Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 md.c : Multiple Devices driver for Linux
4 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5
6 completely rewritten, based on the MD driver code from Marc Zyngier
7
8 Changes:
9
10 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
11 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
12 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
13 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
14 - kmod support by: Cyrus Durgin
15 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
16 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17
18 - lots of fixes and improvements to the RAID1/RAID5 and generic
19 RAID code (such as request based resynchronization):
20
21 Neil Brown <neilb@cse.unsw.edu.au>.
22
23 - persistent bitmap code
24 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25
26
27 Errors, Warnings, etc.
28 Please use:
29 pr_crit() for error conditions that risk data loss
30 pr_err() for error conditions that are unexpected, like an IO error
31 or internal inconsistency
32 pr_warn() for error conditions that could have been predicated, like
33 adding a device to an array when it has incompatible metadata
34 pr_info() for every interesting, very rare events, like an array starting
35 or stopping, or resync starting or stopping
36 pr_debug() for everything else.
37
38*/
39
40#include <linux/sched/mm.h>
41#include <linux/sched/signal.h>
42#include <linux/kthread.h>
43#include <linux/blkdev.h>
44#include <linux/badblocks.h>
45#include <linux/sysctl.h>
46#include <linux/seq_file.h>
47#include <linux/fs.h>
48#include <linux/poll.h>
49#include <linux/ctype.h>
50#include <linux/string.h>
51#include <linux/hdreg.h>
52#include <linux/proc_fs.h>
53#include <linux/random.h>
54#include <linux/module.h>
55#include <linux/reboot.h>
56#include <linux/file.h>
57#include <linux/compat.h>
58#include <linux/delay.h>
59#include <linux/raid/md_p.h>
60#include <linux/raid/md_u.h>
61#include <linux/raid/detect.h>
62#include <linux/slab.h>
63#include <linux/percpu-refcount.h>
64#include <linux/part_stat.h>
65
66#include <trace/events/block.h>
67#include "md.h"
68#include "md-bitmap.h"
69#include "md-cluster.h"
70
71/* pers_list is a list of registered personalities protected
72 * by pers_lock.
73 * pers_lock does extra service to protect accesses to
74 * mddev->thread when the mutex cannot be held.
75 */
76static LIST_HEAD(pers_list);
77static DEFINE_SPINLOCK(pers_lock);
78
79static struct kobj_type md_ktype;
80
81struct md_cluster_operations *md_cluster_ops;
82EXPORT_SYMBOL(md_cluster_ops);
83static struct module *md_cluster_mod;
84
85static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
86static struct workqueue_struct *md_wq;
87static struct workqueue_struct *md_misc_wq;
88static struct workqueue_struct *md_rdev_misc_wq;
89
90static int remove_and_add_spares(struct mddev *mddev,
91 struct md_rdev *this);
92static void mddev_detach(struct mddev *mddev);
93
94/*
95 * Default number of read corrections we'll attempt on an rdev
96 * before ejecting it from the array. We divide the read error
97 * count by 2 for every hour elapsed between read errors.
98 */
99#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
100/* Default safemode delay: 200 msec */
101#define DEFAULT_SAFEMODE_DELAY ((200 * HZ)/1000 +1)
102/*
103 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
104 * is 1000 KB/sec, so the extra system load does not show up that much.
105 * Increase it if you want to have more _guaranteed_ speed. Note that
106 * the RAID driver will use the maximum available bandwidth if the IO
107 * subsystem is idle. There is also an 'absolute maximum' reconstruction
108 * speed limit - in case reconstruction slows down your system despite
109 * idle IO detection.
110 *
111 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
112 * or /sys/block/mdX/md/sync_speed_{min,max}
113 */
114
115static int sysctl_speed_limit_min = 1000;
116static int sysctl_speed_limit_max = 200000;
117static inline int speed_min(struct mddev *mddev)
118{
119 return mddev->sync_speed_min ?
120 mddev->sync_speed_min : sysctl_speed_limit_min;
121}
122
123static inline int speed_max(struct mddev *mddev)
124{
125 return mddev->sync_speed_max ?
126 mddev->sync_speed_max : sysctl_speed_limit_max;
127}
128
129static void rdev_uninit_serial(struct md_rdev *rdev)
130{
131 if (!test_and_clear_bit(CollisionCheck, &rdev->flags))
132 return;
133
134 kvfree(rdev->serial);
135 rdev->serial = NULL;
136}
137
138static void rdevs_uninit_serial(struct mddev *mddev)
139{
140 struct md_rdev *rdev;
141
142 rdev_for_each(rdev, mddev)
143 rdev_uninit_serial(rdev);
144}
145
146static int rdev_init_serial(struct md_rdev *rdev)
147{
148 /* serial_nums equals with BARRIER_BUCKETS_NR */
149 int i, serial_nums = 1 << ((PAGE_SHIFT - ilog2(sizeof(atomic_t))));
150 struct serial_in_rdev *serial = NULL;
151
152 if (test_bit(CollisionCheck, &rdev->flags))
153 return 0;
154
155 serial = kvmalloc(sizeof(struct serial_in_rdev) * serial_nums,
156 GFP_KERNEL);
157 if (!serial)
158 return -ENOMEM;
159
160 for (i = 0; i < serial_nums; i++) {
161 struct serial_in_rdev *serial_tmp = &serial[i];
162
163 spin_lock_init(&serial_tmp->serial_lock);
164 serial_tmp->serial_rb = RB_ROOT_CACHED;
165 init_waitqueue_head(&serial_tmp->serial_io_wait);
166 }
167
168 rdev->serial = serial;
169 set_bit(CollisionCheck, &rdev->flags);
170
171 return 0;
172}
173
174static int rdevs_init_serial(struct mddev *mddev)
175{
176 struct md_rdev *rdev;
177 int ret = 0;
178
179 rdev_for_each(rdev, mddev) {
180 ret = rdev_init_serial(rdev);
181 if (ret)
182 break;
183 }
184
185 /* Free all resources if pool is not existed */
186 if (ret && !mddev->serial_info_pool)
187 rdevs_uninit_serial(mddev);
188
189 return ret;
190}
191
192/*
193 * rdev needs to enable serial stuffs if it meets the conditions:
194 * 1. it is multi-queue device flaged with writemostly.
195 * 2. the write-behind mode is enabled.
196 */
197static int rdev_need_serial(struct md_rdev *rdev)
198{
199 return (rdev && rdev->mddev->bitmap_info.max_write_behind > 0 &&
200 rdev->bdev->bd_disk->queue->nr_hw_queues != 1 &&
201 test_bit(WriteMostly, &rdev->flags));
202}
203
204/*
205 * Init resource for rdev(s), then create serial_info_pool if:
206 * 1. rdev is the first device which return true from rdev_enable_serial.
207 * 2. rdev is NULL, means we want to enable serialization for all rdevs.
208 */
209void mddev_create_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
210 bool is_suspend)
211{
212 int ret = 0;
213
214 if (rdev && !rdev_need_serial(rdev) &&
215 !test_bit(CollisionCheck, &rdev->flags))
216 return;
217
218 if (!is_suspend)
219 mddev_suspend(mddev);
220
221 if (!rdev)
222 ret = rdevs_init_serial(mddev);
223 else
224 ret = rdev_init_serial(rdev);
225 if (ret)
226 goto abort;
227
228 if (mddev->serial_info_pool == NULL) {
229 /*
230 * already in memalloc noio context by
231 * mddev_suspend()
232 */
233 mddev->serial_info_pool =
234 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
235 sizeof(struct serial_info));
236 if (!mddev->serial_info_pool) {
237 rdevs_uninit_serial(mddev);
238 pr_err("can't alloc memory pool for serialization\n");
239 }
240 }
241
242abort:
243 if (!is_suspend)
244 mddev_resume(mddev);
245}
246
247/*
248 * Free resource from rdev(s), and destroy serial_info_pool under conditions:
249 * 1. rdev is the last device flaged with CollisionCheck.
250 * 2. when bitmap is destroyed while policy is not enabled.
251 * 3. for disable policy, the pool is destroyed only when no rdev needs it.
252 */
253void mddev_destroy_serial_pool(struct mddev *mddev, struct md_rdev *rdev,
254 bool is_suspend)
255{
256 if (rdev && !test_bit(CollisionCheck, &rdev->flags))
257 return;
258
259 if (mddev->serial_info_pool) {
260 struct md_rdev *temp;
261 int num = 0; /* used to track if other rdevs need the pool */
262
263 if (!is_suspend)
264 mddev_suspend(mddev);
265 rdev_for_each(temp, mddev) {
266 if (!rdev) {
267 if (!mddev->serialize_policy ||
268 !rdev_need_serial(temp))
269 rdev_uninit_serial(temp);
270 else
271 num++;
272 } else if (temp != rdev &&
273 test_bit(CollisionCheck, &temp->flags))
274 num++;
275 }
276
277 if (rdev)
278 rdev_uninit_serial(rdev);
279
280 if (num)
281 pr_info("The mempool could be used by other devices\n");
282 else {
283 mempool_destroy(mddev->serial_info_pool);
284 mddev->serial_info_pool = NULL;
285 }
286 if (!is_suspend)
287 mddev_resume(mddev);
288 }
289}
290
291static struct ctl_table_header *raid_table_header;
292
293static struct ctl_table raid_table[] = {
294 {
295 .procname = "speed_limit_min",
296 .data = &sysctl_speed_limit_min,
297 .maxlen = sizeof(int),
298 .mode = S_IRUGO|S_IWUSR,
299 .proc_handler = proc_dointvec,
300 },
301 {
302 .procname = "speed_limit_max",
303 .data = &sysctl_speed_limit_max,
304 .maxlen = sizeof(int),
305 .mode = S_IRUGO|S_IWUSR,
306 .proc_handler = proc_dointvec,
307 },
308 { }
309};
310
311static struct ctl_table raid_dir_table[] = {
312 {
313 .procname = "raid",
314 .maxlen = 0,
315 .mode = S_IRUGO|S_IXUGO,
316 .child = raid_table,
317 },
318 { }
319};
320
321static struct ctl_table raid_root_table[] = {
322 {
323 .procname = "dev",
324 .maxlen = 0,
325 .mode = 0555,
326 .child = raid_dir_table,
327 },
328 { }
329};
330
331static int start_readonly;
332
333/*
334 * The original mechanism for creating an md device is to create
335 * a device node in /dev and to open it. This causes races with device-close.
336 * The preferred method is to write to the "new_array" module parameter.
337 * This can avoid races.
338 * Setting create_on_open to false disables the original mechanism
339 * so all the races disappear.
340 */
341static bool create_on_open = true;
342
343/*
344 * We have a system wide 'event count' that is incremented
345 * on any 'interesting' event, and readers of /proc/mdstat
346 * can use 'poll' or 'select' to find out when the event
347 * count increases.
348 *
349 * Events are:
350 * start array, stop array, error, add device, remove device,
351 * start build, activate spare
352 */
353static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
354static atomic_t md_event_count;
355void md_new_event(struct mddev *mddev)
356{
357 atomic_inc(&md_event_count);
358 wake_up(&md_event_waiters);
359}
360EXPORT_SYMBOL_GPL(md_new_event);
361
362/*
363 * Enables to iterate over all existing md arrays
364 * all_mddevs_lock protects this list.
365 */
366static LIST_HEAD(all_mddevs);
367static DEFINE_SPINLOCK(all_mddevs_lock);
368
369/*
370 * iterates through all used mddevs in the system.
371 * We take care to grab the all_mddevs_lock whenever navigating
372 * the list, and to always hold a refcount when unlocked.
373 * Any code which breaks out of this loop while own
374 * a reference to the current mddev and must mddev_put it.
375 */
376#define for_each_mddev(_mddev,_tmp) \
377 \
378 for (({ spin_lock(&all_mddevs_lock); \
379 _tmp = all_mddevs.next; \
380 _mddev = NULL;}); \
381 ({ if (_tmp != &all_mddevs) \
382 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
383 spin_unlock(&all_mddevs_lock); \
384 if (_mddev) mddev_put(_mddev); \
385 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
386 _tmp != &all_mddevs;}); \
387 ({ spin_lock(&all_mddevs_lock); \
388 _tmp = _tmp->next;}) \
389 )
390
391/* Rather than calling directly into the personality make_request function,
392 * IO requests come here first so that we can check if the device is
393 * being suspended pending a reconfiguration.
394 * We hold a refcount over the call to ->make_request. By the time that
395 * call has finished, the bio has been linked into some internal structure
396 * and so is visible to ->quiesce(), so we don't need the refcount any more.
397 */
398static bool is_suspended(struct mddev *mddev, struct bio *bio)
399{
400 if (mddev->suspended)
401 return true;
402 if (bio_data_dir(bio) != WRITE)
403 return false;
404 if (mddev->suspend_lo >= mddev->suspend_hi)
405 return false;
406 if (bio->bi_iter.bi_sector >= mddev->suspend_hi)
407 return false;
408 if (bio_end_sector(bio) < mddev->suspend_lo)
409 return false;
410 return true;
411}
412
413void md_handle_request(struct mddev *mddev, struct bio *bio)
414{
415check_suspended:
416 rcu_read_lock();
417 if (is_suspended(mddev, bio)) {
418 DEFINE_WAIT(__wait);
419 for (;;) {
420 prepare_to_wait(&mddev->sb_wait, &__wait,
421 TASK_UNINTERRUPTIBLE);
422 if (!is_suspended(mddev, bio))
423 break;
424 rcu_read_unlock();
425 schedule();
426 rcu_read_lock();
427 }
428 finish_wait(&mddev->sb_wait, &__wait);
429 }
430 atomic_inc(&mddev->active_io);
431 rcu_read_unlock();
432
433 if (!mddev->pers->make_request(mddev, bio)) {
434 atomic_dec(&mddev->active_io);
435 wake_up(&mddev->sb_wait);
436 goto check_suspended;
437 }
438
439 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
440 wake_up(&mddev->sb_wait);
441}
442EXPORT_SYMBOL(md_handle_request);
443
444static blk_qc_t md_submit_bio(struct bio *bio)
445{
446 const int rw = bio_data_dir(bio);
447 struct mddev *mddev = bio->bi_bdev->bd_disk->private_data;
448
449 if (mddev == NULL || mddev->pers == NULL) {
450 bio_io_error(bio);
451 return BLK_QC_T_NONE;
452 }
453
454 if (unlikely(test_bit(MD_BROKEN, &mddev->flags)) && (rw == WRITE)) {
455 bio_io_error(bio);
456 return BLK_QC_T_NONE;
457 }
458
459 blk_queue_split(&bio);
460
461 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
462 if (bio_sectors(bio) != 0)
463 bio->bi_status = BLK_STS_IOERR;
464 bio_endio(bio);
465 return BLK_QC_T_NONE;
466 }
467
468 /* bio could be mergeable after passing to underlayer */
469 bio->bi_opf &= ~REQ_NOMERGE;
470
471 md_handle_request(mddev, bio);
472
473 return BLK_QC_T_NONE;
474}
475
476/* mddev_suspend makes sure no new requests are submitted
477 * to the device, and that any requests that have been submitted
478 * are completely handled.
479 * Once mddev_detach() is called and completes, the module will be
480 * completely unused.
481 */
482void mddev_suspend(struct mddev *mddev)
483{
484 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
485 lockdep_assert_held(&mddev->reconfig_mutex);
486 if (mddev->suspended++)
487 return;
488 synchronize_rcu();
489 wake_up(&mddev->sb_wait);
490 set_bit(MD_ALLOW_SB_UPDATE, &mddev->flags);
491 smp_mb__after_atomic();
492 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
493 mddev->pers->quiesce(mddev, 1);
494 clear_bit_unlock(MD_ALLOW_SB_UPDATE, &mddev->flags);
495 wait_event(mddev->sb_wait, !test_bit(MD_UPDATING_SB, &mddev->flags));
496
497 del_timer_sync(&mddev->safemode_timer);
498 /* restrict memory reclaim I/O during raid array is suspend */
499 mddev->noio_flag = memalloc_noio_save();
500}
501EXPORT_SYMBOL_GPL(mddev_suspend);
502
503void mddev_resume(struct mddev *mddev)
504{
505 /* entred the memalloc scope from mddev_suspend() */
506 memalloc_noio_restore(mddev->noio_flag);
507 lockdep_assert_held(&mddev->reconfig_mutex);
508 if (--mddev->suspended)
509 return;
510 wake_up(&mddev->sb_wait);
511 mddev->pers->quiesce(mddev, 0);
512
513 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
514 md_wakeup_thread(mddev->thread);
515 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
516}
517EXPORT_SYMBOL_GPL(mddev_resume);
518
519/*
520 * Generic flush handling for md
521 */
522
523static void md_end_flush(struct bio *bio)
524{
525 struct md_rdev *rdev = bio->bi_private;
526 struct mddev *mddev = rdev->mddev;
527
528 rdev_dec_pending(rdev, mddev);
529
530 if (atomic_dec_and_test(&mddev->flush_pending)) {
531 /* The pre-request flush has finished */
532 queue_work(md_wq, &mddev->flush_work);
533 }
534 bio_put(bio);
535}
536
537static void md_submit_flush_data(struct work_struct *ws);
538
539static void submit_flushes(struct work_struct *ws)
540{
541 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
542 struct md_rdev *rdev;
543
544 mddev->start_flush = ktime_get_boottime();
545 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
546 atomic_set(&mddev->flush_pending, 1);
547 rcu_read_lock();
548 rdev_for_each_rcu(rdev, mddev)
549 if (rdev->raid_disk >= 0 &&
550 !test_bit(Faulty, &rdev->flags)) {
551 /* Take two references, one is dropped
552 * when request finishes, one after
553 * we reclaim rcu_read_lock
554 */
555 struct bio *bi;
556 atomic_inc(&rdev->nr_pending);
557 atomic_inc(&rdev->nr_pending);
558 rcu_read_unlock();
559 bi = bio_alloc_bioset(GFP_NOIO, 0, &mddev->bio_set);
560 bi->bi_end_io = md_end_flush;
561 bi->bi_private = rdev;
562 bio_set_dev(bi, rdev->bdev);
563 bi->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
564 atomic_inc(&mddev->flush_pending);
565 submit_bio(bi);
566 rcu_read_lock();
567 rdev_dec_pending(rdev, mddev);
568 }
569 rcu_read_unlock();
570 if (atomic_dec_and_test(&mddev->flush_pending))
571 queue_work(md_wq, &mddev->flush_work);
572}
573
574static void md_submit_flush_data(struct work_struct *ws)
575{
576 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
577 struct bio *bio = mddev->flush_bio;
578
579 /*
580 * must reset flush_bio before calling into md_handle_request to avoid a
581 * deadlock, because other bios passed md_handle_request suspend check
582 * could wait for this and below md_handle_request could wait for those
583 * bios because of suspend check
584 */
585 spin_lock_irq(&mddev->lock);
586 mddev->prev_flush_start = mddev->start_flush;
587 mddev->flush_bio = NULL;
588 spin_unlock_irq(&mddev->lock);
589 wake_up(&mddev->sb_wait);
590
591 if (bio->bi_iter.bi_size == 0) {
592 /* an empty barrier - all done */
593 bio_endio(bio);
594 } else {
595 bio->bi_opf &= ~REQ_PREFLUSH;
596 md_handle_request(mddev, bio);
597 }
598}
599
600/*
601 * Manages consolidation of flushes and submitting any flushes needed for
602 * a bio with REQ_PREFLUSH. Returns true if the bio is finished or is
603 * being finished in another context. Returns false if the flushing is
604 * complete but still needs the I/O portion of the bio to be processed.
