Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10#include <linux/module.h>
11#include <linux/init.h>
12#include <linux/interrupt.h>
13#include <linux/completion.h>
14#include <linux/device.h>
15#include <linux/delay.h>
16#include <linux/pagemap.h>
17#include <linux/err.h>
18#include <linux/leds.h>
19#include <linux/scatterlist.h>
20#include <linux/log2.h>
21#include <linux/pm_runtime.h>
22#include <linux/pm_wakeup.h>
23#include <linux/suspend.h>
24#include <linux/fault-inject.h>
25#include <linux/random.h>
26#include <linux/slab.h>
27#include <linux/of.h>
28
29#include <linux/mmc/card.h>
30#include <linux/mmc/host.h>
31#include <linux/mmc/mmc.h>
32#include <linux/mmc/sd.h>
33#include <linux/mmc/slot-gpio.h>
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/mmc.h>
37
38#include "core.h"
39#include "card.h"
40#include "crypto.h"
41#include "bus.h"
42#include "host.h"
43#include "sdio_bus.h"
44#include "pwrseq.h"
45
46#include "mmc_ops.h"
47#include "sd_ops.h"
48#include "sdio_ops.h"
49
50/* The max erase timeout, used when host->max_busy_timeout isn't specified */
51#define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52#define SD_DISCARD_TIMEOUT_MS (250)
53
54static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56/*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
60 */
61bool use_spi_crc = 1;
62module_param(use_spi_crc, bool, 0);
63
64static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66{
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74}
75
76#ifdef CONFIG_FAIL_MMC_REQUEST
77
78/*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
82static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84{
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
101 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
102}
103
104#else /* CONFIG_FAIL_MMC_REQUEST */
105
106static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108{
109}
110
111#endif /* CONFIG_FAIL_MMC_REQUEST */
112
113static inline void mmc_complete_cmd(struct mmc_request *mrq)
114{
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117}
118
119void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120{
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128}
129EXPORT_SYMBOL(mmc_command_done);
130
131/**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
139void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140{
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 (mrq->data && mrq->data->error == -EILSEQ) ||
150 (mrq->stop && mrq->stop->error == -EILSEQ)))
151 mmc_retune_needed(host);
152
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 cmd->retries = 0;
156 }
157
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
160
161 mmc_complete_cmd(mrq);
162
163 trace_mmc_request_done(host, mrq);
164
165 /*
166 * We list various conditions for the command to be considered
167 * properly done:
168 *
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
173 */
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 mmc_should_fail_request(host, mrq);
176
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
179
180 if (mrq->sbc) {
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
183 mrq->sbc->error,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 }
187
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
192
193 if (mrq->data) {
194 pr_debug("%s: %d bytes transferred: %d\n",
195 mmc_hostname(host),
196 mrq->data->bytes_xfered, mrq->data->error);
197 }
198
199 if (mrq->stop) {
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
202 mrq->stop->error,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
205 }
206 }
207 /*
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
210 */
211 if (mrq->done)
212 mrq->done(mrq);
213}
214
215EXPORT_SYMBOL(mmc_request_done);
216
217static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218{
219 int err;
220
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
223 if (err) {
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
226 return;
227 }
228
229 /*
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
233 */
234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
236 int tries = 500; /* Wait aprox 500ms at maximum */
237
238 while (host->ops->card_busy(host) && --tries)
239 mmc_delay(1);
240
241 if (tries == 0) {
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
244 return;
245 }
246 }
247
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
250 /*
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
253 */
254 reinit_completion(&mrq->cmd_completion);
255 }
256
257 trace_mmc_request_start(host, mrq);
258
259 if (host->cqe_on)
260 host->cqe_ops->cqe_off(host);
261
262 host->ops->request(host, mrq);
263}
264
265static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 bool cqe)
267{
268 if (mrq->sbc) {
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
272 }
273
274 if (mrq->cmd) {
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 } else if (cqe) {
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 }
282
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
297}
298
299static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300{
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
303
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
313 if (mrq->data) {
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
318
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
323
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
332
333 return 0;
334}
335
336int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337{
338 int err;
339
340 init_completion(&mrq->cmd_completion);
341
342 mmc_retune_hold(host);
343
344 if (mmc_card_removed(host->card))
345 return -ENOMEDIUM;
346
347 mmc_mrq_pr_debug(host, mrq, false);
348
349 WARN_ON(!host->claimed);
350
351 err = mmc_mrq_prep(host, mrq);
352 if (err)
353 return err;
354
355 led_trigger_event(host->led, LED_FULL);
356 __mmc_start_request(host, mrq);
357
358 return 0;
359}
360EXPORT_SYMBOL(mmc_start_request);
361
362static void mmc_wait_done(struct mmc_request *mrq)
363{
364 complete(&mrq->completion);
365}
366
367static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368{
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370
371 /*
372 * If there is an ongoing transfer, wait for the command line to become
373 * available.
374 */
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
377}
378
379static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380{
381 int err;
382
383 mmc_wait_ongoing_tfr_cmd(host);
384
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
387
388 err = mmc_start_request(host, mrq);
389 if (err) {
390 mrq->cmd->error = err;
391 mmc_complete_cmd(mrq);
392 complete(&mrq->completion);
393 }
394
395 return err;
396}
397
398void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399{
400 struct mmc_command *cmd;
401
402 while (1) {
403 wait_for_completion(&mrq->completion);
404
405 cmd = mrq->cmd;
406
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
409 break;
410
411 mmc_retune_recheck(host);
412
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 __mmc_start_request(host, mrq);
418 }
419
420 mmc_retune_release(host);
421}
422EXPORT_SYMBOL(mmc_wait_for_req_done);
423
424/*
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
428 *
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
431 */
432int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433{
434 int err;
435
436 /*
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
440 * ->cqe_off().
441 */
442 err = mmc_retune(host);
443 if (err)
444 goto out_err;
445
446 mrq->host = host;
447
448 mmc_mrq_pr_debug(host, mrq, true);
449
450 err = mmc_mrq_prep(host, mrq);
451 if (err)
452 goto out_err;
453
454 err = host->cqe_ops->cqe_request(host, mrq);
455 if (err)
456 goto out_err;
457
458 trace_mmc_request_start(host, mrq);
459
460 return 0;
461
462out_err:
463 if (mrq->cmd) {
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
466 } else {
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
469 }
470 return err;
471}
472EXPORT_SYMBOL(mmc_cqe_start_req);
473
474/**
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
478 *
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
481 */
482void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483{
484 mmc_should_fail_request(host, mrq);
485
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
490
491 trace_mmc_request_done(host, mrq);
492
493 if (mrq->cmd) {
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 } else {
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
499 }
500
501 if (mrq->data) {
502 pr_debug("%s: %d bytes transferred: %d\n",
503 mmc_hostname(host),
504 mrq->data->bytes_xfered, mrq->data->error);
505 }
506
507 mrq->done(mrq);
508}
509EXPORT_SYMBOL(mmc_cqe_request_done);
510
511/**
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @host: MMC host
514 * @mrq: MMC request to be processed
515 */
516void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517{
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
520}
521EXPORT_SYMBOL(mmc_cqe_post_req);
522
523/* Arbitrary 1 second timeout */
524#define MMC_CQE_RECOVERY_TIMEOUT 1000
525
526/*
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
529 *
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
534 */
535int mmc_cqe_recovery(struct mmc_host *host)
536{
537 struct mmc_command cmd;
538 int err;
539
540 mmc_retune_hold_now(host);
541
542 /*
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
545 */
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547
548 host->cqe_ops->cqe_recovery_start(host);
549
550 memset(&cmd, 0, sizeof(cmd));
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 mmc_wait_for_cmd(host, &cmd, 0);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_CMDQ_TASK_MGMT;
559 cmd.arg = 1; /* Discard entire queue */
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 err = mmc_wait_for_cmd(host, &cmd, 0);
564
565 host->cqe_ops->cqe_recovery_finish(host);
566
567 mmc_retune_release(host);
568
569 return err;
570}
571EXPORT_SYMBOL(mmc_cqe_recovery);
572
573/**
574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
575 * @host: MMC host
576 * @mrq: MMC request
577 *
578 * mmc_is_req_done() is used with requests that have
579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580 * starting a request and before waiting for it to complete. That is,
581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582 * and before mmc_wait_for_req_done(). If it is called at other times the
583 * result is not meaningful.
