, 902 size_t len, unsigned long flags); 903 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)( 904 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src, 905 unsigned int src_cnt, const unsigned char *scf, size_t len, 906 enum sum_check_flags *pqres, unsigned long flags); 907 struct dma_async_tx_descriptor *(*device_prep_dma_memset)( 908 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 909 unsigned long flags); 910 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)( 911 struct dma_chan *chan, struct scatterlist *sg, 912 unsigned int nents, int value, unsigned long flags); 913 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)( 914 struct dma_chan *chan, unsigned long flags); 915 916 struct dma_async_tx_descriptor *(*device_prep_slave_sg)( 917 struct dma_chan *chan, struct scatterlist *sgl, 918 unsigned int sg_len, enum dma_transfer_direction direction, 919 unsigned long flags, void *context); 920 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)( 921 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 922 size_t period_len, enum dma_transfer_direction direction, 923 unsigned long flags); 924 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)( 925 struct dma_chan *chan, struct dma_interleaved_template *xt, 926 unsigned long flags); 927 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)( 928 struct dma_chan *chan, dma_addr_t dst, u64 data, 929 unsigned long flags); 930 931 void (*device_caps)(struct dma_chan *chan, 932 struct dma_slave_caps *caps); 933 int (*device_config)(struct dma_chan *chan, 934 struct dma_slave_config *config); 935 int (*device_pause)(struct dma_chan *chan); 936 int (*device_resume)(struct dma_chan *chan); 937 int (*device_terminate_all)(struct dma_chan *chan); 938 void (*device_synchronize)(struct dma_chan *chan); 939 940 enum dma_status (*device_tx_status)(struct dma_chan *chan, 941 dma_cookie_t cookie, 942 struct dma_tx_state *txstate); 943 void (*device_issue_pending)(struct dma_chan *chan); 944 void (*device_release)(struct dma_device *dev); 945 /* debugfs support */ 946#ifdef CONFIG_DEBUG_FS 947 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev); 948 struct dentry *dbg_dev_root; 949#endif 950}; 951 952static inline int dmaengine_slave_config(struct dma_chan *chan, 953 struct dma_slave_config *config) 954{ 955 if (chan->device->device_config) 956 return chan->device->device_config(chan, config); 957 958 return -ENOSYS; 959} 960 961static inline bool is_slave_direction(enum dma_transfer_direction direction) 962{ 963 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM); 964} 965 966static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single( 967 struct dma_chan *chan, dma_addr_t buf, size_t len, 968 enum dma_transfer_direction dir, unsigned long flags) 969{ 970 struct scatterlist sg; 971 sg_init_table(&sg, 1); 972 sg_dma_address(&sg) = buf; 973 sg_dma_len(&sg) = len; 974 975 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 976 return NULL; 977 978 return chan->device->device_prep_slave_sg(chan, &sg, 1, 979 dir, flags, NULL); 980} 981 982static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg( 983 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 984 enum dma_transfer_direction dir, unsigned long flags) 985{ 986 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 987 return NULL; 988 989 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 990 dir, flags, NULL); 991} 992 993#ifdef CONFIG_RAPIDIO_DMA_ENGINE 994struct rio_dma_ext; 995static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg( 996 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, 997 enum dma_transfer_direction dir, unsigned long flags, 998 struct rio_dma_ext *rio_ext) 999{ 1000 if (!chan || !chan->device || !chan->device->device_prep_slave_sg) 1001 return NULL; 1002 1003 return chan->device->device_prep_slave_sg(chan, sgl, sg_len, 1004 dir, flags, rio_ext); 1005} 1006#endif 1007 1008static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic( 1009 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, 1010 size_t period_len, enum dma_transfer_direction dir, 1011 unsigned long flags) 1012{ 1013 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic) 1014 return NULL; 1015 1016 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len, 1017 period_len, dir, flags); 1018} 1019 1020static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma( 1021 struct dma_chan *chan, struct dma_interleaved_template *xt, 1022 unsigned long flags) 1023{ 1024 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma) 1025 return NULL; 1026 if (flags & DMA_PREP_REPEAT && 1027 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits)) 1028 return NULL; 1029 1030 return