Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sched/mm.h>
30#include <linux/sysfs.h>
31#include <linux/dma-map-ops.h> /* for dma_default_coherent */
32
33#include "base.h"
34#include "power/power.h"
35
36#ifdef CONFIG_SYSFS_DEPRECATED
37#ifdef CONFIG_SYSFS_DEPRECATED_V2
38long sysfs_deprecated = 1;
39#else
40long sysfs_deprecated = 0;
41#endif
42static int __init sysfs_deprecated_setup(char *arg)
43{
44 return kstrtol(arg, 10, &sysfs_deprecated);
45}
46early_param("sysfs.deprecated", sysfs_deprecated_setup);
47#endif
48
49/* Device links support. */
50static LIST_HEAD(deferred_sync);
51static unsigned int defer_sync_state_count = 1;
52static DEFINE_MUTEX(fwnode_link_lock);
53static bool fw_devlink_is_permissive(void);
54static bool fw_devlink_drv_reg_done;
55
56/**
57 * fwnode_link_add - Create a link between two fwnode_handles.
58 * @con: Consumer end of the link.
59 * @sup: Supplier end of the link.
60 *
61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
62 * represents the detail that the firmware lists @sup fwnode as supplying a
63 * resource to @con.
64 *
65 * The driver core will use the fwnode link to create a device link between the
66 * two device objects corresponding to @con and @sup when they are created. The
67 * driver core will automatically delete the fwnode link between @con and @sup
68 * after doing that.
69 *
70 * Attempts to create duplicate links between the same pair of fwnode handles
71 * are ignored and there is no reference counting.
72 */
73int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
74{
75 struct fwnode_link *link;
76 int ret = 0;
77
78 mutex_lock(&fwnode_link_lock);
79
80 list_for_each_entry(link, &sup->consumers, s_hook)
81 if (link->consumer == con)
82 goto out;
83
84 link = kzalloc(sizeof(*link), GFP_KERNEL);
85 if (!link) {
86 ret = -ENOMEM;
87 goto out;
88 }
89
90 link->supplier = sup;
91 INIT_LIST_HEAD(&link->s_hook);
92 link->consumer = con;
93 INIT_LIST_HEAD(&link->c_hook);
94
95 list_add(&link->s_hook, &sup->consumers);
96 list_add(&link->c_hook, &con->suppliers);
97out:
98 mutex_unlock(&fwnode_link_lock);
99
100 return ret;
101}
102
103/**
104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
105 * @fwnode: fwnode whose supplier links need to be deleted
106 *
107 * Deletes all supplier links connecting directly to @fwnode.
108 */
109static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
110{
111 struct fwnode_link *link, *tmp;
112
113 mutex_lock(&fwnode_link_lock);
114 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
115 list_del(&link->s_hook);
116 list_del(&link->c_hook);
117 kfree(link);
118 }
119 mutex_unlock(&fwnode_link_lock);
120}
121
122/**
123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
124 * @fwnode: fwnode whose consumer links need to be deleted
125 *
126 * Deletes all consumer links connecting directly to @fwnode.
127 */
128static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
129{
130 struct fwnode_link *link, *tmp;
131
132 mutex_lock(&fwnode_link_lock);
133 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
134 list_del(&link->s_hook);
135 list_del(&link->c_hook);
136 kfree(link);
137 }
138 mutex_unlock(&fwnode_link_lock);
139}
140
141/**
142 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
143 * @fwnode: fwnode whose links needs to be deleted
144 *
145 * Deletes all links connecting directly to a fwnode.
146 */
147void fwnode_links_purge(struct fwnode_handle *fwnode)
148{
149 fwnode_links_purge_suppliers(fwnode);
150 fwnode_links_purge_consumers(fwnode);
151}
152
153void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
154{
155 struct fwnode_handle *child;
156
157 /* Don't purge consumer links of an added child */
158 if (fwnode->dev)
159 return;
160
161 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
162 fwnode_links_purge_consumers(fwnode);
163
164 fwnode_for_each_available_child_node(fwnode, child)
165 fw_devlink_purge_absent_suppliers(child);
166}
167EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
168
169#ifdef CONFIG_SRCU
170static DEFINE_MUTEX(device_links_lock);
171DEFINE_STATIC_SRCU(device_links_srcu);
172
173static inline void device_links_write_lock(void)
174{
175 mutex_lock(&device_links_lock);
176}
177
178static inline void device_links_write_unlock(void)
179{
180 mutex_unlock(&device_links_lock);
181}
182
183int device_links_read_lock(void) __acquires(&device_links_srcu)
184{
185 return srcu_read_lock(&device_links_srcu);
186}
187
188void device_links_read_unlock(int idx) __releases(&device_links_srcu)
189{
190 srcu_read_unlock(&device_links_srcu, idx);
191}
192
193int device_links_read_lock_held(void)
194{
195 return srcu_read_lock_held(&device_links_srcu);
196}
197
198static void device_link_synchronize_removal(void)
199{
200 synchronize_srcu(&device_links_srcu);
201}
202
203static void device_link_remove_from_lists(struct device_link *link)
204{
205 list_del_rcu(&link->s_node);
206 list_del_rcu(&link->c_node);
207}
208#else /* !CONFIG_SRCU */
209static DECLARE_RWSEM(device_links_lock);
210
211static inline void device_links_write_lock(void)
212{
213 down_write(&device_links_lock);
214}
215
216static inline void device_links_write_unlock(void)
217{
218 up_write(&device_links_lock);
219}
220
221int device_links_read_lock(void)
222{
223 down_read(&device_links_lock);
224 return 0;
225}
226
227void device_links_read_unlock(int not_used)
228{
229 up_read(&device_links_lock);
230}
231
232#ifdef CONFIG_DEBUG_LOCK_ALLOC
233int device_links_read_lock_held(void)
234{
235 return lockdep_is_held(&device_links_lock);
236}
237#endif
238
239static inline void device_link_synchronize_removal(void)
240{
241}
242
243static void device_link_remove_from_lists(struct device_link *link)
244{
245 list_del(&link->s_node);
246 list_del(&link->c_node);
247}
248#endif /* !CONFIG_SRCU */
249
250static bool device_is_ancestor(struct device *dev, struct device *target)
251{
252 while (target->parent) {
253 target = target->parent;
254 if (dev == target)
255 return true;
256 }
257 return false;
258}
259
260/**
261 * device_is_dependent - Check if one device depends on another one
262 * @dev: Device to check dependencies for.
263 * @target: Device to check against.
264 *
265 * Check if @target depends on @dev or any device dependent on it (its child or
266 * its consumer etc). Return 1 if that is the case or 0 otherwise.
267 */
268int device_is_dependent(struct device *dev, void *target)
269{
270 struct device_link *link;
271 int ret;
272
273 /*
274 * The "ancestors" check is needed to catch the case when the target
275 * device has not been completely initialized yet and it is still
276 * missing from the list of children of its parent device.
277 */
278 if (dev == target || device_is_ancestor(dev, target))
279 return 1;
280
281 ret = device_for_each_child(dev, target, device_is_dependent);
282 if (ret)
283 return ret;
284
285 list_for_each_entry(link, &dev->links.consumers, s_node) {
286 if ((link->flags & ~DL_FLAG_INFERRED) ==
287 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
288 continue;
289
290 if (link->consumer == target)
291 return 1;
292
293 ret = device_is_dependent(link->consumer, target);
294 if (ret)
295 break;
296 }
297 return ret;
298}
299
300static void device_link_init_status(struct device_link *link,
301 struct device *consumer,
302 struct device *supplier)
303{
304 switch (supplier->links.status) {
305 case DL_DEV_PROBING:
306 switch (consumer->links.status) {
307 case DL_DEV_PROBING:
308 /*
309 * A consumer driver can create a link to a supplier
310 * that has not completed its probing yet as long as it
311 * knows that the supplier is already functional (for
312 * example, it has just acquired some resources from the
313 * supplier).
314 */
315 link->status = DL_STATE_CONSUMER_PROBE;
316 break;
317 default:
318 link->status = DL_STATE_DORMANT;
319 break;
320 }
321 break;
322 case DL_DEV_DRIVER_BOUND:
323 switch (consumer->links.status) {
324 case DL_DEV_PROBING:
325 link->status = DL_STATE_CONSUMER_PROBE;
326 break;
327 case DL_DEV_DRIVER_BOUND:
328 link->status = DL_STATE_ACTIVE;
329 break;
330 default:
331 link->status = DL_STATE_AVAILABLE;
332 break;
333 }
334 break;
335 case DL_DEV_UNBINDING:
336 link->status = DL_STATE_SUPPLIER_UNBIND;
337 break;
338 default:
339 link->status = DL_STATE_DORMANT;
340 break;
341 }
342}
343
344static int device_reorder_to_tail(struct device *dev, void *not_used)
345{
346 struct device_link *link;
347
348 /*
349 * Devices that have not been registered yet will be put to the ends
350 * of the lists during the registration, so skip them here.
351 */
352 if (device_is_registered(dev))
353 devices_kset_move_last(dev);
354
355 if (device_pm_initialized(dev))
356 device_pm_move_last(dev);
357
358 device_for_each_child(dev, NULL, device_reorder_to_tail);
359 list_for_each_entry(link, &dev->links.consumers, s_node) {
360 if ((link->flags & ~DL_FLAG_INFERRED) ==
361 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
362 continue;
363 device_reorder_to_tail(link->consumer, NULL);
364 }
365
366 return 0;
367}
368
369/**
370 * device_pm_move_to_tail - Move set of devices to the end of device lists
371 * @dev: Device to move
372 *
373 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
374 *
375 * It moves the @dev along with all of its children and all of its consumers
376 * to the ends of the device_kset and dpm_list, recursively.
377 */
378void device_pm_move_to_tail(struct device *dev)
379{
380 int idx;
381
382 idx = device_links_read_lock();
383 device_pm_lock();
384 device_reorder_to_tail(dev, NULL);
385 device_pm_unlock();
386 device_links_read_unlock(idx);
387}
388
389#define to_devlink(dev) container_of((dev), struct device_link, link_dev)
390
391static ssize_t status_show(struct device *dev,
392 struct device_attribute *attr, char *buf)
393{
394 const char *output;
395
396 switch (to_devlink(dev)->status) {
397 case DL_STATE_NONE:
398 output = "not tracked";
399 break;
400 case DL_STATE_DORMANT:
401 output = "dormant";
402 break;
403 case DL_STATE_AVAILABLE:
404 output = "available";
405 break;
406 case DL_STATE_CONSUMER_PROBE:
407 output = "consumer probing";
408 break;
409 case DL_STATE_ACTIVE:
410 output = "active";
411 break;
412 case DL_STATE_SUPPLIER_UNBIND:
413 output = "supplier unbinding";
414 break;
415 default:
416 output = "unknown";
417 break;
418 }
419
420 return sysfs_emit(buf, "%s\n", output);
421}
422static DEVICE_ATTR_RO(status);
423
424static ssize_t auto_remove_on_show(struct device *dev,
425 struct device_attribute *attr, char *buf)
426{
427 struct device_link *link = to_devlink(dev);
428 const char *output;
429
430 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
431 output = "supplier unbind";
432 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
433 output = "consumer unbind";
434 else
435 output = "never";
436
437 return sysfs_emit(buf, "%s\n", output);
438}
439static DEVICE_ATTR_RO(auto_remove_on);
440
441static ssize_t runtime_pm_show(struct device *dev,
442 struct device_attribute *attr, char *buf)
443{
444 struct device_link *link = to_devlink(dev);
445
446 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
447}
448static DEVICE_ATTR_RO(runtime_pm);
449
450static ssize_t sync_state_only_show(struct device *dev,
451 struct device_attribute *attr, char *buf)
452{
453 struct device_link *link = to_devlink(dev);
454
455 return sysfs_emit(buf, "%d\n",
456 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
457}
458static DEVICE_ATTR_RO(sync_state_only);
459
460static struct attribute *devlink_attrs[] = {
461 &dev_attr_status.attr,
462 &dev_attr_auto_remove_on.attr,
463 &dev_attr_runtime_pm.attr,
464 &dev_attr_sync_state_only.attr,
465 NULL,
466};
467ATTRIBUTE_GROUPS(devlink);
468
469static void device_link_release_fn(struct work_struct *work)
470{
471 struct device_link *link = container_of(work, struct device_link, rm_work);
472
473 /* Ensure that all references to the link object have been dropped. */
474 device_link_synchronize_removal();
475
476 while (refcount_dec_not_one(&link->rpm_active))
477 pm_runtime_put(link->supplier);
478
479 put_device(link->consumer);
480 put_device(link->supplier);
481 kfree(link);
482}
483
484static void devlink_dev_release(struct device *dev)
485{
486 struct device_link *link = to_devlink(dev);
487
488 INIT_WORK(&link->rm_work, device_link_release_fn);
489 /*
490 * It may take a while to complete this work because of the SRCU
491 * synchronization in device_link_release_fn() and if the consumer or
492 * supplier devices get deleted when it runs, so put it into the "long"
493 * workqueue.
494 */
495 queue_work(system_long_wq, &link->rm_work);
496}
497
498static struct class devlink_class = {
499 .name = "devlink",
500 .owner = THIS_MODULE,
501 .dev_groups = devlink_groups,
502 .dev_release = devlink_dev_release,
503};
504
505static int devlink_add_symlinks(struct device *dev,
506 struct class_interface *class_intf)
507{
508 int ret;
509 size_t len;
510 struct device_link *link = to_devlink(dev);
511 struct device *sup = link->supplier;
512 struct device *con = link->consumer;
513 char *buf;
514
515 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
516 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
517 len += strlen(":");
518 len += strlen("supplier:") + 1;
519 buf = kzalloc(len, GFP_KERNEL);
520 if (!buf)
521 return -ENOMEM;
522
523 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
524 if (ret)
525 goto out;
526
527 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
528 if (ret)
529 goto err_con;
530
531 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
532 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
533 if (ret)
534 goto err_con_dev;
535
536 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
537 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
538 if (ret)
539 goto err_sup_dev;
540
541 goto out;
542
543err_sup_dev:
544 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
545 sysfs_remove_link(&sup->kobj, buf);
546err_con_dev:
547 sysfs_remove_link(&link->link_dev.kobj, "consumer");
548err_con:
549 sysfs_remove_link(&link->link_dev.kobj, "supplier");
550out:
551 kfree(buf);
552 return ret;
553}
554
555static void devlink_remove_symlinks(struct device *dev,
556 struct class_interface *class_intf)
557{
558 struct device_link *link = to_devlink(dev);
559 size_t len;
560 struct device *sup = link->supplier;
561 struct device *con = link->consumer;
562 char *buf;
563
564 sysfs_remove_link(&link->link_dev.kobj, "consumer");
565 sysfs_remove_link(&link->link_dev.kobj, "supplier");
566
567 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
568 strlen(dev_bus_name(con)) + strlen(dev_name(con)));
569 len += strlen(":");
570 len += strlen("supplier:") + 1;
571 buf = kzalloc(len, GFP_KERNEL);
572 if (!buf) {
573 WARN(1, "Unable to properly free device link symlinks!\n");
574 return;
575 }
576
577 if (device_is_registered(con)) {
578 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
579 sysfs_remove_link(&con->kobj, buf);
580 }
581 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
582 sysfs_remove_link(&sup->kobj, buf);
583 kfree(buf);
584}
585
586static struct class_interface devlink_class_intf = {
587 .class = &devlink_class,
588 .add_dev = devlink_add_symlinks,
589 .remove_dev = devlink_remove_symlinks,
590};
591
592static int __init devlink_class_init(void)
593{
594 int ret;
595
596 ret = class_register(&devlink_class);
597 if (ret)
598 return ret;
599
600 ret = class_interface_register(&devlink_class_intf);
601 if (ret)
602 class_unregister(&devlink_class);
603
604 return ret;
605}
606postcore_initcall(devlink_class_init);
607
608#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
609 DL_FLAG_AUTOREMOVE_SUPPLIER | \
610 DL_FLAG_AUTOPROBE_CONSUMER | \
611 DL_FLAG_SYNC_STATE_ONLY | \
612 DL_FLAG_INFERRED)
613
614#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
615 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
616
617/**
618 * device_link_add - Create a link between two devices.
619 * @consumer: Consumer end of the link.
620 * @supplier: Supplier end of the link.
621 * @flags: Link flags.
622 *
623 * The caller is responsible for the proper synchronization of the link creation
624 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
625 * runtime PM framework to take the link into account. Second, if the
626 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
627 * be forced into the active meta state and reference-counted upon the creation
628 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
629 * ignored.
630 *
631 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
632 * expected to release the link returned by it directly with the help of either
633 * device_link_del() or device_link_remove().
634 *
635 * If that flag is not set, however, the caller of this function is handing the
636 * management of the link over to the driver core entirely and its return value
637 * can only be used to check whether or not the link is present. In that case,
638 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
639 * flags can be used to indicate to the driver core when the link can be safely
640 * deleted. Namely, setting one of them in @flags indicates to the driver core
641 * that the link is not going to be used (by the given caller of this function)
642 * after unbinding the consumer or supplier driver, respectively, from its
643 * device, so the link can be deleted at that point. If none of them is set,
644 * the link will be maintained until one of the devices pointed to by it (either
645 * the consumer or the supplier) is unregistered.
646 *
647 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
648 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
649 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
650 * be used to request the driver core to automatically probe for a consumer
651 * driver after successfully binding a driver to the supplier device.
652 *
653 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
654 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
655 * the same time is invalid and will cause NULL to be returned upfront.
656 * However, if a device link between the given @consumer and @supplier pair
657 * exists already when this function is called for them, the existing link will
658 * be returned regardless of its current type and status (the link's flags may
659 * be modified then). The caller of this function is then expected to treat
660 * the link as though it has just been created, so (in particular) if
661 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
662 * explicitly when not needed any more (as stated above).
663 *
664 * A side effect of the link creation is re-ordering of dpm_list and the
665 * devices_kset list by moving the consumer device and all devices depending
666 * on it to the ends of these lists (that does not happen to devices that have
667 * not been registered when this function is called).
