at v5.14-rc7 58 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_BLKDEV_H 3#define _LINUX_BLKDEV_H 4 5#include <linux/sched.h> 6#include <linux/sched/clock.h> 7#include <linux/major.h> 8#include <linux/genhd.h> 9#include <linux/list.h> 10#include <linux/llist.h> 11#include <linux/minmax.h> 12#include <linux/timer.h> 13#include <linux/workqueue.h> 14#include <linux/backing-dev-defs.h> 15#include <linux/wait.h> 16#include <linux/mempool.h> 17#include <linux/pfn.h> 18#include <linux/bio.h> 19#include <linux/stringify.h> 20#include <linux/gfp.h> 21#include <linux/bsg.h> 22#include <linux/smp.h> 23#include <linux/rcupdate.h> 24#include <linux/percpu-refcount.h> 25#include <linux/scatterlist.h> 26#include <linux/blkzoned.h> 27#include <linux/pm.h> 28#include <linux/sbitmap.h> 29 30struct module; 31struct scsi_ioctl_command; 32 33struct request_queue; 34struct elevator_queue; 35struct blk_trace; 36struct request; 37struct sg_io_hdr; 38struct bsg_job; 39struct blkcg_gq; 40struct blk_flush_queue; 41struct pr_ops; 42struct rq_qos; 43struct blk_queue_stats; 44struct blk_stat_callback; 45struct blk_keyslot_manager; 46 47#define BLKDEV_MIN_RQ 4 48#define BLKDEV_MAX_RQ 128 /* Default maximum */ 49 50/* Must be consistent with blk_mq_poll_stats_bkt() */ 51#define BLK_MQ_POLL_STATS_BKTS 16 52 53/* Doing classic polling */ 54#define BLK_MQ_POLL_CLASSIC -1 55 56/* 57 * Maximum number of blkcg policies allowed to be registered concurrently. 58 * Defined here to simplify include dependency. 59 */ 60#define BLKCG_MAX_POLS 6 61 62typedef void (rq_end_io_fn)(struct request *, blk_status_t); 63 64/* 65 * request flags */ 66typedef __u32 __bitwise req_flags_t; 67 68/* drive already may have started this one */ 69#define RQF_STARTED ((__force req_flags_t)(1 << 1)) 70/* may not be passed by ioscheduler */ 71#define RQF_SOFTBARRIER ((__force req_flags_t)(1 << 3)) 72/* request for flush sequence */ 73#define RQF_FLUSH_SEQ ((__force req_flags_t)(1 << 4)) 74/* merge of different types, fail separately */ 75#define RQF_MIXED_MERGE ((__force req_flags_t)(1 << 5)) 76/* track inflight for MQ */ 77#define RQF_MQ_INFLIGHT ((__force req_flags_t)(1 << 6)) 78/* don't call prep for this one */ 79#define RQF_DONTPREP ((__force req_flags_t)(1 << 7)) 80/* vaguely specified driver internal error. Ignored by the block layer */ 81#define RQF_FAILED ((__force req_flags_t)(1 << 10)) 82/* don't warn about errors */ 83#define RQF_QUIET ((__force req_flags_t)(1 << 11)) 84/* elevator private data attached */ 85#define RQF_ELVPRIV ((__force req_flags_t)(1 << 12)) 86/* account into disk and partition IO statistics */ 87#define RQF_IO_STAT ((__force req_flags_t)(1 << 13)) 88/* runtime pm request */ 89#define RQF_PM ((__force req_flags_t)(1 << 15)) 90/* on IO scheduler merge hash */ 91#define RQF_HASHED ((__force req_flags_t)(1 << 16)) 92/* track IO completion time */ 93#define RQF_STATS ((__force req_flags_t)(1 << 17)) 94/* Look at ->special_vec for the actual data payload instead of the 95 bio chain. */ 96#define RQF_SPECIAL_PAYLOAD ((__force req_flags_t)(1 << 18)) 97/* The per-zone write lock is held for this request */ 98#define RQF_ZONE_WRITE_LOCKED ((__force req_flags_t)(1 << 19)) 99/* already slept for hybrid poll */ 100#define RQF_MQ_POLL_SLEPT ((__force req_flags_t)(1 << 20)) 101/* ->timeout has been called, don't expire again */ 102#define RQF_TIMED_OUT ((__force req_flags_t)(1 << 21)) 103 104/* flags that prevent us from merging requests: */ 105#define RQF_NOMERGE_FLAGS \ 106 (RQF_STARTED | RQF_SOFTBARRIER | RQF_FLUSH_SEQ | RQF_SPECIAL_PAYLOAD) 107 108/* 109 * Request state for blk-mq. 110 */ 111enum mq_rq_state { 112 MQ_RQ_IDLE = 0, 113 MQ_RQ_IN_FLIGHT = 1, 114 MQ_RQ_COMPLETE = 2, 115}; 116 117/* 118 * Try to put the fields that are referenced together in the same cacheline. 119 * 120 * If you modify this structure, make sure to update blk_rq_init() and 121 * especially blk_mq_rq_ctx_init() to take care of the added fields. 122 */ 123struct request { 124 struct request_queue *q; 125 struct blk_mq_ctx *mq_ctx; 126 struct blk_mq_hw_ctx *mq_hctx; 127 128 unsigned int cmd_flags; /* op and common flags */ 129 req_flags_t rq_flags; 130 131 int tag; 132 int internal_tag; 133 134 /* the following two fields are internal, NEVER access directly */ 135 unsigned int __data_len; /* total data len */ 136 sector_t __sector; /* sector cursor */ 137 138 struct bio *bio; 139 struct bio *biotail; 140 141 struct list_head queuelist; 142 143 /* 144 * The hash is used inside the scheduler, and killed once the 145 * request reaches the dispatch list. The ipi_list is only used 146 * to queue the request for softirq completion, which is long 147 * after the request has been unhashed (and even removed from 148 * the dispatch list). 149 */ 150 union { 151 struct hlist_node hash; /* merge hash */ 152 struct llist_node ipi_list; 153 }; 154 155 /* 156 * The rb_node is only used inside the io scheduler, requests 157 * are pruned when moved to the dispatch queue. So let the 158 * completion_data share space with the rb_node. 159 */ 160 union { 161 struct rb_node rb_node; /* sort/lookup */ 162 struct bio_vec special_vec; 163 void *completion_data; 164 int error_count; /* for legacy drivers, don't use */ 165 }; 166 167 /* 168 * Three pointers are available for the IO schedulers, if they need 169 * more they have to dynamically allocate it. Flush requests are 170 * never put on the IO scheduler. So let the flush fields share 171 * space with the elevator data. 172 */ 173 union { 174 struct { 175 struct io_cq *icq; 176 void *priv[2]; 177 } elv; 178 179 struct { 180 unsigned int seq; 181 struct list_head list; 182 rq_end_io_fn *saved_end_io; 183 } flush; 184 }; 185 186 struct gendisk *rq_disk; 187 struct block_device *part; 188#ifdef CONFIG_BLK_RQ_ALLOC_TIME 189 /* Time that the first bio started allocating this request. */ 190 u64 alloc_time_ns; 191#endif 192 /* Time that this request was allocated for this IO. */ 193 u64 start_time_ns; 194 /* Time that I/O was submitted to the device. */ 195 u64 io_start_time_ns; 196 197#ifdef CONFIG_BLK_WBT 198 unsigned short wbt_flags; 199#endif 200 /* 201 * rq sectors used for blk stats. It has the same value 202 * with blk_rq_sectors(rq), except that it never be zeroed 203 * by completion. 204 */ 205 unsigned short stats_sectors; 206 207 /* 208 * Number of scatter-gather DMA addr+len pairs after 209 * physical address coalescing is performed. 210 */ 211 unsigned short nr_phys_segments; 212 213#if defined(CONFIG_BLK_DEV_INTEGRITY) 214 unsigned short nr_integrity_segments; 215#endif 216 217#ifdef CONFIG_BLK_INLINE_ENCRYPTION 218 struct bio_crypt_ctx *crypt_ctx; 219 struct blk_ksm_keyslot *crypt_keyslot; 220#endif 221 222 unsigned short write_hint; 223 unsigned short ioprio; 224 225 enum mq_rq_state state; 226 refcount_t ref; 227 228 unsigned int timeout; 229 unsigned long deadline; 230 231 union { 232 struct __call_single_data csd; 233 u64 fifo_time; 234 }; 235 236 /* 237 * completion callback. 238 */ 239 rq_end_io_fn *end_io; 240 void *end_io_data; 241}; 242 243static inline bool blk_op_is_passthrough(unsigned int op) 244{ 245 op &= REQ_OP_MASK; 246 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT; 247} 248 249static inline bool blk_rq_is_passthrough(struct request *rq) 250{ 251 return blk_op_is_passthrough(req_op(rq)); 252} 253 254static inline unsigned short req_get_ioprio(struct request *req) 255{ 256 return req->ioprio; 257} 258 259#include <linux/elevator.h> 260 261struct blk_queue_ctx; 262 263struct bio_vec; 264 265enum blk_eh_timer_return { 266 BLK_EH_DONE, /* drivers has completed the command */ 267 BLK_EH_RESET_TIMER, /* reset timer and try again */ 268}; 269 270enum blk_queue_state { 271 Queue_down, 272 Queue_up, 273}; 274 275#define BLK_TAG_ALLOC_FIFO 0 /* allocate starting from 0 */ 276#define BLK_TAG_ALLOC_RR 1 /* allocate starting from last allocated tag */ 277 278#define BLK_SCSI_MAX_CMDS (256) 279#define BLK_SCSI_CMD_PER_LONG (BLK_SCSI_MAX_CMDS / (sizeof(long) * 8)) 280 281/* 282 * Zoned block device models (zoned limit). 