605 */
606bool md_flush_request(struct mddev *mddev, struct bio *bio)
607{
608 ktime_t req_start = ktime_get_boottime();
609 spin_lock_irq(&mddev->lock);
610 /* flush requests wait until ongoing flush completes,
611 * hence coalescing all the pending requests.
612 */
613 wait_event_lock_irq(mddev->sb_wait,
614 !mddev->flush_bio ||
615 ktime_before(req_start, mddev->prev_flush_start),
616 mddev->lock);
617 /* new request after previous flush is completed */
618 if (ktime_after(req_start, mddev->prev_flush_start)) {
619 WARN_ON(mddev->flush_bio);
620 mddev->flush_bio = bio;
621 bio = NULL;
622 }
623 spin_unlock_irq(&mddev->lock);
624
625 if (!bio) {
626 INIT_WORK(&mddev->flush_work, submit_flushes);
627 queue_work(md_wq, &mddev->flush_work);
628 } else {
629 /* flush was performed for some other bio while we waited. */
630 if (bio->bi_iter.bi_size == 0)
631 /* an empty barrier - all done */
632 bio_endio(bio);
633 else {
634 bio->bi_opf &= ~REQ_PREFLUSH;
635 return false;
636 }
637 }
638 return true;
639}
640EXPORT_SYMBOL(md_flush_request);
641
642static inline struct mddev *mddev_get(struct mddev *mddev)
643{
644 atomic_inc(&mddev->active);
645 return mddev;
646}
647
648static void mddev_delayed_delete(struct work_struct *ws);
649
650static void mddev_put(struct mddev *mddev)
651{
652 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
653 return;
654 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
655 mddev->ctime == 0 && !mddev->hold_active) {
656 /* Array is not configured at all, and not held active,
657 * so destroy it */
658 list_del_init(&mddev->all_mddevs);
659
660 /*
661 * Call queue_work inside the spinlock so that
662 * flush_workqueue() after mddev_find will succeed in waiting
663 * for the work to be done.
664 */
665 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
666 queue_work(md_misc_wq, &mddev->del_work);
667 }
668 spin_unlock(&all_mddevs_lock);
669}
670
671static void md_safemode_timeout(struct timer_list *t);
672
673void mddev_init(struct mddev *mddev)
674{
675 kobject_init(&mddev->kobj, &md_ktype);
676 mutex_init(&mddev->open_mutex);
677 mutex_init(&mddev->reconfig_mutex);
678 mutex_init(&mddev->bitmap_info.mutex);
679 INIT_LIST_HEAD(&mddev->disks);
680 INIT_LIST_HEAD(&mddev->all_mddevs);
681 timer_setup(&mddev->safemode_timer, md_safemode_timeout, 0);
682 atomic_set(&mddev->active, 1);
683 atomic_set(&mddev->openers, 0);
684 atomic_set(&mddev->active_io, 0);
685 spin_lock_init(&mddev->lock);
686 atomic_set(&mddev->flush_pending, 0);
687 init_waitqueue_head(&mddev->sb_wait);
688 init_waitqueue_head(&mddev->recovery_wait);
689 mddev->reshape_position = MaxSector;
690 mddev->reshape_backwards = 0;
691 mddev->last_sync_action = "none";
692 mddev->resync_min = 0;
693 mddev->resync_max = MaxSector;
694 mddev->level = LEVEL_NONE;
695}
696EXPORT_SYMBOL_GPL(mddev_init);
697
698static struct mddev *mddev_find_locked(dev_t unit)
699{
700 struct mddev *mddev;
701
702 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
703 if (mddev->unit == unit)
704 return mddev;
705
706 return NULL;
707}
708
709/* find an unused unit number */
710static dev_t mddev_alloc_unit(void)
711{
712 static int next_minor = 512;
713 int start = next_minor;
714 bool is_free = 0;
715 dev_t dev = 0;
716
717 while (!is_free) {
718 dev = MKDEV(MD_MAJOR, next_minor);
719 next_minor++;
720 if (next_minor > MINORMASK)
721 next_minor = 0;
722 if (next_minor == start)
723 return 0; /* Oh dear, all in use. */
724 is_free = !mddev_find_locked(dev);
725 }
726
727 return dev;
728}
729
730static struct mddev *mddev_find(dev_t unit)
731{
732 struct mddev *mddev;
733
734 if (MAJOR(unit) != MD_MAJOR)
735 unit &= ~((1 << MdpMinorShift) - 1);
736
737 spin_lock(&all_mddevs_lock);
738 mddev = mddev_find_locked(unit);
739 if (mddev)
740 mddev_get(mddev);
741 spin_unlock(&all_mddevs_lock);
742
743 return mddev;
744}
745
746static struct mddev *mddev_alloc(dev_t unit)
747{
748 struct mddev *new;
749 int error;
750
751 if (unit && MAJOR(unit) != MD_MAJOR)
752 unit &= ~((1 << MdpMinorShift) - 1);
753
754 new = kzalloc(sizeof(*new), GFP_KERNEL);
755 if (!new)
756 return ERR_PTR(-ENOMEM);
757 mddev_init(new);
758
759 spin_lock(&all_mddevs_lock);
760 if (unit) {
761 error = -EEXIST;
762 if (mddev_find_locked(unit))
763 goto out_free_new;
764 new->unit = unit;
765 if (MAJOR(unit) == MD_MAJOR)
766 new->md_minor = MINOR(unit);
767 else
768 new->md_minor = MINOR(unit) >> MdpMinorShift;
769 new->hold_active = UNTIL_IOCTL;
770 } else {
771 error = -ENODEV;
772 new->unit = mddev_alloc_unit();
773 if (!new->unit)
774 goto out_free_new;
775 new->md_minor = MINOR(new->unit);
776 new->hold_active = UNTIL_STOP;
777 }
778
779 list_add(&new->all_mddevs, &all_mddevs);
780 spin_unlock(&all_mddevs_lock);
781 return new;
782out_free_new:
783 spin_unlock(&all_mddevs_lock);
784 kfree(new);
785 return ERR_PTR(error);
786}
787
788static const struct attribute_group md_redundancy_group;
789
790void mddev_unlock(struct mddev *mddev)
791{
792 if (mddev->to_remove) {
793 /* These cannot be removed under reconfig_mutex as
794 * an access to the files will try to take reconfig_mutex
795 * while holding the file unremovable, which leads to
796 * a deadlock.
797 * So hold set sysfs_active while the remove in happeing,
798 * and anything else which might set ->to_remove or my
799 * otherwise change the sysfs namespace will fail with
800 * -EBUSY if sysfs_active is still set.
801 * We set sysfs_active under reconfig_mutex and elsewhere
802 * test it under the same mutex to ensure its correct value
803 * is seen.
804 */
805 const struct attribute_group *to_remove = mddev->to_remove;
806 mddev->to_remove = NULL;
807 mddev->sysfs_active = 1;
808 mutex_unlock(&mddev->reconfig_mutex);
809
810 if (mddev->kobj.sd) {
811 if (to_remove != &md_redundancy_group)
812 sysfs_remove_group(&mddev->kobj, to_remove);
813 if (mddev->pers == NULL ||
814 mddev->pers->sync_request == NULL) {
815 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
816 if (mddev->sysfs_action)
817 sysfs_put(mddev->sysfs_action);
818 if (mddev->sysfs_completed)
819 sysfs_put(mddev->sysfs_completed);
820 if (mddev->sysfs_degraded)
821 sysfs_put(mddev->sysfs_degraded);
822 mddev->sysfs_action = NULL;
823 mddev->sysfs_completed = NULL;
824 mddev->sysfs_degraded = NULL;
825 }
826 }
827 mddev->sysfs_active = 0;
828 } else
829 mutex_unlock(&mddev->reconfig_mutex);
830
831 /* As we've dropped the mutex we need a spinlock to
832 * make sure the thread doesn't disappear
833 */
834 spin_lock(&pers_lock);
835 md_wakeup_thread(mddev->thread);
836 wake_up(&mddev->sb_wait);
837 spin_unlock(&pers_lock);
838}
839EXPORT_SYMBOL_GPL(mddev_unlock);
840
841struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
842{
843 struct md_rdev *rdev;
844
845 rdev_for_each_rcu(rdev, mddev)
846 if (rdev->desc_nr == nr)
847 return rdev;
848
849 return NULL;
850}
851EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
852
853static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
854{
855 struct md_rdev *rdev;
856
857 rdev_for_each(rdev, mddev)
858 if (rdev->bdev->bd_dev == dev)
859 return rdev;
860
861 return NULL;
862}
863
864struct md_rdev *md_find_rdev_rcu(struct mddev *mddev, dev_t dev)
865{
866 struct md_rdev *rdev;
867
868 rdev_for_each_rcu(rdev, mddev)
869 if (rdev->bdev->bd_dev == dev)
870 return rdev;
871
872 return NULL;
873}
874EXPORT_SYMBOL_GPL(md_find_rdev_rcu);
875
876static struct md_personality *find_pers(int level, char *clevel)
877{
878 struct md_personality *pers;
879 list_for_each_entry(pers, &pers_list, list) {
880 if (level != LEVEL_NONE && pers->level == level)
881 return pers;
882 if (strcmp(pers->name, clevel)==0)
883 return pers;
884 }
885 return NULL;
886}
887
888/* return the offset of the super block in 512byte sectors */
889static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
890{
891 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
892 return MD_NEW_SIZE_SECTORS(num_sectors);
893}
894
895static int alloc_disk_sb(struct md_rdev *rdev)
896{
897 rdev->sb_page = alloc_page(GFP_KERNEL);
898 if (!rdev->sb_page)
899 return -ENOMEM;
900 return 0;
901}
902
903void md_rdev_clear(struct md_rdev *rdev)
904{
905 if (rdev->sb_page) {
906 put_page(rdev->sb_page);
907 rdev->sb_loaded = 0;
908 rdev->sb_page = NULL;
909 rdev->sb_start = 0;
910 rdev->sectors = 0;
911 }
912 if (rdev->bb_page) {
913 put_page(rdev->bb_page);
914 rdev->bb_page = NULL;
915 }
916 badblocks_exit(&rdev->badblocks);
917}
918EXPORT_SYMBOL_GPL(md_rdev_clear);
919
920static void super_written(struct bio *bio)
921{
922 struct md_rdev *rdev = bio->bi_private;
923 struct mddev *mddev = rdev->mddev;
924
925 if (bio->bi_status) {
926 pr_err("md: %s gets error=%d\n", __func__,
927 blk_status_to_errno(bio->bi_status));
928 md_error(mddev, rdev);
929 if (!test_bit(Faulty, &rdev->flags)
930 && (bio->bi_opf & MD_FAILFAST)) {
931 set_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags);
932 set_bit(LastDev, &rdev->flags);
933 }
934 } else
935 clear_bit(LastDev, &rdev->flags);
936
937 if (atomic_dec_and_test(&mddev->pending_writes))
938 wake_up(&mddev->sb_wait);
939 rdev_dec_pending(rdev, mddev);
940 bio_put(bio);
941}
942
943void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
944 sector_t sector, int size, struct page *page)
945{
946 /* write first size bytes of page to sector of rdev
947 * Increment mddev->pending_writes before returning
948 * and decrement it on completion, waking up sb_wait
949 * if zero is reached.
950 * If an error occurred, call md_error
951 */
952 struct bio *bio;
953 int ff = 0;
954
955 if (!page)
956 return;
957
958 if (test_bit(Faulty, &rdev->flags))
959 return;
960
961 bio = bio_alloc_bioset(GFP_NOIO, 1, &mddev->sync_set);
962
963 atomic_inc(&rdev->nr_pending);
964
965 bio_set_dev(bio, rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev);
966 bio->bi_iter.bi_sector = sector;
967 bio_add_page(bio, page, size, 0);
968 bio->bi_private = rdev;
969 bio->bi_end_io = super_written;
970
971 if (test_bit(MD_FAILFAST_SUPPORTED, &mddev->flags) &&
972 test_bit(FailFast, &rdev->flags) &&
973 !test_bit(LastDev, &rdev->flags))
974 ff = MD_FAILFAST;
975 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH | REQ_FUA | ff;
976
977 atomic_inc(&mddev->pending_writes);
978 submit_bio(bio);
979}
980
981int md_super_wait(struct mddev *mddev)
982{
983 /* wait for all superblock writes that were scheduled to complete */
984 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
985 if (test_and_clear_bit(MD_SB_NEED_REWRITE, &mddev->sb_flags))
986 return -EAGAIN;
987 return 0;
988}
989
990int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
991 struct page *page, int op, int op_flags, bool metadata_op)
992{
993 struct bio bio;
994 struct bio_vec bvec;
995
996 bio_init(&bio, &bvec, 1);
997
998 if (metadata_op && rdev->meta_bdev)
999 bio_set_dev(&bio, rdev->meta_bdev);
1000 else
1001 bio_set_dev(&bio, rdev->bdev);
1002 bio.bi_opf = op | op_flags;
1003 if (metadata_op)
1004 bio.bi_iter.bi_sector = sector + rdev->sb_start;
1005 else if (rdev->mddev->reshape_position != MaxSector &&
1006 (rdev->mddev->reshape_backwards ==
1007 (sector >= rdev->mddev->reshape_position)))
1008 bio.bi_iter.bi_sector = sector + rdev->new_data_offset;
1009 else
1010 bio.bi_iter.bi_sector = sector + rdev->data_offset;
1011 bio_add_page(&bio, page, size, 0);
1012
1013 submit_bio_wait(&bio);
1014
1015 return !bio.bi_status;
1016}
1017EXPORT_SYMBOL_GPL(sync_page_io);
1018
1019static int read_disk_sb(struct md_rdev *rdev, int size)
1020{
1021 char b[BDEVNAME_SIZE];
1022
1023 if (rdev->sb_loaded)
1024 return 0;
1025
1026 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
1027 goto fail;
1028 rdev->sb_loaded = 1;
1029 return 0;
1030
1031fail:
1032 pr_err("md: disabled device %s, could not read superblock.\n",
1033 bdevname(rdev->bdev,b));
1034 return -EINVAL;
1035}
1036
1037static int md_uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1038{
1039 return sb1->set_uuid0 == sb2->set_uuid0 &&
1040 sb1->set_uuid1 == sb2->set_uuid1 &&
1041 sb1->set_uuid2 == sb2->set_uuid2 &&
1042 sb1->set_uuid3 == sb2->set_uuid3;
1043}
1044
1045static int md_sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
1046{
1047 int ret;
1048 mdp_super_t *tmp1, *tmp2;
1049
1050 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
1051 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
1052
1053 if (!tmp1 || !tmp2) {
1054 ret = 0;
1055 goto abort;
1056 }
1057
1058 *tmp1 = *sb1;
1059 *tmp2 = *sb2;
1060
1061 /*
1062 * nr_disks is not constant
1063 */
1064 tmp1->nr_disks = 0;
1065 tmp2->nr_disks = 0;
1066
1067 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
1068abort:
1069 kfree(tmp1);
1070 kfree(tmp2);
1071 return ret;
1072}
1073
1074static u32 md_csum_fold(u32 csum)
1075{
1076 csum = (csum & 0xffff) + (csum >> 16);
1077 return (csum & 0xffff) + (csum >> 16);
1078}
1079
1080static unsigned int calc_sb_csum(mdp_super_t *sb)
1081{
1082 u64 newcsum = 0;
1083 u32 *sb32 = (u32*)sb;
1084 int i;
1085 unsigned int disk_csum, csum;
1086
1087 disk_csum = sb->sb_csum;
1088 sb->sb_csum = 0;
1089
1090 for (i = 0; i < MD_SB_BYTES/4 ; i++)
1091 newcsum += sb32[i];
1092 csum = (newcsum & 0xffffffff) + (newcsum>>32);
1093
1094#ifdef CONFIG_ALPHA
1095 /* This used to use csum_partial, which was wrong for several
1096 * reasons including that different results are returned on
1097 * different architectures. It isn't critical that we get exactly
1098 * the same return value as before (we always csum_fold before
1099 * testing, and that removes any differences). However as we
1100 * know that csum_partial always returned a 16bit value on
1101 * alphas, do a fold to maximise conformity to previous behaviour.
1102 */
1103 sb->sb_csum = md_csum_fold(disk_csum);
1104#else
1105 sb->sb_csum = disk_csum;
1106#endif
1107 return csum;
1108}
1109
1110/*
1111 * Handle superblock details.
1112 * We want to be able to handle multiple superblock formats
1113 * so we have a common interface to them all, and an array of
1114 * different handlers.
1115 * We rely on user-space to write the initial superblock, and support
1116 * reading and updating of superblocks.
1117 * Interface methods are:
1118 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1119 * loads and validates a superblock on dev.
1120 * if refdev != NULL, compare superblocks on both devices
1121 * Return:
1122 * 0 - dev has a superblock that is compatible with refdev
1123 * 1 - dev has a superblock that is compatible and newer than refdev
1124 * so dev should be used as the refdev in future
1125 * -EINVAL superblock incompatible or invalid
1126 * -othererror e.g. -EIO
1127 *
1128 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1129 * Verify that dev is acceptable into mddev.
1130 * The first time, mddev->raid_disks will be 0, and data from
1131 * dev should be merged in. Subsequent calls check that dev
1132 * is new enough. Return 0 or -EINVAL
1133 *
1134 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1135 * Update the superblock for rdev with data in mddev
1136 * This does not write to disc.
1137 *
1138 */
1139
1140struct super_type {
1141 char *name;
1142 struct module *owner;
1143 int (*load_super)(struct md_rdev *rdev,
1144 struct md_rdev *refdev,
1145 int minor_version);
1146 int (*validate_super)(struct mddev *mddev,
1147 struct md_rdev *rdev);
1148 void (*sync_super)(struct mddev *mddev,
1149 struct md_rdev *rdev);
1150 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1151 sector_t num_sectors);
1152 int (*allow_new_offset)(struct md_rdev *rdev,
1153 unsigned long long new_offset);
1154};
1155
1156/*
1157 * Check that the given mddev has no bitmap.
1158 *
1159 * This function is called from the run method of all personalities that do not
1160 * support bitmaps. It prints an error message and returns non-zero if mddev
1161 * has a bitmap. Otherwise, it returns 0.
1162 *
1163 */
1164int md_check_no_bitmap(struct mddev *mddev)
1165{
1166 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1167 return 0;
1168 pr_warn("%s: bitmaps are not supported for %s\n",
1169 mdname(mddev), mddev->pers->name);
1170 return 1;
1171}
1172EXPORT_SYMBOL(md_check_no_bitmap);
1173
1174/*
1175 * load_super for 0.90.0
1176 */
1177static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1178{
1179 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1180 mdp_super_t *sb;
1181 int ret;
1182 bool spare_disk = true;
1183
1184 /*
1185 * Calculate the position of the superblock (512byte sectors),
1186 * it's at the end of the disk.
1187 *
1188 * It also happens to be a multiple of 4Kb.
