Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Block data types and constants. Directly include this file only to
4 * break include dependency loop.
5 */
6#ifndef __LINUX_BLK_TYPES_H
7#define __LINUX_BLK_TYPES_H
8
9#include <linux/types.h>
10#include <linux/bvec.h>
11#include <linux/device.h>
12#include <linux/ktime.h>
13
14struct bio_set;
15struct bio;
16struct bio_integrity_payload;
17struct page;
18struct io_context;
19struct cgroup_subsys_state;
20typedef void (bio_end_io_t) (struct bio *);
21struct bio_crypt_ctx;
22
23struct block_device {
24 sector_t bd_start_sect;
25 struct disk_stats __percpu *bd_stats;
26 unsigned long bd_stamp;
27 bool bd_read_only; /* read-only policy */
28 dev_t bd_dev;
29 int bd_openers;
30 struct inode * bd_inode; /* will die */
31 struct super_block * bd_super;
32 void * bd_claiming;
33 struct device bd_device;
34 void * bd_holder;
35 int bd_holders;
36 bool bd_write_holder;
37#ifdef CONFIG_SYSFS
38 struct list_head bd_holder_disks;
39#endif
40 struct kobject *bd_holder_dir;
41 u8 bd_partno;
42 spinlock_t bd_size_lock; /* for bd_inode->i_size updates */
43 struct gendisk * bd_disk;
44 struct backing_dev_info *bd_bdi;
45
46 /* The counter of freeze processes */
47 int bd_fsfreeze_count;
48 /* Mutex for freeze */
49 struct mutex bd_fsfreeze_mutex;
50 struct super_block *bd_fsfreeze_sb;
51
52 struct partition_meta_info *bd_meta_info;
53#ifdef CONFIG_FAIL_MAKE_REQUEST
54 bool bd_make_it_fail;
55#endif
56} __randomize_layout;
57
58#define bdev_whole(_bdev) \
59 ((_bdev)->bd_disk->part0)
60
61#define dev_to_bdev(device) \
62 container_of((device), struct block_device, bd_device)
63
64#define bdev_kobj(_bdev) \
65 (&((_bdev)->bd_device.kobj))
66
67/*
68 * Block error status values. See block/blk-core:blk_errors for the details.
69 * Alpha cannot write a byte atomically, so we need to use 32-bit value.
70 */
71#if defined(CONFIG_ALPHA) && !defined(__alpha_bwx__)
72typedef u32 __bitwise blk_status_t;
73#else
74typedef u8 __bitwise blk_status_t;
75#endif
76#define BLK_STS_OK 0
77#define BLK_STS_NOTSUPP ((__force blk_status_t)1)
78#define BLK_STS_TIMEOUT ((__force blk_status_t)2)
79#define BLK_STS_NOSPC ((__force blk_status_t)3)
80#define BLK_STS_TRANSPORT ((__force blk_status_t)4)
81#define BLK_STS_TARGET ((__force blk_status_t)5)
82#define BLK_STS_NEXUS ((__force blk_status_t)6)
83#define BLK_STS_MEDIUM ((__force blk_status_t)7)
84#define BLK_STS_PROTECTION ((__force blk_status_t)8)
85#define BLK_STS_RESOURCE ((__force blk_status_t)9)
86#define BLK_STS_IOERR ((__force blk_status_t)10)
87
88/* hack for device mapper, don't use elsewhere: */
89#define BLK_STS_DM_REQUEUE ((__force blk_status_t)11)
90
91#define BLK_STS_AGAIN ((__force blk_status_t)12)
92
93/*
94 * BLK_STS_DEV_RESOURCE is returned from the driver to the block layer if
95 * device related resources are unavailable, but the driver can guarantee
96 * that the queue will be rerun in the future once resources become
97 * available again. This is typically the case for device specific
98 * resources that are consumed for IO. If the driver fails allocating these
99 * resources, we know that inflight (or pending) IO will free these
100 * resource upon completion.
101 *
102 * This is different from BLK_STS_RESOURCE in that it explicitly references
103 * a device specific resource. For resources of wider scope, allocation
104 * failure can happen without having pending IO. This means that we can't
105 * rely on request completions freeing these resources, as IO may not be in
106 * flight. Examples of that are kernel memory allocations, DMA mappings, or
107 * any other system wide resources.