584 */
585bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586{
587 return completion_done(&mrq->completion);
588}
589EXPORT_SYMBOL(mmc_is_req_done);
590
591/**
592 * mmc_wait_for_req - start a request and wait for completion
593 * @host: MMC host to start command
594 * @mrq: MMC request to start
595 *
596 * Start a new MMC custom command request for a host, and wait
597 * for the command to complete. In the case of 'cap_cmd_during_tfr'
598 * requests, the transfer is ongoing and the caller can issue further
599 * commands that do not use the data lines, and then wait by calling
600 * mmc_wait_for_req_done().
601 * Does not attempt to parse the response.
602 */
603void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
604{
605 __mmc_start_req(host, mrq);
606
607 if (!mrq->cap_cmd_during_tfr)
608 mmc_wait_for_req_done(host, mrq);
609}
610EXPORT_SYMBOL(mmc_wait_for_req);
611
612/**
613 * mmc_wait_for_cmd - start a command and wait for completion
614 * @host: MMC host to start command
615 * @cmd: MMC command to start
616 * @retries: maximum number of retries
617 *
618 * Start a new MMC command for a host, and wait for the command
619 * to complete. Return any error that occurred while the command
620 * was executing. Do not attempt to parse the response.
621 */
622int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623{
624 struct mmc_request mrq = {};
625
626 WARN_ON(!host->claimed);
627
628 memset(cmd->resp, 0, sizeof(cmd->resp));
629 cmd->retries = retries;
630
631 mrq.cmd = cmd;
632 cmd->data = NULL;
633
634 mmc_wait_for_req(host, &mrq);
635
636 return cmd->error;
637}
638
639EXPORT_SYMBOL(mmc_wait_for_cmd);
640
641/**
642 * mmc_set_data_timeout - set the timeout for a data command
643 * @data: data phase for command
644 * @card: the MMC card associated with the data transfer
645 *
646 * Computes the data timeout parameters according to the
647 * correct algorithm given the card type.
648 */
649void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
650{
651 unsigned int mult;
652
653 /*
654 * SDIO cards only define an upper 1 s limit on access.
655 */
656 if (mmc_card_sdio(card)) {
657 data->timeout_ns = 1000000000;
658 data->timeout_clks = 0;
659 return;
660 }
661
662 /*
663 * SD cards use a 100 multiplier rather than 10
664 */
665 mult = mmc_card_sd(card) ? 100 : 10;
666
667 /*
668 * Scale up the multiplier (and therefore the timeout) by
669 * the r2w factor for writes.
670 */
671 if (data->flags & MMC_DATA_WRITE)
672 mult <<= card->csd.r2w_factor;
673
674 data->timeout_ns = card->csd.taac_ns * mult;
675 data->timeout_clks = card->csd.taac_clks * mult;
676
677 /*
678 * SD cards also have an upper limit on the timeout.
679 */
680 if (mmc_card_sd(card)) {
681 unsigned int timeout_us, limit_us;
682
683 timeout_us = data->timeout_ns / 1000;
684 if (card->host->ios.clock)
685 timeout_us += data->timeout_clks * 1000 /
686 (card->host->ios.clock / 1000);
687
688 if (data->flags & MMC_DATA_WRITE)
689 /*
690 * The MMC spec "It is strongly recommended
691 * for hosts to implement more than 500ms
692 * timeout value even if the card indicates
693 * the 250ms maximum busy length." Even the
694 * previous value of 300ms is known to be
695 * insufficient for some cards.
696 */
697 limit_us = 3000000;
698 else
699 limit_us = 100000;
700
701 /*
702 * SDHC cards always use these fixed values.
703 */
704 if (timeout_us > limit_us) {
705 data->timeout_ns = limit_us * 1000;
706 data->timeout_clks = 0;
707 }
708
709 /* assign limit value if invalid */
710 if (timeout_us == 0)
711 data->timeout_ns = limit_us * 1000;
712 }
713
714 /*
715 * Some cards require longer data read timeout than indicated in CSD.
716 * Address this by setting the read timeout to a "reasonably high"
717 * value. For the cards tested, 600ms has proven enough. If necessary,
718 * this value can be increased if other problematic cards require this.
719 */
720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
721 data->timeout_ns = 600000000;
722 data->timeout_clks = 0;
723 }
724
725 /*
726 * Some cards need very high timeouts if driven in SPI mode.
727 * The worst observed timeout was 900ms after writing a
728 * continuous stream of data until the internal logic
729 * overflowed.
730 */
731 if (mmc_host_is_spi(card->host)) {
732 if (data->flags & MMC_DATA_WRITE) {
733 if (data->timeout_ns < 1000000000)
734 data->timeout_ns = 1000000000; /* 1s */
735 } else {
736 if (data->timeout_ns < 100000000)
737 data->timeout_ns = 100000000; /* 100ms */
738 }
739 }
740}
741EXPORT_SYMBOL(mmc_set_data_timeout);
742
743/*
744 * Allow claiming an already claimed host if the context is the same or there is
745 * no context but the task is the same.
746 */
747static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748 struct task_struct *task)
749{
750 return host->claimer == ctx ||
751 (!ctx && task && host->claimer->task == task);
752}
753
754static inline void mmc_ctx_set_claimer(struct mmc_host *host,
755 struct mmc_ctx *ctx,
756 struct task_struct *task)
757{
758 if (!host->claimer) {
759 if (ctx)
760 host->claimer = ctx;
761 else
762 host->claimer = &host->default_ctx;
763 }
764 if (task)
765 host->claimer->task = task;
766}
767
768/**
769 * __mmc_claim_host - exclusively claim a host
770 * @host: mmc host to claim
771 * @ctx: context that claims the host or NULL in which case the default
772 * context will be used
773 * @abort: whether or not the operation should be aborted
774 *
775 * Claim a host for a set of operations. If @abort is non null and
776 * dereference a non-zero value then this will return prematurely with
777 * that non-zero value without acquiring the lock. Returns zero
778 * with the lock held otherwise.
