Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/random.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/mmu_notifier.h>
61#include <linux/migrate.h>
62#include <linux/hugetlb.h>
63#include <linux/sched/rt.h>
64#include <linux/sched/mm.h>
65#include <linux/page_owner.h>
66#include <linux/kthread.h>
67#include <linux/memcontrol.h>
68#include <linux/ftrace.h>
69#include <linux/lockdep.h>
70#include <linux/nmi.h>
71#include <linux/psi.h>
72#include <linux/padata.h>
73#include <linux/khugepaged.h>
74#include <linux/buffer_head.h>
75#include <asm/sections.h>
76#include <asm/tlbflush.h>
77#include <asm/div64.h>
78#include "internal.h"
79#include "shuffle.h"
80#include "page_reporting.h"
81
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
123#define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125struct pagesets {
126 local_lock_t lock;
127};
128static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130};
131
132#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133DEFINE_PER_CPU(int, numa_node);
134EXPORT_PER_CPU_SYMBOL(numa_node);
135#endif
136
137DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139#ifdef CONFIG_HAVE_MEMORYLESS_NODES
140/*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148#endif
149
150/* work_structs for global per-cpu drains */
151struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154};
155static DEFINE_MUTEX(pcpu_drain_mutex);
156static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159volatile unsigned long latent_entropy __latent_entropy;
160EXPORT_SYMBOL(latent_entropy);
161#endif
162
163/*
164 * Array of node states.
165 */
166nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169#ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171#ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173#endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176#endif /* NUMA */
177};
178EXPORT_SYMBOL(node_states);
179
180atomic_long_t _totalram_pages __read_mostly;
181EXPORT_SYMBOL(_totalram_pages);
182unsigned long totalreserve_pages __read_mostly;
183unsigned long totalcma_pages __read_mostly;
184
185int percpu_pagelist_high_fraction;
186gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188EXPORT_SYMBOL(init_on_alloc);
189
190DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191EXPORT_SYMBOL(init_on_free);
192
193static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195static int __init early_init_on_alloc(char *buf)
196{
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199}
200early_param("init_on_alloc", early_init_on_alloc);
201
202static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204static int __init early_init_on_free(char *buf)
205{
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207}
208early_param("init_on_free", early_init_on_free);
209
210/*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218static inline int get_pcppage_migratetype(struct page *page)
219{
220 return page->index;
221}
222
223static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224{
225 page->index = migratetype;
226}
227
228#ifdef CONFIG_PM_SLEEP
229/*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239static gfp_t saved_gfp_mask;
240
241void pm_restore_gfp_mask(void)
242{
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248}
249
250void pm_restrict_gfp_mask(void)
251{
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256}
257
258bool pm_suspended_storage(void)
259{
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263}
264#endif /* CONFIG_PM_SLEEP */
265
266#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267unsigned int pageblock_order __read_mostly;
268#endif
269
270static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273/*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285#ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287#endif
288#ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290#endif
291 [ZONE_NORMAL] = 32,
292#ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294#endif
295 [ZONE_MOVABLE] = 0,
296};
297
298static char * const zone_names[MAX_NR_ZONES] = {
299#ifdef CONFIG_ZONE_DMA
300 "DMA",
301#endif
302#ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304#endif
305 "Normal",
306#ifdef CONFIG_HIGHMEM
307 "HighMem",
308#endif
309 "Movable",
310#ifdef CONFIG_ZONE_DEVICE
311 "Device",
312#endif
313};
314
315const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320#ifdef CONFIG_CMA
321 "CMA",
322#endif
323#ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325#endif
326};
327
328compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331#ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333#endif
334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336#endif
337};
338
339int min_free_kbytes = 1024;
340int user_min_free_kbytes = -1;
341int watermark_boost_factor __read_mostly = 15000;
342int watermark_scale_factor = 10;
343
344static unsigned long nr_kernel_pages __initdata;
345static unsigned long nr_all_pages __initdata;
346static unsigned long dma_reserve __initdata;
347
348static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350static unsigned long required_kernelcore __initdata;
351static unsigned long required_kernelcore_percent __initdata;
352static unsigned long required_movablecore __initdata;
353static unsigned long required_movablecore_percent __initdata;
354static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355static bool mirrored_kernelcore __meminitdata;
356
357/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358int movable_zone;
359EXPORT_SYMBOL(movable_zone);
360
361#if MAX_NUMNODES > 1
362unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363unsigned int nr_online_nodes __read_mostly = 1;
364EXPORT_SYMBOL(nr_node_ids);
365EXPORT_SYMBOL(nr_online_nodes);
366#endif
367
368int page_group_by_mobility_disabled __read_mostly;
369
370#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371/*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378/*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
391static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392{
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397}
398
399/* Returns true if the struct page for the pfn is uninitialised */
400static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401{
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408}
409
410/*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414static bool __meminit
415defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416{
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445}
446#else
447static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448{
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452}
453
454static inline bool early_page_uninitialised(unsigned long pfn)
455{
456 return false;
457}
458
459static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460{
461 return false;
462}
463#endif
464
465/* Return a pointer to the bitmap storing bits affecting a block of pages */
466static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468{
469#ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471#else
472 return page_zone(page)->pageblock_flags;
473#endif /* CONFIG_SPARSEMEM */
474}
475
476static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477{
478#ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480#else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482#endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484}
485
486static __always_inline
487unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490{
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502}
503
504/**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
512unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514{
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516}
517
518static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520{
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522}
523
524/**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
531void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534{
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559}
560
561void set_pageblock_migratetype(struct page *page, int migratetype)
562{
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569}
570
571#ifdef CONFIG_DEBUG_VM
572static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573{
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593}
594
595static int page_is_consistent(struct zone *zone, struct page *page)
596{
597 if (!pfn_valid_within(page_to_pfn(page)))
598 return 0;
599 if (zone != page_zone(page))
600 return 0;
601
602 return 1;
603}
604/*
605 * Temporary debugging check for pages not lying within a given zone.
606 */
607static int __maybe_unused bad_range(struct zone *zone, struct page *page)
608{
609 if (page_outside_zone_boundaries(zone, page))
610 return 1;
611 if (!page_is_consistent(zone, page))
612 return 1;
613
614 return 0;
615}
616#else
617static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
618{
619 return 0;
620}
621#endif
622
623static void bad_page(struct page *page, const char *reason)
624{
625 static unsigned long resume;
626 static unsigned long nr_shown;
627 static unsigned long nr_unshown;
628
629 /*
630 * Allow a burst of 60 reports, then keep quiet for that minute;
631 * or allow a steady drip of one report per second.
632 */
633 if (nr_shown == 60) {
634 if (time_before(jiffies, resume)) {
635 nr_unshown++;
636 goto out;
637 }
638 if (nr_unshown) {
639 pr_alert(
640 "BUG: Bad page state: %lu messages suppressed\n",
641 nr_unshown);
642 nr_unshown = 0;
643 }
644 nr_shown = 0;
645 }
646 if (nr_shown++ == 0)
647 resume = jiffies + 60 * HZ;
648
649 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
650 current->comm, page_to_pfn(page));
651 dump_page(page, reason);
652
653 print_modules();
654 dump_stack();
655out:
656 /* Leave bad fields for debug, except PageBuddy could make trouble */
657 page_mapcount_reset(page); /* remove PageBuddy */
658 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
659}
660
661static inline unsigned int order_to_pindex(int migratetype, int order)
662{
663 int base = order;
664
665#ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 if (order > PAGE_ALLOC_COSTLY_ORDER) {
667 VM_BUG_ON(order != pageblock_order);
668 base = PAGE_ALLOC_COSTLY_ORDER + 1;
669 }
670#else
671 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
672#endif
673
674 return (MIGRATE_PCPTYPES * base) + migratetype;
675}
676
677static inline int pindex_to_order(unsigned int pindex)
678{
679 int order = pindex / MIGRATE_PCPTYPES;
680
681#ifdef CONFIG_TRANSPARENT_HUGEPAGE
682 if (order > PAGE_ALLOC_COSTLY_ORDER) {
683 order = pageblock_order;
684 VM_BUG_ON(order != pageblock_order);
685 }
686#else
687 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
688#endif
689
690 return order;
691}
692
693static inline bool pcp_allowed_order(unsigned int order)
694{
695 if (order <= PAGE_ALLOC_COSTLY_ORDER)
696 return true;
697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
698 if (order == pageblock_order)
699 return true;
700#endif
701 return false;
702}
703
704static inline void free_the_page(struct page *page, unsigned int order)
705{
706 if (pcp_allowed_order(order)) /* Via pcp? */
707 free_unref_page(page, order);
708 else
709 __free_pages_ok(page, order, FPI_NONE);
710}
711
712/*
713 * Higher-order pages are called "compound pages". They are structured thusly:
714 *
715 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
716 *
717 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
718 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
719 *
720 * The first tail page's ->compound_dtor holds the offset in array of compound
721 * page destructors. See compound_page_dtors.
722 *
723 * The first tail page's ->compound_order holds the order of allocation.
724 * This usage means that zero-order pages may not be compound.
725 */
726
727void free_compound_page(struct page *page)
728{
729 mem_cgroup_uncharge(page);
730 free_the_page(page, compound_order(page));
731}
732
733void prep_compound_page(struct page *page, unsigned int order)
734{
735 int i;
736 int nr_pages = 1 << order;
737
738 __SetPageHead(page);
739 for (i = 1; i < nr_pages; i++) {
740 struct page *p = page + i;
741 p->mapping = TAIL_MAPPING;
742 set_compound_head(p, page);
743 }
744
745 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
746 set_compound_order(page, order);
747 atomic_set(compound_mapcount_ptr(page), -1);
748 if (hpage_pincount_available(page))
749 atomic_set(compound_pincount_ptr(page), 0);
750}
751
752#ifdef CONFIG_DEBUG_PAGEALLOC
753unsigned int _debug_guardpage_minorder;
754
755bool _debug_pagealloc_enabled_early __read_mostly
756 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
757EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
758DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
759EXPORT_SYMBOL(_debug_pagealloc_enabled);
760
761DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
762
763static int __init early_debug_pagealloc(char *buf)
764{
765 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
766}
767early_param("debug_pagealloc", early_debug_pagealloc);
768
769static int __init debug_guardpage_minorder_setup(char *buf)
770{
771 unsigned long res;
772
773 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
774 pr_err("Bad debug_guardpage_minorder value\n");
775 return 0;
776 }
777 _debug_guardpage_minorder = res;
778 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
779 return 0;
780}
781early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
782
783static inline bool set_page_guard(struct zone *zone, struct page *page,
784 unsigned int order, int migratetype)
785{
786 if (!debug_guardpage_enabled())
787 return false;
788
789 if (order >= debug_guardpage_minorder())
790 return false;
791
792 __SetPageGuard(page);
793 INIT_LIST_HEAD(&page->lru);
794 set_page_private(page, order);
795 /* Guard pages are not available for any usage */
796 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
797
798 return true;
799}
800
801static inline void clear_page_guard(struct zone *zone, struct page *page,
802 unsigned int order, int migratetype)
803{
804 if (!debug_guardpage_enabled())
805 return;
806
807 __ClearPageGuard(page);
808
809 set_page_private(page, 0);
810 if (!is_migrate_isolate(migratetype))
811 __mod_zone_freepage_state(zone, (1 << order), migratetype);
812}
813#else
814static inline bool set_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) { return false; }
816static inline void clear_page_guard(struct zone *zone, struct page *page,
817 unsigned int order, int migratetype) {}
818#endif
819
820/*
821 * Enable static keys related to various memory debugging and hardening options.
822 * Some override others, and depend on early params that are evaluated in the
823 * order of appearance. So we need to first gather the full picture of what was
824 * enabled, and then make decisions.
825 */
826void init_mem_debugging_and_hardening(void)
827{
828 bool page_poisoning_requested = false;
829
830#ifdef CONFIG_PAGE_POISONING
831 /*
832 * Page poisoning is debug page alloc for some arches. If
833 * either of those options are enabled, enable poisoning.
834 */
835 if (page_poisoning_enabled() ||
836 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
837 debug_pagealloc_enabled())) {
838 static_branch_enable(&_page_poisoning_enabled);
839 page_poisoning_requested = true;
840 }
841#endif
842
843 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
844 page_poisoning_requested) {
845 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
846 "will take precedence over init_on_alloc and init_on_free\n");
847 _init_on_alloc_enabled_early = false;
848 _init_on_free_enabled_early = false;
849 }
850
851 if (_init_on_alloc_enabled_early)
852 static_branch_enable(&init_on_alloc);
853 else
854 static_branch_disable(&init_on_alloc);
855
856 if (_init_on_free_enabled_early)
857 static_branch_enable(&init_on_free);
858 else
859 static_branch_disable(&init_on_free);
860
861#ifdef CONFIG_DEBUG_PAGEALLOC
862 if (!debug_pagealloc_enabled())
863 return;
864
865 static_branch_enable(&_debug_pagealloc_enabled);
866
867 if (!debug_guardpage_minorder())
868 return;
869
870 static_branch_enable(&_debug_guardpage_enabled);
871#endif
872}
873
874static inline void set_buddy_order(struct page *page, unsigned int order)
875{
876 set_page_private(page, order);
877 __SetPageBuddy(page);
878}
879
880/*
881 * This function checks whether a page is free && is the buddy
882 * we can coalesce a page and its buddy if
883 * (a) the buddy is not in a hole (check before calling!) &&
884 * (b) the buddy is in the buddy system &&
885 * (c) a page and its buddy have the same order &&
886 * (d) a page and its buddy are in the same zone.
887 *
888 * For recording whether a page is in the buddy system, we set PageBuddy.
889 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
890 *
891 * For recording page's order, we use page_private(page).
892 */
893static inline bool page_is_buddy(struct page *page, struct page *buddy,
894 unsigned int order)
895{
896 if (!page_is_guard(buddy) && !PageBuddy(buddy))
897 return false;
898
899 if (buddy_order(buddy) != order)
900 return false;
901
902 /*
903 * zone check is done late to avoid uselessly calculating
904 * zone/node ids for pages that could never merge.
905 */
906 if (page_zone_id(page) != page_zone_id(buddy))
907 return false;
908
909 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
910
911 return true;
912}
913
914#ifdef CONFIG_COMPACTION
915static inline struct capture_control *task_capc(struct zone *zone)
916{
917 struct capture_control *capc = current->capture_control;
918
919 return unlikely(capc) &&
920 !(current->flags & PF_KTHREAD) &&
921 !capc->page &&
922 capc->cc->zone == zone ? capc : NULL;
923}
924
925static inline bool
926compaction_capture(struct capture_control *capc, struct page *page,
927 int order, int migratetype)
928{
929 if (!capc || order != capc->cc->order)
930 return false;
931
932 /* Do not accidentally pollute CMA or isolated regions*/
933 if (is_migrate_cma(migratetype) ||
934 is_migrate_isolate(migratetype))
935 return false;
936
937 /*
938 * Do not let lower order allocations pollute a movable pageblock.
939 * This might let an unmovable request use a reclaimable pageblock
940 * and vice-versa but no more than normal fallback logic which can
941 * have trouble finding a high-order free page.
942 */
943 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
944 return false;
945
946 capc->page = page;
947 return true;
948}
949
950#else
951static inline struct capture_control *task_capc(struct zone *zone)
952{
953 return NULL;
954}
955
956static inline bool
957compaction_capture(struct capture_control *capc, struct page *page,
958 int order, int migratetype)
959{
960 return false;
961}
962#endif /* CONFIG_COMPACTION */
963
964/* Used for pages not on another list */
965static inline void add_to_free_list(struct page *page, struct zone *zone,
966 unsigned int order, int migratetype)
967{
968 struct free_area *area = &zone->free_area[order];
969
970 list_add(&page->lru, &area->free_list[migratetype]);
971 area->nr_free++;
972}
973
974/* Used for pages not on another list */
975static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
976 unsigned int order, int migratetype)
977{
978 struct free_area *area = &zone->free_area[order];
979
980 list_add_tail(&page->lru, &area->free_list[migratetype]);
981 area->nr_free++;
982}
983
984/*
985 * Used for pages which are on another list. Move the pages to the tail
986 * of the list - so the moved pages won't immediately be considered for
987 * allocation again (e.g., optimization for memory onlining).
988 */
989static inline void move_to_free_list(struct page *page, struct zone *zone,
990 unsigned int order, int migratetype)
991{
992 struct free_area *area = &zone->free_area[order];
993
994 list_move_tail(&page->lru, &area->free_list[migratetype]);
995}
996
997static inline void del_page_from_free_list(struct page *page, struct zone *zone,
998 unsigned int order)
999{
1000 /* clear reported state and update reported page count */
1001 if (page_reported(page))
1002 __ClearPageReported(page);
1003
1004 list_del(&page->lru);
1005 __ClearPageBuddy(page);
1006 set_page_private(page, 0);
1007 zone->free_area[order].nr_free--;
1008}
1009
1010/*
1011 * If this is not the largest possible page, check if the buddy
1012 * of the next-highest order is free. If it is, it's possible
1013 * that pages are being freed that will coalesce soon. In case,
1014 * that is happening, add the free page to the tail of the list
1015 * so it's less likely to be used soon and more likely to be merged
1016 * as a higher order page
1017 */
1018static inline bool
1019buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1020 struct page *page, unsigned int order)
1021{
1022 struct page *higher_page, *higher_buddy;
1023 unsigned long combined_pfn;
1024
1025 if (order >= MAX_ORDER - 2)
1026 return false;
1027
1028 if (!pfn_valid_within(buddy_pfn))
1029 return false;
1030
1031 combined_pfn = buddy_pfn & pfn;
1032 higher_page = page + (combined_pfn - pfn);
1033 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1034 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1035
1036 return pfn_valid_within(buddy_pfn) &&
1037 page_is_buddy(higher_page, higher_buddy, order + 1);
1038}
1039
1040/*
1041 * Freeing function for a buddy system allocator.
1042 *
1043 * The concept of a buddy system is to maintain direct-mapped table
1044 * (containing bit values) for memory blocks of various "orders".
1045 * The bottom level table contains the map for the smallest allocatable
1046 * units of memory (here, pages), and each level above it describes
1047 * pairs of units from the levels below, hence, "buddies".
1048 * At a high level, all that happens here is marking the table entry
1049 * at the bottom level available, and propagating the changes upward
1050 * as necessary, plus some accounting needed to play nicely with other
1051 * parts of the VM system.
1052 * At each level, we keep a list of pages, which are heads of continuous
1053 * free pages of length of (1 << order) and marked with PageBuddy.
1054 * Page's order is recorded in page_private(page) field.
1055 * So when we are allocating or freeing one, we can derive the state of the
1056 * other. That is, if we allocate a small block, and both were
1057 * free, the remainder of the region must be split into blocks.
1058 * If a block is freed, and its buddy is also free, then this
1059 * triggers coalescing into a block of larger size.
1060 *
1061 * -- nyc
1062 */
1063
1064static inline void __free_one_page(struct page *page,
1065 unsigned long pfn,
1066 struct zone *zone, unsigned int order,
1067 int migratetype, fpi_t fpi_flags)
1068{
1069 struct capture_control *capc = task_capc(zone);
1070 unsigned long buddy_pfn;
1071 unsigned long combined_pfn;
1072 unsigned int max_order;
1073 struct page *buddy;
1074 bool to_tail;
1075
1076 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1077
1078 VM_BUG_ON(!zone_is_initialized(zone));
1079 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1080
1081 VM_BUG_ON(migratetype == -1);
1082 if (likely(!is_migrate_isolate(migratetype)))
1083 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1084
1085 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1086 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1087
1088continue_merging:
1089 while (order < max_order) {
1090 if (compaction_capture(capc, page, order, migratetype)) {
1091 __mod_zone_freepage_state(zone, -(1 << order),
1092 migratetype);
1093 return;
1094 }
1095 buddy_pfn = __find_buddy_pfn(pfn, order);
1096 buddy = page + (buddy_pfn - pfn);
1097
1098 if (!pfn_valid_within(buddy_pfn))
1099 goto done_merging;
1100 if (!page_is_buddy(page, buddy, order))
1101 goto done_merging;
1102 /*
1103 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1104 * merge with it and move up one order.
1105 */
1106 if (page_is_guard(buddy))
1107 clear_page_guard(zone, buddy, order, migratetype);
1108 else
1109 del_page_from_free_list(buddy, zone, order);
1110 combined_pfn = buddy_pfn & pfn;
1111 page = page + (combined_pfn - pfn);
1112 pfn = combined_pfn;
1113 order++;
1114 }
1115 if (order < MAX_ORDER - 1) {
1116 /* If we are here, it means order is >= pageblock_order.
1117 * We want to prevent merge between freepages on isolate
1118 * pageblock and normal pageblock. Without this, pageblock
1119 * isolation could cause incorrect freepage or CMA accounting.
1120 *
1121 * We don't want to hit this code for the more frequent
1122 * low-order merging.
1123 */
1124 if (unlikely(has_isolate_pageblock(zone))) {
1125 int buddy_mt;
1126
1127 buddy_pfn = __find_buddy_pfn(pfn, order);
1128 buddy = page + (buddy_pfn - pfn);
1129 buddy_mt = get_pageblock_migratetype(buddy);
1130
1131 if (migratetype != buddy_mt
1132 && (is_migrate_isolate(migratetype) ||
1133 is_migrate_isolate(buddy_mt)))
1134 goto done_merging;
1135 }
1136 max_order = order + 1;
1137 goto continue_merging;
1138 }
1139
1140done_merging:
1141 set_buddy_order(page, order);
1142
1143 if (fpi_flags & FPI_TO_TAIL)
1144 to_tail = true;
1145 else if (is_shuffle_order(order))
1146 to_tail = shuffle_pick_tail();
1147 else
1148 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1149
1150 if (to_tail)
1151 add_to_free_list_tail(page, zone, order, migratetype);
1152 else
1153 add_to_free_list(page, zone, order, migratetype);
1154
1155 /* Notify page reporting subsystem of freed page */
1156 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1157 page_reporting_notify_free(order);
1158}
1159
1160/*
1161 * A bad page could be due to a number of fields. Instead of multiple branches,
1162 * try and check multiple fields with one check. The caller must do a detailed
1163 * check if necessary.
1164 */
1165static inline bool page_expected_state(struct page *page,
1166 unsigned long check_flags)
1167{
1168 if (unlikely(atomic_read(&page->_mapcount) != -1))
1169 return false;
1170
1171 if (unlikely((unsigned long)page->mapping |
1172 page_ref_count(page) |
1173#ifdef CONFIG_MEMCG
1174 page->memcg_data |
1175#endif
1176 (page->flags & check_flags)))
1177 return false;
1178
1179 return true;
1180}
1181
1182static const char *page_bad_reason(struct page *page, unsigned long flags)
1183{
1184 const char *bad_reason = NULL;
1185
1186 if (unlikely(atomic_read(&page->_mapcount) != -1))
1187 bad_reason = "nonzero mapcount";
1188 if (unlikely(page->mapping != NULL))
1189 bad_reason = "non-NULL mapping";
1190 if (unlikely(page_ref_count(page) != 0))
1191 bad_reason = "nonzero _refcount";
1192 if (unlikely(page->flags & flags)) {
1193 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1194 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1195 else
1196 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1197 }
1198#ifdef CONFIG_MEMCG
1199 if (unlikely(page->memcg_data))
1200 bad_reason = "page still charged to cgroup";
1201#endif
1202 return bad_reason;
1203}
1204
1205static void check_free_page_bad(struct page *page)
1206{
1207 bad_page(page,
1208 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1209}
1210
1211static inline int check_free_page(struct page *page)
1212{
1213 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1214 return 0;
1215
1216 /* Something has gone sideways, find it */
1217 check_free_page_bad(page);
1218 return 1;
1219}
1220
1221static int free_tail_pages_check(struct page *head_page, struct page *page)
1222{
1223 int ret = 1;
1224
1225 /*
1226 * We rely page->lru.next never has bit 0 set, unless the page
1227 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1228 */
1229 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1230
1231 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1232 ret = 0;
1233 goto out;
1234 }
1235 switch (page - head_page) {
1236 case 1:
1237 /* the first tail page: ->mapping may be compound_mapcount() */
1238 if (unlikely(compound_mapcount(page))) {
1239 bad_page(page, "nonzero compound_mapcount");
1240 goto out;
1241 }
1242 break;
1243 case 2:
1244 /*
1245 * the second tail page: ->mapping is
1246 * deferred_list.next -- ignore value.
1247 */
1248 break;
1249 default:
1250 if (page->mapping != TAIL_MAPPING) {
1251 bad_page(page, "corrupted mapping in tail page");
1252 goto out;
1253 }
1254 break;
1255 }
1256 if (unlikely(!PageTail(page))) {
1257 bad_page(page, "PageTail not set");
1258 goto out;
1259 }
1260 if (unlikely(compound_head(page) != head_page)) {
1261 bad_page(page, "compound_head not consistent");
1262 goto out;
1263 }
1264 ret = 0;
1265out:
1266 page->mapping = NULL;
1267 clear_compound_head(page);
1268 return ret;
1269}
1270
1271static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1272{
1273 int i;
1274
1275 if (zero_tags) {
1276 for (i = 0; i < numpages; i++)
1277 tag_clear_highpage(page + i);
1278 return;
1279 }
1280
1281 /* s390's use of memset() could override KASAN redzones. */
1282 kasan_disable_current();
1283 for (i = 0; i < numpages; i++) {
1284 u8 tag = page_kasan_tag(page + i);
1285 page_kasan_tag_reset(page + i);
1286 clear_highpage(page + i);
1287 page_kasan_tag_set(page + i, tag);
1288 }
1289 kasan_enable_current();
1290}
1291
1292static __always_inline bool free_pages_prepare(struct page *page,
1293 unsigned int order, bool check_free, fpi_t fpi_flags)
1294{
1295 int bad = 0;
1296 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1297
1298 VM_BUG_ON_PAGE(PageTail(page), page);
1299
1300 trace_mm_page_free(page, order);
1301
1302 if (unlikely(PageHWPoison(page)) && !order) {
1303 /*
1304 * Do not let hwpoison pages hit pcplists/buddy
1305 * Untie memcg state and reset page's owner
1306 */
1307 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1308 __memcg_kmem_uncharge_page(page, order);
1309 reset_page_owner(page, order);
1310 return false;
1311 }
1312
1313 /*
1314 * Check tail pages before head page information is cleared to
1315 * avoid checking PageCompound for order-0 pages.
1316 */
1317 if (unlikely(order)) {
1318 bool compound = PageCompound(page);
1319 int i;
1320
1321 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1322
1323 if (compound)
1324 ClearPageDoubleMap(page);
1325 for (i = 1; i < (1 << order); i++) {
1326 if (compound)
1327 bad += free_tail_pages_check(page, page + i);
1328 if (unlikely(check_free_page(page + i))) {
1329 bad++;
1330 continue;
1331 }
1332 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1333 }
1334 }
1335 if (PageMappingFlags(page))
1336 page->mapping = NULL;
1337 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1338 __memcg_kmem_uncharge_page(page, order);
1339 if (check_free)
1340 bad += check_free_page(page);
1341 if (bad)
1342 return false;
1343
1344 page_cpupid_reset_last(page);
1345 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1346 reset_page_owner(page, order);
1347
1348 if (!PageHighMem(page)) {
1349 debug_check_no_locks_freed(page_address(page),
1350 PAGE_SIZE << order);
1351 debug_check_no_obj_freed(page_address(page),
1352 PAGE_SIZE << order);
1353 }
1354
1355 kernel_poison_pages(page, 1 << order);
1356
1357 /*
1358 * As memory initialization might be integrated into KASAN,
1359 * kasan_free_pages and kernel_init_free_pages must be
1360 * kept together to avoid discrepancies in behavior.
1361 *
1362 * With hardware tag-based KASAN, memory tags must be set before the
1363 * page becomes unavailable via debug_pagealloc or arch_free_page.
1364 */
1365 if (kasan_has_integrated_init()) {
1366 if (!skip_kasan_poison)
1367 kasan_free_pages(page, order);
1368 } else {
1369 bool init = want_init_on_free();
1370
1371 if (init)
1372 kernel_init_free_pages(page, 1 << order, false);
1373 if (!skip_kasan_poison)
1374 kasan_poison_pages(page, order, init);
1375 }
1376
1377 /*
1378 * arch_free_page() can make the page's contents inaccessible. s390
1379 * does this. So nothing which can access the page's contents should
1380 * happen after this.
1381 */
1382 arch_free_page(page, order);
1383
1384 debug_pagealloc_unmap_pages(page, 1 << order);
1385
1386 return true;
1387}
1388
1389#ifdef CONFIG_DEBUG_VM
1390/*
1391 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1392 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1393 * moved from pcp lists to free lists.
1394 */
1395static bool free_pcp_prepare(struct page *page, unsigned int order)
1396{
1397 return free_pages_prepare(page, order, true, FPI_NONE);
1398}
1399
1400static bool bulkfree_pcp_prepare(struct page *page)
1401{
1402 if (debug_pagealloc_enabled_static())
1403 return check_free_page(page);
1404 else
1405 return false;
1406}
1407#else
1408/*
1409 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1410 * moving from pcp lists to free list in order to reduce overhead. With
1411 * debug_pagealloc enabled, they are checked also immediately when being freed
1412 * to the pcp lists.
1413 */
1414static bool free_pcp_prepare(struct page *page, unsigned int order)
1415{
1416 if (debug_pagealloc_enabled_static())
1417 return free_pages_prepare(page, order, true, FPI_NONE);
1418 else
1419 return free_pages_prepare(page, order, false, FPI_NONE);
1420}
1421
1422static bool bulkfree_pcp_prepare(struct page *page)
1423{
1424 return check_free_page(page);
1425}
1426#endif /* CONFIG_DEBUG_VM */
1427
1428static inline void prefetch_buddy(struct page *page)
1429{
1430 unsigned long pfn = page_to_pfn(page);
1431 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1432 struct page *buddy = page + (buddy_pfn - pfn);
1433
1434 prefetch(buddy);
1435}
1436
1437/*
1438 * Frees a number of pages from the PCP lists
1439 * Assumes all pages on list are in same zone, and of same order.
1440 * count is the number of pages to free.
1441 *
1442 * If the zone was previously in an "all pages pinned" state then look to
1443 * see if this freeing clears that state.
1444 *
1445 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1446 * pinned" detection logic.
1447 */
1448static void free_pcppages_bulk(struct zone *zone, int count,
1449 struct per_cpu_pages *pcp)
1450{
1451 int pindex = 0;
1452 int batch_free = 0;
1453 int nr_freed = 0;
1454 unsigned int order;
1455 int prefetch_nr = READ_ONCE(pcp->batch);
1456 bool isolated_pageblocks;
1457 struct page *page, *tmp;
1458 LIST_HEAD(head);
1459
1460 /*
1461 * Ensure proper count is passed which otherwise would stuck in the
1462 * below while (list_empty(list)) loop.
1463 */
1464 count = min(pcp->count, count);
1465 while (count > 0) {
1466 struct list_head *list;
1467
1468 /*
1469 * Remove pages from lists in a round-robin fashion. A
1470 * batch_free count is maintained that is incremented when an
1471 * empty list is encountered. This is so more pages are freed
1472 * off fuller lists instead of spinning excessively around empty
1473 * lists
1474 */
1475 do {
1476 batch_free++;
1477 if (++pindex == NR_PCP_LISTS)
1478 pindex = 0;
1479 list = &pcp->lists[pindex];
1480 } while (list_empty(list));
1481
1482 /* This is the only non-empty list. Free them all. */
1483 if (batch_free == NR_PCP_LISTS)
1484 batch_free = count;
1485
1486 order = pindex_to_order(pindex);
1487 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1488 do {
1489 page = list_last_entry(list, struct page, lru);
1490 /* must delete to avoid corrupting pcp list */
1491 list_del(&page->lru);
1492 nr_freed += 1 << order;
1493 count -= 1 << order;
1494
1495 if (bulkfree_pcp_prepare(page))
1496 continue;
1497
1498 /* Encode order with the migratetype */
1499 page->index <<= NR_PCP_ORDER_WIDTH;
1500 page->index |= order;
1501
1502 list_add_tail(&page->lru, &head);
1503
1504 /*
1505 * We are going to put the page back to the global
1506 * pool, prefetch its buddy to speed up later access
1507 * under zone->lock. It is believed the overhead of
1508 * an additional test and calculating buddy_pfn here
1509 * can be offset by reduced memory latency later. To
1510 * avoid excessive prefetching due to large count, only
1511 * prefetch buddy for the first pcp->batch nr of pages.
1512 */
1513 if (prefetch_nr) {
1514 prefetch_buddy(page);
1515 prefetch_nr--;
1516 }
1517 } while (count > 0 && --batch_free && !list_empty(list));
1518 }
1519 pcp->count -= nr_freed;
1520
1521 /*
1522 * local_lock_irq held so equivalent to spin_lock_irqsave for
1523 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1524 */
1525 spin_lock(&zone->lock);
1526 isolated_pageblocks = has_isolate_pageblock(zone);
1527
1528 /*
1529 * Use safe version since after __free_one_page(),
1530 * page->lru.next will not point to original list.