283 * 284 * Note: This needs to be ordered from the least to the most severe 285 * restrictions for the inheritance in blk_stack_limits() to work. 286 */ 287enum blk_zoned_model { 288 BLK_ZONED_NONE = 0, /* Regular block device */ 289 BLK_ZONED_HA, /* Host-aware zoned block device */ 290 BLK_ZONED_HM, /* Host-managed zoned block device */ 291}; 292 293/* 294 * BLK_BOUNCE_NONE: never bounce (default) 295 * BLK_BOUNCE_HIGH: bounce all highmem pages 296 */ 297enum blk_bounce { 298 BLK_BOUNCE_NONE, 299 BLK_BOUNCE_HIGH, 300}; 301 302struct queue_limits { 303 enum blk_bounce bounce; 304 unsigned long seg_boundary_mask; 305 unsigned long virt_boundary_mask; 306 307 unsigned int max_hw_sectors; 308 unsigned int max_dev_sectors; 309 unsigned int chunk_sectors; 310 unsigned int max_sectors; 311 unsigned int max_segment_size; 312 unsigned int physical_block_size; 313 unsigned int logical_block_size; 314 unsigned int alignment_offset; 315 unsigned int io_min; 316 unsigned int io_opt; 317 unsigned int max_discard_sectors; 318 unsigned int max_hw_discard_sectors; 319 unsigned int max_write_same_sectors; 320 unsigned int max_write_zeroes_sectors; 321 unsigned int max_zone_append_sectors; 322 unsigned int discard_granularity; 323 unsigned int discard_alignment; 324 unsigned int zone_write_granularity; 325 326 unsigned short max_segments; 327 unsigned short max_integrity_segments; 328 unsigned short max_discard_segments; 329 330 unsigned char misaligned; 331 unsigned char discard_misaligned; 332 unsigned char raid_partial_stripes_expensive; 333 enum blk_zoned_model zoned; 334}; 335 336typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx, 337 void *data); 338 339void blk_queue_set_zoned(struct gendisk *disk, enum blk_zoned_model model); 340 341#ifdef CONFIG_BLK_DEV_ZONED 342 343#define BLK_ALL_ZONES ((unsigned int)-1) 344int blkdev_report_zones(struct block_device *bdev, sector_t sector, 345 unsigned int nr_zones, report_zones_cb cb, void *data); 346unsigned int blkdev_nr_zones(struct gendisk *disk); 347extern int blkdev_zone_mgmt(struct block_device *bdev, enum req_opf op, 348 sector_t sectors, sector_t nr_sectors, 349 gfp_t gfp_mask); 350int blk_revalidate_disk_zones(struct gendisk *disk, 351 void (*update_driver_data)(struct gendisk *disk)); 352 353extern int blkdev_report_zones_ioctl(struct block_device *bdev, fmode_t mode, 354 unsigned int cmd, unsigned long arg); 355extern int blkdev_zone_mgmt_ioctl(struct block_device *bdev, fmode_t mode, 356 unsigned int cmd, unsigned long arg); 357 358#else /* CONFIG_BLK_DEV_ZONED */ 359 360static inline unsigned int blkdev_nr_zones(struct gendisk *disk) 361{ 362 return 0; 363} 364 365static inline int blkdev_report_zones_ioctl(struct block_device *bdev, 366 fmode_t mode, unsigned int cmd, 367 unsigned long arg) 368{ 369 return -ENOTTY; 370} 371 372static inline int blkdev_zone_mgmt_ioctl(struct block_device *bdev, 373 fmode_t mode, unsigned int cmd, 374 unsigned long arg) 375{ 376 return -ENOTTY; 377} 378 379#endif /* CONFIG_BLK_DEV_ZONED */ 380 381struct request_queue { 382 struct request *last_merge; 383 struct elevator_queue *elevator; 384 385 struct percpu_ref q_usage_counter; 386 387 struct blk_queue_stats *stats; 388 struct rq_qos *rq_qos; 389 390 const struct blk_mq_ops *mq_ops; 391 392 /* sw queues */ 393 struct blk_mq_ctx __percpu *queue_ctx; 394 395 unsigned int queue_depth; 396 397 /* hw dispatch queues */ 398 struct blk_mq_hw_ctx **queue_hw_ctx; 399 unsigned int nr_hw_queues; 400 401 struct backing_dev_info *backing_dev_info; 402 403 /* 404 * The queue owner gets to use this for whatever they like. 405 * ll_rw_blk doesn't touch it. 406 */ 407 void *queuedata; 408 409 /* 410 * various queue flags, see QUEUE_* below 411 */ 412 unsigned long queue_flags; 413 /* 414 * Number of contexts that have called blk_set_pm_only(). If this 415 * counter is above zero then only RQF_PM requests are processed. 416 */ 417 atomic_t pm_only; 418 419 /* 420 * ida allocated id for this queue. Used to index queues from 421 * ioctx. 422 */ 423 int id; 424 425 spinlock_t queue_lock; 426 427 /* 428 * queue kobject 429 */ 430 struct kobject kobj; 431 432 /* 433 * mq queue kobject 434 */ 435 struct kobject *mq_kobj; 436 437#ifdef CONFIG_BLK_DEV_INTEGRITY 438 struct blk_integrity integrity; 439#endif /* CONFIG_BLK_DEV_INTEGRITY */ 440 441#ifdef CONFIG_PM 442 struct device *dev; 443 enum rpm_status rpm_status; 444#endif 445 446 /* 447 * queue settings 448 */ 449 unsigned long nr_requests; /* Max # of requests */ 450 451 unsigned int dma_pad_mask; 452 unsigned int dma_alignment; 453 454#ifdef CONFIG_BLK_INLINE_ENCRYPTION 455 /* Inline crypto capabilities */ 456 struct blk_keyslot_manager *ksm; 457#endif 458 459 unsigned int rq_timeout; 460 int poll_nsec; 461 462 struct blk_stat_callback *poll_cb; 463 struct blk_rq_stat poll_stat[BLK_MQ_POLL_STATS_BKTS]; 464 465 struct timer_list timeout; 466 struct work_struct timeout_work; 467 468 atomic_t nr_active_requests_shared_sbitmap; 469 470 struct sbitmap_queue sched_bitmap_tags; 471 struct sbitmap_queue sched_breserved_tags; 472 473 struct list_head icq_list; 474#ifdef CONFIG_BLK_CGROUP 475 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS); 476 struct blkcg_gq *root_blkg; 477 struct list_head blkg_list; 478#endif 479 480 struct queue_limits limits; 481 482 unsigned int required_elevator_features; 483 484#ifdef CONFIG_BLK_DEV_ZONED 485 /* 486 * Zoned block device information for request dispatch control. 487 * nr_zones is the total number of zones of the device. This is always 488 * 0 for regular block devices. conv_zones_bitmap is a bitmap of nr_zones 489 * bits which indicates if a zone is conventional (bit set) or 490 * sequential (bit clear). seq_zones_wlock is a bitmap of nr_zones 491 * bits which indicates if a zone is write locked, that is, if a write 492 * request targeting the zone was dispatched. All three fields are 493 * initialized by the low level device driver (e.g. scsi/sd.c). 494 * Stacking drivers (device mappers) may or may not initialize 495 * these fields. 496 * 497 * Reads of this information must be protected with blk_queue_enter() / 498 * blk_queue_exit(). Modifying this information is only allowed while 499 * no requests are being processed. See also blk_mq_freeze_queue() and 500 * blk_mq_unfreeze_queue(). 501 */ 502 unsigned int nr_zones; 503 unsigned long *conv_zones_bitmap; 504 unsigned long *seq_zones_wlock; 505 unsigned int max_open_zones; 506 unsigned int max_active_zones; 507#endif /* CONFIG_BLK_DEV_ZONED */ 508 509 /* 510 * sg stuff 511 */ 512 unsigned int sg_timeout; 513 unsigned int sg_reserved_size; 514 int node; 515 struct mutex debugfs_mutex; 516#ifdef CONFIG_BLK_DEV_IO_TRACE 517 struct blk_trace __rcu *blk_trace; 518#endif 519 /* 520 * for flush operations 521 */ 522 struct blk_flush_queue *fq; 523 524 struct list_head requeue_list; 525 spinlock_t requeue_lock; 526 struct delayed_work requeue_work; 527 528 struct mutex sysfs_lock; 529 struct mutex sysfs_dir_lock; 530 531 /* 532 * for reusing dead hctx instance in case of updating 533 * nr_hw_queues 534 */ 535 struct list_head unused_hctx_list; 536 spinlock_t unused_hctx_lock; 537 538 int mq_freeze_depth; 539 540#if defined(CONFIG_BLK_DEV_BSG) 541 struct bsg_class_device bsg_dev; 542#endif 543 544#ifdef CONFIG_BLK_DEV_THROTTLING 545 /* Throttle data */ 546 struct throtl_data *td; 547#endif 548 struct rcu_head rcu_head; 549 wait_queue_head_t mq_freeze_wq; 550 /* 551 * Protect concurrent access to q_usage_counter by 552 * percpu_ref_kill() and percpu_ref_reinit(). 