668 *
669 * The supplier device is required to be registered when this function is called
670 * and NULL will be returned if that is not the case. The consumer device need
671 * not be registered, however.
672 */
673struct device_link *device_link_add(struct device *consumer,
674 struct device *supplier, u32 flags)
675{
676 struct device_link *link;
677
678 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
679 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
680 (flags & DL_FLAG_SYNC_STATE_ONLY &&
681 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
682 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
683 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
684 DL_FLAG_AUTOREMOVE_SUPPLIER)))
685 return NULL;
686
687 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
688 if (pm_runtime_get_sync(supplier) < 0) {
689 pm_runtime_put_noidle(supplier);
690 return NULL;
691 }
692 }
693
694 if (!(flags & DL_FLAG_STATELESS))
695 flags |= DL_FLAG_MANAGED;
696
697 device_links_write_lock();
698 device_pm_lock();
699
700 /*
701 * If the supplier has not been fully registered yet or there is a
702 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
703 * the supplier already in the graph, return NULL. If the link is a
704 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
705 * because it only affects sync_state() callbacks.
706 */
707 if (!device_pm_initialized(supplier)
708 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
709 device_is_dependent(consumer, supplier))) {
710 link = NULL;
711 goto out;
712 }
713
714 /*
715 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
716 * So, only create it if the consumer hasn't probed yet.
717 */
718 if (flags & DL_FLAG_SYNC_STATE_ONLY &&
719 consumer->links.status != DL_DEV_NO_DRIVER &&
720 consumer->links.status != DL_DEV_PROBING) {
721 link = NULL;
722 goto out;
723 }
724
725 /*
726 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
727 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
728 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
729 */
730 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
731 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
732
733 list_for_each_entry(link, &supplier->links.consumers, s_node) {
734 if (link->consumer != consumer)
735 continue;
736
737 if (link->flags & DL_FLAG_INFERRED &&
738 !(flags & DL_FLAG_INFERRED))
739 link->flags &= ~DL_FLAG_INFERRED;
740
741 if (flags & DL_FLAG_PM_RUNTIME) {
742 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
743 pm_runtime_new_link(consumer);
744 link->flags |= DL_FLAG_PM_RUNTIME;
745 }
746 if (flags & DL_FLAG_RPM_ACTIVE)
747 refcount_inc(&link->rpm_active);
748 }
749
750 if (flags & DL_FLAG_STATELESS) {
751 kref_get(&link->kref);
752 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
753 !(link->flags & DL_FLAG_STATELESS)) {
754 link->flags |= DL_FLAG_STATELESS;
755 goto reorder;
756 } else {
757 link->flags |= DL_FLAG_STATELESS;
758 goto out;
759 }
760 }
761
762 /*
763 * If the life time of the link following from the new flags is
764 * longer than indicated by the flags of the existing link,
765 * update the existing link to stay around longer.
766 */
767 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
768 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
769 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
770 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
771 }
772 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
773 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
774 DL_FLAG_AUTOREMOVE_SUPPLIER);
775 }
776 if (!(link->flags & DL_FLAG_MANAGED)) {
777 kref_get(&link->kref);
778 link->flags |= DL_FLAG_MANAGED;
779 device_link_init_status(link, consumer, supplier);
780 }
781 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
782 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
783 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
784 goto reorder;
785 }
786
787 goto out;
788 }
789
790 link = kzalloc(sizeof(*link), GFP_KERNEL);
791 if (!link)
792 goto out;
793
794 refcount_set(&link->rpm_active, 1);
795
796 get_device(supplier);
797 link->supplier = supplier;
798 INIT_LIST_HEAD(&link->s_node);
799 get_device(consumer);
800 link->consumer = consumer;
801 INIT_LIST_HEAD(&link->c_node);
802 link->flags = flags;
803 kref_init(&link->kref);
804
805 link->link_dev.class = &devlink_class;
806 device_set_pm_not_required(&link->link_dev);
807 dev_set_name(&link->link_dev, "%s:%s--%s:%s",
808 dev_bus_name(supplier), dev_name(supplier),
809 dev_bus_name(consumer), dev_name(consumer));
810 if (device_register(&link->link_dev)) {
811 put_device(consumer);
812 put_device(supplier);
813 kfree(link);
814 link = NULL;
815 goto out;
816 }
817
818 if (flags & DL_FLAG_PM_RUNTIME) {
819 if (flags & DL_FLAG_RPM_ACTIVE)
820 refcount_inc(&link->rpm_active);
821
822 pm_runtime_new_link(consumer);
823 }
824
825 /* Determine the initial link state. */
826 if (flags & DL_FLAG_STATELESS)
827 link->status = DL_STATE_NONE;
828 else
829 device_link_init_status(link, consumer, supplier);
830
831 /*
832 * Some callers expect the link creation during consumer driver probe to
833 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
834 */
835 if (link->status == DL_STATE_CONSUMER_PROBE &&
836 flags & DL_FLAG_PM_RUNTIME)
837 pm_runtime_resume(supplier);
838
839 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
840 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
841
842 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
843 dev_dbg(consumer,
844 "Linked as a sync state only consumer to %s\n",
845 dev_name(supplier));
846 goto out;
847 }
848
849reorder:
850 /*
851 * Move the consumer and all of the devices depending on it to the end
852 * of dpm_list and the devices_kset list.
853 *
854 * It is necessary to hold dpm_list locked throughout all that or else
855 * we may end up suspending with a wrong ordering of it.
856 */
857 device_reorder_to_tail(consumer, NULL);
858
859 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
860
861out:
862 device_pm_unlock();
863 device_links_write_unlock();
864
865 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
866 pm_runtime_put(supplier);
867
868 return link;
869}
870EXPORT_SYMBOL_GPL(device_link_add);
871
872static void __device_link_del(struct kref *kref)
873{
874 struct device_link *link = container_of(kref, struct device_link, kref);
875
876 dev_dbg(link->consumer, "Dropping the link to %s\n",
877 dev_name(link->supplier));
878
879 pm_runtime_drop_link(link);
880
881 device_link_remove_from_lists(link);
882 device_unregister(&link->link_dev);
883}
884
885static void device_link_put_kref(struct device_link *link)
886{
887 if (link->flags & DL_FLAG_STATELESS)
888 kref_put(&link->kref, __device_link_del);
889 else
890 WARN(1, "Unable to drop a managed device link reference\n");
891}
892
893/**
894 * device_link_del - Delete a stateless link between two devices.
895 * @link: Device link to delete.
896 *
897 * The caller must ensure proper synchronization of this function with runtime
898 * PM. If the link was added multiple times, it needs to be deleted as often.
899 * Care is required for hotplugged devices: Their links are purged on removal
900 * and calling device_link_del() is then no longer allowed.
901 */
902void device_link_del(struct device_link *link)
903{
904 device_links_write_lock();
905 device_link_put_kref(link);
906 device_links_write_unlock();
907}
908EXPORT_SYMBOL_GPL(device_link_del);
909
910/**
911 * device_link_remove - Delete a stateless link between two devices.
912 * @consumer: Consumer end of the link.
913 * @supplier: Supplier end of the link.
914 *
915 * The caller must ensure proper synchronization of this function with runtime
916 * PM.
917 */
918void device_link_remove(void *consumer, struct device *supplier)
919{
920 struct device_link *link;
921
922 if (WARN_ON(consumer == supplier))
923 return;
924
925 device_links_write_lock();
926
927 list_for_each_entry(link, &supplier->links.consumers, s_node) {
928 if (link->consumer == consumer) {
929 device_link_put_kref(link);
930 break;
931 }
932 }
933
934 device_links_write_unlock();
935}
936EXPORT_SYMBOL_GPL(device_link_remove);
937
938static void device_links_missing_supplier(struct device *dev)
939{
940 struct device_link *link;
941
942 list_for_each_entry(link, &dev->links.suppliers, c_node) {
943 if (link->status != DL_STATE_CONSUMER_PROBE)
944 continue;
945
946 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
947 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
948 } else {
949 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
950 WRITE_ONCE(link->status, DL_STATE_DORMANT);
951 }
952 }
953}
954
955/**
956 * device_links_check_suppliers - Check presence of supplier drivers.
957 * @dev: Consumer device.
958 *
959 * Check links from this device to any suppliers. Walk the list of the device's
960 * links to suppliers and see if all of them are available. If not, simply
961 * return -EPROBE_DEFER.
962 *
963 * We need to guarantee that the supplier will not go away after the check has
964 * been positive here. It only can go away in __device_release_driver() and
965 * that function checks the device's links to consumers. This means we need to
966 * mark the link as "consumer probe in progress" to make the supplier removal
967 * wait for us to complete (or bad things may happen).
968 *
969 * Links without the DL_FLAG_MANAGED flag set are ignored.
970 */
971int device_links_check_suppliers(struct device *dev)
972{
973 struct device_link *link;
974 int ret = 0;
975
976 /*
977 * Device waiting for supplier to become available is not allowed to
978 * probe.
979 */
980 mutex_lock(&fwnode_link_lock);
981 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
982 !fw_devlink_is_permissive()) {
983 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
984 list_first_entry(&dev->fwnode->suppliers,
985 struct fwnode_link,
986 c_hook)->supplier);
987 mutex_unlock(&fwnode_link_lock);
988 return -EPROBE_DEFER;
989 }
990 mutex_unlock(&fwnode_link_lock);
991
992 device_links_write_lock();
993
994 list_for_each_entry(link, &dev->links.suppliers, c_node) {
995 if (!(link->flags & DL_FLAG_MANAGED))
996 continue;
997
998 if (link->status != DL_STATE_AVAILABLE &&
999 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1000 device_links_missing_supplier(dev);
1001 dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1002 dev_name(link->supplier));
1003 ret = -EPROBE_DEFER;
1004 break;
1005 }
1006 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1007 }
1008 dev->links.status = DL_DEV_PROBING;
1009
1010 device_links_write_unlock();
1011 return ret;
1012}
1013
1014/**
1015 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1016 * @dev: Device to call sync_state() on
1017 * @list: List head to queue the @dev on
1018 *
1019 * Queues a device for a sync_state() callback when the device links write lock
1020 * isn't held. This allows the sync_state() execution flow to use device links
1021 * APIs. The caller must ensure this function is called with
1022 * device_links_write_lock() held.
1023 *
1024 * This function does a get_device() to make sure the device is not freed while
1025 * on this list.
1026 *
1027 * So the caller must also ensure that device_links_flush_sync_list() is called
1028 * as soon as the caller releases device_links_write_lock(). This is necessary
1029 * to make sure the sync_state() is called in a timely fashion and the
1030 * put_device() is called on this device.
1031 */
1032static void __device_links_queue_sync_state(struct device *dev,
1033 struct list_head *list)
1034{
1035 struct device_link *link;
1036
1037 if (!dev_has_sync_state(dev))
1038 return;
1039 if (dev->state_synced)
1040 return;
1041
1042 list_for_each_entry(link, &dev->links.consumers, s_node) {
1043 if (!(link->flags & DL_FLAG_MANAGED))
1044 continue;
1045 if (link->status != DL_STATE_ACTIVE)
1046 return;
1047 }
1048
1049 /*
1050 * Set the flag here to avoid adding the same device to a list more
1051 * than once. This can happen if new consumers get added to the device
1052 * and probed before the list is flushed.
1053 */
1054 dev->state_synced = true;
1055
1056 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1057 return;
1058
1059 get_device(dev);
1060 list_add_tail(&dev->links.defer_sync, list);
1061}
1062
1063/**
1064 * device_links_flush_sync_list - Call sync_state() on a list of devices
1065 * @list: List of devices to call sync_state() on
1066 * @dont_lock_dev: Device for which lock is already held by the caller
1067 *
1068 * Calls sync_state() on all the devices that have been queued for it. This
1069 * function is used in conjunction with __device_links_queue_sync_state(). The
1070 * @dont_lock_dev parameter is useful when this function is called from a
1071 * context where a device lock is already held.
1072 */
1073static void device_links_flush_sync_list(struct list_head *list,
1074 struct device *dont_lock_dev)
1075{
1076 struct device *dev, *tmp;
1077
1078 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1079 list_del_init(&dev->links.defer_sync);
1080
1081 if (dev != dont_lock_dev)
1082 device_lock(dev);
1083
1084 if (dev->bus->sync_state)
1085 dev->bus->sync_state(dev);
1086 else if (dev->driver && dev->driver->sync_state)
1087 dev->driver->sync_state(dev);
1088
1089 if (dev != dont_lock_dev)
1090 device_unlock(dev);
1091
1092 put_device(dev);
1093 }
1094}
1095
1096void device_links_supplier_sync_state_pause(void)
1097{
1098 device_links_write_lock();
1099 defer_sync_state_count++;
1100 device_links_write_unlock();
1101}
1102
1103void device_links_supplier_sync_state_resume(void)
1104{
1105 struct device *dev, *tmp;
1106 LIST_HEAD(sync_list);
1107
1108 device_links_write_lock();
1109 if (!defer_sync_state_count) {
1110 WARN(true, "Unmatched sync_state pause/resume!");
1111 goto out;
1112 }
1113 defer_sync_state_count--;
1114 if (defer_sync_state_count)
1115 goto out;
1116
1117 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1118 /*
1119 * Delete from deferred_sync list before queuing it to
1120 * sync_list because defer_sync is used for both lists.
1121 */
1122 list_del_init(&dev->links.defer_sync);
1123 __device_links_queue_sync_state(dev, &sync_list);
1124 }
1125out:
1126 device_links_write_unlock();
1127
1128 device_links_flush_sync_list(&sync_list, NULL);
1129}
1130
1131static int sync_state_resume_initcall(void)
1132{
1133 device_links_supplier_sync_state_resume();
1134 return 0;
1135}
1136late_initcall(sync_state_resume_initcall);
1137
1138static void __device_links_supplier_defer_sync(struct device *sup)
1139{
1140 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1141 list_add_tail(&sup->links.defer_sync, &deferred_sync);
1142}
1143
1144static void device_link_drop_managed(struct device_link *link)
1145{
1146 link->flags &= ~DL_FLAG_MANAGED;
1147 WRITE_ONCE(link->status, DL_STATE_NONE);
1148 kref_put(&link->kref, __device_link_del);
1149}
1150
1151static ssize_t waiting_for_supplier_show(struct device *dev,
1152 struct device_attribute *attr,
1153 char *buf)
1154{
1155 bool val;
1156
1157 device_lock(dev);
1158 val = !list_empty(&dev->fwnode->suppliers);
1159 device_unlock(dev);
1160 return sysfs_emit(buf, "%u\n", val);
1161}
1162static DEVICE_ATTR_RO(waiting_for_supplier);
1163
1164/**
1165 * device_links_force_bind - Prepares device to be force bound
1166 * @dev: Consumer device.
1167 *
1168 * device_bind_driver() force binds a device to a driver without calling any
1169 * driver probe functions. So the consumer really isn't going to wait for any
1170 * supplier before it's bound to the driver. We still want the device link
1171 * states to be sensible when this happens.
1172 *
1173 * In preparation for device_bind_driver(), this function goes through each
1174 * supplier device links and checks if the supplier is bound. If it is, then
1175 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1176 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1177 */
1178void device_links_force_bind(struct device *dev)
1179{
1180 struct device_link *link, *ln;
1181
1182 device_links_write_lock();
1183
1184 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1185 if (!(link->flags & DL_FLAG_MANAGED))
1186 continue;
1187
1188 if (link->status != DL_STATE_AVAILABLE) {
1189 device_link_drop_managed(link);
1190 continue;
1191 }
1192 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1193 }
1194 dev->links.status = DL_DEV_PROBING;
1195
1196 device_links_write_unlock();
1197}
1198
1199/**
1200 * device_links_driver_bound - Update device links after probing its driver.
1201 * @dev: Device to update the links for.
1202 *
1203 * The probe has been successful, so update links from this device to any
1204 * consumers by changing their status to "available".
1205 *
1206 * Also change the status of @dev's links to suppliers to "active".
1207 *
1208 * Links without the DL_FLAG_MANAGED flag set are ignored.
1209 */
1210void device_links_driver_bound(struct device *dev)
1211{
1212 struct device_link *link, *ln;
1213 LIST_HEAD(sync_list);
1214
1215 /*
1216 * If a device binds successfully, it's expected to have created all
1217 * the device links it needs to or make new device links as it needs
1218 * them. So, fw_devlink no longer needs to create device links to any
1219 * of the device's suppliers.
1220 *
1221 * Also, if a child firmware node of this bound device is not added as
1222 * a device by now, assume it is never going to be added and make sure
1223 * other devices don't defer probe indefinitely by waiting for such a
1224 * child device.
1225 */
1226 if (dev->fwnode && dev->fwnode->dev == dev) {
1227 struct fwnode_handle *child;
1228 fwnode_links_purge_suppliers(dev->fwnode);
1229 fwnode_for_each_available_child_node(dev->fwnode, child)
1230 fw_devlink_purge_absent_suppliers(child);
1231 }
1232 device_remove_file(dev, &dev_attr_waiting_for_supplier);
1233
1234 device_links_write_lock();
1235
1236 list_for_each_entry(link, &dev->links.consumers, s_node) {
1237 if (!(link->flags & DL_FLAG_MANAGED))
1238 continue;
1239
1240 /*
1241 * Links created during consumer probe may be in the "consumer
1242 * probe" state to start with if the supplier is still probing
1243 * when they are created and they may become "active" if the
1244 * consumer probe returns first. Skip them here.
1245 */
1246 if (link->status == DL_STATE_CONSUMER_PROBE ||
1247 link->status == DL_STATE_ACTIVE)
1248 continue;
1249
1250 WARN_ON(link->status != DL_STATE_DORMANT);
1251 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1252
1253 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1254 driver_deferred_probe_add(link->consumer);
1255 }
1256
1257 if (defer_sync_state_count)
1258 __device_links_supplier_defer_sync(dev);
1259 else
1260 __device_links_queue_sync_state(dev, &sync_list);
1261
1262 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1263 struct device *supplier;
1264
1265 if (!(link->flags & DL_FLAG_MANAGED))
1266 continue;
1267
1268 supplier = link->supplier;
1269 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1270 /*
1271 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1272 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1273 * save to drop the managed link completely.