1531 */
1532 list_for_each_entry_safe(page, tmp, &head, lru) {
1533 int mt = get_pcppage_migratetype(page);
1534
1535 /* mt has been encoded with the order (see above) */
1536 order = mt & NR_PCP_ORDER_MASK;
1537 mt >>= NR_PCP_ORDER_WIDTH;
1538
1539 /* MIGRATE_ISOLATE page should not go to pcplists */
1540 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1541 /* Pageblock could have been isolated meanwhile */
1542 if (unlikely(isolated_pageblocks))
1543 mt = get_pageblock_migratetype(page);
1544
1545 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1546 trace_mm_page_pcpu_drain(page, order, mt);
1547 }
1548 spin_unlock(&zone->lock);
1549}
1550
1551static void free_one_page(struct zone *zone,
1552 struct page *page, unsigned long pfn,
1553 unsigned int order,
1554 int migratetype, fpi_t fpi_flags)
1555{
1556 unsigned long flags;
1557
1558 spin_lock_irqsave(&zone->lock, flags);
1559 if (unlikely(has_isolate_pageblock(zone) ||
1560 is_migrate_isolate(migratetype))) {
1561 migratetype = get_pfnblock_migratetype(page, pfn);
1562 }
1563 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1564 spin_unlock_irqrestore(&zone->lock, flags);
1565}
1566
1567static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1568 unsigned long zone, int nid)
1569{
1570 mm_zero_struct_page(page);
1571 set_page_links(page, zone, nid, pfn);
1572 init_page_count(page);
1573 page_mapcount_reset(page);
1574 page_cpupid_reset_last(page);
1575 page_kasan_tag_reset(page);
1576
1577 INIT_LIST_HEAD(&page->lru);
1578#ifdef WANT_PAGE_VIRTUAL
1579 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1580 if (!is_highmem_idx(zone))
1581 set_page_address(page, __va(pfn << PAGE_SHIFT));
1582#endif
1583}
1584
1585#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1586static void __meminit init_reserved_page(unsigned long pfn)
1587{
1588 pg_data_t *pgdat;
1589 int nid, zid;
1590
1591 if (!early_page_uninitialised(pfn))
1592 return;
1593
1594 nid = early_pfn_to_nid(pfn);
1595 pgdat = NODE_DATA(nid);
1596
1597 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1598 struct zone *zone = &pgdat->node_zones[zid];
1599
1600 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1601 break;
1602 }
1603 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1604}
1605#else
1606static inline void init_reserved_page(unsigned long pfn)
1607{
1608}
1609#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1610
1611/*
1612 * Initialised pages do not have PageReserved set. This function is
1613 * called for each range allocated by the bootmem allocator and
1614 * marks the pages PageReserved. The remaining valid pages are later
1615 * sent to the buddy page allocator.
1616 */
1617void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1618{
1619 unsigned long start_pfn = PFN_DOWN(start);
1620 unsigned long end_pfn = PFN_UP(end);
1621
1622 for (; start_pfn < end_pfn; start_pfn++) {
1623 if (pfn_valid(start_pfn)) {
1624 struct page *page = pfn_to_page(start_pfn);
1625
1626 init_reserved_page(start_pfn);
1627
1628 /* Avoid false-positive PageTail() */
1629 INIT_LIST_HEAD(&page->lru);
1630
1631 /*
1632 * no need for atomic set_bit because the struct
1633 * page is not visible yet so nobody should
1634 * access it yet.
1635 */
1636 __SetPageReserved(page);
1637 }
1638 }
1639}
1640
1641static void __free_pages_ok(struct page *page, unsigned int order,
1642 fpi_t fpi_flags)
1643{
1644 unsigned long flags;
1645 int migratetype;
1646 unsigned long pfn = page_to_pfn(page);
1647 struct zone *zone = page_zone(page);
1648
1649 if (!free_pages_prepare(page, order, true, fpi_flags))
1650 return;
1651
1652 migratetype = get_pfnblock_migratetype(page, pfn);
1653
1654 spin_lock_irqsave(&zone->lock, flags);
1655 if (unlikely(has_isolate_pageblock(zone) ||
1656 is_migrate_isolate(migratetype))) {
1657 migratetype = get_pfnblock_migratetype(page, pfn);
1658 }
1659 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1660 spin_unlock_irqrestore(&zone->lock, flags);
1661
1662 __count_vm_events(PGFREE, 1 << order);
1663}
1664
1665void __free_pages_core(struct page *page, unsigned int order)
1666{
1667 unsigned int nr_pages = 1 << order;
1668 struct page *p = page;
1669 unsigned int loop;
1670
1671 /*
1672 * When initializing the memmap, __init_single_page() sets the refcount
1673 * of all pages to 1 ("allocated"/"not free"). We have to set the
1674 * refcount of all involved pages to 0.
1675 */
1676 prefetchw(p);
1677 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1678 prefetchw(p + 1);
1679 __ClearPageReserved(p);
1680 set_page_count(p, 0);
1681 }
1682 __ClearPageReserved(p);
1683 set_page_count(p, 0);
1684
1685 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1686
1687 /*
1688 * Bypass PCP and place fresh pages right to the tail, primarily
1689 * relevant for memory onlining.
1690 */
1691 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1692}
1693
1694#ifdef CONFIG_NUMA
1695
1696/*
1697 * During memory init memblocks map pfns to nids. The search is expensive and
1698 * this caches recent lookups. The implementation of __early_pfn_to_nid
1699 * treats start/end as pfns.
1700 */
1701struct mminit_pfnnid_cache {
1702 unsigned long last_start;
1703 unsigned long last_end;
1704 int last_nid;
1705};
1706
1707static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1708
1709/*
1710 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1711 */
1712static int __meminit __early_pfn_to_nid(unsigned long pfn,
1713 struct mminit_pfnnid_cache *state)
1714{
1715 unsigned long start_pfn, end_pfn;
1716 int nid;
1717
1718 if (state->last_start <= pfn && pfn < state->last_end)
1719 return state->last_nid;
1720
1721 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1722 if (nid != NUMA_NO_NODE) {
1723 state->last_start = start_pfn;
1724 state->last_end = end_pfn;
1725 state->last_nid = nid;
1726 }
1727
1728 return nid;
1729}
1730
1731int __meminit early_pfn_to_nid(unsigned long pfn)
1732{
1733 static DEFINE_SPINLOCK(early_pfn_lock);
1734 int nid;
1735
1736 spin_lock(&early_pfn_lock);
1737 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1738 if (nid < 0)
1739 nid = first_online_node;
1740 spin_unlock(&early_pfn_lock);
1741
1742 return nid;
1743}
1744#endif /* CONFIG_NUMA */
1745
1746void __init memblock_free_pages(struct page *page, unsigned long pfn,
1747 unsigned int order)
1748{
1749 if (early_page_uninitialised(pfn))
1750 return;
1751 __free_pages_core(page, order);
1752}
1753
1754/*
1755 * Check that the whole (or subset of) a pageblock given by the interval of
1756 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1757 * with the migration of free compaction scanner. The scanners then need to
1758 * use only pfn_valid_within() check for arches that allow holes within
1759 * pageblocks.
1760 *
1761 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1762 *
1763 * It's possible on some configurations to have a setup like node0 node1 node0
1764 * i.e. it's possible that all pages within a zones range of pages do not
1765 * belong to a single zone. We assume that a border between node0 and node1
1766 * can occur within a single pageblock, but not a node0 node1 node0
1767 * interleaving within a single pageblock. It is therefore sufficient to check
1768 * the first and last page of a pageblock and avoid checking each individual
1769 * page in a pageblock.
1770 */
1771struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1772 unsigned long end_pfn, struct zone *zone)
1773{
1774 struct page *start_page;
1775 struct page *end_page;
1776
1777 /* end_pfn is one past the range we are checking */
1778 end_pfn--;
1779
1780 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1781 return NULL;
1782
1783 start_page = pfn_to_online_page(start_pfn);
1784 if (!start_page)
1785 return NULL;
1786
1787 if (page_zone(start_page) != zone)
1788 return NULL;
1789
1790 end_page = pfn_to_page(end_pfn);
1791
1792 /* This gives a shorter code than deriving page_zone(end_page) */
1793 if (page_zone_id(start_page) != page_zone_id(end_page))
1794 return NULL;
1795
1796 return start_page;
1797}
1798
1799void set_zone_contiguous(struct zone *zone)
1800{
1801 unsigned long block_start_pfn = zone->zone_start_pfn;
1802 unsigned long block_end_pfn;
1803
1804 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1805 for (; block_start_pfn < zone_end_pfn(zone);
1806 block_start_pfn = block_end_pfn,
1807 block_end_pfn += pageblock_nr_pages) {
1808
1809 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1810
1811 if (!__pageblock_pfn_to_page(block_start_pfn,
1812 block_end_pfn, zone))
1813 return;
1814 cond_resched();
1815 }
1816
1817 /* We confirm that there is no hole */
1818 zone->contiguous = true;
1819}
1820
1821void clear_zone_contiguous(struct zone *zone)
1822{
1823 zone->contiguous = false;
1824}
1825
1826#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1827static void __init deferred_free_range(unsigned long pfn,
1828 unsigned long nr_pages)
1829{
1830 struct page *page;
1831 unsigned long i;
1832
1833 if (!nr_pages)
1834 return;
1835
1836 page = pfn_to_page(pfn);
1837
1838 /* Free a large naturally-aligned chunk if possible */
1839 if (nr_pages == pageblock_nr_pages &&
1840 (pfn & (pageblock_nr_pages - 1)) == 0) {
1841 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1842 __free_pages_core(page, pageblock_order);
1843 return;
1844 }
1845
1846 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1847 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1848 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1849 __free_pages_core(page, 0);
1850 }
1851}
1852
1853/* Completion tracking for deferred_init_memmap() threads */
1854static atomic_t pgdat_init_n_undone __initdata;
1855static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1856
1857static inline void __init pgdat_init_report_one_done(void)
1858{
1859 if (atomic_dec_and_test(&pgdat_init_n_undone))
1860 complete(&pgdat_init_all_done_comp);
1861}
1862
1863/*
1864 * Returns true if page needs to be initialized or freed to buddy allocator.
1865 *
1866 * First we check if pfn is valid on architectures where it is possible to have
1867 * holes within pageblock_nr_pages. On systems where it is not possible, this
1868 * function is optimized out.
1869 *
1870 * Then, we check if a current large page is valid by only checking the validity
1871 * of the head pfn.
1872 */
1873static inline bool __init deferred_pfn_valid(unsigned long pfn)
1874{
1875 if (!pfn_valid_within(pfn))
1876 return false;
1877 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1878 return false;
1879 return true;
1880}
1881
1882/*
1883 * Free pages to buddy allocator. Try to free aligned pages in
1884 * pageblock_nr_pages sizes.
1885 */
1886static void __init deferred_free_pages(unsigned long pfn,
1887 unsigned long end_pfn)
1888{
1889 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1890 unsigned long nr_free = 0;
1891
1892 for (; pfn < end_pfn; pfn++) {
1893 if (!deferred_pfn_valid(pfn)) {
1894 deferred_free_range(pfn - nr_free, nr_free);
1895 nr_free = 0;
1896 } else if (!(pfn & nr_pgmask)) {
1897 deferred_free_range(pfn - nr_free, nr_free);
1898 nr_free = 1;
1899 } else {
1900 nr_free++;
1901 }
1902 }
1903 /* Free the last block of pages to allocator */
1904 deferred_free_range(pfn - nr_free, nr_free);
1905}
1906
1907/*
1908 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1909 * by performing it only once every pageblock_nr_pages.
1910 * Return number of pages initialized.
1911 */
1912static unsigned long __init deferred_init_pages(struct zone *zone,
1913 unsigned long pfn,
1914 unsigned long end_pfn)
1915{
1916 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1917 int nid = zone_to_nid(zone);
1918 unsigned long nr_pages = 0;
1919 int zid = zone_idx(zone);
1920 struct page *page = NULL;
1921
1922 for (; pfn < end_pfn; pfn++) {
1923 if (!deferred_pfn_valid(pfn)) {
1924 page = NULL;
1925 continue;
1926 } else if (!page || !(pfn & nr_pgmask)) {
1927 page = pfn_to_page(pfn);
1928 } else {
1929 page++;
1930 }
1931 __init_single_page(page, pfn, zid, nid);
1932 nr_pages++;
1933 }
1934 return (nr_pages);
1935}
1936
1937/*
1938 * This function is meant to pre-load the iterator for the zone init.
1939 * Specifically it walks through the ranges until we are caught up to the
1940 * first_init_pfn value and exits there. If we never encounter the value we
1941 * return false indicating there are no valid ranges left.
1942 */
1943static bool __init
1944deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1945 unsigned long *spfn, unsigned long *epfn,
1946 unsigned long first_init_pfn)
1947{
1948 u64 j;
1949
1950 /*
1951 * Start out by walking through the ranges in this zone that have
1952 * already been initialized. We don't need to do anything with them
1953 * so we just need to flush them out of the system.
1954 */
1955 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1956 if (*epfn <= first_init_pfn)
1957 continue;
1958 if (*spfn < first_init_pfn)
1959 *spfn = first_init_pfn;
1960 *i = j;
1961 return true;
1962 }
1963
1964 return false;
1965}
1966
1967/*
1968 * Initialize and free pages. We do it in two loops: first we initialize
1969 * struct page, then free to buddy allocator, because while we are
1970 * freeing pages we can access pages that are ahead (computing buddy
1971 * page in __free_one_page()).
1972 *
1973 * In order to try and keep some memory in the cache we have the loop
1974 * broken along max page order boundaries. This way we will not cause
1975 * any issues with the buddy page computation.
1976 */
1977static unsigned long __init
1978deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1979 unsigned long *end_pfn)
1980{
1981 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1982 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1983 unsigned long nr_pages = 0;
1984 u64 j = *i;
1985
1986 /* First we loop through and initialize the page values */
1987 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1988 unsigned long t;
1989
1990 if (mo_pfn <= *start_pfn)
1991 break;
1992
1993 t = min(mo_pfn, *end_pfn);
1994 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1995
1996 if (mo_pfn < *end_pfn) {
1997 *start_pfn = mo_pfn;
1998 break;
1999 }
2000 }
2001
2002 /* Reset values and now loop through freeing pages as needed */
2003 swap(j, *i);
2004
2005 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2006 unsigned long t;
2007
2008 if (mo_pfn <= spfn)
2009 break;
2010
2011 t = min(mo_pfn, epfn);
2012 deferred_free_pages(spfn, t);
2013
2014 if (mo_pfn <= epfn)
2015 break;
2016 }
2017
2018 return nr_pages;
2019}
2020
2021static void __init
2022deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2023 void *arg)
2024{
2025 unsigned long spfn, epfn;
2026 struct zone *zone = arg;
2027 u64 i;
2028
2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2030
2031 /*
2032 * Initialize and free pages in MAX_ORDER sized increments so that we
2033 * can avoid introducing any issues with the buddy allocator.
2034 */
2035 while (spfn < end_pfn) {
2036 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2037 cond_resched();
2038 }
2039}
2040
2041/* An arch may override for more concurrency. */
2042__weak int __init
2043deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2044{
2045 return 1;
2046}
2047
2048/* Initialise remaining memory on a node */
2049static int __init deferred_init_memmap(void *data)
2050{
2051 pg_data_t *pgdat = data;
2052 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053 unsigned long spfn = 0, epfn = 0;
2054 unsigned long first_init_pfn, flags;
2055 unsigned long start = jiffies;
2056 struct zone *zone;
2057 int zid, max_threads;
2058 u64 i;
2059
2060 /* Bind memory initialisation thread to a local node if possible */
2061 if (!cpumask_empty(cpumask))
2062 set_cpus_allowed_ptr(current, cpumask);
2063
2064 pgdat_resize_lock(pgdat, &flags);
2065 first_init_pfn = pgdat->first_deferred_pfn;
2066 if (first_init_pfn == ULONG_MAX) {
2067 pgdat_resize_unlock(pgdat, &flags);
2068 pgdat_init_report_one_done();
2069 return 0;
2070 }
2071
2072 /* Sanity check boundaries */
2073 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2074 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2075 pgdat->first_deferred_pfn = ULONG_MAX;
2076
2077 /*
2078 * Once we unlock here, the zone cannot be grown anymore, thus if an
2079 * interrupt thread must allocate this early in boot, zone must be
2080 * pre-grown prior to start of deferred page initialization.
2081 */
2082 pgdat_resize_unlock(pgdat, &flags);
2083
2084 /* Only the highest zone is deferred so find it */
2085 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2086 zone = pgdat->node_zones + zid;
2087 if (first_init_pfn < zone_end_pfn(zone))
2088 break;
2089 }
2090
2091 /* If the zone is empty somebody else may have cleared out the zone */
2092 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2093 first_init_pfn))
2094 goto zone_empty;
2095
2096 max_threads = deferred_page_init_max_threads(cpumask);
2097
2098 while (spfn < epfn) {
2099 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2100 struct padata_mt_job job = {
2101 .thread_fn = deferred_init_memmap_chunk,
2102 .fn_arg = zone,
2103 .start = spfn,
2104 .size = epfn_align - spfn,
2105 .align = PAGES_PER_SECTION,
2106 .min_chunk = PAGES_PER_SECTION,
2107 .max_threads = max_threads,
2108 };
2109
2110 padata_do_multithreaded(&job);
2111 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2112 epfn_align);
2113 }
2114zone_empty:
2115 /* Sanity check that the next zone really is unpopulated */
2116 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2117
2118 pr_info("node %d deferred pages initialised in %ums\n",
2119 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2120
2121 pgdat_init_report_one_done();
2122 return 0;
2123}
2124
2125/*
2126 * If this zone has deferred pages, try to grow it by initializing enough
2127 * deferred pages to satisfy the allocation specified by order, rounded up to
2128 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2129 * of SECTION_SIZE bytes by initializing struct pages in increments of
2130 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2131 *
2132 * Return true when zone was grown, otherwise return false. We return true even
2133 * when we grow less than requested, to let the caller decide if there are
2134 * enough pages to satisfy the allocation.
2135 *
2136 * Note: We use noinline because this function is needed only during boot, and
2137 * it is called from a __ref function _deferred_grow_zone. This way we are
2138 * making sure that it is not inlined into permanent text section.
2139 */
2140static noinline bool __init
2141deferred_grow_zone(struct zone *zone, unsigned int order)
2142{
2143 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2144 pg_data_t *pgdat = zone->zone_pgdat;
2145 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2146 unsigned long spfn, epfn, flags;
2147 unsigned long nr_pages = 0;
2148 u64 i;
2149
2150 /* Only the last zone may have deferred pages */
2151 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2152 return false;
2153
2154 pgdat_resize_lock(pgdat, &flags);
2155
2156 /*
2157 * If someone grew this zone while we were waiting for spinlock, return
2158 * true, as there might be enough pages already.
2159 */
2160 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2161 pgdat_resize_unlock(pgdat, &flags);
2162 return true;
2163 }
2164
2165 /* If the zone is empty somebody else may have cleared out the zone */
2166 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2167 first_deferred_pfn)) {
2168 pgdat->first_deferred_pfn = ULONG_MAX;
2169 pgdat_resize_unlock(pgdat, &flags);
2170 /* Retry only once. */
2171 return first_deferred_pfn != ULONG_MAX;
2172 }
2173
2174 /*
2175 * Initialize and free pages in MAX_ORDER sized increments so
2176 * that we can avoid introducing any issues with the buddy
2177 * allocator.
2178 */
2179 while (spfn < epfn) {
2180 /* update our first deferred PFN for this section */
2181 first_deferred_pfn = spfn;
2182
2183 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2184 touch_nmi_watchdog();
2185
2186 /* We should only stop along section boundaries */
2187 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2188 continue;
2189
2190 /* If our quota has been met we can stop here */
2191 if (nr_pages >= nr_pages_needed)
2192 break;
2193 }
2194
2195 pgdat->first_deferred_pfn = spfn;
2196 pgdat_resize_unlock(pgdat, &flags);
2197
2198 return nr_pages > 0;
2199}
2200
2201/*
2202 * deferred_grow_zone() is __init, but it is called from
2203 * get_page_from_freelist() during early boot until deferred_pages permanently
2204 * disables this call. This is why we have refdata wrapper to avoid warning,
2205 * and to ensure that the function body gets unloaded.
2206 */
2207static bool __ref
2208_deferred_grow_zone(struct zone *zone, unsigned int order)
2209{
2210 return deferred_grow_zone(zone, order);
2211}
2212
2213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2214
2215void __init page_alloc_init_late(void)
2216{
2217 struct zone *zone;
2218 int nid;
2219
2220#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2221
2222 /* There will be num_node_state(N_MEMORY) threads */
2223 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2224 for_each_node_state(nid, N_MEMORY) {
2225 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2226 }
2227
2228 /* Block until all are initialised */
2229 wait_for_completion(&pgdat_init_all_done_comp);
2230
2231 /*
2232 * We initialized the rest of the deferred pages. Permanently disable
2233 * on-demand struct page initialization.
2234 */
2235 static_branch_disable(&deferred_pages);
2236
2237 /* Reinit limits that are based on free pages after the kernel is up */
2238 files_maxfiles_init();
2239#endif
2240
2241 buffer_init();
2242
2243 /* Discard memblock private memory */
2244 memblock_discard();
2245
2246 for_each_node_state(nid, N_MEMORY)
2247 shuffle_free_memory(NODE_DATA(nid));
2248
2249 for_each_populated_zone(zone)
2250 set_zone_contiguous(zone);
2251}
2252
2253#ifdef CONFIG_CMA
2254/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2255void __init init_cma_reserved_pageblock(struct page *page)
2256{
2257 unsigned i = pageblock_nr_pages;
2258 struct page *p = page;
2259
2260 do {
2261 __ClearPageReserved(p);
2262 set_page_count(p, 0);
2263 } while (++p, --i);
2264
2265 set_pageblock_migratetype(page, MIGRATE_CMA);
2266
2267 if (pageblock_order >= MAX_ORDER) {
2268 i = pageblock_nr_pages;
2269 p = page;
2270 do {
2271 set_page_refcounted(p);
2272 __free_pages(p, MAX_ORDER - 1);
2273 p += MAX_ORDER_NR_PAGES;
2274 } while (i -= MAX_ORDER_NR_PAGES);
2275 } else {
2276 set_page_refcounted(page);
2277 __free_pages(page, pageblock_order);
2278 }
2279
2280 adjust_managed_page_count(page, pageblock_nr_pages);
2281 page_zone(page)->cma_pages += pageblock_nr_pages;
2282}
2283#endif
2284
2285/*
2286 * The order of subdivision here is critical for the IO subsystem.
2287 * Please do not alter this order without good reasons and regression
2288 * testing. Specifically, as large blocks of memory are subdivided,
2289 * the order in which smaller blocks are delivered depends on the order
2290 * they're subdivided in this function. This is the primary factor
2291 * influencing the order in which pages are delivered to the IO
2292 * subsystem according to empirical testing, and this is also justified
2293 * by considering the behavior of a buddy system containing a single
2294 * large block of memory acted on by a series of small allocations.
2295 * This behavior is a critical factor in sglist merging's success.
2296 *
2297 * -- nyc
2298 */
2299static inline void expand(struct zone *zone, struct page *page,
2300 int low, int high, int migratetype)
2301{
2302 unsigned long size = 1 << high;
2303
2304 while (high > low) {
2305 high--;
2306 size >>= 1;
2307 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2308
2309 /*
2310 * Mark as guard pages (or page), that will allow to
2311 * merge back to allocator when buddy will be freed.
2312 * Corresponding page table entries will not be touched,
2313 * pages will stay not present in virtual address space
2314 */
2315 if (set_page_guard(zone, &page[size], high, migratetype))
2316 continue;
2317
2318 add_to_free_list(&page[size], zone, high, migratetype);
2319 set_buddy_order(&page[size], high);
2320 }
2321}
2322
2323static void check_new_page_bad(struct page *page)
2324{
2325 if (unlikely(page->flags & __PG_HWPOISON)) {
2326 /* Don't complain about hwpoisoned pages */
2327 page_mapcount_reset(page); /* remove PageBuddy */
2328 return;
2329 }
2330
2331 bad_page(page,
2332 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2333}
2334
2335/*
2336 * This page is about to be returned from the page allocator
2337 */
2338static inline int check_new_page(struct page *page)
2339{
2340 if (likely(page_expected_state(page,
2341 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2342 return 0;
2343
2344 check_new_page_bad(page);
2345 return 1;
2346}
2347
2348#ifdef CONFIG_DEBUG_VM
2349/*
2350 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2351 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2352 * also checked when pcp lists are refilled from the free lists.
2353 */
2354static inline bool check_pcp_refill(struct page *page)
2355{
2356 if (debug_pagealloc_enabled_static())
2357 return check_new_page(page);
2358 else
2359 return false;
2360}
2361
2362static inline bool check_new_pcp(struct page *page)
2363{
2364 return check_new_page(page);
2365}
2366#else
2367/*
2368 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2369 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2370 * enabled, they are also checked when being allocated from the pcp lists.
2371 */
2372static inline bool check_pcp_refill(struct page *page)
2373{
2374 return check_new_page(page);
2375}
2376static inline bool check_new_pcp(struct page *page)
2377{
2378 if (debug_pagealloc_enabled_static())
2379 return check_new_page(page);
2380 else
2381 return false;
2382}
2383#endif /* CONFIG_DEBUG_VM */
2384
2385static bool check_new_pages(struct page *page, unsigned int order)
2386{
2387 int i;
2388 for (i = 0; i < (1 << order); i++) {
2389 struct page *p = page + i;
2390
2391 if (unlikely(check_new_page(p)))
2392 return true;
2393 }
2394
2395 return false;
2396}
2397
2398inline void post_alloc_hook(struct page *page, unsigned int order,
2399 gfp_t gfp_flags)
2400{
2401 set_page_private(page, 0);
2402 set_page_refcounted(page);
2403
2404 arch_alloc_page(page, order);
2405 debug_pagealloc_map_pages(page, 1 << order);
2406
2407 /*
2408 * Page unpoisoning must happen before memory initialization.
2409 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2410 * allocations and the page unpoisoning code will complain.
2411 */
2412 kernel_unpoison_pages(page, 1 << order);
2413
2414 /*
2415 * As memory initialization might be integrated into KASAN,
2416 * kasan_alloc_pages and kernel_init_free_pages must be
2417 * kept together to avoid discrepancies in behavior.
2418 */
2419 if (kasan_has_integrated_init()) {
2420 kasan_alloc_pages(page, order, gfp_flags);
2421 } else {
2422 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2423
2424 kasan_unpoison_pages(page, order, init);
2425 if (init)
2426 kernel_init_free_pages(page, 1 << order,
2427 gfp_flags & __GFP_ZEROTAGS);
2428 }
2429
2430 set_page_owner(page, order, gfp_flags);
2431}
2432
2433static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2434 unsigned int alloc_flags)
2435{
2436 post_alloc_hook(page, order, gfp_flags);
2437
2438 if (order && (gfp_flags & __GFP_COMP))
2439 prep_compound_page(page, order);
2440
2441 /*
2442 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2443 * allocate the page. The expectation is that the caller is taking
2444 * steps that will free more memory. The caller should avoid the page
2445 * being used for !PFMEMALLOC purposes.
2446 */
2447 if (alloc_flags & ALLOC_NO_WATERMARKS)
2448 set_page_pfmemalloc(page);
2449 else
2450 clear_page_pfmemalloc(page);
2451}
2452
2453/*
2454 * Go through the free lists for the given migratetype and remove
2455 * the smallest available page from the freelists
2456 */
2457static __always_inline
2458struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2459 int migratetype)
2460{
2461 unsigned int current_order;
2462 struct free_area *area;
2463 struct page *page;
2464
2465 /* Find a page of the appropriate size in the preferred list */
2466 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2467 area = &(zone->free_area[current_order]);
2468 page = get_page_from_free_area(area, migratetype);
2469 if (!page)
2470 continue;
2471 del_page_from_free_list(page, zone, current_order);
2472 expand(zone, page, order, current_order, migratetype);
2473 set_pcppage_migratetype(page, migratetype);
2474 return page;
2475 }
2476
2477 return NULL;
2478}
2479
2480
2481/*
2482 * This array describes the order lists are fallen back to when
2483 * the free lists for the desirable migrate type are depleted
2484 */
2485static int fallbacks[MIGRATE_TYPES][3] = {
2486 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2487 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2488 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2489#ifdef CONFIG_CMA
2490 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2491#endif
2492#ifdef CONFIG_MEMORY_ISOLATION
2493 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2494#endif
2495};
2496
2497#ifdef CONFIG_CMA
2498static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2499 unsigned int order)
2500{
2501 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2502}
2503#else
2504static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2505 unsigned int order) { return NULL; }
2506#endif
2507
2508/*
2509 * Move the free pages in a range to the freelist tail of the requested type.
2510 * Note that start_page and end_pages are not aligned on a pageblock
2511 * boundary. If alignment is required, use move_freepages_block()
2512 */
2513static int move_freepages(struct zone *zone,
2514 unsigned long start_pfn, unsigned long end_pfn,
2515 int migratetype, int *num_movable)
2516{
2517 struct page *page;
2518 unsigned long pfn;
2519 unsigned int order;
2520 int pages_moved = 0;
2521
2522 for (pfn = start_pfn; pfn <= end_pfn;) {
2523 if (!pfn_valid_within(pfn)) {
2524 pfn++;
2525 continue;
2526 }
2527
2528 page = pfn_to_page(pfn);
2529 if (!PageBuddy(page)) {
2530 /*
2531 * We assume that pages that could be isolated for
2532 * migration are movable. But we don't actually try
2533 * isolating, as that would be expensive.
2534 */
2535 if (num_movable &&
2536 (PageLRU(page) || __PageMovable(page)))
2537 (*num_movable)++;
2538 pfn++;
2539 continue;
2540 }
2541
2542 /* Make sure we are not inadvertently changing nodes */
2543 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2544 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2545
2546 order = buddy_order(page);
2547 move_to_free_list(page, zone, order, migratetype);
2548 pfn += 1 << order;
2549 pages_moved += 1 << order;
2550 }
2551
2552 return pages_moved;
2553}
2554
2555int move_freepages_block(struct zone *zone, struct page *page,
2556 int migratetype, int *num_movable)
2557{
2558 unsigned long start_pfn, end_pfn, pfn;
2559
2560 if (num_movable)
2561 *num_movable = 0;
2562
2563 pfn = page_to_pfn(page);
2564 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2565 end_pfn = start_pfn + pageblock_nr_pages - 1;
2566
2567 /* Do not cross zone boundaries */
2568 if (!zone_spans_pfn(zone, start_pfn))
2569 start_pfn = pfn;
2570 if (!zone_spans_pfn(zone, end_pfn))
2571 return 0;
2572
2573 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2574 num_movable);
2575}
2576
2577static void change_pageblock_range(struct page *pageblock_page,
2578 int start_order, int migratetype)
2579{
2580 int nr_pageblocks = 1 << (start_order - pageblock_order);
2581
2582 while (nr_pageblocks--) {
2583 set_pageblock_migratetype(pageblock_page, migratetype);
2584 pageblock_page += pageblock_nr_pages;
2585 }
2586}
2587
2588/*
2589 * When we are falling back to another migratetype during allocation, try to
2590 * steal extra free pages from the same pageblocks to satisfy further
2591 * allocations, instead of polluting multiple pageblocks.
2592 *
2593 * If we are stealing a relatively large buddy page, it is likely there will
2594 * be more free pages in the pageblock, so try to steal them all. For
2595 * reclaimable and unmovable allocations, we steal regardless of page size,
2596 * as fragmentation caused by those allocations polluting movable pageblocks
2597 * is worse than movable allocations stealing from unmovable and reclaimable
2598 * pageblocks.
2599 */
2600static bool can_steal_fallback(unsigned int order, int start_mt)
2601{
2602 /*
2603 * Leaving this order check is intended, although there is
2604 * relaxed order check in next check. The reason is that
2605 * we can actually steal whole pageblock if this condition met,
2606 * but, below check doesn't guarantee it and that is just heuristic
2607 * so could be changed anytime.
2608 */
2609 if (order >= pageblock_order)
2610 return true;
2611
2612 if (order >= pageblock_order / 2 ||
2613 start_mt == MIGRATE_RECLAIMABLE ||
2614 start_mt == MIGRATE_UNMOVABLE ||
2615 page_group_by_mobility_disabled)
2616 return true;
2617
2618 return false;
2619}
2620
2621static inline bool boost_watermark(struct zone *zone)
2622{
2623 unsigned long max_boost;
2624
2625 if (!watermark_boost_factor)
2626 return false;
2627 /*
2628 * Don't bother in zones that are unlikely to produce results.
2629 * On small machines, including kdump capture kernels running
2630 * in a small area, boosting the watermark can cause an out of
2631 * memory situation immediately.
2632 */
2633 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2634 return false;
2635
2636 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2637 watermark_boost_factor, 10000);
2638
2639 /*
2640 * high watermark may be uninitialised if fragmentation occurs
2641 * very early in boot so do not boost. We do not fall
2642 * through and boost by pageblock_nr_pages as failing
2643 * allocations that early means that reclaim is not going
2644 * to help and it may even be impossible to reclaim the
2645 * boosted watermark resulting in a hang.
2646 */
2647 if (!max_boost)
2648 return false;
2649
2650 max_boost = max(pageblock_nr_pages, max_boost);
2651
2652 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2653 max_boost);
2654
2655 return true;
2656}
2657
2658/*
2659 * This function implements actual steal behaviour. If order is large enough,
2660 * we can steal whole pageblock. If not, we first move freepages in this
2661 * pageblock to our migratetype and determine how many already-allocated pages
2662 * are there in the pageblock with a compatible migratetype. If at least half
2663 * of pages are free or compatible, we can change migratetype of the pageblock
2664 * itself, so pages freed in the future will be put on the correct free list.
2665 */
2666static void steal_suitable_fallback(struct zone *zone, struct page *page,
2667 unsigned int alloc_flags, int start_type, bool whole_block)
2668{
2669 unsigned int current_order = buddy_order(page);
2670 int free_pages, movable_pages, alike_pages;
2671 int old_block_type;
2672
2673 old_block_type = get_pageblock_migratetype(page);
2674
2675 /*
2676 * This can happen due to races and we want to prevent broken
2677 * highatomic accounting.
2678 */
2679 if (is_migrate_highatomic(old_block_type))
2680 goto single_page;
2681
2682 /* Take ownership for orders >= pageblock_order */
2683 if (current_order >= pageblock_order) {
2684 change_pageblock_range(page, current_order, start_type);
2685 goto single_page;
2686 }
2687
2688 /*
2689 * Boost watermarks to increase reclaim pressure to reduce the
2690 * likelihood of future fallbacks. Wake kswapd now as the node
2691 * may be balanced overall and kswapd will not wake naturally.