553 */ 554 struct mutex mq_freeze_lock; 555 556 struct blk_mq_tag_set *tag_set; 557 struct list_head tag_set_list; 558 struct bio_set bio_split; 559 560 struct dentry *debugfs_dir; 561 562#ifdef CONFIG_BLK_DEBUG_FS 563 struct dentry *sched_debugfs_dir; 564 struct dentry *rqos_debugfs_dir; 565#endif 566 567 bool mq_sysfs_init_done; 568 569 size_t cmd_size; 570 571#define BLK_MAX_WRITE_HINTS 5 572 u64 write_hints[BLK_MAX_WRITE_HINTS]; 573}; 574 575/* Keep blk_queue_flag_name[] in sync with the definitions below */ 576#define QUEUE_FLAG_STOPPED 0 /* queue is stopped */ 577#define QUEUE_FLAG_DYING 1 /* queue being torn down */ 578#define QUEUE_FLAG_NOMERGES 3 /* disable merge attempts */ 579#define QUEUE_FLAG_SAME_COMP 4 /* complete on same CPU-group */ 580#define QUEUE_FLAG_FAIL_IO 5 /* fake timeout */ 581#define QUEUE_FLAG_NONROT 6 /* non-rotational device (SSD) */ 582#define QUEUE_FLAG_VIRT QUEUE_FLAG_NONROT /* paravirt device */ 583#define QUEUE_FLAG_IO_STAT 7 /* do disk/partitions IO accounting */ 584#define QUEUE_FLAG_DISCARD 8 /* supports DISCARD */ 585#define QUEUE_FLAG_NOXMERGES 9 /* No extended merges */ 586#define QUEUE_FLAG_ADD_RANDOM 10 /* Contributes to random pool */ 587#define QUEUE_FLAG_SECERASE 11 /* supports secure erase */ 588#define QUEUE_FLAG_SAME_FORCE 12 /* force complete on same CPU */ 589#define QUEUE_FLAG_DEAD 13 /* queue tear-down finished */ 590#define QUEUE_FLAG_INIT_DONE 14 /* queue is initialized */ 591#define QUEUE_FLAG_STABLE_WRITES 15 /* don't modify blks until WB is done */ 592#define QUEUE_FLAG_POLL 16 /* IO polling enabled if set */ 593#define QUEUE_FLAG_WC 17 /* Write back caching */ 594#define QUEUE_FLAG_FUA 18 /* device supports FUA writes */ 595#define QUEUE_FLAG_DAX 19 /* device supports DAX */ 596#define QUEUE_FLAG_STATS 20 /* track IO start and completion times */ 597#define QUEUE_FLAG_POLL_STATS 21 /* collecting stats for hybrid polling */ 598#define QUEUE_FLAG_REGISTERED 22 /* queue has been registered to a disk */ 599#define QUEUE_FLAG_SCSI_PASSTHROUGH 23 /* queue supports SCSI commands */ 600#define QUEUE_FLAG_QUIESCED 24 /* queue has been quiesced */ 601#define QUEUE_FLAG_PCI_P2PDMA 25 /* device supports PCI p2p requests */ 602#define QUEUE_FLAG_ZONE_RESETALL 26 /* supports Zone Reset All */ 603#define QUEUE_FLAG_RQ_ALLOC_TIME 27 /* record rq->alloc_time_ns */ 604#define QUEUE_FLAG_HCTX_ACTIVE 28 /* at least one blk-mq hctx is active */ 605#define QUEUE_FLAG_NOWAIT 29 /* device supports NOWAIT */ 606 607#define QUEUE_FLAG_MQ_DEFAULT ((1 << QUEUE_FLAG_IO_STAT) | \ 608 (1 << QUEUE_FLAG_SAME_COMP) | \ 609 (1 << QUEUE_FLAG_NOWAIT)) 610 611void blk_queue_flag_set(unsigned int flag, struct request_queue *q); 612void blk_queue_flag_clear(unsigned int flag, struct request_queue *q); 613bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q); 614 615#define blk_queue_stopped(q) test_bit(QUEUE_FLAG_STOPPED, &(q)->queue_flags) 616#define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags) 617#define blk_queue_dead(q) test_bit(QUEUE_FLAG_DEAD, &(q)->queue_flags) 618#define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags) 619#define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags) 620#define blk_queue_noxmerges(q) \ 621 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags) 622#define blk_queue_nonrot(q) test_bit(QUEUE_FLAG_NONROT, &(q)->queue_flags) 623#define blk_queue_stable_writes(q) \ 624 test_bit(QUEUE_FLAG_STABLE_WRITES, &(q)->queue_flags) 625#define blk_queue_io_stat(q) test_bit(QUEUE_FLAG_IO_STAT, &(q)->queue_flags) 626#define blk_queue_add_random(q) test_bit(QUEUE_FLAG_ADD_RANDOM, &(q)->queue_flags) 627#define blk_queue_discard(q) test_bit(QUEUE_FLAG_DISCARD, &(q)->queue_flags) 628#define blk_queue_zone_resetall(q) \ 629 test_bit(QUEUE_FLAG_ZONE_RESETALL, &(q)->queue_flags) 630#define blk_queue_secure_erase(q) \ 631 (test_bit(QUEUE_FLAG_SECERASE, &(q)->queue_flags)) 632#define blk_queue_dax(q) test_bit(QUEUE_FLAG_DAX, &(q)->queue_flags) 633#define blk_queue_scsi_passthrough(q) \ 634 test_bit(QUEUE_FLAG_SCSI_PASSTHROUGH, &(q)->queue_flags) 635#define blk_queue_pci_p2pdma(q) \ 636 test_bit(QUEUE_FLAG_PCI_P2PDMA, &(q)->queue_flags) 637#ifdef CONFIG_BLK_RQ_ALLOC_TIME 638#define blk_queue_rq_alloc_time(q) \ 639 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags) 640#else 641#define blk_queue_rq_alloc_time(q) false 642#endif 643 644#define blk_noretry_request(rq) \ 645 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \ 646 REQ_FAILFAST_DRIVER)) 647#define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags) 648#define blk_queue_pm_only(q) atomic_read(&(q)->pm_only) 649#define blk_queue_fua(q) test_bit(QUEUE_FLAG_FUA, &(q)->queue_flags) 650#define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags) 651#define blk_queue_nowait(q) test_bit(QUEUE_FLAG_NOWAIT, &(q)->queue_flags) 652 653extern void blk_set_pm_only(struct request_queue *q); 654extern void blk_clear_pm_only(struct request_queue *q); 655 656#define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist) 657 658#define rq_data_dir(rq) (op_is_write(req_op(rq)) ? WRITE : READ) 659 660#define rq_dma_dir(rq) \ 661 (op_is_write(req_op(rq)) ? DMA_TO_DEVICE : DMA_FROM_DEVICE) 662 663#define dma_map_bvec(dev, bv, dir, attrs) \ 664 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \ 665 (dir), (attrs)) 666 667#define queue_to_disk(q) (dev_to_disk(kobj_to_dev((q)->kobj.parent))) 668 669static inline bool queue_is_mq(struct request_queue *q) 670{ 671 return q->mq_ops; 672} 673 674#ifdef CONFIG_PM 675static inline enum rpm_status queue_rpm_status(struct request_queue *q) 676{ 677 return q->rpm_status; 678} 679#else 680static inline enum rpm_status queue_rpm_status(struct request_queue *q) 681{ 682 return RPM_ACTIVE; 683} 684#endif 685 686static inline enum blk_zoned_model 687blk_queue_zoned_model(struct request_queue *q) 688{ 689 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED)) 690 return q->limits.zoned; 691 return BLK_ZONED_NONE; 692} 693 694static inline bool blk_queue_is_zoned(struct request_queue *q) 695{ 696 switch (blk_queue_zoned_model(q)) { 697 case BLK_ZONED_HA: 698 case BLK_ZONED_HM: 699 return true; 700 default: 701 return false; 702 } 703} 704 705static inline sector_t blk_queue_zone_sectors(struct request_queue *q) 706{ 707 return blk_queue_is_zoned(q) ? q->limits.chunk_sectors : 0; 708} 709 710#ifdef CONFIG_BLK_DEV_ZONED 711static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 712{ 713 return blk_queue_is_zoned(q) ? q->nr_zones : 0; 714} 715 716static inline unsigned int blk_queue_zone_no(struct request_queue *q, 717 sector_t sector) 718{ 719 if (!blk_queue_is_zoned(q)) 720 return 0; 721 return sector >> ilog2(q->limits.chunk_sectors); 722} 723 724static inline bool blk_queue_zone_is_seq(struct request_queue *q, 725 sector_t sector) 726{ 727 if (!blk_queue_is_zoned(q)) 728 return false; 729 if (!q->conv_zones_bitmap) 730 return true; 731 return !test_bit(blk_queue_zone_no(q, sector), q->conv_zones_bitmap); 732} 733 734static inline void blk_queue_max_open_zones(struct request_queue *q, 735 unsigned int max_open_zones) 736{ 737 q->max_open_zones = max_open_zones; 738} 739 740static inline unsigned int queue_max_open_zones(const struct request_queue *q) 741{ 742 return q->max_open_zones; 743} 744 745static inline void blk_queue_max_active_zones(struct request_queue *q, 746 unsigned int max_active_zones) 747{ 748 q->max_active_zones = max_active_zones; 749} 750 751static inline unsigned int queue_max_active_zones(const struct request_queue *q) 752{ 753 return q->max_active_zones; 754} 755#else /* CONFIG_BLK_DEV_ZONED */ 756static inline unsigned int blk_queue_nr_zones(struct request_queue *q) 757{ 758 return 0; 759} 760static inline bool blk_queue_zone_is_seq(struct request_queue *q, 761 sector_t sector) 762{ 763 return false; 764} 765static inline unsigned int blk_queue_zone_no(struct request_queue *q, 766 sector_t sector) 767{ 768 return 0; 769} 770static inline unsigned int queue_max_open_zones(const struct request_queue *q) 771{ 772 return 0; 773} 774static inline unsigned int queue_max_active_zones(const struct request_queue *q) 775{ 776 return 