at v5.14-rc7 665 lines 21 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7#ifndef __MM_INTERNAL_H 8#define __MM_INTERNAL_H 9 10#include <linux/fs.h> 11#include <linux/mm.h> 12#include <linux/pagemap.h> 13#include <linux/tracepoint-defs.h> 14 15/* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26/* The GFP flags allowed during early boot */ 27#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29/* Control allocation cpuset and node placement constraints */ 30#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32/* Do not use these with a slab allocator */ 33#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35void page_writeback_init(void); 36 37vm_fault_t do_swap_page(struct vm_fault *vmf); 38 39void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 40 unsigned long floor, unsigned long ceiling); 41 42static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 43{ 44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 45} 46 47void unmap_page_range(struct mmu_gather *tlb, 48 struct vm_area_struct *vma, 49 unsigned long addr, unsigned long end, 50 struct zap_details *details); 51 52void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 53 unsigned long lookahead_size); 54void force_page_cache_ra(struct readahead_control *, unsigned long nr); 55static inline void force_page_cache_readahead(struct address_space *mapping, 56 struct file *file, pgoff_t index, unsigned long nr_to_read) 57{ 58 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 59 force_page_cache_ra(&ractl, nr_to_read); 60} 61 62unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 63 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 64 65/** 66 * page_evictable - test whether a page is evictable 67 * @page: the page to test 68 * 69 * Test whether page is evictable--i.e., should be placed on active/inactive 70 * lists vs unevictable list. 71 * 72 * Reasons page might not be evictable: 73 * (1) page's mapping marked unevictable 74 * (2) page is part of an mlocked VMA 75 * 76 */ 77static inline bool page_evictable(struct page *page) 78{ 79 bool ret; 80 81 /* Prevent address_space of inode and swap cache from being freed */ 82 rcu_read_lock(); 83 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 84 rcu_read_unlock(); 85 return ret; 86} 87 88/* 89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 90 * a count of one. 91 */ 92static inline void set_page_refcounted(struct page *page) 93{ 94 VM_BUG_ON_PAGE(PageTail(page), page); 95 VM_BUG_ON_PAGE(page_ref_count(page), page); 96 set_page_count(page, 1); 97} 98 99extern unsigned long highest_memmap_pfn; 100 101/* 102 * Maximum number of reclaim retries without progress before the OOM 103 * killer is consider the only way forward. 104 */ 105#define MAX_RECLAIM_RETRIES 16 106 107/* 108 * in mm/vmscan.c: 109 */ 110extern int isolate_lru_page(struct page *page); 111extern void putback_lru_page(struct page *page); 112 113/* 114 * in mm/rmap.c: 115 */ 116extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 117 118/* 119 * in mm/memcontrol.c: 120 */ 121extern bool cgroup_memory_nokmem; 122 123/* 124 * in mm/page_alloc.c 125 */ 126 127/* 128 * Structure for holding the mostly immutable allocation parameters passed 129 * between functions involved in allocations, including the alloc_pages* 130 * family of functions. 131 * 132 * nodemask, migratetype and highest_zoneidx are initialized only once in 133 * __alloc_pages() and then never change. 134 * 135 * zonelist, preferred_zone and highest_zoneidx are set first in 136 * __alloc_pages() for the fast path, and might be later changed 137 * in __alloc_pages_slowpath(). All other functions pass the whole structure 138 * by a const pointer. 139 */ 140struct alloc_context { 141 struct zonelist *zonelist; 142 nodemask_t *nodemask; 143 struct zoneref *preferred_zoneref; 144 int migratetype; 145 146 /* 147 * highest_zoneidx represents highest usable zone index of 148 * the allocation request. Due to the nature of the zone, 149 * memory on lower zone than the highest_zoneidx will be 150 * protected by lowmem_reserve[highest_zoneidx]. 151 * 152 * highest_zoneidx is also used by reclaim/compaction to limit 153 * the target zone since higher zone than this index cannot be 154 * usable for this allocation request. 