1274 */
1275 device_link_drop_managed(link);
1276 } else {
1277 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1278 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1279 }
1280
1281 /*
1282 * This needs to be done even for the deleted
1283 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1284 * device link that was preventing the supplier from getting a
1285 * sync_state() call.
1286 */
1287 if (defer_sync_state_count)
1288 __device_links_supplier_defer_sync(supplier);
1289 else
1290 __device_links_queue_sync_state(supplier, &sync_list);
1291 }
1292
1293 dev->links.status = DL_DEV_DRIVER_BOUND;
1294
1295 device_links_write_unlock();
1296
1297 device_links_flush_sync_list(&sync_list, dev);
1298}
1299
1300/**
1301 * __device_links_no_driver - Update links of a device without a driver.
1302 * @dev: Device without a drvier.
1303 *
1304 * Delete all non-persistent links from this device to any suppliers.
1305 *
1306 * Persistent links stay around, but their status is changed to "available",
1307 * unless they already are in the "supplier unbind in progress" state in which
1308 * case they need not be updated.
1309 *
1310 * Links without the DL_FLAG_MANAGED flag set are ignored.
1311 */
1312static void __device_links_no_driver(struct device *dev)
1313{
1314 struct device_link *link, *ln;
1315
1316 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1317 if (!(link->flags & DL_FLAG_MANAGED))
1318 continue;
1319
1320 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1321 device_link_drop_managed(link);
1322 continue;
1323 }
1324
1325 if (link->status != DL_STATE_CONSUMER_PROBE &&
1326 link->status != DL_STATE_ACTIVE)
1327 continue;
1328
1329 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1330 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1331 } else {
1332 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1333 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1334 }
1335 }
1336
1337 dev->links.status = DL_DEV_NO_DRIVER;
1338}
1339
1340/**
1341 * device_links_no_driver - Update links after failing driver probe.
1342 * @dev: Device whose driver has just failed to probe.
1343 *
1344 * Clean up leftover links to consumers for @dev and invoke
1345 * %__device_links_no_driver() to update links to suppliers for it as
1346 * appropriate.
1347 *
1348 * Links without the DL_FLAG_MANAGED flag set are ignored.
1349 */
1350void device_links_no_driver(struct device *dev)
1351{
1352 struct device_link *link;
1353
1354 device_links_write_lock();
1355
1356 list_for_each_entry(link, &dev->links.consumers, s_node) {
1357 if (!(link->flags & DL_FLAG_MANAGED))
1358 continue;
1359
1360 /*
1361 * The probe has failed, so if the status of the link is
1362 * "consumer probe" or "active", it must have been added by
1363 * a probing consumer while this device was still probing.
1364 * Change its state to "dormant", as it represents a valid
1365 * relationship, but it is not functionally meaningful.
1366 */
1367 if (link->status == DL_STATE_CONSUMER_PROBE ||
1368 link->status == DL_STATE_ACTIVE)
1369 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1370 }
1371
1372 __device_links_no_driver(dev);
1373
1374 device_links_write_unlock();
1375}
1376
1377/**
1378 * device_links_driver_cleanup - Update links after driver removal.
1379 * @dev: Device whose driver has just gone away.
1380 *
1381 * Update links to consumers for @dev by changing their status to "dormant" and
1382 * invoke %__device_links_no_driver() to update links to suppliers for it as
1383 * appropriate.
1384 *
1385 * Links without the DL_FLAG_MANAGED flag set are ignored.
1386 */
1387void device_links_driver_cleanup(struct device *dev)
1388{
1389 struct device_link *link, *ln;
1390
1391 device_links_write_lock();
1392
1393 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1394 if (!(link->flags & DL_FLAG_MANAGED))
1395 continue;
1396
1397 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1398 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1399
1400 /*
1401 * autoremove the links between this @dev and its consumer
1402 * devices that are not active, i.e. where the link state
1403 * has moved to DL_STATE_SUPPLIER_UNBIND.
1404 */
1405 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1406 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1407 device_link_drop_managed(link);
1408
1409 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1410 }
1411
1412 list_del_init(&dev->links.defer_sync);
1413 __device_links_no_driver(dev);
1414
1415 device_links_write_unlock();
1416}
1417
1418/**
1419 * device_links_busy - Check if there are any busy links to consumers.
1420 * @dev: Device to check.
1421 *
1422 * Check each consumer of the device and return 'true' if its link's status
1423 * is one of "consumer probe" or "active" (meaning that the given consumer is
1424 * probing right now or its driver is present). Otherwise, change the link
1425 * state to "supplier unbind" to prevent the consumer from being probed
1426 * successfully going forward.
1427 *
1428 * Return 'false' if there are no probing or active consumers.
1429 *
1430 * Links without the DL_FLAG_MANAGED flag set are ignored.
1431 */
1432bool device_links_busy(struct device *dev)
1433{
1434 struct device_link *link;
1435 bool ret = false;
1436
1437 device_links_write_lock();
1438
1439 list_for_each_entry(link, &dev->links.consumers, s_node) {
1440 if (!(link->flags & DL_FLAG_MANAGED))
1441 continue;
1442
1443 if (link->status == DL_STATE_CONSUMER_PROBE
1444 || link->status == DL_STATE_ACTIVE) {
1445 ret = true;
1446 break;
1447 }
1448 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1449 }
1450
1451 dev->links.status = DL_DEV_UNBINDING;
1452
1453 device_links_write_unlock();
1454 return ret;
1455}
1456
1457/**
1458 * device_links_unbind_consumers - Force unbind consumers of the given device.
1459 * @dev: Device to unbind the consumers of.
1460 *
1461 * Walk the list of links to consumers for @dev and if any of them is in the
1462 * "consumer probe" state, wait for all device probes in progress to complete
1463 * and start over.
1464 *
1465 * If that's not the case, change the status of the link to "supplier unbind"
1466 * and check if the link was in the "active" state. If so, force the consumer
1467 * driver to unbind and start over (the consumer will not re-probe as we have
1468 * changed the state of the link already).
1469 *
1470 * Links without the DL_FLAG_MANAGED flag set are ignored.
1471 */
1472void device_links_unbind_consumers(struct device *dev)
1473{
1474 struct device_link *link;
1475
1476 start:
1477 device_links_write_lock();
1478
1479 list_for_each_entry(link, &dev->links.consumers, s_node) {
1480 enum device_link_state status;
1481
1482 if (!(link->flags & DL_FLAG_MANAGED) ||
1483 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1484 continue;
1485
1486 status = link->status;
1487 if (status == DL_STATE_CONSUMER_PROBE) {
1488 device_links_write_unlock();
1489
1490 wait_for_device_probe();
1491 goto start;
1492 }
1493 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1494 if (status == DL_STATE_ACTIVE) {
1495 struct device *consumer = link->consumer;
1496
1497 get_device(consumer);
1498
1499 device_links_write_unlock();
1500
1501 device_release_driver_internal(consumer, NULL,
1502 consumer->parent);
1503 put_device(consumer);
1504 goto start;
1505 }
1506 }
1507
1508 device_links_write_unlock();
1509}
1510
1511/**
1512 * device_links_purge - Delete existing links to other devices.
1513 * @dev: Target device.
1514 */
1515static void device_links_purge(struct device *dev)
1516{
1517 struct device_link *link, *ln;
1518
1519 if (dev->class == &devlink_class)
1520 return;
1521
1522 /*
1523 * Delete all of the remaining links from this device to any other
1524 * devices (either consumers or suppliers).
1525 */
1526 device_links_write_lock();
1527
1528 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1529 WARN_ON(link->status == DL_STATE_ACTIVE);
1530 __device_link_del(&link->kref);
1531 }
1532
1533 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1534 WARN_ON(link->status != DL_STATE_DORMANT &&
1535 link->status != DL_STATE_NONE);
1536 __device_link_del(&link->kref);
1537 }
1538
1539 device_links_write_unlock();
1540}
1541
1542#define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \
1543 DL_FLAG_SYNC_STATE_ONLY)
1544#define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \
1545 DL_FLAG_AUTOPROBE_CONSUMER)
1546#define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \
1547 DL_FLAG_PM_RUNTIME)
1548
1549static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1550static int __init fw_devlink_setup(char *arg)
1551{
1552 if (!arg)
1553 return -EINVAL;
1554
1555 if (strcmp(arg, "off") == 0) {
1556 fw_devlink_flags = 0;
1557 } else if (strcmp(arg, "permissive") == 0) {
1558 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1559 } else if (strcmp(arg, "on") == 0) {
1560 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1561 } else if (strcmp(arg, "rpm") == 0) {
1562 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1563 }
1564 return 0;
1565}
1566early_param("fw_devlink", fw_devlink_setup);
1567
1568static bool fw_devlink_strict;
1569static int __init fw_devlink_strict_setup(char *arg)
1570{
1571 return strtobool(arg, &fw_devlink_strict);
1572}
1573early_param("fw_devlink.strict", fw_devlink_strict_setup);
1574
1575u32 fw_devlink_get_flags(void)
1576{
1577 return fw_devlink_flags;
1578}
1579
1580static bool fw_devlink_is_permissive(void)
1581{
1582 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1583}
1584
1585bool fw_devlink_is_strict(void)
1586{
1587 return fw_devlink_strict && !fw_devlink_is_permissive();
1588}
1589
1590static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1591{
1592 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1593 return;
1594
1595 fwnode_call_int_op(fwnode, add_links);
1596 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1597}
1598
1599static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1600{
1601 struct fwnode_handle *child = NULL;
1602
1603 fw_devlink_parse_fwnode(fwnode);
1604
1605 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1606 fw_devlink_parse_fwtree(child);
1607}
1608
1609static void fw_devlink_relax_link(struct device_link *link)
1610{
1611 if (!(link->flags & DL_FLAG_INFERRED))
1612 return;
1613
1614 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1615 return;
1616
1617 pm_runtime_drop_link(link);
1618 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1619 dev_dbg(link->consumer, "Relaxing link with %s\n",
1620 dev_name(link->supplier));
1621}
1622
1623static int fw_devlink_no_driver(struct device *dev, void *data)
1624{
1625 struct device_link *link = to_devlink(dev);
1626
1627 if (!link->supplier->can_match)
1628 fw_devlink_relax_link(link);
1629
1630 return 0;
1631}
1632
1633void fw_devlink_drivers_done(void)
1634{
1635 fw_devlink_drv_reg_done = true;
1636 device_links_write_lock();
1637 class_for_each_device(&devlink_class, NULL, NULL,
1638 fw_devlink_no_driver);
1639 device_links_write_unlock();
1640}
1641
1642static void fw_devlink_unblock_consumers(struct device *dev)
1643{
1644 struct device_link *link;
1645
1646 if (!fw_devlink_flags || fw_devlink_is_permissive())
1647 return;
1648
1649 device_links_write_lock();
1650 list_for_each_entry(link, &dev->links.consumers, s_node)
1651 fw_devlink_relax_link(link);
1652 device_links_write_unlock();
1653}
1654
1655/**
1656 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1657 * @con: Device to check dependencies for.
1658 * @sup: Device to check against.
1659 *
1660 * Check if @sup depends on @con or any device dependent on it (its child or
1661 * its consumer etc). When such a cyclic dependency is found, convert all
1662 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1663 * This is the equivalent of doing fw_devlink=permissive just between the
1664 * devices in the cycle. We need to do this because, at this point, fw_devlink
1665 * can't tell which of these dependencies is not a real dependency.
1666 *
1667 * Return 1 if a cycle is found. Otherwise, return 0.
1668 */
1669static int fw_devlink_relax_cycle(struct device *con, void *sup)
1670{
1671 struct device_link *link;
1672 int ret;
1673
1674 if (con == sup)
1675 return 1;
1676
1677 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1678 if (ret)
1679 return ret;
1680
1681 list_for_each_entry(link, &con->links.consumers, s_node) {
1682 if ((link->flags & ~DL_FLAG_INFERRED) ==
1683 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1684 continue;
1685
1686 if (!fw_devlink_relax_cycle(link->consumer, sup))
1687 continue;
1688
1689 ret = 1;
1690
1691 fw_devlink_relax_link(link);
1692 }
1693 return ret;
1694}
1695
1696/**
1697 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1698 * @con: consumer device for the device link
1699 * @sup_handle: fwnode handle of supplier
1700 * @flags: devlink flags
1701 *
1702 * This function will try to create a device link between the consumer device
1703 * @con and the supplier device represented by @sup_handle.
1704 *
1705 * The supplier has to be provided as a fwnode because incorrect cycles in
1706 * fwnode links can sometimes cause the supplier device to never be created.
1707 * This function detects such cases and returns an error if it cannot create a
1708 * device link from the consumer to a missing supplier.
1709 *
1710 * Returns,
1711 * 0 on successfully creating a device link
1712 * -EINVAL if the device link cannot be created as expected
1713 * -EAGAIN if the device link cannot be created right now, but it may be
1714 * possible to do that in the future
1715 */
1716static int fw_devlink_create_devlink(struct device *con,
1717 struct fwnode_handle *sup_handle, u32 flags)
1718{
1719 struct device *sup_dev;
1720 int ret = 0;
1721
1722 sup_dev = get_dev_from_fwnode(sup_handle);
1723 if (sup_dev) {
1724 /*
1725 * If it's one of those drivers that don't actually bind to
1726 * their device using driver core, then don't wait on this
1727 * supplier device indefinitely.
1728 */
1729 if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1730 sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1731 ret = -EINVAL;
1732 goto out;
1733 }
1734
1735 /*
1736 * If this fails, it is due to cycles in device links. Just
1737 * give up on this link and treat it as invalid.
1738 */
1739 if (!device_link_add(con, sup_dev, flags) &&
1740 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1741 dev_info(con, "Fixing up cyclic dependency with %s\n",
1742 dev_name(sup_dev));
1743 device_links_write_lock();
1744 fw_devlink_relax_cycle(con, sup_dev);
1745 device_links_write_unlock();
1746 device_link_add(con, sup_dev,
1747 FW_DEVLINK_FLAGS_PERMISSIVE);
1748 ret = -EINVAL;
1749 }
1750
1751 goto out;
1752 }
1753
1754 /* Supplier that's already initialized without a struct device. */
1755 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1756 return -EINVAL;
1757
1758 /*
1759 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1760 * cycles. So cycle detection isn't necessary and shouldn't be
1761 * done.
1762 */
1763 if (flags & DL_FLAG_SYNC_STATE_ONLY)
1764 return -EAGAIN;
1765
1766 /*
1767 * If we can't find the supplier device from its fwnode, it might be
1768 * due to a cyclic dependency between fwnodes. Some of these cycles can
1769 * be broken by applying logic. Check for these types of cycles and
1770 * break them so that devices in the cycle probe properly.
1771 *
1772 * If the supplier's parent is dependent on the consumer, then
1773 * the consumer-supplier dependency is a false dependency. So,
1774 * treat it as an invalid link.
1775 */
1776 sup_dev = fwnode_get_next_parent_dev(sup_handle);
1777 if (sup_dev && device_is_dependent(con, sup_dev)) {
1778 dev_dbg(con, "Not linking to %pfwP - False link\n",
1779 sup_handle);
1780 ret = -EINVAL;
1781 } else {
1782 /*
1783 * Can't check for cycles or no cycles. So let's try
1784 * again later.
1785 */
1786 ret = -EAGAIN;
1787 }
1788
1789out:
1790 put_device(sup_dev);
1791 return ret;
1792}
1793
1794/**
1795 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1796 * @dev: Device that needs to be linked to its consumers
1797 *
1798 * This function looks at all the consumer fwnodes of @dev and creates device
1799 * links between the consumer device and @dev (supplier).
1800 *
1801 * If the consumer device has not been added yet, then this function creates a
1802 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1803 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1804 * sync_state() callback before the real consumer device gets to be added and
1805 * then probed.
1806 *
1807 * Once device links are created from the real consumer to @dev (supplier), the
1808 * fwnode links are deleted.
1809 */
1810static void __fw_devlink_link_to_consumers(struct device *dev)
1811{
1812 struct fwnode_handle *fwnode = dev->fwnode;
1813 struct fwnode_link *link, *tmp;
1814
1815 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1816 u32 dl_flags = fw_devlink_get_flags();
1817 struct device *con_dev;
1818 bool own_link = true;
1819 int ret;
1820
1821 con_dev = get_dev_from_fwnode(link->consumer);
1822 /*
1823 * If consumer device is not available yet, make a "proxy"
1824 * SYNC_STATE_ONLY link from the consumer's parent device to
1825 * the supplier device. This is necessary to make sure the
1826 * supplier doesn't get a sync_state() callback before the real
1827 * consumer can create a device link to the supplier.
1828 *
1829 * This proxy link step is needed to handle the case where the
1830 * consumer's parent device is added before the supplier.
1831 */
1832 if (!con_dev) {
1833 con_dev = fwnode_get_next_parent_dev(link->consumer);
1834 /*
1835 * However, if the consumer's parent device is also the
1836 * parent of the supplier, don't create a
1837 * consumer-supplier link from the parent to its child
1838 * device. Such a dependency is impossible.
1839 */
1840 if (con_dev &&
1841 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1842 put_device(con_dev);
1843 con_dev = NULL;
1844 } else {
1845 own_link = false;
1846 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1847 }
1848 }
1849
1850 if (!con_dev)
1851 continue;
1852
1853 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1854 put_device(con_dev);
1855 if (!own_link || ret == -EAGAIN)
1856 continue;
1857
1858 list_del(&link->s_hook);
1859 list_del(&link->c_hook);
1860 kfree(link);
1861 }
1862}
1863
1864/**
1865 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1866 * @dev: The consumer device that needs to be linked to its suppliers
1867 * @fwnode: Root of the fwnode tree that is used to create device links
1868 *
1869 * This function looks at all the supplier fwnodes of fwnode tree rooted at
1870 * @fwnode and creates device links between @dev (consumer) and all the
1871 * supplier devices of the entire fwnode tree at @fwnode.