779 */
780int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
781 atomic_t *abort)
782{
783 struct task_struct *task = ctx ? NULL : current;
784 DECLARE_WAITQUEUE(wait, current);
785 unsigned long flags;
786 int stop;
787 bool pm = false;
788
789 might_sleep();
790
791 add_wait_queue(&host->wq, &wait);
792 spin_lock_irqsave(&host->lock, flags);
793 while (1) {
794 set_current_state(TASK_UNINTERRUPTIBLE);
795 stop = abort ? atomic_read(abort) : 0;
796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
797 break;
798 spin_unlock_irqrestore(&host->lock, flags);
799 schedule();
800 spin_lock_irqsave(&host->lock, flags);
801 }
802 set_current_state(TASK_RUNNING);
803 if (!stop) {
804 host->claimed = 1;
805 mmc_ctx_set_claimer(host, ctx, task);
806 host->claim_cnt += 1;
807 if (host->claim_cnt == 1)
808 pm = true;
809 } else
810 wake_up(&host->wq);
811 spin_unlock_irqrestore(&host->lock, flags);
812 remove_wait_queue(&host->wq, &wait);
813
814 if (pm)
815 pm_runtime_get_sync(mmc_dev(host));
816
817 return stop;
818}
819EXPORT_SYMBOL(__mmc_claim_host);
820
821/**
822 * mmc_release_host - release a host
823 * @host: mmc host to release
824 *
825 * Release a MMC host, allowing others to claim the host
826 * for their operations.
827 */
828void mmc_release_host(struct mmc_host *host)
829{
830 unsigned long flags;
831
832 WARN_ON(!host->claimed);
833
834 spin_lock_irqsave(&host->lock, flags);
835 if (--host->claim_cnt) {
836 /* Release for nested claim */
837 spin_unlock_irqrestore(&host->lock, flags);
838 } else {
839 host->claimed = 0;
840 host->claimer->task = NULL;
841 host->claimer = NULL;
842 spin_unlock_irqrestore(&host->lock, flags);
843 wake_up(&host->wq);
844 pm_runtime_mark_last_busy(mmc_dev(host));
845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846 pm_runtime_put_sync_suspend(mmc_dev(host));
847 else
848 pm_runtime_put_autosuspend(mmc_dev(host));
849 }
850}
851EXPORT_SYMBOL(mmc_release_host);
852
853/*
854 * This is a helper function, which fetches a runtime pm reference for the
855 * card device and also claims the host.
856 */
857void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
858{
859 pm_runtime_get_sync(&card->dev);
860 __mmc_claim_host(card->host, ctx, NULL);
861}
862EXPORT_SYMBOL(mmc_get_card);
863
864/*
865 * This is a helper function, which releases the host and drops the runtime
866 * pm reference for the card device.
867 */
868void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
869{
870 struct mmc_host *host = card->host;
871
872 WARN_ON(ctx && host->claimer != ctx);
873
874 mmc_release_host(host);
875 pm_runtime_mark_last_busy(&card->dev);
876 pm_runtime_put_autosuspend(&card->dev);
877}
878EXPORT_SYMBOL(mmc_put_card);
879
880/*
881 * Internal function that does the actual ios call to the host driver,
882 * optionally printing some debug output.
883 */
884static inline void mmc_set_ios(struct mmc_host *host)
885{
886 struct mmc_ios *ios = &host->ios;
887
888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889 "width %u timing %u\n",
890 mmc_hostname(host), ios->clock, ios->bus_mode,
891 ios->power_mode, ios->chip_select, ios->vdd,
892 1 << ios->bus_width, ios->timing);
893
894 host->ops->set_ios(host, ios);
895}
896
897/*
898 * Control chip select pin on a host.
899 */
900void mmc_set_chip_select(struct mmc_host *host, int mode)
901{
902 host->ios.chip_select = mode;
903 mmc_set_ios(host);
904}
905
906/*
907 * Sets the host clock to the highest possible frequency that
908 * is below "hz".
909 */
910void mmc_set_clock(struct mmc_host *host, unsigned int hz)
911{
912 WARN_ON(hz && hz < host->f_min);
913
914 if (hz > host->f_max)
915 hz = host->f_max;
916
917 host->ios.clock = hz;
918 mmc_set_ios(host);
919}
920
921int mmc_execute_tuning(struct mmc_card *card)
922{
923 struct mmc_host *host = card->host;
924 u32 opcode;
925 int err;
926
927 if (!host->ops->execute_tuning)
928 return 0;
929
930 if (host->cqe_on)
931 host->cqe_ops->cqe_off(host);
932
933 if (mmc_card_mmc(card))
934 opcode = MMC_SEND_TUNING_BLOCK_HS200;
935 else
936 opcode = MMC_SEND_TUNING_BLOCK;
937
938 err = host->ops->execute_tuning(host, opcode);
939
940 if (err) {
941 pr_err("%s: tuning execution failed: %d\n",
942 mmc_hostname(host), err);
943 } else {
944 host->retune_now = 0;
945 host->need_retune = 0;
946 mmc_retune_enable(host);
947 }
948
949 return err;
950}
951
952/*
953 * Change the bus mode (open drain/push-pull) of a host.
954 */
955void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
956{
957 host->ios.bus_mode = mode;
958 mmc_set_ios(host);
959}
960
961/*
962 * Change data bus width of a host.
963 */
964void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
965{
966 host->ios.bus_width = width;
967 mmc_set_ios(host);
968}
969
970/*
971 * Set initial state after a power cycle or a hw_reset.
972 */
973void mmc_set_initial_state(struct mmc_host *host)
974{
975 if (host->cqe_on)
976 host->cqe_ops->cqe_off(host);
977
978 mmc_retune_disable(host);
979
980 if (mmc_host_is_spi(host))
981 host->ios.chip_select = MMC_CS_HIGH;
982 else
983 host->ios.chip_select = MMC_CS_DONTCARE;
984 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
985 host->ios.bus_width = MMC_BUS_WIDTH_1;
986 host->ios.timing = MMC_TIMING_LEGACY;
987 host->ios.drv_type = 0;
988 host->ios.enhanced_strobe = false;
989
990 /*
991 * Make sure we are in non-enhanced strobe mode before we
992 * actually enable it in ext_csd.
993 */
994 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
995 host->ops->hs400_enhanced_strobe)
996 host->ops->hs400_enhanced_strobe(host, &host->ios);
997
998 mmc_set_ios(host);
999
1000 mmc_crypto_set_initial_state(host);
1001}
1002
1003/**
1004 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1005 * @vdd: voltage (mV)
1006 * @low_bits: prefer low bits in boundary cases
1007 *
1008 * This function returns the OCR bit number according to the provided @vdd
1009 * value. If conversion is not possible a negative errno value returned.
1010 *
1011 * Depending on the @low_bits flag the function prefers low or high OCR bits
1012 * on boundary voltages. For example,
1013 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1014 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1015 *
1016 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1017 */
1018static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1019{
1020 const int max_bit = ilog2(MMC_VDD_35_36);
1021 int bit;
1022
1023 if (vdd < 1650 || vdd > 3600)
1024 return -EINVAL;
1025
1026 if (vdd >= 1650 && vdd <= 1950)
1027 return ilog2(MMC_VDD_165_195);
1028
1029 if (low_bits)
1030 vdd -= 1;
1031
1032 /* Base 2000 mV, step 100 mV, bit's base 8. */
1033 bit = (vdd - 2000) / 100 + 8;
1034 if (bit > max_bit)
1035 return max_bit;
1036 return bit;
1037}
1038
1039/**
1040 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1041 * @vdd_min: minimum voltage value (mV)
1042 * @vdd_max: maximum voltage value (mV)
1043 *
1044 * This function returns the OCR mask bits according to the provided @vdd_min
1045 * and @vdd_max values. If conversion is not possible the function returns 0.
1046 *
1047 * Notes wrt boundary cases:
1048 * This function sets the OCR bits for all boundary voltages, for example
1049 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1050 * MMC_VDD_34_35 mask.