2692 */
2693 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2694 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2695
2696 /* We are not allowed to try stealing from the whole block */
2697 if (!whole_block)
2698 goto single_page;
2699
2700 free_pages = move_freepages_block(zone, page, start_type,
2701 &movable_pages);
2702 /*
2703 * Determine how many pages are compatible with our allocation.
2704 * For movable allocation, it's the number of movable pages which
2705 * we just obtained. For other types it's a bit more tricky.
2706 */
2707 if (start_type == MIGRATE_MOVABLE) {
2708 alike_pages = movable_pages;
2709 } else {
2710 /*
2711 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2712 * to MOVABLE pageblock, consider all non-movable pages as
2713 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2714 * vice versa, be conservative since we can't distinguish the
2715 * exact migratetype of non-movable pages.
2716 */
2717 if (old_block_type == MIGRATE_MOVABLE)
2718 alike_pages = pageblock_nr_pages
2719 - (free_pages + movable_pages);
2720 else
2721 alike_pages = 0;
2722 }
2723
2724 /* moving whole block can fail due to zone boundary conditions */
2725 if (!free_pages)
2726 goto single_page;
2727
2728 /*
2729 * If a sufficient number of pages in the block are either free or of
2730 * comparable migratability as our allocation, claim the whole block.
2731 */
2732 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2733 page_group_by_mobility_disabled)
2734 set_pageblock_migratetype(page, start_type);
2735
2736 return;
2737
2738single_page:
2739 move_to_free_list(page, zone, current_order, start_type);
2740}
2741
2742/*
2743 * Check whether there is a suitable fallback freepage with requested order.
2744 * If only_stealable is true, this function returns fallback_mt only if
2745 * we can steal other freepages all together. This would help to reduce
2746 * fragmentation due to mixed migratetype pages in one pageblock.
2747 */
2748int find_suitable_fallback(struct free_area *area, unsigned int order,
2749 int migratetype, bool only_stealable, bool *can_steal)
2750{
2751 int i;
2752 int fallback_mt;
2753
2754 if (area->nr_free == 0)
2755 return -1;
2756
2757 *can_steal = false;
2758 for (i = 0;; i++) {
2759 fallback_mt = fallbacks[migratetype][i];
2760 if (fallback_mt == MIGRATE_TYPES)
2761 break;
2762
2763 if (free_area_empty(area, fallback_mt))
2764 continue;
2765
2766 if (can_steal_fallback(order, migratetype))
2767 *can_steal = true;
2768
2769 if (!only_stealable)
2770 return fallback_mt;
2771
2772 if (*can_steal)
2773 return fallback_mt;
2774 }
2775
2776 return -1;
2777}
2778
2779/*
2780 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2781 * there are no empty page blocks that contain a page with a suitable order
2782 */
2783static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2784 unsigned int alloc_order)
2785{
2786 int mt;
2787 unsigned long max_managed, flags;
2788
2789 /*
2790 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2791 * Check is race-prone but harmless.
2792 */
2793 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2794 if (zone->nr_reserved_highatomic >= max_managed)
2795 return;
2796
2797 spin_lock_irqsave(&zone->lock, flags);
2798
2799 /* Recheck the nr_reserved_highatomic limit under the lock */
2800 if (zone->nr_reserved_highatomic >= max_managed)
2801 goto out_unlock;
2802
2803 /* Yoink! */
2804 mt = get_pageblock_migratetype(page);
2805 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2806 && !is_migrate_cma(mt)) {
2807 zone->nr_reserved_highatomic += pageblock_nr_pages;
2808 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2809 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2810 }
2811
2812out_unlock:
2813 spin_unlock_irqrestore(&zone->lock, flags);
2814}
2815
2816/*
2817 * Used when an allocation is about to fail under memory pressure. This
2818 * potentially hurts the reliability of high-order allocations when under
2819 * intense memory pressure but failed atomic allocations should be easier
2820 * to recover from than an OOM.
2821 *
2822 * If @force is true, try to unreserve a pageblock even though highatomic
2823 * pageblock is exhausted.
2824 */
2825static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2826 bool force)
2827{
2828 struct zonelist *zonelist = ac->zonelist;
2829 unsigned long flags;
2830 struct zoneref *z;
2831 struct zone *zone;
2832 struct page *page;
2833 int order;
2834 bool ret;
2835
2836 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2837 ac->nodemask) {
2838 /*
2839 * Preserve at least one pageblock unless memory pressure
2840 * is really high.
2841 */
2842 if (!force && zone->nr_reserved_highatomic <=
2843 pageblock_nr_pages)
2844 continue;
2845
2846 spin_lock_irqsave(&zone->lock, flags);
2847 for (order = 0; order < MAX_ORDER; order++) {
2848 struct free_area *area = &(zone->free_area[order]);
2849
2850 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2851 if (!page)
2852 continue;
2853
2854 /*
2855 * In page freeing path, migratetype change is racy so
2856 * we can counter several free pages in a pageblock
2857 * in this loop although we changed the pageblock type
2858 * from highatomic to ac->migratetype. So we should
2859 * adjust the count once.
2860 */
2861 if (is_migrate_highatomic_page(page)) {
2862 /*
2863 * It should never happen but changes to
2864 * locking could inadvertently allow a per-cpu
2865 * drain to add pages to MIGRATE_HIGHATOMIC
2866 * while unreserving so be safe and watch for
2867 * underflows.
2868 */
2869 zone->nr_reserved_highatomic -= min(
2870 pageblock_nr_pages,
2871 zone->nr_reserved_highatomic);
2872 }
2873
2874 /*
2875 * Convert to ac->migratetype and avoid the normal
2876 * pageblock stealing heuristics. Minimally, the caller
2877 * is doing the work and needs the pages. More
2878 * importantly, if the block was always converted to
2879 * MIGRATE_UNMOVABLE or another type then the number
2880 * of pageblocks that cannot be completely freed
2881 * may increase.
2882 */
2883 set_pageblock_migratetype(page, ac->migratetype);
2884 ret = move_freepages_block(zone, page, ac->migratetype,
2885 NULL);
2886 if (ret) {
2887 spin_unlock_irqrestore(&zone->lock, flags);
2888 return ret;
2889 }
2890 }
2891 spin_unlock_irqrestore(&zone->lock, flags);
2892 }
2893
2894 return false;
2895}
2896
2897/*
2898 * Try finding a free buddy page on the fallback list and put it on the free
2899 * list of requested migratetype, possibly along with other pages from the same
2900 * block, depending on fragmentation avoidance heuristics. Returns true if
2901 * fallback was found so that __rmqueue_smallest() can grab it.
2902 *
2903 * The use of signed ints for order and current_order is a deliberate
2904 * deviation from the rest of this file, to make the for loop
2905 * condition simpler.
2906 */
2907static __always_inline bool
2908__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2909 unsigned int alloc_flags)
2910{
2911 struct free_area *area;
2912 int current_order;
2913 int min_order = order;
2914 struct page *page;
2915 int fallback_mt;
2916 bool can_steal;
2917
2918 /*
2919 * Do not steal pages from freelists belonging to other pageblocks
2920 * i.e. orders < pageblock_order. If there are no local zones free,
2921 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2922 */
2923 if (alloc_flags & ALLOC_NOFRAGMENT)
2924 min_order = pageblock_order;
2925
2926 /*
2927 * Find the largest available free page in the other list. This roughly
2928 * approximates finding the pageblock with the most free pages, which
2929 * would be too costly to do exactly.
2930 */
2931 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2932 --current_order) {
2933 area = &(zone->free_area[current_order]);
2934 fallback_mt = find_suitable_fallback(area, current_order,
2935 start_migratetype, false, &can_steal);
2936 if (fallback_mt == -1)
2937 continue;
2938
2939 /*
2940 * We cannot steal all free pages from the pageblock and the
2941 * requested migratetype is movable. In that case it's better to
2942 * steal and split the smallest available page instead of the
2943 * largest available page, because even if the next movable
2944 * allocation falls back into a different pageblock than this
2945 * one, it won't cause permanent fragmentation.
2946 */
2947 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2948 && current_order > order)
2949 goto find_smallest;
2950
2951 goto do_steal;
2952 }
2953
2954 return false;
2955
2956find_smallest:
2957 for (current_order = order; current_order < MAX_ORDER;
2958 current_order++) {
2959 area = &(zone->free_area[current_order]);
2960 fallback_mt = find_suitable_fallback(area, current_order,
2961 start_migratetype, false, &can_steal);
2962 if (fallback_mt != -1)
2963 break;
2964 }
2965
2966 /*
2967 * This should not happen - we already found a suitable fallback
2968 * when looking for the largest page.
2969 */
2970 VM_BUG_ON(current_order == MAX_ORDER);
2971
2972do_steal:
2973 page = get_page_from_free_area(area, fallback_mt);
2974
2975 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2976 can_steal);
2977
2978 trace_mm_page_alloc_extfrag(page, order, current_order,
2979 start_migratetype, fallback_mt);
2980
2981 return true;
2982
2983}
2984
2985/*
2986 * Do the hard work of removing an element from the buddy allocator.
2987 * Call me with the zone->lock already held.
2988 */
2989static __always_inline struct page *
2990__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2991 unsigned int alloc_flags)
2992{
2993 struct page *page;
2994
2995 if (IS_ENABLED(CONFIG_CMA)) {
2996 /*
2997 * Balance movable allocations between regular and CMA areas by
2998 * allocating from CMA when over half of the zone's free memory
2999 * is in the CMA area.
3000 */
3001 if (alloc_flags & ALLOC_CMA &&
3002 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3003 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3004 page = __rmqueue_cma_fallback(zone, order);
3005 if (page)
3006 goto out;
3007 }
3008 }
3009retry:
3010 page = __rmqueue_smallest(zone, order, migratetype);
3011 if (unlikely(!page)) {
3012 if (alloc_flags & ALLOC_CMA)
3013 page = __rmqueue_cma_fallback(zone, order);
3014
3015 if (!page && __rmqueue_fallback(zone, order, migratetype,
3016 alloc_flags))
3017 goto retry;
3018 }
3019out:
3020 if (page)
3021 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3022 return page;
3023}
3024
3025/*
3026 * Obtain a specified number of elements from the buddy allocator, all under
3027 * a single hold of the lock, for efficiency. Add them to the supplied list.
3028 * Returns the number of new pages which were placed at *list.
3029 */
3030static int rmqueue_bulk(struct zone *zone, unsigned int order,
3031 unsigned long count, struct list_head *list,
3032 int migratetype, unsigned int alloc_flags)
3033{
3034 int i, allocated = 0;
3035
3036 /*
3037 * local_lock_irq held so equivalent to spin_lock_irqsave for
3038 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3039 */
3040 spin_lock(&zone->lock);
3041 for (i = 0; i < count; ++i) {
3042 struct page *page = __rmqueue(zone, order, migratetype,
3043 alloc_flags);
3044 if (unlikely(page == NULL))
3045 break;
3046
3047 if (unlikely(check_pcp_refill(page)))
3048 continue;
3049
3050 /*
3051 * Split buddy pages returned by expand() are received here in
3052 * physical page order. The page is added to the tail of
3053 * caller's list. From the callers perspective, the linked list
3054 * is ordered by page number under some conditions. This is
3055 * useful for IO devices that can forward direction from the
3056 * head, thus also in the physical page order. This is useful
3057 * for IO devices that can merge IO requests if the physical
3058 * pages are ordered properly.
3059 */
3060 list_add_tail(&page->lru, list);
3061 allocated++;
3062 if (is_migrate_cma(get_pcppage_migratetype(page)))
3063 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3064 -(1 << order));
3065 }
3066
3067 /*
3068 * i pages were removed from the buddy list even if some leak due
3069 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3070 * on i. Do not confuse with 'allocated' which is the number of
3071 * pages added to the pcp list.
3072 */
3073 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3074 spin_unlock(&zone->lock);
3075 return allocated;
3076}
3077
3078#ifdef CONFIG_NUMA
3079/*
3080 * Called from the vmstat counter updater to drain pagesets of this
3081 * currently executing processor on remote nodes after they have
3082 * expired.
3083 *
3084 * Note that this function must be called with the thread pinned to
3085 * a single processor.
3086 */
3087void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3088{
3089 unsigned long flags;
3090 int to_drain, batch;
3091
3092 local_lock_irqsave(&pagesets.lock, flags);
3093 batch = READ_ONCE(pcp->batch);
3094 to_drain = min(pcp->count, batch);
3095 if (to_drain > 0)
3096 free_pcppages_bulk(zone, to_drain, pcp);
3097 local_unlock_irqrestore(&pagesets.lock, flags);
3098}
3099#endif
3100
3101/*
3102 * Drain pcplists of the indicated processor and zone.
3103 *
3104 * The processor must either be the current processor and the
3105 * thread pinned to the current processor or a processor that
3106 * is not online.
3107 */
3108static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3109{
3110 unsigned long flags;
3111 struct per_cpu_pages *pcp;
3112
3113 local_lock_irqsave(&pagesets.lock, flags);
3114
3115 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3116 if (pcp->count)
3117 free_pcppages_bulk(zone, pcp->count, pcp);
3118
3119 local_unlock_irqrestore(&pagesets.lock, flags);
3120}
3121
3122/*
3123 * Drain pcplists of all zones on the indicated processor.
3124 *
3125 * The processor must either be the current processor and the
3126 * thread pinned to the current processor or a processor that
3127 * is not online.
3128 */
3129static void drain_pages(unsigned int cpu)
3130{
3131 struct zone *zone;
3132
3133 for_each_populated_zone(zone) {
3134 drain_pages_zone(cpu, zone);
3135 }
3136}
3137
3138/*
3139 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3140 *
3141 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3142 * the single zone's pages.
3143 */
3144void drain_local_pages(struct zone *zone)
3145{
3146 int cpu = smp_processor_id();
3147
3148 if (zone)
3149 drain_pages_zone(cpu, zone);
3150 else
3151 drain_pages(cpu);
3152}
3153
3154static void drain_local_pages_wq(struct work_struct *work)
3155{
3156 struct pcpu_drain *drain;
3157
3158 drain = container_of(work, struct pcpu_drain, work);
3159
3160 /*
3161 * drain_all_pages doesn't use proper cpu hotplug protection so
3162 * we can race with cpu offline when the WQ can move this from
3163 * a cpu pinned worker to an unbound one. We can operate on a different
3164 * cpu which is alright but we also have to make sure to not move to
3165 * a different one.
3166 */
3167 preempt_disable();
3168 drain_local_pages(drain->zone);
3169 preempt_enable();
3170}
3171
3172/*
3173 * The implementation of drain_all_pages(), exposing an extra parameter to
3174 * drain on all cpus.
3175 *
3176 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3177 * not empty. The check for non-emptiness can however race with a free to
3178 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3179 * that need the guarantee that every CPU has drained can disable the
3180 * optimizing racy check.
3181 */
3182static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3183{
3184 int cpu;
3185
3186 /*
3187 * Allocate in the BSS so we won't require allocation in
3188 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3189 */
3190 static cpumask_t cpus_with_pcps;
3191
3192 /*
3193 * Make sure nobody triggers this path before mm_percpu_wq is fully
3194 * initialized.
3195 */
3196 if (WARN_ON_ONCE(!mm_percpu_wq))
3197 return;
3198
3199 /*
3200 * Do not drain if one is already in progress unless it's specific to
3201 * a zone. Such callers are primarily CMA and memory hotplug and need
3202 * the drain to be complete when the call returns.
3203 */
3204 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3205 if (!zone)
3206 return;
3207 mutex_lock(&pcpu_drain_mutex);
3208 }
3209
3210 /*
3211 * We don't care about racing with CPU hotplug event
3212 * as offline notification will cause the notified
3213 * cpu to drain that CPU pcps and on_each_cpu_mask
3214 * disables preemption as part of its processing
3215 */
3216 for_each_online_cpu(cpu) {
3217 struct per_cpu_pages *pcp;
3218 struct zone *z;
3219 bool has_pcps = false;
3220
3221 if (force_all_cpus) {
3222 /*
3223 * The pcp.count check is racy, some callers need a
3224 * guarantee that no cpu is missed.
3225 */
3226 has_pcps = true;
3227 } else if (zone) {
3228 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3229 if (pcp->count)
3230 has_pcps = true;
3231 } else {
3232 for_each_populated_zone(z) {
3233 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3234 if (pcp->count) {
3235 has_pcps = true;
3236 break;
3237 }
3238 }
3239 }
3240
3241 if (has_pcps)
3242 cpumask_set_cpu(cpu, &cpus_with_pcps);
3243 else
3244 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3245 }
3246
3247 for_each_cpu(cpu, &cpus_with_pcps) {
3248 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3249
3250 drain->zone = zone;
3251 INIT_WORK(&drain->work, drain_local_pages_wq);
3252 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3253 }
3254 for_each_cpu(cpu, &cpus_with_pcps)
3255 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3256
3257 mutex_unlock(&pcpu_drain_mutex);
3258}
3259
3260/*
3261 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3262 *
3263 * When zone parameter is non-NULL, spill just the single zone's pages.
3264 *
3265 * Note that this can be extremely slow as the draining happens in a workqueue.
3266 */
3267void drain_all_pages(struct zone *zone)
3268{
3269 __drain_all_pages(zone, false);
3270}
3271
3272#ifdef CONFIG_HIBERNATION
3273
3274/*
3275 * Touch the watchdog for every WD_PAGE_COUNT pages.
3276 */
3277#define WD_PAGE_COUNT (128*1024)
3278
3279void mark_free_pages(struct zone *zone)
3280{
3281 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3282 unsigned long flags;
3283 unsigned int order, t;
3284 struct page *page;
3285
3286 if (zone_is_empty(zone))
3287 return;
3288
3289 spin_lock_irqsave(&zone->lock, flags);
3290
3291 max_zone_pfn = zone_end_pfn(zone);
3292 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3293 if (pfn_valid(pfn)) {
3294 page = pfn_to_page(pfn);
3295
3296 if (!--page_count) {
3297 touch_nmi_watchdog();
3298 page_count = WD_PAGE_COUNT;
3299 }
3300
3301 if (page_zone(page) != zone)
3302 continue;
3303
3304 if (!swsusp_page_is_forbidden(page))
3305 swsusp_unset_page_free(page);
3306 }
3307
3308 for_each_migratetype_order(order, t) {
3309 list_for_each_entry(page,
3310 &zone->free_area[order].free_list[t], lru) {
3311 unsigned long i;
3312
3313 pfn = page_to_pfn(page);
3314 for (i = 0; i < (1UL << order); i++) {
3315 if (!--page_count) {
3316 touch_nmi_watchdog();
3317 page_count = WD_PAGE_COUNT;
3318 }
3319 swsusp_set_page_free(pfn_to_page(pfn + i));
3320 }
3321 }
3322 }
3323 spin_unlock_irqrestore(&zone->lock, flags);
3324}
3325#endif /* CONFIG_PM */
3326
3327static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3328 unsigned int order)
3329{
3330 int migratetype;
3331
3332 if (!free_pcp_prepare(page, order))
3333 return false;
3334
3335 migratetype = get_pfnblock_migratetype(page, pfn);
3336 set_pcppage_migratetype(page, migratetype);
3337 return true;
3338}
3339
3340static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3341{
3342 int min_nr_free, max_nr_free;
3343
3344 /* Check for PCP disabled or boot pageset */
3345 if (unlikely(high < batch))
3346 return 1;
3347
3348 /* Leave at least pcp->batch pages on the list */
3349 min_nr_free = batch;
3350 max_nr_free = high - batch;
3351
3352 /*
3353 * Double the number of pages freed each time there is subsequent
3354 * freeing of pages without any allocation.
3355 */
3356 batch <<= pcp->free_factor;
3357 if (batch < max_nr_free)
3358 pcp->free_factor++;
3359 batch = clamp(batch, min_nr_free, max_nr_free);
3360
3361 return batch;
3362}
3363
3364static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3365{
3366 int high = READ_ONCE(pcp->high);
3367
3368 if (unlikely(!high))
3369 return 0;
3370
3371 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3372 return high;
3373
3374 /*
3375 * If reclaim is active, limit the number of pages that can be
3376 * stored on pcp lists
3377 */
3378 return min(READ_ONCE(pcp->batch) << 2, high);
3379}
3380
3381static void free_unref_page_commit(struct page *page, unsigned long pfn,
3382 int migratetype, unsigned int order)
3383{
3384 struct zone *zone = page_zone(page);
3385 struct per_cpu_pages *pcp;
3386 int high;
3387 int pindex;
3388
3389 __count_vm_event(PGFREE);
3390 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3391 pindex = order_to_pindex(migratetype, order);
3392 list_add(&page->lru, &pcp->lists[pindex]);
3393 pcp->count += 1 << order;
3394 high = nr_pcp_high(pcp, zone);
3395 if (pcp->count >= high) {
3396 int batch = READ_ONCE(pcp->batch);
3397
3398 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3399 }
3400}
3401
3402/*
3403 * Free a pcp page
3404 */
3405void free_unref_page(struct page *page, unsigned int order)
3406{
3407 unsigned long flags;
3408 unsigned long pfn = page_to_pfn(page);
3409 int migratetype;
3410
3411 if (!free_unref_page_prepare(page, pfn, order))
3412 return;
3413
3414 /*
3415 * We only track unmovable, reclaimable and movable on pcp lists.
3416 * Place ISOLATE pages on the isolated list because they are being
3417 * offlined but treat HIGHATOMIC as movable pages so we can get those
3418 * areas back if necessary. Otherwise, we may have to free
3419 * excessively into the page allocator
3420 */
3421 migratetype = get_pcppage_migratetype(page);
3422 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3423 if (unlikely(is_migrate_isolate(migratetype))) {
3424 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3425 return;
3426 }
3427 migratetype = MIGRATE_MOVABLE;
3428 }
3429
3430 local_lock_irqsave(&pagesets.lock, flags);
3431 free_unref_page_commit(page, pfn, migratetype, order);
3432 local_unlock_irqrestore(&pagesets.lock, flags);
3433}
3434
3435/*
3436 * Free a list of 0-order pages
3437 */
3438void free_unref_page_list(struct list_head *list)
3439{
3440 struct page *page, *next;
3441 unsigned long flags, pfn;
3442 int batch_count = 0;
3443 int migratetype;
3444
3445 /* Prepare pages for freeing */
3446 list_for_each_entry_safe(page, next, list, lru) {
3447 pfn = page_to_pfn(page);
3448 if (!free_unref_page_prepare(page, pfn, 0))
3449 list_del(&page->lru);
3450
3451 /*
3452 * Free isolated pages directly to the allocator, see
3453 * comment in free_unref_page.
3454 */
3455 migratetype = get_pcppage_migratetype(page);
3456 if (unlikely(is_migrate_isolate(migratetype))) {
3457 list_del(&page->lru);
3458 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3459 continue;
3460 }
3461
3462 set_page_private(page, pfn);
3463 }
3464
3465 local_lock_irqsave(&pagesets.lock, flags);
3466 list_for_each_entry_safe(page, next, list, lru) {
3467 pfn = page_private(page);
3468 set_page_private(page, 0);
3469
3470 /*
3471 * Non-isolated types over MIGRATE_PCPTYPES get added
3472 * to the MIGRATE_MOVABLE pcp list.
3473 */
3474 migratetype = get_pcppage_migratetype(page);
3475 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3476 migratetype = MIGRATE_MOVABLE;
3477
3478 trace_mm_page_free_batched(page);
3479 free_unref_page_commit(page, pfn, migratetype, 0);
3480
3481 /*
3482 * Guard against excessive IRQ disabled times when we get
3483 * a large list of pages to free.
3484 */
3485 if (++batch_count == SWAP_CLUSTER_MAX) {
3486 local_unlock_irqrestore(&pagesets.lock, flags);
3487 batch_count = 0;
3488 local_lock_irqsave(&pagesets.lock, flags);
3489 }
3490 }
3491 local_unlock_irqrestore(&pagesets.lock, flags);
3492}
3493
3494/*
3495 * split_page takes a non-compound higher-order page, and splits it into
3496 * n (1<<order) sub-pages: page[0..n]
3497 * Each sub-page must be freed individually.
3498 *
3499 * Note: this is probably too low level an operation for use in drivers.
3500 * Please consult with lkml before using this in your driver.
3501 */
3502void split_page(struct page *page, unsigned int order)
3503{
3504 int i;
3505
3506 VM_BUG_ON_PAGE(PageCompound(page), page);
3507 VM_BUG_ON_PAGE(!page_count(page), page);
3508
3509 for (i = 1; i < (1 << order); i++)
3510 set_page_refcounted(page + i);
3511 split_page_owner(page, 1 << order);
3512 split_page_memcg(page, 1 << order);
3513}
3514EXPORT_SYMBOL_GPL(split_page);
3515
3516int __isolate_free_page(struct page *page, unsigned int order)
3517{
3518 unsigned long watermark;
3519 struct zone *zone;
3520 int mt;
3521
3522 BUG_ON(!PageBuddy(page));
3523
3524 zone = page_zone(page);
3525 mt = get_pageblock_migratetype(page);
3526
3527 if (!is_migrate_isolate(mt)) {
3528 /*
3529 * Obey watermarks as if the page was being allocated. We can
3530 * emulate a high-order watermark check with a raised order-0
3531 * watermark, because we already know our high-order page
3532 * exists.
3533 */
3534 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3535 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3536 return 0;
3537
3538 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3539 }
3540
3541 /* Remove page from free list */
3542
3543 del_page_from_free_list(page, zone, order);
3544
3545 /*
3546 * Set the pageblock if the isolated page is at least half of a
3547 * pageblock
3548 */
3549 if (order >= pageblock_order - 1) {
3550 struct page *endpage = page + (1 << order) - 1;
3551 for (; page < endpage; page += pageblock_nr_pages) {
3552 int mt = get_pageblock_migratetype(page);
3553 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3554 && !is_migrate_highatomic(mt))
3555 set_pageblock_migratetype(page,
3556 MIGRATE_MOVABLE);
3557 }
3558 }
3559
3560
3561 return 1UL << order;
3562}
3563
3564/**
3565 * __putback_isolated_page - Return a now-isolated page back where we got it
3566 * @page: Page that was isolated
3567 * @order: Order of the isolated page
3568 * @mt: The page's pageblock's migratetype
3569 *
3570 * This function is meant to return a page pulled from the free lists via
3571 * __isolate_free_page back to the free lists they were pulled from.
3572 */
3573void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3574{
3575 struct zone *zone = page_zone(page);
3576
3577 /* zone lock should be held when this function is called */
3578 lockdep_assert_held(&zone->lock);
3579
3580 /* Return isolated page to tail of freelist. */
3581 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3582 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3583}
3584
3585/*
3586 * Update NUMA hit/miss statistics
3587 *
3588 * Must be called with interrupts disabled.
3589 */
3590static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3591 long nr_account)
3592{
3593#ifdef CONFIG_NUMA
3594 enum numa_stat_item local_stat = NUMA_LOCAL;
3595
3596 /* skip numa counters update if numa stats is disabled */
3597 if (!static_branch_likely(&vm_numa_stat_key))
3598 return;
3599
3600 if (zone_to_nid(z) != numa_node_id())
3601 local_stat = NUMA_OTHER;
3602
3603 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3604 __count_numa_events(z, NUMA_HIT, nr_account);
3605 else {
3606 __count_numa_events(z, NUMA_MISS, nr_account);
3607 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3608 }
3609 __count_numa_events(z, local_stat, nr_account);
3610#endif
3611}
3612
3613/* Remove page from the per-cpu list, caller must protect the list */
3614static inline
3615struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3616 int migratetype,
3617 unsigned int alloc_flags,
3618 struct per_cpu_pages *pcp,
3619 struct list_head *list)
3620{
3621 struct page *page;
3622
3623 do {
3624 if (list_empty(list)) {
3625 int batch = READ_ONCE(pcp->batch);
3626 int alloced;
3627
3628 /*
3629 * Scale batch relative to order if batch implies
3630 * free pages can be stored on the PCP. Batch can
3631 * be 1 for small zones or for boot pagesets which
3632 * should never store free pages as the pages may
3633 * belong to arbitrary zones.
3634 */
3635 if (batch > 1)
3636 batch = max(batch >> order, 2);
3637 alloced = rmqueue_bulk(zone, order,
3638 batch, list,
3639 migratetype, alloc_flags);
3640
3641 pcp->count += alloced << order;
3642 if (unlikely(list_empty(list)))
3643 return NULL;
3644 }
3645
3646 page = list_first_entry(list, struct page, lru);
3647 list_del(&page->lru);
3648 pcp->count -= 1 << order;
3649 } while (check_new_pcp(page));
3650
3651 return page;
3652}
3653
3654/* Lock and remove page from the per-cpu list */
3655static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3656 struct zone *zone, unsigned int order,
3657 gfp_t gfp_flags, int migratetype,
3658 unsigned int alloc_flags)
3659{
3660 struct per_cpu_pages *pcp;
3661 struct list_head *list;
3662 struct page *page;
3663 unsigned long flags;
3664
3665 local_lock_irqsave(&pagesets.lock, flags);
3666
3667 /*
3668 * On allocation, reduce the number of pages that are batch freed.
3669 * See nr_pcp_free() where free_factor is increased for subsequent
3670 * frees.
3671 */
3672 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3673 pcp->free_factor >>= 1;
3674 list = &pcp->lists[order_to_pindex(migratetype, order)];
3675 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3676 local_unlock_irqrestore(&pagesets.lock, flags);
3677 if (page) {
3678 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3679 zone_statistics(preferred_zone, zone, 1);
3680 }
3681 return page;
3682}
3683
3684/*
3685 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3686 */
3687static inline
3688struct page *rmqueue(struct zone *preferred_zone,
3689 struct zone *zone, unsigned int order,
3690 gfp_t gfp_flags, unsigned int alloc_flags,
3691 int migratetype)
3692{
3693 unsigned long flags;
3694 struct page *page;
3695
3696 if (likely(pcp_allowed_order(order))) {
3697 /*
3698 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3699 * we need to skip it when CMA area isn't allowed.
3700 */
3701 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3702 migratetype != MIGRATE_MOVABLE) {
3703 page = rmqueue_pcplist(preferred_zone, zone, order,
3704 gfp_flags, migratetype, alloc_flags);
3705 goto out;
3706 }
3707 }
3708
3709 /*
3710 * We most definitely don't want callers attempting to
3711 * allocate greater than order-1 page units with __GFP_NOFAIL.
3712 */
3713 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3714 spin_lock_irqsave(&zone->lock, flags);
3715
3716 do {
3717 page = NULL;
3718 /*
3719 * order-0 request can reach here when the pcplist is skipped
3720 * due to non-CMA allocation context. HIGHATOMIC area is
3721 * reserved for high-order atomic allocation, so order-0
3722 * request should skip it.
3723 */
3724 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3725 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3726 if (page)
3727 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3728 }
3729 if (!page)
3730 page = __rmqueue(zone, order, migratetype, alloc_flags);
3731 } while (page && check_new_pages(page, order));
3732 if (!page)
3733 goto failed;
3734
3735 __mod_zone_freepage_state(zone, -(1 << order),
3736 get_pcppage_migratetype(page));
3737 spin_unlock_irqrestore(&zone->lock, flags);
3738
3739 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3740 zone_statistics(preferred_zone, zone, 1);
3741
3742out:
3743 /* Separate test+clear to avoid unnecessary atomics */
3744 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3745 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3746 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3747 }
3748
3749 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3750 return page;
3751
3752failed:
3753 spin_unlock_irqrestore(&zone->lock, flags);
3754 return NULL;
3755}
3756
3757#ifdef CONFIG_FAIL_PAGE_ALLOC
3758
3759static struct {
3760 struct fault_attr attr;
3761
3762 bool ignore_gfp_highmem;
3763 bool ignore_gfp_reclaim;
3764 u32 min_order;
3765} fail_page_alloc = {
3766 .attr = FAULT_ATTR_INITIALIZER,
3767 .ignore_gfp_reclaim = true,
3768 .ignore_gfp_highmem = true,
3769 .min_order = 1,
3770};
3771
3772static int __init setup_fail_page_alloc(char *str)
3773{
3774 return setup_fault_attr(&fail_page_alloc.attr, str);
3775}
3776__setup("fail_page_alloc=", setup_fail_page_alloc);
3777
3778static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3779{
3780 if (order < fail_page_alloc.min_order)
3781 return false;
3782 if (gfp_mask & __GFP_NOFAIL)
3783 return false;
3784 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3785 return false;
3786 if (fail_page_alloc.ignore_gfp_reclaim &&
3787 (gfp_mask & __GFP_DIRECT_RECLAIM))
3788 return false;
3789
3790 return should_fail(&fail_page_alloc.attr, 1 << order);
3791}
3792
3793#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3794
3795static int __init fail_page_alloc_debugfs(void)
3796{
3797 umode_t mode = S_IFREG | 0600;
3798 struct dentry *dir;
3799
3800 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3801 &fail_page_alloc.attr);
3802
3803 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3804 &fail_page_alloc.ignore_gfp_reclaim);
3805 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3806 &fail_page_alloc.ignore_gfp_highmem);
3807 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3808
3809 return 0;
3810}
3811
3812late_initcall(fail_page_alloc_debugfs);
3813
3814#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3815
3816#else /* CONFIG_FAIL_PAGE_ALLOC */
3817
3818static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3819{
3820 return false;
3821}
3822
3823#endif /* CONFIG_FAIL_PAGE_ALLOC */
3824
3825noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3826{
3827 return __should_fail_alloc_page(gfp_mask, order);
3828}
3829ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3830
3831static inline long __zone_watermark_unusable_free(struct zone *z,
3832 unsigned int order, unsigned int alloc_flags)
3833{
3834 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3835 long unusable_free = (1 << order) - 1;
3836
3837 /*
3838 * If the caller does not have rights to ALLOC_HARDER then subtract
3839 * the high-atomic reserves. This will over-estimate the size of the
3840 * atomic reserve but it avoids a search.