108 */
109#define BLK_STS_DEV_RESOURCE ((__force blk_status_t)13)
110
111/*
112 * BLK_STS_ZONE_RESOURCE is returned from the driver to the block layer if zone
113 * related resources are unavailable, but the driver can guarantee the queue
114 * will be rerun in the future once the resources become available again.
115 *
116 * This is different from BLK_STS_DEV_RESOURCE in that it explicitly references
117 * a zone specific resource and IO to a different zone on the same device could
118 * still be served. Examples of that are zones that are write-locked, but a read
119 * to the same zone could be served.
120 */
121#define BLK_STS_ZONE_RESOURCE ((__force blk_status_t)14)
122
123/*
124 * BLK_STS_ZONE_OPEN_RESOURCE is returned from the driver in the completion
125 * path if the device returns a status indicating that too many zone resources
126 * are currently open. The same command should be successful if resubmitted
127 * after the number of open zones decreases below the device's limits, which is
128 * reported in the request_queue's max_open_zones.
129 */
130#define BLK_STS_ZONE_OPEN_RESOURCE ((__force blk_status_t)15)
131
132/*
133 * BLK_STS_ZONE_ACTIVE_RESOURCE is returned from the driver in the completion
134 * path if the device returns a status indicating that too many zone resources
135 * are currently active. The same command should be successful if resubmitted
136 * after the number of active zones decreases below the device's limits, which
137 * is reported in the request_queue's max_active_zones.
138 */
139#define BLK_STS_ZONE_ACTIVE_RESOURCE ((__force blk_status_t)16)
140
141/**
142 * blk_path_error - returns true if error may be path related
143 * @error: status the request was completed with
144 *
145 * Description:
146 * This classifies block error status into non-retryable errors and ones
147 * that may be successful if retried on a failover path.
148 *
149 * Return:
150 * %false - retrying failover path will not help
151 * %true - may succeed if retried
152 */
153static inline bool blk_path_error(blk_status_t error)
154{
155 switch (error) {
156 case BLK_STS_NOTSUPP:
157 case BLK_STS_NOSPC:
158 case BLK_STS_TARGET:
159 case BLK_STS_NEXUS:
160 case BLK_STS_MEDIUM:
161 case BLK_STS_PROTECTION:
162 return false;
163 }
164
165 /* Anything else could be a path failure, so should be retried */
166 return true;
167}
168
169/*
170 * From most significant bit:
171 * 1 bit: reserved for other usage, see below
172 * 12 bits: original size of bio
173 * 51 bits: issue time of bio
174 */
175#define BIO_ISSUE_RES_BITS 1
176#define BIO_ISSUE_SIZE_BITS 12
177#define BIO_ISSUE_RES_SHIFT (64 - BIO_ISSUE_RES_BITS)
178#define BIO_ISSUE_SIZE_SHIFT (BIO_ISSUE_RES_SHIFT - BIO_ISSUE_SIZE_BITS)
179#define BIO_ISSUE_TIME_MASK ((1ULL << BIO_ISSUE_SIZE_SHIFT) - 1)
180#define BIO_ISSUE_SIZE_MASK \
181 (((1ULL << BIO_ISSUE_SIZE_BITS) - 1) << BIO_ISSUE_SIZE_SHIFT)
182#define BIO_ISSUE_RES_MASK (~((1ULL << BIO_ISSUE_RES_SHIFT) - 1))
183
184/* Reserved bit for blk-throtl */
185#define BIO_ISSUE_THROTL_SKIP_LATENCY (1ULL << 63)
186
187struct bio_issue {
188 u64 value;
189};
190
191static inline u64 __bio_issue_time(u64 time)
192{
193 return time & BIO_ISSUE_TIME_MASK;
194}
195
196static inline u64 bio_issue_time(struct bio_issue *issue)
197{
198 return __bio_issue_time(issue->value);
199}
200
201static inline sector_t bio_issue_size(struct bio_issue *issue)
202{
203 return ((issue->value & BIO_ISSUE_SIZE_MASK) >> BIO_ISSUE_SIZE_SHIFT);
204}
205
206static inline void bio_issue_init(struct bio_issue *issue,
207 sector_t size)
208{
209 size &= (1ULL << BIO_ISSUE_SIZE_BITS) - 1;
210 issue->value = ((issue->value & BIO_ISSUE_RES_MASK) |
211 (ktime_get_ns() & BIO_ISSUE_TIME_MASK) |
212 ((u64)size << BIO_ISSUE_SIZE_SHIFT));
213}
214
215/*
216 * main unit of I/O for the block layer and lower layers (ie drivers and
217 * stacking drivers)
218 */
219struct bio {
220 struct bio *bi_next; /* request queue link */
221 struct block_device *bi_bdev;
222 unsigned int bi_opf; /* bottom bits req flags,
223 * top bits REQ_OP. Use
224 * accessors.