0; 777} 778#endif /* CONFIG_BLK_DEV_ZONED */ 779 780static inline bool rq_is_sync(struct request *rq) 781{ 782 return op_is_sync(rq->cmd_flags); 783} 784 785static inline bool rq_mergeable(struct request *rq) 786{ 787 if (blk_rq_is_passthrough(rq)) 788 return false; 789 790 if (req_op(rq) == REQ_OP_FLUSH) 791 return false; 792 793 if (req_op(rq) == REQ_OP_WRITE_ZEROES) 794 return false; 795 796 if (req_op(rq) == REQ_OP_ZONE_APPEND) 797 return false; 798 799 if (rq->cmd_flags & REQ_NOMERGE_FLAGS) 800 return false; 801 if (rq->rq_flags & RQF_NOMERGE_FLAGS) 802 return false; 803 804 return true; 805} 806 807static inline bool blk_write_same_mergeable(struct bio *a, struct bio *b) 808{ 809 if (bio_page(a) == bio_page(b) && 810 bio_offset(a) == bio_offset(b)) 811 return true; 812 813 return false; 814} 815 816static inline unsigned int blk_queue_depth(struct request_queue *q) 817{ 818 if (q->queue_depth) 819 return q->queue_depth; 820 821 return q->nr_requests; 822} 823 824/* 825 * default timeout for SG_IO if none specified 826 */ 827#define BLK_DEFAULT_SG_TIMEOUT (60 * HZ) 828#define BLK_MIN_SG_TIMEOUT (7 * HZ) 829 830struct rq_map_data { 831 struct page **pages; 832 int page_order; 833 int nr_entries; 834 unsigned long offset; 835 int null_mapped; 836 int from_user; 837}; 838 839struct req_iterator { 840 struct bvec_iter iter; 841 struct bio *bio; 842}; 843 844/* This should not be used directly - use rq_for_each_segment */ 845#define for_each_bio(_bio) \ 846 for (; _bio; _bio = _bio->bi_next) 847#define __rq_for_each_bio(_bio, rq) \ 848 if ((rq->bio)) \ 849 for (_bio = (rq)->bio; _bio; _bio = _bio->bi_next) 850 851#define rq_for_each_segment(bvl, _rq, _iter) \ 852 __rq_for_each_bio(_iter.bio, _rq) \ 853 bio_for_each_segment(bvl, _iter.bio, _iter.iter) 854 855#define rq_for_each_bvec(bvl, _rq, _iter) \ 856 __rq_for_each_bio(_iter.bio, _rq) \ 857 bio_for_each_bvec(bvl, _iter.bio, _iter.iter) 858 859#define rq_iter_last(bvec, _iter) \ 860 (_iter.bio->bi_next == NULL && \ 861 bio_iter_last(bvec, _iter.iter)) 862 863#ifndef ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 864# error "You should define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE for your platform" 865#endif 866#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 867extern void rq_flush_dcache_pages(struct request *rq); 868#else 869static inline void rq_flush_dcache_pages(struct request *rq) 870{ 871} 872#endif 873 874extern int blk_register_queue(struct gendisk *disk); 875extern void blk_unregister_queue(struct gendisk *disk); 876blk_qc_t submit_bio_noacct(struct bio *bio); 877extern void blk_rq_init(struct request_queue *q, struct request *rq); 878extern void blk_put_request(struct request *); 879extern struct request *blk_get_request(struct request_queue *, unsigned int op, 880 blk_mq_req_flags_t flags); 881extern int blk_lld_busy(struct request_queue *q); 882extern int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 883 struct bio_set *bs, gfp_t gfp_mask, 884 int (*bio_ctr)(struct bio *, struct bio *, void *), 885 void *data); 886extern void blk_rq_unprep_clone(struct request *rq); 887extern blk_status_t blk_insert_cloned_request(struct request_queue *q, 888 struct request *rq); 889int blk_rq_append_bio(struct request *rq, struct bio *bio); 890extern void blk_queue_split(struct bio **); 891extern int scsi_verify_blk_ioctl(struct block_device *, unsigned int); 892extern int scsi_cmd_blk_ioctl(struct block_device *, fmode_t, 893 unsigned int, void __user *); 894extern int scsi_cmd_ioctl(struct request_queue *, struct gendisk *, fmode_t, 895 unsigned int, void __user *); 896extern int sg_scsi_ioctl(struct request_queue *, struct gendisk *, fmode_t, 897 struct scsi_ioctl_command __user *); 898extern int get_sg_io_hdr(struct sg_io_hdr *hdr, const void __user *argp); 899extern int put_sg_io_hdr(const struct sg_io_hdr *hdr, void __user *argp); 900 901extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags); 902extern void blk_queue_exit(struct request_queue *q); 903extern void blk_sync_queue(struct request_queue *q); 904extern int blk_rq_map_user(struct request_queue *, struct request *, 905 struct rq_map_data *, void __user *, unsigned long, 906 gfp_t); 907extern int blk_rq_unmap_user(struct bio *); 908extern int blk_rq_map_kern(struct request_queue *, struct request *, void *, unsigned int, gfp_t); 909extern int blk_rq_map_user_iov(struct request_queue *, struct request *, 910 struct rq_map_data *, const struct iov_iter *, 911 gfp_t); 912extern void blk_execute_rq_nowait(struct gendisk *, 913 struct request *, int, rq_end_io_fn *); 914 915blk_status_t blk_execute_rq(struct gendisk *bd_disk, struct request *rq, 916 int at_head); 917 918/* Helper to convert REQ_OP_XXX to its string format XXX */ 919extern const char *blk_op_str(unsigned int op); 920 921int blk_status_to_errno(blk_status_t status); 922blk_status_t errno_to_blk_status(int errno); 923 924int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin); 925 926static inline struct request_queue *bdev_get_queue(struct block_device *bdev) 927{ 928 return bdev->bd_disk->queue; /* this is never NULL */ 929} 930 931/* 932 * The basic unit of block I/O is a sector. It is used in a number of contexts 933 * in Linux (blk, bio, genhd). The size of one sector is 512 = 2**9 934 * bytes. Variables of type sector_t represent an offset or size that is a 935 * multiple of 512 bytes. Hence these two constants. 936 */ 937#ifndef SECTOR_SHIFT 938#define SECTOR_SHIFT 9 939#endif 940#ifndef SECTOR_SIZE 941#define SECTOR_SIZE (1 << SECTOR_SHIFT) 942#endif 943 944/* 945 * blk_rq_pos() : the current sector 946 * blk_rq_bytes() : bytes left in the entire request 947 * blk_rq_cur_bytes() : bytes left in the current segment 948 * blk_rq_err_bytes() : bytes left till the next error boundary 949 * blk_rq_sectors() : sectors left in the entire request 950 * blk_rq_cur_sectors() : sectors left in the current segment 951 * blk_rq_stats_sectors() : sectors of the entire request used for stats 952 */ 953static inline sector_t blk_rq_pos(const struct request *rq) 954{ 955 return rq->__sector; 956} 957 958static inline unsigned int blk_rq_bytes(const struct request *rq) 959{ 960 return rq->__data_len; 961} 962 963static inline int blk_rq_cur_bytes(const struct request *rq) 964{ 965 return rq->bio ? bio_cur_bytes(rq->bio) : 0; 966} 967 968extern unsigned int blk_rq_err_bytes(const struct request *rq); 969 970static inline unsigned int blk_rq_sectors(const struct request *rq) 971{ 972 return blk_rq_bytes(rq) >> SECTOR_SHIFT; 973} 974 975static inline unsigned int blk_rq_cur_sectors(const struct request *rq) 976{ 977 return blk_rq_cur_bytes(rq) >> SECTOR_SHIFT; 978} 979 980static inline unsigned int blk_rq_stats_sectors(const struct request *rq) 981{ 982 return rq->stats_sectors; 983} 984 985#ifdef CONFIG_BLK_DEV_ZONED 986 987/* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */ 988const char *blk_zone_cond_str(enum blk_zone_cond zone_cond); 989 990static inline unsigned int bio_zone_no(struct bio *bio) 991{ 992 return blk_queue_zone_no(bdev_get_queue(bio->bi_bdev), 993 bio->bi_iter.bi_sector); 994} 995 996static inline unsigned int bio_zone_is_seq(struct bio *bio) 997{ 998 return blk_queue_zone_is_seq(bdev_get_queue(bio->bi_bdev), 999 bio->bi_iter.bi_sector); 1000} 1001 1002static inline unsigned int blk_rq_zone_no(struct request *rq) 1003{ 1004 return blk_queue_zone_no(rq->q, blk_rq_pos(rq)); 1005} 1006 1007static inline unsigned int blk_rq_zone_is_seq(struct request *rq) 1008{ 1009 return blk_queue_zone_is_seq(rq->q, blk_rq_pos(rq)); 1010} 1011#endif /* CONFIG_BLK_DEV_ZONED */ 1012 1013/* 1014 * Some commands like WRITE SAME have a payload or data transfer size which 1015 * is different from the size of the request. Any driver that supports such 1016 * commands using the RQF_SPECIAL_PAYLOAD flag needs to use this helper to 1017 * calculate the data transfer size. 1018 */ 1019static inline unsigned int blk_rq_payload_bytes(struct request *rq) 1020{ 1021 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1022 return rq->special_vec.bv_len; 1023 return blk_rq_bytes(rq); 1024} 1025 1026/* 1027 * Return the first full biovec in the request. The caller needs to check that 1028 * there are any bvecs before calling this helper. 