3841 */
3842 if (likely(!alloc_harder))
3843 unusable_free += z->nr_reserved_highatomic;
3844
3845#ifdef CONFIG_CMA
3846 /* If allocation can't use CMA areas don't use free CMA pages */
3847 if (!(alloc_flags & ALLOC_CMA))
3848 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3849#endif
3850
3851 return unusable_free;
3852}
3853
3854/*
3855 * Return true if free base pages are above 'mark'. For high-order checks it
3856 * will return true of the order-0 watermark is reached and there is at least
3857 * one free page of a suitable size. Checking now avoids taking the zone lock
3858 * to check in the allocation paths if no pages are free.
3859 */
3860bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3861 int highest_zoneidx, unsigned int alloc_flags,
3862 long free_pages)
3863{
3864 long min = mark;
3865 int o;
3866 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3867
3868 /* free_pages may go negative - that's OK */
3869 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3870
3871 if (alloc_flags & ALLOC_HIGH)
3872 min -= min / 2;
3873
3874 if (unlikely(alloc_harder)) {
3875 /*
3876 * OOM victims can try even harder than normal ALLOC_HARDER
3877 * users on the grounds that it's definitely going to be in
3878 * the exit path shortly and free memory. Any allocation it
3879 * makes during the free path will be small and short-lived.
3880 */
3881 if (alloc_flags & ALLOC_OOM)
3882 min -= min / 2;
3883 else
3884 min -= min / 4;
3885 }
3886
3887 /*
3888 * Check watermarks for an order-0 allocation request. If these
3889 * are not met, then a high-order request also cannot go ahead
3890 * even if a suitable page happened to be free.
3891 */
3892 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3893 return false;
3894
3895 /* If this is an order-0 request then the watermark is fine */
3896 if (!order)
3897 return true;
3898
3899 /* For a high-order request, check at least one suitable page is free */
3900 for (o = order; o < MAX_ORDER; o++) {
3901 struct free_area *area = &z->free_area[o];
3902 int mt;
3903
3904 if (!area->nr_free)
3905 continue;
3906
3907 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3908 if (!free_area_empty(area, mt))
3909 return true;
3910 }
3911
3912#ifdef CONFIG_CMA
3913 if ((alloc_flags & ALLOC_CMA) &&
3914 !free_area_empty(area, MIGRATE_CMA)) {
3915 return true;
3916 }
3917#endif
3918 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3919 return true;
3920 }
3921 return false;
3922}
3923
3924bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3925 int highest_zoneidx, unsigned int alloc_flags)
3926{
3927 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3928 zone_page_state(z, NR_FREE_PAGES));
3929}
3930
3931static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3932 unsigned long mark, int highest_zoneidx,
3933 unsigned int alloc_flags, gfp_t gfp_mask)
3934{
3935 long free_pages;
3936
3937 free_pages = zone_page_state(z, NR_FREE_PAGES);
3938
3939 /*
3940 * Fast check for order-0 only. If this fails then the reserves
3941 * need to be calculated.
3942 */
3943 if (!order) {
3944 long fast_free;
3945
3946 fast_free = free_pages;
3947 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3948 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3949 return true;
3950 }
3951
3952 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3953 free_pages))
3954 return true;
3955 /*
3956 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3957 * when checking the min watermark. The min watermark is the
3958 * point where boosting is ignored so that kswapd is woken up
3959 * when below the low watermark.
3960 */
3961 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3962 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3963 mark = z->_watermark[WMARK_MIN];
3964 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3965 alloc_flags, free_pages);
3966 }
3967
3968 return false;
3969}
3970
3971bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3972 unsigned long mark, int highest_zoneidx)
3973{
3974 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3975
3976 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3977 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3978
3979 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3980 free_pages);
3981}
3982
3983#ifdef CONFIG_NUMA
3984static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3985{
3986 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3987 node_reclaim_distance;
3988}
3989#else /* CONFIG_NUMA */
3990static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3991{
3992 return true;
3993}
3994#endif /* CONFIG_NUMA */
3995
3996/*
3997 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3998 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3999 * premature use of a lower zone may cause lowmem pressure problems that
4000 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4001 * probably too small. It only makes sense to spread allocations to avoid
4002 * fragmentation between the Normal and DMA32 zones.
4003 */
4004static inline unsigned int
4005alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4006{
4007 unsigned int alloc_flags;
4008
4009 /*
4010 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4011 * to save a branch.
4012 */
4013 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4014
4015#ifdef CONFIG_ZONE_DMA32
4016 if (!zone)
4017 return alloc_flags;
4018
4019 if (zone_idx(zone) != ZONE_NORMAL)
4020 return alloc_flags;
4021
4022 /*
4023 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4024 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4025 * on UMA that if Normal is populated then so is DMA32.
4026 */
4027 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4028 if (nr_online_nodes > 1 && !populated_zone(--zone))
4029 return alloc_flags;
4030
4031 alloc_flags |= ALLOC_NOFRAGMENT;
4032#endif /* CONFIG_ZONE_DMA32 */
4033 return alloc_flags;
4034}
4035
4036/* Must be called after current_gfp_context() which can change gfp_mask */
4037static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4038 unsigned int alloc_flags)
4039{
4040#ifdef CONFIG_CMA
4041 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4042 alloc_flags |= ALLOC_CMA;
4043#endif
4044 return alloc_flags;
4045}
4046
4047/*
4048 * get_page_from_freelist goes through the zonelist trying to allocate
4049 * a page.
4050 */
4051static struct page *
4052get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4053 const struct alloc_context *ac)
4054{
4055 struct zoneref *z;
4056 struct zone *zone;
4057 struct pglist_data *last_pgdat_dirty_limit = NULL;
4058 bool no_fallback;
4059
4060retry:
4061 /*
4062 * Scan zonelist, looking for a zone with enough free.
4063 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4064 */
4065 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4066 z = ac->preferred_zoneref;
4067 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4068 ac->nodemask) {
4069 struct page *page;
4070 unsigned long mark;
4071
4072 if (cpusets_enabled() &&
4073 (alloc_flags & ALLOC_CPUSET) &&
4074 !__cpuset_zone_allowed(zone, gfp_mask))
4075 continue;
4076 /*
4077 * When allocating a page cache page for writing, we
4078 * want to get it from a node that is within its dirty
4079 * limit, such that no single node holds more than its
4080 * proportional share of globally allowed dirty pages.
4081 * The dirty limits take into account the node's
4082 * lowmem reserves and high watermark so that kswapd
4083 * should be able to balance it without having to
4084 * write pages from its LRU list.
4085 *
4086 * XXX: For now, allow allocations to potentially
4087 * exceed the per-node dirty limit in the slowpath
4088 * (spread_dirty_pages unset) before going into reclaim,
4089 * which is important when on a NUMA setup the allowed
4090 * nodes are together not big enough to reach the
4091 * global limit. The proper fix for these situations
4092 * will require awareness of nodes in the
4093 * dirty-throttling and the flusher threads.
4094 */
4095 if (ac->spread_dirty_pages) {
4096 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4097 continue;
4098
4099 if (!node_dirty_ok(zone->zone_pgdat)) {
4100 last_pgdat_dirty_limit = zone->zone_pgdat;
4101 continue;
4102 }
4103 }
4104
4105 if (no_fallback && nr_online_nodes > 1 &&
4106 zone != ac->preferred_zoneref->zone) {
4107 int local_nid;
4108
4109 /*
4110 * If moving to a remote node, retry but allow
4111 * fragmenting fallbacks. Locality is more important
4112 * than fragmentation avoidance.
4113 */
4114 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4115 if (zone_to_nid(zone) != local_nid) {
4116 alloc_flags &= ~ALLOC_NOFRAGMENT;
4117 goto retry;
4118 }
4119 }
4120
4121 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4122 if (!zone_watermark_fast(zone, order, mark,
4123 ac->highest_zoneidx, alloc_flags,
4124 gfp_mask)) {
4125 int ret;
4126
4127#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4128 /*
4129 * Watermark failed for this zone, but see if we can
4130 * grow this zone if it contains deferred pages.
4131 */
4132 if (static_branch_unlikely(&deferred_pages)) {
4133 if (_deferred_grow_zone(zone, order))
4134 goto try_this_zone;
4135 }
4136#endif
4137 /* Checked here to keep the fast path fast */
4138 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4139 if (alloc_flags & ALLOC_NO_WATERMARKS)
4140 goto try_this_zone;
4141
4142 if (!node_reclaim_enabled() ||
4143 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4144 continue;
4145
4146 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4147 switch (ret) {
4148 case NODE_RECLAIM_NOSCAN:
4149 /* did not scan */
4150 continue;
4151 case NODE_RECLAIM_FULL:
4152 /* scanned but unreclaimable */
4153 continue;
4154 default:
4155 /* did we reclaim enough */
4156 if (zone_watermark_ok(zone, order, mark,
4157 ac->highest_zoneidx, alloc_flags))
4158 goto try_this_zone;
4159
4160 continue;
4161 }
4162 }
4163
4164try_this_zone:
4165 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4166 gfp_mask, alloc_flags, ac->migratetype);
4167 if (page) {
4168 prep_new_page(page, order, gfp_mask, alloc_flags);
4169
4170 /*
4171 * If this is a high-order atomic allocation then check
4172 * if the pageblock should be reserved for the future
4173 */
4174 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4175 reserve_highatomic_pageblock(page, zone, order);
4176
4177 return page;
4178 } else {
4179#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4180 /* Try again if zone has deferred pages */
4181 if (static_branch_unlikely(&deferred_pages)) {
4182 if (_deferred_grow_zone(zone, order))
4183 goto try_this_zone;
4184 }
4185#endif
4186 }
4187 }
4188
4189 /*
4190 * It's possible on a UMA machine to get through all zones that are
4191 * fragmented. If avoiding fragmentation, reset and try again.
4192 */
4193 if (no_fallback) {
4194 alloc_flags &= ~ALLOC_NOFRAGMENT;
4195 goto retry;
4196 }
4197
4198 return NULL;
4199}
4200
4201static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4202{
4203 unsigned int filter = SHOW_MEM_FILTER_NODES;
4204
4205 /*
4206 * This documents exceptions given to allocations in certain
4207 * contexts that are allowed to allocate outside current's set
4208 * of allowed nodes.
4209 */
4210 if (!(gfp_mask & __GFP_NOMEMALLOC))
4211 if (tsk_is_oom_victim(current) ||
4212 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4213 filter &= ~SHOW_MEM_FILTER_NODES;
4214 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4215 filter &= ~SHOW_MEM_FILTER_NODES;
4216
4217 show_mem(filter, nodemask);
4218}
4219
4220void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4221{
4222 struct va_format vaf;
4223 va_list args;
4224 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4225
4226 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4227 return;
4228
4229 va_start(args, fmt);
4230 vaf.fmt = fmt;
4231 vaf.va = &args;
4232 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4233 current->comm, &vaf, gfp_mask, &gfp_mask,
4234 nodemask_pr_args(nodemask));
4235 va_end(args);
4236
4237 cpuset_print_current_mems_allowed();
4238 pr_cont("\n");
4239 dump_stack();
4240 warn_alloc_show_mem(gfp_mask, nodemask);
4241}
4242
4243static inline struct page *
4244__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4245 unsigned int alloc_flags,
4246 const struct alloc_context *ac)
4247{
4248 struct page *page;
4249
4250 page = get_page_from_freelist(gfp_mask, order,
4251 alloc_flags|ALLOC_CPUSET, ac);
4252 /*
4253 * fallback to ignore cpuset restriction if our nodes
4254 * are depleted
4255 */
4256 if (!page)
4257 page = get_page_from_freelist(gfp_mask, order,
4258 alloc_flags, ac);
4259
4260 return page;
4261}
4262
4263static inline struct page *
4264__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4265 const struct alloc_context *ac, unsigned long *did_some_progress)
4266{
4267 struct oom_control oc = {
4268 .zonelist = ac->zonelist,
4269 .nodemask = ac->nodemask,
4270 .memcg = NULL,
4271 .gfp_mask = gfp_mask,
4272 .order = order,
4273 };
4274 struct page *page;
4275
4276 *did_some_progress = 0;
4277
4278 /*
4279 * Acquire the oom lock. If that fails, somebody else is
4280 * making progress for us.
4281 */
4282 if (!mutex_trylock(&oom_lock)) {
4283 *did_some_progress = 1;
4284 schedule_timeout_uninterruptible(1);
4285 return NULL;
4286 }
4287
4288 /*
4289 * Go through the zonelist yet one more time, keep very high watermark
4290 * here, this is only to catch a parallel oom killing, we must fail if
4291 * we're still under heavy pressure. But make sure that this reclaim
4292 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4293 * allocation which will never fail due to oom_lock already held.
4294 */
4295 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4296 ~__GFP_DIRECT_RECLAIM, order,
4297 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4298 if (page)
4299 goto out;
4300
4301 /* Coredumps can quickly deplete all memory reserves */
4302 if (current->flags & PF_DUMPCORE)
4303 goto out;
4304 /* The OOM killer will not help higher order allocs */
4305 if (order > PAGE_ALLOC_COSTLY_ORDER)
4306 goto out;
4307 /*
4308 * We have already exhausted all our reclaim opportunities without any
4309 * success so it is time to admit defeat. We will skip the OOM killer
4310 * because it is very likely that the caller has a more reasonable
4311 * fallback than shooting a random task.
4312 *
4313 * The OOM killer may not free memory on a specific node.
4314 */
4315 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4316 goto out;
4317 /* The OOM killer does not needlessly kill tasks for lowmem */
4318 if (ac->highest_zoneidx < ZONE_NORMAL)
4319 goto out;
4320 if (pm_suspended_storage())
4321 goto out;
4322 /*
4323 * XXX: GFP_NOFS allocations should rather fail than rely on
4324 * other request to make a forward progress.
4325 * We are in an unfortunate situation where out_of_memory cannot
4326 * do much for this context but let's try it to at least get
4327 * access to memory reserved if the current task is killed (see
4328 * out_of_memory). Once filesystems are ready to handle allocation
4329 * failures more gracefully we should just bail out here.
4330 */
4331
4332 /* Exhausted what can be done so it's blame time */
4333 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4334 *did_some_progress = 1;
4335
4336 /*
4337 * Help non-failing allocations by giving them access to memory
4338 * reserves
4339 */
4340 if (gfp_mask & __GFP_NOFAIL)
4341 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4342 ALLOC_NO_WATERMARKS, ac);
4343 }
4344out:
4345 mutex_unlock(&oom_lock);
4346 return page;
4347}
4348
4349/*
4350 * Maximum number of compaction retries with a progress before OOM
4351 * killer is consider as the only way to move forward.
4352 */
4353#define MAX_COMPACT_RETRIES 16
4354
4355#ifdef CONFIG_COMPACTION
4356/* Try memory compaction for high-order allocations before reclaim */
4357static struct page *
4358__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4359 unsigned int alloc_flags, const struct alloc_context *ac,
4360 enum compact_priority prio, enum compact_result *compact_result)
4361{
4362 struct page *page = NULL;
4363 unsigned long pflags;
4364 unsigned int noreclaim_flag;
4365
4366 if (!order)
4367 return NULL;
4368
4369 psi_memstall_enter(&pflags);
4370 noreclaim_flag = memalloc_noreclaim_save();
4371
4372 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4373 prio, &page);
4374
4375 memalloc_noreclaim_restore(noreclaim_flag);
4376 psi_memstall_leave(&pflags);
4377
4378 if (*compact_result == COMPACT_SKIPPED)
4379 return NULL;
4380 /*
4381 * At least in one zone compaction wasn't deferred or skipped, so let's
4382 * count a compaction stall
4383 */
4384 count_vm_event(COMPACTSTALL);
4385
4386 /* Prep a captured page if available */
4387 if (page)
4388 prep_new_page(page, order, gfp_mask, alloc_flags);
4389
4390 /* Try get a page from the freelist if available */
4391 if (!page)
4392 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4393
4394 if (page) {
4395 struct zone *zone = page_zone(page);
4396
4397 zone->compact_blockskip_flush = false;
4398 compaction_defer_reset(zone, order, true);
4399 count_vm_event(COMPACTSUCCESS);
4400 return page;
4401 }
4402
4403 /*
4404 * It's bad if compaction run occurs and fails. The most likely reason
4405 * is that pages exist, but not enough to satisfy watermarks.
4406 */
4407 count_vm_event(COMPACTFAIL);
4408
4409 cond_resched();
4410
4411 return NULL;
4412}
4413
4414static inline bool
4415should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4416 enum compact_result compact_result,
4417 enum compact_priority *compact_priority,
4418 int *compaction_retries)
4419{
4420 int max_retries = MAX_COMPACT_RETRIES;
4421 int min_priority;
4422 bool ret = false;
4423 int retries = *compaction_retries;
4424 enum compact_priority priority = *compact_priority;
4425
4426 if (!order)
4427 return false;
4428
4429 if (fatal_signal_pending(current))
4430 return false;
4431
4432 if (compaction_made_progress(compact_result))
4433 (*compaction_retries)++;
4434
4435 /*
4436 * compaction considers all the zone as desperately out of memory
4437 * so it doesn't really make much sense to retry except when the
4438 * failure could be caused by insufficient priority
4439 */
4440 if (compaction_failed(compact_result))
4441 goto check_priority;
4442
4443 /*
4444 * compaction was skipped because there are not enough order-0 pages
4445 * to work with, so we retry only if it looks like reclaim can help.
4446 */
4447 if (compaction_needs_reclaim(compact_result)) {
4448 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4449 goto out;
4450 }
4451
4452 /*
4453 * make sure the compaction wasn't deferred or didn't bail out early
4454 * due to locks contention before we declare that we should give up.
4455 * But the next retry should use a higher priority if allowed, so
4456 * we don't just keep bailing out endlessly.
4457 */
4458 if (compaction_withdrawn(compact_result)) {
4459 goto check_priority;
4460 }
4461
4462 /*
4463 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4464 * costly ones because they are de facto nofail and invoke OOM
4465 * killer to move on while costly can fail and users are ready
4466 * to cope with that. 1/4 retries is rather arbitrary but we
4467 * would need much more detailed feedback from compaction to
4468 * make a better decision.
4469 */
4470 if (order > PAGE_ALLOC_COSTLY_ORDER)
4471 max_retries /= 4;
4472 if (*compaction_retries <= max_retries) {
4473 ret = true;
4474 goto out;
4475 }
4476
4477 /*
4478 * Make sure there are attempts at the highest priority if we exhausted
4479 * all retries or failed at the lower priorities.
4480 */
4481check_priority:
4482 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4483 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4484
4485 if (*compact_priority > min_priority) {
4486 (*compact_priority)--;
4487 *compaction_retries = 0;
4488 ret = true;
4489 }
4490out:
4491 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4492 return ret;
4493}
4494#else
4495static inline struct page *
4496__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4497 unsigned int alloc_flags, const struct alloc_context *ac,
4498 enum compact_priority prio, enum compact_result *compact_result)
4499{
4500 *compact_result = COMPACT_SKIPPED;
4501 return NULL;
4502}
4503
4504static inline bool
4505should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4506 enum compact_result compact_result,
4507 enum compact_priority *compact_priority,
4508 int *compaction_retries)
4509{
4510 struct zone *zone;
4511 struct zoneref *z;
4512
4513 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4514 return false;
4515
4516 /*
4517 * There are setups with compaction disabled which would prefer to loop
4518 * inside the allocator rather than hit the oom killer prematurely.
4519 * Let's give them a good hope and keep retrying while the order-0
4520 * watermarks are OK.
4521 */
4522 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4523 ac->highest_zoneidx, ac->nodemask) {
4524 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4525 ac->highest_zoneidx, alloc_flags))
4526 return true;
4527 }
4528 return false;
4529}
4530#endif /* CONFIG_COMPACTION */
4531
4532#ifdef CONFIG_LOCKDEP
4533static struct lockdep_map __fs_reclaim_map =
4534 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4535
4536static bool __need_reclaim(gfp_t gfp_mask)
4537{
4538 /* no reclaim without waiting on it */
4539 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4540 return false;
4541
4542 /* this guy won't enter reclaim */
4543 if (current->flags & PF_MEMALLOC)
4544 return false;
4545
4546 if (gfp_mask & __GFP_NOLOCKDEP)
4547 return false;
4548
4549 return true;
4550}
4551
4552void __fs_reclaim_acquire(void)
4553{
4554 lock_map_acquire(&__fs_reclaim_map);
4555}
4556
4557void __fs_reclaim_release(void)
4558{
4559 lock_map_release(&__fs_reclaim_map);
4560}
4561
4562void fs_reclaim_acquire(gfp_t gfp_mask)
4563{
4564 gfp_mask = current_gfp_context(gfp_mask);
4565
4566 if (__need_reclaim(gfp_mask)) {
4567 if (gfp_mask & __GFP_FS)
4568 __fs_reclaim_acquire();
4569
4570#ifdef CONFIG_MMU_NOTIFIER
4571 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4572 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4573#endif
4574
4575 }
4576}
4577EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4578
4579void fs_reclaim_release(gfp_t gfp_mask)
4580{
4581 gfp_mask = current_gfp_context(gfp_mask);
4582
4583 if (__need_reclaim(gfp_mask)) {
4584 if (gfp_mask & __GFP_FS)
4585 __fs_reclaim_release();
4586 }
4587}
4588EXPORT_SYMBOL_GPL(fs_reclaim_release);
4589#endif
4590
4591/* Perform direct synchronous page reclaim */
4592static unsigned long
4593__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4594 const struct alloc_context *ac)
4595{
4596 unsigned int noreclaim_flag;
4597 unsigned long pflags, progress;
4598
4599 cond_resched();
4600
4601 /* We now go into synchronous reclaim */
4602 cpuset_memory_pressure_bump();
4603 psi_memstall_enter(&pflags);
4604 fs_reclaim_acquire(gfp_mask);
4605 noreclaim_flag = memalloc_noreclaim_save();
4606
4607 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4608 ac->nodemask);
4609
4610 memalloc_noreclaim_restore(noreclaim_flag);
4611 fs_reclaim_release(gfp_mask);
4612 psi_memstall_leave(&pflags);
4613
4614 cond_resched();
4615
4616 return progress;
4617}
4618
4619/* The really slow allocator path where we enter direct reclaim */
4620static inline struct page *
4621__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4622 unsigned int alloc_flags, const struct alloc_context *ac,
4623 unsigned long *did_some_progress)
4624{
4625 struct page *page = NULL;
4626 bool drained = false;
4627
4628 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4629 if (unlikely(!(*did_some_progress)))
4630 return NULL;
4631
4632retry:
4633 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4634
4635 /*
4636 * If an allocation failed after direct reclaim, it could be because
4637 * pages are pinned on the per-cpu lists or in high alloc reserves.
4638 * Shrink them and try again
4639 */
4640 if (!page && !drained) {
4641 unreserve_highatomic_pageblock(ac, false);
4642 drain_all_pages(NULL);
4643 drained = true;
4644 goto retry;
4645 }
4646
4647 return page;
4648}
4649
4650static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4651 const struct alloc_context *ac)
4652{
4653 struct zoneref *z;
4654 struct zone *zone;
4655 pg_data_t *last_pgdat = NULL;
4656 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4657
4658 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4659 ac->nodemask) {
4660 if (last_pgdat != zone->zone_pgdat)
4661 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4662 last_pgdat = zone->zone_pgdat;
4663 }
4664}
4665
4666static inline unsigned int
4667gfp_to_alloc_flags(gfp_t gfp_mask)
4668{
4669 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4670
4671 /*
4672 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4673 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4674 * to save two branches.
4675 */
4676 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4677 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4678
4679 /*
4680 * The caller may dip into page reserves a bit more if the caller
4681 * cannot run direct reclaim, or if the caller has realtime scheduling
4682 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4683 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4684 */
4685 alloc_flags |= (__force int)
4686 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4687
4688 if (gfp_mask & __GFP_ATOMIC) {
4689 /*
4690 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4691 * if it can't schedule.
4692 */
4693 if (!(gfp_mask & __GFP_NOMEMALLOC))
4694 alloc_flags |= ALLOC_HARDER;
4695 /*
4696 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4697 * comment for __cpuset_node_allowed().
4698 */
4699 alloc_flags &= ~ALLOC_CPUSET;
4700 } else if (unlikely(rt_task(current)) && !in_interrupt())
4701 alloc_flags |= ALLOC_HARDER;
4702
4703 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4704
4705 return alloc_flags;
4706}
4707
4708static bool oom_reserves_allowed(struct task_struct *tsk)
4709{
4710 if (!tsk_is_oom_victim(tsk))
4711 return false;
4712
4713 /*
4714 * !MMU doesn't have oom reaper so give access to memory reserves
4715 * only to the thread with TIF_MEMDIE set
4716 */
4717 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4718 return false;
4719
4720 return true;
4721}
4722
4723/*
4724 * Distinguish requests which really need access to full memory
4725 * reserves from oom victims which can live with a portion of it
4726 */
4727static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4728{
4729 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4730 return 0;
4731 if (gfp_mask & __GFP_MEMALLOC)
4732 return ALLOC_NO_WATERMARKS;
4733 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4734 return ALLOC_NO_WATERMARKS;
4735 if (!in_interrupt()) {
4736 if (current->flags & PF_MEMALLOC)
4737 return ALLOC_NO_WATERMARKS;
4738 else if (oom_reserves_allowed(current))
4739 return ALLOC_OOM;
4740 }
4741
4742 return 0;
4743}
4744
4745bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4746{
4747 return !!__gfp_pfmemalloc_flags(gfp_mask);
4748}
4749
4750/*
4751 * Checks whether it makes sense to retry the reclaim to make a forward progress
4752 * for the given allocation request.
4753 *
4754 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4755 * without success, or when we couldn't even meet the watermark if we
4756 * reclaimed all remaining pages on the LRU lists.
4757 *
4758 * Returns true if a retry is viable or false to enter the oom path.
4759 */
4760static inline bool
4761should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4762 struct alloc_context *ac, int alloc_flags,
4763 bool did_some_progress, int *no_progress_loops)
4764{
4765 struct zone *zone;
4766 struct zoneref *z;
4767 bool ret = false;
4768
4769 /*
4770 * Costly allocations might have made a progress but this doesn't mean
4771 * their order will become available due to high fragmentation so
4772 * always increment the no progress counter for them
4773 */
4774 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4775 *no_progress_loops = 0;
4776 else
4777 (*no_progress_loops)++;
4778
4779 /*
4780 * Make sure we converge to OOM if we cannot make any progress
4781 * several times in the row.
4782 */
4783 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4784 /* Before OOM, exhaust highatomic_reserve */
4785 return unreserve_highatomic_pageblock(ac, true);
4786 }
4787
4788 /*
4789 * Keep reclaiming pages while there is a chance this will lead
4790 * somewhere. If none of the target zones can satisfy our allocation
4791 * request even if all reclaimable pages are considered then we are
4792 * screwed and have to go OOM.
4793 */
4794 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4795 ac->highest_zoneidx, ac->nodemask) {
4796 unsigned long available;
4797 unsigned long reclaimable;
4798 unsigned long min_wmark = min_wmark_pages(zone);
4799 bool wmark;
4800
4801 available = reclaimable = zone_reclaimable_pages(zone);
4802 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4803
4804 /*
4805 * Would the allocation succeed if we reclaimed all
4806 * reclaimable pages?
4807 */
4808 wmark = __zone_watermark_ok(zone, order, min_wmark,
4809 ac->highest_zoneidx, alloc_flags, available);
4810 trace_reclaim_retry_zone(z, order, reclaimable,
4811 available, min_wmark, *no_progress_loops, wmark);
4812 if (wmark) {
4813 /*
4814 * If we didn't make any progress and have a lot of
4815 * dirty + writeback pages then we should wait for
4816 * an IO to complete to slow down the reclaim and
4817 * prevent from pre mature OOM
4818 */
4819 if (!did_some_progress) {
4820 unsigned long write_pending;
4821
4822 write_pending = zone_page_state_snapshot(zone,
4823 NR_ZONE_WRITE_PENDING);
4824
4825 if (2 * write_pending > reclaimable) {
4826 congestion_wait(BLK_RW_ASYNC, HZ/10);
4827 return true;
4828 }
4829 }
4830
4831 ret = true;
4832 goto out;
4833 }
4834 }
4835
4836out:
4837 /*
4838 * Memory allocation/reclaim might be called from a WQ context and the
4839 * current implementation of the WQ concurrency control doesn't
4840 * recognize that a particular WQ is congested if the worker thread is
4841 * looping without ever sleeping. Therefore we have to do a short sleep
4842 * here rather than calling cond_resched().
4843 */
4844 if (current->flags & PF_WQ_WORKER)
4845 schedule_timeout_uninterruptible(1);
4846 else
4847 cond_resched();
4848 return ret;
4849}
4850
4851static inline bool
4852check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4853{
4854 /*
4855 * It's possible that cpuset's mems_allowed and the nodemask from
4856 * mempolicy don't intersect. This should be normally dealt with by
4857 * policy_nodemask(), but it's possible to race with cpuset update in
4858 * such a way the check therein was true, and then it became false
4859 * before we got our cpuset_mems_cookie here.
4860 * This assumes that for all allocations, ac->nodemask can come only
4861 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4862 * when it does not intersect with the cpuset restrictions) or the
4863 * caller can deal with a violated nodemask.
4864 */
4865 if (cpusets_enabled() && ac->nodemask &&
4866 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4867 ac->nodemask = NULL;
4868 return true;
4869 }
4870
4871 /*
4872 * When updating a task's mems_allowed or mempolicy nodemask, it is
4873 * possible to race with parallel threads in such a way that our
4874 * allocation can fail while the mask is being updated. If we are about
4875 * to fail, check if the cpuset changed during allocation and if so,
4876 * retry.
4877 */
4878 if (read_mems_allowed_retry(cpuset_mems_cookie))
4879 return true;
4880
4881 return false;
4882}
4883
4884static inline struct page *
4885__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4886 struct alloc_context *ac)
4887{
4888 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4889 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4890 struct page *page = NULL;
4891 unsigned int alloc_flags;
4892 unsigned long did_some_progress;
4893 enum compact_priority compact_priority;
4894 enum compact_result compact_result;
4895 int compaction_retries;
4896 int no_progress_loops;
4897 unsigned int cpuset_mems_cookie;
4898 int reserve_flags;
4899
4900 /*
4901 * We also sanity check to catch abuse of atomic reserves being used by
4902 * callers that are not in atomic context.
4903 */
4904 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4905 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4906 gfp_mask &= ~__GFP_ATOMIC;
4907
4908retry_cpuset:
4909 compaction_retries = 0;
4910 no_progress_loops = 0;
4911 compact_priority = DEF_COMPACT_PRIORITY;
4912 cpuset_mems_cookie = read_mems_allowed_begin();
4913
4914 /*
4915 * The fast path uses conservative alloc_flags to succeed only until
4916 * kswapd needs to be woken up, and to avoid the cost of setting up
4917 * alloc_flags precisely. So we do that now.
4918 */
4919 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4920
4921 /*
4922 * We need to recalculate the starting point for the zonelist iterator
4923 * because we might have used different nodemask in the fast path, or
4924 * there was a cpuset modification and we are retrying - otherwise we
4925 * could end up iterating over non-eligible zones endlessly.
4926 */
4927 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4928 ac->highest_zoneidx, ac->nodemask);
4929 if (!ac->preferred_zoneref->zone)
4930 goto nopage;
4931
4932 if (alloc_flags & ALLOC_KSWAPD)
4933 wake_all_kswapds(order, gfp_mask, ac);
4934
4935 /*
4936 * The adjusted alloc_flags might result in immediate success, so try
4937 * that first
4938 */
4939 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4940 if (page)
4941 goto got_pg;
4942
4943 /*
4944 * For costly allocations, try direct compaction first, as it's likely
4945 * that we have enough base pages and don't need to reclaim. For non-
4946 * movable high-order allocations, do that as well, as compaction will
4947 * try prevent permanent fragmentation by migrating from blocks of the
4948 * same migratetype.
4949 * Don't try this for allocations that are allowed to ignore
4950 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4951 */
4952 if (can_direct_reclaim &&
4953 (costly_order ||
4954 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4955 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4956 page = __alloc_pages_direct_compact(gfp_mask, order,
4957 alloc_flags, ac,
4958 INIT_COMPACT_PRIORITY,
4959 &compact_result);
4960 if (page)
4961 goto got_pg;
4962
4963 /*
4964 * Checks for costly allocations with __GFP_NORETRY, which
4965 * includes some THP page fault allocations
4966 */
4967 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4968 /*
4969 * If allocating entire pageblock(s) and compaction
4970 * failed because all zones are below low watermarks
4971 * or is prohibited because it recently failed at this
4972 * order, fail immediately unless the allocator has
4973 * requested compaction and reclaim retry.
4974 *
4975 * Reclaim is
4976 * - potentially very expensive because zones are far
4977 * below their low watermarks or this is part of very
4978 * bursty high order allocations,
4979 * - not guaranteed to help because isolate_freepages()
4980 * may not iterate over freed pages as part of its
4981 * linear scan, and
4982 * - unlikely to make entire pageblocks free on its
4983 * own.
4984 */
4985 if (compact_result == COMPACT_SKIPPED ||
4986 compact_result == COMPACT_DEFERRED)
4987 goto nopage;
4988
4989 /*
4990 * Looks like reclaim/compaction is worth trying, but
4991 * sync compaction could be very expensive, so keep
4992 * using async compaction.
4993 */
4994 compact_priority = INIT_COMPACT_PRIORITY;
4995 }
4996 }
4997
4998retry:
4999 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5000 if (alloc_flags & ALLOC_KSWAPD)
5001 wake_all_kswapds(order, gfp_mask, ac);
5002
5003 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5004 if (reserve_flags)
5005 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5006
5007 /*
5008 * Reset the nodemask and zonelist iterators if memory policies can be
5009 * ignored. These allocations are high priority and system rather than
5010 * user oriented.