1872 *
1873 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1874 * and the real suppliers of @dev. Once these device links are created, the
1875 * fwnode links are deleted. When such device links are successfully created,
1876 * this function is called recursively on those supplier devices. This is
1877 * needed to detect and break some invalid cycles in fwnode links. See
1878 * fw_devlink_create_devlink() for more details.
1879 *
1880 * In addition, it also looks at all the suppliers of the entire fwnode tree
1881 * because some of the child devices of @dev that have not been added yet
1882 * (because @dev hasn't probed) might already have their suppliers added to
1883 * driver core. So, this function creates SYNC_STATE_ONLY device links between
1884 * @dev (consumer) and these suppliers to make sure they don't execute their
1885 * sync_state() callbacks before these child devices have a chance to create
1886 * their device links. The fwnode links that correspond to the child devices
1887 * aren't delete because they are needed later to create the device links
1888 * between the real consumer and supplier devices.
1889 */
1890static void __fw_devlink_link_to_suppliers(struct device *dev,
1891 struct fwnode_handle *fwnode)
1892{
1893 bool own_link = (dev->fwnode == fwnode);
1894 struct fwnode_link *link, *tmp;
1895 struct fwnode_handle *child = NULL;
1896 u32 dl_flags;
1897
1898 if (own_link)
1899 dl_flags = fw_devlink_get_flags();
1900 else
1901 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1902
1903 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1904 int ret;
1905 struct device *sup_dev;
1906 struct fwnode_handle *sup = link->supplier;
1907
1908 ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1909 if (!own_link || ret == -EAGAIN)
1910 continue;
1911
1912 list_del(&link->s_hook);
1913 list_del(&link->c_hook);
1914 kfree(link);
1915
1916 /* If no device link was created, nothing more to do. */
1917 if (ret)
1918 continue;
1919
1920 /*
1921 * If a device link was successfully created to a supplier, we
1922 * now need to try and link the supplier to all its suppliers.
1923 *
1924 * This is needed to detect and delete false dependencies in
1925 * fwnode links that haven't been converted to a device link
1926 * yet. See comments in fw_devlink_create_devlink() for more
1927 * details on the false dependency.
1928 *
1929 * Without deleting these false dependencies, some devices will
1930 * never probe because they'll keep waiting for their false
1931 * dependency fwnode links to be converted to device links.
1932 */
1933 sup_dev = get_dev_from_fwnode(sup);
1934 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1935 put_device(sup_dev);
1936 }
1937
1938 /*
1939 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1940 * all the descendants. This proxy link step is needed to handle the
1941 * case where the supplier is added before the consumer's parent device
1942 * (@dev).
1943 */
1944 while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1945 __fw_devlink_link_to_suppliers(dev, child);
1946}
1947
1948static void fw_devlink_link_device(struct device *dev)
1949{
1950 struct fwnode_handle *fwnode = dev->fwnode;
1951
1952 if (!fw_devlink_flags)
1953 return;
1954
1955 fw_devlink_parse_fwtree(fwnode);
1956
1957 mutex_lock(&fwnode_link_lock);
1958 __fw_devlink_link_to_consumers(dev);
1959 __fw_devlink_link_to_suppliers(dev, fwnode);
1960 mutex_unlock(&fwnode_link_lock);
1961}
1962
1963/* Device links support end. */
1964
1965int (*platform_notify)(struct device *dev) = NULL;
1966int (*platform_notify_remove)(struct device *dev) = NULL;
1967static struct kobject *dev_kobj;
1968struct kobject *sysfs_dev_char_kobj;
1969struct kobject *sysfs_dev_block_kobj;
1970
1971static DEFINE_MUTEX(device_hotplug_lock);
1972
1973void lock_device_hotplug(void)
1974{
1975 mutex_lock(&device_hotplug_lock);
1976}
1977
1978void unlock_device_hotplug(void)
1979{
1980 mutex_unlock(&device_hotplug_lock);
1981}
1982
1983int lock_device_hotplug_sysfs(void)
1984{
1985 if (mutex_trylock(&device_hotplug_lock))
1986 return 0;
1987
1988 /* Avoid busy looping (5 ms of sleep should do). */
1989 msleep(5);
1990 return restart_syscall();
1991}
1992
1993#ifdef CONFIG_BLOCK
1994static inline int device_is_not_partition(struct device *dev)
1995{
1996 return !(dev->type == &part_type);
1997}
1998#else
1999static inline int device_is_not_partition(struct device *dev)
2000{
2001 return 1;
2002}
2003#endif
2004
2005static int
2006device_platform_notify(struct device *dev, enum kobject_action action)
2007{
2008 int ret;
2009
2010 ret = acpi_platform_notify(dev, action);
2011 if (ret)
2012 return ret;
2013
2014 ret = software_node_notify(dev, action);
2015 if (ret)
2016 return ret;
2017
2018 if (platform_notify && action == KOBJ_ADD)
2019 platform_notify(dev);
2020 else if (platform_notify_remove && action == KOBJ_REMOVE)
2021 platform_notify_remove(dev);
2022 return 0;
2023}
2024
2025/**
2026 * dev_driver_string - Return a device's driver name, if at all possible
2027 * @dev: struct device to get the name of
2028 *
2029 * Will return the device's driver's name if it is bound to a device. If
2030 * the device is not bound to a driver, it will return the name of the bus
2031 * it is attached to. If it is not attached to a bus either, an empty
2032 * string will be returned.
2033 */
2034const char *dev_driver_string(const struct device *dev)
2035{
2036 struct device_driver *drv;
2037
2038 /* dev->driver can change to NULL underneath us because of unbinding,
2039 * so be careful about accessing it. dev->bus and dev->class should
2040 * never change once they are set, so they don't need special care.
2041 */
2042 drv = READ_ONCE(dev->driver);
2043 return drv ? drv->name : dev_bus_name(dev);
2044}
2045EXPORT_SYMBOL(dev_driver_string);
2046
2047#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2048
2049static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2050 char *buf)
2051{
2052 struct device_attribute *dev_attr = to_dev_attr(attr);
2053 struct device *dev = kobj_to_dev(kobj);
2054 ssize_t ret = -EIO;
2055
2056 if (dev_attr->show)
2057 ret = dev_attr->show(dev, dev_attr, buf);
2058 if (ret >= (ssize_t)PAGE_SIZE) {
2059 printk("dev_attr_show: %pS returned bad count\n",
2060 dev_attr->show);
2061 }
2062 return ret;
2063}
2064
2065static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2066 const char *buf, size_t count)
2067{
2068 struct device_attribute *dev_attr = to_dev_attr(attr);
2069 struct device *dev = kobj_to_dev(kobj);
2070 ssize_t ret = -EIO;
2071
2072 if (dev_attr->store)
2073 ret = dev_attr->store(dev, dev_attr, buf, count);
2074 return ret;
2075}
2076
2077static const struct sysfs_ops dev_sysfs_ops = {
2078 .show = dev_attr_show,
2079 .store = dev_attr_store,
2080};
2081
2082#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2083
2084ssize_t device_store_ulong(struct device *dev,
2085 struct device_attribute *attr,
2086 const char *buf, size_t size)
2087{
2088 struct dev_ext_attribute *ea = to_ext_attr(attr);
2089 int ret;
2090 unsigned long new;
2091
2092 ret = kstrtoul(buf, 0, &new);
2093 if (ret)
2094 return ret;
2095 *(unsigned long *)(ea->var) = new;
2096 /* Always return full write size even if we didn't consume all */
2097 return size;
2098}
2099EXPORT_SYMBOL_GPL(device_store_ulong);
2100
2101ssize_t device_show_ulong(struct device *dev,
2102 struct device_attribute *attr,
2103 char *buf)
2104{
2105 struct dev_ext_attribute *ea = to_ext_attr(attr);
2106 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2107}
2108EXPORT_SYMBOL_GPL(device_show_ulong);
2109
2110ssize_t device_store_int(struct device *dev,
2111 struct device_attribute *attr,
2112 const char *buf, size_t size)
2113{
2114 struct dev_ext_attribute *ea = to_ext_attr(attr);
2115 int ret;
2116 long new;
2117
2118 ret = kstrtol(buf, 0, &new);
2119 if (ret)
2120 return ret;
2121
2122 if (new > INT_MAX || new < INT_MIN)
2123 return -EINVAL;
2124 *(int *)(ea->var) = new;
2125 /* Always return full write size even if we didn't consume all */
2126 return size;
2127}
2128EXPORT_SYMBOL_GPL(device_store_int);
2129
2130ssize_t device_show_int(struct device *dev,
2131 struct device_attribute *attr,
2132 char *buf)
2133{
2134 struct dev_ext_attribute *ea = to_ext_attr(attr);
2135
2136 return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2137}
2138EXPORT_SYMBOL_GPL(device_show_int);
2139
2140ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2141 const char *buf, size_t size)
2142{
2143 struct dev_ext_attribute *ea = to_ext_attr(attr);
2144
2145 if (strtobool(buf, ea->var) < 0)
2146 return -EINVAL;
2147
2148 return size;
2149}
2150EXPORT_SYMBOL_GPL(device_store_bool);
2151
2152ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2153 char *buf)
2154{
2155 struct dev_ext_attribute *ea = to_ext_attr(attr);
2156
2157 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2158}
2159EXPORT_SYMBOL_GPL(device_show_bool);
2160
2161/**
2162 * device_release - free device structure.
2163 * @kobj: device's kobject.
2164 *
2165 * This is called once the reference count for the object
2166 * reaches 0. We forward the call to the device's release
2167 * method, which should handle actually freeing the structure.
2168 */
2169static void device_release(struct kobject *kobj)
2170{
2171 struct device *dev = kobj_to_dev(kobj);
2172 struct device_private *p = dev->p;
2173
2174 /*
2175 * Some platform devices are driven without driver attached
2176 * and managed resources may have been acquired. Make sure
2177 * all resources are released.
2178 *
2179 * Drivers still can add resources into device after device
2180 * is deleted but alive, so release devres here to avoid
2181 * possible memory leak.
2182 */
2183 devres_release_all(dev);
2184
2185 kfree(dev->dma_range_map);
2186
2187 if (dev->release)
2188 dev->release(dev);
2189 else if (dev->type && dev->type->release)
2190 dev->type->release(dev);
2191 else if (dev->class && dev->class->dev_release)
2192 dev->class->dev_release(dev);
2193 else
2194 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2195 dev_name(dev));
2196 kfree(p);
2197}
2198
2199static const void *device_namespace(struct kobject *kobj)
2200{
2201 struct device *dev = kobj_to_dev(kobj);
2202 const void *ns = NULL;
2203
2204 if (dev->class && dev->class->ns_type)
2205 ns = dev->class->namespace(dev);
2206
2207 return ns;
2208}
2209
2210static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2211{
2212 struct device *dev = kobj_to_dev(kobj);
2213
2214 if (dev->class && dev->class->get_ownership)
2215 dev->class->get_ownership(dev, uid, gid);
2216}
2217
2218static struct kobj_type device_ktype = {
2219 .release = device_release,
2220 .sysfs_ops = &dev_sysfs_ops,
2221 .namespace = device_namespace,
2222 .get_ownership = device_get_ownership,
2223};
2224
2225
2226static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2227{
2228 struct kobj_type *ktype = get_ktype(kobj);
2229
2230 if (ktype == &device_ktype) {
2231 struct device *dev = kobj_to_dev(kobj);
2232 if (dev->bus)
2233 return 1;
2234 if (dev->class)
2235 return 1;
2236 }
2237 return 0;
2238}
2239
2240static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2241{
2242 struct device *dev = kobj_to_dev(kobj);
2243
2244 if (dev->bus)
2245 return dev->bus->name;
2246 if (dev->class)
2247 return dev->class->name;
2248 return NULL;
2249}
2250
2251static int dev_uevent(struct kset *kset, struct kobject *kobj,
2252 struct kobj_uevent_env *env)
2253{
2254 struct device *dev = kobj_to_dev(kobj);
2255 int retval = 0;
2256
2257 /* add device node properties if present */
2258 if (MAJOR(dev->devt)) {
2259 const char *tmp;
2260 const char *name;
2261 umode_t mode = 0;
2262 kuid_t uid = GLOBAL_ROOT_UID;
2263 kgid_t gid = GLOBAL_ROOT_GID;
2264
2265 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2266 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2267 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2268 if (name) {
2269 add_uevent_var(env, "DEVNAME=%s", name);
2270 if (mode)
2271 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2272 if (!uid_eq(uid, GLOBAL_ROOT_UID))
2273 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2274 if (!gid_eq(gid, GLOBAL_ROOT_GID))
2275 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2276 kfree(tmp);
2277 }
2278 }
2279
2280 if (dev->type && dev->type->name)
2281 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2282
2283 if (dev->driver)
2284 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2285
2286 /* Add common DT information about the device */
2287 of_device_uevent(dev, env);
2288
2289 /* have the bus specific function add its stuff */
2290 if (dev->bus && dev->bus->uevent) {
2291 retval = dev->bus->uevent(dev, env);
2292 if (retval)
2293 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2294 dev_name(dev), __func__, retval);
2295 }
2296
2297 /* have the class specific function add its stuff */
2298 if (dev->class && dev->class->dev_uevent) {
2299 retval = dev->class->dev_uevent(dev, env);
2300 if (retval)
2301 pr_debug("device: '%s': %s: class uevent() "
2302 "returned %d\n", dev_name(dev),
2303 __func__, retval);
2304 }
2305
2306 /* have the device type specific function add its stuff */
2307 if (dev->type && dev->type->uevent) {
2308 retval = dev->type->uevent(dev, env);
2309 if (retval)
2310 pr_debug("device: '%s': %s: dev_type uevent() "
2311 "returned %d\n", dev_name(dev),
2312 __func__, retval);
2313 }
2314
2315 return retval;
2316}
2317
2318static const struct kset_uevent_ops device_uevent_ops = {
2319 .filter = dev_uevent_filter,
2320 .name = dev_uevent_name,
2321 .uevent = dev_uevent,
2322};
2323
2324static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2325 char *buf)
2326{
2327 struct kobject *top_kobj;
2328 struct kset *kset;
2329 struct kobj_uevent_env *env = NULL;
2330 int i;
2331 int len = 0;
2332 int retval;
2333
2334 /* search the kset, the device belongs to */
2335 top_kobj = &dev->kobj;
2336 while (!top_kobj->kset && top_kobj->parent)
2337 top_kobj = top_kobj->parent;
2338 if (!top_kobj->kset)
2339 goto out;
2340
2341 kset = top_kobj->kset;
2342 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2343 goto out;
2344
2345 /* respect filter */
2346 if (kset->uevent_ops && kset->uevent_ops->filter)
2347 if (!kset->uevent_ops->filter(kset, &dev->kobj))
2348 goto out;
2349
2350 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2351 if (!env)
2352 return -ENOMEM;
2353
2354 /* let the kset specific function add its keys */
2355 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2356 if (retval)
2357 goto out;
2358
2359 /* copy keys to file */
2360 for (i = 0; i < env->envp_idx; i++)
2361 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2362out:
2363 kfree(env);
2364 return len;
2365}
2366
2367static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2368 const char *buf, size_t count)
2369{
2370 int rc;
2371
2372 rc = kobject_synth_uevent(&dev->kobj, buf, count);
2373
2374 if (rc) {
2375 dev_err(dev, "uevent: failed to send synthetic uevent\n");
2376 return rc;
2377 }
2378
2379 return count;
2380}
2381static DEVICE_ATTR_RW(uevent);
2382
2383static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2384 char *buf)
2385{
2386 bool val;
2387
2388 device_lock(dev);
2389 val = !dev->offline;
2390 device_unlock(dev);
2391 return sysfs_emit(buf, "%u\n", val);
2392}
2393
2394static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2395 const char *buf, size_t count)
2396{
2397 bool val;
2398 int ret;
2399
2400 ret = strtobool(buf, &val);
2401 if (ret < 0)
2402 return ret;
2403
2404 ret = lock_device_hotplug_sysfs();
2405 if (ret)
2406 return ret;
2407
2408 ret = val ? device_online(dev) : device_offline(dev);
2409 unlock_device_hotplug();
2410 return ret < 0 ? ret : count;
2411}
2412static DEVICE_ATTR_RW(online);
2413
2414static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2415 char *buf)
2416{
2417 const char *loc;
2418
2419 switch (dev->removable) {
2420 case DEVICE_REMOVABLE:
2421 loc = "removable";
2422 break;
2423 case DEVICE_FIXED:
2424 loc = "fixed";
2425 break;
2426 default:
2427 loc = "unknown";
2428 }
2429 return sysfs_emit(buf, "%s\n", loc);
2430}
2431static DEVICE_ATTR_RO(removable);
2432
2433int device_add_groups(struct device *dev, const struct attribute_group **groups)
2434{
2435 return sysfs_create_groups(&dev->kobj, groups);
2436}
2437EXPORT_SYMBOL_GPL(device_add_groups);
2438
2439void device_remove_groups(struct device *dev,
2440 const struct attribute_group **groups)
2441{
2442 sysfs_remove_groups(&dev->kobj, groups);
2443}
2444EXPORT_SYMBOL_GPL(device_remove_groups);
2445
2446union device_attr_group_devres {
2447 const struct attribute_group *group;
2448 const struct attribute_group **groups;
2449};
2450
2451static int devm_attr_group_match(struct device *dev, void *res, void *data)
2452{
2453 return ((union device_attr_group_devres *)res)->group == data;
2454}
2455
2456static void devm_attr_group_remove(struct device *dev, void *res)
2457{
2458 union device_attr_group_devres *devres = res;
2459 const struct attribute_group *group = devres->group;
2460
2461 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2462 sysfs_remove_group(&dev->kobj, group);
2463}
2464
2465static void devm_attr_groups_remove(struct device *dev, void *res)
2466{
2467 union device_attr_group_devres *devres = res;
2468 const struct attribute_group **groups = devres->groups;
2469
2470 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2471 sysfs_remove_groups(&dev->kobj, groups);
2472}
2473
2474/**
2475 * devm_device_add_group - given a device, create a managed attribute group
2476 * @dev: The device to create the group for
2477 * @grp: The attribute group to create
2478 *
2479 * This function creates a group for the first time. It will explicitly
2480 * warn and error if any of the attribute files being created already exist.