155 */ 156 enum zone_type highest_zoneidx; 157 bool spread_dirty_pages; 158}; 159 160/* 161 * Locate the struct page for both the matching buddy in our 162 * pair (buddy1) and the combined O(n+1) page they form (page). 163 * 164 * 1) Any buddy B1 will have an order O twin B2 which satisfies 165 * the following equation: 166 * B2 = B1 ^ (1 << O) 167 * For example, if the starting buddy (buddy2) is #8 its order 168 * 1 buddy is #10: 169 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 170 * 171 * 2) Any buddy B will have an order O+1 parent P which 172 * satisfies the following equation: 173 * P = B & ~(1 << O) 174 * 175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 176 */ 177static inline unsigned long 178__find_buddy_pfn(unsigned long page_pfn, unsigned int order) 179{ 180 return page_pfn ^ (1 << order); 181} 182 183extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 184 unsigned long end_pfn, struct zone *zone); 185 186static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 187 unsigned long end_pfn, struct zone *zone) 188{ 189 if (zone->contiguous) 190 return pfn_to_page(start_pfn); 191 192 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 193} 194 195extern int __isolate_free_page(struct page *page, unsigned int order); 196extern void __putback_isolated_page(struct page *page, unsigned int order, 197 int mt); 198extern void memblock_free_pages(struct page *page, unsigned long pfn, 199 unsigned int order); 200extern void __free_pages_core(struct page *page, unsigned int order); 201extern void prep_compound_page(struct page *page, unsigned int order); 202extern void post_alloc_hook(struct page *page, unsigned int order, 203 gfp_t gfp_flags); 204extern int user_min_free_kbytes; 205 206extern void free_unref_page(struct page *page, unsigned int order); 207extern void free_unref_page_list(struct list_head *list); 208 209extern void zone_pcp_update(struct zone *zone, int cpu_online); 210extern void zone_pcp_reset(struct zone *zone); 211extern void zone_pcp_disable(struct zone *zone); 212extern void zone_pcp_enable(struct zone *zone); 213 214#if defined CONFIG_COMPACTION || defined CONFIG_CMA 215 216/* 217 * in mm/compaction.c 218 */ 219/* 220 * compact_control is used to track pages being migrated and the free pages 221 * they are being migrated to during memory compaction. The free_pfn starts 222 * at the end of a zone and migrate_pfn begins at the start. Movable pages 223 * are moved to the end of a zone during a compaction run and the run 224 * completes when free_pfn <= migrate_pfn 225 */ 226struct compact_control { 227 struct list_head freepages; /* List of free pages to migrate to */ 228 struct list_head migratepages; /* List of pages being migrated */ 229 unsigned int nr_freepages; /* Number of isolated free pages */ 230 unsigned int nr_migratepages; /* Number of pages to migrate */ 231 unsigned long free_pfn; /* isolate_freepages search base */ 232 /* 233 * Acts as an in/out parameter to page isolation for migration. 234 * isolate_migratepages uses it as a search base. 235 * isolate_migratepages_block will update the value to the next pfn 236 * after the last isolated one. 237 */ 238 unsigned long migrate_pfn; 239 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 240 struct zone *zone; 241 unsigned long total_migrate_scanned; 242 unsigned long total_free_scanned; 243 unsigned short fast_search_fail;/* failures to use free list searches */ 244 short search_order; /* order to start a fast search at */ 245 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 246 int order; /* order a direct compactor needs */ 247 int migratetype; /* migratetype of direct compactor */ 248 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 249 const int highest_zoneidx; /* zone index of a direct compactor */ 250 enum migrate_mode mode; /* Async or sync migration mode */ 251 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 252 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 253 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 254 bool direct_compaction; /* False from kcompactd or /proc/... */ 255 bool proactive_compaction; /* kcompactd proactive compaction */ 256 bool whole_zone; /* Whole zone should/has been scanned */ 257 bool contended; /* Signal lock or sched contention */ 258 bool rescan; /* Rescanning the same