chan->device->device_prep_interleaved_dma(chan, xt, flags); 1031} 1032 1033static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset( 1034 struct dma_chan *chan, dma_addr_t dest, int value, size_t len, 1035 unsigned long flags) 1036{ 1037 if (!chan || !chan->device || !chan->device->device_prep_dma_memset) 1038 return NULL; 1039 1040 return chan->device->device_prep_dma_memset(chan, dest, value, 1041 len, flags); 1042} 1043 1044static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy( 1045 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, 1046 size_t len, unsigned long flags) 1047{ 1048 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy) 1049 return NULL; 1050 1051 return chan->device->device_prep_dma_memcpy(chan, dest, src, 1052 len, flags); 1053} 1054 1055static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan, 1056 enum dma_desc_metadata_mode mode) 1057{ 1058 if (!chan) 1059 return false; 1060 1061 return !!(chan->device->desc_metadata_modes & mode); 1062} 1063 1064#ifdef CONFIG_DMA_ENGINE 1065int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc, 1066 void *data, size_t len); 1067void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc, 1068 size_t *payload_len, size_t *max_len); 1069int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc, 1070 size_t payload_len); 1071#else /* CONFIG_DMA_ENGINE */ 1072static inline int dmaengine_desc_attach_metadata( 1073 struct dma_async_tx_descriptor *desc, void *data, size_t len) 1074{ 1075 return -EINVAL; 1076} 1077static inline void *dmaengine_desc_get_metadata_ptr( 1078 struct dma_async_tx_descriptor *desc, size_t *payload_len, 1079 size_t *max_len) 1080{ 1081 return NULL; 1082} 1083static inline int dmaengine_desc_set_metadata_len( 1084 struct dma_async_tx_descriptor *desc, size_t payload_len) 1085{ 1086 return -EINVAL; 1087} 1088#endif /* CONFIG_DMA_ENGINE */ 1089 1090/** 1091 * dmaengine_terminate_all() - Terminate all active DMA transfers 1092 * @chan: The channel for which to terminate the transfers 1093 * 1094 * This function is DEPRECATED use either dmaengine_terminate_sync() or 1095 * dmaengine_terminate_async() instead. 1096 */ 1097static inline int dmaengine_terminate_all(struct dma_chan *chan) 1098{ 1099 if (chan->device->device_terminate_all) 1100 return chan->device->device_terminate_all(chan); 1101 1102 return -ENOSYS; 1103} 1104 1105/** 1106 * dmaengine_terminate_async() - Terminate all active DMA transfers 1107 * @chan: The channel for which to terminate the transfers 1108 * 1109 * Calling this function will terminate all active and pending descriptors 1110 * that have previously been submitted to the channel. It is not guaranteed 1111 * though that the transfer for the active descriptor has stopped when the 1112 * function returns. Furthermore it is possible the complete callback of a 1113 * submitted transfer is still running when this function returns. 1114 * 1115 * dmaengine_synchronize() needs to be called before it is safe to free 1116 * any memory that is accessed by previously submitted descriptors or before 1117 * freeing any resources accessed from within the completion callback of any 1118 * previously submitted descriptors. 1119 * 1120 * This function can be called from atomic context as well as from within a 1121 * complete callback of a descriptor submitted on the same channel. 1122 * 1123 * If none of the two conditions above apply consider using 1124 * dmaengine_terminate_sync() instead. 1125 */ 1126static inline int dmaengine_terminate_async(struct dma_chan *chan) 1127{ 1128 if (chan->device->device_terminate_all) 1129 return chan->device->device_terminate_all(chan); 1130 1131 return -EINVAL; 1132} 1133 1134/** 1135 * dmaengine_synchronize() - Synchronize DMA channel termination 1136 * @chan: The channel to synchronize 1137 * 1138 * Synchronizes to the DMA channel termination to the current context. When this 1139 * function returns it is guaranteed that all transfers for previously issued 1140 * descriptors have stopped and it is safe to free the memory associated 1141 * with them. Furthermore it is guaranteed that all complete callback functions 1142 * for a previously submitted descriptor have finished running and it is safe to 1143 * free resources accessed from within the complete callbacks. 1144 * 1145 * The behavior of this function is undefined if dma_async_issue_pending() has 1146 * been called between dmaengine_terminate_async() and this function. 1147 * 1148 * This function must only be called from non-atomic context and must not be 1149 * called from within a complete callback of a descriptor submitted on the same 1150 * channel. 