2481 *
2482 * Returns 0 on success or error code on failure.
2483 */
2484int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2485{
2486 union device_attr_group_devres *devres;
2487 int error;
2488
2489 devres = devres_alloc(devm_attr_group_remove,
2490 sizeof(*devres), GFP_KERNEL);
2491 if (!devres)
2492 return -ENOMEM;
2493
2494 error = sysfs_create_group(&dev->kobj, grp);
2495 if (error) {
2496 devres_free(devres);
2497 return error;
2498 }
2499
2500 devres->group = grp;
2501 devres_add(dev, devres);
2502 return 0;
2503}
2504EXPORT_SYMBOL_GPL(devm_device_add_group);
2505
2506/**
2507 * devm_device_remove_group: remove a managed group from a device
2508 * @dev: device to remove the group from
2509 * @grp: group to remove
2510 *
2511 * This function removes a group of attributes from a device. The attributes
2512 * previously have to have been created for this group, otherwise it will fail.
2513 */
2514void devm_device_remove_group(struct device *dev,
2515 const struct attribute_group *grp)
2516{
2517 WARN_ON(devres_release(dev, devm_attr_group_remove,
2518 devm_attr_group_match,
2519 /* cast away const */ (void *)grp));
2520}
2521EXPORT_SYMBOL_GPL(devm_device_remove_group);
2522
2523/**
2524 * devm_device_add_groups - create a bunch of managed attribute groups
2525 * @dev: The device to create the group for
2526 * @groups: The attribute groups to create, NULL terminated
2527 *
2528 * This function creates a bunch of managed attribute groups. If an error
2529 * occurs when creating a group, all previously created groups will be
2530 * removed, unwinding everything back to the original state when this
2531 * function was called. It will explicitly warn and error if any of the
2532 * attribute files being created already exist.
2533 *
2534 * Returns 0 on success or error code from sysfs_create_group on failure.
2535 */
2536int devm_device_add_groups(struct device *dev,
2537 const struct attribute_group **groups)
2538{
2539 union device_attr_group_devres *devres;
2540 int error;
2541
2542 devres = devres_alloc(devm_attr_groups_remove,
2543 sizeof(*devres), GFP_KERNEL);
2544 if (!devres)
2545 return -ENOMEM;
2546
2547 error = sysfs_create_groups(&dev->kobj, groups);
2548 if (error) {
2549 devres_free(devres);
2550 return error;
2551 }
2552
2553 devres->groups = groups;
2554 devres_add(dev, devres);
2555 return 0;
2556}
2557EXPORT_SYMBOL_GPL(devm_device_add_groups);
2558
2559/**
2560 * devm_device_remove_groups - remove a list of managed groups
2561 *
2562 * @dev: The device for the groups to be removed from
2563 * @groups: NULL terminated list of groups to be removed
2564 *
2565 * If groups is not NULL, remove the specified groups from the device.
2566 */
2567void devm_device_remove_groups(struct device *dev,
2568 const struct attribute_group **groups)
2569{
2570 WARN_ON(devres_release(dev, devm_attr_groups_remove,
2571 devm_attr_group_match,
2572 /* cast away const */ (void *)groups));
2573}
2574EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2575
2576static int device_add_attrs(struct device *dev)
2577{
2578 struct class *class = dev->class;
2579 const struct device_type *type = dev->type;
2580 int error;
2581
2582 if (class) {
2583 error = device_add_groups(dev, class->dev_groups);
2584 if (error)
2585 return error;
2586 }
2587
2588 if (type) {
2589 error = device_add_groups(dev, type->groups);
2590 if (error)
2591 goto err_remove_class_groups;
2592 }
2593
2594 error = device_add_groups(dev, dev->groups);
2595 if (error)
2596 goto err_remove_type_groups;
2597
2598 if (device_supports_offline(dev) && !dev->offline_disabled) {
2599 error = device_create_file(dev, &dev_attr_online);
2600 if (error)
2601 goto err_remove_dev_groups;
2602 }
2603
2604 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2605 error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2606 if (error)
2607 goto err_remove_dev_online;
2608 }
2609
2610 if (dev_removable_is_valid(dev)) {
2611 error = device_create_file(dev, &dev_attr_removable);
2612 if (error)
2613 goto err_remove_dev_waiting_for_supplier;
2614 }
2615
2616 return 0;
2617
2618 err_remove_dev_waiting_for_supplier:
2619 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2620 err_remove_dev_online:
2621 device_remove_file(dev, &dev_attr_online);
2622 err_remove_dev_groups:
2623 device_remove_groups(dev, dev->groups);
2624 err_remove_type_groups:
2625 if (type)
2626 device_remove_groups(dev, type->groups);
2627 err_remove_class_groups:
2628 if (class)
2629 device_remove_groups(dev, class->dev_groups);
2630
2631 return error;
2632}
2633
2634static void device_remove_attrs(struct device *dev)
2635{
2636 struct class *class = dev->class;
2637 const struct device_type *type = dev->type;
2638
2639 device_remove_file(dev, &dev_attr_removable);
2640 device_remove_file(dev, &dev_attr_waiting_for_supplier);
2641 device_remove_file(dev, &dev_attr_online);
2642 device_remove_groups(dev, dev->groups);
2643
2644 if (type)
2645 device_remove_groups(dev, type->groups);
2646
2647 if (class)
2648 device_remove_groups(dev, class->dev_groups);
2649}
2650
2651static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2652 char *buf)
2653{
2654 return print_dev_t(buf, dev->devt);
2655}
2656static DEVICE_ATTR_RO(dev);
2657
2658/* /sys/devices/ */
2659struct kset *devices_kset;
2660
2661/**
2662 * devices_kset_move_before - Move device in the devices_kset's list.
2663 * @deva: Device to move.
2664 * @devb: Device @deva should come before.
2665 */
2666static void devices_kset_move_before(struct device *deva, struct device *devb)
2667{
2668 if (!devices_kset)
2669 return;
2670 pr_debug("devices_kset: Moving %s before %s\n",
2671 dev_name(deva), dev_name(devb));
2672 spin_lock(&devices_kset->list_lock);
2673 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2674 spin_unlock(&devices_kset->list_lock);
2675}
2676
2677/**
2678 * devices_kset_move_after - Move device in the devices_kset's list.
2679 * @deva: Device to move
2680 * @devb: Device @deva should come after.
2681 */
2682static void devices_kset_move_after(struct device *deva, struct device *devb)
2683{
2684 if (!devices_kset)
2685 return;
2686 pr_debug("devices_kset: Moving %s after %s\n",
2687 dev_name(deva), dev_name(devb));
2688 spin_lock(&devices_kset->list_lock);
2689 list_move(&deva->kobj.entry, &devb->kobj.entry);
2690 spin_unlock(&devices_kset->list_lock);
2691}
2692
2693/**
2694 * devices_kset_move_last - move the device to the end of devices_kset's list.
2695 * @dev: device to move
2696 */
2697void devices_kset_move_last(struct device *dev)
2698{
2699 if (!devices_kset)
2700 return;
2701 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2702 spin_lock(&devices_kset->list_lock);
2703 list_move_tail(&dev->kobj.entry, &devices_kset->list);
2704 spin_unlock(&devices_kset->list_lock);
2705}
2706
2707/**
2708 * device_create_file - create sysfs attribute file for device.
2709 * @dev: device.
2710 * @attr: device attribute descriptor.
2711 */
2712int device_create_file(struct device *dev,
2713 const struct device_attribute *attr)
2714{
2715 int error = 0;
2716
2717 if (dev) {
2718 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2719 "Attribute %s: write permission without 'store'\n",
2720 attr->attr.name);
2721 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2722 "Attribute %s: read permission without 'show'\n",
2723 attr->attr.name);
2724 error = sysfs_create_file(&dev->kobj, &attr->attr);
2725 }
2726
2727 return error;
2728}
2729EXPORT_SYMBOL_GPL(device_create_file);
2730
2731/**
2732 * device_remove_file - remove sysfs attribute file.
2733 * @dev: device.
2734 * @attr: device attribute descriptor.
2735 */
2736void device_remove_file(struct device *dev,
2737 const struct device_attribute *attr)
2738{
2739 if (dev)
2740 sysfs_remove_file(&dev->kobj, &attr->attr);
2741}
2742EXPORT_SYMBOL_GPL(device_remove_file);
2743
2744/**
2745 * device_remove_file_self - remove sysfs attribute file from its own method.
2746 * @dev: device.
2747 * @attr: device attribute descriptor.
2748 *
2749 * See kernfs_remove_self() for details.
2750 */
2751bool device_remove_file_self(struct device *dev,
2752 const struct device_attribute *attr)
2753{
2754 if (dev)
2755 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2756 else
2757 return false;
2758}
2759EXPORT_SYMBOL_GPL(device_remove_file_self);
2760
2761/**
2762 * device_create_bin_file - create sysfs binary attribute file for device.
2763 * @dev: device.
2764 * @attr: device binary attribute descriptor.
2765 */
2766int device_create_bin_file(struct device *dev,
2767 const struct bin_attribute *attr)
2768{
2769 int error = -EINVAL;
2770 if (dev)
2771 error = sysfs_create_bin_file(&dev->kobj, attr);
2772 return error;
2773}
2774EXPORT_SYMBOL_GPL(device_create_bin_file);
2775
2776/**
2777 * device_remove_bin_file - remove sysfs binary attribute file
2778 * @dev: device.
2779 * @attr: device binary attribute descriptor.
2780 */
2781void device_remove_bin_file(struct device *dev,
2782 const struct bin_attribute *attr)
2783{
2784 if (dev)
2785 sysfs_remove_bin_file(&dev->kobj, attr);
2786}
2787EXPORT_SYMBOL_GPL(device_remove_bin_file);
2788
2789static void klist_children_get(struct klist_node *n)
2790{
2791 struct device_private *p = to_device_private_parent(n);
2792 struct device *dev = p->device;
2793
2794 get_device(dev);
2795}
2796
2797static void klist_children_put(struct klist_node *n)
2798{
2799 struct device_private *p = to_device_private_parent(n);
2800 struct device *dev = p->device;
2801
2802 put_device(dev);
2803}
2804
2805/**
2806 * device_initialize - init device structure.
2807 * @dev: device.
2808 *
2809 * This prepares the device for use by other layers by initializing
2810 * its fields.
2811 * It is the first half of device_register(), if called by
2812 * that function, though it can also be called separately, so one
2813 * may use @dev's fields. In particular, get_device()/put_device()
2814 * may be used for reference counting of @dev after calling this
2815 * function.
2816 *
2817 * All fields in @dev must be initialized by the caller to 0, except
2818 * for those explicitly set to some other value. The simplest
2819 * approach is to use kzalloc() to allocate the structure containing
2820 * @dev.
2821 *
2822 * NOTE: Use put_device() to give up your reference instead of freeing
2823 * @dev directly once you have called this function.
2824 */
2825void device_initialize(struct device *dev)
2826{
2827 dev->kobj.kset = devices_kset;
2828 kobject_init(&dev->kobj, &device_ktype);
2829 INIT_LIST_HEAD(&dev->dma_pools);
2830 mutex_init(&dev->mutex);
2831#ifdef CONFIG_PROVE_LOCKING
2832 mutex_init(&dev->lockdep_mutex);
2833#endif
2834 lockdep_set_novalidate_class(&dev->mutex);
2835 spin_lock_init(&dev->devres_lock);
2836 INIT_LIST_HEAD(&dev->devres_head);
2837 device_pm_init(dev);
2838 set_dev_node(dev, -1);
2839#ifdef CONFIG_GENERIC_MSI_IRQ
2840 raw_spin_lock_init(&dev->msi_lock);
2841 INIT_LIST_HEAD(&dev->msi_list);
2842#endif
2843 INIT_LIST_HEAD(&dev->links.consumers);
2844 INIT_LIST_HEAD(&dev->links.suppliers);
2845 INIT_LIST_HEAD(&dev->links.defer_sync);
2846 dev->links.status = DL_DEV_NO_DRIVER;
2847#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2848 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2849 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2850 dev->dma_coherent = dma_default_coherent;
2851#endif
2852}
2853EXPORT_SYMBOL_GPL(device_initialize);
2854
2855struct kobject *virtual_device_parent(struct device *dev)
2856{
2857 static struct kobject *virtual_dir = NULL;
2858
2859 if (!virtual_dir)
2860 virtual_dir = kobject_create_and_add("virtual",
2861 &devices_kset->kobj);
2862
2863 return virtual_dir;
2864}
2865
2866struct class_dir {
2867 struct kobject kobj;
2868 struct class *class;
2869};
2870
2871#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2872
2873static void class_dir_release(struct kobject *kobj)
2874{
2875 struct class_dir *dir = to_class_dir(kobj);
2876 kfree(dir);
2877}
2878
2879static const
2880struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2881{
2882 struct class_dir *dir = to_class_dir(kobj);
2883 return dir->class->ns_type;
2884}
2885
2886static struct kobj_type class_dir_ktype = {
2887 .release = class_dir_release,
2888 .sysfs_ops = &kobj_sysfs_ops,
2889 .child_ns_type = class_dir_child_ns_type
2890};
2891
2892static struct kobject *
2893class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2894{
2895 struct class_dir *dir;
2896 int retval;
2897
2898 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2899 if (!dir)
2900 return ERR_PTR(-ENOMEM);
2901
2902 dir->class = class;
2903 kobject_init(&dir->kobj, &class_dir_ktype);
2904
2905 dir->kobj.kset = &class->p->glue_dirs;
2906
2907 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2908 if (retval < 0) {
2909 kobject_put(&dir->kobj);
2910 return ERR_PTR(retval);
2911 }
2912 return &dir->kobj;
2913}
2914
2915static DEFINE_MUTEX(gdp_mutex);
2916
2917static struct kobject *get_device_parent(struct device *dev,
2918 struct device *parent)
2919{
2920 if (dev->class) {
2921 struct kobject *kobj = NULL;
2922 struct kobject *parent_kobj;
2923 struct kobject *k;
2924
2925#ifdef CONFIG_BLOCK
2926 /* block disks show up in /sys/block */
2927 if (sysfs_deprecated && dev->class == &block_class) {
2928 if (parent && parent->class == &block_class)
2929 return &parent->kobj;
2930 return &block_class.p->subsys.kobj;
2931 }
2932#endif
2933
2934 /*
2935 * If we have no parent, we live in "virtual".
2936 * Class-devices with a non class-device as parent, live
2937 * in a "glue" directory to prevent namespace collisions.
2938 */
2939 if (parent == NULL)
2940 parent_kobj = virtual_device_parent(dev);
2941 else if (parent->class && !dev->class->ns_type)
2942 return &parent->kobj;
2943 else
2944 parent_kobj = &parent->kobj;
2945
2946 mutex_lock(&gdp_mutex);
2947
2948 /* find our class-directory at the parent and reference it */
2949 spin_lock(&dev->class->p->glue_dirs.list_lock);
2950 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2951 if (k->parent == parent_kobj) {
2952 kobj = kobject_get(k);
2953 break;
2954 }
2955 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2956 if (kobj) {
2957 mutex_unlock(&gdp_mutex);
2958 return kobj;
2959 }
2960
2961 /* or create a new class-directory at the parent device */
2962 k = class_dir_create_and_add(dev->class, parent_kobj);
2963 /* do not emit an uevent for this simple "glue" directory */
2964 mutex_unlock(&gdp_mutex);
2965 return k;
2966 }
2967
2968 /* subsystems can specify a default root directory for their devices */
2969 if (!parent && dev->bus && dev->bus->dev_root)
2970 return &dev->bus->dev_root->kobj;
2971
2972 if (parent)
2973 return &parent->kobj;
2974 return NULL;
2975}
2976
2977static inline bool live_in_glue_dir(struct kobject *kobj,
2978 struct device *dev)
2979{
2980 if (!kobj || !dev->class ||
2981 kobj->kset != &dev->class->p->glue_dirs)
2982 return false;
2983 return true;
2984}
2985
2986static inline struct kobject *get_glue_dir(struct device *dev)
2987{
2988 return dev->kobj.parent;
2989}
2990
2991/*
2992 * make sure cleaning up dir as the last step, we need to make
2993 * sure .release handler of kobject is run with holding the
2994 * global lock
2995 */
2996static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2997{
2998 unsigned int ref;
2999
3000 /* see if we live in a "glue" directory */
3001 if (!live_in_glue_dir(glue_dir, dev))
3002 return;
3003
3004 mutex_lock(&gdp_mutex);
3005 /**
3006 * There is a race condition between removing glue directory
3007 * and adding a new device under the glue directory.
3008 *
3009 * CPU1: CPU2:
3010 *
3011 * device_add()
3012 * get_device_parent()
3013 * class_dir_create_and_add()
3014 * kobject_add_internal()
3015 * create_dir() // create glue_dir
3016 *
3017 * device_add()
3018 * get_device_parent()
3019 * kobject_get() // get glue_dir
3020 *
3021 * device_del()
3022 * cleanup_glue_dir()
3023 * kobject_del(glue_dir)
3024 *
3025 * kobject_add()
3026 * kobject_add_internal()
3027 * create_dir() // in glue_dir
3028 * sysfs_create_dir_ns()
3029 * kernfs_create_dir_ns(sd)
3030 *
3031 * sysfs_remove_dir() // glue_dir->sd=NULL
3032 * sysfs_put() // free glue_dir->sd
3033 *
3034 * // sd is freed
3035 * kernfs_new_node(sd)
3036 * kernfs_get(glue_dir)
3037 * kernfs_add_one()
3038 * kernfs_put()
3039 *
3040 * Before CPU1 remove last child device under glue dir, if CPU2 add
3041 * a new device under glue dir, the glue_dir kobject reference count
3042 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3043 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3044 * and sysfs_put(). This result in glue_dir->sd is freed.