pageblock */ 259 bool alloc_contig; /* alloc_contig_range allocation */ 260}; 261 262/* 263 * Used in direct compaction when a page should be taken from the freelists 264 * immediately when one is created during the free path. 265 */ 266struct capture_control { 267 struct compact_control *cc; 268 struct page *page; 269}; 270 271unsigned long 272isolate_freepages_range(struct compact_control *cc, 273 unsigned long start_pfn, unsigned long end_pfn); 274int 275isolate_migratepages_range(struct compact_control *cc, 276 unsigned long low_pfn, unsigned long end_pfn); 277#endif 278int find_suitable_fallback(struct free_area *area, unsigned int order, 279 int migratetype, bool only_stealable, bool *can_steal); 280 281/* 282 * This function returns the order of a free page in the buddy system. In 283 * general, page_zone(page)->lock must be held by the caller to prevent the 284 * page from being allocated in parallel and returning garbage as the order. 285 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 286 * page cannot be allocated or merged in parallel. Alternatively, it must 287 * handle invalid values gracefully, and use buddy_order_unsafe() below. 288 */ 289static inline unsigned int buddy_order(struct page *page) 290{ 291 /* PageBuddy() must be checked by the caller */ 292 return page_private(page); 293} 294 295/* 296 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 297 * PageBuddy() should be checked first by the caller to minimize race window, 298 * and invalid values must be handled gracefully. 299 * 300 * READ_ONCE is used so that if the caller assigns the result into a local 301 * variable and e.g. tests it for valid range before using, the compiler cannot 302 * decide to remove the variable and inline the page_private(page) multiple 303 * times, potentially observing different values in the tests and the actual 304 * use of the result. 305 */ 306#define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 307 308/* 309 * These three helpers classifies VMAs for virtual memory accounting. 310 */ 311 312/* 313 * Executable code area - executable, not writable, not stack 314 */ 315static inline bool is_exec_mapping(vm_flags_t flags) 316{ 317 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 318} 319 320/* 321 * Stack area - automatically grows in one direction 322 * 323 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 324 * do_mmap() forbids all other combinations. 325 */ 326static inline bool is_stack_mapping(vm_flags_t flags) 327{ 328 return (flags & VM_STACK) == VM_STACK; 329} 330 331/* 332 * Data area - private, writable, not stack 333 */ 334static inline bool is_data_mapping(vm_flags_t flags) 335{ 336 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 337} 338 339/* mm/util.c */ 340void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 341 struct vm_area_struct *prev); 342void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 343 344#ifdef CONFIG_MMU 345extern long populate_vma_page_range(struct vm_area_struct *vma, 346 unsigned long start, unsigned long end, int *locked); 347extern long faultin_vma_page_range(struct vm_area_struct *vma, 348 unsigned long start, unsigned long end, 349 bool write, int *locked); 350extern void munlock_vma_pages_range(struct vm_area_struct *vma, 351 unsigned long start, unsigned long end); 352static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 353{ 354 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 355} 356 357/* 358 * must be called with vma's mmap_lock held for read or write, and page locked. 359 */ 360extern void mlock_vma_page(struct page *page); 361extern unsigned int munlock_vma_page(struct page *page); 362 363extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 364 unsigned long len); 365 366/* 367 * Clear the page's PageMlocked(). This can be useful in a situation where 368 * we want to unconditionally remove a page from the pagecache -- e.g., 369 * on truncation or freeing. 370 * 371 * It is legal to call this function for any page, mlocked or not. 372 * If called for a page that is still mapped by mlocked vmas, all we do 373 * is revert to lazy LRU behaviour -- semantics are not broken. 