1151 */ 1152static inline void dmaengine_synchronize(struct dma_chan *chan) 1153{ 1154 might_sleep(); 1155 1156 if (chan->device->device_synchronize) 1157 chan->device->device_synchronize(chan); 1158} 1159 1160/** 1161 * dmaengine_terminate_sync() - Terminate all active DMA transfers 1162 * @chan: The channel for which to terminate the transfers 1163 * 1164 * Calling this function will terminate all active and pending transfers 1165 * that have previously been submitted to the channel. It is similar to 1166 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually 1167 * stopped and that all complete callbacks have finished running when the 1168 * function returns. 1169 * 1170 * This function must only be called from non-atomic context and must not be 1171 * called from within a complete callback of a descriptor submitted on the same 1172 * channel. 1173 */ 1174static inline int dmaengine_terminate_sync(struct dma_chan *chan) 1175{ 1176 int ret; 1177 1178 ret = dmaengine_terminate_async(chan); 1179 if (ret) 1180 return ret; 1181 1182 dmaengine_synchronize(chan); 1183 1184 return 0; 1185} 1186 1187static inline int dmaengine_pause(struct dma_chan *chan) 1188{ 1189 if (chan->device->device_pause) 1190 return chan->device->device_pause(chan); 1191 1192 return -ENOSYS; 1193} 1194 1195static inline int dmaengine_resume(struct dma_chan *chan) 1196{ 1197 if (chan->device->device_resume) 1198 return chan->device->device_resume(chan); 1199 1200 return -ENOSYS; 1201} 1202 1203static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan, 1204 dma_cookie_t cookie, struct dma_tx_state *state) 1205{ 1206 return chan->device->device_tx_status(chan, cookie, state); 1207} 1208 1209static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc) 1210{ 1211 return desc->tx_submit(desc); 1212} 1213 1214static inline bool dmaengine_check_align(enum dmaengine_alignment align, 1215 size_t off1, size_t off2, size_t len) 1216{ 1217 return !(((1 << align) - 1) & (off1 | off2 | len)); 1218} 1219 1220static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1, 1221 size_t off2, size_t len) 1222{ 1223 return dmaengine_check_align(dev->copy_align, off1, off2, len); 1224} 1225 1226static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1, 1227 size_t off2, size_t len) 1228{ 1229 return dmaengine_check_align(dev->xor_align, off1, off2, len); 1230} 1231 1232static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1, 1233 size_t off2, size_t len) 1234{ 1235 return dmaengine_check_align(dev->pq_align, off1, off2, len); 1236} 1237 1238static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1, 1239 size_t off2, size_t len) 1240{ 1241 return dmaengine_check_align(dev->fill_align, off1, off2, len); 1242} 1243 1244static inline void 1245dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue) 1246{ 1247 dma->max_pq = maxpq; 1248 if (has_pq_continue) 1249 dma->max_pq |= DMA_HAS_PQ_CONTINUE; 1250} 1251 1252static inline bool dmaf_continue(enum dma_ctrl_flags flags) 1253{ 1254 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE; 1255} 1256 1257static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags) 1258{ 1259 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P; 1260 1261 return (flags & mask) == mask; 1262} 1263 1264static inline bool dma_dev_has_pq_continue(struct dma_device *dma) 1265{ 1266 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE; 1267} 1268 1269static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma) 1270{ 1271 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE; 1272} 1273 1274/* dma_maxpq - reduce maxpq in the face of continued operations 1275 * @dma - dma device with PQ capability 1276 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set 1277 * 1278 * When an engine does not support native continuation we need 3 extra 1279 * source slots to reuse P and Q with the following coefficients: 1280 * 1/ {00} * P : remove P from Q', but use it as a source for P' 1281 * 2/ {01} * Q : use Q to continue Q' calculation 1282 * 3/ {00} * Q : subtract Q from P' to cancel (2) 1283 * 1284 * In the case where P is disabled we only need 1 extra source: 1285 * 1/ {01} * Q : use Q to continue Q' calculation 1286 */ 1287static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags) 1288{ 1289 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags)) 1290 return dma_dev_to_maxpq(dma); 1291 if (dmaf_p_disabled_continue(flags)) 1292 return dma_dev_to_maxpq(dma) - 1; 1293 if (dmaf_continue(flags)) 1294 return dma_dev_to_maxpq(dma) - 3; 1295 BUG(); 1296} 1297 1298static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg, 1299 size_t dir_icg) 1300{ 1301 if (inc) { 1302 if (dir_icg) 1303 return dir_icg; 1304 if (sgl) 1305 return icg; 1306 } 1307 1308 return 0; 1309} 1310 1311static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt, 