1029 */ 1030static inline struct bio_vec req_bvec(struct request *rq) 1031{ 1032 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1033 return rq->special_vec; 1034 return mp_bvec_iter_bvec(rq->bio->bi_io_vec, rq->bio->bi_iter); 1035} 1036 1037static inline unsigned int blk_queue_get_max_sectors(struct request_queue *q, 1038 int op) 1039{ 1040 if (unlikely(op == REQ_OP_DISCARD || op == REQ_OP_SECURE_ERASE)) 1041 return min(q->limits.max_discard_sectors, 1042 UINT_MAX >> SECTOR_SHIFT); 1043 1044 if (unlikely(op == REQ_OP_WRITE_SAME)) 1045 return q->limits.max_write_same_sectors; 1046 1047 if (unlikely(op == REQ_OP_WRITE_ZEROES)) 1048 return q->limits.max_write_zeroes_sectors; 1049 1050 return q->limits.max_sectors; 1051} 1052 1053/* 1054 * Return maximum size of a request at given offset. Only valid for 1055 * file system requests. 1056 */ 1057static inline unsigned int blk_max_size_offset(struct request_queue *q, 1058 sector_t offset, 1059 unsigned int chunk_sectors) 1060{ 1061 if (!chunk_sectors) { 1062 if (q->limits.chunk_sectors) 1063 chunk_sectors = q->limits.chunk_sectors; 1064 else 1065 return q->limits.max_sectors; 1066 } 1067 1068 if (likely(is_power_of_2(chunk_sectors))) 1069 chunk_sectors -= offset & (chunk_sectors - 1); 1070 else 1071 chunk_sectors -= sector_div(offset, chunk_sectors); 1072 1073 return min(q->limits.max_sectors, chunk_sectors); 1074} 1075 1076static inline unsigned int blk_rq_get_max_sectors(struct request *rq, 1077 sector_t offset) 1078{ 1079 struct request_queue *q = rq->q; 1080 1081 if (blk_rq_is_passthrough(rq)) 1082 return q->limits.max_hw_sectors; 1083 1084 if (!q->limits.chunk_sectors || 1085 req_op(rq) == REQ_OP_DISCARD || 1086 req_op(rq) == REQ_OP_SECURE_ERASE) 1087 return blk_queue_get_max_sectors(q, req_op(rq)); 1088 1089 return min(blk_max_size_offset(q, offset, 0), 1090 blk_queue_get_max_sectors(q, req_op(rq))); 1091} 1092 1093static inline unsigned int blk_rq_count_bios(struct request *rq) 1094{ 1095 unsigned int nr_bios = 0; 1096 struct bio *bio; 1097 1098 __rq_for_each_bio(bio, rq) 1099 nr_bios++; 1100 1101 return nr_bios; 1102} 1103 1104void blk_steal_bios(struct bio_list *list, struct request *rq); 1105 1106/* 1107 * Request completion related functions. 1108 * 1109 * blk_update_request() completes given number of bytes and updates 1110 * the request without completing it. 1111 */ 1112extern bool blk_update_request(struct request *rq, blk_status_t error, 1113 unsigned int nr_bytes); 1114 1115extern void blk_abort_request(struct request *); 1116 1117/* 1118 * Access functions for manipulating queue properties 1119 */ 1120extern void blk_cleanup_queue(struct request_queue *); 1121void blk_queue_bounce_limit(struct request_queue *q, enum blk_bounce limit); 1122extern void blk_queue_max_hw_sectors(struct request_queue *, unsigned int); 1123extern void blk_queue_chunk_sectors(struct request_queue *, unsigned int); 1124extern void blk_queue_max_segments(struct request_queue *, unsigned short); 1125extern void blk_queue_max_discard_segments(struct request_queue *, 1126 unsigned short); 1127extern void blk_queue_max_segment_size(struct request_queue *, unsigned int); 1128extern void blk_queue_max_discard_sectors(struct request_queue *q, 1129 unsigned int max_discard_sectors); 1130extern void blk_queue_max_write_same_sectors(struct request_queue *q, 1131 unsigned int max_write_same_sectors); 1132extern void blk_queue_max_write_zeroes_sectors(struct request_queue *q, 1133 unsigned int max_write_same_sectors); 1134extern void blk_queue_logical_block_size(struct request_queue *, unsigned int); 1135extern void blk_queue_max_zone_append_sectors(struct request_queue *q, 1136 unsigned int max_zone_append_sectors); 1137extern void blk_queue_physical_block_size(struct request_queue *, unsigned int); 1138void blk_queue_zone_write_granularity(struct request_queue *q, 1139 unsigned int size); 1140extern void blk_queue_alignment_offset(struct request_queue *q, 1141 unsigned int alignment); 1142void blk_queue_update_readahead(struct request_queue *q); 1143extern void blk_limits_io_min(struct queue_limits *limits, unsigned int min); 1144extern void blk_queue_io_min(struct request_queue *q, unsigned int min); 1145extern void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt); 1146extern void blk_queue_io_opt(struct request_queue *q, unsigned int opt); 1147extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth); 1148extern void blk_set_default_limits(struct queue_limits *lim); 1149extern void blk_set_stacking_limits(struct queue_limits *lim); 1150extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b, 1151 sector_t offset); 1152extern void disk_stack_limits(struct gendisk *disk, struct block_device *bdev, 1153 sector_t offset); 1154extern void blk_queue_update_dma_pad(struct request_queue *, unsigned int); 1155extern void blk_queue_segment_boundary(struct request_queue *, unsigned long); 1156extern void blk_queue_virt_boundary(struct request_queue *, unsigned long); 1157extern void blk_queue_dma_alignment(struct request_queue *, int); 1158extern void blk_queue_update_dma_alignment(struct request_queue *, int); 1159extern void blk_queue_rq_timeout(struct request_queue *, unsigned int); 1160extern void blk_queue_write_cache(struct request_queue *q, bool enabled, bool fua); 1161extern void blk_queue_required_elevator_features(struct request_queue *q, 1162 unsigned int features); 1163extern bool blk_queue_can_use_dma_map_merging(struct request_queue *q, 1164 struct device *dev); 1165 1166/* 1167 * Number of physical segments as sent to the device. 1168 * 1169 * Normally this is the number of discontiguous data segments sent by the 1170 * submitter. But for data-less command like discard we might have no 1171 * actual data segments submitted, but the driver might have to add it's 1172 * own special payload. In that case we still return 1 here so that this 1173 * special payload will be mapped. 1174 */ 1175static inline unsigned short blk_rq_nr_phys_segments(struct request *rq) 1176{ 1177 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) 1178 return 1; 1179 return rq->nr_phys_segments; 1180} 1181 1182/* 1183 * Number of discard segments (or ranges) the driver needs to fill in. 1184 * Each discard bio merged into a request is counted as one segment. 1185 */ 1186static inline unsigned short blk_rq_nr_discard_segments(struct request *rq) 1187{ 1188 return max_t(unsigned short, rq->nr_phys_segments, 1); 1189} 1190 1191int __blk_rq_map_sg(struct request_queue *q, struct request *rq, 1192 struct scatterlist *sglist, struct scatterlist **last_sg); 1193static inline int blk_rq_map_sg(struct request_queue *q, struct request *rq, 1194 struct scatterlist *sglist) 1195{ 1196 struct scatterlist *last_sg = NULL; 1197 1198 return __blk_rq_map_sg(q, rq, sglist, &last_sg); 1199} 1200extern void blk_dump_rq_flags(struct request *, char *); 1201 1202bool __must_check blk_get_queue(struct request_queue *); 1203extern void blk_put_queue(struct request_queue *); 1204extern void blk_set_queue_dying(struct request_queue *); 1205 1206#ifdef CONFIG_BLOCK 1207/* 1208 * blk_plug permits building a queue of related requests by holding the I/O 1209 * fragments for a short period. This allows merging of sequential requests 1210 * into single larger request. As the requests are moved from a per-task list to 1211 * the device's request_queue in a batch, this results in improved scalability 1212 * as the lock contention for request_queue lock is reduced. 