1051 */
1052u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1053{
1054 u32 mask = 0;
1055
1056 if (vdd_max < vdd_min)
1057 return 0;
1058
1059 /* Prefer high bits for the boundary vdd_max values. */
1060 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1061 if (vdd_max < 0)
1062 return 0;
1063
1064 /* Prefer low bits for the boundary vdd_min values. */
1065 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1066 if (vdd_min < 0)
1067 return 0;
1068
1069 /* Fill the mask, from max bit to min bit. */
1070 while (vdd_max >= vdd_min)
1071 mask |= 1 << vdd_max--;
1072
1073 return mask;
1074}
1075
1076static int mmc_of_get_func_num(struct device_node *node)
1077{
1078 u32 reg;
1079 int ret;
1080
1081 ret = of_property_read_u32(node, "reg", ®);
1082 if (ret < 0)
1083 return ret;
1084
1085 return reg;
1086}
1087
1088struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1089 unsigned func_num)
1090{
1091 struct device_node *node;
1092
1093 if (!host->parent || !host->parent->of_node)
1094 return NULL;
1095
1096 for_each_child_of_node(host->parent->of_node, node) {
1097 if (mmc_of_get_func_num(node) == func_num)
1098 return node;
1099 }
1100
1101 return NULL;
1102}
1103
1104/*
1105 * Mask off any voltages we don't support and select
1106 * the lowest voltage
1107 */
1108u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1109{
1110 int bit;
1111
1112 /*
1113 * Sanity check the voltages that the card claims to
1114 * support.
1115 */
1116 if (ocr & 0x7F) {
1117 dev_warn(mmc_dev(host),
1118 "card claims to support voltages below defined range\n");
1119 ocr &= ~0x7F;
1120 }
1121
1122 ocr &= host->ocr_avail;
1123 if (!ocr) {
1124 dev_warn(mmc_dev(host), "no support for card's volts\n");
1125 return 0;
1126 }
1127
1128 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1129 bit = ffs(ocr) - 1;
1130 ocr &= 3 << bit;
1131 mmc_power_cycle(host, ocr);
1132 } else {
1133 bit = fls(ocr) - 1;
1134 ocr &= 3 << bit;
1135 if (bit != host->ios.vdd)
1136 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1137 }
1138
1139 return ocr;
1140}
1141
1142int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1143{
1144 int err = 0;
1145 int old_signal_voltage = host->ios.signal_voltage;
1146
1147 host->ios.signal_voltage = signal_voltage;
1148 if (host->ops->start_signal_voltage_switch)
1149 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1150
1151 if (err)
1152 host->ios.signal_voltage = old_signal_voltage;
1153
1154 return err;
1155
1156}
1157
1158void mmc_set_initial_signal_voltage(struct mmc_host *host)
1159{
1160 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1161 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1162 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1163 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1164 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1165 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1166 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1167}
1168
1169int mmc_host_set_uhs_voltage(struct mmc_host *host)
1170{
1171 u32 clock;
1172
1173 /*
1174 * During a signal voltage level switch, the clock must be gated
1175 * for 5 ms according to the SD spec
1176 */
1177 clock = host->ios.clock;
1178 host->ios.clock = 0;
1179 mmc_set_ios(host);
1180
1181 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1182 return -EAGAIN;
1183
1184 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1185 mmc_delay(10);
1186 host->ios.clock = clock;
1187 mmc_set_ios(host);
1188
1189 return 0;
1190}
1191
1192int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1193{
1194 struct mmc_command cmd = {};
1195 int err = 0;
1196
1197 /*
1198 * If we cannot switch voltages, return failure so the caller
1199 * can continue without UHS mode
1200 */
1201 if (!host->ops->start_signal_voltage_switch)
1202 return -EPERM;
1203 if (!host->ops->card_busy)
1204 pr_warn("%s: cannot verify signal voltage switch\n",
1205 mmc_hostname(host));
1206
1207 cmd.opcode = SD_SWITCH_VOLTAGE;
1208 cmd.arg = 0;
1209 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1210
1211 err = mmc_wait_for_cmd(host, &cmd, 0);
1212 if (err)
1213 goto power_cycle;
1214
1215 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1216 return -EIO;
1217
1218 /*
1219 * The card should drive cmd and dat[0:3] low immediately
1220 * after the response of cmd11, but wait 1 ms to be sure
1221 */
1222 mmc_delay(1);
1223 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1224 err = -EAGAIN;
1225 goto power_cycle;
1226 }
1227
1228 if (mmc_host_set_uhs_voltage(host)) {
1229 /*
1230 * Voltages may not have been switched, but we've already
1231 * sent CMD11, so a power cycle is required anyway
1232 */
1233 err = -EAGAIN;
1234 goto power_cycle;
1235 }
1236
1237 /* Wait for at least 1 ms according to spec */
1238 mmc_delay(1);
1239
1240 /*
1241 * Failure to switch is indicated by the card holding
1242 * dat[0:3] low
1243 */
1244 if (host->ops->card_busy && host->ops->card_busy(host))
1245 err = -EAGAIN;
1246
1247power_cycle:
1248 if (err) {
1249 pr_debug("%s: Signal voltage switch failed, "
1250 "power cycling card\n", mmc_hostname(host));
1251 mmc_power_cycle(host, ocr);
1252 }
1253
1254 return err;
1255}
1256
1257/*
1258 * Select timing parameters for host.
1259 */
1260void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1261{
1262 host->ios.timing = timing;
1263 mmc_set_ios(host);
1264}
1265
1266/*
1267 * Select appropriate driver type for host.
1268 */
1269void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1270{
1271 host->ios.drv_type = drv_type;
1272 mmc_set_ios(host);
1273}
1274
1275int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1276 int card_drv_type, int *drv_type)
1277{
1278 struct mmc_host *host = card->host;
1279 int host_drv_type = SD_DRIVER_TYPE_B;
1280
1281 *drv_type = 0;
1282
1283 if (!host->ops->select_drive_strength)
1284 return 0;
1285
1286 /* Use SD definition of driver strength for hosts */
1287 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1288 host_drv_type |= SD_DRIVER_TYPE_A;
1289
1290 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1291 host_drv_type |= SD_DRIVER_TYPE_C;
1292
1293 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1294 host_drv_type |= SD_DRIVER_TYPE_D;
1295
1296 /*
1297 * The drive strength that the hardware can support
1298 * depends on the board design. Pass the appropriate
1299 * information and let the hardware specific code
1300 * return what is possible given the options
1301 */
1302 return host->ops->select_drive_strength(card, max_dtr,
1303 host_drv_type,
1304 card_drv_type,
1305 drv_type);
1306}
1307
1308/*
1309 * Apply power to the MMC stack. This is a two-stage process.
1310 * First, we enable power to the card without the clock running.
1311 * We then wait a bit for the power to stabilise. Finally,
1312 * enable the bus drivers and clock to the card.
1313 *
1314 * We must _NOT_ enable the clock prior to power stablising.
1315 *
1316 * If a host does all the power sequencing itself, ignore the
1317 * initial MMC_POWER_UP stage.
1318 */
1319void mmc_power_up(struct mmc_host *host, u32 ocr)
1320{
1321 if (host->ios.power_mode == MMC_POWER_ON)
1322 return;
1323
1324 mmc_pwrseq_pre_power_on(host);
1325
1326 host->ios.vdd = fls(ocr) - 1;
1327 host->ios.power_mode = MMC_POWER_UP;
1328 /* Set initial state and call mmc_set_ios */
1329 mmc_set_initial_state(host);
1330
1331 mmc_set_initial_signal_voltage(host);
1332
1333 /*
1334 * This delay should be sufficient to allow the power supply
1335 * to reach the minimum voltage.