1189 */
1190 rdev->sb_start = calc_dev_sboffset(rdev);
1191
1192 ret = read_disk_sb(rdev, MD_SB_BYTES);
1193 if (ret)
1194 return ret;
1195
1196 ret = -EINVAL;
1197
1198 bdevname(rdev->bdev, b);
1199 sb = page_address(rdev->sb_page);
1200
1201 if (sb->md_magic != MD_SB_MAGIC) {
1202 pr_warn("md: invalid raid superblock magic on %s\n", b);
1203 goto abort;
1204 }
1205
1206 if (sb->major_version != 0 ||
1207 sb->minor_version < 90 ||
1208 sb->minor_version > 91) {
1209 pr_warn("Bad version number %d.%d on %s\n",
1210 sb->major_version, sb->minor_version, b);
1211 goto abort;
1212 }
1213
1214 if (sb->raid_disks <= 0)
1215 goto abort;
1216
1217 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1218 pr_warn("md: invalid superblock checksum on %s\n", b);
1219 goto abort;
1220 }
1221
1222 rdev->preferred_minor = sb->md_minor;
1223 rdev->data_offset = 0;
1224 rdev->new_data_offset = 0;
1225 rdev->sb_size = MD_SB_BYTES;
1226 rdev->badblocks.shift = -1;
1227
1228 if (sb->level == LEVEL_MULTIPATH)
1229 rdev->desc_nr = -1;
1230 else
1231 rdev->desc_nr = sb->this_disk.number;
1232
1233 /* not spare disk, or LEVEL_MULTIPATH */
1234 if (sb->level == LEVEL_MULTIPATH ||
1235 (rdev->desc_nr >= 0 &&
1236 rdev->desc_nr < MD_SB_DISKS &&
1237 sb->disks[rdev->desc_nr].state &
1238 ((1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE))))
1239 spare_disk = false;
1240
1241 if (!refdev) {
1242 if (!spare_disk)
1243 ret = 1;
1244 else
1245 ret = 0;
1246 } else {
1247 __u64 ev1, ev2;
1248 mdp_super_t *refsb = page_address(refdev->sb_page);
1249 if (!md_uuid_equal(refsb, sb)) {
1250 pr_warn("md: %s has different UUID to %s\n",
1251 b, bdevname(refdev->bdev,b2));
1252 goto abort;
1253 }
1254 if (!md_sb_equal(refsb, sb)) {
1255 pr_warn("md: %s has same UUID but different superblock to %s\n",
1256 b, bdevname(refdev->bdev, b2));
1257 goto abort;
1258 }
1259 ev1 = md_event(sb);
1260 ev2 = md_event(refsb);
1261
1262 if (!spare_disk && ev1 > ev2)
1263 ret = 1;
1264 else
1265 ret = 0;
1266 }
1267 rdev->sectors = rdev->sb_start;
1268 /* Limit to 4TB as metadata cannot record more than that.
1269 * (not needed for Linear and RAID0 as metadata doesn't
1270 * record this size)
1271 */
1272 if ((u64)rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1273 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1274
1275 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1276 /* "this cannot possibly happen" ... */
1277 ret = -EINVAL;
1278
1279 abort:
1280 return ret;
1281}
1282
1283/*
1284 * validate_super for 0.90.0
1285 */
1286static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1287{
1288 mdp_disk_t *desc;
1289 mdp_super_t *sb = page_address(rdev->sb_page);
1290 __u64 ev1 = md_event(sb);
1291
1292 rdev->raid_disk = -1;
1293 clear_bit(Faulty, &rdev->flags);
1294 clear_bit(In_sync, &rdev->flags);
1295 clear_bit(Bitmap_sync, &rdev->flags);
1296 clear_bit(WriteMostly, &rdev->flags);
1297
1298 if (mddev->raid_disks == 0) {
1299 mddev->major_version = 0;
1300 mddev->minor_version = sb->minor_version;
1301 mddev->patch_version = sb->patch_version;
1302 mddev->external = 0;
1303 mddev->chunk_sectors = sb->chunk_size >> 9;
1304 mddev->ctime = sb->ctime;
1305 mddev->utime = sb->utime;
1306 mddev->level = sb->level;
1307 mddev->clevel[0] = 0;
1308 mddev->layout = sb->layout;
1309 mddev->raid_disks = sb->raid_disks;
1310 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1311 mddev->events = ev1;
1312 mddev->bitmap_info.offset = 0;
1313 mddev->bitmap_info.space = 0;
1314 /* bitmap can use 60 K after the 4K superblocks */
1315 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1316 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1317 mddev->reshape_backwards = 0;
1318
1319 if (mddev->minor_version >= 91) {
1320 mddev->reshape_position = sb->reshape_position;
1321 mddev->delta_disks = sb->delta_disks;
1322 mddev->new_level = sb->new_level;
1323 mddev->new_layout = sb->new_layout;
1324 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1325 if (mddev->delta_disks < 0)
1326 mddev->reshape_backwards = 1;
1327 } else {
1328 mddev->reshape_position = MaxSector;
1329 mddev->delta_disks = 0;
1330 mddev->new_level = mddev->level;
1331 mddev->new_layout = mddev->layout;
1332 mddev->new_chunk_sectors = mddev->chunk_sectors;
1333 }
1334 if (mddev->level == 0)
1335 mddev->layout = -1;
1336
1337 if (sb->state & (1<<MD_SB_CLEAN))
1338 mddev->recovery_cp = MaxSector;
1339 else {
1340 if (sb->events_hi == sb->cp_events_hi &&
1341 sb->events_lo == sb->cp_events_lo) {
1342 mddev->recovery_cp = sb->recovery_cp;
1343 } else
1344 mddev->recovery_cp = 0;
1345 }
1346
1347 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1348 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1349 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1350 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1351
1352 mddev->max_disks = MD_SB_DISKS;
1353
1354 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1355 mddev->bitmap_info.file == NULL) {
1356 mddev->bitmap_info.offset =
1357 mddev->bitmap_info.default_offset;
1358 mddev->bitmap_info.space =
1359 mddev->bitmap_info.default_space;
1360 }
1361
1362 } else if (mddev->pers == NULL) {
1363 /* Insist on good event counter while assembling, except
1364 * for spares (which don't need an event count) */
1365 ++ev1;
1366 if (sb->disks[rdev->desc_nr].state & (
1367 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1368 if (ev1 < mddev->events)
1369 return -EINVAL;
1370 } else if (mddev->bitmap) {
1371 /* if adding to array with a bitmap, then we can accept an
1372 * older device ... but not too old.
1373 */
1374 if (ev1 < mddev->bitmap->events_cleared)
1375 return 0;
1376 if (ev1 < mddev->events)
1377 set_bit(Bitmap_sync, &rdev->flags);
1378 } else {
1379 if (ev1 < mddev->events)
1380 /* just a hot-add of a new device, leave raid_disk at -1 */
1381 return 0;
1382 }
1383
1384 if (mddev->level != LEVEL_MULTIPATH) {
1385 desc = sb->disks + rdev->desc_nr;
1386
1387 if (desc->state & (1<<MD_DISK_FAULTY))
1388 set_bit(Faulty, &rdev->flags);
1389 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1390 desc->raid_disk < mddev->raid_disks */) {
1391 set_bit(In_sync, &rdev->flags);
1392 rdev->raid_disk = desc->raid_disk;
1393 rdev->saved_raid_disk = desc->raid_disk;
1394 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1395 /* active but not in sync implies recovery up to
1396 * reshape position. We don't know exactly where
1397 * that is, so set to zero for now */
1398 if (mddev->minor_version >= 91) {
1399 rdev->recovery_offset = 0;
1400 rdev->raid_disk = desc->raid_disk;
1401 }
1402 }
1403 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1404 set_bit(WriteMostly, &rdev->flags);
1405 if (desc->state & (1<<MD_DISK_FAILFAST))
1406 set_bit(FailFast, &rdev->flags);
1407 } else /* MULTIPATH are always insync */
1408 set_bit(In_sync, &rdev->flags);
1409 return 0;
1410}
1411
1412/*
1413 * sync_super for 0.90.0
1414 */
1415static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1416{
1417 mdp_super_t *sb;
1418 struct md_rdev *rdev2;
1419 int next_spare = mddev->raid_disks;
1420
1421 /* make rdev->sb match mddev data..
1422 *
1423 * 1/ zero out disks
1424 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1425 * 3/ any empty disks < next_spare become removed
1426 *
1427 * disks[0] gets initialised to REMOVED because
1428 * we cannot be sure from other fields if it has
1429 * been initialised or not.
1430 */
1431 int i;
1432 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1433
1434 rdev->sb_size = MD_SB_BYTES;
1435
1436 sb = page_address(rdev->sb_page);
1437
1438 memset(sb, 0, sizeof(*sb));
1439
1440 sb->md_magic = MD_SB_MAGIC;
1441 sb->major_version = mddev->major_version;
1442 sb->patch_version = mddev->patch_version;
1443 sb->gvalid_words = 0; /* ignored */
1444 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1445 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1446 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1447 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1448
1449 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1450 sb->level = mddev->level;
1451 sb->size = mddev->dev_sectors / 2;
1452 sb->raid_disks = mddev->raid_disks;
1453 sb->md_minor = mddev->md_minor;
1454 sb->not_persistent = 0;
1455 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1456 sb->state = 0;
1457 sb->events_hi = (mddev->events>>32);
1458 sb->events_lo = (u32)mddev->events;
1459
1460 if (mddev->reshape_position == MaxSector)
1461 sb->minor_version = 90;
1462 else {
1463 sb->minor_version = 91;
1464 sb->reshape_position = mddev->reshape_position;
1465 sb->new_level = mddev->new_level;
1466 sb->delta_disks = mddev->delta_disks;
1467 sb->new_layout = mddev->new_layout;
1468 sb->new_chunk = mddev->new_chunk_sectors << 9;
1469 }
1470 mddev->minor_version = sb->minor_version;
1471 if (mddev->in_sync)
1472 {
1473 sb->recovery_cp = mddev->recovery_cp;
1474 sb->cp_events_hi = (mddev->events>>32);
1475 sb->cp_events_lo = (u32)mddev->events;
1476 if (mddev->recovery_cp == MaxSector)
1477 sb->state = (1<< MD_SB_CLEAN);
1478 } else
1479 sb->recovery_cp = 0;
1480
1481 sb->layout = mddev->layout;
1482 sb->chunk_size = mddev->chunk_sectors << 9;
1483
1484 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1485 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1486
1487 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1488 rdev_for_each(rdev2, mddev) {
1489 mdp_disk_t *d;
1490 int desc_nr;
1491 int is_active = test_bit(In_sync, &rdev2->flags);
1492
1493 if (rdev2->raid_disk >= 0 &&
1494 sb->minor_version >= 91)
1495 /* we have nowhere to store the recovery_offset,
1496 * but if it is not below the reshape_position,
1497 * we can piggy-back on that.
1498 */
1499 is_active = 1;
1500 if (rdev2->raid_disk < 0 ||
1501 test_bit(Faulty, &rdev2->flags))
1502 is_active = 0;
1503 if (is_active)
1504 desc_nr = rdev2->raid_disk;
1505 else
1506 desc_nr = next_spare++;
1507 rdev2->desc_nr = desc_nr;
1508 d = &sb->disks[rdev2->desc_nr];
1509 nr_disks++;
1510 d->number = rdev2->desc_nr;
1511 d->major = MAJOR(rdev2->bdev->bd_dev);
1512 d->minor = MINOR(rdev2->bdev->bd_dev);
1513 if (is_active)
1514 d->raid_disk = rdev2->raid_disk;
1515 else
1516 d->raid_disk = rdev2->desc_nr; /* compatibility */
1517 if (test_bit(Faulty, &rdev2->flags))
1518 d->state = (1<<MD_DISK_FAULTY);
1519 else if (is_active) {
1520 d->state = (1<<MD_DISK_ACTIVE);
1521 if (test_bit(In_sync, &rdev2->flags))
1522 d->state |= (1<<MD_DISK_SYNC);
1523 active++;
1524 working++;
1525 } else {
1526 d->state = 0;
1527 spare++;
1528 working++;
1529 }
1530 if (test_bit(WriteMostly, &rdev2->flags))
1531 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1532 if (test_bit(FailFast, &rdev2->flags))
1533 d->state |= (1<<MD_DISK_FAILFAST);
1534 }
1535 /* now set the "removed" and "faulty" bits on any missing devices */
1536 for (i=0 ; i < mddev->raid_disks ; i++) {
1537 mdp_disk_t *d = &sb->disks[i];
1538 if (d->state == 0 && d->number == 0) {
1539 d->number = i;
1540 d->raid_disk = i;
1541 d->state = (1<<MD_DISK_REMOVED);
1542 d->state |= (1<<MD_DISK_FAULTY);
1543 failed++;
1544 }
1545 }
1546 sb->nr_disks = nr_disks;
1547 sb->active_disks = active;
1548 sb->working_disks = working;
1549 sb->failed_disks = failed;
1550 sb->spare_disks = spare;
1551
1552 sb->this_disk = sb->disks[rdev->desc_nr];
1553 sb->sb_csum = calc_sb_csum(sb);
1554}
1555
1556/*
1557 * rdev_size_change for 0.90.0
1558 */
1559static unsigned long long
1560super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1561{
1562 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1563 return 0; /* component must fit device */
1564 if (rdev->mddev->bitmap_info.offset)
1565 return 0; /* can't move bitmap */
1566 rdev->sb_start = calc_dev_sboffset(rdev);
1567 if (!num_sectors || num_sectors > rdev->sb_start)
1568 num_sectors = rdev->sb_start;
1569 /* Limit to 4TB as metadata cannot record more than that.
1570 * 4TB == 2^32 KB, or 2*2^32 sectors.
1571 */
1572 if ((u64)num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1573 num_sectors = (sector_t)(2ULL << 32) - 2;
1574 do {
1575 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1576 rdev->sb_page);
1577 } while (md_super_wait(rdev->mddev) < 0);
1578 return num_sectors;
1579}
1580
1581static int
1582super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1583{
1584 /* non-zero offset changes not possible with v0.90 */
1585 return new_offset == 0;
1586}
1587
1588/*
1589 * version 1 superblock
1590 */
1591
1592static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1593{
1594 __le32 disk_csum;
1595 u32 csum;
1596 unsigned long long newcsum;
1597 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1598 __le32 *isuper = (__le32*)sb;
1599
1600 disk_csum = sb->sb_csum;
1601 sb->sb_csum = 0;
1602 newcsum = 0;
1603 for (; size >= 4; size -= 4)
1604 newcsum += le32_to_cpu(*isuper++);
1605
1606 if (size == 2)
1607 newcsum += le16_to_cpu(*(__le16*) isuper);
1608
1609 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1610 sb->sb_csum = disk_csum;
1611 return cpu_to_le32(csum);
1612}
1613
1614static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1615{
1616 struct mdp_superblock_1 *sb;
1617 int ret;
1618 sector_t sb_start;
1619 sector_t sectors;
1620 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1621 int bmask;
1622 bool spare_disk = true;
1623
1624 /*
1625 * Calculate the position of the superblock in 512byte sectors.
1626 * It is always aligned to a 4K boundary and
1627 * depeding on minor_version, it can be:
1628 * 0: At least 8K, but less than 12K, from end of device
1629 * 1: At start of device
1630 * 2: 4K from start of device.
1631 */
1632 switch(minor_version) {
1633 case 0:
1634 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1635 sb_start -= 8*2;
1636 sb_start &= ~(sector_t)(4*2-1);
1637 break;
1638 case 1:
1639 sb_start = 0;
1640 break;
1641 case 2:
1642 sb_start = 8;
1643 break;
1644 default:
1645 return -EINVAL;
1646 }
1647 rdev->sb_start = sb_start;
1648
1649 /* superblock is rarely larger than 1K, but it can be larger,
1650 * and it is safe to read 4k, so we do that
1651 */
1652 ret = read_disk_sb(rdev, 4096);
1653 if (ret) return ret;
1654
1655 sb = page_address(rdev->sb_page);
1656
1657 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1658 sb->major_version != cpu_to_le32(1) ||
1659 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1660 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1661 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1662 return -EINVAL;
1663
1664 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1665 pr_warn("md: invalid superblock checksum on %s\n",
1666 bdevname(rdev->bdev,b));
1667 return -EINVAL;
1668 }
1669 if (le64_to_cpu(sb->data_size) < 10) {
1670 pr_warn("md: data_size too small on %s\n",
1671 bdevname(rdev->bdev,b));
1672 return -EINVAL;
1673 }
1674 if (sb->pad0 ||
1675 sb->pad3[0] ||
1676 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1677 /* Some padding is non-zero, might be a new feature */
1678 return -EINVAL;
1679
1680 rdev->preferred_minor = 0xffff;
1681 rdev->data_offset = le64_to_cpu(sb->data_offset);
1682 rdev->new_data_offset = rdev->data_offset;
1683 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1684 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1685 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1686 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1687
1688 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1689 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1690 if (rdev->sb_size & bmask)
1691 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1692
1693 if (minor_version
1694 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1695 return -EINVAL;
1696 if (minor_version
1697 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1698 return -EINVAL;
1699
1700 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1701 rdev->desc_nr = -1;
1702 else
1703 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1704
1705 if (!rdev->bb_page) {
1706 rdev->bb_page = alloc_page(GFP_KERNEL);
1707 if (!rdev->bb_page)
1708 return -ENOMEM;
1709 }
1710 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1711 rdev->badblocks.count == 0) {
1712 /* need to load the bad block list.
1713 * Currently we limit it to one page.