225 */
226 unsigned short bi_flags; /* BIO_* below */
227 unsigned short bi_ioprio;
228 unsigned short bi_write_hint;
229 blk_status_t bi_status;
230 atomic_t __bi_remaining;
231
232 struct bvec_iter bi_iter;
233
234 bio_end_io_t *bi_end_io;
235
236 void *bi_private;
237#ifdef CONFIG_BLK_CGROUP
238 /*
239 * Represents the association of the css and request_queue for the bio.
240 * If a bio goes direct to device, it will not have a blkg as it will
241 * not have a request_queue associated with it. The reference is put
242 * on release of the bio.
243 */
244 struct blkcg_gq *bi_blkg;
245 struct bio_issue bi_issue;
246#ifdef CONFIG_BLK_CGROUP_IOCOST
247 u64 bi_iocost_cost;
248#endif
249#endif
250
251#ifdef CONFIG_BLK_INLINE_ENCRYPTION
252 struct bio_crypt_ctx *bi_crypt_context;
253#endif
254
255 union {
256#if defined(CONFIG_BLK_DEV_INTEGRITY)
257 struct bio_integrity_payload *bi_integrity; /* data integrity */
258#endif
259 };
260
261 unsigned short bi_vcnt; /* how many bio_vec's */
262
263 /*
264 * Everything starting with bi_max_vecs will be preserved by bio_reset()
265 */
266
267 unsigned short bi_max_vecs; /* max bvl_vecs we can hold */
268
269 atomic_t __bi_cnt; /* pin count */
270
271 struct bio_vec *bi_io_vec; /* the actual vec list */
272
273 struct bio_set *bi_pool;
274
275 /*
276 * We can inline a number of vecs at the end of the bio, to avoid
277 * double allocations for a small number of bio_vecs. This member
278 * MUST obviously be kept at the very end of the bio.
279 */
280 struct bio_vec bi_inline_vecs[];
281};
282
283#define BIO_RESET_BYTES offsetof(struct bio, bi_max_vecs)
284
285/*
286 * bio flags
287 */
288enum {
289 BIO_NO_PAGE_REF, /* don't put release vec pages */
290 BIO_CLONED, /* doesn't own data */
291 BIO_BOUNCED, /* bio is a bounce bio */
292 BIO_WORKINGSET, /* contains userspace workingset pages */
293 BIO_QUIET, /* Make BIO Quiet */
294 BIO_CHAIN, /* chained bio, ->bi_remaining in effect */
295 BIO_REFFED, /* bio has elevated ->bi_cnt */
296 BIO_THROTTLED, /* This bio has already been subjected to
297 * throttling rules. Don't do it again. */
298 BIO_TRACE_COMPLETION, /* bio_endio() should trace the final completion
299 * of this bio. */
300 BIO_CGROUP_ACCT, /* has been accounted to a cgroup */
301 BIO_TRACKED, /* set if bio goes through the rq_qos path */
302 BIO_REMAPPED,
303 BIO_ZONE_WRITE_LOCKED, /* Owns a zoned device zone write lock */
304 BIO_FLAG_LAST
305};
306
307typedef __u32 __bitwise blk_mq_req_flags_t;
308
309/*
310 * Operations and flags common to the bio and request structures.
311 * We use 8 bits for encoding the operation, and the remaining 24 for flags.
312 *
313 * The least significant bit of the operation number indicates the data
314 * transfer direction:
315 *
316 * - if the least significant bit is set transfers are TO the device
317 * - if the least significant bit is not set transfers are FROM the device
318 *
319 * If a operation does not transfer data the least significant bit has no
320 * meaning.