374 */ 375extern void clear_page_mlock(struct page *page); 376 377extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 378 379/* 380 * At what user virtual address is page expected in vma? 381 * Returns -EFAULT if all of the page is outside the range of vma. 382 * If page is a compound head, the entire compound page is considered. 383 */ 384static inline unsigned long 385vma_address(struct page *page, struct vm_area_struct *vma) 386{ 387 pgoff_t pgoff; 388 unsigned long address; 389 390 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 391 pgoff = page_to_pgoff(page); 392 if (pgoff >= vma->vm_pgoff) { 393 address = vma->vm_start + 394 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 395 /* Check for address beyond vma (or wrapped through 0?) */ 396 if (address < vma->vm_start || address >= vma->vm_end) 397 address = -EFAULT; 398 } else if (PageHead(page) && 399 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 400 /* Test above avoids possibility of wrap to 0 on 32-bit */ 401 address = vma->vm_start; 402 } else { 403 address = -EFAULT; 404 } 405 return address; 406} 407 408/* 409 * Then at what user virtual address will none of the page be found in vma? 410 * Assumes that vma_address() already returned a good starting address. 411 * If page is a compound head, the entire compound page is considered. 412 */ 413static inline unsigned long 414vma_address_end(struct page *page, struct vm_area_struct *vma) 415{ 416 pgoff_t pgoff; 417 unsigned long address; 418 419 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 420 pgoff = page_to_pgoff(page) + compound_nr(page); 421 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 422 /* Check for address beyond vma (or wrapped through 0?) */ 423 if (address < vma->vm_start || address > vma->vm_end) 424 address = vma->vm_end; 425 return address; 426} 427 428static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 429 struct file *fpin) 430{ 431 int flags = vmf->flags; 432 433 if (fpin) 434 return fpin; 435 436 /* 437 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 438 * anything, so we only pin the file and drop the mmap_lock if only 439 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 440 */ 441 if (fault_flag_allow_retry_first(flags) && 442 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 443 fpin = get_file(vmf->vma->vm_file); 444 mmap_read_unlock(vmf->vma->vm_mm); 445 } 446 return fpin; 447} 448 449#else /* !CONFIG_MMU */ 450static inline void clear_page_mlock(struct page *page) { } 451static inline void mlock_vma_page(struct page *page) { } 452static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 453{ 454} 455#endif /* !CONFIG_MMU */ 456 457/* 458 * Return the mem_map entry representing the 'offset' subpage within 459 * the maximally aligned gigantic page 'base'. Handle any discontiguity 460 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 461 */ 462static inline struct page *mem_map_offset(struct page *base, int offset) 463{ 464 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 465 return nth_page(base, offset); 466 return base + offset; 467} 468 469/* 470 * Iterator over all subpages within the maximally aligned gigantic 471 * page 'base'. Handle any discontiguity in the mem_map. 472 */ 473static inline struct page *mem_map_next(struct page *iter, 474 struct page *base, int offset) 475{ 476 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 477 unsigned long pfn = page_to_pfn(base) + offset; 478 if (!pfn_valid(pfn)) 479 return NULL; 480 return pfn_to_page(pfn); 481 } 482 return iter + 1; 483} 484 485/* Memory initialisation debug and verification */ 486enum mminit_level { 487 MMINIT_WARNING, 488 MMINIT_VERIFY, 489 MMINIT_TRACE 490}; 491 492#ifdef CONFIG_DEBUG_MEMORY_INIT 493 494extern int mminit_loglevel; 495 496#define mminit_dprintk(level, prefix, fmt, arg...) \ 497do { \ 498 if (level < mminit_loglevel) { \ 499 if (level <= MMINIT_WARNING) \ 500 pr_warn("mminit::" prefix " " fmt, ##arg); \ 501 else \ 502 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 503 } \ 504} while (0) 505 506extern void mminit_verify_pageflags_layout(void); 507extern void mminit_verify_zonelist(void); 508#else 509 510static inline void mminit_dprintk(enum mminit_level level, 511 const char *prefix, const char *fmt, ...) 