5011 */
5012 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5013 ac->nodemask = NULL;
5014 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5015 ac->highest_zoneidx, ac->nodemask);
5016 }
5017
5018 /* Attempt with potentially adjusted zonelist and alloc_flags */
5019 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5020 if (page)
5021 goto got_pg;
5022
5023 /* Caller is not willing to reclaim, we can't balance anything */
5024 if (!can_direct_reclaim)
5025 goto nopage;
5026
5027 /* Avoid recursion of direct reclaim */
5028 if (current->flags & PF_MEMALLOC)
5029 goto nopage;
5030
5031 /* Try direct reclaim and then allocating */
5032 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5033 &did_some_progress);
5034 if (page)
5035 goto got_pg;
5036
5037 /* Try direct compaction and then allocating */
5038 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5039 compact_priority, &compact_result);
5040 if (page)
5041 goto got_pg;
5042
5043 /* Do not loop if specifically requested */
5044 if (gfp_mask & __GFP_NORETRY)
5045 goto nopage;
5046
5047 /*
5048 * Do not retry costly high order allocations unless they are
5049 * __GFP_RETRY_MAYFAIL
5050 */
5051 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5052 goto nopage;
5053
5054 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5055 did_some_progress > 0, &no_progress_loops))
5056 goto retry;
5057
5058 /*
5059 * It doesn't make any sense to retry for the compaction if the order-0
5060 * reclaim is not able to make any progress because the current
5061 * implementation of the compaction depends on the sufficient amount
5062 * of free memory (see __compaction_suitable)
5063 */
5064 if (did_some_progress > 0 &&
5065 should_compact_retry(ac, order, alloc_flags,
5066 compact_result, &compact_priority,
5067 &compaction_retries))
5068 goto retry;
5069
5070
5071 /* Deal with possible cpuset update races before we start OOM killing */
5072 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5073 goto retry_cpuset;
5074
5075 /* Reclaim has failed us, start killing things */
5076 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5077 if (page)
5078 goto got_pg;
5079
5080 /* Avoid allocations with no watermarks from looping endlessly */
5081 if (tsk_is_oom_victim(current) &&
5082 (alloc_flags & ALLOC_OOM ||
5083 (gfp_mask & __GFP_NOMEMALLOC)))
5084 goto nopage;
5085
5086 /* Retry as long as the OOM killer is making progress */
5087 if (did_some_progress) {
5088 no_progress_loops = 0;
5089 goto retry;
5090 }
5091
5092nopage:
5093 /* Deal with possible cpuset update races before we fail */
5094 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5095 goto retry_cpuset;
5096
5097 /*
5098 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5099 * we always retry
5100 */
5101 if (gfp_mask & __GFP_NOFAIL) {
5102 /*
5103 * All existing users of the __GFP_NOFAIL are blockable, so warn
5104 * of any new users that actually require GFP_NOWAIT
5105 */
5106 if (WARN_ON_ONCE(!can_direct_reclaim))
5107 goto fail;
5108
5109 /*
5110 * PF_MEMALLOC request from this context is rather bizarre
5111 * because we cannot reclaim anything and only can loop waiting
5112 * for somebody to do a work for us
5113 */
5114 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5115
5116 /*
5117 * non failing costly orders are a hard requirement which we
5118 * are not prepared for much so let's warn about these users
5119 * so that we can identify them and convert them to something
5120 * else.
5121 */
5122 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5123
5124 /*
5125 * Help non-failing allocations by giving them access to memory
5126 * reserves but do not use ALLOC_NO_WATERMARKS because this
5127 * could deplete whole memory reserves which would just make
5128 * the situation worse
5129 */
5130 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5131 if (page)
5132 goto got_pg;
5133
5134 cond_resched();
5135 goto retry;
5136 }
5137fail:
5138 warn_alloc(gfp_mask, ac->nodemask,
5139 "page allocation failure: order:%u", order);
5140got_pg:
5141 return page;
5142}
5143
5144static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5145 int preferred_nid, nodemask_t *nodemask,
5146 struct alloc_context *ac, gfp_t *alloc_gfp,
5147 unsigned int *alloc_flags)
5148{
5149 ac->highest_zoneidx = gfp_zone(gfp_mask);
5150 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5151 ac->nodemask = nodemask;
5152 ac->migratetype = gfp_migratetype(gfp_mask);
5153
5154 if (cpusets_enabled()) {
5155 *alloc_gfp |= __GFP_HARDWALL;
5156 /*
5157 * When we are in the interrupt context, it is irrelevant
5158 * to the current task context. It means that any node ok.
5159 */
5160 if (!in_interrupt() && !ac->nodemask)
5161 ac->nodemask = &cpuset_current_mems_allowed;
5162 else
5163 *alloc_flags |= ALLOC_CPUSET;
5164 }
5165
5166 fs_reclaim_acquire(gfp_mask);
5167 fs_reclaim_release(gfp_mask);
5168
5169 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5170
5171 if (should_fail_alloc_page(gfp_mask, order))
5172 return false;
5173
5174 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5175
5176 /* Dirty zone balancing only done in the fast path */
5177 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5178
5179 /*
5180 * The preferred zone is used for statistics but crucially it is
5181 * also used as the starting point for the zonelist iterator. It
5182 * may get reset for allocations that ignore memory policies.
5183 */
5184 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5185 ac->highest_zoneidx, ac->nodemask);
5186
5187 return true;
5188}
5189
5190/*
5191 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5192 * @gfp: GFP flags for the allocation
5193 * @preferred_nid: The preferred NUMA node ID to allocate from
5194 * @nodemask: Set of nodes to allocate from, may be NULL
5195 * @nr_pages: The number of pages desired on the list or array
5196 * @page_list: Optional list to store the allocated pages
5197 * @page_array: Optional array to store the pages
5198 *
5199 * This is a batched version of the page allocator that attempts to
5200 * allocate nr_pages quickly. Pages are added to page_list if page_list
5201 * is not NULL, otherwise it is assumed that the page_array is valid.
5202 *
5203 * For lists, nr_pages is the number of pages that should be allocated.
5204 *
5205 * For arrays, only NULL elements are populated with pages and nr_pages
5206 * is the maximum number of pages that will be stored in the array.
5207 *
5208 * Returns the number of pages on the list or array.
5209 */
5210unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5211 nodemask_t *nodemask, int nr_pages,
5212 struct list_head *page_list,
5213 struct page **page_array)
5214{
5215 struct page *page;
5216 unsigned long flags;
5217 struct zone *zone;
5218 struct zoneref *z;
5219 struct per_cpu_pages *pcp;
5220 struct list_head *pcp_list;
5221 struct alloc_context ac;
5222 gfp_t alloc_gfp;
5223 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5224 int nr_populated = 0, nr_account = 0;
5225
5226 /*
5227 * Skip populated array elements to determine if any pages need
5228 * to be allocated before disabling IRQs.
5229 */
5230 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5231 nr_populated++;
5232
5233 /* No pages requested? */
5234 if (unlikely(nr_pages <= 0))
5235 goto out;
5236
5237 /* Already populated array? */
5238 if (unlikely(page_array && nr_pages - nr_populated == 0))
5239 goto out;
5240
5241 /* Use the single page allocator for one page. */
5242 if (nr_pages - nr_populated == 1)
5243 goto failed;
5244
5245#ifdef CONFIG_PAGE_OWNER
5246 /*
5247 * PAGE_OWNER may recurse into the allocator to allocate space to
5248 * save the stack with pagesets.lock held. Releasing/reacquiring
5249 * removes much of the performance benefit of bulk allocation so
5250 * force the caller to allocate one page at a time as it'll have
5251 * similar performance to added complexity to the bulk allocator.
5252 */
5253 if (static_branch_unlikely(&page_owner_inited))
5254 goto failed;
5255#endif
5256
5257 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5258 gfp &= gfp_allowed_mask;
5259 alloc_gfp = gfp;
5260 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5261 goto out;
5262 gfp = alloc_gfp;
5263
5264 /* Find an allowed local zone that meets the low watermark. */
5265 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5266 unsigned long mark;
5267
5268 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5269 !__cpuset_zone_allowed(zone, gfp)) {
5270 continue;
5271 }
5272
5273 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5274 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5275 goto failed;
5276 }
5277
5278 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5279 if (zone_watermark_fast(zone, 0, mark,
5280 zonelist_zone_idx(ac.preferred_zoneref),
5281 alloc_flags, gfp)) {
5282 break;
5283 }
5284 }
5285
5286 /*
5287 * If there are no allowed local zones that meets the watermarks then
5288 * try to allocate a single page and reclaim if necessary.
5289 */
5290 if (unlikely(!zone))
5291 goto failed;
5292
5293 /* Attempt the batch allocation */
5294 local_lock_irqsave(&pagesets.lock, flags);
5295 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5296 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5297
5298 while (nr_populated < nr_pages) {
5299
5300 /* Skip existing pages */
5301 if (page_array && page_array[nr_populated]) {
5302 nr_populated++;
5303 continue;
5304 }
5305
5306 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5307 pcp, pcp_list);
5308 if (unlikely(!page)) {
5309 /* Try and get at least one page */
5310 if (!nr_populated)
5311 goto failed_irq;
5312 break;
5313 }
5314 nr_account++;
5315
5316 prep_new_page(page, 0, gfp, 0);
5317 if (page_list)
5318 list_add(&page->lru, page_list);
5319 else
5320 page_array[nr_populated] = page;
5321 nr_populated++;
5322 }
5323
5324 local_unlock_irqrestore(&pagesets.lock, flags);
5325
5326 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5327 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5328
5329out:
5330 return nr_populated;
5331
5332failed_irq:
5333 local_unlock_irqrestore(&pagesets.lock, flags);
5334
5335failed:
5336 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5337 if (page) {
5338 if (page_list)
5339 list_add(&page->lru, page_list);
5340 else
5341 page_array[nr_populated] = page;
5342 nr_populated++;
5343 }
5344
5345 goto out;
5346}
5347EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5348
5349/*
5350 * This is the 'heart' of the zoned buddy allocator.
5351 */
5352struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5353 nodemask_t *nodemask)
5354{
5355 struct page *page;
5356 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5357 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5358 struct alloc_context ac = { };
5359
5360 /*
5361 * There are several places where we assume that the order value is sane
5362 * so bail out early if the request is out of bound.
5363 */
5364 if (unlikely(order >= MAX_ORDER)) {
5365 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5366 return NULL;
5367 }
5368
5369 gfp &= gfp_allowed_mask;
5370 /*
5371 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5372 * resp. GFP_NOIO which has to be inherited for all allocation requests
5373 * from a particular context which has been marked by
5374 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5375 * movable zones are not used during allocation.
5376 */
5377 gfp = current_gfp_context(gfp);
5378 alloc_gfp = gfp;
5379 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5380 &alloc_gfp, &alloc_flags))
5381 return NULL;
5382
5383 /*
5384 * Forbid the first pass from falling back to types that fragment
5385 * memory until all local zones are considered.
5386 */
5387 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5388
5389 /* First allocation attempt */
5390 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5391 if (likely(page))
5392 goto out;
5393
5394 alloc_gfp = gfp;
5395 ac.spread_dirty_pages = false;
5396
5397 /*
5398 * Restore the original nodemask if it was potentially replaced with
5399 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5400 */
5401 ac.nodemask = nodemask;
5402
5403 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5404
5405out:
5406 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5407 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5408 __free_pages(page, order);
5409 page = NULL;
5410 }
5411
5412 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5413
5414 return page;
5415}
5416EXPORT_SYMBOL(__alloc_pages);
5417
5418/*
5419 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5420 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5421 * you need to access high mem.
5422 */
5423unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5424{
5425 struct page *page;
5426
5427 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5428 if (!page)
5429 return 0;
5430 return (unsigned long) page_address(page);
5431}
5432EXPORT_SYMBOL(__get_free_pages);
5433
5434unsigned long get_zeroed_page(gfp_t gfp_mask)
5435{
5436 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5437}
5438EXPORT_SYMBOL(get_zeroed_page);
5439
5440/**
5441 * __free_pages - Free pages allocated with alloc_pages().
5442 * @page: The page pointer returned from alloc_pages().
5443 * @order: The order of the allocation.
5444 *
5445 * This function can free multi-page allocations that are not compound
5446 * pages. It does not check that the @order passed in matches that of
5447 * the allocation, so it is easy to leak memory. Freeing more memory
5448 * than was allocated will probably emit a warning.
5449 *
5450 * If the last reference to this page is speculative, it will be released
5451 * by put_page() which only frees the first page of a non-compound
5452 * allocation. To prevent the remaining pages from being leaked, we free
5453 * the subsequent pages here. If you want to use the page's reference
5454 * count to decide when to free the allocation, you should allocate a
5455 * compound page, and use put_page() instead of __free_pages().
5456 *
5457 * Context: May be called in interrupt context or while holding a normal
5458 * spinlock, but not in NMI context or while holding a raw spinlock.
5459 */
5460void __free_pages(struct page *page, unsigned int order)
5461{
5462 if (put_page_testzero(page))
5463 free_the_page(page, order);
5464 else if (!PageHead(page))
5465 while (order-- > 0)
5466 free_the_page(page + (1 << order), order);
5467}
5468EXPORT_SYMBOL(__free_pages);
5469
5470void free_pages(unsigned long addr, unsigned int order)
5471{
5472 if (addr != 0) {
5473 VM_BUG_ON(!virt_addr_valid((void *)addr));
5474 __free_pages(virt_to_page((void *)addr), order);
5475 }
5476}
5477
5478EXPORT_SYMBOL(free_pages);
5479
5480/*
5481 * Page Fragment:
5482 * An arbitrary-length arbitrary-offset area of memory which resides
5483 * within a 0 or higher order page. Multiple fragments within that page
5484 * are individually refcounted, in the page's reference counter.
5485 *
5486 * The page_frag functions below provide a simple allocation framework for
5487 * page fragments. This is used by the network stack and network device
5488 * drivers to provide a backing region of memory for use as either an
5489 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5490 */
5491static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5492 gfp_t gfp_mask)
5493{
5494 struct page *page = NULL;
5495 gfp_t gfp = gfp_mask;
5496
5497#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5498 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5499 __GFP_NOMEMALLOC;
5500 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5501 PAGE_FRAG_CACHE_MAX_ORDER);
5502 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5503#endif
5504 if (unlikely(!page))
5505 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5506
5507 nc->va = page ? page_address(page) : NULL;
5508
5509 return page;
5510}
5511
5512void __page_frag_cache_drain(struct page *page, unsigned int count)
5513{
5514 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5515
5516 if (page_ref_sub_and_test(page, count))
5517 free_the_page(page, compound_order(page));
5518}
5519EXPORT_SYMBOL(__page_frag_cache_drain);
5520
5521void *page_frag_alloc_align(struct page_frag_cache *nc,
5522 unsigned int fragsz, gfp_t gfp_mask,
5523 unsigned int align_mask)
5524{
5525 unsigned int size = PAGE_SIZE;
5526 struct page *page;
5527 int offset;
5528
5529 if (unlikely(!nc->va)) {
5530refill:
5531 page = __page_frag_cache_refill(nc, gfp_mask);
5532 if (!page)
5533 return NULL;
5534
5535#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5536 /* if size can vary use size else just use PAGE_SIZE */
5537 size = nc->size;
5538#endif
5539 /* Even if we own the page, we do not use atomic_set().
5540 * This would break get_page_unless_zero() users.
5541 */
5542 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5543
5544 /* reset page count bias and offset to start of new frag */
5545 nc->pfmemalloc = page_is_pfmemalloc(page);
5546 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5547 nc->offset = size;
5548 }
5549
5550 offset = nc->offset - fragsz;
5551 if (unlikely(offset < 0)) {
5552 page = virt_to_page(nc->va);
5553
5554 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5555 goto refill;
5556
5557 if (unlikely(nc->pfmemalloc)) {
5558 free_the_page(page, compound_order(page));
5559 goto refill;
5560 }
5561
5562#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5563 /* if size can vary use size else just use PAGE_SIZE */
5564 size = nc->size;
5565#endif
5566 /* OK, page count is 0, we can safely set it */
5567 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5568
5569 /* reset page count bias and offset to start of new frag */
5570 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5571 offset = size - fragsz;
5572 }
5573
5574 nc->pagecnt_bias--;
5575 offset &= align_mask;
5576 nc->offset = offset;
5577
5578 return nc->va + offset;
5579}
5580EXPORT_SYMBOL(page_frag_alloc_align);
5581
5582/*
5583 * Frees a page fragment allocated out of either a compound or order 0 page.
5584 */
5585void page_frag_free(void *addr)
5586{
5587 struct page *page = virt_to_head_page(addr);
5588
5589 if (unlikely(put_page_testzero(page)))
5590 free_the_page(page, compound_order(page));
5591}
5592EXPORT_SYMBOL(page_frag_free);
5593
5594static void *make_alloc_exact(unsigned long addr, unsigned int order,
5595 size_t size)
5596{
5597 if (addr) {
5598 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5599 unsigned long used = addr + PAGE_ALIGN(size);
5600
5601 split_page(virt_to_page((void *)addr), order);
5602 while (used < alloc_end) {
5603 free_page(used);
5604 used += PAGE_SIZE;
5605 }
5606 }
5607 return (void *)addr;
5608}
5609
5610/**
5611 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5612 * @size: the number of bytes to allocate
5613 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5614 *
5615 * This function is similar to alloc_pages(), except that it allocates the
5616 * minimum number of pages to satisfy the request. alloc_pages() can only
5617 * allocate memory in power-of-two pages.
5618 *
5619 * This function is also limited by MAX_ORDER.
5620 *
5621 * Memory allocated by this function must be released by free_pages_exact().
5622 *
5623 * Return: pointer to the allocated area or %NULL in case of error.
5624 */
5625void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5626{
5627 unsigned int order = get_order(size);
5628 unsigned long addr;
5629
5630 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5631 gfp_mask &= ~__GFP_COMP;
5632
5633 addr = __get_free_pages(gfp_mask, order);
5634 return make_alloc_exact(addr, order, size);
5635}
5636EXPORT_SYMBOL(alloc_pages_exact);
5637
5638/**
5639 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5640 * pages on a node.
5641 * @nid: the preferred node ID where memory should be allocated
5642 * @size: the number of bytes to allocate
5643 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5644 *
5645 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5646 * back.
5647 *
5648 * Return: pointer to the allocated area or %NULL in case of error.
5649 */
5650void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5651{
5652 unsigned int order = get_order(size);
5653 struct page *p;
5654
5655 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5656 gfp_mask &= ~__GFP_COMP;
5657
5658 p = alloc_pages_node(nid, gfp_mask, order);
5659 if (!p)
5660 return NULL;
5661 return make_alloc_exact((unsigned long)page_address(p), order, size);
5662}
5663
5664/**
5665 * free_pages_exact - release memory allocated via alloc_pages_exact()
5666 * @virt: the value returned by alloc_pages_exact.
5667 * @size: size of allocation, same value as passed to alloc_pages_exact().
5668 *
5669 * Release the memory allocated by a previous call to alloc_pages_exact.
5670 */
5671void free_pages_exact(void *virt, size_t size)
5672{
5673 unsigned long addr = (unsigned long)virt;
5674 unsigned long end = addr + PAGE_ALIGN(size);
5675
5676 while (addr < end) {
5677 free_page(addr);
5678 addr += PAGE_SIZE;
5679 }
5680}
5681EXPORT_SYMBOL(free_pages_exact);
5682
5683/**
5684 * nr_free_zone_pages - count number of pages beyond high watermark
5685 * @offset: The zone index of the highest zone
5686 *
5687 * nr_free_zone_pages() counts the number of pages which are beyond the
5688 * high watermark within all zones at or below a given zone index. For each
5689 * zone, the number of pages is calculated as:
5690 *
5691 * nr_free_zone_pages = managed_pages - high_pages
5692 *
5693 * Return: number of pages beyond high watermark.
5694 */
5695static unsigned long nr_free_zone_pages(int offset)
5696{
5697 struct zoneref *z;
5698 struct zone *zone;
5699
5700 /* Just pick one node, since fallback list is circular */
5701 unsigned long sum = 0;
5702
5703 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5704
5705 for_each_zone_zonelist(zone, z, zonelist, offset) {
5706 unsigned long size = zone_managed_pages(zone);
5707 unsigned long high = high_wmark_pages(zone);
5708 if (size > high)
5709 sum += size - high;
5710 }
5711
5712 return sum;
5713}
5714
5715/**
5716 * nr_free_buffer_pages - count number of pages beyond high watermark
5717 *
5718 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5719 * watermark within ZONE_DMA and ZONE_NORMAL.
5720 *
5721 * Return: number of pages beyond high watermark within ZONE_DMA and
5722 * ZONE_NORMAL.
5723 */
5724unsigned long nr_free_buffer_pages(void)
5725{
5726 return nr_free_zone_pages(gfp_zone(GFP_USER));
5727}
5728EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5729
5730static inline void show_node(struct zone *zone)
5731{
5732 if (IS_ENABLED(CONFIG_NUMA))
5733 printk("Node %d ", zone_to_nid(zone));
5734}
5735
5736long si_mem_available(void)
5737{
5738 long available;
5739 unsigned long pagecache;
5740 unsigned long wmark_low = 0;
5741 unsigned long pages[NR_LRU_LISTS];
5742 unsigned long reclaimable;
5743 struct zone *zone;
5744 int lru;
5745
5746 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5747 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5748
5749 for_each_zone(zone)
5750 wmark_low += low_wmark_pages(zone);
5751
5752 /*
5753 * Estimate the amount of memory available for userspace allocations,
5754 * without causing swapping.
5755 */
5756 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5757
5758 /*
5759 * Not all the page cache can be freed, otherwise the system will
5760 * start swapping. Assume at least half of the page cache, or the
5761 * low watermark worth of cache, needs to stay.
5762 */
5763 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5764 pagecache -= min(pagecache / 2, wmark_low);
5765 available += pagecache;
5766
5767 /*
5768 * Part of the reclaimable slab and other kernel memory consists of
5769 * items that are in use, and cannot be freed. Cap this estimate at the
5770 * low watermark.
5771 */
5772 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5773 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5774 available += reclaimable - min(reclaimable / 2, wmark_low);
5775
5776 if (available < 0)
5777 available = 0;
5778 return available;
5779}
5780EXPORT_SYMBOL_GPL(si_mem_available);
5781
5782void si_meminfo(struct sysinfo *val)
5783{
5784 val->totalram = totalram_pages();
5785 val->sharedram = global_node_page_state(NR_SHMEM);
5786 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5787 val->bufferram = nr_blockdev_pages();
5788 val->totalhigh = totalhigh_pages();
5789 val->freehigh = nr_free_highpages();
5790 val->mem_unit = PAGE_SIZE;
5791}
5792
5793EXPORT_SYMBOL(si_meminfo);
5794
5795#ifdef CONFIG_NUMA
5796void si_meminfo_node(struct sysinfo *val, int nid)
5797{
5798 int zone_type; /* needs to be signed */
5799 unsigned long managed_pages = 0;
5800 unsigned long managed_highpages = 0;
5801 unsigned long free_highpages = 0;
5802 pg_data_t *pgdat = NODE_DATA(nid);
5803
5804 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5805 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5806 val->totalram = managed_pages;
5807 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5808 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5809#ifdef CONFIG_HIGHMEM
5810 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5811 struct zone *zone = &pgdat->node_zones[zone_type];
5812
5813 if (is_highmem(zone)) {
5814 managed_highpages += zone_managed_pages(zone);
5815 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5816 }
5817 }
5818 val->totalhigh = managed_highpages;
5819 val->freehigh = free_highpages;
5820#else
5821 val->totalhigh = managed_highpages;
5822 val->freehigh = free_highpages;
5823#endif
5824 val->mem_unit = PAGE_SIZE;
5825}
5826#endif
5827
5828/*
5829 * Determine whether the node should be displayed or not, depending on whether
5830 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5831 */
5832static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5833{
5834 if (!(flags & SHOW_MEM_FILTER_NODES))
5835 return false;
5836
5837 /*
5838 * no node mask - aka implicit memory numa policy. Do not bother with
5839 * the synchronization - read_mems_allowed_begin - because we do not
5840 * have to be precise here.
5841 */
5842 if (!nodemask)
5843 nodemask = &cpuset_current_mems_allowed;
5844
5845 return !node_isset(nid, *nodemask);
5846}
5847
5848#define K(x) ((x) << (PAGE_SHIFT-10))
5849
5850static void show_migration_types(unsigned char type)
5851{
5852 static const char types[MIGRATE_TYPES] = {
5853 [MIGRATE_UNMOVABLE] = 'U',
5854 [MIGRATE_MOVABLE] = 'M',
5855 [MIGRATE_RECLAIMABLE] = 'E',
5856 [MIGRATE_HIGHATOMIC] = 'H',
5857#ifdef CONFIG_CMA
5858 [MIGRATE_CMA] = 'C',
5859#endif
5860#ifdef CONFIG_MEMORY_ISOLATION
5861 [MIGRATE_ISOLATE] = 'I',
5862#endif
5863 };
5864 char tmp[MIGRATE_TYPES + 1];
5865 char *p = tmp;
5866 int i;
5867
5868 for (i = 0; i < MIGRATE_TYPES; i++) {
5869 if (type & (1 << i))
5870 *p++ = types[i];
5871 }
5872
5873 *p = '\0';
5874 printk(KERN_CONT "(%s) ", tmp);
5875}
5876
5877/*
5878 * Show free area list (used inside shift_scroll-lock stuff)
5879 * We also calculate the percentage fragmentation. We do this by counting the
5880 * memory on each free list with the exception of the first item on the list.
5881 *
5882 * Bits in @filter:
5883 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5884 * cpuset.
5885 */
5886void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5887{
5888 unsigned long free_pcp = 0;
5889 int cpu;
5890 struct zone *zone;
5891 pg_data_t *pgdat;
5892
5893 for_each_populated_zone(zone) {
5894 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5895 continue;
5896
5897 for_each_online_cpu(cpu)
5898 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5899 }
5900
5901 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5902 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5903 " unevictable:%lu dirty:%lu writeback:%lu\n"
5904 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5905 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5906 " free:%lu free_pcp:%lu free_cma:%lu\n",
5907 global_node_page_state(NR_ACTIVE_ANON),
5908 global_node_page_state(NR_INACTIVE_ANON),
5909 global_node_page_state(NR_ISOLATED_ANON),
5910 global_node_page_state(NR_ACTIVE_FILE),
5911 global_node_page_state(NR_INACTIVE_FILE),
5912 global_node_page_state(NR_ISOLATED_FILE),
5913 global_node_page_state(NR_UNEVICTABLE),
5914 global_node_page_state(NR_FILE_DIRTY),
5915 global_node_page_state(NR_WRITEBACK),
5916 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5917 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5918 global_node_page_state(NR_FILE_MAPPED),
5919 global_node_page_state(NR_SHMEM),
5920 global_node_page_state(NR_PAGETABLE),
5921 global_zone_page_state(NR_BOUNCE),
5922 global_zone_page_state(NR_FREE_PAGES),
5923 free_pcp,
5924 global_zone_page_state(NR_FREE_CMA_PAGES));
5925
5926 for_each_online_pgdat(pgdat) {
5927 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5928 continue;
5929
5930 printk("Node %d"
5931 " active_anon:%lukB"
5932 " inactive_anon:%lukB"
5933 " active_file:%lukB"
5934 " inactive_file:%lukB"
5935 " unevictable:%lukB"
5936 " isolated(anon):%lukB"
5937 " isolated(file):%lukB"
5938 " mapped:%lukB"
5939 " dirty:%lukB"
5940 " writeback:%lukB"
5941 " shmem:%lukB"
5942#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5943 " shmem_thp: %lukB"
5944 " shmem_pmdmapped: %lukB"
5945 " anon_thp: %lukB"
5946#endif
5947 " writeback_tmp:%lukB"
5948 " kernel_stack:%lukB"
5949#ifdef CONFIG_SHADOW_CALL_STACK
5950 " shadow_call_stack:%lukB"
5951#endif
5952 " pagetables:%lukB"
5953 " all_unreclaimable? %s"
5954 "\n",
5955 pgdat->node_id,
5956 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5957 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5958 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5959 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5960 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5961 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5962 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5963 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5964 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5965 K(node_page_state(pgdat, NR_WRITEBACK)),
5966 K(node_page_state(pgdat, NR_SHMEM)),
5967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5968 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5969 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5970 K(node_page_state(pgdat, NR_ANON_THPS)),
5971#endif
5972 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5973 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5974#ifdef CONFIG_SHADOW_CALL_STACK
5975 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5976#endif
5977 K(node_page_state(pgdat, NR_PAGETABLE)),
5978 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5979 "yes" : "no");
5980 }
5981
5982 for_each_populated_zone(zone) {
5983 int i;
5984
5985 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5986 continue;
5987
5988 free_pcp = 0;
5989 for_each_online_cpu(cpu)
5990 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5991
5992 show_node(zone);
5993 printk(KERN_CONT
5994 "%s"
5995 " free:%lukB"
5996 " min:%lukB"
5997 " low:%lukB"
5998 " high:%lukB"
5999 " reserved_highatomic:%luKB"
6000 " active_anon:%lukB"
6001 " inactive_anon:%lukB"
6002 " active_file:%lukB"
6003 " inactive_file:%lukB"
6004 " unevictable:%lukB"
6005 " writepending:%lukB"
6006 " present:%lukB"
6007 " managed:%lukB"
6008 " mlocked:%lukB"
6009 " bounce:%lukB"
6010 " free_pcp:%lukB"
6011 " local_pcp:%ukB"
6012 " free_cma:%lukB"
6013 "\n",
6014 zone->name,
6015 K(zone_page_state(zone, NR_FREE_PAGES)),
6016 K(min_wmark_pages(zone)),
6017 K(low_wmark_pages(zone)),
6018 K(high_wmark_pages(zone)),
6019 K(zone->nr_reserved_highatomic),
6020 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6021 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6022 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6023 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6024 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6025 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6026 K(zone->present_pages),
6027 K(zone_managed_pages(zone)),
6028 K(zone_page_state(zone, NR_MLOCK)),
6029 K(zone_page_state(zone, NR_BOUNCE)),
6030 K(free_pcp),
6031 K(this_cpu_read(zone->per_cpu_pageset->count)),
6032 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6033 printk("lowmem_reserve[]:");
6034 for (i = 0; i < MAX_NR_ZONES; i++)
6035 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6036 printk(KERN_CONT "\n");
6037 }
6038
6039 for_each_populated_zone(zone) {
6040 unsigned int order;
6041 unsigned long nr[MAX_ORDER], flags, total = 0;
6042 unsigned char types[MAX_ORDER];
6043
6044 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6045 continue;
6046 show_node(zone);
6047 printk(KERN_CONT "%s: ", zone->name);
6048
6049 spin_lock_irqsave(&zone->lock, flags);
6050 for (order = 0; order < MAX_ORDER; order++) {
6051 struct free_area *area = &zone->free_area[order];
6052 int type;
6053
6054 nr[order] = area->nr_free;
6055 total += nr[order] << order;
6056
6057 types[order] = 0;
6058 for (type = 0; type < MIGRATE_TYPES; type++) {
6059 if (!free_area_empty(area, type))
6060 types[order] |= 1 << type;
6061 }
6062 }
6063 spin_unlock_irqrestore(&zone->lock, flags);
6064 for (order = 0; order < MAX_ORDER; order++) {
6065 printk(KERN_CONT "%lu*%lukB ",
6066 nr[order], K(1UL) << order);
6067 if (nr[order])
6068 show_migration_types(types[order]);
6069 }
6070 printk(KERN_CONT "= %lukB\n", K(total));
6071 }
6072
6073 hugetlb_show_meminfo();
6074
6075 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6076
6077 show_swap_cache_info();
6078}
6079
6080static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6081{
6082 zoneref->zone = zone;
6083 zoneref->zone_idx = zone_idx(zone);
6084}
6085
6086/*
6087 * Builds allocation fallback zone lists.
6088 *
6089 * Add all populated zones of a node to the zonelist.
6090 */
6091static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6092{
6093 struct zone *zone;
6094 enum zone_type zone_type = MAX_NR_ZONES;
6095 int nr_zones = 0;
6096
6097 do {
6098 zone_type--;
6099 zone = pgdat->node_zones + zone_type;
6100 if (managed_zone(zone)) {
6101 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6102 check_highest_zone(zone_type);
6103 }
6104 } while (zone_type);
6105
6106 return nr_zones;
6107}
6108
6109#ifdef CONFIG_NUMA
6110
6111static int __parse_numa_zonelist_order(char *s)
6112{
6113 /*
6114 * We used to support different zonelists modes but they turned
6115 * out to be just not useful. Let's keep the warning in place
6116 * if somebody still use the cmd line parameter so that we do
6117 * not fail it silently
6118 */
6119 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6120 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6121 return -EINVAL;
6122 }
6123 return 0;
6124}
6125
6126char numa_zonelist_order[] = "Node";
6127
6128/*
6129 * sysctl handler for numa_zonelist_order
6130 */
6131int numa_zonelist_order_handler(struct ctl_table *table, int write,
6132 void *buffer, size_t *length, loff_t *ppos)
6133{
6134 if (write)
6135 return __parse_numa_zonelist_order(buffer);
6136 return proc_dostring(table, write, buffer, length, ppos);
6137}
6138
6139
6140#define MAX_NODE_LOAD (nr_online_nodes)
6141static int node_load[MAX_NUMNODES];
6142
6143/**
6144 * find_next_best_node - find the next node that should appear in a given node's fallback list
6145 * @node: node whose fallback list we're appending
6146 * @used_node_mask: nodemask_t of already used nodes
6147 *
6148 * We use a number of factors to determine which is the next node that should
6149 * appear on a given node's fallback list. The node should not have appeared
6150 * already in @node's fallback list, and it should be the next closest node
6151 * according to the distance array (which contains arbitrary distance values
6152 * from each node to each node in the system), and should also prefer nodes
6153 * with no CPUs, since presumably they'll have very little allocation pressure
6154 * on them otherwise.