1714 */
1715 s32 offset;
1716 sector_t bb_sector;
1717 __le64 *bbp;
1718 int i;
1719 int sectors = le16_to_cpu(sb->bblog_size);
1720 if (sectors > (PAGE_SIZE / 512))
1721 return -EINVAL;
1722 offset = le32_to_cpu(sb->bblog_offset);
1723 if (offset == 0)
1724 return -EINVAL;
1725 bb_sector = (long long)offset;
1726 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1727 rdev->bb_page, REQ_OP_READ, 0, true))
1728 return -EIO;
1729 bbp = (__le64 *)page_address(rdev->bb_page);
1730 rdev->badblocks.shift = sb->bblog_shift;
1731 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1732 u64 bb = le64_to_cpu(*bbp);
1733 int count = bb & (0x3ff);
1734 u64 sector = bb >> 10;
1735 sector <<= sb->bblog_shift;
1736 count <<= sb->bblog_shift;
1737 if (bb + 1 == 0)
1738 break;
1739 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1740 return -EINVAL;
1741 }
1742 } else if (sb->bblog_offset != 0)
1743 rdev->badblocks.shift = 0;
1744
1745 if ((le32_to_cpu(sb->feature_map) &
1746 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS))) {
1747 rdev->ppl.offset = (__s16)le16_to_cpu(sb->ppl.offset);
1748 rdev->ppl.size = le16_to_cpu(sb->ppl.size);
1749 rdev->ppl.sector = rdev->sb_start + rdev->ppl.offset;
1750 }
1751
1752 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT) &&
1753 sb->level != 0)
1754 return -EINVAL;
1755
1756 /* not spare disk, or LEVEL_MULTIPATH */
1757 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH) ||
1758 (rdev->desc_nr >= 0 &&
1759 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1760 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1761 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL)))
1762 spare_disk = false;
1763
1764 if (!refdev) {
1765 if (!spare_disk)
1766 ret = 1;
1767 else
1768 ret = 0;
1769 } else {
1770 __u64 ev1, ev2;
1771 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1772
1773 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1774 sb->level != refsb->level ||
1775 sb->layout != refsb->layout ||
1776 sb->chunksize != refsb->chunksize) {
1777 pr_warn("md: %s has strangely different superblock to %s\n",
1778 bdevname(rdev->bdev,b),
1779 bdevname(refdev->bdev,b2));
1780 return -EINVAL;
1781 }
1782 ev1 = le64_to_cpu(sb->events);
1783 ev2 = le64_to_cpu(refsb->events);
1784
1785 if (!spare_disk && ev1 > ev2)
1786 ret = 1;
1787 else
1788 ret = 0;
1789 }
1790 if (minor_version) {
1791 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1792 sectors -= rdev->data_offset;
1793 } else
1794 sectors = rdev->sb_start;
1795 if (sectors < le64_to_cpu(sb->data_size))
1796 return -EINVAL;
1797 rdev->sectors = le64_to_cpu(sb->data_size);
1798 return ret;
1799}
1800
1801static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1802{
1803 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1804 __u64 ev1 = le64_to_cpu(sb->events);
1805
1806 rdev->raid_disk = -1;
1807 clear_bit(Faulty, &rdev->flags);
1808 clear_bit(In_sync, &rdev->flags);
1809 clear_bit(Bitmap_sync, &rdev->flags);
1810 clear_bit(WriteMostly, &rdev->flags);
1811
1812 if (mddev->raid_disks == 0) {
1813 mddev->major_version = 1;
1814 mddev->patch_version = 0;
1815 mddev->external = 0;
1816 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1817 mddev->ctime = le64_to_cpu(sb->ctime);
1818 mddev->utime = le64_to_cpu(sb->utime);
1819 mddev->level = le32_to_cpu(sb->level);
1820 mddev->clevel[0] = 0;
1821 mddev->layout = le32_to_cpu(sb->layout);
1822 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1823 mddev->dev_sectors = le64_to_cpu(sb->size);
1824 mddev->events = ev1;
1825 mddev->bitmap_info.offset = 0;
1826 mddev->bitmap_info.space = 0;
1827 /* Default location for bitmap is 1K after superblock
1828 * using 3K - total of 4K
1829 */
1830 mddev->bitmap_info.default_offset = 1024 >> 9;
1831 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1832 mddev->reshape_backwards = 0;
1833
1834 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1835 memcpy(mddev->uuid, sb->set_uuid, 16);
1836
1837 mddev->max_disks = (4096-256)/2;
1838
1839 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1840 mddev->bitmap_info.file == NULL) {
1841 mddev->bitmap_info.offset =
1842 (__s32)le32_to_cpu(sb->bitmap_offset);
1843 /* Metadata doesn't record how much space is available.
1844 * For 1.0, we assume we can use up to the superblock
1845 * if before, else to 4K beyond superblock.
1846 * For others, assume no change is possible.
1847 */
1848 if (mddev->minor_version > 0)
1849 mddev->bitmap_info.space = 0;
1850 else if (mddev->bitmap_info.offset > 0)
1851 mddev->bitmap_info.space =
1852 8 - mddev->bitmap_info.offset;
1853 else
1854 mddev->bitmap_info.space =
1855 -mddev->bitmap_info.offset;
1856 }
1857
1858 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1859 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1860 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1861 mddev->new_level = le32_to_cpu(sb->new_level);
1862 mddev->new_layout = le32_to_cpu(sb->new_layout);
1863 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1864 if (mddev->delta_disks < 0 ||
1865 (mddev->delta_disks == 0 &&
1866 (le32_to_cpu(sb->feature_map)
1867 & MD_FEATURE_RESHAPE_BACKWARDS)))
1868 mddev->reshape_backwards = 1;
1869 } else {
1870 mddev->reshape_position = MaxSector;
1871 mddev->delta_disks = 0;
1872 mddev->new_level = mddev->level;
1873 mddev->new_layout = mddev->layout;
1874 mddev->new_chunk_sectors = mddev->chunk_sectors;
1875 }
1876
1877 if (mddev->level == 0 &&
1878 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RAID0_LAYOUT))
1879 mddev->layout = -1;
1880
1881 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)
1882 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1883
1884 if (le32_to_cpu(sb->feature_map) &
1885 (MD_FEATURE_PPL | MD_FEATURE_MULTIPLE_PPLS)) {
1886 if (le32_to_cpu(sb->feature_map) &
1887 (MD_FEATURE_BITMAP_OFFSET | MD_FEATURE_JOURNAL))
1888 return -EINVAL;
1889 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_PPL) &&
1890 (le32_to_cpu(sb->feature_map) &
1891 MD_FEATURE_MULTIPLE_PPLS))
1892 return -EINVAL;
1893 set_bit(MD_HAS_PPL, &mddev->flags);
1894 }
1895 } else if (mddev->pers == NULL) {
1896 /* Insist of good event counter while assembling, except for
1897 * spares (which don't need an event count) */
1898 ++ev1;
1899 if (rdev->desc_nr >= 0 &&
1900 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1901 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1902 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1903 if (ev1 < mddev->events)
1904 return -EINVAL;
1905 } else if (mddev->bitmap) {
1906 /* If adding to array with a bitmap, then we can accept an
1907 * older device, but not too old.
1908 */
1909 if (ev1 < mddev->bitmap->events_cleared)
1910 return 0;
1911 if (ev1 < mddev->events)
1912 set_bit(Bitmap_sync, &rdev->flags);
1913 } else {
1914 if (ev1 < mddev->events)
1915 /* just a hot-add of a new device, leave raid_disk at -1 */
1916 return 0;
1917 }
1918 if (mddev->level != LEVEL_MULTIPATH) {
1919 int role;
1920 if (rdev->desc_nr < 0 ||
1921 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1922 role = MD_DISK_ROLE_SPARE;
1923 rdev->desc_nr = -1;
1924 } else
1925 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1926 switch(role) {
1927 case MD_DISK_ROLE_SPARE: /* spare */
1928 break;
1929 case MD_DISK_ROLE_FAULTY: /* faulty */
1930 set_bit(Faulty, &rdev->flags);
1931 break;
1932 case MD_DISK_ROLE_JOURNAL: /* journal device */
1933 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1934 /* journal device without journal feature */
1935 pr_warn("md: journal device provided without journal feature, ignoring the device\n");
1936 return -EINVAL;
1937 }
1938 set_bit(Journal, &rdev->flags);
1939 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1940 rdev->raid_disk = 0;
1941 break;
1942 default:
1943 rdev->saved_raid_disk = role;
1944 if ((le32_to_cpu(sb->feature_map) &
1945 MD_FEATURE_RECOVERY_OFFSET)) {
1946 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1947 if (!(le32_to_cpu(sb->feature_map) &
1948 MD_FEATURE_RECOVERY_BITMAP))
1949 rdev->saved_raid_disk = -1;
1950 } else {
1951 /*
1952 * If the array is FROZEN, then the device can't
1953 * be in_sync with rest of array.
1954 */
1955 if (!test_bit(MD_RECOVERY_FROZEN,
1956 &mddev->recovery))
1957 set_bit(In_sync, &rdev->flags);
1958 }
1959 rdev->raid_disk = role;
1960 break;
1961 }
1962 if (sb->devflags & WriteMostly1)
1963 set_bit(WriteMostly, &rdev->flags);
1964 if (sb->devflags & FailFast1)
1965 set_bit(FailFast, &rdev->flags);
1966 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1967 set_bit(Replacement, &rdev->flags);
1968 } else /* MULTIPATH are always insync */
1969 set_bit(In_sync, &rdev->flags);
1970
1971 return 0;
1972}
1973
1974static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1975{
1976 struct mdp_superblock_1 *sb;
1977 struct md_rdev *rdev2;
1978 int max_dev, i;
1979 /* make rdev->sb match mddev and rdev data. */
1980
1981 sb = page_address(rdev->sb_page);
1982
1983 sb->feature_map = 0;
1984 sb->pad0 = 0;
1985 sb->recovery_offset = cpu_to_le64(0);
1986 memset(sb->pad3, 0, sizeof(sb->pad3));
1987
1988 sb->utime = cpu_to_le64((__u64)mddev->utime);
1989 sb->events = cpu_to_le64(mddev->events);
1990 if (mddev->in_sync)
1991 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1992 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1993 sb->resync_offset = cpu_to_le64(MaxSector);
1994 else
1995 sb->resync_offset = cpu_to_le64(0);
1996
1997 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1998
1999 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
2000 sb->size = cpu_to_le64(mddev->dev_sectors);
2001 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
2002 sb->level = cpu_to_le32(mddev->level);
2003 sb->layout = cpu_to_le32(mddev->layout);
2004 if (test_bit(FailFast, &rdev->flags))
2005 sb->devflags |= FailFast1;
2006 else
2007 sb->devflags &= ~FailFast1;
2008
2009 if (test_bit(WriteMostly, &rdev->flags))
2010 sb->devflags |= WriteMostly1;
2011 else
2012 sb->devflags &= ~WriteMostly1;
2013 sb->data_offset = cpu_to_le64(rdev->data_offset);
2014 sb->data_size = cpu_to_le64(rdev->sectors);
2015
2016 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
2017 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
2018 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
2019 }
2020
2021 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
2022 !test_bit(In_sync, &rdev->flags)) {
2023 sb->feature_map |=
2024 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
2025 sb->recovery_offset =
2026 cpu_to_le64(rdev->recovery_offset);
2027 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
2028 sb->feature_map |=
2029 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
2030 }
2031 /* Note: recovery_offset and journal_tail share space */
2032 if (test_bit(Journal, &rdev->flags))
2033 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
2034 if (test_bit(Replacement, &rdev->flags))
2035 sb->feature_map |=
2036 cpu_to_le32(MD_FEATURE_REPLACEMENT);
2037
2038 if (mddev->reshape_position != MaxSector) {
2039 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
2040 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
2041 sb->new_layout = cpu_to_le32(mddev->new_layout);
2042 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
2043 sb->new_level = cpu_to_le32(mddev->new_level);
2044 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
2045 if (mddev->delta_disks == 0 &&
2046 mddev->reshape_backwards)
2047 sb->feature_map
2048 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
2049 if (rdev->new_data_offset != rdev->data_offset) {
2050 sb->feature_map
2051 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
2052 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
2053 - rdev->data_offset));
2054 }
2055 }
2056
2057 if (mddev_is_clustered(mddev))
2058 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
2059
2060 if (rdev->badblocks.count == 0)
2061 /* Nothing to do for bad blocks*/ ;
2062 else if (sb->bblog_offset == 0)
2063 /* Cannot record bad blocks on this device */
2064 md_error(mddev, rdev);
2065 else {
2066 struct badblocks *bb = &rdev->badblocks;
2067 __le64 *bbp = (__le64 *)page_address(rdev->bb_page);
2068 u64 *p = bb->page;
2069 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
2070 if (bb->changed) {
2071 unsigned seq;
2072
2073retry:
2074 seq = read_seqbegin(&bb->lock);
2075
2076 memset(bbp, 0xff, PAGE_SIZE);
2077
2078 for (i = 0 ; i < bb->count ; i++) {
2079 u64 internal_bb = p[i];
2080 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
2081 | BB_LEN(internal_bb));
2082 bbp[i] = cpu_to_le64(store_bb);
2083 }
2084 bb->changed = 0;
2085 if (read_seqretry(&bb->lock, seq))
2086 goto retry;
2087
2088 bb->sector = (rdev->sb_start +
2089 (int)le32_to_cpu(sb->bblog_offset));
2090 bb->size = le16_to_cpu(sb->bblog_size);
2091 }
2092 }
2093
2094 max_dev = 0;
2095 rdev_for_each(rdev2, mddev)
2096 if (rdev2->desc_nr+1 > max_dev)
2097 max_dev = rdev2->desc_nr+1;
2098
2099 if (max_dev > le32_to_cpu(sb->max_dev)) {
2100 int bmask;
2101 sb->max_dev = cpu_to_le32(max_dev);
2102 rdev->sb_size = max_dev * 2 + 256;
2103 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
2104 if (rdev->sb_size & bmask)
2105 rdev->sb_size = (rdev->sb_size | bmask) + 1;
2106 } else
2107 max_dev = le32_to_cpu(sb->max_dev);
2108
2109 for (i=0; i<max_dev;i++)
2110 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2111
2112 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
2113 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
2114
2115 if (test_bit(MD_HAS_PPL, &mddev->flags)) {
2116 if (test_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags))
2117 sb->feature_map |=
2118 cpu_to_le32(MD_FEATURE_MULTIPLE_PPLS);
2119 else
2120 sb->feature_map |= cpu_to_le32(MD_FEATURE_PPL);
2121 sb->ppl.offset = cpu_to_le16(rdev->ppl.offset);
2122 sb->ppl.size = cpu_to_le16(rdev->ppl.size);
2123 }
2124
2125 rdev_for_each(rdev2, mddev) {
2126 i = rdev2->desc_nr;
2127 if (test_bit(Faulty, &rdev2->flags))
2128 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
2129 else if (test_bit(In_sync, &rdev2->flags))
2130 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2131 else if (test_bit(Journal, &rdev2->flags))
2132 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
2133 else if (rdev2->raid_disk >= 0)
2134 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
2135 else
2136 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
2137 }
2138
2139 sb->sb_csum = calc_sb_1_csum(sb);
2140}
2141
2142static sector_t super_1_choose_bm_space(sector_t dev_size)
2143{
2144 sector_t bm_space;
2145
2146 /* if the device is bigger than 8Gig, save 64k for bitmap
2147 * usage, if bigger than 200Gig, save 128k
2148 */
2149 if (dev_size < 64*2)
2150 bm_space = 0;
2151 else if (dev_size - 64*2 >= 200*1024*1024*2)
2152 bm_space = 128*2;
2153 else if (dev_size - 4*2 > 8*1024*1024*2)
2154 bm_space = 64*2;
2155 else
2156 bm_space = 4*2;
2157 return bm_space;
2158}
2159
2160static unsigned long long
2161super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
2162{
2163 struct mdp_superblock_1 *sb;
2164 sector_t max_sectors;
2165 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
2166 return 0; /* component must fit device */
2167 if (rdev->data_offset != rdev->new_data_offset)
2168 return 0; /* too confusing */
2169 if (rdev->sb_start < rdev->data_offset) {
2170 /* minor versions 1 and 2; superblock before data */
2171 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
2172 max_sectors -= rdev->data_offset;
2173 if (!num_sectors || num_sectors > max_sectors)
2174 num_sectors = max_sectors;
2175 } else if (rdev->mddev->bitmap_info.offset) {
2176 /* minor version 0 with bitmap we can't move */
2177 return 0;
2178 } else {
2179 /* minor version 0; superblock after data */
2180 sector_t sb_start, bm_space;
2181 sector_t dev_size = i_size_read(rdev->bdev->bd_inode) >> 9;
2182
2183 /* 8K is for superblock */
2184 sb_start = dev_size - 8*2;
2185 sb_start &= ~(sector_t)(4*2 - 1);
2186
2187 bm_space = super_1_choose_bm_space(dev_size);
2188
2189 /* Space that can be used to store date needs to decrease
2190 * superblock bitmap space and bad block space(4K)
2191 */
2192 max_sectors = sb_start - bm_space - 4*2;
2193
2194 if (!num_sectors || num_sectors > max_sectors)
2195 num_sectors = max_sectors;
2196 }
2197 sb = page_address(rdev->sb_page);
2198 sb->data_size = cpu_to_le64(num_sectors);
2199 sb->super_offset = cpu_to_le64(rdev->sb_start);
2200 sb->sb_csum = calc_sb_1_csum(sb);
2201 do {
2202 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
2203 rdev->sb_page);
2204 } while (md_super_wait(rdev->mddev) < 0);
2205 return num_sectors;
2206
2207}
2208
2209static int
2210super_1_allow_new_offset(struct md_rdev *rdev,
2211 unsigned long long new_offset)
2212{
2213 /* All necessary checks on new >= old have been done */
2214 struct bitmap *bitmap;
2215 if (new_offset >= rdev->data_offset)
2216 return 1;
2217
2218 /* with 1.0 metadata, there is no metadata to tread on
2219 * so we can always move back */
2220 if (rdev->mddev->minor_version == 0)
2221 return 1;
2222
2223 /* otherwise we must be sure not to step on
2224 * any metadata, so stay:
2225 * 36K beyond start of superblock
2226 * beyond end of badblocks
2227 * beyond write-intent bitmap
2228 */
2229 if (rdev->sb_start + (32+4)*2 > new_offset)
2230 return 0;
2231 bitmap = rdev->mddev->bitmap;
2232 if (bitmap && !rdev->mddev->bitmap_info.file &&
2233 rdev->sb_start + rdev->mddev->bitmap_info.offset +
2234 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
2235 return 0;
2236 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
2237 return 0;
2238
2239 return 1;
2240}
2241
2242static struct super_type super_types[] = {
2243 [0] = {
2244 .name = "0.90.0",
2245 .owner = THIS_MODULE,
2246 .load_super = super_90_load,
2247 .validate_super = super_90_validate,
2248 .sync_super = super_90_sync,
2249 .rdev_size_change = super_90_rdev_size_change,
2250 .allow_new_offset = super_90_allow_new_offset,
2251 },
2252 [1] = {
2253 .name = "md-1",
2254 .owner = THIS_MODULE,
2255 .load_super = super_1_load,
2256 .validate_super = super_1_validate,
2257 .sync_super = super_1_sync,
2258 .rdev_size_change = super_1_rdev_size_change,
2259 .allow_new_offset = super_1_allow_new_offset,
2260 },
2261};
2262
2263static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2264{
2265 if (mddev->sync_super) {
2266 mddev->sync_super(mddev, rdev);
2267 return;
2268 }
2269
2270 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2271
2272 super_types[mddev->major_version].sync_super(mddev, rdev);
2273}
2274
2275static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2276{
2277 struct md_rdev *rdev, *rdev2;
2278
2279 rcu_read_lock();
2280 rdev_for_each_rcu(rdev, mddev1) {
2281 if (test_bit(Faulty, &rdev->flags) ||
2282 test_bit(Journal, &rdev->flags) ||
2283 rdev->raid_disk == -1)
2284 continue;
2285 rdev_for_each_rcu(rdev2, mddev2) {
2286 if (test_bit(Faulty, &rdev2->flags) ||
2287 test_bit(Journal, &rdev2->flags) ||
2288 rdev2->raid_disk == -1)
2289 continue;
2290 if (rdev->bdev->bd_disk == rdev2->bdev->bd_disk) {
2291 rcu_read_unlock();
2292 return 1;
2293 }
2294 }
2295 }
2296 rcu_read_unlock();
2297 return 0;
2298}
2299
2300static LIST_HEAD(pending_raid_disks);
2301
2302/*
2303 * Try to register data integrity profile for an mddev
2304 *
2305 * This is called when an array is started and after a disk has been kicked
2306 * from the array. It only succeeds if all working and active component devices
2307 * are integrity capable with matching profiles.