1336 */
1337 mmc_delay(host->ios.power_delay_ms);
1338
1339 mmc_pwrseq_post_power_on(host);
1340
1341 host->ios.clock = host->f_init;
1342
1343 host->ios.power_mode = MMC_POWER_ON;
1344 mmc_set_ios(host);
1345
1346 /*
1347 * This delay must be at least 74 clock sizes, or 1 ms, or the
1348 * time required to reach a stable voltage.
1349 */
1350 mmc_delay(host->ios.power_delay_ms);
1351}
1352
1353void mmc_power_off(struct mmc_host *host)
1354{
1355 if (host->ios.power_mode == MMC_POWER_OFF)
1356 return;
1357
1358 mmc_pwrseq_power_off(host);
1359
1360 host->ios.clock = 0;
1361 host->ios.vdd = 0;
1362
1363 host->ios.power_mode = MMC_POWER_OFF;
1364 /* Set initial state and call mmc_set_ios */
1365 mmc_set_initial_state(host);
1366
1367 /*
1368 * Some configurations, such as the 802.11 SDIO card in the OLPC
1369 * XO-1.5, require a short delay after poweroff before the card
1370 * can be successfully turned on again.
1371 */
1372 mmc_delay(1);
1373}
1374
1375void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1376{
1377 mmc_power_off(host);
1378 /* Wait at least 1 ms according to SD spec */
1379 mmc_delay(1);
1380 mmc_power_up(host, ocr);
1381}
1382
1383/*
1384 * Assign a mmc bus handler to a host. Only one bus handler may control a
1385 * host at any given time.
1386 */
1387void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1388{
1389 host->bus_ops = ops;
1390}
1391
1392/*
1393 * Remove the current bus handler from a host.
1394 */
1395void mmc_detach_bus(struct mmc_host *host)
1396{
1397 host->bus_ops = NULL;
1398}
1399
1400void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1401{
1402 /*
1403 * Prevent system sleep for 5s to allow user space to consume the
1404 * corresponding uevent. This is especially useful, when CD irq is used
1405 * as a system wakeup, but doesn't hurt in other cases.
1406 */
1407 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1408 __pm_wakeup_event(host->ws, 5000);
1409
1410 host->detect_change = 1;
1411 mmc_schedule_delayed_work(&host->detect, delay);
1412}
1413
1414/**
1415 * mmc_detect_change - process change of state on a MMC socket
1416 * @host: host which changed state.
1417 * @delay: optional delay to wait before detection (jiffies)
1418 *
1419 * MMC drivers should call this when they detect a card has been
1420 * inserted or removed. The MMC layer will confirm that any
1421 * present card is still functional, and initialize any newly
1422 * inserted.
1423 */
1424void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1425{
1426 _mmc_detect_change(host, delay, true);
1427}
1428EXPORT_SYMBOL(mmc_detect_change);
1429
1430void mmc_init_erase(struct mmc_card *card)
1431{
1432 unsigned int sz;
1433
1434 if (is_power_of_2(card->erase_size))
1435 card->erase_shift = ffs(card->erase_size) - 1;
1436 else
1437 card->erase_shift = 0;
1438
1439 /*
1440 * It is possible to erase an arbitrarily large area of an SD or MMC
1441 * card. That is not desirable because it can take a long time
1442 * (minutes) potentially delaying more important I/O, and also the
1443 * timeout calculations become increasingly hugely over-estimated.
1444 * Consequently, 'pref_erase' is defined as a guide to limit erases
1445 * to that size and alignment.
1446 *
1447 * For SD cards that define Allocation Unit size, limit erases to one
1448 * Allocation Unit at a time.
1449 * For MMC, have a stab at ai good value and for modern cards it will
1450 * end up being 4MiB. Note that if the value is too small, it can end
1451 * up taking longer to erase. Also note, erase_size is already set to
1452 * High Capacity Erase Size if available when this function is called.
1453 */
1454 if (mmc_card_sd(card) && card->ssr.au) {
1455 card->pref_erase = card->ssr.au;
1456 card->erase_shift = ffs(card->ssr.au) - 1;
1457 } else if (card->erase_size) {
1458 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1459 if (sz < 128)
1460 card->pref_erase = 512 * 1024 / 512;
1461 else if (sz < 512)
1462 card->pref_erase = 1024 * 1024 / 512;
1463 else if (sz < 1024)
1464 card->pref_erase = 2 * 1024 * 1024 / 512;
1465 else
1466 card->pref_erase = 4 * 1024 * 1024 / 512;
1467 if (card->pref_erase < card->erase_size)
1468 card->pref_erase = card->erase_size;
1469 else {
1470 sz = card->pref_erase % card->erase_size;
1471 if (sz)
1472 card->pref_erase += card->erase_size - sz;
1473 }
1474 } else
1475 card->pref_erase = 0;
1476}
1477
1478static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1479 unsigned int arg, unsigned int qty)
1480{
1481 unsigned int erase_timeout;
1482
1483 if (arg == MMC_DISCARD_ARG ||
1484 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1485 erase_timeout = card->ext_csd.trim_timeout;
1486 } else if (card->ext_csd.erase_group_def & 1) {
1487 /* High Capacity Erase Group Size uses HC timeouts */
1488 if (arg == MMC_TRIM_ARG)
1489 erase_timeout = card->ext_csd.trim_timeout;
1490 else
1491 erase_timeout = card->ext_csd.hc_erase_timeout;
1492 } else {
1493 /* CSD Erase Group Size uses write timeout */
1494 unsigned int mult = (10 << card->csd.r2w_factor);
1495 unsigned int timeout_clks = card->csd.taac_clks * mult;
1496 unsigned int timeout_us;
1497
1498 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1499 if (card->csd.taac_ns < 1000000)
1500 timeout_us = (card->csd.taac_ns * mult) / 1000;
1501 else
1502 timeout_us = (card->csd.taac_ns / 1000) * mult;
1503
1504 /*
1505 * ios.clock is only a target. The real clock rate might be
1506 * less but not that much less, so fudge it by multiplying by 2.
1507 */
1508 timeout_clks <<= 1;
1509 timeout_us += (timeout_clks * 1000) /
1510 (card->host->ios.clock / 1000);
1511
1512 erase_timeout = timeout_us / 1000;
1513
1514 /*
1515 * Theoretically, the calculation could underflow so round up
1516 * to 1ms in that case.
1517 */
1518 if (!erase_timeout)
1519 erase_timeout = 1;
1520 }
1521
1522 /* Multiplier for secure operations */
1523 if (arg & MMC_SECURE_ARGS) {
1524 if (arg == MMC_SECURE_ERASE_ARG)
1525 erase_timeout *= card->ext_csd.sec_erase_mult;
1526 else
1527 erase_timeout *= card->ext_csd.sec_trim_mult;
1528 }
1529
1530 erase_timeout *= qty;
1531
1532 /*
1533 * Ensure at least a 1 second timeout for SPI as per
1534 * 'mmc_set_data_timeout()'
1535 */
1536 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1537 erase_timeout = 1000;
1538
1539 return erase_timeout;
1540}
1541
1542static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1543 unsigned int arg,
1544 unsigned int qty)
1545{
1546 unsigned int erase_timeout;
1547
1548 /* for DISCARD none of the below calculation applies.