1213 * 1214 * It is ok not to disable preemption when adding the request to the plug list 1215 * or when attempting a merge, because blk_schedule_flush_list() will only flush 1216 * the plug list when the task sleeps by itself. For details, please see 1217 * schedule() where blk_schedule_flush_plug() is called. 1218 */ 1219struct blk_plug { 1220 struct list_head mq_list; /* blk-mq requests */ 1221 struct list_head cb_list; /* md requires an unplug callback */ 1222 unsigned short rq_count; 1223 bool multiple_queues; 1224 bool nowait; 1225}; 1226#define BLK_MAX_REQUEST_COUNT 16 1227#define BLK_PLUG_FLUSH_SIZE (128 * 1024) 1228 1229struct blk_plug_cb; 1230typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool); 1231struct blk_plug_cb { 1232 struct list_head list; 1233 blk_plug_cb_fn callback; 1234 void *data; 1235}; 1236extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, 1237 void *data, int size); 1238extern void blk_start_plug(struct blk_plug *); 1239extern void blk_finish_plug(struct blk_plug *); 1240extern void blk_flush_plug_list(struct blk_plug *, bool); 1241 1242static inline void blk_flush_plug(struct task_struct *tsk) 1243{ 1244 struct blk_plug *plug = tsk->plug; 1245 1246 if (plug) 1247 blk_flush_plug_list(plug, false); 1248} 1249 1250static inline void blk_schedule_flush_plug(struct task_struct *tsk) 1251{ 1252 struct blk_plug *plug = tsk->plug; 1253 1254 if (plug) 1255 blk_flush_plug_list(plug, true); 1256} 1257 1258static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1259{ 1260 struct blk_plug *plug = tsk->plug; 1261 1262 return plug && 1263 (!list_empty(&plug->mq_list) || 1264 !list_empty(&plug->cb_list)); 1265} 1266 1267int blkdev_issue_flush(struct block_device *bdev); 1268long nr_blockdev_pages(void); 1269#else /* CONFIG_BLOCK */ 1270struct blk_plug { 1271}; 1272 1273static inline void blk_start_plug(struct blk_plug *plug) 1274{ 1275} 1276 1277static inline void blk_finish_plug(struct blk_plug *plug) 1278{ 1279} 1280 1281static inline void blk_flush_plug(struct task_struct *task) 1282{ 1283} 1284 1285static inline void blk_schedule_flush_plug(struct task_struct *task) 1286{ 1287} 1288 1289 1290static inline bool blk_needs_flush_plug(struct task_struct *tsk) 1291{ 1292 return false; 1293} 1294 1295static inline int blkdev_issue_flush(struct block_device *bdev) 1296{ 1297 return 0; 1298} 1299 1300static inline long nr_blockdev_pages(void) 1301{ 1302 return 0; 1303} 1304#endif /* CONFIG_BLOCK */ 1305 1306extern void blk_io_schedule(void); 1307 1308extern int blkdev_issue_write_same(struct block_device *bdev, sector_t sector, 1309 sector_t nr_sects, gfp_t gfp_mask, struct page *page); 1310 1311#define BLKDEV_DISCARD_SECURE (1 << 0) /* issue a secure erase */ 1312 1313extern int blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1314 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags); 1315extern int __blkdev_issue_discard(struct block_device *bdev, sector_t sector, 1316 sector_t nr_sects, gfp_t gfp_mask, int flags, 1317 struct bio **biop); 1318 1319#define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */ 1320#define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */ 1321 1322extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1323 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop, 1324 unsigned flags); 1325extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector, 1326 sector_t nr_sects, gfp_t gfp_mask, unsigned flags); 1327 1328static inline int sb_issue_discard(struct super_block *sb, sector_t block, 1329 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags) 1330{ 1331 return blkdev_issue_discard(sb->s_bdev, 1332 block << (sb->s_blocksize_bits - 1333 SECTOR_SHIFT), 1334 nr_blocks << (sb->s_blocksize_bits - 1335 SECTOR_SHIFT), 1336 gfp_mask, flags); 1337} 1338static inline int sb_issue_zeroout(struct super_block *sb, sector_t block, 1339 sector_t nr_blocks, gfp_t gfp_mask) 1340{ 1341 return blkdev_issue_zeroout(sb->s_bdev, 1342 block << (sb->s_blocksize_bits - 1343 SECTOR_SHIFT), 1344 nr_blocks << (sb->s_blocksize_bits - 1345 SECTOR_SHIFT), 1346 gfp_mask, 0); 1347} 1348 1349extern int blk_verify_command(unsigned char *cmd, fmode_t mode); 1350 1351static inline bool bdev_is_partition(struct block_device *bdev) 1352{ 1353 return bdev->bd_partno; 1354} 1355 1356enum blk_default_limits { 1357 BLK_MAX_SEGMENTS = 128, 1358 BLK_SAFE_MAX_SECTORS = 255, 1359 BLK_DEF_MAX_SECTORS = 2560, 1360 BLK_MAX_SEGMENT_SIZE = 65536, 1361 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL, 1362}; 1363 1364static inline unsigned long queue_segment_boundary(const struct request_queue *q) 1365{ 1366 return q->limits.seg_boundary_mask; 1367} 1368 1369static inline unsigned long queue_virt_boundary(const struct request_queue *q) 1370{ 1371 return q->limits.virt_boundary_mask; 1372} 1373 1374static inline unsigned int queue_max_sectors(const struct request_queue *q) 1375{ 1376 return q->limits.max_sectors; 1377} 1378 1379static inline unsigned int queue_max_hw_sectors(const struct request_queue *q) 1380{ 1381 return q->limits.max_hw_sectors; 1382} 1383 1384static inline unsigned short queue_max_segments(const struct request_queue *q) 1385{ 1386 return q->limits.max_segments; 1387} 1388 1389static inline unsigned short queue_max_discard_segments(const struct request_queue *q) 1390{ 1391 return q->limits.max_discard_segments; 1392} 1393 1394static inline unsigned int queue_max_segment_size(const struct request_queue *q) 1395{ 1396 return q->limits.max_segment_size; 1397} 1398 1399static inline unsigned int queue_max_zone_append_sectors(const struct request_queue *q) 1400{ 1401 1402 const struct queue_limits *l = &q->limits; 1403 1404 return min(l->max_zone_append_sectors, l->max_sectors); 1405} 1406 1407static inline unsigned queue_logical_block_size(const struct request_queue *q) 1408{ 1409 int retval = 512; 1410 1411 if (q && q->limits.logical_block_size) 1412 retval = q->limits.logical_block_size; 1413 1414 return retval; 1415} 1416 1417static inline unsigned int bdev_logical_block_size(struct block_device *bdev) 1418{ 1419 return queue_logical_block_size(bdev_get_queue(bdev)); 1420} 1421 1422static inline unsigned int queue_physical_block_size(const struct request_queue *q) 1423{ 1424 return q->limits.physical_block_size; 1425} 1426 1427static inline unsigned int bdev_physical_block_size(struct block_device *bdev) 1428{ 1429 return queue_physical_block_size(bdev_get_queue(bdev)); 1430} 1431 1432static inline unsigned int queue_io_min(const struct request_queue *q) 1433{ 1434 return q->limits.io_min; 1435} 1436 1437static inline int bdev_io_min(struct block_device *bdev) 1438{ 1439 return queue_io_min(bdev_get_queue(bdev)); 1440} 1441 1442static inline unsigned int queue_io_opt(const struct request_queue *q) 1443{ 1444 return q->limits.io_opt; 1445} 1446 1447static inline int bdev_io_opt(struct block_device *bdev) 1448{ 1449 return queue_io_opt(bdev_get_queue(bdev)); 1450} 1451 1452static inline unsigned int 1453queue_zone_write_granularity(const struct request_queue *q) 1454{ 1455 return q->limits.zone_write_granularity; 1456} 1457 1458static inline unsigned int 1459bdev_zone_write_granularity(struct block_device *bdev) 1460{ 1461 return queue_zone_write_granularity(bdev_get_queue(bdev)); 1462} 1463 1464static inline int queue_alignment_offset(const struct request_queue *q) 1465{ 1466 if (q->limits.misaligned) 1467 return -1; 1468 1469 return q->limits.alignment_offset; 1470} 1471 1472static inline int queue_limit_alignment_offset(struct queue_limits *lim, sector_t sector) 1473{ 1474 unsigned int granularity = max(lim->physical_block_size, lim->io_min); 1475 unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT) 1476 << SECTOR_SHIFT; 1477 1478 return (granularity + lim->alignment_offset - alignment) % granularity; 1479} 1480 1481static inline int bdev_alignment_offset(struct block_device *bdev) 1482{ 1483 struct request_queue *q = bdev_get_queue(bdev); 1484 1485 if (q->limits.misaligned) 