512{ 513} 514 515static inline void mminit_verify_pageflags_layout(void) 516{ 517} 518 519static inline void mminit_verify_zonelist(void) 520{ 521} 522#endif /* CONFIG_DEBUG_MEMORY_INIT */ 523 524/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 525#if defined(CONFIG_SPARSEMEM) 526extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 527 unsigned long *end_pfn); 528#else 529static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 530 unsigned long *end_pfn) 531{ 532} 533#endif /* CONFIG_SPARSEMEM */ 534 535#define NODE_RECLAIM_NOSCAN -2 536#define NODE_RECLAIM_FULL -1 537#define NODE_RECLAIM_SOME 0 538#define NODE_RECLAIM_SUCCESS 1 539 540#ifdef CONFIG_NUMA 541extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 542#else 543static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 544 unsigned int order) 545{ 546 return NODE_RECLAIM_NOSCAN; 547} 548#endif 549 550extern int hwpoison_filter(struct page *p); 551 552extern u32 hwpoison_filter_dev_major; 553extern u32 hwpoison_filter_dev_minor; 554extern u64 hwpoison_filter_flags_mask; 555extern u64 hwpoison_filter_flags_value; 556extern u64 hwpoison_filter_memcg; 557extern u32 hwpoison_filter_enable; 558 559extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 560 unsigned long, unsigned long, 561 unsigned long, unsigned long); 562 563extern void set_pageblock_order(void); 564unsigned int reclaim_clean_pages_from_list(struct zone *zone, 565 struct list_head *page_list); 566/* The ALLOC_WMARK bits are used as an index to zone->watermark */ 567#define ALLOC_WMARK_MIN WMARK_MIN 568#define ALLOC_WMARK_LOW WMARK_LOW 569#define ALLOC_WMARK_HIGH WMARK_HIGH 570#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 571 572/* Mask to get the watermark bits */ 573#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 574 575/* 576 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 577 * cannot assume a reduced access to memory reserves is sufficient for 578 * !MMU 579 */ 580#ifdef CONFIG_MMU 581#define ALLOC_OOM 0x08 582#else 583#define ALLOC_OOM ALLOC_NO_WATERMARKS 584#endif 585 586#define ALLOC_HARDER 0x10 /* try to alloc harder */ 587#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 588#define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 589#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 590#ifdef CONFIG_ZONE_DMA32 591#define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 592#else 593#define ALLOC_NOFRAGMENT 0x0 594#endif 595#define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 596 597enum ttu_flags; 598struct tlbflush_unmap_batch; 599 600 601/* 602 * only for MM internal work items which do not depend on 603 * any allocations or locks which might depend on allocations 604 */ 605extern struct workqueue_struct *mm_percpu_wq; 606 607#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 608void try_to_unmap_flush(void); 609void try_to_unmap_flush_dirty(void); 610void flush_tlb_batched_pending(struct mm_struct *mm); 611#else 612static inline void try_to_unmap_flush(void) 613{ 614} 615static inline void try_to_unmap_flush_dirty(void) 616{ 617} 618static inline void flush_tlb_batched_pending(struct mm_struct *mm) 619{ 620} 621#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 622 623extern const struct trace_print_flags pageflag_names[]; 624extern const struct trace_print_flags vmaflag_names[]; 625extern const struct trace_print_flags gfpflag_names[]; 626 627static inline bool is_migrate_highatomic(enum migratetype migratetype) 628{ 629 return migratetype == MIGRATE_HIGHATOMIC; 630} 631 632static inline bool is_migrate_highatomic_page(struct page *page) 633{ 634 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 635} 636 637void setup_zone_pageset(struct zone *zone); 638 639struct migration_target_control { 640 int nid; /* preferred node id */ 641 nodemask_t *nmask; 642 gfp_t gfp_mask; 643}; 644 645/* 646 * mm/vmalloc.c 647 */ 648#ifdef CONFIG_MMU 649int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 650 pgprot_t prot, struct page **pages, unsigned int page_shift); 651#else 652static inline 653int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 654 pgprot_t prot, struct page **pages, unsigned int page_shift) 655{ 656 return -EINVAL; 657} 658#endif 659 660void vunmap_range_noflush(unsigned long start, unsigned long end); 661 662int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 663 unsigned long addr, int page_nid, int *flags); 664 665#endif /* __MM_INTERNAL_H */