1549 * the busy timeout is 250msec per discard command.
1550 */
1551 if (arg == SD_DISCARD_ARG)
1552 return SD_DISCARD_TIMEOUT_MS;
1553
1554 if (card->ssr.erase_timeout) {
1555 /* Erase timeout specified in SD Status Register (SSR) */
1556 erase_timeout = card->ssr.erase_timeout * qty +
1557 card->ssr.erase_offset;
1558 } else {
1559 /*
1560 * Erase timeout not specified in SD Status Register (SSR) so
1561 * use 250ms per write block.
1562 */
1563 erase_timeout = 250 * qty;
1564 }
1565
1566 /* Must not be less than 1 second */
1567 if (erase_timeout < 1000)
1568 erase_timeout = 1000;
1569
1570 return erase_timeout;
1571}
1572
1573static unsigned int mmc_erase_timeout(struct mmc_card *card,
1574 unsigned int arg,
1575 unsigned int qty)
1576{
1577 if (mmc_card_sd(card))
1578 return mmc_sd_erase_timeout(card, arg, qty);
1579 else
1580 return mmc_mmc_erase_timeout(card, arg, qty);
1581}
1582
1583static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1584 unsigned int to, unsigned int arg)
1585{
1586 struct mmc_command cmd = {};
1587 unsigned int qty = 0, busy_timeout = 0;
1588 bool use_r1b_resp;
1589 int err;
1590
1591 mmc_retune_hold(card->host);
1592
1593 /*
1594 * qty is used to calculate the erase timeout which depends on how many
1595 * erase groups (or allocation units in SD terminology) are affected.
1596 * We count erasing part of an erase group as one erase group.
1597 * For SD, the allocation units are always a power of 2. For MMC, the
1598 * erase group size is almost certainly also power of 2, but it does not
1599 * seem to insist on that in the JEDEC standard, so we fall back to
1600 * division in that case. SD may not specify an allocation unit size,
1601 * in which case the timeout is based on the number of write blocks.
1602 *
1603 * Note that the timeout for secure trim 2 will only be correct if the
1604 * number of erase groups specified is the same as the total of all
1605 * preceding secure trim 1 commands. Since the power may have been
1606 * lost since the secure trim 1 commands occurred, it is generally
1607 * impossible to calculate the secure trim 2 timeout correctly.
1608 */
1609 if (card->erase_shift)
1610 qty += ((to >> card->erase_shift) -
1611 (from >> card->erase_shift)) + 1;
1612 else if (mmc_card_sd(card))
1613 qty += to - from + 1;
1614 else
1615 qty += ((to / card->erase_size) -
1616 (from / card->erase_size)) + 1;
1617
1618 if (!mmc_card_blockaddr(card)) {
1619 from <<= 9;
1620 to <<= 9;
1621 }
1622
1623 if (mmc_card_sd(card))
1624 cmd.opcode = SD_ERASE_WR_BLK_START;
1625 else
1626 cmd.opcode = MMC_ERASE_GROUP_START;
1627 cmd.arg = from;
1628 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1629 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1630 if (err) {
1631 pr_err("mmc_erase: group start error %d, "
1632 "status %#x\n", err, cmd.resp[0]);
1633 err = -EIO;
1634 goto out;
1635 }
1636
1637 memset(&cmd, 0, sizeof(struct mmc_command));
1638 if (mmc_card_sd(card))
1639 cmd.opcode = SD_ERASE_WR_BLK_END;
1640 else
1641 cmd.opcode = MMC_ERASE_GROUP_END;
1642 cmd.arg = to;
1643 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1644 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1645 if (err) {
1646 pr_err("mmc_erase: group end error %d, status %#x\n",
1647 err, cmd.resp[0]);
1648 err = -EIO;
1649 goto out;
1650 }
1651
1652 memset(&cmd, 0, sizeof(struct mmc_command));
1653 cmd.opcode = MMC_ERASE;
1654 cmd.arg = arg;
1655 busy_timeout = mmc_erase_timeout(card, arg, qty);
1656 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1657
1658 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659 if (err) {
1660 pr_err("mmc_erase: erase error %d, status %#x\n",
1661 err, cmd.resp[0]);
1662 err = -EIO;
1663 goto out;
1664 }
1665
1666 if (mmc_host_is_spi(card->host))
1667 goto out;
1668
1669 /*
1670 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1671 * shall be avoided.
1672 */
1673 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1674 goto out;
1675
1676 /* Let's poll to find out when the erase operation completes. */
1677 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1678
1679out:
1680 mmc_retune_release(card->host);
1681 return err;
1682}
1683
1684static unsigned int mmc_align_erase_size(struct mmc_card *card,
1685 unsigned int *from,
1686 unsigned int *to,
1687 unsigned int nr)
1688{
1689 unsigned int from_new = *from, nr_new = nr, rem;
1690
1691 /*
1692 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1693 * to align the erase size efficiently.
1694 */
1695 if (is_power_of_2(card->erase_size)) {
1696 unsigned int temp = from_new;
1697
1698 from_new = round_up(temp, card->erase_size);
1699 rem = from_new - temp;
1700
1701 if (nr_new > rem)
1702 nr_new -= rem;
1703 else
1704 return 0;
1705
1706 nr_new = round_down(nr_new, card->erase_size);
1707 } else {
1708 rem = from_new % card->erase_size;
1709 if (rem) {
1710 rem = card->erase_size - rem;
1711 from_new += rem;
1712 if (nr_new > rem)
1713 nr_new -= rem;
1714 else
1715 return 0;
1716 }
1717
1718 rem = nr_new % card->erase_size;
1719 if (rem)
1720 nr_new -= rem;
1721 }
1722
1723 if (nr_new == 0)
1724 return 0;
1725
1726 *to = from_new + nr_new;
1727 *from = from_new;
1728
1729 return nr_new;
1730}
1731
1732/**
1733 * mmc_erase - erase sectors.
1734 * @card: card to erase
1735 * @from: first sector to erase
1736 * @nr: number of sectors to erase
1737 * @arg: erase command argument
1738 *
1739 * Caller must claim host before calling this function.
1740 */
1741int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1742 unsigned int arg)
1743{
1744 unsigned int rem, to = from + nr;
1745 int err;
1746
1747 if (!(card->csd.cmdclass & CCC_ERASE))
1748 return -EOPNOTSUPP;
1749
1750 if (!card->erase_size)
1751 return -EOPNOTSUPP;
1752
1753 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1754 return -EOPNOTSUPP;
1755
1756 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1757 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1758 return -EOPNOTSUPP;
1759
1760 if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1761 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1762 return -EOPNOTSUPP;
1763
1764 if (arg == MMC_SECURE_ERASE_ARG) {
1765 if (from % card->erase_size || nr % card->erase_size)
1766 return -EINVAL;
1767 }
1768
1769 if (arg == MMC_ERASE_ARG)
1770 nr = mmc_align_erase_size(card, &from, &to, nr);
1771
1772 if (nr == 0)
1773 return 0;
1774
1775 if (to <= from)
1776 return -EINVAL;
1777
1778 /* 'from' and 'to' are inclusive */
1779 to -= 1;
1780
1781 /*
1782 * Special case where only one erase-group fits in the timeout budget:
1783 * If the region crosses an erase-group boundary on this particular
1784 * case, we will be trimming more than one erase-group which, does not
1785 * fit in the timeout budget of the controller, so we need to split it
1786 * and call mmc_do_erase() twice if necessary. This special case is
1787 * identified by the card->eg_boundary flag.