3045 *
3046 * Then the CPU2 will see a stale "empty" but still potentially used
3047 * glue dir around in kernfs_new_node().
3048 *
3049 * In order to avoid this happening, we also should make sure that
3050 * kernfs_node for glue_dir is released in CPU1 only when refcount
3051 * for glue_dir kobj is 1.
3052 */
3053 ref = kref_read(&glue_dir->kref);
3054 if (!kobject_has_children(glue_dir) && !--ref)
3055 kobject_del(glue_dir);
3056 kobject_put(glue_dir);
3057 mutex_unlock(&gdp_mutex);
3058}
3059
3060static int device_add_class_symlinks(struct device *dev)
3061{
3062 struct device_node *of_node = dev_of_node(dev);
3063 int error;
3064
3065 if (of_node) {
3066 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3067 if (error)
3068 dev_warn(dev, "Error %d creating of_node link\n",error);
3069 /* An error here doesn't warrant bringing down the device */
3070 }
3071
3072 if (!dev->class)
3073 return 0;
3074
3075 error = sysfs_create_link(&dev->kobj,
3076 &dev->class->p->subsys.kobj,
3077 "subsystem");
3078 if (error)
3079 goto out_devnode;
3080
3081 if (dev->parent && device_is_not_partition(dev)) {
3082 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3083 "device");
3084 if (error)
3085 goto out_subsys;
3086 }
3087
3088#ifdef CONFIG_BLOCK
3089 /* /sys/block has directories and does not need symlinks */
3090 if (sysfs_deprecated && dev->class == &block_class)
3091 return 0;
3092#endif
3093
3094 /* link in the class directory pointing to the device */
3095 error = sysfs_create_link(&dev->class->p->subsys.kobj,
3096 &dev->kobj, dev_name(dev));
3097 if (error)
3098 goto out_device;
3099
3100 return 0;
3101
3102out_device:
3103 sysfs_remove_link(&dev->kobj, "device");
3104
3105out_subsys:
3106 sysfs_remove_link(&dev->kobj, "subsystem");
3107out_devnode:
3108 sysfs_remove_link(&dev->kobj, "of_node");
3109 return error;
3110}
3111
3112static void device_remove_class_symlinks(struct device *dev)
3113{
3114 if (dev_of_node(dev))
3115 sysfs_remove_link(&dev->kobj, "of_node");
3116
3117 if (!dev->class)
3118 return;
3119
3120 if (dev->parent && device_is_not_partition(dev))
3121 sysfs_remove_link(&dev->kobj, "device");
3122 sysfs_remove_link(&dev->kobj, "subsystem");
3123#ifdef CONFIG_BLOCK
3124 if (sysfs_deprecated && dev->class == &block_class)
3125 return;
3126#endif
3127 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3128}
3129
3130/**
3131 * dev_set_name - set a device name
3132 * @dev: device
3133 * @fmt: format string for the device's name
3134 */
3135int dev_set_name(struct device *dev, const char *fmt, ...)
3136{
3137 va_list vargs;
3138 int err;
3139
3140 va_start(vargs, fmt);
3141 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3142 va_end(vargs);
3143 return err;
3144}
3145EXPORT_SYMBOL_GPL(dev_set_name);
3146
3147/**
3148 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3149 * @dev: device
3150 *
3151 * By default we select char/ for new entries. Setting class->dev_obj
3152 * to NULL prevents an entry from being created. class->dev_kobj must
3153 * be set (or cleared) before any devices are registered to the class
3154 * otherwise device_create_sys_dev_entry() and
3155 * device_remove_sys_dev_entry() will disagree about the presence of
3156 * the link.
3157 */
3158static struct kobject *device_to_dev_kobj(struct device *dev)
3159{
3160 struct kobject *kobj;
3161
3162 if (dev->class)
3163 kobj = dev->class->dev_kobj;
3164 else
3165 kobj = sysfs_dev_char_kobj;
3166
3167 return kobj;
3168}
3169
3170static int device_create_sys_dev_entry(struct device *dev)
3171{
3172 struct kobject *kobj = device_to_dev_kobj(dev);
3173 int error = 0;
3174 char devt_str[15];
3175
3176 if (kobj) {
3177 format_dev_t(devt_str, dev->devt);
3178 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3179 }
3180
3181 return error;
3182}
3183
3184static void device_remove_sys_dev_entry(struct device *dev)
3185{
3186 struct kobject *kobj = device_to_dev_kobj(dev);
3187 char devt_str[15];
3188
3189 if (kobj) {
3190 format_dev_t(devt_str, dev->devt);
3191 sysfs_remove_link(kobj, devt_str);
3192 }
3193}
3194
3195static int device_private_init(struct device *dev)
3196{
3197 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3198 if (!dev->p)
3199 return -ENOMEM;
3200 dev->p->device = dev;
3201 klist_init(&dev->p->klist_children, klist_children_get,
3202 klist_children_put);
3203 INIT_LIST_HEAD(&dev->p->deferred_probe);
3204 return 0;
3205}
3206
3207/**
3208 * device_add - add device to device hierarchy.
3209 * @dev: device.
3210 *
3211 * This is part 2 of device_register(), though may be called
3212 * separately _iff_ device_initialize() has been called separately.
3213 *
3214 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3215 * to the global and sibling lists for the device, then
3216 * adds it to the other relevant subsystems of the driver model.
3217 *
3218 * Do not call this routine or device_register() more than once for
3219 * any device structure. The driver model core is not designed to work
3220 * with devices that get unregistered and then spring back to life.
3221 * (Among other things, it's very hard to guarantee that all references
3222 * to the previous incarnation of @dev have been dropped.) Allocate
3223 * and register a fresh new struct device instead.
3224 *
3225 * NOTE: _Never_ directly free @dev after calling this function, even
3226 * if it returned an error! Always use put_device() to give up your
3227 * reference instead.
3228 *
3229 * Rule of thumb is: if device_add() succeeds, you should call
3230 * device_del() when you want to get rid of it. If device_add() has
3231 * *not* succeeded, use *only* put_device() to drop the reference
3232 * count.
3233 */
3234int device_add(struct device *dev)
3235{
3236 struct device *parent;
3237 struct kobject *kobj;
3238 struct class_interface *class_intf;
3239 int error = -EINVAL;
3240 struct kobject *glue_dir = NULL;
3241
3242 dev = get_device(dev);
3243 if (!dev)
3244 goto done;
3245
3246 if (!dev->p) {
3247 error = device_private_init(dev);
3248 if (error)
3249 goto done;
3250 }
3251
3252 /*
3253 * for statically allocated devices, which should all be converted
3254 * some day, we need to initialize the name. We prevent reading back
3255 * the name, and force the use of dev_name()
3256 */
3257 if (dev->init_name) {
3258 dev_set_name(dev, "%s", dev->init_name);
3259 dev->init_name = NULL;
3260 }
3261
3262 /* subsystems can specify simple device enumeration */
3263 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3264 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3265
3266 if (!dev_name(dev)) {
3267 error = -EINVAL;
3268 goto name_error;
3269 }
3270
3271 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3272
3273 parent = get_device(dev->parent);
3274 kobj = get_device_parent(dev, parent);
3275 if (IS_ERR(kobj)) {
3276 error = PTR_ERR(kobj);
3277 goto parent_error;
3278 }
3279 if (kobj)
3280 dev->kobj.parent = kobj;
3281
3282 /* use parent numa_node */
3283 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3284 set_dev_node(dev, dev_to_node(parent));
3285
3286 /* first, register with generic layer. */
3287 /* we require the name to be set before, and pass NULL */
3288 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3289 if (error) {
3290 glue_dir = get_glue_dir(dev);
3291 goto Error;
3292 }
3293
3294 /* notify platform of device entry */
3295 error = device_platform_notify(dev, KOBJ_ADD);
3296 if (error)
3297 goto platform_error;
3298
3299 error = device_create_file(dev, &dev_attr_uevent);
3300 if (error)
3301 goto attrError;
3302
3303 error = device_add_class_symlinks(dev);
3304 if (error)
3305 goto SymlinkError;
3306 error = device_add_attrs(dev);
3307 if (error)
3308 goto AttrsError;
3309 error = bus_add_device(dev);
3310 if (error)
3311 goto BusError;
3312 error = dpm_sysfs_add(dev);
3313 if (error)
3314 goto DPMError;
3315 device_pm_add(dev);
3316
3317 if (MAJOR(dev->devt)) {
3318 error = device_create_file(dev, &dev_attr_dev);
3319 if (error)
3320 goto DevAttrError;
3321
3322 error = device_create_sys_dev_entry(dev);
3323 if (error)
3324 goto SysEntryError;
3325
3326 devtmpfs_create_node(dev);
3327 }
3328
3329 /* Notify clients of device addition. This call must come
3330 * after dpm_sysfs_add() and before kobject_uevent().
3331 */
3332 if (dev->bus)
3333 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3334 BUS_NOTIFY_ADD_DEVICE, dev);
3335
3336 kobject_uevent(&dev->kobj, KOBJ_ADD);
3337
3338 /*
3339 * Check if any of the other devices (consumers) have been waiting for
3340 * this device (supplier) to be added so that they can create a device
3341 * link to it.
3342 *
3343 * This needs to happen after device_pm_add() because device_link_add()
3344 * requires the supplier be registered before it's called.
3345 *
3346 * But this also needs to happen before bus_probe_device() to make sure
3347 * waiting consumers can link to it before the driver is bound to the
3348 * device and the driver sync_state callback is called for this device.
3349 */
3350 if (dev->fwnode && !dev->fwnode->dev) {
3351 dev->fwnode->dev = dev;
3352 fw_devlink_link_device(dev);
3353 }
3354
3355 bus_probe_device(dev);
3356
3357 /*
3358 * If all driver registration is done and a newly added device doesn't
3359 * match with any driver, don't block its consumers from probing in
3360 * case the consumer device is able to operate without this supplier.
3361 */
3362 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3363 fw_devlink_unblock_consumers(dev);
3364
3365 if (parent)
3366 klist_add_tail(&dev->p->knode_parent,
3367 &parent->p->klist_children);
3368
3369 if (dev->class) {
3370 mutex_lock(&dev->class->p->mutex);
3371 /* tie the class to the device */
3372 klist_add_tail(&dev->p->knode_class,
3373 &dev->class->p->klist_devices);
3374
3375 /* notify any interfaces that the device is here */
3376 list_for_each_entry(class_intf,
3377 &dev->class->p->interfaces, node)
3378 if (class_intf->add_dev)
3379 class_intf->add_dev(dev, class_intf);
3380 mutex_unlock(&dev->class->p->mutex);
3381 }
3382done:
3383 put_device(dev);
3384 return error;
3385 SysEntryError:
3386 if (MAJOR(dev->devt))
3387 device_remove_file(dev, &dev_attr_dev);
3388 DevAttrError:
3389 device_pm_remove(dev);
3390 dpm_sysfs_remove(dev);
3391 DPMError:
3392 bus_remove_device(dev);
3393 BusError:
3394 device_remove_attrs(dev);
3395 AttrsError:
3396 device_remove_class_symlinks(dev);
3397 SymlinkError:
3398 device_remove_file(dev, &dev_attr_uevent);
3399 attrError:
3400 device_platform_notify(dev, KOBJ_REMOVE);
3401platform_error:
3402 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3403 glue_dir = get_glue_dir(dev);
3404 kobject_del(&dev->kobj);
3405 Error:
3406 cleanup_glue_dir(dev, glue_dir);
3407parent_error:
3408 put_device(parent);
3409name_error:
3410 kfree(dev->p);
3411 dev->p = NULL;
3412 goto done;
3413}
3414EXPORT_SYMBOL_GPL(device_add);
3415
3416/**
3417 * device_register - register a device with the system.
3418 * @dev: pointer to the device structure
3419 *
3420 * This happens in two clean steps - initialize the device
3421 * and add it to the system. The two steps can be called
3422 * separately, but this is the easiest and most common.
3423 * I.e. you should only call the two helpers separately if
3424 * have a clearly defined need to use and refcount the device
3425 * before it is added to the hierarchy.
3426 *
3427 * For more information, see the kerneldoc for device_initialize()
3428 * and device_add().
3429 *
3430 * NOTE: _Never_ directly free @dev after calling this function, even
3431 * if it returned an error! Always use put_device() to give up the
3432 * reference initialized in this function instead.
3433 */
3434int device_register(struct device *dev)
3435{
3436 device_initialize(dev);
3437 return device_add(dev);
3438}
3439EXPORT_SYMBOL_GPL(device_register);
3440
3441/**
3442 * get_device - increment reference count for device.
3443 * @dev: device.
3444 *
3445 * This simply forwards the call to kobject_get(), though
3446 * we do take care to provide for the case that we get a NULL
3447 * pointer passed in.
3448 */
3449struct device *get_device(struct device *dev)
3450{
3451 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3452}
3453EXPORT_SYMBOL_GPL(get_device);
3454
3455/**
3456 * put_device - decrement reference count.
3457 * @dev: device in question.
3458 */
3459void put_device(struct device *dev)
3460{
3461 /* might_sleep(); */
3462 if (dev)
3463 kobject_put(&dev->kobj);
3464}
3465EXPORT_SYMBOL_GPL(put_device);
3466
3467bool kill_device(struct device *dev)
3468{
3469 /*
3470 * Require the device lock and set the "dead" flag to guarantee that
3471 * the update behavior is consistent with the other bitfields near
3472 * it and that we cannot have an asynchronous probe routine trying
3473 * to run while we are tearing out the bus/class/sysfs from
3474 * underneath the device.
3475 */
3476 device_lock_assert(dev);
3477
3478 if (dev->p->dead)
3479 return false;
3480 dev->p->dead = true;
3481 return true;
3482}
3483EXPORT_SYMBOL_GPL(kill_device);
3484
3485/**
3486 * device_del - delete device from system.
3487 * @dev: device.
3488 *
3489 * This is the first part of the device unregistration
3490 * sequence. This removes the device from the lists we control
3491 * from here, has it removed from the other driver model
3492 * subsystems it was added to in device_add(), and removes it
3493 * from the kobject hierarchy.
3494 *
3495 * NOTE: this should be called manually _iff_ device_add() was
3496 * also called manually.
3497 */
3498void device_del(struct device *dev)
3499{
3500 struct device *parent = dev->parent;
3501 struct kobject *glue_dir = NULL;
3502 struct class_interface *class_intf;
3503 unsigned int noio_flag;
3504
3505 device_lock(dev);
3506 kill_device(dev);
3507 device_unlock(dev);
3508
3509 if (dev->fwnode && dev->fwnode->dev == dev)
3510 dev->fwnode->dev = NULL;
3511
3512 /* Notify clients of device removal. This call must come
3513 * before dpm_sysfs_remove().
3514 */
3515 noio_flag = memalloc_noio_save();
3516 if (dev->bus)
3517 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3518 BUS_NOTIFY_DEL_DEVICE, dev);
3519
3520 dpm_sysfs_remove(dev);
3521 if (parent)
3522 klist_del(&dev->p->knode_parent);
3523 if (MAJOR(dev->devt)) {
3524 devtmpfs_delete_node(dev);
3525 device_remove_sys_dev_entry(dev);
3526 device_remove_file(dev, &dev_attr_dev);
3527 }
3528 if (dev->class) {
3529 device_remove_class_symlinks(dev);
3530
3531 mutex_lock(&dev->class->p->mutex);
3532 /* notify any interfaces that the device is now gone */
3533 list_for_each_entry(class_intf,
3534 &dev->class->p->interfaces, node)
3535 if (class_intf->remove_dev)
3536 class_intf->remove_dev(dev, class_intf);
3537 /* remove the device from the class list */
3538 klist_del(&dev->p->knode_class);
3539 mutex_unlock(&dev->class->p->mutex);
3540 }
3541 device_remove_file(dev, &dev_attr_uevent);
3542 device_remove_attrs(dev);
3543 bus_remove_device(dev);
3544 device_pm_remove(dev);
3545 driver_deferred_probe_del(dev);
3546 device_platform_notify(dev, KOBJ_REMOVE);
3547 device_remove_properties(dev);
3548 device_links_purge(dev);
3549
3550 if (dev->bus)
3551 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3552 BUS_NOTIFY_REMOVED_DEVICE, dev);
3553 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3554 glue_dir = get_glue_dir(dev);
3555 kobject_del(&dev->kobj);
3556 cleanup_glue_dir(dev, glue_dir);
3557 memalloc_noio_restore(noio_flag);
3558 put_device(parent);
3559}
3560EXPORT_SYMBOL_GPL(device_del);
3561
3562/**
3563 * device_unregister - unregister device from system.
3564 * @dev: device going away.
3565 *
3566 * We do this in two parts, like we do device_register(). First,
3567 * we remove it from all the subsystems with device_del(), then
3568 * we decrement the reference count via put_device(). If that
3569 * is the final reference count, the device will be cleaned up
3570 * via device_release() above. Otherwise, the structure will
3571 * stick around until the final reference to the device is dropped.
3572 */
3573void device_unregister(struct device *dev)
3574{
3575 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3576 device_del(dev);
3577 put_device(dev);
3578}
3579EXPORT_SYMBOL_GPL(device_unregister);
3580
3581static struct device *prev_device(struct klist_iter *i)
3582{
3583 struct klist_node *n = klist_prev(i);
3584 struct device *dev = NULL;
3585 struct device_private *p;
3586
3587 if (n) {
3588 p = to_device_private_parent(n);
3589 dev = p->device;
3590 }
3591 return dev;
3592}
3593
3594static struct device *next_device(struct klist_iter *i)
3595{
3596 struct klist_node *n = klist_next(i);
3597 struct device *dev = NULL;
3598 struct device_private *p;
3599
3600 if (n) {
3601 p = to_device_private_parent(n);
3602 dev = p->device;
3603 }
3604 return dev;
3605}
3606
3607/**
3608 * device_get_devnode - path of device node file
3609 * @dev: device
3610 * @mode: returned file access mode
3611 * @uid: returned file owner
3612 * @gid: returned file group
3613 * @tmp: possibly allocated string
3614 *
3615 * Return the relative path of a possible device node.