1486 return -1; 1487 if (bdev_is_partition(bdev)) 1488 return queue_limit_alignment_offset(&q->limits, 1489 bdev->bd_start_sect); 1490 return q->limits.alignment_offset; 1491} 1492 1493static inline int queue_discard_alignment(const struct request_queue *q) 1494{ 1495 if (q->limits.discard_misaligned) 1496 return -1; 1497 1498 return q->limits.discard_alignment; 1499} 1500 1501static inline int queue_limit_discard_alignment(struct queue_limits *lim, sector_t sector) 1502{ 1503 unsigned int alignment, granularity, offset; 1504 1505 if (!lim->max_discard_sectors) 1506 return 0; 1507 1508 /* Why are these in bytes, not sectors? */ 1509 alignment = lim->discard_alignment >> SECTOR_SHIFT; 1510 granularity = lim->discard_granularity >> SECTOR_SHIFT; 1511 if (!granularity) 1512 return 0; 1513 1514 /* Offset of the partition start in 'granularity' sectors */ 1515 offset = sector_div(sector, granularity); 1516 1517 /* And why do we do this modulus *again* in blkdev_issue_discard()? */ 1518 offset = (granularity + alignment - offset) % granularity; 1519 1520 /* Turn it back into bytes, gaah */ 1521 return offset << SECTOR_SHIFT; 1522} 1523 1524static inline int bdev_discard_alignment(struct block_device *bdev) 1525{ 1526 struct request_queue *q = bdev_get_queue(bdev); 1527 1528 if (bdev_is_partition(bdev)) 1529 return queue_limit_discard_alignment(&q->limits, 1530 bdev->bd_start_sect); 1531 return q->limits.discard_alignment; 1532} 1533 1534static inline unsigned int bdev_write_same(struct block_device *bdev) 1535{ 1536 struct request_queue *q = bdev_get_queue(bdev); 1537 1538 if (q) 1539 return q->limits.max_write_same_sectors; 1540 1541 return 0; 1542} 1543 1544static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev) 1545{ 1546 struct request_queue *q = bdev_get_queue(bdev); 1547 1548 if (q) 1549 return q->limits.max_write_zeroes_sectors; 1550 1551 return 0; 1552} 1553 1554static inline enum blk_zoned_model bdev_zoned_model(struct block_device *bdev) 1555{ 1556 struct request_queue *q = bdev_get_queue(bdev); 1557 1558 if (q) 1559 return blk_queue_zoned_model(q); 1560 1561 return BLK_ZONED_NONE; 1562} 1563 1564static inline bool bdev_is_zoned(struct block_device *bdev) 1565{ 1566 struct request_queue *q = bdev_get_queue(bdev); 1567 1568 if (q) 1569 return blk_queue_is_zoned(q); 1570 1571 return false; 1572} 1573 1574static inline sector_t bdev_zone_sectors(struct block_device *bdev) 1575{ 1576 struct request_queue *q = bdev_get_queue(bdev); 1577 1578 if (q) 1579 return blk_queue_zone_sectors(q); 1580 return 0; 1581} 1582 1583static inline unsigned int bdev_max_open_zones(struct block_device *bdev) 1584{ 1585 struct request_queue *q = bdev_get_queue(bdev); 1586 1587 if (q) 1588 return queue_max_open_zones(q); 1589 return 0; 1590} 1591 1592static inline unsigned int bdev_max_active_zones(struct block_device *bdev) 1593{ 1594 struct request_queue *q = bdev_get_queue(bdev); 1595 1596 if (q) 1597 return queue_max_active_zones(q); 1598 return 0; 1599} 1600 1601static inline int queue_dma_alignment(const struct request_queue *q) 1602{ 1603 return q ? q->dma_alignment : 511; 1604} 1605 1606static inline int blk_rq_aligned(struct request_queue *q, unsigned long addr, 1607 unsigned int len) 1608{ 1609 unsigned int alignment = queue_dma_alignment(q) | q->dma_pad_mask; 1610 return !(addr & alignment) && !(len & alignment); 1611} 1612 1613/* assumes size > 256 */ 1614static inline unsigned int blksize_bits(unsigned int size) 1615{ 1616 unsigned int bits = 8; 1617 do { 1618 bits++; 1619 size >>= 1; 1620 } while (size > 256); 1621 return bits; 1622} 1623 1624static inline unsigned int block_size(struct block_device *bdev) 1625{ 1626 return 1 << bdev->bd_inode->i_blkbits; 1627} 1628 1629int kblockd_schedule_work(struct work_struct *work); 1630int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay); 1631 1632#define MODULE_ALIAS_BLOCKDEV(major,minor) \ 1633 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor)) 1634#define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \ 1635 MODULE_ALIAS("block-major-" __stringify(major) "-*") 1636 1637#if defined(CONFIG_BLK_DEV_INTEGRITY) 1638 1639enum blk_integrity_flags { 1640 BLK_INTEGRITY_VERIFY = 1 << 0, 1641 BLK_INTEGRITY_GENERATE = 1 << 1, 1642 BLK_INTEGRITY_DEVICE_CAPABLE = 1 << 2, 1643 BLK_INTEGRITY_IP_CHECKSUM = 1 << 3, 1644}; 1645 1646struct blk_integrity_iter { 1647 void *prot_buf; 1648 void *data_buf; 1649 sector_t seed; 1650 unsigned int data_size; 1651 unsigned short interval; 1652 const char *disk_name; 1653}; 1654 1655typedef blk_status_t (integrity_processing_fn) (struct blk_integrity_iter *); 1656typedef void (integrity_prepare_fn) (struct request *); 1657typedef void (integrity_complete_fn) (struct request *, unsigned int); 1658 1659struct blk_integrity_profile { 1660 integrity_processing_fn *generate_fn; 1661 integrity_processing_fn *verify_fn; 1662 integrity_prepare_fn *prepare_fn; 1663 integrity_complete_fn *complete_fn; 1664 const char *name; 1665}; 1666 1667extern void blk_integrity_register(struct gendisk *, struct blk_integrity *); 1668extern void blk_integrity_unregister(struct gendisk *); 1669extern int blk_integrity_compare(struct gendisk *, struct gendisk *); 1670extern int blk_rq_map_integrity_sg(struct request_queue *, struct bio *, 1671 struct scatterlist *); 1672extern int blk_rq_count_integrity_sg(struct request_queue *, struct bio *); 1673 1674static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1675{ 1676 struct blk_integrity *bi = &disk->queue->integrity; 1677 1678 if (!bi->profile) 1679 return NULL; 1680 1681 return bi; 1682} 1683 1684static inline 1685struct blk_integrity *bdev_get_integrity(struct block_device *bdev) 1686{ 1687 return blk_get_integrity(bdev->bd_disk); 1688} 1689 1690static inline bool 1691blk_integrity_queue_supports_integrity(struct request_queue *q) 1692{ 1693 return q->integrity.profile; 1694} 1695 1696static inline bool blk_integrity_rq(struct request *rq) 1697{ 1698 return rq->cmd_flags & REQ_INTEGRITY; 1699} 1700 1701static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1702 unsigned int segs) 1703{ 1704 q->limits.max_integrity_segments = segs; 1705} 1706 1707static inline unsigned short 1708queue_max_integrity_segments(const struct request_queue *q) 1709{ 1710 return q->limits.max_integrity_segments; 1711} 1712 1713/** 1714 * bio_integrity_intervals - Return number of integrity intervals for a bio 1715 * @bi: blk_integrity profile for device 1716 * @sectors: Size of the bio in 512-byte sectors 1717 * 1718 * Description: The block layer calculates everything in 512 byte 1719 * sectors but integrity metadata is done in terms of the data integrity 1720 * interval size of the storage device. Convert the block layer sectors 1721 * to the appropriate number of integrity intervals. 1722 */ 1723static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1724 unsigned int sectors) 1725{ 1726 return sectors >> (bi->interval_exp - 9); 1727} 1728 1729static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1730 unsigned int sectors) 1731{ 1732 return bio_integrity_intervals(bi, sectors) * bi->tuple_size; 1733} 1734 1735/* 1736 * Return the first bvec that contains integrity data. Only drivers that are 1737 * limited to a single integrity segment should use this helper. 