6155 *
6156 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6157 */
6158static int find_next_best_node(int node, nodemask_t *used_node_mask)
6159{
6160 int n, val;
6161 int min_val = INT_MAX;
6162 int best_node = NUMA_NO_NODE;
6163
6164 /* Use the local node if we haven't already */
6165 if (!node_isset(node, *used_node_mask)) {
6166 node_set(node, *used_node_mask);
6167 return node;
6168 }
6169
6170 for_each_node_state(n, N_MEMORY) {
6171
6172 /* Don't want a node to appear more than once */
6173 if (node_isset(n, *used_node_mask))
6174 continue;
6175
6176 /* Use the distance array to find the distance */
6177 val = node_distance(node, n);
6178
6179 /* Penalize nodes under us ("prefer the next node") */
6180 val += (n < node);
6181
6182 /* Give preference to headless and unused nodes */
6183 if (!cpumask_empty(cpumask_of_node(n)))
6184 val += PENALTY_FOR_NODE_WITH_CPUS;
6185
6186 /* Slight preference for less loaded node */
6187 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6188 val += node_load[n];
6189
6190 if (val < min_val) {
6191 min_val = val;
6192 best_node = n;
6193 }
6194 }
6195
6196 if (best_node >= 0)
6197 node_set(best_node, *used_node_mask);
6198
6199 return best_node;
6200}
6201
6202
6203/*
6204 * Build zonelists ordered by node and zones within node.
6205 * This results in maximum locality--normal zone overflows into local
6206 * DMA zone, if any--but risks exhausting DMA zone.
6207 */
6208static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6209 unsigned nr_nodes)
6210{
6211 struct zoneref *zonerefs;
6212 int i;
6213
6214 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6215
6216 for (i = 0; i < nr_nodes; i++) {
6217 int nr_zones;
6218
6219 pg_data_t *node = NODE_DATA(node_order[i]);
6220
6221 nr_zones = build_zonerefs_node(node, zonerefs);
6222 zonerefs += nr_zones;
6223 }
6224 zonerefs->zone = NULL;
6225 zonerefs->zone_idx = 0;
6226}
6227
6228/*
6229 * Build gfp_thisnode zonelists
6230 */
6231static void build_thisnode_zonelists(pg_data_t *pgdat)
6232{
6233 struct zoneref *zonerefs;
6234 int nr_zones;
6235
6236 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6237 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6238 zonerefs += nr_zones;
6239 zonerefs->zone = NULL;
6240 zonerefs->zone_idx = 0;
6241}
6242
6243/*
6244 * Build zonelists ordered by zone and nodes within zones.
6245 * This results in conserving DMA zone[s] until all Normal memory is
6246 * exhausted, but results in overflowing to remote node while memory
6247 * may still exist in local DMA zone.
6248 */
6249
6250static void build_zonelists(pg_data_t *pgdat)
6251{
6252 static int node_order[MAX_NUMNODES];
6253 int node, load, nr_nodes = 0;
6254 nodemask_t used_mask = NODE_MASK_NONE;
6255 int local_node, prev_node;
6256
6257 /* NUMA-aware ordering of nodes */
6258 local_node = pgdat->node_id;
6259 load = nr_online_nodes;
6260 prev_node = local_node;
6261
6262 memset(node_order, 0, sizeof(node_order));
6263 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6264 /*
6265 * We don't want to pressure a particular node.
6266 * So adding penalty to the first node in same
6267 * distance group to make it round-robin.
6268 */
6269 if (node_distance(local_node, node) !=
6270 node_distance(local_node, prev_node))
6271 node_load[node] = load;
6272
6273 node_order[nr_nodes++] = node;
6274 prev_node = node;
6275 load--;
6276 }
6277
6278 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6279 build_thisnode_zonelists(pgdat);
6280}
6281
6282#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6283/*
6284 * Return node id of node used for "local" allocations.
6285 * I.e., first node id of first zone in arg node's generic zonelist.
6286 * Used for initializing percpu 'numa_mem', which is used primarily
6287 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6288 */
6289int local_memory_node(int node)
6290{
6291 struct zoneref *z;
6292
6293 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6294 gfp_zone(GFP_KERNEL),
6295 NULL);
6296 return zone_to_nid(z->zone);
6297}
6298#endif
6299
6300static void setup_min_unmapped_ratio(void);
6301static void setup_min_slab_ratio(void);
6302#else /* CONFIG_NUMA */
6303
6304static void build_zonelists(pg_data_t *pgdat)
6305{
6306 int node, local_node;
6307 struct zoneref *zonerefs;
6308 int nr_zones;
6309
6310 local_node = pgdat->node_id;
6311
6312 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6313 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6314 zonerefs += nr_zones;
6315
6316 /*
6317 * Now we build the zonelist so that it contains the zones
6318 * of all the other nodes.
6319 * We don't want to pressure a particular node, so when
6320 * building the zones for node N, we make sure that the
6321 * zones coming right after the local ones are those from
6322 * node N+1 (modulo N)
6323 */
6324 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6325 if (!node_online(node))
6326 continue;
6327 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6328 zonerefs += nr_zones;
6329 }
6330 for (node = 0; node < local_node; node++) {
6331 if (!node_online(node))
6332 continue;
6333 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6334 zonerefs += nr_zones;
6335 }
6336
6337 zonerefs->zone = NULL;
6338 zonerefs->zone_idx = 0;
6339}
6340
6341#endif /* CONFIG_NUMA */
6342
6343/*
6344 * Boot pageset table. One per cpu which is going to be used for all
6345 * zones and all nodes. The parameters will be set in such a way
6346 * that an item put on a list will immediately be handed over to
6347 * the buddy list. This is safe since pageset manipulation is done
6348 * with interrupts disabled.
6349 *
6350 * The boot_pagesets must be kept even after bootup is complete for
6351 * unused processors and/or zones. They do play a role for bootstrapping
6352 * hotplugged processors.
6353 *
6354 * zoneinfo_show() and maybe other functions do
6355 * not check if the processor is online before following the pageset pointer.
6356 * Other parts of the kernel may not check if the zone is available.
6357 */
6358static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6359/* These effectively disable the pcplists in the boot pageset completely */
6360#define BOOT_PAGESET_HIGH 0
6361#define BOOT_PAGESET_BATCH 1
6362static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6363static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6364static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6365
6366static void __build_all_zonelists(void *data)
6367{
6368 int nid;
6369 int __maybe_unused cpu;
6370 pg_data_t *self = data;
6371 static DEFINE_SPINLOCK(lock);
6372
6373 spin_lock(&lock);
6374
6375#ifdef CONFIG_NUMA
6376 memset(node_load, 0, sizeof(node_load));
6377#endif
6378
6379 /*
6380 * This node is hotadded and no memory is yet present. So just
6381 * building zonelists is fine - no need to touch other nodes.
6382 */
6383 if (self && !node_online(self->node_id)) {
6384 build_zonelists(self);
6385 } else {
6386 for_each_online_node(nid) {
6387 pg_data_t *pgdat = NODE_DATA(nid);
6388
6389 build_zonelists(pgdat);
6390 }
6391
6392#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6393 /*
6394 * We now know the "local memory node" for each node--
6395 * i.e., the node of the first zone in the generic zonelist.
6396 * Set up numa_mem percpu variable for on-line cpus. During
6397 * boot, only the boot cpu should be on-line; we'll init the
6398 * secondary cpus' numa_mem as they come on-line. During
6399 * node/memory hotplug, we'll fixup all on-line cpus.
6400 */
6401 for_each_online_cpu(cpu)
6402 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6403#endif
6404 }
6405
6406 spin_unlock(&lock);
6407}
6408
6409static noinline void __init
6410build_all_zonelists_init(void)
6411{
6412 int cpu;
6413
6414 __build_all_zonelists(NULL);
6415
6416 /*
6417 * Initialize the boot_pagesets that are going to be used
6418 * for bootstrapping processors. The real pagesets for
6419 * each zone will be allocated later when the per cpu
6420 * allocator is available.
6421 *
6422 * boot_pagesets are used also for bootstrapping offline
6423 * cpus if the system is already booted because the pagesets
6424 * are needed to initialize allocators on a specific cpu too.
6425 * F.e. the percpu allocator needs the page allocator which
6426 * needs the percpu allocator in order to allocate its pagesets
6427 * (a chicken-egg dilemma).
6428 */
6429 for_each_possible_cpu(cpu)
6430 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6431
6432 mminit_verify_zonelist();
6433 cpuset_init_current_mems_allowed();
6434}
6435
6436/*
6437 * unless system_state == SYSTEM_BOOTING.
6438 *
6439 * __ref due to call of __init annotated helper build_all_zonelists_init
6440 * [protected by SYSTEM_BOOTING].
6441 */
6442void __ref build_all_zonelists(pg_data_t *pgdat)
6443{
6444 unsigned long vm_total_pages;
6445
6446 if (system_state == SYSTEM_BOOTING) {
6447 build_all_zonelists_init();
6448 } else {
6449 __build_all_zonelists(pgdat);
6450 /* cpuset refresh routine should be here */
6451 }
6452 /* Get the number of free pages beyond high watermark in all zones. */
6453 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6454 /*
6455 * Disable grouping by mobility if the number of pages in the
6456 * system is too low to allow the mechanism to work. It would be
6457 * more accurate, but expensive to check per-zone. This check is
6458 * made on memory-hotadd so a system can start with mobility
6459 * disabled and enable it later
6460 */
6461 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6462 page_group_by_mobility_disabled = 1;
6463 else
6464 page_group_by_mobility_disabled = 0;
6465
6466 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6467 nr_online_nodes,
6468 page_group_by_mobility_disabled ? "off" : "on",
6469 vm_total_pages);
6470#ifdef CONFIG_NUMA
6471 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6472#endif
6473}
6474
6475/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6476static bool __meminit
6477overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6478{
6479 static struct memblock_region *r;
6480
6481 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6482 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6483 for_each_mem_region(r) {
6484 if (*pfn < memblock_region_memory_end_pfn(r))
6485 break;
6486 }
6487 }
6488 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6489 memblock_is_mirror(r)) {
6490 *pfn = memblock_region_memory_end_pfn(r);
6491 return true;
6492 }
6493 }
6494 return false;
6495}
6496
6497/*
6498 * Initially all pages are reserved - free ones are freed
6499 * up by memblock_free_all() once the early boot process is
6500 * done. Non-atomic initialization, single-pass.
6501 *
6502 * All aligned pageblocks are initialized to the specified migratetype
6503 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6504 * zone stats (e.g., nr_isolate_pageblock) are touched.
6505 */
6506void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6507 unsigned long start_pfn, unsigned long zone_end_pfn,
6508 enum meminit_context context,
6509 struct vmem_altmap *altmap, int migratetype)
6510{
6511 unsigned long pfn, end_pfn = start_pfn + size;
6512 struct page *page;
6513
6514 if (highest_memmap_pfn < end_pfn - 1)
6515 highest_memmap_pfn = end_pfn - 1;
6516
6517#ifdef CONFIG_ZONE_DEVICE
6518 /*
6519 * Honor reservation requested by the driver for this ZONE_DEVICE
6520 * memory. We limit the total number of pages to initialize to just
6521 * those that might contain the memory mapping. We will defer the
6522 * ZONE_DEVICE page initialization until after we have released
6523 * the hotplug lock.
6524 */
6525 if (zone == ZONE_DEVICE) {
6526 if (!altmap)
6527 return;
6528
6529 if (start_pfn == altmap->base_pfn)
6530 start_pfn += altmap->reserve;
6531 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6532 }
6533#endif
6534
6535 for (pfn = start_pfn; pfn < end_pfn; ) {
6536 /*
6537 * There can be holes in boot-time mem_map[]s handed to this
6538 * function. They do not exist on hotplugged memory.
6539 */
6540 if (context == MEMINIT_EARLY) {
6541 if (overlap_memmap_init(zone, &pfn))
6542 continue;
6543 if (defer_init(nid, pfn, zone_end_pfn))
6544 break;
6545 }
6546
6547 page = pfn_to_page(pfn);
6548 __init_single_page(page, pfn, zone, nid);
6549 if (context == MEMINIT_HOTPLUG)
6550 __SetPageReserved(page);
6551
6552 /*
6553 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6554 * such that unmovable allocations won't be scattered all
6555 * over the place during system boot.
6556 */
6557 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6558 set_pageblock_migratetype(page, migratetype);
6559 cond_resched();
6560 }
6561 pfn++;
6562 }
6563}
6564
6565#ifdef CONFIG_ZONE_DEVICE
6566void __ref memmap_init_zone_device(struct zone *zone,
6567 unsigned long start_pfn,
6568 unsigned long nr_pages,
6569 struct dev_pagemap *pgmap)
6570{
6571 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6572 struct pglist_data *pgdat = zone->zone_pgdat;
6573 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6574 unsigned long zone_idx = zone_idx(zone);
6575 unsigned long start = jiffies;
6576 int nid = pgdat->node_id;
6577
6578 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6579 return;
6580
6581 /*
6582 * The call to memmap_init should have already taken care
6583 * of the pages reserved for the memmap, so we can just jump to
6584 * the end of that region and start processing the device pages.
6585 */
6586 if (altmap) {
6587 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6588 nr_pages = end_pfn - start_pfn;
6589 }
6590
6591 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6592 struct page *page = pfn_to_page(pfn);
6593
6594 __init_single_page(page, pfn, zone_idx, nid);
6595
6596 /*
6597 * Mark page reserved as it will need to wait for onlining
6598 * phase for it to be fully associated with a zone.
6599 *
6600 * We can use the non-atomic __set_bit operation for setting
6601 * the flag as we are still initializing the pages.
6602 */
6603 __SetPageReserved(page);
6604
6605 /*
6606 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6607 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6608 * ever freed or placed on a driver-private list.
6609 */
6610 page->pgmap = pgmap;
6611 page->zone_device_data = NULL;
6612
6613 /*
6614 * Mark the block movable so that blocks are reserved for
6615 * movable at startup. This will force kernel allocations
6616 * to reserve their blocks rather than leaking throughout
6617 * the address space during boot when many long-lived
6618 * kernel allocations are made.
6619 *
6620 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6621 * because this is done early in section_activate()
6622 */
6623 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6624 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6625 cond_resched();
6626 }
6627 }
6628
6629 pr_info("%s initialised %lu pages in %ums\n", __func__,
6630 nr_pages, jiffies_to_msecs(jiffies - start));
6631}
6632
6633#endif
6634static void __meminit zone_init_free_lists(struct zone *zone)
6635{
6636 unsigned int order, t;
6637 for_each_migratetype_order(order, t) {
6638 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6639 zone->free_area[order].nr_free = 0;
6640 }
6641}
6642
6643#if !defined(CONFIG_FLATMEM)
6644/*
6645 * Only struct pages that correspond to ranges defined by memblock.memory
6646 * are zeroed and initialized by going through __init_single_page() during
6647 * memmap_init_zone_range().
6648 *
6649 * But, there could be struct pages that correspond to holes in
6650 * memblock.memory. This can happen because of the following reasons:
6651 * - physical memory bank size is not necessarily the exact multiple of the
6652 * arbitrary section size
6653 * - early reserved memory may not be listed in memblock.memory
6654 * - memory layouts defined with memmap= kernel parameter may not align
6655 * nicely with memmap sections
6656 *
6657 * Explicitly initialize those struct pages so that:
6658 * - PG_Reserved is set
6659 * - zone and node links point to zone and node that span the page if the
6660 * hole is in the middle of a zone
6661 * - zone and node links point to adjacent zone/node if the hole falls on
6662 * the zone boundary; the pages in such holes will be prepended to the
6663 * zone/node above the hole except for the trailing pages in the last
6664 * section that will be appended to the zone/node below.
6665 */
6666static void __init init_unavailable_range(unsigned long spfn,
6667 unsigned long epfn,
6668 int zone, int node)
6669{
6670 unsigned long pfn;
6671 u64 pgcnt = 0;
6672
6673 for (pfn = spfn; pfn < epfn; pfn++) {
6674 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6675 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6676 + pageblock_nr_pages - 1;
6677 continue;
6678 }
6679 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6680 __SetPageReserved(pfn_to_page(pfn));
6681 pgcnt++;
6682 }
6683
6684 if (pgcnt)
6685 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6686 node, zone_names[zone], pgcnt);
6687}
6688#else
6689static inline void init_unavailable_range(unsigned long spfn,
6690 unsigned long epfn,
6691 int zone, int node)
6692{
6693}
6694#endif
6695
6696static void __init memmap_init_zone_range(struct zone *zone,
6697 unsigned long start_pfn,
6698 unsigned long end_pfn,
6699 unsigned long *hole_pfn)
6700{
6701 unsigned long zone_start_pfn = zone->zone_start_pfn;
6702 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6703 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6704
6705 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6706 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6707
6708 if (start_pfn >= end_pfn)
6709 return;
6710
6711 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6712 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6713
6714 if (*hole_pfn < start_pfn)
6715 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6716
6717 *hole_pfn = end_pfn;
6718}
6719
6720static void __init memmap_init(void)
6721{
6722 unsigned long start_pfn, end_pfn;
6723 unsigned long hole_pfn = 0;
6724 int i, j, zone_id, nid;
6725
6726 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6727 struct pglist_data *node = NODE_DATA(nid);
6728
6729 for (j = 0; j < MAX_NR_ZONES; j++) {
6730 struct zone *zone = node->node_zones + j;
6731
6732 if (!populated_zone(zone))
6733 continue;
6734
6735 memmap_init_zone_range(zone, start_pfn, end_pfn,
6736 &hole_pfn);
6737 zone_id = j;
6738 }
6739 }
6740
6741#ifdef CONFIG_SPARSEMEM
6742 /*
6743 * Initialize the memory map for hole in the range [memory_end,
6744 * section_end].
6745 * Append the pages in this hole to the highest zone in the last
6746 * node.
6747 * The call to init_unavailable_range() is outside the ifdef to
6748 * silence the compiler warining about zone_id set but not used;
6749 * for FLATMEM it is a nop anyway
6750 */
6751 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6752 if (hole_pfn < end_pfn)
6753#endif
6754 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6755}
6756
6757static int zone_batchsize(struct zone *zone)
6758{
6759#ifdef CONFIG_MMU
6760 int batch;
6761
6762 /*
6763 * The number of pages to batch allocate is either ~0.1%
6764 * of the zone or 1MB, whichever is smaller. The batch
6765 * size is striking a balance between allocation latency
6766 * and zone lock contention.
6767 */
6768 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6769 batch /= 4; /* We effectively *= 4 below */
6770 if (batch < 1)
6771 batch = 1;
6772
6773 /*
6774 * Clamp the batch to a 2^n - 1 value. Having a power
6775 * of 2 value was found to be more likely to have
6776 * suboptimal cache aliasing properties in some cases.
6777 *
6778 * For example if 2 tasks are alternately allocating
6779 * batches of pages, one task can end up with a lot
6780 * of pages of one half of the possible page colors
6781 * and the other with pages of the other colors.
6782 */
6783 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6784
6785 return batch;
6786
6787#else
6788 /* The deferral and batching of frees should be suppressed under NOMMU
6789 * conditions.
6790 *
6791 * The problem is that NOMMU needs to be able to allocate large chunks
6792 * of contiguous memory as there's no hardware page translation to
6793 * assemble apparent contiguous memory from discontiguous pages.
6794 *
6795 * Queueing large contiguous runs of pages for batching, however,
6796 * causes the pages to actually be freed in smaller chunks. As there
6797 * can be a significant delay between the individual batches being
6798 * recycled, this leads to the once large chunks of space being
6799 * fragmented and becoming unavailable for high-order allocations.
6800 */
6801 return 0;
6802#endif
6803}
6804
6805static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6806{
6807#ifdef CONFIG_MMU
6808 int high;
6809 int nr_split_cpus;
6810 unsigned long total_pages;
6811
6812 if (!percpu_pagelist_high_fraction) {
6813 /*
6814 * By default, the high value of the pcp is based on the zone
6815 * low watermark so that if they are full then background
6816 * reclaim will not be started prematurely.
6817 */
6818 total_pages = low_wmark_pages(zone);
6819 } else {
6820 /*
6821 * If percpu_pagelist_high_fraction is configured, the high
6822 * value is based on a fraction of the managed pages in the
6823 * zone.
6824 */
6825 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6826 }
6827
6828 /*
6829 * Split the high value across all online CPUs local to the zone. Note
6830 * that early in boot that CPUs may not be online yet and that during
6831 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6832 * onlined. For memory nodes that have no CPUs, split pcp->high across
6833 * all online CPUs to mitigate the risk that reclaim is triggered
6834 * prematurely due to pages stored on pcp lists.
6835 */
6836 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6837 if (!nr_split_cpus)
6838 nr_split_cpus = num_online_cpus();
6839 high = total_pages / nr_split_cpus;
6840
6841 /*
6842 * Ensure high is at least batch*4. The multiple is based on the
6843 * historical relationship between high and batch.
6844 */
6845 high = max(high, batch << 2);
6846
6847 return high;
6848#else
6849 return 0;
6850#endif
6851}
6852
6853/*
6854 * pcp->high and pcp->batch values are related and generally batch is lower
6855 * than high. They are also related to pcp->count such that count is lower
6856 * than high, and as soon as it reaches high, the pcplist is flushed.
6857 *
6858 * However, guaranteeing these relations at all times would require e.g. write
6859 * barriers here but also careful usage of read barriers at the read side, and
6860 * thus be prone to error and bad for performance. Thus the update only prevents
6861 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6862 * can cope with those fields changing asynchronously, and fully trust only the
6863 * pcp->count field on the local CPU with interrupts disabled.
6864 *
6865 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6866 * outside of boot time (or some other assurance that no concurrent updaters
6867 * exist).
6868 */
6869static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6870 unsigned long batch)
6871{
6872 WRITE_ONCE(pcp->batch, batch);
6873 WRITE_ONCE(pcp->high, high);
6874}
6875
6876static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6877{
6878 int pindex;
6879
6880 memset(pcp, 0, sizeof(*pcp));
6881 memset(pzstats, 0, sizeof(*pzstats));
6882
6883 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6884 INIT_LIST_HEAD(&pcp->lists[pindex]);
6885
6886 /*
6887 * Set batch and high values safe for a boot pageset. A true percpu
6888 * pageset's initialization will update them subsequently. Here we don't
6889 * need to be as careful as pageset_update() as nobody can access the
6890 * pageset yet.
6891 */
6892 pcp->high = BOOT_PAGESET_HIGH;
6893 pcp->batch = BOOT_PAGESET_BATCH;
6894 pcp->free_factor = 0;
6895}
6896
6897static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6898 unsigned long batch)
6899{
6900 struct per_cpu_pages *pcp;
6901 int cpu;
6902
6903 for_each_possible_cpu(cpu) {
6904 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6905 pageset_update(pcp, high, batch);
6906 }
6907}
6908
6909/*
6910 * Calculate and set new high and batch values for all per-cpu pagesets of a
6911 * zone based on the zone's size.
6912 */
6913static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6914{
6915 int new_high, new_batch;
6916
6917 new_batch = max(1, zone_batchsize(zone));
6918 new_high = zone_highsize(zone, new_batch, cpu_online);
6919
6920 if (zone->pageset_high == new_high &&
6921 zone->pageset_batch == new_batch)
6922 return;
6923
6924 zone->pageset_high = new_high;
6925 zone->pageset_batch = new_batch;
6926
6927 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6928}
6929
6930void __meminit setup_zone_pageset(struct zone *zone)
6931{
6932 int cpu;
6933
6934 /* Size may be 0 on !SMP && !NUMA */
6935 if (sizeof(struct per_cpu_zonestat) > 0)
6936 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6937
6938 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6939 for_each_possible_cpu(cpu) {
6940 struct per_cpu_pages *pcp;
6941 struct per_cpu_zonestat *pzstats;
6942
6943 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6944 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6945 per_cpu_pages_init(pcp, pzstats);
6946 }
6947
6948 zone_set_pageset_high_and_batch(zone, 0);
6949}
6950
6951/*
6952 * Allocate per cpu pagesets and initialize them.
6953 * Before this call only boot pagesets were available.
6954 */
6955void __init setup_per_cpu_pageset(void)
6956{
6957 struct pglist_data *pgdat;
6958 struct zone *zone;
6959 int __maybe_unused cpu;
6960
6961 for_each_populated_zone(zone)
6962 setup_zone_pageset(zone);
6963
6964#ifdef CONFIG_NUMA
6965 /*
6966 * Unpopulated zones continue using the boot pagesets.
6967 * The numa stats for these pagesets need to be reset.
6968 * Otherwise, they will end up skewing the stats of
6969 * the nodes these zones are associated with.
6970 */
6971 for_each_possible_cpu(cpu) {
6972 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6973 memset(pzstats->vm_numa_event, 0,
6974 sizeof(pzstats->vm_numa_event));
6975 }
6976#endif
6977
6978 for_each_online_pgdat(pgdat)
6979 pgdat->per_cpu_nodestats =
6980 alloc_percpu(struct per_cpu_nodestat);
6981}
6982
6983static __meminit void zone_pcp_init(struct zone *zone)
6984{
6985 /*
6986 * per cpu subsystem is not up at this point. The following code
6987 * relies on the ability of the linker to provide the
6988 * offset of a (static) per cpu variable into the per cpu area.
6989 */
6990 zone->per_cpu_pageset = &boot_pageset;
6991 zone->per_cpu_zonestats = &boot_zonestats;
6992 zone->pageset_high = BOOT_PAGESET_HIGH;
6993 zone->pageset_batch = BOOT_PAGESET_BATCH;
6994
6995 if (populated_zone(zone))
6996 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6997 zone->present_pages, zone_batchsize(zone));
6998}
6999
7000void __meminit init_currently_empty_zone(struct zone *zone,
7001 unsigned long zone_start_pfn,
7002 unsigned long size)
7003{
7004 struct pglist_data *pgdat = zone->zone_pgdat;
7005 int zone_idx = zone_idx(zone) + 1;
7006
7007 if (zone_idx > pgdat->nr_zones)
7008 pgdat->nr_zones = zone_idx;
7009
7010 zone->zone_start_pfn = zone_start_pfn;
7011
7012 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7013 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7014 pgdat->node_id,
7015 (unsigned long)zone_idx(zone),
7016 zone_start_pfn, (zone_start_pfn + size));
7017
7018 zone_init_free_lists(zone);
7019 zone->initialized = 1;
7020}
7021
7022/**
7023 * get_pfn_range_for_nid - Return the start and end page frames for a node
7024 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7025 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7026 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7027 *
7028 * It returns the start and end page frame of a node based on information
7029 * provided by memblock_set_node(). If called for a node
7030 * with no available memory, a warning is printed and the start and end
7031 * PFNs will be 0.
7032 */
7033void __init get_pfn_range_for_nid(unsigned int nid,
7034 unsigned long *start_pfn, unsigned long *end_pfn)
7035{
7036 unsigned long this_start_pfn, this_end_pfn;
7037 int i;
7038
7039 *start_pfn = -1UL;
7040 *end_pfn = 0;
7041
7042 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7043 *start_pfn = min(*start_pfn, this_start_pfn);
7044 *end_pfn = max(*end_pfn, this_end_pfn);
7045 }
7046
7047 if (*start_pfn == -1UL)
7048 *start_pfn = 0;
7049}
7050
7051/*
7052 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7053 * assumption is made that zones within a node are ordered in monotonic
7054 * increasing memory addresses so that the "highest" populated zone is used
7055 */
7056static void __init find_usable_zone_for_movable(void)
7057{
7058 int zone_index;
7059 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7060 if (zone_index == ZONE_MOVABLE)
7061 continue;
7062
7063 if (arch_zone_highest_possible_pfn[zone_index] >
7064 arch_zone_lowest_possible_pfn[zone_index])
7065 break;
7066 }
7067
7068 VM_BUG_ON(zone_index == -1);
7069 movable_zone = zone_index;
7070}
7071
7072/*
7073 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7074 * because it is sized independent of architecture. Unlike the other zones,
7075 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7076 * in each node depending on the size of each node and how evenly kernelcore
7077 * is distributed. This helper function adjusts the zone ranges
7078 * provided by the architecture for a given node by using the end of the
7079 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7080 * zones within a node are in order of monotonic increases memory addresses
7081 */
7082static void __init adjust_zone_range_for_zone_movable(int nid,
7083 unsigned long zone_type,
7084 unsigned long node_start_pfn,
7085 unsigned long node_end_pfn,
7086 unsigned long *zone_start_pfn,
7087 unsigned long *zone_end_pfn)
7088{
7089 /* Only adjust if ZONE_MOVABLE is on this node */
7090 if (zone_movable_pfn[nid]) {
7091 /* Size ZONE_MOVABLE */
7092 if (zone_type == ZONE_MOVABLE) {
7093 *zone_start_pfn = zone_movable_pfn[nid];
7094 *zone_end_pfn = min(node_end_pfn,
7095 arch_zone_highest_possible_pfn[movable_zone]);
7096
7097 /* Adjust for ZONE_MOVABLE starting within this range */
7098 } else if (!mirrored_kernelcore &&
7099 *zone_start_pfn < zone_movable_pfn[nid] &&
7100 *zone_end_pfn > zone_movable_pfn[nid]) {
7101 *zone_end_pfn = zone_movable_pfn[nid];
7102
7103 /* Check if this whole range is within ZONE_MOVABLE */
7104 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7105 *zone_start_pfn = *zone_end_pfn;
7106 }
7107}
7108
7109/*
7110 * Return the number of pages a zone spans in a node, including holes
7111 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7112 */
7113static unsigned long __init zone_spanned_pages_in_node(int nid,
7114 unsigned long zone_type,
7115 unsigned long node_start_pfn,
7116 unsigned long node_end_pfn,
7117 unsigned long *zone_start_pfn,
7118 unsigned long *zone_end_pfn)
7119{
7120 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7121 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7122 /* When hotadd a new node from cpu_up(), the node should be empty */
7123 if (!node_start_pfn && !node_end_pfn)
7124 return 0;
7125
7126 /* Get the start and end of the zone */
7127 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7128 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7129 adjust_zone_range_for_zone_movable(nid, zone_type,
7130 node_start_pfn, node_end_pfn,
7131 zone_start_pfn, zone_end_pfn);
7132
7133 /* Check that this node has pages within the zone's required range */
7134 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7135 return 0;
7136
7137 /* Move the zone boundaries inside the node if necessary */
7138 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7139 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7140
7141 /* Return the spanned pages */
7142 return *zone_end_pfn - *zone_start_pfn;
7143}
7144
7145/*
7146 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7147 * then all holes in the requested range will be accounted for.
7148 */
7149unsigned long __init __absent_pages_in_range(int nid,
7150 unsigned long range_start_pfn,
7151 unsigned long range_end_pfn)
7152{
7153 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7154 unsigned long start_pfn, end_pfn;
7155 int i;
7156
7157 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7158 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7159 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7160 nr_absent -= end_pfn - start_pfn;
7161 }
7162 return nr_absent;
7163}
7164
7165/**
7166 * absent_pages_in_range - Return number of page frames in holes within a range
7167 * @start_pfn: The start PFN to start searching for holes
7168 * @end_pfn: The end PFN to stop searching for holes
7169 *
7170 * Return: the number of pages frames in memory holes within a range.
7171 */
7172unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7173 unsigned long end_pfn)
7174{
7175 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7176}
7177
7178/* Return the number of page frames in holes in a zone on a node */
7179static unsigned long __init zone_absent_pages_in_node(int nid,
7180 unsigned long zone_type,
7181 unsigned long node_start_pfn,
7182 unsigned long node_end_pfn)
7183{
7184 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7185 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7186 unsigned long zone_start_pfn, zone_end_pfn;
7187 unsigned long nr_absent;
7188
7189 /* When hotadd a new node from cpu_up(), the node should be empty */
7190 if (!node_start_pfn && !node_end_pfn)
7191 return 0;
7192
7193 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7194 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7195
7196 adjust_zone_range_for_zone_movable(nid, zone_type,
7197 node_start_pfn, node_end_pfn,
7198 &zone_start_pfn, &zone_end_pfn);
7199 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7200
7201 /*
7202 * ZONE_MOVABLE handling.
7203 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7204 * and vice versa.
7205 */
7206 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7207 unsigned long start_pfn, end_pfn;
7208 struct memblock_region *r;
7209
7210 for_each_mem_region(r) {
7211 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7212 zone_start_pfn, zone_end_pfn);
7213 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7214 zone_start_pfn, zone_end_pfn);
7215
7216 if (zone_type == ZONE_MOVABLE &&
7217 memblock_is_mirror(r))
7218 nr_absent += end_pfn - start_pfn;
7219
7220 if (zone_type == ZONE_NORMAL &&
7221 !memblock_is_mirror(r))
7222 nr_absent += end_pfn - start_pfn;
7223 }
7224 }
7225
7226 return nr_absent;
7227}
7228
7229static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7230 unsigned long node_start_pfn,
7231 unsigned long node_end_pfn)
7232{
7233 unsigned long realtotalpages = 0, totalpages = 0;
7234 enum zone_type i;
7235
7236 for (i = 0; i < MAX_NR_ZONES; i++) {
7237 struct zone *zone = pgdat->node_zones + i;
7238 unsigned long zone_start_pfn, zone_end_pfn;
7239 unsigned long spanned, absent;
7240 unsigned long size, real_size;
7241
7242 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7243 node_start_pfn,
7244 node_end_pfn,
7245 &zone_start_pfn,
7246 &zone_end_pfn);
7247 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7248 node_start_pfn,
7249 node_end_pfn);
7250
7251 size = spanned;
7252 real_size = size - absent;
7253
7254 if (size)
7255 zone->zone_start_pfn = zone_start_pfn;
7256 else
7257 zone->zone_start_pfn = 0;
7258 zone->spanned_pages = size;
7259 zone->present_pages = real_size;
7260
7261 totalpages += size;
7262 realtotalpages += real_size;
7263 }
7264
7265 pgdat->node_spanned_pages = totalpages;
7266 pgdat->node_present_pages = realtotalpages;
7267 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7268}
7269
7270#ifndef CONFIG_SPARSEMEM
7271/*
7272 * Calculate the size of the zone->blockflags rounded to an unsigned long
7273 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7274 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7275 * round what is now in bits to nearest long in bits, then return it in
7276 * bytes.