3616 * Non-default names may need to allocate a memory to compose
3617 * a name. This memory is returned in tmp and needs to be
3618 * freed by the caller.
3619 */
3620const char *device_get_devnode(struct device *dev,
3621 umode_t *mode, kuid_t *uid, kgid_t *gid,
3622 const char **tmp)
3623{
3624 char *s;
3625
3626 *tmp = NULL;
3627
3628 /* the device type may provide a specific name */
3629 if (dev->type && dev->type->devnode)
3630 *tmp = dev->type->devnode(dev, mode, uid, gid);
3631 if (*tmp)
3632 return *tmp;
3633
3634 /* the class may provide a specific name */
3635 if (dev->class && dev->class->devnode)
3636 *tmp = dev->class->devnode(dev, mode);
3637 if (*tmp)
3638 return *tmp;
3639
3640 /* return name without allocation, tmp == NULL */
3641 if (strchr(dev_name(dev), '!') == NULL)
3642 return dev_name(dev);
3643
3644 /* replace '!' in the name with '/' */
3645 s = kstrdup(dev_name(dev), GFP_KERNEL);
3646 if (!s)
3647 return NULL;
3648 strreplace(s, '!', '/');
3649 return *tmp = s;
3650}
3651
3652/**
3653 * device_for_each_child - device child iterator.
3654 * @parent: parent struct device.
3655 * @fn: function to be called for each device.
3656 * @data: data for the callback.
3657 *
3658 * Iterate over @parent's child devices, and call @fn for each,
3659 * passing it @data.
3660 *
3661 * We check the return of @fn each time. If it returns anything
3662 * other than 0, we break out and return that value.
3663 */
3664int device_for_each_child(struct device *parent, void *data,
3665 int (*fn)(struct device *dev, void *data))
3666{
3667 struct klist_iter i;
3668 struct device *child;
3669 int error = 0;
3670
3671 if (!parent->p)
3672 return 0;
3673
3674 klist_iter_init(&parent->p->klist_children, &i);
3675 while (!error && (child = next_device(&i)))
3676 error = fn(child, data);
3677 klist_iter_exit(&i);
3678 return error;
3679}
3680EXPORT_SYMBOL_GPL(device_for_each_child);
3681
3682/**
3683 * device_for_each_child_reverse - device child iterator in reversed order.
3684 * @parent: parent struct device.
3685 * @fn: function to be called for each device.
3686 * @data: data for the callback.
3687 *
3688 * Iterate over @parent's child devices, and call @fn for each,
3689 * passing it @data.
3690 *
3691 * We check the return of @fn each time. If it returns anything
3692 * other than 0, we break out and return that value.
3693 */
3694int device_for_each_child_reverse(struct device *parent, void *data,
3695 int (*fn)(struct device *dev, void *data))
3696{
3697 struct klist_iter i;
3698 struct device *child;
3699 int error = 0;
3700
3701 if (!parent->p)
3702 return 0;
3703
3704 klist_iter_init(&parent->p->klist_children, &i);
3705 while ((child = prev_device(&i)) && !error)
3706 error = fn(child, data);
3707 klist_iter_exit(&i);
3708 return error;
3709}
3710EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3711
3712/**
3713 * device_find_child - device iterator for locating a particular device.
3714 * @parent: parent struct device
3715 * @match: Callback function to check device
3716 * @data: Data to pass to match function
3717 *
3718 * This is similar to the device_for_each_child() function above, but it
3719 * returns a reference to a device that is 'found' for later use, as
3720 * determined by the @match callback.
3721 *
3722 * The callback should return 0 if the device doesn't match and non-zero
3723 * if it does. If the callback returns non-zero and a reference to the
3724 * current device can be obtained, this function will return to the caller
3725 * and not iterate over any more devices.
3726 *
3727 * NOTE: you will need to drop the reference with put_device() after use.
3728 */
3729struct device *device_find_child(struct device *parent, void *data,
3730 int (*match)(struct device *dev, void *data))
3731{
3732 struct klist_iter i;
3733 struct device *child;
3734
3735 if (!parent)
3736 return NULL;
3737
3738 klist_iter_init(&parent->p->klist_children, &i);
3739 while ((child = next_device(&i)))
3740 if (match(child, data) && get_device(child))
3741 break;
3742 klist_iter_exit(&i);
3743 return child;
3744}
3745EXPORT_SYMBOL_GPL(device_find_child);
3746
3747/**
3748 * device_find_child_by_name - device iterator for locating a child device.
3749 * @parent: parent struct device
3750 * @name: name of the child device
3751 *
3752 * This is similar to the device_find_child() function above, but it
3753 * returns a reference to a device that has the name @name.
3754 *
3755 * NOTE: you will need to drop the reference with put_device() after use.
3756 */
3757struct device *device_find_child_by_name(struct device *parent,
3758 const char *name)
3759{
3760 struct klist_iter i;
3761 struct device *child;
3762
3763 if (!parent)
3764 return NULL;
3765
3766 klist_iter_init(&parent->p->klist_children, &i);
3767 while ((child = next_device(&i)))
3768 if (sysfs_streq(dev_name(child), name) && get_device(child))
3769 break;
3770 klist_iter_exit(&i);
3771 return child;
3772}
3773EXPORT_SYMBOL_GPL(device_find_child_by_name);
3774
3775int __init devices_init(void)
3776{
3777 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3778 if (!devices_kset)
3779 return -ENOMEM;
3780 dev_kobj = kobject_create_and_add("dev", NULL);
3781 if (!dev_kobj)
3782 goto dev_kobj_err;
3783 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3784 if (!sysfs_dev_block_kobj)
3785 goto block_kobj_err;
3786 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3787 if (!sysfs_dev_char_kobj)
3788 goto char_kobj_err;
3789
3790 return 0;
3791
3792 char_kobj_err:
3793 kobject_put(sysfs_dev_block_kobj);
3794 block_kobj_err:
3795 kobject_put(dev_kobj);
3796 dev_kobj_err:
3797 kset_unregister(devices_kset);
3798 return -ENOMEM;
3799}
3800
3801static int device_check_offline(struct device *dev, void *not_used)
3802{
3803 int ret;
3804
3805 ret = device_for_each_child(dev, NULL, device_check_offline);
3806 if (ret)
3807 return ret;
3808
3809 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3810}
3811
3812/**
3813 * device_offline - Prepare the device for hot-removal.
3814 * @dev: Device to be put offline.
3815 *
3816 * Execute the device bus type's .offline() callback, if present, to prepare
3817 * the device for a subsequent hot-removal. If that succeeds, the device must
3818 * not be used until either it is removed or its bus type's .online() callback
3819 * is executed.
3820 *
3821 * Call under device_hotplug_lock.
3822 */
3823int device_offline(struct device *dev)
3824{
3825 int ret;
3826
3827 if (dev->offline_disabled)
3828 return -EPERM;
3829
3830 ret = device_for_each_child(dev, NULL, device_check_offline);
3831 if (ret)
3832 return ret;
3833
3834 device_lock(dev);
3835 if (device_supports_offline(dev)) {
3836 if (dev->offline) {
3837 ret = 1;
3838 } else {
3839 ret = dev->bus->offline(dev);
3840 if (!ret) {
3841 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3842 dev->offline = true;
3843 }
3844 }
3845 }
3846 device_unlock(dev);
3847
3848 return ret;
3849}
3850
3851/**
3852 * device_online - Put the device back online after successful device_offline().
3853 * @dev: Device to be put back online.
3854 *
3855 * If device_offline() has been successfully executed for @dev, but the device
3856 * has not been removed subsequently, execute its bus type's .online() callback
3857 * to indicate that the device can be used again.
3858 *
3859 * Call under device_hotplug_lock.
3860 */
3861int device_online(struct device *dev)
3862{
3863 int ret = 0;
3864
3865 device_lock(dev);
3866 if (device_supports_offline(dev)) {
3867 if (dev->offline) {
3868 ret = dev->bus->online(dev);
3869 if (!ret) {
3870 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3871 dev->offline = false;
3872 }
3873 } else {
3874 ret = 1;
3875 }
3876 }
3877 device_unlock(dev);
3878
3879 return ret;
3880}
3881
3882struct root_device {
3883 struct device dev;
3884 struct module *owner;
3885};
3886
3887static inline struct root_device *to_root_device(struct device *d)
3888{
3889 return container_of(d, struct root_device, dev);
3890}
3891
3892static void root_device_release(struct device *dev)
3893{
3894 kfree(to_root_device(dev));
3895}
3896
3897/**
3898 * __root_device_register - allocate and register a root device
3899 * @name: root device name
3900 * @owner: owner module of the root device, usually THIS_MODULE
3901 *
3902 * This function allocates a root device and registers it
3903 * using device_register(). In order to free the returned
3904 * device, use root_device_unregister().
3905 *
3906 * Root devices are dummy devices which allow other devices
3907 * to be grouped under /sys/devices. Use this function to
3908 * allocate a root device and then use it as the parent of
3909 * any device which should appear under /sys/devices/{name}
3910 *
3911 * The /sys/devices/{name} directory will also contain a
3912 * 'module' symlink which points to the @owner directory
3913 * in sysfs.
3914 *
3915 * Returns &struct device pointer on success, or ERR_PTR() on error.
3916 *
3917 * Note: You probably want to use root_device_register().
3918 */
3919struct device *__root_device_register(const char *name, struct module *owner)
3920{
3921 struct root_device *root;
3922 int err = -ENOMEM;
3923
3924 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3925 if (!root)
3926 return ERR_PTR(err);
3927
3928 err = dev_set_name(&root->dev, "%s", name);
3929 if (err) {
3930 kfree(root);
3931 return ERR_PTR(err);
3932 }
3933
3934 root->dev.release = root_device_release;
3935
3936 err = device_register(&root->dev);
3937 if (err) {
3938 put_device(&root->dev);
3939 return ERR_PTR(err);
3940 }
3941
3942#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3943 if (owner) {
3944 struct module_kobject *mk = &owner->mkobj;
3945
3946 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3947 if (err) {
3948 device_unregister(&root->dev);
3949 return ERR_PTR(err);
3950 }
3951 root->owner = owner;
3952 }
3953#endif
3954
3955 return &root->dev;
3956}
3957EXPORT_SYMBOL_GPL(__root_device_register);
3958
3959/**
3960 * root_device_unregister - unregister and free a root device
3961 * @dev: device going away
3962 *
3963 * This function unregisters and cleans up a device that was created by
3964 * root_device_register().
3965 */
3966void root_device_unregister(struct device *dev)
3967{
3968 struct root_device *root = to_root_device(dev);
3969
3970 if (root->owner)
3971 sysfs_remove_link(&root->dev.kobj, "module");
3972
3973 device_unregister(dev);
3974}
3975EXPORT_SYMBOL_GPL(root_device_unregister);
3976
3977
3978static void device_create_release(struct device *dev)
3979{
3980 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3981 kfree(dev);
3982}
3983
3984static __printf(6, 0) struct device *
3985device_create_groups_vargs(struct class *class, struct device *parent,
3986 dev_t devt, void *drvdata,
3987 const struct attribute_group **groups,
3988 const char *fmt, va_list args)
3989{
3990 struct device *dev = NULL;
3991 int retval = -ENODEV;
3992
3993 if (class == NULL || IS_ERR(class))
3994 goto error;
3995
3996 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3997 if (!dev) {
3998 retval = -ENOMEM;
3999 goto error;
4000 }
4001
4002 device_initialize(dev);
4003 dev->devt = devt;
4004 dev->class = class;
4005 dev->parent = parent;
4006 dev->groups = groups;
4007 dev->release = device_create_release;
4008 dev_set_drvdata(dev, drvdata);
4009
4010 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4011 if (retval)
4012 goto error;
4013
4014 retval = device_add(dev);
4015 if (retval)
4016 goto error;
4017
4018 return dev;
4019
4020error:
4021 put_device(dev);
4022 return ERR_PTR(retval);
4023}
4024
4025/**
4026 * device_create - creates a device and registers it with sysfs
4027 * @class: pointer to the struct class that this device should be registered to
4028 * @parent: pointer to the parent struct device of this new device, if any
4029 * @devt: the dev_t for the char device to be added
4030 * @drvdata: the data to be added to the device for callbacks
4031 * @fmt: string for the device's name
4032 *
4033 * This function can be used by char device classes. A struct device
4034 * will be created in sysfs, registered to the specified class.
4035 *
4036 * A "dev" file will be created, showing the dev_t for the device, if
4037 * the dev_t is not 0,0.
4038 * If a pointer to a parent struct device is passed in, the newly created
4039 * struct device will be a child of that device in sysfs.
4040 * The pointer to the struct device will be returned from the call.
4041 * Any further sysfs files that might be required can be created using this
4042 * pointer.
4043 *
4044 * Returns &struct device pointer on success, or ERR_PTR() on error.
4045 *
4046 * Note: the struct class passed to this function must have previously
4047 * been created with a call to class_create().
4048 */
4049struct device *device_create(struct class *class, struct device *parent,
4050 dev_t devt, void *drvdata, const char *fmt, ...)
4051{
4052 va_list vargs;
4053 struct device *dev;
4054
4055 va_start(vargs, fmt);
4056 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4057 fmt, vargs);
4058 va_end(vargs);
4059 return dev;
4060}
4061EXPORT_SYMBOL_GPL(device_create);
4062
4063/**
4064 * device_create_with_groups - creates a device and registers it with sysfs
4065 * @class: pointer to the struct class that this device should be registered to
4066 * @parent: pointer to the parent struct device of this new device, if any
4067 * @devt: the dev_t for the char device to be added
4068 * @drvdata: the data to be added to the device for callbacks
4069 * @groups: NULL-terminated list of attribute groups to be created
4070 * @fmt: string for the device's name
4071 *
4072 * This function can be used by char device classes. A struct device
4073 * will be created in sysfs, registered to the specified class.
4074 * Additional attributes specified in the groups parameter will also
4075 * be created automatically.
4076 *
4077 * A "dev" file will be created, showing the dev_t for the device, if
4078 * the dev_t is not 0,0.
4079 * If a pointer to a parent struct device is passed in, the newly created
4080 * struct device will be a child of that device in sysfs.
4081 * The pointer to the struct device will be returned from the call.
4082 * Any further sysfs files that might be required can be created using this
4083 * pointer.
4084 *
4085 * Returns &struct device pointer on success, or ERR_PTR() on error.
4086 *
4087 * Note: the struct class passed to this function must have previously
4088 * been created with a call to class_create().
4089 */
4090struct device *device_create_with_groups(struct class *class,
4091 struct device *parent, dev_t devt,
4092 void *drvdata,
4093 const struct attribute_group **groups,
4094 const char *fmt, ...)
4095{
4096 va_list vargs;
4097 struct device *dev;
4098
4099 va_start(vargs, fmt);
4100 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4101 fmt, vargs);
4102 va_end(vargs);
4103 return dev;
4104}
4105EXPORT_SYMBOL_GPL(device_create_with_groups);
4106
4107/**
4108 * device_destroy - removes a device that was created with device_create()
4109 * @class: pointer to the struct class that this device was registered with
4110 * @devt: the dev_t of the device that was previously registered
4111 *
4112 * This call unregisters and cleans up a device that was created with a
4113 * call to device_create().
4114 */
4115void device_destroy(struct class *class, dev_t devt)
4116{
4117 struct device *dev;
4118
4119 dev = class_find_device_by_devt(class, devt);
4120 if (dev) {
4121 put_device(dev);
4122 device_unregister(dev);
4123 }
4124}
4125EXPORT_SYMBOL_GPL(device_destroy);
4126
4127/**
4128 * device_rename - renames a device
4129 * @dev: the pointer to the struct device to be renamed
4130 * @new_name: the new name of the device
4131 *
4132 * It is the responsibility of the caller to provide mutual
4133 * exclusion between two different calls of device_rename
4134 * on the same device to ensure that new_name is valid and
4135 * won't conflict with other devices.
4136 *
4137 * Note: Don't call this function. Currently, the networking layer calls this
4138 * function, but that will change. The following text from Kay Sievers offers
4139 * some insight:
4140 *
4141 * Renaming devices is racy at many levels, symlinks and other stuff are not
4142 * replaced atomically, and you get a "move" uevent, but it's not easy to
4143 * connect the event to the old and new device. Device nodes are not renamed at
4144 * all, there isn't even support for that in the kernel now.
4145 *
4146 * In the meantime, during renaming, your target name might be taken by another
4147 * driver, creating conflicts. Or the old name is taken directly after you
4148 * renamed it -- then you get events for the same DEVPATH, before you even see
4149 * the "move" event. It's just a mess, and nothing new should ever rely on
4150 * kernel device renaming. Besides that, it's not even implemented now for
4151 * other things than (driver-core wise very simple) network devices.
4152 *
4153 * We are currently about to change network renaming in udev to completely
4154 * disallow renaming of devices in the same namespace as the kernel uses,
4155 * because we can't solve the problems properly, that arise with swapping names
4156 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4157 * be allowed to some other name than eth[0-9]*, for the aforementioned
4158 * reasons.