1788 */
1789 rem = card->erase_size - (from % card->erase_size);
1790 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1791 err = mmc_do_erase(card, from, from + rem - 1, arg);
1792 from += rem;
1793 if ((err) || (to <= from))
1794 return err;
1795 }
1796
1797 return mmc_do_erase(card, from, to, arg);
1798}
1799EXPORT_SYMBOL(mmc_erase);
1800
1801int mmc_can_erase(struct mmc_card *card)
1802{
1803 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1804 return 1;
1805 return 0;
1806}
1807EXPORT_SYMBOL(mmc_can_erase);
1808
1809int mmc_can_trim(struct mmc_card *card)
1810{
1811 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1812 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1813 return 1;
1814 return 0;
1815}
1816EXPORT_SYMBOL(mmc_can_trim);
1817
1818int mmc_can_discard(struct mmc_card *card)
1819{
1820 /*
1821 * As there's no way to detect the discard support bit at v4.5
1822 * use the s/w feature support filed.
1823 */
1824 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1825 return 1;
1826 return 0;
1827}
1828EXPORT_SYMBOL(mmc_can_discard);
1829
1830int mmc_can_sanitize(struct mmc_card *card)
1831{
1832 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1833 return 0;
1834 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1835 return 1;
1836 return 0;
1837}
1838
1839int mmc_can_secure_erase_trim(struct mmc_card *card)
1840{
1841 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1842 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1843 return 1;
1844 return 0;
1845}
1846EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1847
1848int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1849 unsigned int nr)
1850{
1851 if (!card->erase_size)
1852 return 0;
1853 if (from % card->erase_size || nr % card->erase_size)
1854 return 0;
1855 return 1;
1856}
1857EXPORT_SYMBOL(mmc_erase_group_aligned);
1858
1859static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1860 unsigned int arg)
1861{
1862 struct mmc_host *host = card->host;
1863 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1864 unsigned int last_timeout = 0;
1865 unsigned int max_busy_timeout = host->max_busy_timeout ?
1866 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1867
1868 if (card->erase_shift) {
1869 max_qty = UINT_MAX >> card->erase_shift;
1870 min_qty = card->pref_erase >> card->erase_shift;
1871 } else if (mmc_card_sd(card)) {
1872 max_qty = UINT_MAX;
1873 min_qty = card->pref_erase;
1874 } else {
1875 max_qty = UINT_MAX / card->erase_size;
1876 min_qty = card->pref_erase / card->erase_size;
1877 }
1878
1879 /*
1880 * We should not only use 'host->max_busy_timeout' as the limitation
1881 * when deciding the max discard sectors. We should set a balance value
1882 * to improve the erase speed, and it can not get too long timeout at
1883 * the same time.
1884 *
1885 * Here we set 'card->pref_erase' as the minimal discard sectors no
1886 * matter what size of 'host->max_busy_timeout', but if the
1887 * 'host->max_busy_timeout' is large enough for more discard sectors,
1888 * then we can continue to increase the max discard sectors until we
1889 * get a balance value. In cases when the 'host->max_busy_timeout'
1890 * isn't specified, use the default max erase timeout.
1891 */
1892 do {
1893 y = 0;
1894 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1895 timeout = mmc_erase_timeout(card, arg, qty + x);
1896
1897 if (qty + x > min_qty && timeout > max_busy_timeout)
1898 break;
1899
1900 if (timeout < last_timeout)
1901 break;
1902 last_timeout = timeout;
1903 y = x;
1904 }
1905 qty += y;
1906 } while (y);
1907
1908 if (!qty)
1909 return 0;
1910
1911 /*
1912 * When specifying a sector range to trim, chances are we might cross
1913 * an erase-group boundary even if the amount of sectors is less than
1914 * one erase-group.
1915 * If we can only fit one erase-group in the controller timeout budget,
1916 * we have to care that erase-group boundaries are not crossed by a
1917 * single trim operation. We flag that special case with "eg_boundary".
1918 * In all other cases we can just decrement qty and pretend that we
1919 * always touch (qty + 1) erase-groups as a simple optimization.
1920 */
1921 if (qty == 1)
1922 card->eg_boundary = 1;
1923 else
1924 qty--;
1925
1926 /* Convert qty to sectors */
1927 if (card->erase_shift)
1928 max_discard = qty << card->erase_shift;
1929 else if (mmc_card_sd(card))
1930 max_discard = qty + 1;
1931 else
1932 max_discard = qty * card->erase_size;
1933
1934 return max_discard;
1935}
1936
1937unsigned int mmc_calc_max_discard(struct mmc_card *card)
1938{
1939 struct mmc_host *host = card->host;
1940 unsigned int max_discard, max_trim;
1941
1942 /*
1943 * Without erase_group_def set, MMC erase timeout depends on clock
1944 * frequence which can change. In that case, the best choice is
1945 * just the preferred erase size.
1946 */
1947 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1948 return card->pref_erase;
1949
1950 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1951 if (mmc_can_trim(card)) {
1952 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1953 if (max_trim < max_discard || max_discard == 0)
1954 max_discard = max_trim;
1955 } else if (max_discard < card->erase_size) {
1956 max_discard = 0;
1957 }
1958 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1959 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1960 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1961 return max_discard;
1962}
1963EXPORT_SYMBOL(mmc_calc_max_discard);
1964
1965bool mmc_card_is_blockaddr(struct mmc_card *card)
1966{
1967 return card ? mmc_card_blockaddr(card) : false;
1968}
1969EXPORT_SYMBOL(mmc_card_is_blockaddr);
1970
1971int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1972{
1973 struct mmc_command cmd = {};
1974
1975 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1976 mmc_card_hs400(card) || mmc_card_hs400es(card))
1977 return 0;
1978
1979 cmd.opcode = MMC_SET_BLOCKLEN;
1980 cmd.arg = blocklen;
1981 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1982 return mmc_wait_for_cmd(card->host, &cmd, 5);
1983}
1984EXPORT_SYMBOL(mmc_set_blocklen);
1985
1986static void mmc_hw_reset_for_init(struct mmc_host *host)
1987{
1988 mmc_pwrseq_reset(host);
1989
1990 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1991 return;
1992 host->ops->hw_reset(host);
1993}
1994
1995/**
1996 * mmc_hw_reset - reset the card in hardware
1997 * @host: MMC host to which the card is attached
1998 *
1999 * Hard reset the card. This function is only for upper layers, like the
2000 * block layer or card drivers. You cannot use it in host drivers (struct
2001 * mmc_card might be gone then).
2002 *
2003 * Return: 0 on success, -errno on failure
2004 */
2005int mmc_hw_reset(struct mmc_host *host)
2006{
2007 int ret;
2008
2009 ret = host->bus_ops->hw_reset(host);
2010 if (ret < 0)
2011 pr_warn("%s: tried to HW reset card, got error %d\n",
2012 mmc_hostname(host), ret);
2013
2014 return ret;
2015}
2016EXPORT_SYMBOL(mmc_hw_reset);
2017
2018int mmc_sw_reset(struct mmc_host *host)
2019{
2020 int ret;
2021
2022 if (!host->bus_ops->sw_reset)
2023 return -EOPNOTSUPP;
2024
2025 ret = host->bus_ops->sw_reset(host);
2026 if (ret)
2027 pr_warn("%s: tried to SW reset card, got error %d\n",
2028 mmc_hostname(host), ret);
2029
2030 return ret;
2031}
2032EXPORT_SYMBOL(mmc_sw_reset);
2033
2034static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2035{
2036 host->f_init = freq;
2037
2038 pr_debug("%s: %s: trying to init card at %u Hz\n",
2039 mmc_hostname(host), __func__, host->f_init);
2040
2041 mmc_power_up(host, host->ocr_avail);
2042
2043 /*
2044 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2045 * do a hardware reset if possible.