7277 */
7278static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7279{
7280 unsigned long usemapsize;
7281
7282 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7283 usemapsize = roundup(zonesize, pageblock_nr_pages);
7284 usemapsize = usemapsize >> pageblock_order;
7285 usemapsize *= NR_PAGEBLOCK_BITS;
7286 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7287
7288 return usemapsize / 8;
7289}
7290
7291static void __ref setup_usemap(struct zone *zone)
7292{
7293 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7294 zone->spanned_pages);
7295 zone->pageblock_flags = NULL;
7296 if (usemapsize) {
7297 zone->pageblock_flags =
7298 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7299 zone_to_nid(zone));
7300 if (!zone->pageblock_flags)
7301 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7302 usemapsize, zone->name, zone_to_nid(zone));
7303 }
7304}
7305#else
7306static inline void setup_usemap(struct zone *zone) {}
7307#endif /* CONFIG_SPARSEMEM */
7308
7309#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7310
7311/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7312void __init set_pageblock_order(void)
7313{
7314 unsigned int order;
7315
7316 /* Check that pageblock_nr_pages has not already been setup */
7317 if (pageblock_order)
7318 return;
7319
7320 if (HPAGE_SHIFT > PAGE_SHIFT)
7321 order = HUGETLB_PAGE_ORDER;
7322 else
7323 order = MAX_ORDER - 1;
7324
7325 /*
7326 * Assume the largest contiguous order of interest is a huge page.
7327 * This value may be variable depending on boot parameters on IA64 and
7328 * powerpc.
7329 */
7330 pageblock_order = order;
7331}
7332#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7333
7334/*
7335 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7336 * is unused as pageblock_order is set at compile-time. See
7337 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7338 * the kernel config
7339 */
7340void __init set_pageblock_order(void)
7341{
7342}
7343
7344#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7345
7346static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7347 unsigned long present_pages)
7348{
7349 unsigned long pages = spanned_pages;
7350
7351 /*
7352 * Provide a more accurate estimation if there are holes within
7353 * the zone and SPARSEMEM is in use. If there are holes within the
7354 * zone, each populated memory region may cost us one or two extra
7355 * memmap pages due to alignment because memmap pages for each
7356 * populated regions may not be naturally aligned on page boundary.
7357 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7358 */
7359 if (spanned_pages > present_pages + (present_pages >> 4) &&
7360 IS_ENABLED(CONFIG_SPARSEMEM))
7361 pages = present_pages;
7362
7363 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7364}
7365
7366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7367static void pgdat_init_split_queue(struct pglist_data *pgdat)
7368{
7369 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7370
7371 spin_lock_init(&ds_queue->split_queue_lock);
7372 INIT_LIST_HEAD(&ds_queue->split_queue);
7373 ds_queue->split_queue_len = 0;
7374}
7375#else
7376static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7377#endif
7378
7379#ifdef CONFIG_COMPACTION
7380static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7381{
7382 init_waitqueue_head(&pgdat->kcompactd_wait);
7383}
7384#else
7385static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7386#endif
7387
7388static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7389{
7390 pgdat_resize_init(pgdat);
7391
7392 pgdat_init_split_queue(pgdat);
7393 pgdat_init_kcompactd(pgdat);
7394
7395 init_waitqueue_head(&pgdat->kswapd_wait);
7396 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7397
7398 pgdat_page_ext_init(pgdat);
7399 lruvec_init(&pgdat->__lruvec);
7400}
7401
7402static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7403 unsigned long remaining_pages)
7404{
7405 atomic_long_set(&zone->managed_pages, remaining_pages);
7406 zone_set_nid(zone, nid);
7407 zone->name = zone_names[idx];
7408 zone->zone_pgdat = NODE_DATA(nid);
7409 spin_lock_init(&zone->lock);
7410 zone_seqlock_init(zone);
7411 zone_pcp_init(zone);
7412}
7413
7414/*
7415 * Set up the zone data structures
7416 * - init pgdat internals
7417 * - init all zones belonging to this node
7418 *
7419 * NOTE: this function is only called during memory hotplug
7420 */
7421#ifdef CONFIG_MEMORY_HOTPLUG
7422void __ref free_area_init_core_hotplug(int nid)
7423{
7424 enum zone_type z;
7425 pg_data_t *pgdat = NODE_DATA(nid);
7426
7427 pgdat_init_internals(pgdat);
7428 for (z = 0; z < MAX_NR_ZONES; z++)
7429 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7430}
7431#endif
7432
7433/*
7434 * Set up the zone data structures:
7435 * - mark all pages reserved
7436 * - mark all memory queues empty
7437 * - clear the memory bitmaps
7438 *
7439 * NOTE: pgdat should get zeroed by caller.
7440 * NOTE: this function is only called during early init.
7441 */
7442static void __init free_area_init_core(struct pglist_data *pgdat)
7443{
7444 enum zone_type j;
7445 int nid = pgdat->node_id;
7446
7447 pgdat_init_internals(pgdat);
7448 pgdat->per_cpu_nodestats = &boot_nodestats;
7449
7450 for (j = 0; j < MAX_NR_ZONES; j++) {
7451 struct zone *zone = pgdat->node_zones + j;
7452 unsigned long size, freesize, memmap_pages;
7453
7454 size = zone->spanned_pages;
7455 freesize = zone->present_pages;
7456
7457 /*
7458 * Adjust freesize so that it accounts for how much memory
7459 * is used by this zone for memmap. This affects the watermark
7460 * and per-cpu initialisations
7461 */
7462 memmap_pages = calc_memmap_size(size, freesize);
7463 if (!is_highmem_idx(j)) {
7464 if (freesize >= memmap_pages) {
7465 freesize -= memmap_pages;
7466 if (memmap_pages)
7467 pr_debug(" %s zone: %lu pages used for memmap\n",
7468 zone_names[j], memmap_pages);
7469 } else
7470 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7471 zone_names[j], memmap_pages, freesize);
7472 }
7473
7474 /* Account for reserved pages */
7475 if (j == 0 && freesize > dma_reserve) {
7476 freesize -= dma_reserve;
7477 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7478 }
7479
7480 if (!is_highmem_idx(j))
7481 nr_kernel_pages += freesize;
7482 /* Charge for highmem memmap if there are enough kernel pages */
7483 else if (nr_kernel_pages > memmap_pages * 2)
7484 nr_kernel_pages -= memmap_pages;
7485 nr_all_pages += freesize;
7486
7487 /*
7488 * Set an approximate value for lowmem here, it will be adjusted
7489 * when the bootmem allocator frees pages into the buddy system.
7490 * And all highmem pages will be managed by the buddy system.
7491 */
7492 zone_init_internals(zone, j, nid, freesize);
7493
7494 if (!size)
7495 continue;
7496
7497 set_pageblock_order();
7498 setup_usemap(zone);
7499 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7500 }
7501}
7502
7503#ifdef CONFIG_FLATMEM
7504static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7505{
7506 unsigned long __maybe_unused start = 0;
7507 unsigned long __maybe_unused offset = 0;
7508
7509 /* Skip empty nodes */
7510 if (!pgdat->node_spanned_pages)
7511 return;
7512
7513 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7514 offset = pgdat->node_start_pfn - start;
7515 /* ia64 gets its own node_mem_map, before this, without bootmem */
7516 if (!pgdat->node_mem_map) {
7517 unsigned long size, end;
7518 struct page *map;
7519
7520 /*
7521 * The zone's endpoints aren't required to be MAX_ORDER
7522 * aligned but the node_mem_map endpoints must be in order
7523 * for the buddy allocator to function correctly.
7524 */
7525 end = pgdat_end_pfn(pgdat);
7526 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7527 size = (end - start) * sizeof(struct page);
7528 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7529 pgdat->node_id);
7530 if (!map)
7531 panic("Failed to allocate %ld bytes for node %d memory map\n",
7532 size, pgdat->node_id);
7533 pgdat->node_mem_map = map + offset;
7534 }
7535 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7536 __func__, pgdat->node_id, (unsigned long)pgdat,
7537 (unsigned long)pgdat->node_mem_map);
7538#ifndef CONFIG_NUMA
7539 /*
7540 * With no DISCONTIG, the global mem_map is just set as node 0's
7541 */
7542 if (pgdat == NODE_DATA(0)) {
7543 mem_map = NODE_DATA(0)->node_mem_map;
7544 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7545 mem_map -= offset;
7546 }
7547#endif
7548}
7549#else
7550static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7551#endif /* CONFIG_FLATMEM */
7552
7553#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7554static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7555{
7556 pgdat->first_deferred_pfn = ULONG_MAX;
7557}
7558#else
7559static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7560#endif
7561
7562static void __init free_area_init_node(int nid)
7563{
7564 pg_data_t *pgdat = NODE_DATA(nid);
7565 unsigned long start_pfn = 0;
7566 unsigned long end_pfn = 0;
7567
7568 /* pg_data_t should be reset to zero when it's allocated */
7569 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7570
7571 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7572
7573 pgdat->node_id = nid;
7574 pgdat->node_start_pfn = start_pfn;
7575 pgdat->per_cpu_nodestats = NULL;
7576
7577 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7578 (u64)start_pfn << PAGE_SHIFT,
7579 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7580 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7581
7582 alloc_node_mem_map(pgdat);
7583 pgdat_set_deferred_range(pgdat);
7584
7585 free_area_init_core(pgdat);
7586}
7587
7588void __init free_area_init_memoryless_node(int nid)
7589{
7590 free_area_init_node(nid);
7591}
7592
7593#if MAX_NUMNODES > 1
7594/*
7595 * Figure out the number of possible node ids.
7596 */
7597void __init setup_nr_node_ids(void)
7598{
7599 unsigned int highest;
7600
7601 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7602 nr_node_ids = highest + 1;
7603}
7604#endif
7605
7606/**
7607 * node_map_pfn_alignment - determine the maximum internode alignment
7608 *
7609 * This function should be called after node map is populated and sorted.
7610 * It calculates the maximum power of two alignment which can distinguish
7611 * all the nodes.
7612 *
7613 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7614 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7615 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7616 * shifted, 1GiB is enough and this function will indicate so.
7617 *
7618 * This is used to test whether pfn -> nid mapping of the chosen memory
7619 * model has fine enough granularity to avoid incorrect mapping for the
7620 * populated node map.
7621 *
7622 * Return: the determined alignment in pfn's. 0 if there is no alignment
7623 * requirement (single node).
7624 */
7625unsigned long __init node_map_pfn_alignment(void)
7626{
7627 unsigned long accl_mask = 0, last_end = 0;
7628 unsigned long start, end, mask;
7629 int last_nid = NUMA_NO_NODE;
7630 int i, nid;
7631
7632 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7633 if (!start || last_nid < 0 || last_nid == nid) {
7634 last_nid = nid;
7635 last_end = end;
7636 continue;
7637 }
7638
7639 /*
7640 * Start with a mask granular enough to pin-point to the
7641 * start pfn and tick off bits one-by-one until it becomes
7642 * too coarse to separate the current node from the last.
7643 */
7644 mask = ~((1 << __ffs(start)) - 1);
7645 while (mask && last_end <= (start & (mask << 1)))
7646 mask <<= 1;
7647
7648 /* accumulate all internode masks */
7649 accl_mask |= mask;
7650 }
7651
7652 /* convert mask to number of pages */
7653 return ~accl_mask + 1;
7654}
7655
7656/**
7657 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7658 *
7659 * Return: the minimum PFN based on information provided via
7660 * memblock_set_node().
7661 */
7662unsigned long __init find_min_pfn_with_active_regions(void)
7663{
7664 return PHYS_PFN(memblock_start_of_DRAM());
7665}
7666
7667/*
7668 * early_calculate_totalpages()
7669 * Sum pages in active regions for movable zone.
7670 * Populate N_MEMORY for calculating usable_nodes.
7671 */
7672static unsigned long __init early_calculate_totalpages(void)
7673{
7674 unsigned long totalpages = 0;
7675 unsigned long start_pfn, end_pfn;
7676 int i, nid;
7677
7678 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7679 unsigned long pages = end_pfn - start_pfn;
7680
7681 totalpages += pages;
7682 if (pages)
7683 node_set_state(nid, N_MEMORY);
7684 }
7685 return totalpages;
7686}
7687
7688/*
7689 * Find the PFN the Movable zone begins in each node. Kernel memory
7690 * is spread evenly between nodes as long as the nodes have enough
7691 * memory. When they don't, some nodes will have more kernelcore than
7692 * others
7693 */
7694static void __init find_zone_movable_pfns_for_nodes(void)
7695{
7696 int i, nid;
7697 unsigned long usable_startpfn;
7698 unsigned long kernelcore_node, kernelcore_remaining;
7699 /* save the state before borrow the nodemask */
7700 nodemask_t saved_node_state = node_states[N_MEMORY];
7701 unsigned long totalpages = early_calculate_totalpages();
7702 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7703 struct memblock_region *r;
7704
7705 /* Need to find movable_zone earlier when movable_node is specified. */
7706 find_usable_zone_for_movable();
7707
7708 /*
7709 * If movable_node is specified, ignore kernelcore and movablecore
7710 * options.
7711 */
7712 if (movable_node_is_enabled()) {
7713 for_each_mem_region(r) {
7714 if (!memblock_is_hotpluggable(r))
7715 continue;
7716
7717 nid = memblock_get_region_node(r);
7718
7719 usable_startpfn = PFN_DOWN(r->base);
7720 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7721 min(usable_startpfn, zone_movable_pfn[nid]) :
7722 usable_startpfn;
7723 }
7724
7725 goto out2;
7726 }
7727
7728 /*
7729 * If kernelcore=mirror is specified, ignore movablecore option
7730 */
7731 if (mirrored_kernelcore) {
7732 bool mem_below_4gb_not_mirrored = false;
7733
7734 for_each_mem_region(r) {
7735 if (memblock_is_mirror(r))
7736 continue;
7737
7738 nid = memblock_get_region_node(r);
7739
7740 usable_startpfn = memblock_region_memory_base_pfn(r);
7741
7742 if (usable_startpfn < 0x100000) {
7743 mem_below_4gb_not_mirrored = true;
7744 continue;
7745 }
7746
7747 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7748 min(usable_startpfn, zone_movable_pfn[nid]) :
7749 usable_startpfn;
7750 }
7751
7752 if (mem_below_4gb_not_mirrored)
7753 pr_warn("This configuration results in unmirrored kernel memory.\n");
7754
7755 goto out2;
7756 }
7757
7758 /*
7759 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7760 * amount of necessary memory.
7761 */
7762 if (required_kernelcore_percent)
7763 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7764 10000UL;
7765 if (required_movablecore_percent)
7766 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7767 10000UL;
7768
7769 /*
7770 * If movablecore= was specified, calculate what size of
7771 * kernelcore that corresponds so that memory usable for
7772 * any allocation type is evenly spread. If both kernelcore
7773 * and movablecore are specified, then the value of kernelcore
7774 * will be used for required_kernelcore if it's greater than
7775 * what movablecore would have allowed.
7776 */
7777 if (required_movablecore) {
7778 unsigned long corepages;
7779
7780 /*
7781 * Round-up so that ZONE_MOVABLE is at least as large as what
7782 * was requested by the user
7783 */
7784 required_movablecore =
7785 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7786 required_movablecore = min(totalpages, required_movablecore);
7787 corepages = totalpages - required_movablecore;
7788
7789 required_kernelcore = max(required_kernelcore, corepages);
7790 }
7791
7792 /*
7793 * If kernelcore was not specified or kernelcore size is larger
7794 * than totalpages, there is no ZONE_MOVABLE.
7795 */
7796 if (!required_kernelcore || required_kernelcore >= totalpages)
7797 goto out;
7798
7799 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7800 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7801
7802restart:
7803 /* Spread kernelcore memory as evenly as possible throughout nodes */
7804 kernelcore_node = required_kernelcore / usable_nodes;
7805 for_each_node_state(nid, N_MEMORY) {
7806 unsigned long start_pfn, end_pfn;
7807
7808 /*
7809 * Recalculate kernelcore_node if the division per node
7810 * now exceeds what is necessary to satisfy the requested
7811 * amount of memory for the kernel
7812 */
7813 if (required_kernelcore < kernelcore_node)
7814 kernelcore_node = required_kernelcore / usable_nodes;
7815
7816 /*
7817 * As the map is walked, we track how much memory is usable
7818 * by the kernel using kernelcore_remaining. When it is
7819 * 0, the rest of the node is usable by ZONE_MOVABLE
7820 */
7821 kernelcore_remaining = kernelcore_node;
7822
7823 /* Go through each range of PFNs within this node */
7824 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7825 unsigned long size_pages;
7826
7827 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7828 if (start_pfn >= end_pfn)
7829 continue;
7830
7831 /* Account for what is only usable for kernelcore */
7832 if (start_pfn < usable_startpfn) {
7833 unsigned long kernel_pages;
7834 kernel_pages = min(end_pfn, usable_startpfn)
7835 - start_pfn;
7836
7837 kernelcore_remaining -= min(kernel_pages,
7838 kernelcore_remaining);
7839 required_kernelcore -= min(kernel_pages,
7840 required_kernelcore);
7841
7842 /* Continue if range is now fully accounted */
7843 if (end_pfn <= usable_startpfn) {
7844
7845 /*
7846 * Push zone_movable_pfn to the end so
7847 * that if we have to rebalance
7848 * kernelcore across nodes, we will
7849 * not double account here
7850 */
7851 zone_movable_pfn[nid] = end_pfn;
7852 continue;
7853 }
7854 start_pfn = usable_startpfn;
7855 }
7856
7857 /*
7858 * The usable PFN range for ZONE_MOVABLE is from
7859 * start_pfn->end_pfn. Calculate size_pages as the
7860 * number of pages used as kernelcore
7861 */
7862 size_pages = end_pfn - start_pfn;
7863 if (size_pages > kernelcore_remaining)
7864 size_pages = kernelcore_remaining;
7865 zone_movable_pfn[nid] = start_pfn + size_pages;
7866
7867 /*
7868 * Some kernelcore has been met, update counts and
7869 * break if the kernelcore for this node has been
7870 * satisfied
7871 */
7872 required_kernelcore -= min(required_kernelcore,
7873 size_pages);
7874 kernelcore_remaining -= size_pages;
7875 if (!kernelcore_remaining)
7876 break;
7877 }
7878 }
7879
7880 /*
7881 * If there is still required_kernelcore, we do another pass with one
7882 * less node in the count. This will push zone_movable_pfn[nid] further
7883 * along on the nodes that still have memory until kernelcore is
7884 * satisfied
7885 */
7886 usable_nodes--;
7887 if (usable_nodes && required_kernelcore > usable_nodes)
7888 goto restart;
7889
7890out2:
7891 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7892 for (nid = 0; nid < MAX_NUMNODES; nid++)
7893 zone_movable_pfn[nid] =
7894 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7895
7896out:
7897 /* restore the node_state */
7898 node_states[N_MEMORY] = saved_node_state;
7899}
7900
7901/* Any regular or high memory on that node ? */
7902static void check_for_memory(pg_data_t *pgdat, int nid)
7903{
7904 enum zone_type zone_type;
7905
7906 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7907 struct zone *zone = &pgdat->node_zones[zone_type];
7908 if (populated_zone(zone)) {
7909 if (IS_ENABLED(CONFIG_HIGHMEM))
7910 node_set_state(nid, N_HIGH_MEMORY);
7911 if (zone_type <= ZONE_NORMAL)
7912 node_set_state(nid, N_NORMAL_MEMORY);
7913 break;
7914 }
7915 }
7916}
7917
7918/*
7919 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7920 * such cases we allow max_zone_pfn sorted in the descending order
7921 */
7922bool __weak arch_has_descending_max_zone_pfns(void)
7923{
7924 return false;
7925}
7926
7927/**
7928 * free_area_init - Initialise all pg_data_t and zone data
7929 * @max_zone_pfn: an array of max PFNs for each zone
7930 *
7931 * This will call free_area_init_node() for each active node in the system.
7932 * Using the page ranges provided by memblock_set_node(), the size of each
7933 * zone in each node and their holes is calculated. If the maximum PFN
7934 * between two adjacent zones match, it is assumed that the zone is empty.
7935 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7936 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7937 * starts where the previous one ended. For example, ZONE_DMA32 starts
7938 * at arch_max_dma_pfn.
7939 */
7940void __init free_area_init(unsigned long *max_zone_pfn)
7941{
7942 unsigned long start_pfn, end_pfn;
7943 int i, nid, zone;
7944 bool descending;
7945
7946 /* Record where the zone boundaries are */
7947 memset(arch_zone_lowest_possible_pfn, 0,
7948 sizeof(arch_zone_lowest_possible_pfn));
7949 memset(arch_zone_highest_possible_pfn, 0,
7950 sizeof(arch_zone_highest_possible_pfn));
7951
7952 start_pfn = find_min_pfn_with_active_regions();
7953 descending = arch_has_descending_max_zone_pfns();
7954
7955 for (i = 0; i < MAX_NR_ZONES; i++) {
7956 if (descending)
7957 zone = MAX_NR_ZONES - i - 1;
7958 else
7959 zone = i;
7960
7961 if (zone == ZONE_MOVABLE)
7962 continue;
7963
7964 end_pfn = max(max_zone_pfn[zone], start_pfn);
7965 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7966 arch_zone_highest_possible_pfn[zone] = end_pfn;
7967
7968 start_pfn = end_pfn;
7969 }
7970
7971 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7972 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7973 find_zone_movable_pfns_for_nodes();
7974
7975 /* Print out the zone ranges */
7976 pr_info("Zone ranges:\n");
7977 for (i = 0; i < MAX_NR_ZONES; i++) {
7978 if (i == ZONE_MOVABLE)
7979 continue;
7980 pr_info(" %-8s ", zone_names[i]);
7981 if (arch_zone_lowest_possible_pfn[i] ==
7982 arch_zone_highest_possible_pfn[i])
7983 pr_cont("empty\n");
7984 else
7985 pr_cont("[mem %#018Lx-%#018Lx]\n",
7986 (u64)arch_zone_lowest_possible_pfn[i]
7987 << PAGE_SHIFT,
7988 ((u64)arch_zone_highest_possible_pfn[i]
7989 << PAGE_SHIFT) - 1);
7990 }
7991
7992 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7993 pr_info("Movable zone start for each node\n");
7994 for (i = 0; i < MAX_NUMNODES; i++) {
7995 if (zone_movable_pfn[i])
7996 pr_info(" Node %d: %#018Lx\n", i,
7997 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7998 }
7999
8000 /*
8001 * Print out the early node map, and initialize the
8002 * subsection-map relative to active online memory ranges to
8003 * enable future "sub-section" extensions of the memory map.
8004 */
8005 pr_info("Early memory node ranges\n");
8006 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8007 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8008 (u64)start_pfn << PAGE_SHIFT,
8009 ((u64)end_pfn << PAGE_SHIFT) - 1);
8010 subsection_map_init(start_pfn, end_pfn - start_pfn);
8011 }
8012
8013 /* Initialise every node */
8014 mminit_verify_pageflags_layout();
8015 setup_nr_node_ids();
8016 for_each_online_node(nid) {
8017 pg_data_t *pgdat = NODE_DATA(nid);
8018 free_area_init_node(nid);
8019
8020 /* Any memory on that node */
8021 if (pgdat->node_present_pages)
8022 node_set_state(nid, N_MEMORY);
8023 check_for_memory(pgdat, nid);
8024 }
8025
8026 memmap_init();
8027}
8028
8029static int __init cmdline_parse_core(char *p, unsigned long *core,
8030 unsigned long *percent)
8031{
8032 unsigned long long coremem;
8033 char *endptr;
8034
8035 if (!p)
8036 return -EINVAL;
8037
8038 /* Value may be a percentage of total memory, otherwise bytes */
8039 coremem = simple_strtoull(p, &endptr, 0);
8040 if (*endptr == '%') {
8041 /* Paranoid check for percent values greater than 100 */
8042 WARN_ON(coremem > 100);
8043
8044 *percent = coremem;
8045 } else {
8046 coremem = memparse(p, &p);
8047 /* Paranoid check that UL is enough for the coremem value */
8048 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8049
8050 *core = coremem >> PAGE_SHIFT;
8051 *percent = 0UL;
8052 }
8053 return 0;
8054}
8055
8056/*
8057 * kernelcore=size sets the amount of memory for use for allocations that
8058 * cannot be reclaimed or migrated.
8059 */
8060static int __init cmdline_parse_kernelcore(char *p)
8061{
8062 /* parse kernelcore=mirror */
8063 if (parse_option_str(p, "mirror")) {
8064 mirrored_kernelcore = true;
8065 return 0;
8066 }
8067
8068 return cmdline_parse_core(p, &required_kernelcore,
8069 &required_kernelcore_percent);
8070}
8071
8072/*
8073 * movablecore=size sets the amount of memory for use for allocations that
8074 * can be reclaimed or migrated.
8075 */
8076static int __init cmdline_parse_movablecore(char *p)
8077{
8078 return cmdline_parse_core(p, &required_movablecore,
8079 &required_movablecore_percent);
8080}
8081
8082early_param("kernelcore", cmdline_parse_kernelcore);
8083early_param("movablecore", cmdline_parse_movablecore);
8084
8085void adjust_managed_page_count(struct page *page, long count)
8086{
8087 atomic_long_add(count, &page_zone(page)->managed_pages);
8088 totalram_pages_add(count);
8089#ifdef CONFIG_HIGHMEM
8090 if (PageHighMem(page))
8091 totalhigh_pages_add(count);
8092#endif
8093}
8094EXPORT_SYMBOL(adjust_managed_page_count);
8095
8096unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8097{
8098 void *pos;
8099 unsigned long pages = 0;
8100
8101 start = (void *)PAGE_ALIGN((unsigned long)start);
8102 end = (void *)((unsigned long)end & PAGE_MASK);
8103 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8104 struct page *page = virt_to_page(pos);
8105 void *direct_map_addr;
8106
8107 /*
8108 * 'direct_map_addr' might be different from 'pos'
8109 * because some architectures' virt_to_page()
8110 * work with aliases. Getting the direct map
8111 * address ensures that we get a _writeable_
8112 * alias for the memset().
8113 */
8114 direct_map_addr = page_address(page);
8115 /*
8116 * Perform a kasan-unchecked memset() since this memory
8117 * has not been initialized.
8118 */
8119 direct_map_addr = kasan_reset_tag(direct_map_addr);
8120 if ((unsigned int)poison <= 0xFF)
8121 memset(direct_map_addr, poison, PAGE_SIZE);
8122
8123 free_reserved_page(page);
8124 }
8125
8126 if (pages && s)
8127 pr_info("Freeing %s memory: %ldK\n",
8128 s, pages << (PAGE_SHIFT - 10));
8129
8130 return pages;
8131}
8132
8133void __init mem_init_print_info(void)
8134{
8135 unsigned long physpages, codesize, datasize, rosize, bss_size;
8136 unsigned long init_code_size, init_data_size;
8137
8138 physpages = get_num_physpages();
8139 codesize = _etext - _stext;
8140 datasize = _edata - _sdata;
8141 rosize = __end_rodata - __start_rodata;
8142 bss_size = __bss_stop - __bss_start;
8143 init_data_size = __init_end - __init_begin;
8144 init_code_size = _einittext - _sinittext;
8145
8146 /*
8147 * Detect special cases and adjust section sizes accordingly:
8148 * 1) .init.* may be embedded into .data sections
8149 * 2) .init.text.* may be out of [__init_begin, __init_end],
8150 * please refer to arch/tile/kernel/vmlinux.lds.S.
8151 * 3) .rodata.* may be embedded into .text or .data sections.
8152 */
8153#define adj_init_size(start, end, size, pos, adj) \
8154 do { \
8155 if (start <= pos && pos < end && size > adj) \
8156 size -= adj; \
8157 } while (0)
8158
8159 adj_init_size(__init_begin, __init_end, init_data_size,
8160 _sinittext, init_code_size);
8161 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8162 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8163 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8164 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8165
8166#undef adj_init_size
8167
8168 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8169#ifdef CONFIG_HIGHMEM
8170 ", %luK highmem"
8171#endif
8172 ")\n",
8173 nr_free_pages() << (PAGE_SHIFT - 10),
8174 physpages << (PAGE_SHIFT - 10),
8175 codesize >> 10, datasize >> 10, rosize >> 10,
8176 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8177 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8178 totalcma_pages << (PAGE_SHIFT - 10)
8179#ifdef CONFIG_HIGHMEM
8180 , totalhigh_pages() << (PAGE_SHIFT - 10)
8181#endif
8182 );
8183}
8184
8185/**
8186 * set_dma_reserve - set the specified number of pages reserved in the first zone
8187 * @new_dma_reserve: The number of pages to mark reserved
8188 *
8189 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8190 * In the DMA zone, a significant percentage may be consumed by kernel image
8191 * and other unfreeable allocations which can skew the watermarks badly. This
8192 * function may optionally be used to account for unfreeable pages in the
8193 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8194 * smaller per-cpu batchsize.
8195 */
8196void __init set_dma_reserve(unsigned long new_dma_reserve)
8197{
8198 dma_reserve = new_dma_reserve;
8199}
8200
8201static int page_alloc_cpu_dead(unsigned int cpu)
8202{
8203 struct zone *zone;
8204
8205 lru_add_drain_cpu(cpu);
8206 drain_pages(cpu);
8207
8208 /*
8209 * Spill the event counters of the dead processor
8210 * into the current processors event counters.
8211 * This artificially elevates the count of the current
8212 * processor.
8213 */
8214 vm_events_fold_cpu(cpu);
8215
8216 /*
8217 * Zero the differential counters of the dead processor
8218 * so that the vm statistics are consistent.
8219 *
8220 * This is only okay since the processor is dead and cannot
8221 * race with what we are doing.
8222 */
8223 cpu_vm_stats_fold(cpu);
8224
8225 for_each_populated_zone(zone)
8226 zone_pcp_update(zone, 0);
8227
8228 return 0;
8229}
8230
8231static int page_alloc_cpu_online(unsigned int cpu)
8232{
8233 struct zone *zone;
8234
8235 for_each_populated_zone(zone)
8236 zone_pcp_update(zone, 1);
8237 return 0;
8238}
8239
8240#ifdef CONFIG_NUMA
8241int hashdist = HASHDIST_DEFAULT;
8242
8243static int __init set_hashdist(char *str)
8244{
8245 if (!str)
8246 return 0;
8247 hashdist = simple_strtoul(str, &str, 0);
8248 return 1;
8249}
8250__setup("hashdist=", set_hashdist);
8251#endif
8252
8253void __init page_alloc_init(void)
8254{
8255 int ret;
8256
8257#ifdef CONFIG_NUMA
8258 if (num_node_state(N_MEMORY) == 1)
8259 hashdist = 0;
8260#endif
8261
8262 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8263 "mm/page_alloc:pcp",
8264 page_alloc_cpu_online,
8265 page_alloc_cpu_dead);
8266 WARN_ON(ret < 0);
8267}
8268
8269/*
8270 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8271 * or min_free_kbytes changes.
8272 */
8273static void calculate_totalreserve_pages(void)
8274{
8275 struct pglist_data *pgdat;
8276 unsigned long reserve_pages = 0;
8277 enum zone_type i, j;
8278
8279 for_each_online_pgdat(pgdat) {
8280
8281 pgdat->totalreserve_pages = 0;
8282
8283 for (i = 0; i < MAX_NR_ZONES; i++) {
8284 struct zone *zone = pgdat->node_zones + i;
8285 long max = 0;
8286 unsigned long managed_pages = zone_managed_pages(zone);
8287
8288 /* Find valid and maximum lowmem_reserve in the zone */
8289 for (j = i; j < MAX_NR_ZONES; j++) {
8290 if (zone->lowmem_reserve[j] > max)
8291 max = zone->lowmem_reserve[j];
8292 }
8293
8294 /* we treat the high watermark as reserved pages. */
8295 max += high_wmark_pages(zone);
8296
8297 if (max > managed_pages)
8298 max = managed_pages;
8299
8300 pgdat->totalreserve_pages += max;
8301
8302 reserve_pages += max;
8303 }
8304 }
8305 totalreserve_pages = reserve_pages;
8306}
8307
8308/*
8309 * setup_per_zone_lowmem_reserve - called whenever
8310 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8311 * has a correct pages reserved value, so an adequate number of
8312 * pages are left in the zone after a successful __alloc_pages().
8313 */
8314static void setup_per_zone_lowmem_reserve(void)
8315{
8316 struct pglist_data *pgdat;
8317 enum zone_type i, j;
8318
8319 for_each_online_pgdat(pgdat) {
8320 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8321 struct zone *zone = &pgdat->node_zones[i];
8322 int ratio = sysctl_lowmem_reserve_ratio[i];
8323 bool clear = !ratio || !zone_managed_pages(zone);
8324 unsigned long managed_pages = 0;
8325
8326 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8327 struct zone *upper_zone = &pgdat->node_zones[j];
8328
8329 managed_pages += zone_managed_pages(upper_zone);
8330
8331 if (clear)
8332 zone->lowmem_reserve[j] = 0;
8333 else
8334 zone->lowmem_reserve[j] = managed_pages / ratio;
8335 }
8336 }
8337 }
8338
8339 /* update totalreserve_pages */
8340 calculate_totalreserve_pages();
8341}
8342
8343static void __setup_per_zone_wmarks(void)
8344{
8345 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8346 unsigned long lowmem_pages = 0;
8347 struct zone *zone;
8348 unsigned long flags;
8349
8350 /* Calculate total number of !ZONE_HIGHMEM pages */
8351 for_each_zone(zone) {
8352 if (!is_highmem(zone))
8353 lowmem_pages += zone_managed_pages(zone);
8354 }
8355
8356 for_each_zone(zone) {
8357 u64 tmp;
8358
8359 spin_lock_irqsave(&zone->lock, flags);
8360 tmp = (u64)pages_min * zone_managed_pages(zone);
8361 do_div(tmp, lowmem_pages);
8362 if (is_highmem(zone)) {
8363 /*
8364 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8365 * need highmem pages, so cap pages_min to a small
8366 * value here.