2308 */
2309int md_integrity_register(struct mddev *mddev)
2310{
2311 struct md_rdev *rdev, *reference = NULL;
2312
2313 if (list_empty(&mddev->disks))
2314 return 0; /* nothing to do */
2315 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2316 return 0; /* shouldn't register, or already is */
2317 rdev_for_each(rdev, mddev) {
2318 /* skip spares and non-functional disks */
2319 if (test_bit(Faulty, &rdev->flags))
2320 continue;
2321 if (rdev->raid_disk < 0)
2322 continue;
2323 if (!reference) {
2324 /* Use the first rdev as the reference */
2325 reference = rdev;
2326 continue;
2327 }
2328 /* does this rdev's profile match the reference profile? */
2329 if (blk_integrity_compare(reference->bdev->bd_disk,
2330 rdev->bdev->bd_disk) < 0)
2331 return -EINVAL;
2332 }
2333 if (!reference || !bdev_get_integrity(reference->bdev))
2334 return 0;
2335 /*
2336 * All component devices are integrity capable and have matching
2337 * profiles, register the common profile for the md device.
2338 */
2339 blk_integrity_register(mddev->gendisk,
2340 bdev_get_integrity(reference->bdev));
2341
2342 pr_debug("md: data integrity enabled on %s\n", mdname(mddev));
2343 if (bioset_integrity_create(&mddev->bio_set, BIO_POOL_SIZE) ||
2344 (mddev->level != 1 && mddev->level != 10 &&
2345 bioset_integrity_create(&mddev->io_acct_set, BIO_POOL_SIZE))) {
2346 /*
2347 * No need to handle the failure of bioset_integrity_create,
2348 * because the function is called by md_run() -> pers->run(),
2349 * md_run calls bioset_exit -> bioset_integrity_free in case
2350 * of failure case.
2351 */
2352 pr_err("md: failed to create integrity pool for %s\n",
2353 mdname(mddev));
2354 return -EINVAL;
2355 }
2356 return 0;
2357}
2358EXPORT_SYMBOL(md_integrity_register);
2359
2360/*
2361 * Attempt to add an rdev, but only if it is consistent with the current
2362 * integrity profile
2363 */
2364int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2365{
2366 struct blk_integrity *bi_mddev;
2367 char name[BDEVNAME_SIZE];
2368
2369 if (!mddev->gendisk)
2370 return 0;
2371
2372 bi_mddev = blk_get_integrity(mddev->gendisk);
2373
2374 if (!bi_mddev) /* nothing to do */
2375 return 0;
2376
2377 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2378 pr_err("%s: incompatible integrity profile for %s\n",
2379 mdname(mddev), bdevname(rdev->bdev, name));
2380 return -ENXIO;
2381 }
2382
2383 return 0;
2384}
2385EXPORT_SYMBOL(md_integrity_add_rdev);
2386
2387static bool rdev_read_only(struct md_rdev *rdev)
2388{
2389 return bdev_read_only(rdev->bdev) ||
2390 (rdev->meta_bdev && bdev_read_only(rdev->meta_bdev));
2391}
2392
2393static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2394{
2395 char b[BDEVNAME_SIZE];
2396 int err;
2397
2398 /* prevent duplicates */
2399 if (find_rdev(mddev, rdev->bdev->bd_dev))
2400 return -EEXIST;
2401
2402 if (rdev_read_only(rdev) && mddev->pers)
2403 return -EROFS;
2404
2405 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2406 if (!test_bit(Journal, &rdev->flags) &&
2407 rdev->sectors &&
2408 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2409 if (mddev->pers) {
2410 /* Cannot change size, so fail
2411 * If mddev->level <= 0, then we don't care
2412 * about aligning sizes (e.g. linear)
2413 */
2414 if (mddev->level > 0)
2415 return -ENOSPC;
2416 } else
2417 mddev->dev_sectors = rdev->sectors;
2418 }
2419
2420 /* Verify rdev->desc_nr is unique.
2421 * If it is -1, assign a free number, else
2422 * check number is not in use
2423 */
2424 rcu_read_lock();
2425 if (rdev->desc_nr < 0) {
2426 int choice = 0;
2427 if (mddev->pers)
2428 choice = mddev->raid_disks;
2429 while (md_find_rdev_nr_rcu(mddev, choice))
2430 choice++;
2431 rdev->desc_nr = choice;
2432 } else {
2433 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2434 rcu_read_unlock();
2435 return -EBUSY;
2436 }
2437 }
2438 rcu_read_unlock();
2439 if (!test_bit(Journal, &rdev->flags) &&
2440 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2441 pr_warn("md: %s: array is limited to %d devices\n",
2442 mdname(mddev), mddev->max_disks);
2443 return -EBUSY;
2444 }
2445 bdevname(rdev->bdev,b);
2446 strreplace(b, '/', '!');
2447
2448 rdev->mddev = mddev;
2449 pr_debug("md: bind<%s>\n", b);
2450
2451 if (mddev->raid_disks)
2452 mddev_create_serial_pool(mddev, rdev, false);
2453
2454 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2455 goto fail;
2456
2457 /* failure here is OK */
2458 err = sysfs_create_link(&rdev->kobj, bdev_kobj(rdev->bdev), "block");
2459 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2460 rdev->sysfs_unack_badblocks =
2461 sysfs_get_dirent_safe(rdev->kobj.sd, "unacknowledged_bad_blocks");
2462 rdev->sysfs_badblocks =
2463 sysfs_get_dirent_safe(rdev->kobj.sd, "bad_blocks");
2464
2465 list_add_rcu(&rdev->same_set, &mddev->disks);
2466 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2467
2468 /* May as well allow recovery to be retried once */
2469 mddev->recovery_disabled++;
2470
2471 return 0;
2472
2473 fail:
2474 pr_warn("md: failed to register dev-%s for %s\n",
2475 b, mdname(mddev));
2476 return err;
2477}
2478
2479static void rdev_delayed_delete(struct work_struct *ws)
2480{
2481 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2482 kobject_del(&rdev->kobj);
2483 kobject_put(&rdev->kobj);
2484}
2485
2486static void unbind_rdev_from_array(struct md_rdev *rdev)
2487{
2488 char b[BDEVNAME_SIZE];
2489
2490 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2491 list_del_rcu(&rdev->same_set);
2492 pr_debug("md: unbind<%s>\n", bdevname(rdev->bdev,b));
2493 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
2494 rdev->mddev = NULL;
2495 sysfs_remove_link(&rdev->kobj, "block");
2496 sysfs_put(rdev->sysfs_state);
2497 sysfs_put(rdev->sysfs_unack_badblocks);
2498 sysfs_put(rdev->sysfs_badblocks);
2499 rdev->sysfs_state = NULL;
2500 rdev->sysfs_unack_badblocks = NULL;
2501 rdev->sysfs_badblocks = NULL;
2502 rdev->badblocks.count = 0;
2503 /* We need to delay this, otherwise we can deadlock when
2504 * writing to 'remove' to "dev/state". We also need
2505 * to delay it due to rcu usage.
2506 */
2507 synchronize_rcu();
2508 INIT_WORK(&rdev->del_work, rdev_delayed_delete);
2509 kobject_get(&rdev->kobj);
2510 queue_work(md_rdev_misc_wq, &rdev->del_work);
2511}
2512
2513/*
2514 * prevent the device from being mounted, repartitioned or
2515 * otherwise reused by a RAID array (or any other kernel
2516 * subsystem), by bd_claiming the device.
2517 */
2518static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2519{
2520 int err = 0;
2521 struct block_device *bdev;
2522
2523 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2524 shared ? (struct md_rdev *)lock_rdev : rdev);
2525 if (IS_ERR(bdev)) {
2526 pr_warn("md: could not open device unknown-block(%u,%u).\n",
2527 MAJOR(dev), MINOR(dev));
2528 return PTR_ERR(bdev);
2529 }
2530 rdev->bdev = bdev;
2531 return err;
2532}
2533
2534static void unlock_rdev(struct md_rdev *rdev)
2535{
2536 struct block_device *bdev = rdev->bdev;
2537 rdev->bdev = NULL;
2538 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2539}
2540
2541void md_autodetect_dev(dev_t dev);
2542
2543static void export_rdev(struct md_rdev *rdev)
2544{
2545 char b[BDEVNAME_SIZE];
2546
2547 pr_debug("md: export_rdev(%s)\n", bdevname(rdev->bdev,b));
2548 md_rdev_clear(rdev);
2549#ifndef MODULE
2550 if (test_bit(AutoDetected, &rdev->flags))
2551 md_autodetect_dev(rdev->bdev->bd_dev);
2552#endif
2553 unlock_rdev(rdev);
2554 kobject_put(&rdev->kobj);
2555}
2556
2557void md_kick_rdev_from_array(struct md_rdev *rdev)
2558{
2559 unbind_rdev_from_array(rdev);
2560 export_rdev(rdev);
2561}
2562EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2563
2564static void export_array(struct mddev *mddev)
2565{
2566 struct md_rdev *rdev;
2567
2568 while (!list_empty(&mddev->disks)) {
2569 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2570 same_set);
2571 md_kick_rdev_from_array(rdev);
2572 }
2573 mddev->raid_disks = 0;
2574 mddev->major_version = 0;
2575}
2576
2577static bool set_in_sync(struct mddev *mddev)
2578{
2579 lockdep_assert_held(&mddev->lock);
2580 if (!mddev->in_sync) {
2581 mddev->sync_checkers++;
2582 spin_unlock(&mddev->lock);
2583 percpu_ref_switch_to_atomic_sync(&mddev->writes_pending);
2584 spin_lock(&mddev->lock);
2585 if (!mddev->in_sync &&
2586 percpu_ref_is_zero(&mddev->writes_pending)) {
2587 mddev->in_sync = 1;
2588 /*
2589 * Ensure ->in_sync is visible before we clear
2590 * ->sync_checkers.
2591 */
2592 smp_mb();
2593 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2594 sysfs_notify_dirent_safe(mddev->sysfs_state);
2595 }
2596 if (--mddev->sync_checkers == 0)
2597 percpu_ref_switch_to_percpu(&mddev->writes_pending);
2598 }
2599 if (mddev->safemode == 1)
2600 mddev->safemode = 0;
2601 return mddev->in_sync;
2602}
2603
2604static void sync_sbs(struct mddev *mddev, int nospares)
2605{
2606 /* Update each superblock (in-memory image), but
2607 * if we are allowed to, skip spares which already
2608 * have the right event counter, or have one earlier
2609 * (which would mean they aren't being marked as dirty
2610 * with the rest of the array)
2611 */
2612 struct md_rdev *rdev;
2613 rdev_for_each(rdev, mddev) {
2614 if (rdev->sb_events == mddev->events ||
2615 (nospares &&
2616 rdev->raid_disk < 0 &&
2617 rdev->sb_events+1 == mddev->events)) {
2618 /* Don't update this superblock */
2619 rdev->sb_loaded = 2;
2620 } else {
2621 sync_super(mddev, rdev);
2622 rdev->sb_loaded = 1;
2623 }
2624 }
2625}
2626
2627static bool does_sb_need_changing(struct mddev *mddev)
2628{
2629 struct md_rdev *rdev;
2630 struct mdp_superblock_1 *sb;
2631 int role;
2632
2633 /* Find a good rdev */
2634 rdev_for_each(rdev, mddev)
2635 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2636 break;
2637
2638 /* No good device found. */
2639 if (!rdev)
2640 return false;
2641
2642 sb = page_address(rdev->sb_page);
2643 /* Check if a device has become faulty or a spare become active */
2644 rdev_for_each(rdev, mddev) {
2645 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2646 /* Device activated? */
2647 if (role == 0xffff && rdev->raid_disk >=0 &&
2648 !test_bit(Faulty, &rdev->flags))
2649 return true;
2650 /* Device turned faulty? */
2651 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2652 return true;
2653 }
2654
2655 /* Check if any mddev parameters have changed */
2656 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2657 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2658 (mddev->layout != le32_to_cpu(sb->layout)) ||
2659 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2660 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2661 return true;
2662
2663 return false;
2664}
2665
2666void md_update_sb(struct mddev *mddev, int force_change)
2667{
2668 struct md_rdev *rdev;
2669 int sync_req;
2670 int nospares = 0;
2671 int any_badblocks_changed = 0;
2672 int ret = -1;
2673
2674 if (mddev->ro) {
2675 if (force_change)
2676 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2677 return;
2678 }
2679
2680repeat:
2681 if (mddev_is_clustered(mddev)) {
2682 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2683 force_change = 1;
2684 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2685 nospares = 1;
2686 ret = md_cluster_ops->metadata_update_start(mddev);
2687 /* Has someone else has updated the sb */
2688 if (!does_sb_need_changing(mddev)) {
2689 if (ret == 0)
2690 md_cluster_ops->metadata_update_cancel(mddev);
2691 bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2692 BIT(MD_SB_CHANGE_DEVS) |
2693 BIT(MD_SB_CHANGE_CLEAN));
2694 return;
2695 }
2696 }
2697
2698 /*
2699 * First make sure individual recovery_offsets are correct
2700 * curr_resync_completed can only be used during recovery.
2701 * During reshape/resync it might use array-addresses rather
2702 * that device addresses.
2703 */
2704 rdev_for_each(rdev, mddev) {
2705 if (rdev->raid_disk >= 0 &&
2706 mddev->delta_disks >= 0 &&
2707 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
2708 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery) &&
2709 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2710 !test_bit(Journal, &rdev->flags) &&
2711 !test_bit(In_sync, &rdev->flags) &&
2712 mddev->curr_resync_completed > rdev->recovery_offset)
2713 rdev->recovery_offset = mddev->curr_resync_completed;
2714
2715 }
2716 if (!mddev->persistent) {
2717 clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
2718 clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2719 if (!mddev->external) {
2720 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2721 rdev_for_each(rdev, mddev) {
2722 if (rdev->badblocks.changed) {
2723 rdev->badblocks.changed = 0;
2724 ack_all_badblocks(&rdev->badblocks);
2725 md_error(mddev, rdev);
2726 }
2727 clear_bit(Blocked, &rdev->flags);
2728 clear_bit(BlockedBadBlocks, &rdev->flags);
2729 wake_up(&rdev->blocked_wait);
2730 }
2731 }
2732 wake_up(&mddev->sb_wait);
2733 return;
2734 }
2735
2736 spin_lock(&mddev->lock);
2737
2738 mddev->utime = ktime_get_real_seconds();
2739
2740 if (test_and_clear_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags))
2741 force_change = 1;
2742 if (test_and_clear_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags))
2743 /* just a clean<-> dirty transition, possibly leave spares alone,
2744 * though if events isn't the right even/odd, we will have to do
2745 * spares after all
2746 */
2747 nospares = 1;
2748 if (force_change)
2749 nospares = 0;
2750 if (mddev->degraded)
2751 /* If the array is degraded, then skipping spares is both
2752 * dangerous and fairly pointless.
2753 * Dangerous because a device that was removed from the array
2754 * might have a event_count that still looks up-to-date,
2755 * so it can be re-added without a resync.
2756 * Pointless because if there are any spares to skip,
2757 * then a recovery will happen and soon that array won't
2758 * be degraded any more and the spare can go back to sleep then.
2759 */
2760 nospares = 0;
2761
2762 sync_req = mddev->in_sync;
2763
2764 /* If this is just a dirty<->clean transition, and the array is clean
2765 * and 'events' is odd, we can roll back to the previous clean state */
2766 if (nospares
2767 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2768 && mddev->can_decrease_events
2769 && mddev->events != 1) {
2770 mddev->events--;
2771 mddev->can_decrease_events = 0;
2772 } else {
2773 /* otherwise we have to go forward and ... */
2774 mddev->events ++;
2775 mddev->can_decrease_events = nospares;
2776 }
2777
2778 /*
2779 * This 64-bit counter should never wrap.
2780 * Either we are in around ~1 trillion A.C., assuming
2781 * 1 reboot per second, or we have a bug...
2782 */
2783 WARN_ON(mddev->events == 0);
2784
2785 rdev_for_each(rdev, mddev) {
2786 if (rdev->badblocks.changed)
2787 any_badblocks_changed++;
2788 if (test_bit(Faulty, &rdev->flags))
2789 set_bit(FaultRecorded, &rdev->flags);
2790 }
2791
2792 sync_sbs(mddev, nospares);
2793 spin_unlock(&mddev->lock);
2794
2795 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2796 mdname(mddev), mddev->in_sync);
2797
2798 if (mddev->queue)
2799 blk_add_trace_msg(mddev->queue, "md md_update_sb");
2800rewrite:
2801 md_bitmap_update_sb(mddev->bitmap);
2802 rdev_for_each(rdev, mddev) {
2803 char b[BDEVNAME_SIZE];
2804
2805 if (rdev->sb_loaded != 1)
2806 continue; /* no noise on spare devices */
2807
2808 if (!test_bit(Faulty, &rdev->flags)) {
2809 md_super_write(mddev,rdev,
2810 rdev->sb_start, rdev->sb_size,
2811 rdev->sb_page);
2812 pr_debug("md: (write) %s's sb offset: %llu\n",
2813 bdevname(rdev->bdev, b),
2814 (unsigned long long)rdev->sb_start);
2815 rdev->sb_events = mddev->events;
2816 if (rdev->badblocks.size) {
2817 md_super_write(mddev, rdev,
2818 rdev->badblocks.sector,
2819 rdev->badblocks.size << 9,
2820 rdev->bb_page);
2821 rdev->badblocks.size = 0;
2822 }
2823
2824 } else
2825 pr_debug("md: %s (skipping faulty)\n",
2826 bdevname(rdev->bdev, b));
2827
2828 if (mddev->level == LEVEL_MULTIPATH)
2829 /* only need to write one superblock... */
2830 break;
2831 }
2832 if (md_super_wait(mddev) < 0)
2833 goto rewrite;
2834 /* if there was a failure, MD_SB_CHANGE_DEVS was set, and we re-write super */
2835
2836 if (mddev_is_clustered(mddev) && ret == 0)
2837 md_cluster_ops->metadata_update_finish(mddev);
2838
2839 if (mddev->in_sync != sync_req ||
2840 !bit_clear_unless(&mddev->sb_flags, BIT(MD_SB_CHANGE_PENDING),
2841 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_CLEAN)))
2842 /* have to write it out again */
2843 goto repeat;
2844 wake_up(&mddev->sb_wait);
2845 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2846 sysfs_notify_dirent_safe(mddev->sysfs_completed);
2847
2848 rdev_for_each(rdev, mddev) {
2849 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2850 clear_bit(Blocked, &rdev->flags);
2851
2852 if (any_badblocks_changed)
2853 ack_all_badblocks(&rdev->badblocks);
2854 clear_bit(BlockedBadBlocks, &rdev->flags);
2855 wake_up(&rdev->blocked_wait);
2856 }
2857}
2858EXPORT_SYMBOL(md_update_sb);
2859
2860static int add_bound_rdev(struct md_rdev *rdev)
2861{
2862 struct mddev *mddev = rdev->mddev;
2863 int err = 0;
2864 bool add_journal = test_bit(Journal, &rdev->flags);
2865
2866 if (!mddev->pers->hot_remove_disk || add_journal) {
2867 /* If there is hot_add_disk but no hot_remove_disk
2868 * then added disks for geometry changes,
2869 * and should be added immediately.
2870 */
2871 super_types[mddev->major_version].
2872 validate_super(mddev, rdev);
2873 if (add_journal)
2874 mddev_suspend(mddev);
2875 err = mddev->pers->hot_add_disk(mddev, rdev);
2876 if (add_journal)
2877 mddev_resume(mddev);
2878 if (err) {
2879 md_kick_rdev_from_array(rdev);
2880 return err;
2881 }
2882 }
2883 sysfs_notify_dirent_safe(rdev->sysfs_state);
2884
2885 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2886 if (mddev->degraded)
2887 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2888 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2889 md_new_event(mddev);
2890 md_wakeup_thread(mddev->thread);
2891 return 0;
2892}
2893
2894/* words written to sysfs files may, or may not, be \n terminated.