2046 */
2047 mmc_hw_reset_for_init(host);
2048
2049 /*
2050 * sdio_reset sends CMD52 to reset card. Since we do not know
2051 * if the card is being re-initialized, just send it. CMD52
2052 * should be ignored by SD/eMMC cards.
2053 * Skip it if we already know that we do not support SDIO commands
2054 */
2055 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2056 sdio_reset(host);
2057
2058 mmc_go_idle(host);
2059
2060 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2061 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2062 goto out;
2063 if (mmc_card_sd_express(host))
2064 return 0;
2065 }
2066
2067 /* Order's important: probe SDIO, then SD, then MMC */
2068 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2069 if (!mmc_attach_sdio(host))
2070 return 0;
2071
2072 if (!(host->caps2 & MMC_CAP2_NO_SD))
2073 if (!mmc_attach_sd(host))
2074 return 0;
2075
2076 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2077 if (!mmc_attach_mmc(host))
2078 return 0;
2079
2080out:
2081 mmc_power_off(host);
2082 return -EIO;
2083}
2084
2085int _mmc_detect_card_removed(struct mmc_host *host)
2086{
2087 int ret;
2088
2089 if (!host->card || mmc_card_removed(host->card))
2090 return 1;
2091
2092 ret = host->bus_ops->alive(host);
2093
2094 /*
2095 * Card detect status and alive check may be out of sync if card is
2096 * removed slowly, when card detect switch changes while card/slot
2097 * pads are still contacted in hardware (refer to "SD Card Mechanical
2098 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2099 * detect work 200ms later for this case.
2100 */
2101 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2102 mmc_detect_change(host, msecs_to_jiffies(200));
2103 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2104 }
2105
2106 if (ret) {
2107 mmc_card_set_removed(host->card);
2108 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2109 }
2110
2111 return ret;
2112}
2113
2114int mmc_detect_card_removed(struct mmc_host *host)
2115{
2116 struct mmc_card *card = host->card;
2117 int ret;
2118
2119 WARN_ON(!host->claimed);
2120
2121 if (!card)
2122 return 1;
2123
2124 if (!mmc_card_is_removable(host))
2125 return 0;
2126
2127 ret = mmc_card_removed(card);
2128 /*
2129 * The card will be considered unchanged unless we have been asked to
2130 * detect a change or host requires polling to provide card detection.
2131 */
2132 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2133 return ret;
2134
2135 host->detect_change = 0;
2136 if (!ret) {
2137 ret = _mmc_detect_card_removed(host);
2138 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2139 /*
2140 * Schedule a detect work as soon as possible to let a
2141 * rescan handle the card removal.
2142 */
2143 cancel_delayed_work(&host->detect);
2144 _mmc_detect_change(host, 0, false);
2145 }
2146 }
2147
2148 return ret;
2149}
2150EXPORT_SYMBOL(mmc_detect_card_removed);
2151
2152void mmc_rescan(struct work_struct *work)
2153{
2154 struct mmc_host *host =
2155 container_of(work, struct mmc_host, detect.work);
2156 int i;
2157
2158 if (host->rescan_disable)
2159 return;
2160
2161 /* If there is a non-removable card registered, only scan once */
2162 if (!mmc_card_is_removable(host) && host->rescan_entered)
2163 return;
2164 host->rescan_entered = 1;
2165
2166 if (host->trigger_card_event && host->ops->card_event) {
2167 mmc_claim_host(host);
2168 host->ops->card_event(host);
2169 mmc_release_host(host);
2170 host->trigger_card_event = false;
2171 }
2172
2173 /* Verify a registered card to be functional, else remove it. */
2174 if (host->bus_ops)
2175 host->bus_ops->detect(host);
2176
2177 host->detect_change = 0;
2178
2179 /* if there still is a card present, stop here */
2180 if (host->bus_ops != NULL)
2181 goto out;
2182
2183 mmc_claim_host(host);
2184 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2185 host->ops->get_cd(host) == 0) {
2186 mmc_power_off(host);
2187 mmc_release_host(host);
2188 goto out;
2189 }
2190
2191 /* If an SD express card is present, then leave it as is. */
2192 if (mmc_card_sd_express(host)) {
2193 mmc_release_host(host);
2194 goto out;
2195 }
2196
2197 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2198 unsigned int freq = freqs[i];
2199 if (freq > host->f_max) {
2200 if (i + 1 < ARRAY_SIZE(freqs))
2201 continue;
2202 freq = host->f_max;
2203 }
2204 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2205 break;
2206 if (freqs[i] <= host->f_min)
2207 break;
2208 }
2209 mmc_release_host(host);
2210
2211 out:
2212 if (host->caps & MMC_CAP_NEEDS_POLL)
2213 mmc_schedule_delayed_work(&host->detect, HZ);
2214}
2215
2216void mmc_start_host(struct mmc_host *host)
2217{
2218 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2219 host->rescan_disable = 0;
2220
2221 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2222 mmc_claim_host(host);
2223 mmc_power_up(host, host->ocr_avail);
2224 mmc_release_host(host);
2225 }
2226
2227 mmc_gpiod_request_cd_irq(host);
2228 _mmc_detect_change(host, 0, false);
2229}
2230
2231void mmc_stop_host(struct mmc_host *host)
2232{
2233 if (host->slot.cd_irq >= 0) {
2234 mmc_gpio_set_cd_wake(host, false);
2235 disable_irq(host->slot.cd_irq);
2236 }
2237
2238 host->rescan_disable = 1;
2239 cancel_delayed_work_sync(&host->detect);
2240
2241 /* clear pm flags now and let card drivers set them as needed */
2242 host->pm_flags = 0;
2243
2244 if (host->bus_ops) {
2245 /* Calling bus_ops->remove() with a claimed host can deadlock */
2246 host->bus_ops->remove(host);
2247 mmc_claim_host(host);
2248 mmc_detach_bus(host);
2249 mmc_power_off(host);
2250 mmc_release_host(host);
2251 return;
2252 }
2253
2254 mmc_claim_host(host);
2255 mmc_power_off(host);
2256 mmc_release_host(host);
2257}
2258
2259static int __init mmc_init(void)
2260{
2261 int ret;
2262
2263 ret = mmc_register_bus();
2264 if (ret)
2265 return ret;
2266
2267 ret = mmc_register_host_class();
2268 if (ret)
2269 goto unregister_bus;
2270
2271 ret = sdio_register_bus();
2272 if (ret)
2273 goto unregister_host_class;
2274
2275 return 0;
2276
2277unregister_host_class:
2278 mmc_unregister_host_class();
2279unregister_bus:
2280 mmc_unregister_bus();
2281 return ret;
2282}
2283
2284static void __exit mmc_exit(void)
2285{
2286 sdio_unregister_bus();
2287 mmc_unregister_host_class();
2288 mmc_unregister_bus();
2289}
2290
2291subsys_initcall(mmc_init);
2292module_exit(mmc_exit);
2293
2294MODULE_LICENSE("GPL");