8367 *
8368 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8369 * deltas control async page reclaim, and so should
8370 * not be capped for highmem.
8371 */
8372 unsigned long min_pages;
8373
8374 min_pages = zone_managed_pages(zone) / 1024;
8375 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8376 zone->_watermark[WMARK_MIN] = min_pages;
8377 } else {
8378 /*
8379 * If it's a lowmem zone, reserve a number of pages
8380 * proportionate to the zone's size.
8381 */
8382 zone->_watermark[WMARK_MIN] = tmp;
8383 }
8384
8385 /*
8386 * Set the kswapd watermarks distance according to the
8387 * scale factor in proportion to available memory, but
8388 * ensure a minimum size on small systems.
8389 */
8390 tmp = max_t(u64, tmp >> 2,
8391 mult_frac(zone_managed_pages(zone),
8392 watermark_scale_factor, 10000));
8393
8394 zone->watermark_boost = 0;
8395 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8396 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8397
8398 spin_unlock_irqrestore(&zone->lock, flags);
8399 }
8400
8401 /* update totalreserve_pages */
8402 calculate_totalreserve_pages();
8403}
8404
8405/**
8406 * setup_per_zone_wmarks - called when min_free_kbytes changes
8407 * or when memory is hot-{added|removed}
8408 *
8409 * Ensures that the watermark[min,low,high] values for each zone are set
8410 * correctly with respect to min_free_kbytes.
8411 */
8412void setup_per_zone_wmarks(void)
8413{
8414 struct zone *zone;
8415 static DEFINE_SPINLOCK(lock);
8416
8417 spin_lock(&lock);
8418 __setup_per_zone_wmarks();
8419 spin_unlock(&lock);
8420
8421 /*
8422 * The watermark size have changed so update the pcpu batch
8423 * and high limits or the limits may be inappropriate.
8424 */
8425 for_each_zone(zone)
8426 zone_pcp_update(zone, 0);
8427}
8428
8429/*
8430 * Initialise min_free_kbytes.
8431 *
8432 * For small machines we want it small (128k min). For large machines
8433 * we want it large (256MB max). But it is not linear, because network
8434 * bandwidth does not increase linearly with machine size. We use
8435 *
8436 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8437 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8438 *
8439 * which yields
8440 *
8441 * 16MB: 512k
8442 * 32MB: 724k
8443 * 64MB: 1024k
8444 * 128MB: 1448k
8445 * 256MB: 2048k
8446 * 512MB: 2896k
8447 * 1024MB: 4096k
8448 * 2048MB: 5792k
8449 * 4096MB: 8192k
8450 * 8192MB: 11584k
8451 * 16384MB: 16384k
8452 */
8453int __meminit init_per_zone_wmark_min(void)
8454{
8455 unsigned long lowmem_kbytes;
8456 int new_min_free_kbytes;
8457
8458 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8459 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8460
8461 if (new_min_free_kbytes > user_min_free_kbytes) {
8462 min_free_kbytes = new_min_free_kbytes;
8463 if (min_free_kbytes < 128)
8464 min_free_kbytes = 128;
8465 if (min_free_kbytes > 262144)
8466 min_free_kbytes = 262144;
8467 } else {
8468 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8469 new_min_free_kbytes, user_min_free_kbytes);
8470 }
8471 setup_per_zone_wmarks();
8472 refresh_zone_stat_thresholds();
8473 setup_per_zone_lowmem_reserve();
8474
8475#ifdef CONFIG_NUMA
8476 setup_min_unmapped_ratio();
8477 setup_min_slab_ratio();
8478#endif
8479
8480 khugepaged_min_free_kbytes_update();
8481
8482 return 0;
8483}
8484postcore_initcall(init_per_zone_wmark_min)
8485
8486/*
8487 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8488 * that we can call two helper functions whenever min_free_kbytes
8489 * changes.
8490 */
8491int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8492 void *buffer, size_t *length, loff_t *ppos)
8493{
8494 int rc;
8495
8496 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8497 if (rc)
8498 return rc;
8499
8500 if (write) {
8501 user_min_free_kbytes = min_free_kbytes;
8502 setup_per_zone_wmarks();
8503 }
8504 return 0;
8505}
8506
8507int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8508 void *buffer, size_t *length, loff_t *ppos)
8509{
8510 int rc;
8511
8512 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8513 if (rc)
8514 return rc;
8515
8516 if (write)
8517 setup_per_zone_wmarks();
8518
8519 return 0;
8520}
8521
8522#ifdef CONFIG_NUMA
8523static void setup_min_unmapped_ratio(void)
8524{
8525 pg_data_t *pgdat;
8526 struct zone *zone;
8527
8528 for_each_online_pgdat(pgdat)
8529 pgdat->min_unmapped_pages = 0;
8530
8531 for_each_zone(zone)
8532 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8533 sysctl_min_unmapped_ratio) / 100;
8534}
8535
8536
8537int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8538 void *buffer, size_t *length, loff_t *ppos)
8539{
8540 int rc;
8541
8542 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8543 if (rc)
8544 return rc;
8545
8546 setup_min_unmapped_ratio();
8547
8548 return 0;
8549}
8550
8551static void setup_min_slab_ratio(void)
8552{
8553 pg_data_t *pgdat;
8554 struct zone *zone;
8555
8556 for_each_online_pgdat(pgdat)
8557 pgdat->min_slab_pages = 0;
8558
8559 for_each_zone(zone)
8560 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8561 sysctl_min_slab_ratio) / 100;
8562}
8563
8564int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8565 void *buffer, size_t *length, loff_t *ppos)
8566{
8567 int rc;
8568
8569 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8570 if (rc)
8571 return rc;
8572
8573 setup_min_slab_ratio();
8574
8575 return 0;
8576}
8577#endif
8578
8579/*
8580 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8581 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8582 * whenever sysctl_lowmem_reserve_ratio changes.
8583 *
8584 * The reserve ratio obviously has absolutely no relation with the
8585 * minimum watermarks. The lowmem reserve ratio can only make sense
8586 * if in function of the boot time zone sizes.
8587 */
8588int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8589 void *buffer, size_t *length, loff_t *ppos)
8590{
8591 int i;
8592
8593 proc_dointvec_minmax(table, write, buffer, length, ppos);
8594
8595 for (i = 0; i < MAX_NR_ZONES; i++) {
8596 if (sysctl_lowmem_reserve_ratio[i] < 1)
8597 sysctl_lowmem_reserve_ratio[i] = 0;
8598 }
8599
8600 setup_per_zone_lowmem_reserve();
8601 return 0;
8602}
8603
8604/*
8605 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8606 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8607 * pagelist can have before it gets flushed back to buddy allocator.
8608 */
8609int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8610 int write, void *buffer, size_t *length, loff_t *ppos)
8611{
8612 struct zone *zone;
8613 int old_percpu_pagelist_high_fraction;
8614 int ret;
8615
8616 mutex_lock(&pcp_batch_high_lock);
8617 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8618
8619 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8620 if (!write || ret < 0)
8621 goto out;
8622
8623 /* Sanity checking to avoid pcp imbalance */
8624 if (percpu_pagelist_high_fraction &&
8625 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8626 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8627 ret = -EINVAL;
8628 goto out;
8629 }
8630
8631 /* No change? */
8632 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8633 goto out;
8634
8635 for_each_populated_zone(zone)
8636 zone_set_pageset_high_and_batch(zone, 0);
8637out:
8638 mutex_unlock(&pcp_batch_high_lock);
8639 return ret;
8640}
8641
8642#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8643/*
8644 * Returns the number of pages that arch has reserved but
8645 * is not known to alloc_large_system_hash().
8646 */
8647static unsigned long __init arch_reserved_kernel_pages(void)
8648{
8649 return 0;
8650}
8651#endif
8652
8653/*
8654 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8655 * machines. As memory size is increased the scale is also increased but at
8656 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8657 * quadruples the scale is increased by one, which means the size of hash table
8658 * only doubles, instead of quadrupling as well.
8659 * Because 32-bit systems cannot have large physical memory, where this scaling
8660 * makes sense, it is disabled on such platforms.
8661 */
8662#if __BITS_PER_LONG > 32
8663#define ADAPT_SCALE_BASE (64ul << 30)
8664#define ADAPT_SCALE_SHIFT 2
8665#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8666#endif
8667
8668/*
8669 * allocate a large system hash table from bootmem
8670 * - it is assumed that the hash table must contain an exact power-of-2
8671 * quantity of entries
8672 * - limit is the number of hash buckets, not the total allocation size
8673 */
8674void *__init alloc_large_system_hash(const char *tablename,
8675 unsigned long bucketsize,
8676 unsigned long numentries,
8677 int scale,
8678 int flags,
8679 unsigned int *_hash_shift,
8680 unsigned int *_hash_mask,
8681 unsigned long low_limit,
8682 unsigned long high_limit)
8683{
8684 unsigned long long max = high_limit;
8685 unsigned long log2qty, size;
8686 void *table = NULL;
8687 gfp_t gfp_flags;
8688 bool virt;
8689 bool huge;
8690
8691 /* allow the kernel cmdline to have a say */
8692 if (!numentries) {
8693 /* round applicable memory size up to nearest megabyte */
8694 numentries = nr_kernel_pages;
8695 numentries -= arch_reserved_kernel_pages();
8696
8697 /* It isn't necessary when PAGE_SIZE >= 1MB */
8698 if (PAGE_SHIFT < 20)
8699 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8700
8701#if __BITS_PER_LONG > 32
8702 if (!high_limit) {
8703 unsigned long adapt;
8704
8705 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8706 adapt <<= ADAPT_SCALE_SHIFT)
8707 scale++;
8708 }
8709#endif
8710
8711 /* limit to 1 bucket per 2^scale bytes of low memory */
8712 if (scale > PAGE_SHIFT)
8713 numentries >>= (scale - PAGE_SHIFT);
8714 else
8715 numentries <<= (PAGE_SHIFT - scale);
8716
8717 /* Make sure we've got at least a 0-order allocation.. */
8718 if (unlikely(flags & HASH_SMALL)) {
8719 /* Makes no sense without HASH_EARLY */
8720 WARN_ON(!(flags & HASH_EARLY));
8721 if (!(numentries >> *_hash_shift)) {
8722 numentries = 1UL << *_hash_shift;
8723 BUG_ON(!numentries);
8724 }
8725 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8726 numentries = PAGE_SIZE / bucketsize;
8727 }
8728 numentries = roundup_pow_of_two(numentries);
8729
8730 /* limit allocation size to 1/16 total memory by default */
8731 if (max == 0) {
8732 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8733 do_div(max, bucketsize);
8734 }
8735 max = min(max, 0x80000000ULL);
8736
8737 if (numentries < low_limit)
8738 numentries = low_limit;
8739 if (numentries > max)
8740 numentries = max;
8741
8742 log2qty = ilog2(numentries);
8743
8744 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8745 do {
8746 virt = false;
8747 size = bucketsize << log2qty;
8748 if (flags & HASH_EARLY) {
8749 if (flags & HASH_ZERO)
8750 table = memblock_alloc(size, SMP_CACHE_BYTES);
8751 else
8752 table = memblock_alloc_raw(size,
8753 SMP_CACHE_BYTES);
8754 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8755 table = __vmalloc(size, gfp_flags);
8756 virt = true;
8757 huge = is_vm_area_hugepages(table);
8758 } else {
8759 /*
8760 * If bucketsize is not a power-of-two, we may free
8761 * some pages at the end of hash table which
8762 * alloc_pages_exact() automatically does
8763 */
8764 table = alloc_pages_exact(size, gfp_flags);
8765 kmemleak_alloc(table, size, 1, gfp_flags);
8766 }
8767 } while (!table && size > PAGE_SIZE && --log2qty);
8768
8769 if (!table)
8770 panic("Failed to allocate %s hash table\n", tablename);
8771
8772 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8773 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8774 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8775
8776 if (_hash_shift)
8777 *_hash_shift = log2qty;
8778 if (_hash_mask)
8779 *_hash_mask = (1 << log2qty) - 1;
8780
8781 return table;
8782}
8783
8784/*
8785 * This function checks whether pageblock includes unmovable pages or not.
8786 *
8787 * PageLRU check without isolation or lru_lock could race so that
8788 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8789 * check without lock_page also may miss some movable non-lru pages at
8790 * race condition. So you can't expect this function should be exact.
8791 *
8792 * Returns a page without holding a reference. If the caller wants to
8793 * dereference that page (e.g., dumping), it has to make sure that it
8794 * cannot get removed (e.g., via memory unplug) concurrently.
8795 *
8796 */
8797struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8798 int migratetype, int flags)
8799{
8800 unsigned long iter = 0;
8801 unsigned long pfn = page_to_pfn(page);
8802 unsigned long offset = pfn % pageblock_nr_pages;
8803
8804 if (is_migrate_cma_page(page)) {
8805 /*
8806 * CMA allocations (alloc_contig_range) really need to mark
8807 * isolate CMA pageblocks even when they are not movable in fact
8808 * so consider them movable here.
8809 */
8810 if (is_migrate_cma(migratetype))
8811 return NULL;
8812
8813 return page;
8814 }
8815
8816 for (; iter < pageblock_nr_pages - offset; iter++) {
8817 if (!pfn_valid_within(pfn + iter))
8818 continue;
8819
8820 page = pfn_to_page(pfn + iter);
8821
8822 /*
8823 * Both, bootmem allocations and memory holes are marked
8824 * PG_reserved and are unmovable. We can even have unmovable
8825 * allocations inside ZONE_MOVABLE, for example when
8826 * specifying "movablecore".
8827 */
8828 if (PageReserved(page))
8829 return page;
8830
8831 /*
8832 * If the zone is movable and we have ruled out all reserved
8833 * pages then it should be reasonably safe to assume the rest
8834 * is movable.
8835 */
8836 if (zone_idx(zone) == ZONE_MOVABLE)
8837 continue;
8838
8839 /*
8840 * Hugepages are not in LRU lists, but they're movable.
8841 * THPs are on the LRU, but need to be counted as #small pages.
8842 * We need not scan over tail pages because we don't
8843 * handle each tail page individually in migration.
8844 */
8845 if (PageHuge(page) || PageTransCompound(page)) {
8846 struct page *head = compound_head(page);
8847 unsigned int skip_pages;
8848
8849 if (PageHuge(page)) {
8850 if (!hugepage_migration_supported(page_hstate(head)))
8851 return page;
8852 } else if (!PageLRU(head) && !__PageMovable(head)) {
8853 return page;
8854 }
8855
8856 skip_pages = compound_nr(head) - (page - head);
8857 iter += skip_pages - 1;
8858 continue;
8859 }
8860
8861 /*
8862 * We can't use page_count without pin a page
8863 * because another CPU can free compound page.
8864 * This check already skips compound tails of THP
8865 * because their page->_refcount is zero at all time.
8866 */
8867 if (!page_ref_count(page)) {
8868 if (PageBuddy(page))
8869 iter += (1 << buddy_order(page)) - 1;
8870 continue;
8871 }
8872
8873 /*
8874 * The HWPoisoned page may be not in buddy system, and
8875 * page_count() is not 0.
8876 */
8877 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8878 continue;
8879
8880 /*
8881 * We treat all PageOffline() pages as movable when offlining
8882 * to give drivers a chance to decrement their reference count
8883 * in MEM_GOING_OFFLINE in order to indicate that these pages
8884 * can be offlined as there are no direct references anymore.
8885 * For actually unmovable PageOffline() where the driver does
8886 * not support this, we will fail later when trying to actually
8887 * move these pages that still have a reference count > 0.
8888 * (false negatives in this function only)
8889 */
8890 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8891 continue;
8892
8893 if (__PageMovable(page) || PageLRU(page))
8894 continue;
8895
8896 /*
8897 * If there are RECLAIMABLE pages, we need to check
8898 * it. But now, memory offline itself doesn't call
8899 * shrink_node_slabs() and it still to be fixed.
8900 */
8901 return page;
8902 }
8903 return NULL;
8904}
8905
8906#ifdef CONFIG_CONTIG_ALLOC
8907static unsigned long pfn_max_align_down(unsigned long pfn)
8908{
8909 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8910 pageblock_nr_pages) - 1);
8911}
8912
8913static unsigned long pfn_max_align_up(unsigned long pfn)
8914{
8915 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8916 pageblock_nr_pages));
8917}
8918
8919#if defined(CONFIG_DYNAMIC_DEBUG) || \
8920 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8921/* Usage: See admin-guide/dynamic-debug-howto.rst */
8922static void alloc_contig_dump_pages(struct list_head *page_list)
8923{
8924 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8925
8926 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8927 struct page *page;
8928
8929 dump_stack();
8930 list_for_each_entry(page, page_list, lru)
8931 dump_page(page, "migration failure");
8932 }
8933}
8934#else
8935static inline void alloc_contig_dump_pages(struct list_head *page_list)
8936{
8937}
8938#endif
8939
8940/* [start, end) must belong to a single zone. */
8941static int __alloc_contig_migrate_range(struct compact_control *cc,
8942 unsigned long start, unsigned long end)
8943{
8944 /* This function is based on compact_zone() from compaction.c. */
8945 unsigned int nr_reclaimed;
8946 unsigned long pfn = start;
8947 unsigned int tries = 0;
8948 int ret = 0;
8949 struct migration_target_control mtc = {
8950 .nid = zone_to_nid(cc->zone),
8951 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8952 };
8953
8954 lru_cache_disable();
8955
8956 while (pfn < end || !list_empty(&cc->migratepages)) {
8957 if (fatal_signal_pending(current)) {
8958 ret = -EINTR;
8959 break;
8960 }
8961
8962 if (list_empty(&cc->migratepages)) {
8963 cc->nr_migratepages = 0;
8964 ret = isolate_migratepages_range(cc, pfn, end);
8965 if (ret && ret != -EAGAIN)
8966 break;
8967 pfn = cc->migrate_pfn;
8968 tries = 0;
8969 } else if (++tries == 5) {
8970 ret = -EBUSY;
8971 break;
8972 }
8973
8974 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8975 &cc->migratepages);
8976 cc->nr_migratepages -= nr_reclaimed;
8977
8978 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8979 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8980
8981 /*
8982 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8983 * to retry again over this error, so do the same here.
8984 */
8985 if (ret == -ENOMEM)
8986 break;
8987 }
8988
8989 lru_cache_enable();
8990 if (ret < 0) {
8991 if (ret == -EBUSY)
8992 alloc_contig_dump_pages(&cc->migratepages);
8993 putback_movable_pages(&cc->migratepages);
8994 return ret;
8995 }
8996 return 0;
8997}
8998
8999/**
9000 * alloc_contig_range() -- tries to allocate given range of pages
9001 * @start: start PFN to allocate
9002 * @end: one-past-the-last PFN to allocate
9003 * @migratetype: migratetype of the underlying pageblocks (either
9004 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9005 * in range must have the same migratetype and it must
9006 * be either of the two.
9007 * @gfp_mask: GFP mask to use during compaction
9008 *
9009 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9010 * aligned. The PFN range must belong to a single zone.
9011 *
9012 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9013 * pageblocks in the range. Once isolated, the pageblocks should not
9014 * be modified by others.
9015 *
9016 * Return: zero on success or negative error code. On success all
9017 * pages which PFN is in [start, end) are allocated for the caller and
9018 * need to be freed with free_contig_range().
9019 */
9020int alloc_contig_range(unsigned long start, unsigned long end,
9021 unsigned migratetype, gfp_t gfp_mask)
9022{
9023 unsigned long outer_start, outer_end;
9024 unsigned int order;
9025 int ret = 0;
9026
9027 struct compact_control cc = {
9028 .nr_migratepages = 0,
9029 .order = -1,
9030 .zone = page_zone(pfn_to_page(start)),
9031 .mode = MIGRATE_SYNC,
9032 .ignore_skip_hint = true,
9033 .no_set_skip_hint = true,
9034 .gfp_mask = current_gfp_context(gfp_mask),
9035 .alloc_contig = true,
9036 };
9037 INIT_LIST_HEAD(&cc.migratepages);
9038
9039 /*
9040 * What we do here is we mark all pageblocks in range as
9041 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9042 * have different sizes, and due to the way page allocator
9043 * work, we align the range to biggest of the two pages so
9044 * that page allocator won't try to merge buddies from
9045 * different pageblocks and change MIGRATE_ISOLATE to some
9046 * other migration type.
9047 *
9048 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9049 * migrate the pages from an unaligned range (ie. pages that
9050 * we are interested in). This will put all the pages in
9051 * range back to page allocator as MIGRATE_ISOLATE.
9052 *
9053 * When this is done, we take the pages in range from page
9054 * allocator removing them from the buddy system. This way
9055 * page allocator will never consider using them.
9056 *
9057 * This lets us mark the pageblocks back as
9058 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9059 * aligned range but not in the unaligned, original range are
9060 * put back to page allocator so that buddy can use them.
9061 */
9062
9063 ret = start_isolate_page_range(pfn_max_align_down(start),
9064 pfn_max_align_up(end), migratetype, 0);
9065 if (ret)
9066 return ret;
9067
9068 drain_all_pages(cc.zone);
9069
9070 /*
9071 * In case of -EBUSY, we'd like to know which page causes problem.
9072 * So, just fall through. test_pages_isolated() has a tracepoint
9073 * which will report the busy page.
9074 *
9075 * It is possible that busy pages could become available before
9076 * the call to test_pages_isolated, and the range will actually be
9077 * allocated. So, if we fall through be sure to clear ret so that
9078 * -EBUSY is not accidentally used or returned to caller.
9079 */
9080 ret = __alloc_contig_migrate_range(&cc, start, end);
9081 if (ret && ret != -EBUSY)
9082 goto done;
9083 ret = 0;
9084
9085 /*
9086 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9087 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9088 * more, all pages in [start, end) are free in page allocator.
9089 * What we are going to do is to allocate all pages from
9090 * [start, end) (that is remove them from page allocator).
9091 *
9092 * The only problem is that pages at the beginning and at the
9093 * end of interesting range may be not aligned with pages that
9094 * page allocator holds, ie. they can be part of higher order
9095 * pages. Because of this, we reserve the bigger range and
9096 * once this is done free the pages we are not interested in.
9097 *
9098 * We don't have to hold zone->lock here because the pages are
9099 * isolated thus they won't get removed from buddy.
9100 */
9101
9102 order = 0;
9103 outer_start = start;
9104 while (!PageBuddy(pfn_to_page(outer_start))) {
9105 if (++order >= MAX_ORDER) {
9106 outer_start = start;
9107 break;
9108 }
9109 outer_start &= ~0UL << order;
9110 }
9111
9112 if (outer_start != start) {
9113 order = buddy_order(pfn_to_page(outer_start));
9114
9115 /*
9116 * outer_start page could be small order buddy page and
9117 * it doesn't include start page. Adjust outer_start
9118 * in this case to report failed page properly
9119 * on tracepoint in test_pages_isolated()
9120 */
9121 if (outer_start + (1UL << order) <= start)
9122 outer_start = start;
9123 }
9124
9125 /* Make sure the range is really isolated. */
9126 if (test_pages_isolated(outer_start, end, 0)) {
9127 ret = -EBUSY;
9128 goto done;
9129 }
9130
9131 /* Grab isolated pages from freelists. */
9132 outer_end = isolate_freepages_range(&cc, outer_start, end);
9133 if (!outer_end) {
9134 ret = -EBUSY;
9135 goto done;
9136 }
9137
9138 /* Free head and tail (if any) */
9139 if (start != outer_start)
9140 free_contig_range(outer_start, start - outer_start);
9141 if (end != outer_end)
9142 free_contig_range(end, outer_end - end);
9143
9144done:
9145 undo_isolate_page_range(pfn_max_align_down(start),
9146 pfn_max_align_up(end), migratetype);
9147 return ret;
9148}
9149EXPORT_SYMBOL(alloc_contig_range);
9150
9151static int __alloc_contig_pages(unsigned long start_pfn,
9152 unsigned long nr_pages, gfp_t gfp_mask)
9153{
9154 unsigned long end_pfn = start_pfn + nr_pages;
9155
9156 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9157 gfp_mask);
9158}
9159
9160static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9161 unsigned long nr_pages)
9162{
9163 unsigned long i, end_pfn = start_pfn + nr_pages;
9164 struct page *page;
9165
9166 for (i = start_pfn; i < end_pfn; i++) {
9167 page = pfn_to_online_page(i);
9168 if (!page)
9169 return false;
9170
9171 if (page_zone(page) != z)
9172 return false;
9173
9174 if (PageReserved(page))
9175 return false;
9176 }
9177 return true;
9178}
9179
9180static bool zone_spans_last_pfn(const struct zone *zone,
9181 unsigned long start_pfn, unsigned long nr_pages)
9182{
9183 unsigned long last_pfn = start_pfn + nr_pages - 1;
9184
9185 return zone_spans_pfn(zone, last_pfn);
9186}
9187
9188/**
9189 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9190 * @nr_pages: Number of contiguous pages to allocate
9191 * @gfp_mask: GFP mask to limit search and used during compaction
9192 * @nid: Target node
9193 * @nodemask: Mask for other possible nodes
9194 *
9195 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9196 * on an applicable zonelist to find a contiguous pfn range which can then be
9197 * tried for allocation with alloc_contig_range(). This routine is intended
9198 * for allocation requests which can not be fulfilled with the buddy allocator.
9199 *
9200 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9201 * power of two then the alignment is guaranteed to be to the given nr_pages
9202 * (e.g. 1GB request would be aligned to 1GB).
9203 *
9204 * Allocated pages can be freed with free_contig_range() or by manually calling
9205 * __free_page() on each allocated page.
9206 *
9207 * Return: pointer to contiguous pages on success, or NULL if not successful.
9208 */
9209struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9210 int nid, nodemask_t *nodemask)
9211{
9212 unsigned long ret, pfn, flags;
9213 struct zonelist *zonelist;
9214 struct zone *zone;
9215 struct zoneref *z;
9216
9217 zonelist = node_zonelist(nid, gfp_mask);
9218 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9219 gfp_zone(gfp_mask), nodemask) {
9220 spin_lock_irqsave(&zone->lock, flags);
9221
9222 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9223 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9224 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9225 /*
9226 * We release the zone lock here because
9227 * alloc_contig_range() will also lock the zone
9228 * at some point. If there's an allocation
9229 * spinning on this lock, it may win the race
9230 * and cause alloc_contig_range() to fail...
9231 */
9232 spin_unlock_irqrestore(&zone->lock, flags);
9233 ret = __alloc_contig_pages(pfn, nr_pages,
9234 gfp_mask);
9235 if (!ret)
9236 return pfn_to_page(pfn);
9237 spin_lock_irqsave(&zone->lock, flags);
9238 }
9239 pfn += nr_pages;
9240 }
9241 spin_unlock_irqrestore(&zone->lock, flags);
9242 }
9243 return NULL;
9244}
9245#endif /* CONFIG_CONTIG_ALLOC */
9246
9247void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9248{
9249 unsigned long count = 0;
9250
9251 for (; nr_pages--; pfn++) {
9252 struct page *page = pfn_to_page(pfn);
9253
9254 count += page_count(page) != 1;
9255 __free_page(page);
9256 }
9257 WARN(count != 0, "%lu pages are still in use!\n", count);
9258}
9259EXPORT_SYMBOL(free_contig_range);
9260
9261/*
9262 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9263 * page high values need to be recalculated.
9264 */
9265void zone_pcp_update(struct zone *zone, int cpu_online)
9266{
9267 mutex_lock(&pcp_batch_high_lock);
9268 zone_set_pageset_high_and_batch(zone, cpu_online);
9269 mutex_unlock(&pcp_batch_high_lock);
9270}
9271
9272/*
9273 * Effectively disable pcplists for the zone by setting the high limit to 0
9274 * and draining all cpus. A concurrent page freeing on another CPU that's about
9275 * to put the page on pcplist will either finish before the drain and the page
9276 * will be drained, or observe the new high limit and skip the pcplist.
9277 *
9278 * Must be paired with a call to zone_pcp_enable().
9279 */
9280void zone_pcp_disable(struct zone *zone)
9281{
9282 mutex_lock(&pcp_batch_high_lock);
9283 __zone_set_pageset_high_and_batch(zone, 0, 1);
9284 __drain_all_pages(zone, true);
9285}
9286
9287void zone_pcp_enable(struct zone *zone)
9288{
9289 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9290 mutex_unlock(&pcp_batch_high_lock);
9291}
9292
9293void zone_pcp_reset(struct zone *zone)
9294{
9295 int cpu;
9296 struct per_cpu_zonestat *pzstats;
9297
9298 if (zone->per_cpu_pageset != &boot_pageset) {
9299 for_each_online_cpu(cpu) {
9300 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9301 drain_zonestat(zone, pzstats);
9302 }
9303 free_percpu(zone->per_cpu_pageset);
9304 free_percpu(zone->per_cpu_zonestats);
9305 zone->per_cpu_pageset = &boot_pageset;
9306 zone->per_cpu_zonestats = &boot_zonestats;
9307 }
9308}
9309
9310#ifdef CONFIG_MEMORY_HOTREMOVE
9311/*
9312 * All pages in the range must be in a single zone, must not contain holes,
9313 * must span full sections, and must be isolated before calling this function.
9314 */
9315void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9316{
9317 unsigned long pfn = start_pfn;
9318 struct page *page;
9319 struct zone *zone;
9320 unsigned int order;
9321 unsigned long flags;
9322
9323 offline_mem_sections(pfn, end_pfn);
9324 zone = page_zone(pfn_to_page(pfn));
9325 spin_lock_irqsave(&zone->lock, flags);
9326 while (pfn < end_pfn) {
9327 page = pfn_to_page(pfn);
9328 /*
9329 * The HWPoisoned page may be not in buddy system, and
9330 * page_count() is not 0.
9331 */
9332 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9333 pfn++;
9334 continue;
9335 }
9336 /*
9337 * At this point all remaining PageOffline() pages have a
9338 * reference count of 0 and can simply be skipped.
9339 */
9340 if (PageOffline(page)) {
9341 BUG_ON(page_count(page));
9342 BUG_ON(PageBuddy(page));
9343 pfn++;
9344 continue;
9345 }
9346
9347 BUG_ON(page_count(page));
9348 BUG_ON(!PageBuddy(page));
9349 order = buddy_order(page);
9350 del_page_from_free_list(page, zone, order);
9351 pfn += (1 << order);
9352 }
9353 spin_unlock_irqrestore(&zone->lock, flags);
9354}
9355#endif
9356
9357bool is_free_buddy_page(struct page *page)
9358{
9359 struct zone *zone = page_zone(page);
9360 unsigned long pfn = page_to_pfn(page);
9361 unsigned long flags;
9362 unsigned int order;
9363
9364 spin_lock_irqsave(&zone->lock, flags);
9365 for (order = 0; order < MAX_ORDER; order++) {
9366 struct page *page_head = page - (pfn & ((1 << order) - 1));
9367
9368 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9369 break;
9370 }
9371 spin_unlock_irqrestore(&zone->lock, flags);
9372
9373 return order < MAX_ORDER;
9374}
9375
9376#ifdef CONFIG_MEMORY_FAILURE
9377/*
9378 * Break down a higher-order page in sub-pages, and keep our target out of
9379 * buddy allocator.
9380 */
9381static void break_down_buddy_pages(struct zone *zone, struct page *page,
9382 struct page *target, int low, int high,
9383 int migratetype)
9384{
9385 unsigned long size = 1 << high;
9386 struct page *current_buddy, *next_page;
9387
9388 while (high > low) {
9389 high--;
9390 size >>= 1;
9391
9392 if (target >= &page[size]) {
9393 next_page = page + size;
9394 current_buddy = page;
9395 } else {
9396 next_page = page;
9397 current_buddy = page + size;
9398 }
9399
9400 if (set_page_guard(zone, current_buddy, high, migratetype))
9401 continue;
9402
9403 if (current_buddy != target) {
9404 add_to_free_list(current_buddy, zone, high, migratetype);
9405 set_buddy_order(current_buddy, high);
9406 page = next_page;
9407 }
9408 }
9409}
9410
9411/*
9412 * Take a page that will be marked as poisoned off the buddy allocator.
9413 */
9414bool take_page_off_buddy(struct page *page)
9415{
9416 struct zone *zone = page_zone(page);
9417 unsigned long pfn = page_to_pfn(page);
9418 unsigned long flags;
9419 unsigned int order;
9420 bool ret = false;
9421
9422 spin_lock_irqsave(&zone->lock, flags);
9423 for (order = 0; order < MAX_ORDER; order++) {
9424 struct page *page_head = page - (pfn & ((1 << order) - 1));
9425 int page_order = buddy_order(page_head);
9426
9427 if (PageBuddy(page_head) && page_order >= order) {
9428 unsigned long pfn_head = page_to_pfn(page_head);
9429 int migratetype = get_pfnblock_migratetype(page_head,
9430 pfn_head);
9431
9432 del_page_from_free_list(page_head, zone, page_order);
9433 break_down_buddy_pages(zone, page_head, page, 0,
9434 page_order, migratetype);
9435 if (!is_migrate_isolate(migratetype))
9436 __mod_zone_freepage_state(zone, -1, migratetype);
9437 ret = true;
9438 break;
9439 }
9440 if (page_count(page_head) > 0)
9441 break;
9442 }
9443 spin_unlock_irqrestore(&zone->lock, flags);
9444 return ret;
9445}
9446#endif