321 */
322#define REQ_OP_BITS 8
323#define REQ_OP_MASK ((1 << REQ_OP_BITS) - 1)
324#define REQ_FLAG_BITS 24
325
326enum req_opf {
327 /* read sectors from the device */
328 REQ_OP_READ = 0,
329 /* write sectors to the device */
330 REQ_OP_WRITE = 1,
331 /* flush the volatile write cache */
332 REQ_OP_FLUSH = 2,
333 /* discard sectors */
334 REQ_OP_DISCARD = 3,
335 /* securely erase sectors */
336 REQ_OP_SECURE_ERASE = 5,
337 /* write the same sector many times */
338 REQ_OP_WRITE_SAME = 7,
339 /* write the zero filled sector many times */
340 REQ_OP_WRITE_ZEROES = 9,
341 /* Open a zone */
342 REQ_OP_ZONE_OPEN = 10,
343 /* Close a zone */
344 REQ_OP_ZONE_CLOSE = 11,
345 /* Transition a zone to full */
346 REQ_OP_ZONE_FINISH = 12,
347 /* write data at the current zone write pointer */
348 REQ_OP_ZONE_APPEND = 13,
349 /* reset a zone write pointer */
350 REQ_OP_ZONE_RESET = 15,
351 /* reset all the zone present on the device */
352 REQ_OP_ZONE_RESET_ALL = 17,
353
354 /* Driver private requests */
355 REQ_OP_DRV_IN = 34,
356 REQ_OP_DRV_OUT = 35,
357
358 REQ_OP_LAST,
359};
360
361enum req_flag_bits {
362 __REQ_FAILFAST_DEV = /* no driver retries of device errors */
363 REQ_OP_BITS,
364 __REQ_FAILFAST_TRANSPORT, /* no driver retries of transport errors */
365 __REQ_FAILFAST_DRIVER, /* no driver retries of driver errors */
366 __REQ_SYNC, /* request is sync (sync write or read) */
367 __REQ_META, /* metadata io request */
368 __REQ_PRIO, /* boost priority in cfq */
369 __REQ_NOMERGE, /* don't touch this for merging */
370 __REQ_IDLE, /* anticipate more IO after this one */
371 __REQ_INTEGRITY, /* I/O includes block integrity payload */
372 __REQ_FUA, /* forced unit access */
373 __REQ_PREFLUSH, /* request for cache flush */
374 __REQ_RAHEAD, /* read ahead, can fail anytime */
375 __REQ_BACKGROUND, /* background IO */
376 __REQ_NOWAIT, /* Don't wait if request will block */
377 /*
378 * When a shared kthread needs to issue a bio for a cgroup, doing
379 * so synchronously can lead to priority inversions as the kthread
380 * can be trapped waiting for that cgroup. CGROUP_PUNT flag makes
381 * submit_bio() punt the actual issuing to a dedicated per-blkcg
382 * work item to avoid such priority inversions.
383 */
384 __REQ_CGROUP_PUNT,
385
386 /* command specific flags for REQ_OP_WRITE_ZEROES: */
387 __REQ_NOUNMAP, /* do not free blocks when zeroing */
388
389 __REQ_HIPRI,
390
391 /* for driver use */
392 __REQ_DRV,
393 __REQ_SWAP, /* swapping request. */
394 __REQ_NR_BITS, /* stops here */
395};
396
397#define REQ_FAILFAST_DEV (1ULL << __REQ_FAILFAST_DEV)
398#define REQ_FAILFAST_TRANSPORT (1ULL << __REQ_FAILFAST_TRANSPORT)
399#define REQ_FAILFAST_DRIVER (1ULL << __REQ_FAILFAST_DRIVER)
400#define REQ_SYNC (1ULL << __REQ_SYNC)
401#define REQ_META (1ULL << __REQ_META)
402#define REQ_PRIO (1ULL << __REQ_PRIO)
403#define REQ_NOMERGE (1ULL << __REQ_NOMERGE)
404#define REQ_IDLE (1ULL << __REQ_IDLE)
405#define REQ_INTEGRITY (1ULL << __REQ_INTEGRITY)
406#define REQ_FUA (1ULL << __REQ_FUA)
407#define REQ_PREFLUSH (1ULL << __REQ_PREFLUSH)
408#define REQ_RAHEAD (1ULL << __REQ_RAHEAD)
409#define REQ_BACKGROUND (1ULL << __REQ_BACKGROUND)