2895 * We want to accept with case. For this we use cmd_match.
2896 */
2897static int cmd_match(const char *cmd, const char *str)
2898{
2899 /* See if cmd, written into a sysfs file, matches
2900 * str. They must either be the same, or cmd can
2901 * have a trailing newline
2902 */
2903 while (*cmd && *str && *cmd == *str) {
2904 cmd++;
2905 str++;
2906 }
2907 if (*cmd == '\n')
2908 cmd++;
2909 if (*str || *cmd)
2910 return 0;
2911 return 1;
2912}
2913
2914struct rdev_sysfs_entry {
2915 struct attribute attr;
2916 ssize_t (*show)(struct md_rdev *, char *);
2917 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2918};
2919
2920static ssize_t
2921state_show(struct md_rdev *rdev, char *page)
2922{
2923 char *sep = ",";
2924 size_t len = 0;
2925 unsigned long flags = READ_ONCE(rdev->flags);
2926
2927 if (test_bit(Faulty, &flags) ||
2928 (!test_bit(ExternalBbl, &flags) &&
2929 rdev->badblocks.unacked_exist))
2930 len += sprintf(page+len, "faulty%s", sep);
2931 if (test_bit(In_sync, &flags))
2932 len += sprintf(page+len, "in_sync%s", sep);
2933 if (test_bit(Journal, &flags))
2934 len += sprintf(page+len, "journal%s", sep);
2935 if (test_bit(WriteMostly, &flags))
2936 len += sprintf(page+len, "write_mostly%s", sep);
2937 if (test_bit(Blocked, &flags) ||
2938 (rdev->badblocks.unacked_exist
2939 && !test_bit(Faulty, &flags)))
2940 len += sprintf(page+len, "blocked%s", sep);
2941 if (!test_bit(Faulty, &flags) &&
2942 !test_bit(Journal, &flags) &&
2943 !test_bit(In_sync, &flags))
2944 len += sprintf(page+len, "spare%s", sep);
2945 if (test_bit(WriteErrorSeen, &flags))
2946 len += sprintf(page+len, "write_error%s", sep);
2947 if (test_bit(WantReplacement, &flags))
2948 len += sprintf(page+len, "want_replacement%s", sep);
2949 if (test_bit(Replacement, &flags))
2950 len += sprintf(page+len, "replacement%s", sep);
2951 if (test_bit(ExternalBbl, &flags))
2952 len += sprintf(page+len, "external_bbl%s", sep);
2953 if (test_bit(FailFast, &flags))
2954 len += sprintf(page+len, "failfast%s", sep);
2955
2956 if (len)
2957 len -= strlen(sep);
2958
2959 return len+sprintf(page+len, "\n");
2960}
2961
2962static ssize_t
2963state_store(struct md_rdev *rdev, const char *buf, size_t len)
2964{
2965 /* can write
2966 * faulty - simulates an error
2967 * remove - disconnects the device
2968 * writemostly - sets write_mostly
2969 * -writemostly - clears write_mostly
2970 * blocked - sets the Blocked flags
2971 * -blocked - clears the Blocked and possibly simulates an error
2972 * insync - sets Insync providing device isn't active
2973 * -insync - clear Insync for a device with a slot assigned,
2974 * so that it gets rebuilt based on bitmap
2975 * write_error - sets WriteErrorSeen
2976 * -write_error - clears WriteErrorSeen
2977 * {,-}failfast - set/clear FailFast
2978 */
2979 int err = -EINVAL;
2980 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2981 md_error(rdev->mddev, rdev);
2982 if (test_bit(Faulty, &rdev->flags))
2983 err = 0;
2984 else
2985 err = -EBUSY;
2986 } else if (cmd_match(buf, "remove")) {
2987 if (rdev->mddev->pers) {
2988 clear_bit(Blocked, &rdev->flags);
2989 remove_and_add_spares(rdev->mddev, rdev);
2990 }
2991 if (rdev->raid_disk >= 0)
2992 err = -EBUSY;
2993 else {
2994 struct mddev *mddev = rdev->mddev;
2995 err = 0;
2996 if (mddev_is_clustered(mddev))
2997 err = md_cluster_ops->remove_disk(mddev, rdev);
2998
2999 if (err == 0) {
3000 md_kick_rdev_from_array(rdev);
3001 if (mddev->pers) {
3002 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
3003 md_wakeup_thread(mddev->thread);
3004 }
3005 md_new_event(mddev);
3006 }
3007 }
3008 } else if (cmd_match(buf, "writemostly")) {
3009 set_bit(WriteMostly, &rdev->flags);
3010 mddev_create_serial_pool(rdev->mddev, rdev, false);
3011 err = 0;
3012 } else if (cmd_match(buf, "-writemostly")) {
3013 mddev_destroy_serial_pool(rdev->mddev, rdev, false);
3014 clear_bit(WriteMostly, &rdev->flags);
3015 err = 0;
3016 } else if (cmd_match(buf, "blocked")) {
3017 set_bit(Blocked, &rdev->flags);
3018 err = 0;
3019 } else if (cmd_match(buf, "-blocked")) {
3020 if (!test_bit(Faulty, &rdev->flags) &&
3021 !test_bit(ExternalBbl, &rdev->flags) &&
3022 rdev->badblocks.unacked_exist) {
3023 /* metadata handler doesn't understand badblocks,
3024 * so we need to fail the device
3025 */
3026 md_error(rdev->mddev, rdev);
3027 }
3028 clear_bit(Blocked, &rdev->flags);
3029 clear_bit(BlockedBadBlocks, &rdev->flags);
3030 wake_up(&rdev->blocked_wait);
3031 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3032 md_wakeup_thread(rdev->mddev->thread);
3033
3034 err = 0;
3035 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
3036 set_bit(In_sync, &rdev->flags);
3037 err = 0;
3038 } else if (cmd_match(buf, "failfast")) {
3039 set_bit(FailFast, &rdev->flags);
3040 err = 0;
3041 } else if (cmd_match(buf, "-failfast")) {
3042 clear_bit(FailFast, &rdev->flags);
3043 err = 0;
3044 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
3045 !test_bit(Journal, &rdev->flags)) {
3046 if (rdev->mddev->pers == NULL) {
3047 clear_bit(In_sync, &rdev->flags);
3048 rdev->saved_raid_disk = rdev->raid_disk;
3049 rdev->raid_disk = -1;
3050 err = 0;
3051 }
3052 } else if (cmd_match(buf, "write_error")) {
3053 set_bit(WriteErrorSeen, &rdev->flags);
3054 err = 0;
3055 } else if (cmd_match(buf, "-write_error")) {
3056 clear_bit(WriteErrorSeen, &rdev->flags);
3057 err = 0;
3058 } else if (cmd_match(buf, "want_replacement")) {
3059 /* Any non-spare device that is not a replacement can
3060 * become want_replacement at any time, but we then need to
3061 * check if recovery is needed.
3062 */
3063 if (rdev->raid_disk >= 0 &&
3064 !test_bit(Journal, &rdev->flags) &&
3065 !test_bit(Replacement, &rdev->flags))
3066 set_bit(WantReplacement, &rdev->flags);
3067 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3068 md_wakeup_thread(rdev->mddev->thread);
3069 err = 0;
3070 } else if (cmd_match(buf, "-want_replacement")) {
3071 /* Clearing 'want_replacement' is always allowed.
3072 * Once replacements starts it is too late though.
3073 */
3074 err = 0;
3075 clear_bit(WantReplacement, &rdev->flags);
3076 } else if (cmd_match(buf, "replacement")) {
3077 /* Can only set a device as a replacement when array has not
3078 * yet been started. Once running, replacement is automatic
3079 * from spares, or by assigning 'slot'.
3080 */
3081 if (rdev->mddev->pers)
3082 err = -EBUSY;
3083 else {
3084 set_bit(Replacement, &rdev->flags);
3085 err = 0;
3086 }
3087 } else if (cmd_match(buf, "-replacement")) {
3088 /* Similarly, can only clear Replacement before start */
3089 if (rdev->mddev->pers)
3090 err = -EBUSY;
3091 else {
3092 clear_bit(Replacement, &rdev->flags);
3093 err = 0;
3094 }
3095 } else if (cmd_match(buf, "re-add")) {
3096 if (!rdev->mddev->pers)
3097 err = -EINVAL;
3098 else if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1) &&
3099 rdev->saved_raid_disk >= 0) {
3100 /* clear_bit is performed _after_ all the devices
3101 * have their local Faulty bit cleared. If any writes
3102 * happen in the meantime in the local node, they
3103 * will land in the local bitmap, which will be synced
3104 * by this node eventually
3105 */
3106 if (!mddev_is_clustered(rdev->mddev) ||
3107 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
3108 clear_bit(Faulty, &rdev->flags);
3109 err = add_bound_rdev(rdev);
3110 }
3111 } else
3112 err = -EBUSY;
3113 } else if (cmd_match(buf, "external_bbl") && (rdev->mddev->external)) {
3114 set_bit(ExternalBbl, &rdev->flags);
3115 rdev->badblocks.shift = 0;
3116 err = 0;
3117 } else if (cmd_match(buf, "-external_bbl") && (rdev->mddev->external)) {
3118 clear_bit(ExternalBbl, &rdev->flags);
3119 err = 0;
3120 }
3121 if (!err)
3122 sysfs_notify_dirent_safe(rdev->sysfs_state);
3123 return err ? err : len;
3124}
3125static struct rdev_sysfs_entry rdev_state =
3126__ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
3127
3128static ssize_t
3129errors_show(struct md_rdev *rdev, char *page)
3130{
3131 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
3132}
3133
3134static ssize_t
3135errors_store(struct md_rdev *rdev, const char *buf, size_t len)
3136{
3137 unsigned int n;
3138 int rv;
3139
3140 rv = kstrtouint(buf, 10, &n);
3141 if (rv < 0)
3142 return rv;
3143 atomic_set(&rdev->corrected_errors, n);
3144 return len;
3145}
3146static struct rdev_sysfs_entry rdev_errors =
3147__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
3148
3149static ssize_t
3150slot_show(struct md_rdev *rdev, char *page)
3151{
3152 if (test_bit(Journal, &rdev->flags))
3153 return sprintf(page, "journal\n");
3154 else if (rdev->raid_disk < 0)
3155 return sprintf(page, "none\n");
3156 else
3157 return sprintf(page, "%d\n", rdev->raid_disk);
3158}
3159
3160static ssize_t
3161slot_store(struct md_rdev *rdev, const char *buf, size_t len)
3162{
3163 int slot;
3164 int err;
3165
3166 if (test_bit(Journal, &rdev->flags))
3167 return -EBUSY;
3168 if (strncmp(buf, "none", 4)==0)
3169 slot = -1;
3170 else {
3171 err = kstrtouint(buf, 10, (unsigned int *)&slot);
3172 if (err < 0)
3173 return err;
3174 }
3175 if (rdev->mddev->pers && slot == -1) {
3176 /* Setting 'slot' on an active array requires also
3177 * updating the 'rd%d' link, and communicating
3178 * with the personality with ->hot_*_disk.
3179 * For now we only support removing
3180 * failed/spare devices. This normally happens automatically,
3181 * but not when the metadata is externally managed.
3182 */
3183 if (rdev->raid_disk == -1)
3184 return -EEXIST;
3185 /* personality does all needed checks */
3186 if (rdev->mddev->pers->hot_remove_disk == NULL)
3187 return -EINVAL;
3188 clear_bit(Blocked, &rdev->flags);
3189 remove_and_add_spares(rdev->mddev, rdev);
3190 if (rdev->raid_disk >= 0)
3191 return -EBUSY;
3192 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
3193 md_wakeup_thread(rdev->mddev->thread);
3194 } else if (rdev->mddev->pers) {
3195 /* Activating a spare .. or possibly reactivating
3196 * if we ever get bitmaps working here.
3197 */
3198 int err;
3199
3200 if (rdev->raid_disk != -1)
3201 return -EBUSY;
3202
3203 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
3204 return -EBUSY;
3205
3206 if (rdev->mddev->pers->hot_add_disk == NULL)
3207 return -EINVAL;
3208
3209 if (slot >= rdev->mddev->raid_disks &&
3210 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3211 return -ENOSPC;
3212
3213 rdev->raid_disk = slot;
3214 if (test_bit(In_sync, &rdev->flags))
3215 rdev->saved_raid_disk = slot;
3216 else
3217 rdev->saved_raid_disk = -1;
3218 clear_bit(In_sync, &rdev->flags);
3219 clear_bit(Bitmap_sync, &rdev->flags);
3220 err = rdev->mddev->pers->hot_add_disk(rdev->mddev, rdev);
3221 if (err) {
3222 rdev->raid_disk = -1;
3223 return err;
3224 } else
3225 sysfs_notify_dirent_safe(rdev->sysfs_state);
3226 /* failure here is OK */;
3227 sysfs_link_rdev(rdev->mddev, rdev);
3228 /* don't wakeup anyone, leave that to userspace. */
3229 } else {
3230 if (slot >= rdev->mddev->raid_disks &&
3231 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
3232 return -ENOSPC;
3233 rdev->raid_disk = slot;
3234 /* assume it is working */
3235 clear_bit(Faulty, &rdev->flags);
3236 clear_bit(WriteMostly, &rdev->flags);
3237 set_bit(In_sync, &rdev->flags);
3238 sysfs_notify_dirent_safe(rdev->sysfs_state);
3239 }
3240 return len;
3241}
3242
3243static struct rdev_sysfs_entry rdev_slot =
3244__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
3245
3246static ssize_t
3247offset_show(struct md_rdev *rdev, char *page)
3248{
3249 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
3250}
3251
3252static ssize_t
3253offset_store(struct md_rdev *rdev, const char *buf, size_t len)
3254{
3255 unsigned long long offset;
3256 if (kstrtoull(buf, 10, &offset) < 0)
3257 return -EINVAL;
3258 if (rdev->mddev->pers && rdev->raid_disk >= 0)
3259 return -EBUSY;
3260 if (rdev->sectors && rdev->mddev->external)
3261 /* Must set offset before size, so overlap checks
3262 * can be sane */
3263 return -EBUSY;
3264 rdev->data_offset = offset;
3265 rdev->new_data_offset = offset;
3266 return len;
3267}
3268
3269static struct rdev_sysfs_entry rdev_offset =
3270__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
3271
3272static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
3273{
3274 return sprintf(page, "%llu\n",
3275 (unsigned long long)rdev->new_data_offset);
3276}
3277
3278static ssize_t new_offset_store(struct md_rdev *rdev,
3279 const char *buf, size_t len)
3280{
3281 unsigned long long new_offset;
3282 struct mddev *mddev = rdev->mddev;
3283
3284 if (kstrtoull(buf, 10, &new_offset) < 0)
3285 return -EINVAL;
3286
3287 if (mddev->sync_thread ||
3288 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
3289 return -EBUSY;
3290 if (new_offset == rdev->data_offset)
3291 /* reset is always permitted */
3292 ;
3293 else if (new_offset > rdev->data_offset) {
3294 /* must not push array size beyond rdev_sectors */
3295 if (new_offset - rdev->data_offset
3296 + mddev->dev_sectors > rdev->sectors)
3297 return -E2BIG;
3298 }
3299 /* Metadata worries about other space details. */
3300
3301 /* decreasing the offset is inconsistent with a backwards
3302 * reshape.
3303 */
3304 if (new_offset < rdev->data_offset &&
3305 mddev->reshape_backwards)
3306 return -EINVAL;
3307 /* Increasing offset is inconsistent with forwards
3308 * reshape. reshape_direction should be set to
3309 * 'backwards' first.
3310 */
3311 if (new_offset > rdev->data_offset &&
3312 !mddev->reshape_backwards)
3313 return -EINVAL;
3314
3315 if (mddev->pers && mddev->persistent &&
3316 !super_types[mddev->major_version]
3317 .allow_new_offset(rdev, new_offset))
3318 return -E2BIG;
3319 rdev->new_data_offset = new_offset;
3320 if (new_offset > rdev->data_offset)
3321 mddev->reshape_backwards = 1;
3322 else if (new_offset < rdev->data_offset)
3323 mddev->reshape_backwards = 0;
3324
3325 return len;
3326}
3327static struct rdev_sysfs_entry rdev_new_offset =
3328__ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
3329
3330static ssize_t
3331rdev_size_show(struct md_rdev *rdev, char *page)
3332{
3333 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3334}
3335
3336static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3337{
3338 /* check if two start/length pairs overlap */
3339 if (s1+l1 <= s2)
3340 return 0;
3341 if (s2+l2 <= s1)
3342 return 0;
3343 return 1;
3344}
3345
3346static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3347{
3348 unsigned long long blocks;
3349 sector_t new;
3350
3351 if (kstrtoull(buf, 10, &blocks) < 0)
3352 return -EINVAL;
3353
3354 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3355 return -EINVAL; /* sector conversion overflow */
3356
3357 new = blocks * 2;
3358 if (new != blocks * 2)
3359 return -EINVAL; /* unsigned long long to sector_t overflow */
3360
3361 *sectors = new;
3362 return 0;
3363}
3364
3365static ssize_t
3366rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3367{
3368 struct mddev *my_mddev = rdev->mddev;
3369 sector_t oldsectors = rdev->sectors;
3370 sector_t sectors;
3371
3372 if (test_bit(Journal, &rdev->flags))
3373 return -EBUSY;
3374 if (strict_blocks_to_sectors(buf, §ors) < 0)
3375 return -EINVAL;
3376 if (rdev->data_offset != rdev->new_data_offset)
3377 return -EINVAL; /* too confusing */
3378 if (my_mddev->pers && rdev->raid_disk >= 0) {
3379 if (my_mddev->persistent) {
3380 sectors = super_types[my_mddev->major_version].
3381 rdev_size_change(rdev, sectors);
3382 if (!sectors)
3383 return -EBUSY;
3384 } else if (!sectors)
3385 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3386 rdev->data_offset;
3387 if (!my_mddev->pers->resize)
3388 /* Cannot change size for RAID0 or Linear etc */
3389 return -EINVAL;
3390 }
3391 if (sectors < my_mddev->dev_sectors)
3392 return -EINVAL; /* component must fit device */
3393
3394 rdev->sectors = sectors;
3395 if (sectors > oldsectors && my_mddev->external) {
3396 /* Need to check that all other rdevs with the same
3397 * ->bdev do not overlap. 'rcu' is sufficient to walk
3398 * the rdev lists safely.
3399 * This check does not provide a hard guarantee, it
3400 * just helps avoid dangerous mistakes.
3401 */
3402 struct mddev *mddev;
3403 int overlap = 0;
3404 struct list_head *tmp;
3405
3406 rcu_read_lock();
3407 for_each_mddev(mddev, tmp) {
3408 struct md_rdev *rdev2;
3409
3410 rdev_for_each(rdev2, mddev)
3411 if (rdev->bdev == rdev2->bdev &&
3412 rdev != rdev2 &&
3413 overlaps(rdev->data_offset, rdev->sectors,
3414 rdev2->data_offset,
3415 rdev2->sectors)) {
3416 overlap = 1;
3417 break;
3418 }
3419 if (overlap) {
3420 mddev_put(mddev);
3421 break;
3422 }
3423 }
3424 rcu_read_unlock();
3425 if (overlap) {
3426 /* Someone else could have slipped in a size
3427 * change here, but doing so is just silly.