1312 struct data_chunk *chunk) 1313{ 1314 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl, 1315 chunk->icg, chunk->dst_icg); 1316} 1317 1318static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt, 1319 struct data_chunk *chunk) 1320{ 1321 return dmaengine_get_icg(xt->src_inc, xt->src_sgl, 1322 chunk->icg, chunk->src_icg); 1323} 1324 1325/* --- public DMA engine API --- */ 1326 1327#ifdef CONFIG_DMA_ENGINE 1328void dmaengine_get(void); 1329void dmaengine_put(void); 1330#else 1331static inline void dmaengine_get(void) 1332{ 1333} 1334static inline void dmaengine_put(void) 1335{ 1336} 1337#endif 1338 1339#ifdef CONFIG_ASYNC_TX_DMA 1340#define async_dmaengine_get() dmaengine_get() 1341#define async_dmaengine_put() dmaengine_put() 1342#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH 1343#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX) 1344#else 1345#define async_dma_find_channel(type) dma_find_channel(type) 1346#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */ 1347#else 1348static inline void async_dmaengine_get(void) 1349{ 1350} 1351static inline void async_dmaengine_put(void) 1352{ 1353} 1354static inline struct dma_chan * 1355async_dma_find_channel(enum dma_transaction_type type) 1356{ 1357 return NULL; 1358} 1359#endif /* CONFIG_ASYNC_TX_DMA */ 1360void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx, 1361 struct dma_chan *chan); 1362 1363static inline void async_tx_ack(struct dma_async_tx_descriptor *tx) 1364{ 1365 tx->flags |= DMA_CTRL_ACK; 1366} 1367 1368static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx) 1369{ 1370 tx->flags &= ~DMA_CTRL_ACK; 1371} 1372 1373static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx) 1374{ 1375 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK; 1376} 1377 1378#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask)) 1379static inline void 1380__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1381{ 1382 set_bit(tx_type, dstp->bits); 1383} 1384 1385#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask)) 1386static inline void 1387__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp) 1388{ 1389 clear_bit(tx_type, dstp->bits); 1390} 1391 1392#define dma_cap_zero(mask) __dma_cap_zero(&(mask)) 1393static inline void __dma_cap_zero(dma_cap_mask_t *dstp) 1394{ 1395 bitmap_zero(dstp->bits, DMA_TX_TYPE_END); 1396} 1397 1398#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask)) 1399static inline int 1400__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp) 1401{ 1402 return test_bit(tx_type, srcp->bits); 1403} 1404 1405#define for_each_dma_cap_mask(cap, mask) \ 1406 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END) 1407 1408/** 1409 * dma_async_issue_pending - flush pending transactions to HW 1410 * @chan: target DMA channel 1411 * 1412 * This allows drivers to push copies to HW in batches, 1413 * reducing MMIO writes where possible. 1414 */ 1415static inline void dma_async_issue_pending(struct dma_chan *chan) 1416{ 1417 chan->device->device_issue_pending(chan); 1418} 1419 1420/** 1421 * dma_async_is_tx_complete - poll for transaction completion 1422 * @chan: DMA channel 1423 * @cookie: transaction identifier to check status of 1424 * @last: returns last completed cookie, can be NULL 1425 * @used: returns last issued cookie, can be NULL 1426 * 1427 * If @last and @used are passed in, upon return they reflect the driver 1428 * internal state and can be used with dma_async_is_complete() to check 1429 * the status of multiple cookies without re-checking hardware state. 1430 */ 1431static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan, 1432 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used) 1433{ 1434 struct dma_tx_state state; 1435 enum dma_status status; 1436 1437 status = chan->device->device_tx_status(chan, cookie, &state); 1438 if (last) 1439 *last = state.last; 1440 if (used) 1441 *used = state.used; 1442 return status; 1443} 1444 1445/** 1446 * dma_async_is_complete - test a cookie against chan state 1447 * @cookie: transaction identifier to test status of 1448 * @last_complete: last know completed transaction 1449 * @last_used: last cookie value handed out 1450 * 1451 * dma_async_is_complete() is used in dma_async_is_tx_complete() 1452 * the test logic is separated for lightweight testing of multiple cookies 1453 */ 1454static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie, 1455 dma_cookie_t last_complete, dma_cookie_t last_used) 1456{ 1457 if (last_complete <= last_used) { 1458 if ((cookie <= last_complete) || (cookie > last_used)) 1459 return DMA_COMPLETE; 1460 } else { 1461 if ((cookie <= last_complete) && (cookie > last_used)) 1462 return DMA_COMPLETE; 1463 } 1464 return DMA_IN_PROGRESS; 1465} 1466 1467static inline void 1468dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue) 1469{ 1470 if (!st) 1471 return; 1472 1473 st->last = last; 1474 st->used = used; 1475 st->residue = residue; 1476} 1477 1478#ifdef CONFIG_DMA_ENGINE 1479struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type); 1480enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie); 1481enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx); 1482void dma_issue_pending_all(void); 1483struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1484 dma_filter_fn fn, void *fn_param, 1485 struct device_node *np); 1486 1487struct dma_chan *dma_request_chan(struct device *dev, const char *name); 1488struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask); 1489 1490void dma_release_channel(struct dma_chan *chan); 1491int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps); 1492#else 1493static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type) 1494{ 1495 return NULL; 1496} 1497static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie) 1498{ 1499 return DMA_COMPLETE; 1500} 1501static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx) 1502{ 1503 return DMA_COMPLETE; 1504} 1505static inline void dma_issue_pending_all(void) 1506{ 1507} 1508static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask, 1509 dma_filter_fn fn, 1510 void *fn_param, 1511 struct device_node *np) 1512{ 1513 return NULL; 1514} 1515static inline struct dma_chan *dma_request_chan(struct device *dev, 1516 const char *name) 1517{ 1518 return ERR_PTR(-ENODEV); 1519} 1520static inline struct dma_chan *dma_request_chan_by_mask( 1521 const dma_cap_mask_t *mask) 1522{ 1523 return ERR_PTR(-ENODEV); 1524} 1525static inline void dma_release_channel(struct dma_chan *chan) 1526{ 1527} 1528static inline int dma_get_slave_caps(struct dma_chan *chan, 1529 struct dma_slave_caps *caps) 1530{ 1531 return -ENXIO; 1532} 1533#endif 1534 1535static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx) 1536{ 1537 struct dma_slave_caps caps; 1538 int ret; 1539 1540 ret = dma_get_slave_caps(tx->chan, &caps); 1541 if (ret) 1542 return ret; 1543 1544 if (!caps.descriptor_reuse) 1545 return -EPERM; 1546 1547 tx->flags |= DMA_CTRL_REUSE; 1548 return 0; 1549} 1550 1551static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx) 1552{ 1553 tx->flags &= ~DMA_CTRL_REUSE; 1554} 1555 1556static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx) 1557{ 1558 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE; 1559} 1560 1561static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc) 1562{ 1563 /* this is supported for reusable desc, so check that */ 1564 if (!dmaengine_desc_test_reuse(desc)) 1565 return -EPERM; 1566 1567 return desc->desc_free(desc); 1568} 1569 1570/* --- DMA device --- */ 1571 1572int dma_async_device_register(struct dma_device *device); 1573int dmaenginem_async_device_register(struct dma_device *device); 1574void dma_async_device_unregister(struct dma_device *device); 1575int dma_async_device_channel_register(struct dma_device *device, 1576 struct dma_chan *chan); 1577void dma_async_device_channel_unregister(struct dma_device *device, 1578 struct dma_chan *chan); 1579void dma_run_dependencies(struct dma_async_tx_descriptor *tx); 1580#define dma_request_channel(mask, x, y) \ 1581 __dma_request_channel(&(mask), x, y, NULL) 1582 1583/* Deprecated, please use dma_request_chan() directly */ 1584static inline struct dma_chan * __deprecated 1585dma_request_slave_channel(struct device *dev, const char *name) 1586{ 1587 struct dma_chan *ch = dma_request_chan(dev, name); 1588 1589 return IS_ERR(ch) ? NULL : ch; 1590} 1591 1592static inline struct dma_chan 1593*dma_request_slave_channel_compat(const dma_cap_mask_t mask, 1594 dma_filter_fn fn, void *fn_param, 1595 struct device *dev, const char *name) 1596{ 1597 struct dma_chan *chan; 1598 1599 chan = dma_request_slave_channel(dev, name); 1600 if (chan) 1601 return chan; 1602 1603 if (!fn || !fn_param) 1604 return NULL; 1605 1606 return __dma_request_channel(&mask, fn, fn_param, NULL); 1607} 1608 1609static inline char * 1610dmaengine_get_direction_text(enum dma_transfer_direction dir) 1611{ 1612 switch (dir) { 1613 case DMA_DEV_TO_MEM: 1614 return "DEV_TO_MEM"; 1615 case DMA_MEM_TO_DEV: 1616 return "MEM_TO_DEV"; 1617 case DMA_MEM_TO_MEM: 1618 return "MEM_TO_MEM"; 1619 case DMA_DEV_TO_DEV: 1620 return "DEV_TO_DEV"; 1621 default: 1622 return "invalid"; 1623 } 1624} 1625 1626static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan) 1627{ 1628 if (chan->dev->chan_dma_dev) 1629 return &chan->dev->device; 1630 1631 return chan->device->dev; 1632} 1633 1634#endif /* DMAENGINE_H */