1738 */ 1739static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1740{ 1741 if (WARN_ON_ONCE(queue_max_integrity_segments(rq->q) > 1)) 1742 return NULL; 1743 return rq->bio->bi_integrity->bip_vec; 1744} 1745 1746#else /* CONFIG_BLK_DEV_INTEGRITY */ 1747 1748struct bio; 1749struct block_device; 1750struct gendisk; 1751struct blk_integrity; 1752 1753static inline int blk_integrity_rq(struct request *rq) 1754{ 1755 return 0; 1756} 1757static inline int blk_rq_count_integrity_sg(struct request_queue *q, 1758 struct bio *b) 1759{ 1760 return 0; 1761} 1762static inline int blk_rq_map_integrity_sg(struct request_queue *q, 1763 struct bio *b, 1764 struct scatterlist *s) 1765{ 1766 return 0; 1767} 1768static inline struct blk_integrity *bdev_get_integrity(struct block_device *b) 1769{ 1770 return NULL; 1771} 1772static inline struct blk_integrity *blk_get_integrity(struct gendisk *disk) 1773{ 1774 return NULL; 1775} 1776static inline bool 1777blk_integrity_queue_supports_integrity(struct request_queue *q) 1778{ 1779 return false; 1780} 1781static inline int blk_integrity_compare(struct gendisk *a, struct gendisk *b) 1782{ 1783 return 0; 1784} 1785static inline void blk_integrity_register(struct gendisk *d, 1786 struct blk_integrity *b) 1787{ 1788} 1789static inline void blk_integrity_unregister(struct gendisk *d) 1790{ 1791} 1792static inline void blk_queue_max_integrity_segments(struct request_queue *q, 1793 unsigned int segs) 1794{ 1795} 1796static inline unsigned short queue_max_integrity_segments(const struct request_queue *q) 1797{ 1798 return 0; 1799} 1800 1801static inline unsigned int bio_integrity_intervals(struct blk_integrity *bi, 1802 unsigned int sectors) 1803{ 1804 return 0; 1805} 1806 1807static inline unsigned int bio_integrity_bytes(struct blk_integrity *bi, 1808 unsigned int sectors) 1809{ 1810 return 0; 1811} 1812 1813static inline struct bio_vec *rq_integrity_vec(struct request *rq) 1814{ 1815 return NULL; 1816} 1817 1818#endif /* CONFIG_BLK_DEV_INTEGRITY */ 1819 1820#ifdef CONFIG_BLK_INLINE_ENCRYPTION 1821 1822bool blk_ksm_register(struct blk_keyslot_manager *ksm, struct request_queue *q); 1823 1824void blk_ksm_unregister(struct request_queue *q); 1825 1826#else /* CONFIG_BLK_INLINE_ENCRYPTION */ 1827 1828static inline bool blk_ksm_register(struct blk_keyslot_manager *ksm, 1829 struct request_queue *q) 1830{ 1831 return true; 1832} 1833 1834static inline void blk_ksm_unregister(struct request_queue *q) { } 1835 1836#endif /* CONFIG_BLK_INLINE_ENCRYPTION */ 1837 1838 1839struct block_device_operations { 1840 blk_qc_t (*submit_bio) (struct bio *bio); 1841 int (*open) (struct block_device *, fmode_t); 1842 void (*release) (struct gendisk *, fmode_t); 1843 int (*rw_page)(struct block_device *, sector_t, struct page *, unsigned int); 1844 int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1845 int (*compat_ioctl) (struct block_device *, fmode_t, unsigned, unsigned long); 1846 unsigned int (*check_events) (struct gendisk *disk, 1847 unsigned int clearing); 1848 void (*unlock_native_capacity) (struct gendisk *); 1849 int (*getgeo)(struct block_device *, struct hd_geometry *); 1850 int (*set_read_only)(struct block_device *bdev, bool ro); 1851 /* this callback is with swap_lock and sometimes page table lock held */ 1852 void (*swap_slot_free_notify) (struct block_device *, unsigned long); 1853 int (*report_zones)(struct gendisk *, sector_t sector, 1854 unsigned int nr_zones, report_zones_cb cb, void *data); 1855 char *(*devnode)(struct gendisk *disk, umode_t *mode); 1856 struct module *owner; 1857 const struct pr_ops *pr_ops; 1858}; 1859 1860#ifdef CONFIG_COMPAT 1861extern int blkdev_compat_ptr_ioctl(struct block_device *, fmode_t, 1862 unsigned int, unsigned long); 1863#else 1864#define blkdev_compat_ptr_ioctl NULL 1865#endif 1866 1867extern int bdev_read_page(struct block_device *, sector_t, struct page *); 1868extern int bdev_write_page(struct block_device *, sector_t, struct page *, 1869 struct writeback_control *); 1870 1871#ifdef CONFIG_BLK_DEV_ZONED 1872bool blk_req_needs_zone_write_lock(struct request *rq); 1873bool blk_req_zone_write_trylock(struct request *rq); 1874void __blk_req_zone_write_lock(struct request *rq); 1875void __blk_req_zone_write_unlock(struct request *rq); 1876 1877static inline void blk_req_zone_write_lock(struct request *rq) 1878{ 1879 if (blk_req_needs_zone_write_lock(rq)) 1880 __blk_req_zone_write_lock(rq); 1881} 1882 1883static inline void blk_req_zone_write_unlock(struct request *rq) 1884{ 1885 if (rq->rq_flags & RQF_ZONE_WRITE_LOCKED) 1886 __blk_req_zone_write_unlock(rq); 1887} 1888 1889static inline bool blk_req_zone_is_write_locked(struct request *rq) 1890{ 1891 return rq->q->seq_zones_wlock && 1892 test_bit(blk_rq_zone_no(rq), rq->q->seq_zones_wlock); 1893} 1894 1895static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1896{ 1897 if (!blk_req_needs_zone_write_lock(rq)) 1898 return true; 1899 return !blk_req_zone_is_write_locked(rq); 1900} 1901#else 1902static inline bool blk_req_needs_zone_write_lock(struct request *rq) 1903{ 1904 return false; 1905} 1906 1907static inline void blk_req_zone_write_lock(struct request *rq) 1908{ 1909} 1910 1911static inline void blk_req_zone_write_unlock(struct request *rq) 1912{ 1913} 1914static inline bool blk_req_zone_is_write_locked(struct request *rq) 1915{ 1916 return false; 1917} 1918 1919static inline bool blk_req_can_dispatch_to_zone(struct request *rq) 1920{ 1921 return true; 1922} 1923#endif /* CONFIG_BLK_DEV_ZONED */ 1924 1925static inline void blk_wake_io_task(struct task_struct *waiter) 1926{ 1927 /* 1928 * If we're polling, the task itself is doing the completions. For 1929 * that case, we don't need to signal a wakeup, it's enough to just 1930 * mark us as RUNNING. 1931 */ 1932 if (waiter == current) 1933 __set_current_state(TASK_RUNNING); 1934 else 1935 wake_up_process(waiter); 1936} 1937 1938unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1939 unsigned int op); 1940void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1941 unsigned long start_time); 1942 1943unsigned long bio_start_io_acct(struct bio *bio); 1944void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1945 struct block_device *orig_bdev); 1946 1947/** 1948 * bio_end_io_acct - end I/O accounting for bio based drivers 1949 * @bio: bio to end account for 1950 * @start: start time returned by bio_start_io_acct() 1951 */ 1952static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time) 1953{ 1954 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev); 1955} 1956 1957int bdev_read_only(struct block_device *bdev); 1958int set_blocksize(struct block_device *bdev, int size); 1959 1960const char *bdevname(struct block_device *bdev, char *buffer); 1961int lookup_bdev(const char *pathname, dev_t *dev); 1962 1963void blkdev_show(struct seq_file *seqf, off_t offset); 1964 1965#define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */ 1966#define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */ 1967#ifdef CONFIG_BLOCK 1968#define BLKDEV_MAJOR_MAX 512 1969#else 1970#define BLKDEV_MAJOR_MAX 0 1971#endif 1972 1973struct block_device *blkdev_get_by_path(const char *path, fmode_t mode, 1974 void *holder); 1975struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder); 1976int bd_prepare_to_claim(struct block_device *bdev, void *holder); 1977void bd_abort_claiming(struct block_device *bdev, void *holder); 1978void blkdev_put(struct block_device *bdev, fmode_t mode); 1979 1980/* just for blk-cgroup, don't use elsewhere */ 1981struct block_device *blkdev_get_no_open(dev_t dev); 1982void blkdev_put_no_open(struct block_device *bdev); 1983 1984struct block_device *bdev_alloc(struct gendisk *disk, u8 partno); 1985void bdev_add(struct block_device *bdev, dev_t dev); 1986struct block_device *I_BDEV(struct inode *inode); 1987struct block_device *bdgrab(struct block_device *bdev); 1988void bdput(struct block_device *); 1989int truncate_bdev_range(struct block_device *bdev, fmode_t mode, loff_t lstart, 1990 loff_t lend); 1991 1992#ifdef CONFIG_BLOCK 1993void invalidate_bdev(struct block_device *bdev); 1994int sync_blockdev(struct block_device *bdev); 1995#else 1996static inline void invalidate_bdev(struct block_device *bdev) 1997{ 1998} 1999static inline int sync_blockdev(struct block_device *bdev) 2000{ 2001 return 0; 2002} 2003#endif 2004int fsync_bdev(struct block_device *bdev); 2005 2006int freeze_bdev(struct block_device *bdev); 2007int thaw_bdev(struct block_device *bdev); 2008 2009#endif /* _LINUX_BLKDEV_H */