3428 * We put oldsectors back because we *know* it is
3429 * safe, and trust userspace not to race with
3430 * itself
3431 */
3432 rdev->sectors = oldsectors;
3433 return -EBUSY;
3434 }
3435 }
3436 return len;
3437}
3438
3439static struct rdev_sysfs_entry rdev_size =
3440__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3441
3442static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3443{
3444 unsigned long long recovery_start = rdev->recovery_offset;
3445
3446 if (test_bit(In_sync, &rdev->flags) ||
3447 recovery_start == MaxSector)
3448 return sprintf(page, "none\n");
3449
3450 return sprintf(page, "%llu\n", recovery_start);
3451}
3452
3453static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3454{
3455 unsigned long long recovery_start;
3456
3457 if (cmd_match(buf, "none"))
3458 recovery_start = MaxSector;
3459 else if (kstrtoull(buf, 10, &recovery_start))
3460 return -EINVAL;
3461
3462 if (rdev->mddev->pers &&
3463 rdev->raid_disk >= 0)
3464 return -EBUSY;
3465
3466 rdev->recovery_offset = recovery_start;
3467 if (recovery_start == MaxSector)
3468 set_bit(In_sync, &rdev->flags);
3469 else
3470 clear_bit(In_sync, &rdev->flags);
3471 return len;
3472}
3473
3474static struct rdev_sysfs_entry rdev_recovery_start =
3475__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3476
3477/* sysfs access to bad-blocks list.
3478 * We present two files.
3479 * 'bad-blocks' lists sector numbers and lengths of ranges that
3480 * are recorded as bad. The list is truncated to fit within
3481 * the one-page limit of sysfs.
3482 * Writing "sector length" to this file adds an acknowledged
3483 * bad block list.
3484 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3485 * been acknowledged. Writing to this file adds bad blocks
3486 * without acknowledging them. This is largely for testing.
3487 */
3488static ssize_t bb_show(struct md_rdev *rdev, char *page)
3489{
3490 return badblocks_show(&rdev->badblocks, page, 0);
3491}
3492static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3493{
3494 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3495 /* Maybe that ack was all we needed */
3496 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3497 wake_up(&rdev->blocked_wait);
3498 return rv;
3499}
3500static struct rdev_sysfs_entry rdev_bad_blocks =
3501__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3502
3503static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3504{
3505 return badblocks_show(&rdev->badblocks, page, 1);
3506}
3507static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3508{
3509 return badblocks_store(&rdev->badblocks, page, len, 1);
3510}
3511static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3512__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3513
3514static ssize_t
3515ppl_sector_show(struct md_rdev *rdev, char *page)
3516{
3517 return sprintf(page, "%llu\n", (unsigned long long)rdev->ppl.sector);
3518}
3519
3520static ssize_t
3521ppl_sector_store(struct md_rdev *rdev, const char *buf, size_t len)
3522{
3523 unsigned long long sector;
3524
3525 if (kstrtoull(buf, 10, §or) < 0)
3526 return -EINVAL;
3527 if (sector != (sector_t)sector)
3528 return -EINVAL;
3529
3530 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3531 rdev->raid_disk >= 0)
3532 return -EBUSY;
3533
3534 if (rdev->mddev->persistent) {
3535 if (rdev->mddev->major_version == 0)
3536 return -EINVAL;
3537 if ((sector > rdev->sb_start &&
3538 sector - rdev->sb_start > S16_MAX) ||
3539 (sector < rdev->sb_start &&
3540 rdev->sb_start - sector > -S16_MIN))
3541 return -EINVAL;
3542 rdev->ppl.offset = sector - rdev->sb_start;
3543 } else if (!rdev->mddev->external) {
3544 return -EBUSY;
3545 }
3546 rdev->ppl.sector = sector;
3547 return len;
3548}
3549
3550static struct rdev_sysfs_entry rdev_ppl_sector =
3551__ATTR(ppl_sector, S_IRUGO|S_IWUSR, ppl_sector_show, ppl_sector_store);
3552
3553static ssize_t
3554ppl_size_show(struct md_rdev *rdev, char *page)
3555{
3556 return sprintf(page, "%u\n", rdev->ppl.size);
3557}
3558
3559static ssize_t
3560ppl_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3561{
3562 unsigned int size;
3563
3564 if (kstrtouint(buf, 10, &size) < 0)
3565 return -EINVAL;
3566
3567 if (rdev->mddev->pers && test_bit(MD_HAS_PPL, &rdev->mddev->flags) &&
3568 rdev->raid_disk >= 0)
3569 return -EBUSY;
3570
3571 if (rdev->mddev->persistent) {
3572 if (rdev->mddev->major_version == 0)
3573 return -EINVAL;
3574 if (size > U16_MAX)
3575 return -EINVAL;
3576 } else if (!rdev->mddev->external) {
3577 return -EBUSY;
3578 }
3579 rdev->ppl.size = size;
3580 return len;
3581}
3582
3583static struct rdev_sysfs_entry rdev_ppl_size =
3584__ATTR(ppl_size, S_IRUGO|S_IWUSR, ppl_size_show, ppl_size_store);
3585
3586static struct attribute *rdev_default_attrs[] = {
3587 &rdev_state.attr,
3588 &rdev_errors.attr,
3589 &rdev_slot.attr,
3590 &rdev_offset.attr,
3591 &rdev_new_offset.attr,
3592 &rdev_size.attr,
3593 &rdev_recovery_start.attr,
3594 &rdev_bad_blocks.attr,
3595 &rdev_unack_bad_blocks.attr,
3596 &rdev_ppl_sector.attr,
3597 &rdev_ppl_size.attr,
3598 NULL,
3599};
3600static ssize_t
3601rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3602{
3603 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3604 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3605
3606 if (!entry->show)
3607 return -EIO;
3608 if (!rdev->mddev)
3609 return -ENODEV;
3610 return entry->show(rdev, page);
3611}
3612
3613static ssize_t
3614rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3615 const char *page, size_t length)
3616{
3617 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3618 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3619 ssize_t rv;
3620 struct mddev *mddev = rdev->mddev;
3621
3622 if (!entry->store)
3623 return -EIO;
3624 if (!capable(CAP_SYS_ADMIN))
3625 return -EACCES;
3626 rv = mddev ? mddev_lock(mddev) : -ENODEV;
3627 if (!rv) {
3628 if (rdev->mddev == NULL)
3629 rv = -ENODEV;
3630 else
3631 rv = entry->store(rdev, page, length);
3632 mddev_unlock(mddev);
3633 }
3634 return rv;
3635}
3636
3637static void rdev_free(struct kobject *ko)
3638{
3639 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3640 kfree(rdev);
3641}
3642static const struct sysfs_ops rdev_sysfs_ops = {
3643 .show = rdev_attr_show,
3644 .store = rdev_attr_store,
3645};
3646static struct kobj_type rdev_ktype = {
3647 .release = rdev_free,
3648 .sysfs_ops = &rdev_sysfs_ops,
3649 .default_attrs = rdev_default_attrs,
3650};
3651
3652int md_rdev_init(struct md_rdev *rdev)
3653{
3654 rdev->desc_nr = -1;
3655 rdev->saved_raid_disk = -1;
3656 rdev->raid_disk = -1;
3657 rdev->flags = 0;
3658 rdev->data_offset = 0;
3659 rdev->new_data_offset = 0;
3660 rdev->sb_events = 0;
3661 rdev->last_read_error = 0;
3662 rdev->sb_loaded = 0;
3663 rdev->bb_page = NULL;
3664 atomic_set(&rdev->nr_pending, 0);
3665 atomic_set(&rdev->read_errors, 0);
3666 atomic_set(&rdev->corrected_errors, 0);
3667
3668 INIT_LIST_HEAD(&rdev->same_set);
3669 init_waitqueue_head(&rdev->blocked_wait);
3670
3671 /* Add space to store bad block list.
3672 * This reserves the space even on arrays where it cannot
3673 * be used - I wonder if that matters
3674 */
3675 return badblocks_init(&rdev->badblocks, 0);
3676}
3677EXPORT_SYMBOL_GPL(md_rdev_init);
3678/*
3679 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3680 *
3681 * mark the device faulty if:
3682 *
3683 * - the device is nonexistent (zero size)
3684 * - the device has no valid superblock
3685 *
3686 * a faulty rdev _never_ has rdev->sb set.
3687 */
3688static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3689{
3690 char b[BDEVNAME_SIZE];
3691 int err;
3692 struct md_rdev *rdev;
3693 sector_t size;
3694
3695 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3696 if (!rdev)
3697 return ERR_PTR(-ENOMEM);
3698
3699 err = md_rdev_init(rdev);
3700 if (err)
3701 goto abort_free;
3702 err = alloc_disk_sb(rdev);
3703 if (err)
3704 goto abort_free;
3705
3706 err = lock_rdev(rdev, newdev, super_format == -2);
3707 if (err)
3708 goto abort_free;
3709
3710 kobject_init(&rdev->kobj, &rdev_ktype);
3711
3712 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3713 if (!size) {
3714 pr_warn("md: %s has zero or unknown size, marking faulty!\n",
3715 bdevname(rdev->bdev,b));
3716 err = -EINVAL;
3717 goto abort_free;
3718 }
3719
3720 if (super_format >= 0) {
3721 err = super_types[super_format].
3722 load_super(rdev, NULL, super_minor);
3723 if (err == -EINVAL) {
3724 pr_warn("md: %s does not have a valid v%d.%d superblock, not importing!\n",
3725 bdevname(rdev->bdev,b),
3726 super_format, super_minor);
3727 goto abort_free;
3728 }
3729 if (err < 0) {
3730 pr_warn("md: could not read %s's sb, not importing!\n",
3731 bdevname(rdev->bdev,b));
3732 goto abort_free;
3733 }
3734 }
3735
3736 return rdev;
3737
3738abort_free:
3739 if (rdev->bdev)
3740 unlock_rdev(rdev);
3741 md_rdev_clear(rdev);
3742 kfree(rdev);
3743 return ERR_PTR(err);
3744}
3745
3746/*
3747 * Check a full RAID array for plausibility
3748 */
3749
3750static int analyze_sbs(struct mddev *mddev)
3751{
3752 int i;
3753 struct md_rdev *rdev, *freshest, *tmp;
3754 char b[BDEVNAME_SIZE];
3755
3756 freshest = NULL;
3757 rdev_for_each_safe(rdev, tmp, mddev)
3758 switch (super_types[mddev->major_version].
3759 load_super(rdev, freshest, mddev->minor_version)) {
3760 case 1:
3761 freshest = rdev;
3762 break;
3763 case 0:
3764 break;
3765 default:
3766 pr_warn("md: fatal superblock inconsistency in %s -- removing from array\n",
3767 bdevname(rdev->bdev,b));
3768 md_kick_rdev_from_array(rdev);
3769 }
3770
3771 /* Cannot find a valid fresh disk */
3772 if (!freshest) {
3773 pr_warn("md: cannot find a valid disk\n");
3774 return -EINVAL;
3775 }
3776
3777 super_types[mddev->major_version].
3778 validate_super(mddev, freshest);
3779
3780 i = 0;
3781 rdev_for_each_safe(rdev, tmp, mddev) {
3782 if (mddev->max_disks &&
3783 (rdev->desc_nr >= mddev->max_disks ||
3784 i > mddev->max_disks)) {
3785 pr_warn("md: %s: %s: only %d devices permitted\n",
3786 mdname(mddev), bdevname(rdev->bdev, b),
3787 mddev->max_disks);
3788 md_kick_rdev_from_array(rdev);
3789 continue;
3790 }
3791 if (rdev != freshest) {
3792 if (super_types[mddev->major_version].
3793 validate_super(mddev, rdev)) {
3794 pr_warn("md: kicking non-fresh %s from array!\n",
3795 bdevname(rdev->bdev,b));
3796 md_kick_rdev_from_array(rdev);
3797 continue;
3798 }
3799 }
3800 if (mddev->level == LEVEL_MULTIPATH) {
3801 rdev->desc_nr = i++;
3802 rdev->raid_disk = rdev->desc_nr;
3803 set_bit(In_sync, &rdev->flags);
3804 } else if (rdev->raid_disk >=
3805 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3806 !test_bit(Journal, &rdev->flags)) {
3807 rdev->raid_disk = -1;
3808 clear_bit(In_sync, &rdev->flags);
3809 }
3810 }
3811
3812 return 0;
3813}
3814
3815/* Read a fixed-point number.
3816 * Numbers in sysfs attributes should be in "standard" units where
3817 * possible, so time should be in seconds.
3818 * However we internally use a a much smaller unit such as
3819 * milliseconds or jiffies.
3820 * This function takes a decimal number with a possible fractional
3821 * component, and produces an integer which is the result of
3822 * multiplying that number by 10^'scale'.
3823 * all without any floating-point arithmetic.
3824 */
3825int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3826{
3827 unsigned long result = 0;
3828 long decimals = -1;
3829 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3830 if (*cp == '.')
3831 decimals = 0;
3832 else if (decimals < scale) {
3833 unsigned int value;
3834 value = *cp - '0';
3835 result = result * 10 + value;
3836 if (decimals >= 0)
3837 decimals++;
3838 }
3839 cp++;
3840 }
3841 if (*cp == '\n')
3842 cp++;
3843 if (*cp)
3844 return -EINVAL;
3845 if (decimals < 0)
3846 decimals = 0;
3847 *res = result * int_pow(10, scale - decimals);
3848 return 0;
3849}
3850
3851static ssize_t
3852safe_delay_show(struct mddev *mddev, char *page)
3853{
3854 int msec = (mddev->safemode_delay*1000)/HZ;
3855 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3856}
3857static ssize_t
3858safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3859{
3860 unsigned long msec;
3861
3862 if (mddev_is_clustered(mddev)) {
3863 pr_warn("md: Safemode is disabled for clustered mode\n");
3864 return -EINVAL;
3865 }
3866
3867 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3868 return -EINVAL;
3869 if (msec == 0)
3870 mddev->safemode_delay = 0;
3871 else {
3872 unsigned long old_delay = mddev->safemode_delay;
3873 unsigned long new_delay = (msec*HZ)/1000;
3874
3875 if (new_delay == 0)
3876 new_delay = 1;
3877 mddev->safemode_delay = new_delay;
3878 if (new_delay < old_delay || old_delay == 0)
3879 mod_timer(&mddev->safemode_timer, jiffies+1);
3880 }
3881 return len;
3882}
3883static struct md_sysfs_entry md_safe_delay =
3884__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3885
3886static ssize_t
3887level_show(struct mddev *mddev, char *page)
3888{
3889 struct md_personality *p;
3890 int ret;
3891 spin_lock(&mddev->lock);
3892 p = mddev->pers;
3893 if (p)
3894 ret = sprintf(page, "%s\n", p->name);
3895 else if (mddev->clevel[0])
3896 ret = sprintf(page, "%s\n", mddev->clevel);
3897 else if (mddev->level != LEVEL_NONE)
3898 ret = sprintf(page, "%d\n", mddev->level);
3899 else
3900 ret = 0;
3901 spin_unlock(&mddev->lock);
3902 return ret;
3903}
3904
3905static ssize_t
3906level_store(struct mddev *mddev, const char *buf, size_t len)
3907{
3908 char clevel[16];
3909 ssize_t rv;
3910 size_t slen = len;
3911 struct md_personality *pers, *oldpers;
3912 long level;
3913 void *priv, *oldpriv;
3914 struct md_rdev *rdev;
3915
3916 if (slen == 0 || slen >= sizeof(clevel))
3917 return -EINVAL;
3918
3919 rv = mddev_lock(mddev);
3920 if (rv)
3921 return rv;
3922
3923 if (mddev->pers == NULL) {
3924 strncpy(mddev->clevel, buf, slen);
3925 if (mddev->clevel[slen-1] == '\n')
3926 slen--;
3927 mddev->clevel[slen] = 0;
3928 mddev->level = LEVEL_NONE;
3929 rv = len;
3930 goto out_unlock;
3931 }
3932 rv = -EROFS;
3933 if (mddev->ro)
3934 goto out_unlock;
3935
3936 /* request to change the personality. Need to ensure:
3937 * - array is not engaged in resync/recovery/reshape
3938 * - old personality can be suspended
3939 * - new personality will access other array.
3940 */
3941
3942 rv = -EBUSY;
3943 if (mddev->sync_thread ||
3944 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3945 mddev->reshape_position != MaxSector ||
3946 mddev->sysfs_active)
3947 goto out_unlock;
3948
3949 rv = -EINVAL;
3950 if (!mddev->pers->quiesce) {
3951 pr_warn("md: %s: %s does not support online personality change\n",
3952 mdname(mddev), mddev->pers->name);
3953 goto out_unlock;
3954 }
3955
3956 /* Now find the new personality */
3957 strncpy(clevel, buf, slen);
3958 if (clevel[slen-1] == '\n')
3959 slen--;
3960 clevel[slen] = 0;
3961 if (kstrtol(clevel, 10, &level))
3962 level = LEVEL_NONE;
3963
3964 if (request_module("md-%s", clevel) != 0)
3965 request_module("md-level-%s", clevel);
3966 spin_lock(&pers_lock);
3967 pers = find_pers(level, clevel);
3968 if (!pers || !try_module_get(pers->owner)) {
3969 spin_unlock(&pers_lock);
3970 pr_warn("md: personality %s not loaded\n", clevel);
3971 rv = -EINVAL;
3972 goto out_unlock;
3973 }
3974 spin_unlock(&pers_lock);
3975
3976 if (pers == mddev->pers) {
3977 /* Nothing to do! */
3978 module_put(pers->owner);
3979 rv = len;
3980 goto out_unlock;
3981 }
3982 if (!pers->takeover) {
3983 module_put(pers->owner);
3984 pr_warn("md: %s: %s does not support personality takeover\n",
3985 mdname(mddev), clevel);
3986 rv = -EINVAL;
3987 goto out_unlock;
3988 }
3989
3990 rdev_for_each(rdev, mddev)
3991 rdev->new_raid_disk = rdev->raid_disk;
3992
3993 /* ->takeover must set new_* and/or delta_disks
3994 * if it succeeds, and may set them when it fails.
3995 */
3996 priv = pers->takeover(mddev);
3997 if (IS_ERR(priv)) {
3998 mddev->new_level = mddev->level;
3999 mddev->new_layout = mddev->layout;
4000 mddev->new_chunk_sectors = mddev->chunk_sectors;
4001 mddev->raid_disks -= mddev->delta_disks;
4002 mddev->delta_disks = 0;
4003 mddev->reshape_backwards = 0;
4004 module_put(pers->owner);
4005 pr_warn("md: %s: %s would not accept array\n",
4006 mdname(mddev), clevel);
4007 rv = PTR_ERR(priv);
4008 goto out_unlock;
4009 }
4010
4011 /* Looks like we have a winner */
4012 mddev_suspend(mddev);
4013 mddev_detach(mddev);
4014
4015 spin_lock(&mddev->lock);
4016 oldpers = mddev->pers;
4017 oldpriv = mddev->private;
4018 mddev->pers = pers;
4019 mddev->private = priv;
4020 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4021 mddev->level = mddev->new_level;
4022 mddev->layout = mddev->new_layout;
4023 mddev->chunk_sectors = mddev->new_chunk_sectors;
4024 mddev->delta_disks = 0;
4025 mddev->reshape_backwards = 0;
4026 mddev->degraded = 0;
4027 spin_unlock(&mddev->lock);
4028
4029 if (oldpers->sync_request == NULL &&
4030 mddev->external) {
4031 /* We are converting from a no-redundancy array
4032 * to a redundancy array and metadata is managed
4033 * externally so we need to be sure that writes
4034 * won't block due to a need to transition
4035 * clean->dirty
4036 * until external management is started.