4159 *
4160 * Make up a "real" name in the driver before you register anything, or add
4161 * some other attributes for userspace to find the device, or use udev to add
4162 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4163 * don't even want to get into that and try to implement the missing pieces in
4164 * the core. We really have other pieces to fix in the driver core mess. :)
4165 */
4166int device_rename(struct device *dev, const char *new_name)
4167{
4168 struct kobject *kobj = &dev->kobj;
4169 char *old_device_name = NULL;
4170 int error;
4171
4172 dev = get_device(dev);
4173 if (!dev)
4174 return -EINVAL;
4175
4176 dev_dbg(dev, "renaming to %s\n", new_name);
4177
4178 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4179 if (!old_device_name) {
4180 error = -ENOMEM;
4181 goto out;
4182 }
4183
4184 if (dev->class) {
4185 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4186 kobj, old_device_name,
4187 new_name, kobject_namespace(kobj));
4188 if (error)
4189 goto out;
4190 }
4191
4192 error = kobject_rename(kobj, new_name);
4193 if (error)
4194 goto out;
4195
4196out:
4197 put_device(dev);
4198
4199 kfree(old_device_name);
4200
4201 return error;
4202}
4203EXPORT_SYMBOL_GPL(device_rename);
4204
4205static int device_move_class_links(struct device *dev,
4206 struct device *old_parent,
4207 struct device *new_parent)
4208{
4209 int error = 0;
4210
4211 if (old_parent)
4212 sysfs_remove_link(&dev->kobj, "device");
4213 if (new_parent)
4214 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4215 "device");
4216 return error;
4217}
4218
4219/**
4220 * device_move - moves a device to a new parent
4221 * @dev: the pointer to the struct device to be moved
4222 * @new_parent: the new parent of the device (can be NULL)
4223 * @dpm_order: how to reorder the dpm_list
4224 */
4225int device_move(struct device *dev, struct device *new_parent,
4226 enum dpm_order dpm_order)
4227{
4228 int error;
4229 struct device *old_parent;
4230 struct kobject *new_parent_kobj;
4231
4232 dev = get_device(dev);
4233 if (!dev)
4234 return -EINVAL;
4235
4236 device_pm_lock();
4237 new_parent = get_device(new_parent);
4238 new_parent_kobj = get_device_parent(dev, new_parent);
4239 if (IS_ERR(new_parent_kobj)) {
4240 error = PTR_ERR(new_parent_kobj);
4241 put_device(new_parent);
4242 goto out;
4243 }
4244
4245 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4246 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4247 error = kobject_move(&dev->kobj, new_parent_kobj);
4248 if (error) {
4249 cleanup_glue_dir(dev, new_parent_kobj);
4250 put_device(new_parent);
4251 goto out;
4252 }
4253 old_parent = dev->parent;
4254 dev->parent = new_parent;
4255 if (old_parent)
4256 klist_remove(&dev->p->knode_parent);
4257 if (new_parent) {
4258 klist_add_tail(&dev->p->knode_parent,
4259 &new_parent->p->klist_children);
4260 set_dev_node(dev, dev_to_node(new_parent));
4261 }
4262
4263 if (dev->class) {
4264 error = device_move_class_links(dev, old_parent, new_parent);
4265 if (error) {
4266 /* We ignore errors on cleanup since we're hosed anyway... */
4267 device_move_class_links(dev, new_parent, old_parent);
4268 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4269 if (new_parent)
4270 klist_remove(&dev->p->knode_parent);
4271 dev->parent = old_parent;
4272 if (old_parent) {
4273 klist_add_tail(&dev->p->knode_parent,
4274 &old_parent->p->klist_children);
4275 set_dev_node(dev, dev_to_node(old_parent));
4276 }
4277 }
4278 cleanup_glue_dir(dev, new_parent_kobj);
4279 put_device(new_parent);
4280 goto out;
4281 }
4282 }
4283 switch (dpm_order) {
4284 case DPM_ORDER_NONE:
4285 break;
4286 case DPM_ORDER_DEV_AFTER_PARENT:
4287 device_pm_move_after(dev, new_parent);
4288 devices_kset_move_after(dev, new_parent);
4289 break;
4290 case DPM_ORDER_PARENT_BEFORE_DEV:
4291 device_pm_move_before(new_parent, dev);
4292 devices_kset_move_before(new_parent, dev);
4293 break;
4294 case DPM_ORDER_DEV_LAST:
4295 device_pm_move_last(dev);
4296 devices_kset_move_last(dev);
4297 break;
4298 }
4299
4300 put_device(old_parent);
4301out:
4302 device_pm_unlock();
4303 put_device(dev);
4304 return error;
4305}
4306EXPORT_SYMBOL_GPL(device_move);
4307
4308static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4309 kgid_t kgid)
4310{
4311 struct kobject *kobj = &dev->kobj;
4312 struct class *class = dev->class;
4313 const struct device_type *type = dev->type;
4314 int error;
4315
4316 if (class) {
4317 /*
4318 * Change the device groups of the device class for @dev to
4319 * @kuid/@kgid.
4320 */
4321 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4322 kgid);
4323 if (error)
4324 return error;
4325 }
4326
4327 if (type) {
4328 /*
4329 * Change the device groups of the device type for @dev to
4330 * @kuid/@kgid.
4331 */
4332 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4333 kgid);
4334 if (error)
4335 return error;
4336 }
4337
4338 /* Change the device groups of @dev to @kuid/@kgid. */
4339 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4340 if (error)
4341 return error;
4342
4343 if (device_supports_offline(dev) && !dev->offline_disabled) {
4344 /* Change online device attributes of @dev to @kuid/@kgid. */
4345 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4346 kuid, kgid);
4347 if (error)
4348 return error;
4349 }
4350
4351 return 0;
4352}
4353
4354/**
4355 * device_change_owner - change the owner of an existing device.
4356 * @dev: device.
4357 * @kuid: new owner's kuid
4358 * @kgid: new owner's kgid
4359 *
4360 * This changes the owner of @dev and its corresponding sysfs entries to
4361 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4362 * core.
4363 *
4364 * Returns 0 on success or error code on failure.
4365 */
4366int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4367{
4368 int error;
4369 struct kobject *kobj = &dev->kobj;
4370
4371 dev = get_device(dev);
4372 if (!dev)
4373 return -EINVAL;
4374
4375 /*
4376 * Change the kobject and the default attributes and groups of the
4377 * ktype associated with it to @kuid/@kgid.
4378 */
4379 error = sysfs_change_owner(kobj, kuid, kgid);
4380 if (error)
4381 goto out;
4382
4383 /*
4384 * Change the uevent file for @dev to the new owner. The uevent file
4385 * was created in a separate step when @dev got added and we mirror
4386 * that step here.
4387 */
4388 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4389 kgid);
4390 if (error)
4391 goto out;
4392
4393 /*
4394 * Change the device groups, the device groups associated with the
4395 * device class, and the groups associated with the device type of @dev
4396 * to @kuid/@kgid.
4397 */
4398 error = device_attrs_change_owner(dev, kuid, kgid);
4399 if (error)
4400 goto out;
4401
4402 error = dpm_sysfs_change_owner(dev, kuid, kgid);
4403 if (error)
4404 goto out;
4405
4406#ifdef CONFIG_BLOCK
4407 if (sysfs_deprecated && dev->class == &block_class)
4408 goto out;
4409#endif
4410
4411 /*
4412 * Change the owner of the symlink located in the class directory of
4413 * the device class associated with @dev which points to the actual
4414 * directory entry for @dev to @kuid/@kgid. This ensures that the
4415 * symlink shows the same permissions as its target.
4416 */
4417 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4418 dev_name(dev), kuid, kgid);
4419 if (error)
4420 goto out;
4421
4422out:
4423 put_device(dev);
4424 return error;
4425}
4426EXPORT_SYMBOL_GPL(device_change_owner);
4427
4428/**
4429 * device_shutdown - call ->shutdown() on each device to shutdown.
4430 */
4431void device_shutdown(void)
4432{
4433 struct device *dev, *parent;
4434
4435 wait_for_device_probe();
4436 device_block_probing();
4437
4438 cpufreq_suspend();
4439
4440 spin_lock(&devices_kset->list_lock);
4441 /*
4442 * Walk the devices list backward, shutting down each in turn.
4443 * Beware that device unplug events may also start pulling
4444 * devices offline, even as the system is shutting down.
4445 */
4446 while (!list_empty(&devices_kset->list)) {
4447 dev = list_entry(devices_kset->list.prev, struct device,
4448 kobj.entry);
4449
4450 /*
4451 * hold reference count of device's parent to
4452 * prevent it from being freed because parent's
4453 * lock is to be held
4454 */
4455 parent = get_device(dev->parent);
4456 get_device(dev);
4457 /*
4458 * Make sure the device is off the kset list, in the
4459 * event that dev->*->shutdown() doesn't remove it.
4460 */
4461 list_del_init(&dev->kobj.entry);
4462 spin_unlock(&devices_kset->list_lock);
4463
4464 /* hold lock to avoid race with probe/release */
4465 if (parent)
4466 device_lock(parent);
4467 device_lock(dev);
4468
4469 /* Don't allow any more runtime suspends */
4470 pm_runtime_get_noresume(dev);
4471 pm_runtime_barrier(dev);
4472
4473 if (dev->class && dev->class->shutdown_pre) {
4474 if (initcall_debug)
4475 dev_info(dev, "shutdown_pre\n");
4476 dev->class->shutdown_pre(dev);
4477 }
4478 if (dev->bus && dev->bus->shutdown) {
4479 if (initcall_debug)
4480 dev_info(dev, "shutdown\n");
4481 dev->bus->shutdown(dev);
4482 } else if (dev->driver && dev->driver->shutdown) {
4483 if (initcall_debug)
4484 dev_info(dev, "shutdown\n");
4485 dev->driver->shutdown(dev);
4486 }
4487
4488 device_unlock(dev);
4489 if (parent)
4490 device_unlock(parent);
4491
4492 put_device(dev);
4493 put_device(parent);
4494
4495 spin_lock(&devices_kset->list_lock);
4496 }
4497 spin_unlock(&devices_kset->list_lock);
4498}
4499
4500/*
4501 * Device logging functions
4502 */
4503
4504#ifdef CONFIG_PRINTK
4505static void
4506set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4507{
4508 const char *subsys;
4509
4510 memset(dev_info, 0, sizeof(*dev_info));
4511
4512 if (dev->class)
4513 subsys = dev->class->name;
4514 else if (dev->bus)
4515 subsys = dev->bus->name;
4516 else
4517 return;
4518
4519 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4520
4521 /*
4522 * Add device identifier DEVICE=:
4523 * b12:8 block dev_t
4524 * c127:3 char dev_t
4525 * n8 netdev ifindex
4526 * +sound:card0 subsystem:devname
4527 */
4528 if (MAJOR(dev->devt)) {
4529 char c;
4530
4531 if (strcmp(subsys, "block") == 0)
4532 c = 'b';
4533 else
4534 c = 'c';
4535
4536 snprintf(dev_info->device, sizeof(dev_info->device),
4537 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4538 } else if (strcmp(subsys, "net") == 0) {
4539 struct net_device *net = to_net_dev(dev);
4540
4541 snprintf(dev_info->device, sizeof(dev_info->device),
4542 "n%u", net->ifindex);
4543 } else {
4544 snprintf(dev_info->device, sizeof(dev_info->device),
4545 "+%s:%s", subsys, dev_name(dev));
4546 }
4547}
4548
4549int dev_vprintk_emit(int level, const struct device *dev,
4550 const char *fmt, va_list args)
4551{
4552 struct dev_printk_info dev_info;
4553
4554 set_dev_info(dev, &dev_info);
4555
4556 return vprintk_emit(0, level, &dev_info, fmt, args);
4557}
4558EXPORT_SYMBOL(dev_vprintk_emit);
4559
4560int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4561{
4562 va_list args;
4563 int r;
4564
4565 va_start(args, fmt);
4566
4567 r = dev_vprintk_emit(level, dev, fmt, args);
4568
4569 va_end(args);
4570
4571 return r;
4572}
4573EXPORT_SYMBOL(dev_printk_emit);
4574
4575static void __dev_printk(const char *level, const struct device *dev,
4576 struct va_format *vaf)
4577{
4578 if (dev)
4579 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4580 dev_driver_string(dev), dev_name(dev), vaf);
4581 else
4582 printk("%s(NULL device *): %pV", level, vaf);
4583}
4584
4585void dev_printk(const char *level, const struct device *dev,
4586 const char *fmt, ...)
4587{
4588 struct va_format vaf;
4589 va_list args;
4590
4591 va_start(args, fmt);
4592
4593 vaf.fmt = fmt;
4594 vaf.va = &args;
4595
4596 __dev_printk(level, dev, &vaf);
4597
4598 va_end(args);
4599}
4600EXPORT_SYMBOL(dev_printk);
4601
4602#define define_dev_printk_level(func, kern_level) \
4603void func(const struct device *dev, const char *fmt, ...) \
4604{ \
4605 struct va_format vaf; \
4606 va_list args; \
4607 \
4608 va_start(args, fmt); \
4609 \
4610 vaf.fmt = fmt; \
4611 vaf.va = &args; \
4612 \
4613 __dev_printk(kern_level, dev, &vaf); \
4614 \
4615 va_end(args); \
4616} \
4617EXPORT_SYMBOL(func);
4618
4619define_dev_printk_level(_dev_emerg, KERN_EMERG);
4620define_dev_printk_level(_dev_alert, KERN_ALERT);
4621define_dev_printk_level(_dev_crit, KERN_CRIT);
4622define_dev_printk_level(_dev_err, KERN_ERR);
4623define_dev_printk_level(_dev_warn, KERN_WARNING);
4624define_dev_printk_level(_dev_notice, KERN_NOTICE);
4625define_dev_printk_level(_dev_info, KERN_INFO);
4626
4627#endif
4628
4629/**
4630 * dev_err_probe - probe error check and log helper
4631 * @dev: the pointer to the struct device
4632 * @err: error value to test
4633 * @fmt: printf-style format string
4634 * @...: arguments as specified in the format string
4635 *
4636 * This helper implements common pattern present in probe functions for error
4637 * checking: print debug or error message depending if the error value is
4638 * -EPROBE_DEFER and propagate error upwards.
4639 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4640 * checked later by reading devices_deferred debugfs attribute.
4641 * It replaces code sequence::
4642 *
4643 * if (err != -EPROBE_DEFER)
4644 * dev_err(dev, ...);
4645 * else
4646 * dev_dbg(dev, ...);
4647 * return err;
4648 *
4649 * with::
4650 *
4651 * return dev_err_probe(dev, err, ...);
4652 *
4653 * Returns @err.
4654 *
4655 */
4656int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4657{
4658 struct va_format vaf;
4659 va_list args;
4660
4661 va_start(args, fmt);
4662 vaf.fmt = fmt;
4663 vaf.va = &args;
4664
4665 if (err != -EPROBE_DEFER) {
4666 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4667 } else {
4668 device_set_deferred_probe_reason(dev, &vaf);
4669 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4670 }
4671
4672 va_end(args);
4673
4674 return err;
4675}
4676EXPORT_SYMBOL_GPL(dev_err_probe);
4677
4678static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4679{
4680 return fwnode && !IS_ERR(fwnode->secondary);
4681}
4682
4683/**
4684 * set_primary_fwnode - Change the primary firmware node of a given device.
4685 * @dev: Device to handle.
4686 * @fwnode: New primary firmware node of the device.
4687 *
4688 * Set the device's firmware node pointer to @fwnode, but if a secondary
4689 * firmware node of the device is present, preserve it.
4690 *
4691 * Valid fwnode cases are:
4692 * - primary --> secondary --> -ENODEV
4693 * - primary --> NULL
4694 * - secondary --> -ENODEV
4695 * - NULL
4696 */
4697void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4698{
4699 struct device *parent = dev->parent;
4700 struct fwnode_handle *fn = dev->fwnode;
4701
4702 if (fwnode) {
4703 if (fwnode_is_primary(fn))
4704 fn = fn->secondary;
4705
4706 if (fn) {
4707 WARN_ON(fwnode->secondary);
4708 fwnode->secondary = fn;
4709 }
4710 dev->fwnode = fwnode;
4711 } else {
4712 if (fwnode_is_primary(fn)) {
4713 dev->fwnode = fn->secondary;
4714 /* Set fn->secondary = NULL, so fn remains the primary fwnode */
4715 if (!(parent && fn == parent->fwnode))
4716 fn->secondary = NULL;
4717 } else {
4718 dev->fwnode = NULL;
4719 }
4720 }
4721}
4722EXPORT_SYMBOL_GPL(set_primary_fwnode);
4723
4724/**
4725 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4726 * @dev: Device to handle.
4727 * @fwnode: New secondary firmware node of the device.
4728 *
4729 * If a primary firmware node of the device is present, set its secondary
4730 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
4731 * @fwnode.
4732 */
4733void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4734{
4735 if (fwnode)
4736 fwnode->secondary = ERR_PTR(-ENODEV);
4737
4738 if (fwnode_is_primary(dev->fwnode))
4739 dev->fwnode->secondary = fwnode;
4740 else
4741 dev->fwnode = fwnode;
4742}
4743EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4744
4745/**
4746 * device_set_of_node_from_dev - reuse device-tree node of another device
4747 * @dev: device whose device-tree node is being set
4748 * @dev2: device whose device-tree node is being reused
4749 *
4750 * Takes another reference to the new device-tree node after first dropping
4751 * any reference held to the old node.
4752 */
4753void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4754{
4755 of_node_put(dev->of_node);
4756 dev->of_node = of_node_get(dev2->of_node);
4757 dev->of_node_reused = true;
4758}
4759EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4760
4761void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4762{
4763 dev->fwnode = fwnode;
4764 dev->of_node = to_of_node(fwnode);
4765}
4766EXPORT_SYMBOL_GPL(device_set_node);
4767
4768int device_match_name(struct device *dev, const void *name)
4769{
4770 return sysfs_streq(dev_name(dev), name);
4771}
4772EXPORT_SYMBOL_GPL(device_match_name);
4773
4774int device_match_of_node(struct device *dev, const void *np)
4775{
4776 return dev->of_node == np;
4777}
4778EXPORT_SYMBOL_GPL(device_match_of_node);
4779
4780int device_match_fwnode(struct device *dev, const void *fwnode)
4781{
4782 return dev_fwnode(dev) == fwnode;
4783}
4784EXPORT_SYMBOL_GPL(device_match_fwnode);
4785
4786int device_match_devt(struct device *dev, const void *pdevt)
4787{
4788 return dev->devt == *(dev_t *)pdevt;
4789}
4790EXPORT_SYMBOL_GPL(device_match_devt);
4791
4792int device_match_acpi_dev(struct device *dev, const void *adev)
4793{
4794 return ACPI_COMPANION(dev) == adev;
4795}
4796EXPORT_SYMBOL(device_match_acpi_dev);
4797
4798int device_match_any(struct device *dev, const void *unused)
4799{
4800 return 1;
4801}
4802EXPORT_SYMBOL_GPL(device_match_any);