410#define REQ_NOWAIT (1ULL << __REQ_NOWAIT)
411#define REQ_CGROUP_PUNT (1ULL << __REQ_CGROUP_PUNT)
412
413#define REQ_NOUNMAP (1ULL << __REQ_NOUNMAP)
414#define REQ_HIPRI (1ULL << __REQ_HIPRI)
415
416#define REQ_DRV (1ULL << __REQ_DRV)
417#define REQ_SWAP (1ULL << __REQ_SWAP)
418
419#define REQ_FAILFAST_MASK \
420 (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | REQ_FAILFAST_DRIVER)
421
422#define REQ_NOMERGE_FLAGS \
423 (REQ_NOMERGE | REQ_PREFLUSH | REQ_FUA)
424
425enum stat_group {
426 STAT_READ,
427 STAT_WRITE,
428 STAT_DISCARD,
429 STAT_FLUSH,
430
431 NR_STAT_GROUPS
432};
433
434#define bio_op(bio) \
435 ((bio)->bi_opf & REQ_OP_MASK)
436#define req_op(req) \
437 ((req)->cmd_flags & REQ_OP_MASK)
438
439/* obsolete, don't use in new code */
440static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
441 unsigned op_flags)
442{
443 bio->bi_opf = op | op_flags;
444}
445
446static inline bool op_is_write(unsigned int op)
447{
448 return (op & 1);
449}
450
451/*
452 * Check if the bio or request is one that needs special treatment in the
453 * flush state machine.
454 */
455static inline bool op_is_flush(unsigned int op)
456{
457 return op & (REQ_FUA | REQ_PREFLUSH);
458}
459
460/*
461 * Reads are always treated as synchronous, as are requests with the FUA or
462 * PREFLUSH flag. Other operations may be marked as synchronous using the
463 * REQ_SYNC flag.
464 */
465static inline bool op_is_sync(unsigned int op)
466{
467 return (op & REQ_OP_MASK) == REQ_OP_READ ||
468 (op & (REQ_SYNC | REQ_FUA | REQ_PREFLUSH));
469}
470
471static inline bool op_is_discard(unsigned int op)
472{
473 return (op & REQ_OP_MASK) == REQ_OP_DISCARD;
474}
475
476/*
477 * Check if a bio or request operation is a zone management operation, with
478 * the exception of REQ_OP_ZONE_RESET_ALL which is treated as a special case
479 * due to its different handling in the block layer and device response in
480 * case of command failure.
481 */
482static inline bool op_is_zone_mgmt(enum req_opf op)
483{
484 switch (op & REQ_OP_MASK) {
485 case REQ_OP_ZONE_RESET:
486 case REQ_OP_ZONE_OPEN:
487 case REQ_OP_ZONE_CLOSE:
488 case REQ_OP_ZONE_FINISH:
489 return true;
490 default:
491 return false;
492 }
493}
494
495static inline int op_stat_group(unsigned int op)
496{
497 if (op_is_discard(op))
498 return STAT_DISCARD;
499 return op_is_write(op);
500}
501
502typedef unsigned int blk_qc_t;
503#define BLK_QC_T_NONE -1U
504#define BLK_QC_T_SHIFT 16
505#define BLK_QC_T_INTERNAL (1U << 31)
506
507static inline bool blk_qc_t_valid(blk_qc_t cookie)
508{
509 return cookie != BLK_QC_T_NONE;
510}
511
512static inline unsigned int blk_qc_t_to_queue_num(blk_qc_t cookie)
513{
514 return (cookie & ~BLK_QC_T_INTERNAL) >> BLK_QC_T_SHIFT;
515}
516
517static inline unsigned int blk_qc_t_to_tag(blk_qc_t cookie)
518{
519 return cookie & ((1u << BLK_QC_T_SHIFT) - 1);
520}
521
522static inline bool blk_qc_t_is_internal(blk_qc_t cookie)
523{
524 return (cookie & BLK_QC_T_INTERNAL) != 0;
525}
526
527struct blk_rq_stat {
528 u64 mean;
529 u64 min;
530 u64 max;
531 u32 nr_samples;
532 u64 batch;
533};
534
535#endif /* __LINUX_BLK_TYPES_H */