4037 */
4038 mddev->in_sync = 0;
4039 mddev->safemode_delay = 0;
4040 mddev->safemode = 0;
4041 }
4042
4043 oldpers->free(mddev, oldpriv);
4044
4045 if (oldpers->sync_request == NULL &&
4046 pers->sync_request != NULL) {
4047 /* need to add the md_redundancy_group */
4048 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4049 pr_warn("md: cannot register extra attributes for %s\n",
4050 mdname(mddev));
4051 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4052 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
4053 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
4054 }
4055 if (oldpers->sync_request != NULL &&
4056 pers->sync_request == NULL) {
4057 /* need to remove the md_redundancy_group */
4058 if (mddev->to_remove == NULL)
4059 mddev->to_remove = &md_redundancy_group;
4060 }
4061
4062 module_put(oldpers->owner);
4063
4064 rdev_for_each(rdev, mddev) {
4065 if (rdev->raid_disk < 0)
4066 continue;
4067 if (rdev->new_raid_disk >= mddev->raid_disks)
4068 rdev->new_raid_disk = -1;
4069 if (rdev->new_raid_disk == rdev->raid_disk)
4070 continue;
4071 sysfs_unlink_rdev(mddev, rdev);
4072 }
4073 rdev_for_each(rdev, mddev) {
4074 if (rdev->raid_disk < 0)
4075 continue;
4076 if (rdev->new_raid_disk == rdev->raid_disk)
4077 continue;
4078 rdev->raid_disk = rdev->new_raid_disk;
4079 if (rdev->raid_disk < 0)
4080 clear_bit(In_sync, &rdev->flags);
4081 else {
4082 if (sysfs_link_rdev(mddev, rdev))
4083 pr_warn("md: cannot register rd%d for %s after level change\n",
4084 rdev->raid_disk, mdname(mddev));
4085 }
4086 }
4087
4088 if (pers->sync_request == NULL) {
4089 /* this is now an array without redundancy, so
4090 * it must always be in_sync
4091 */
4092 mddev->in_sync = 1;
4093 del_timer_sync(&mddev->safemode_timer);
4094 }
4095 blk_set_stacking_limits(&mddev->queue->limits);
4096 pers->run(mddev);
4097 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4098 mddev_resume(mddev);
4099 if (!mddev->thread)
4100 md_update_sb(mddev, 1);
4101 sysfs_notify_dirent_safe(mddev->sysfs_level);
4102 md_new_event(mddev);
4103 rv = len;
4104out_unlock:
4105 mddev_unlock(mddev);
4106 return rv;
4107}
4108
4109static struct md_sysfs_entry md_level =
4110__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
4111
4112static ssize_t
4113layout_show(struct mddev *mddev, char *page)
4114{
4115 /* just a number, not meaningful for all levels */
4116 if (mddev->reshape_position != MaxSector &&
4117 mddev->layout != mddev->new_layout)
4118 return sprintf(page, "%d (%d)\n",
4119 mddev->new_layout, mddev->layout);
4120 return sprintf(page, "%d\n", mddev->layout);
4121}
4122
4123static ssize_t
4124layout_store(struct mddev *mddev, const char *buf, size_t len)
4125{
4126 unsigned int n;
4127 int err;
4128
4129 err = kstrtouint(buf, 10, &n);
4130 if (err < 0)
4131 return err;
4132 err = mddev_lock(mddev);
4133 if (err)
4134 return err;
4135
4136 if (mddev->pers) {
4137 if (mddev->pers->check_reshape == NULL)
4138 err = -EBUSY;
4139 else if (mddev->ro)
4140 err = -EROFS;
4141 else {
4142 mddev->new_layout = n;
4143 err = mddev->pers->check_reshape(mddev);
4144 if (err)
4145 mddev->new_layout = mddev->layout;
4146 }
4147 } else {
4148 mddev->new_layout = n;
4149 if (mddev->reshape_position == MaxSector)
4150 mddev->layout = n;
4151 }
4152 mddev_unlock(mddev);
4153 return err ?: len;
4154}
4155static struct md_sysfs_entry md_layout =
4156__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
4157
4158static ssize_t
4159raid_disks_show(struct mddev *mddev, char *page)
4160{
4161 if (mddev->raid_disks == 0)
4162 return 0;
4163 if (mddev->reshape_position != MaxSector &&
4164 mddev->delta_disks != 0)
4165 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
4166 mddev->raid_disks - mddev->delta_disks);
4167 return sprintf(page, "%d\n", mddev->raid_disks);
4168}
4169
4170static int update_raid_disks(struct mddev *mddev, int raid_disks);
4171
4172static ssize_t
4173raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
4174{
4175 unsigned int n;
4176 int err;
4177
4178 err = kstrtouint(buf, 10, &n);
4179 if (err < 0)
4180 return err;
4181
4182 err = mddev_lock(mddev);
4183 if (err)
4184 return err;
4185 if (mddev->pers)
4186 err = update_raid_disks(mddev, n);
4187 else if (mddev->reshape_position != MaxSector) {
4188 struct md_rdev *rdev;
4189 int olddisks = mddev->raid_disks - mddev->delta_disks;
4190
4191 err = -EINVAL;
4192 rdev_for_each(rdev, mddev) {
4193 if (olddisks < n &&
4194 rdev->data_offset < rdev->new_data_offset)
4195 goto out_unlock;
4196 if (olddisks > n &&
4197 rdev->data_offset > rdev->new_data_offset)
4198 goto out_unlock;
4199 }
4200 err = 0;
4201 mddev->delta_disks = n - olddisks;
4202 mddev->raid_disks = n;
4203 mddev->reshape_backwards = (mddev->delta_disks < 0);
4204 } else
4205 mddev->raid_disks = n;
4206out_unlock:
4207 mddev_unlock(mddev);
4208 return err ? err : len;
4209}
4210static struct md_sysfs_entry md_raid_disks =
4211__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
4212
4213static ssize_t
4214uuid_show(struct mddev *mddev, char *page)
4215{
4216 return sprintf(page, "%pU\n", mddev->uuid);
4217}
4218static struct md_sysfs_entry md_uuid =
4219__ATTR(uuid, S_IRUGO, uuid_show, NULL);
4220
4221static ssize_t
4222chunk_size_show(struct mddev *mddev, char *page)
4223{
4224 if (mddev->reshape_position != MaxSector &&
4225 mddev->chunk_sectors != mddev->new_chunk_sectors)
4226 return sprintf(page, "%d (%d)\n",
4227 mddev->new_chunk_sectors << 9,
4228 mddev->chunk_sectors << 9);
4229 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
4230}
4231
4232static ssize_t
4233chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
4234{
4235 unsigned long n;
4236 int err;
4237
4238 err = kstrtoul(buf, 10, &n);
4239 if (err < 0)
4240 return err;
4241
4242 err = mddev_lock(mddev);
4243 if (err)
4244 return err;
4245 if (mddev->pers) {
4246 if (mddev->pers->check_reshape == NULL)
4247 err = -EBUSY;
4248 else if (mddev->ro)
4249 err = -EROFS;
4250 else {
4251 mddev->new_chunk_sectors = n >> 9;
4252 err = mddev->pers->check_reshape(mddev);
4253 if (err)
4254 mddev->new_chunk_sectors = mddev->chunk_sectors;
4255 }
4256 } else {
4257 mddev->new_chunk_sectors = n >> 9;
4258 if (mddev->reshape_position == MaxSector)
4259 mddev->chunk_sectors = n >> 9;
4260 }
4261 mddev_unlock(mddev);
4262 return err ?: len;
4263}
4264static struct md_sysfs_entry md_chunk_size =
4265__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
4266
4267static ssize_t
4268resync_start_show(struct mddev *mddev, char *page)
4269{
4270 if (mddev->recovery_cp == MaxSector)
4271 return sprintf(page, "none\n");
4272 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
4273}
4274
4275static ssize_t
4276resync_start_store(struct mddev *mddev, const char *buf, size_t len)
4277{
4278 unsigned long long n;
4279 int err;
4280
4281 if (cmd_match(buf, "none"))
4282 n = MaxSector;
4283 else {
4284 err = kstrtoull(buf, 10, &n);
4285 if (err < 0)
4286 return err;
4287 if (n != (sector_t)n)
4288 return -EINVAL;
4289 }
4290
4291 err = mddev_lock(mddev);
4292 if (err)
4293 return err;
4294 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4295 err = -EBUSY;
4296
4297 if (!err) {
4298 mddev->recovery_cp = n;
4299 if (mddev->pers)
4300 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
4301 }
4302 mddev_unlock(mddev);
4303 return err ?: len;
4304}
4305static struct md_sysfs_entry md_resync_start =
4306__ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
4307 resync_start_show, resync_start_store);
4308
4309/*
4310 * The array state can be:
4311 *
4312 * clear
4313 * No devices, no size, no level
4314 * Equivalent to STOP_ARRAY ioctl
4315 * inactive
4316 * May have some settings, but array is not active
4317 * all IO results in error
4318 * When written, doesn't tear down array, but just stops it
4319 * suspended (not supported yet)
4320 * All IO requests will block. The array can be reconfigured.
4321 * Writing this, if accepted, will block until array is quiescent
4322 * readonly
4323 * no resync can happen. no superblocks get written.
4324 * write requests fail
4325 * read-auto
4326 * like readonly, but behaves like 'clean' on a write request.
4327 *
4328 * clean - no pending writes, but otherwise active.
4329 * When written to inactive array, starts without resync
4330 * If a write request arrives then
4331 * if metadata is known, mark 'dirty' and switch to 'active'.
4332 * if not known, block and switch to write-pending
4333 * If written to an active array that has pending writes, then fails.
4334 * active
4335 * fully active: IO and resync can be happening.
4336 * When written to inactive array, starts with resync
4337 *
4338 * write-pending
4339 * clean, but writes are blocked waiting for 'active' to be written.
4340 *
4341 * active-idle
4342 * like active, but no writes have been seen for a while (100msec).
4343 *
4344 * broken
4345 * RAID0/LINEAR-only: same as clean, but array is missing a member.
4346 * It's useful because RAID0/LINEAR mounted-arrays aren't stopped
4347 * when a member is gone, so this state will at least alert the
4348 * user that something is wrong.
4349 */
4350enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
4351 write_pending, active_idle, broken, bad_word};
4352static char *array_states[] = {
4353 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
4354 "write-pending", "active-idle", "broken", NULL };
4355
4356static int match_word(const char *word, char **list)
4357{
4358 int n;
4359 for (n=0; list[n]; n++)
4360 if (cmd_match(word, list[n]))
4361 break;
4362 return n;
4363}
4364
4365static ssize_t
4366array_state_show(struct mddev *mddev, char *page)
4367{
4368 enum array_state st = inactive;
4369
4370 if (mddev->pers && !test_bit(MD_NOT_READY, &mddev->flags)) {
4371 switch(mddev->ro) {
4372 case 1:
4373 st = readonly;
4374 break;
4375 case 2:
4376 st = read_auto;
4377 break;
4378 case 0:
4379 spin_lock(&mddev->lock);
4380 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
4381 st = write_pending;
4382 else if (mddev->in_sync)
4383 st = clean;
4384 else if (mddev->safemode)
4385 st = active_idle;
4386 else
4387 st = active;
4388 spin_unlock(&mddev->lock);
4389 }
4390
4391 if (test_bit(MD_BROKEN, &mddev->flags) && st == clean)
4392 st = broken;
4393 } else {
4394 if (list_empty(&mddev->disks) &&
4395 mddev->raid_disks == 0 &&
4396 mddev->dev_sectors == 0)
4397 st = clear;
4398 else
4399 st = inactive;
4400 }
4401 return sprintf(page, "%s\n", array_states[st]);
4402}
4403
4404static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
4405static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
4406static int restart_array(struct mddev *mddev);
4407
4408static ssize_t
4409array_state_store(struct mddev *mddev, const char *buf, size_t len)
4410{
4411 int err = 0;
4412 enum array_state st = match_word(buf, array_states);
4413
4414 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
4415 /* don't take reconfig_mutex when toggling between
4416 * clean and active
4417 */
4418 spin_lock(&mddev->lock);
4419 if (st == active) {
4420 restart_array(mddev);
4421 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4422 md_wakeup_thread(mddev->thread);
4423 wake_up(&mddev->sb_wait);
4424 } else /* st == clean */ {
4425 restart_array(mddev);
4426 if (!set_in_sync(mddev))
4427 err = -EBUSY;
4428 }
4429 if (!err)
4430 sysfs_notify_dirent_safe(mddev->sysfs_state);
4431 spin_unlock(&mddev->lock);
4432 return err ?: len;
4433 }
4434 err = mddev_lock(mddev);
4435 if (err)
4436 return err;
4437 err = -EINVAL;
4438 switch(st) {
4439 case bad_word:
4440 break;
4441 case clear:
4442 /* stopping an active array */
4443 err = do_md_stop(mddev, 0, NULL);
4444 break;
4445 case inactive:
4446 /* stopping an active array */
4447 if (mddev->pers)
4448 err = do_md_stop(mddev, 2, NULL);
4449 else
4450 err = 0; /* already inactive */
4451 break;
4452 case suspended:
4453 break; /* not supported yet */
4454 case readonly:
4455 if (mddev->pers)
4456 err = md_set_readonly(mddev, NULL);
4457 else {
4458 mddev->ro = 1;
4459 set_disk_ro(mddev->gendisk, 1);
4460 err = do_md_run(mddev);
4461 }
4462 break;
4463 case read_auto:
4464 if (mddev->pers) {
4465 if (mddev->ro == 0)
4466 err = md_set_readonly(mddev, NULL);
4467 else if (mddev->ro == 1)
4468 err = restart_array(mddev);
4469 if (err == 0) {
4470 mddev->ro = 2;
4471 set_disk_ro(mddev->gendisk, 0);
4472 }
4473 } else {
4474 mddev->ro = 2;
4475 err = do_md_run(mddev);
4476 }
4477 break;
4478 case clean:
4479 if (mddev->pers) {
4480 err = restart_array(mddev);
4481 if (err)
4482 break;
4483 spin_lock(&mddev->lock);
4484 if (!set_in_sync(mddev))
4485 err = -EBUSY;
4486 spin_unlock(&mddev->lock);
4487 } else
4488 err = -EINVAL;
4489 break;
4490 case active:
4491 if (mddev->pers) {
4492 err = restart_array(mddev);
4493 if (err)
4494 break;
4495 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
4496 wake_up(&mddev->sb_wait);
4497 err = 0;
4498 } else {
4499 mddev->ro = 0;
4500 set_disk_ro(mddev->gendisk, 0);
4501 err = do_md_run(mddev);
4502 }
4503 break;
4504 case write_pending:
4505 case active_idle:
4506 case broken:
4507 /* these cannot be set */
4508 break;
4509 }
4510
4511 if (!err) {
4512 if (mddev->hold_active == UNTIL_IOCTL)
4513 mddev->hold_active = 0;
4514 sysfs_notify_dirent_safe(mddev->sysfs_state);
4515 }
4516 mddev_unlock(mddev);
4517 return err ?: len;
4518}
4519static struct md_sysfs_entry md_array_state =
4520__ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4521
4522static ssize_t
4523max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4524 return sprintf(page, "%d\n",
4525 atomic_read(&mddev->max_corr_read_errors));
4526}
4527
4528static ssize_t
4529max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4530{
4531 unsigned int n;
4532 int rv;
4533
4534 rv = kstrtouint(buf, 10, &n);
4535 if (rv < 0)
4536 return rv;
4537 atomic_set(&mddev->max_corr_read_errors, n);
4538 return len;
4539}
4540
4541static struct md_sysfs_entry max_corr_read_errors =
4542__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4543 max_corrected_read_errors_store);
4544
4545static ssize_t
4546null_show(struct mddev *mddev, char *page)
4547{
4548 return -EINVAL;
4549}
4550
4551/* need to ensure rdev_delayed_delete() has completed */
4552static void flush_rdev_wq(struct mddev *mddev)
4553{
4554 struct md_rdev *rdev;
4555
4556 rcu_read_lock();
4557 rdev_for_each_rcu(rdev, mddev)
4558 if (work_pending(&rdev->del_work)) {
4559 flush_workqueue(md_rdev_misc_wq);
4560 break;
4561 }
4562 rcu_read_unlock();
4563}
4564
4565static ssize_t
4566new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4567{
4568 /* buf must be %d:%d\n? giving major and minor numbers */
4569 /* The new device is added to the array.
4570 * If the array has a persistent superblock, we read the
4571 * superblock to initialise info and check validity.
4572 * Otherwise, only checking done is that in bind_rdev_to_array,
4573 * which mainly checks size.
4574 */
4575 char *e;
4576 int major = simple_strtoul(buf, &e, 10);
4577 int minor;
4578 dev_t dev;
4579 struct md_rdev *rdev;
4580 int err;
4581
4582 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4583 return -EINVAL;
4584 minor = simple_strtoul(e+1, &e, 10);
4585 if (*e && *e != '\n')
4586 return -EINVAL;
4587 dev = MKDEV(major, minor);
4588 if (major != MAJOR(dev) ||
4589 minor != MINOR(dev))
4590 return -EOVERFLOW;
4591
4592 flush_rdev_wq(mddev);
4593 err = mddev_lock(mddev);
4594 if (err)
4595 return err;
4596 if (mddev->persistent) {
4597 rdev = md_import_device(dev, mddev->major_version,
4598 mddev->minor_version);
4599 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4600 struct md_rdev *rdev0
4601 = list_entry(mddev->disks.next,
4602 struct md_rdev, same_set);
4603 err = super_types[mddev->major_version]
4604 .load_super(rdev, rdev0, mddev->minor_version);
4605 if (err < 0)
4606 goto out;
4607 }
4608 } else if (mddev->external)
4609 rdev = md_import_device(dev, -2, -1);
4610 else
4611 rdev = md_import_device(dev, -1, -1);
4612
4613 if (IS_ERR(rdev)) {
4614 mddev_unlock(mddev);
4615 return PTR_ERR(rdev);
4616 }
4617 err = bind_rdev_to_array(rdev, mddev);
4618 out:
4619 if (err)
4620 export_rdev(rdev);
4621 mddev_unlock(mddev);
4622 if (!err)
4623 md_new_event(mddev);
4624 return err ? err : len;
4625}
4626
4627static struct md_sysfs_entry md_new_device =
4628__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4629
4630static ssize_t
4631bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4632{
4633 char *end;
4634 unsigned long chunk, end_chunk;
4635 int err;
4636
4637 err = mddev_lock(mddev);
4638 if (err)
4639 return err;
4640 if (!mddev->bitmap)
4641 goto out;
4642 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4643 while (*buf) {
4644 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4645 if (buf == end) break;
4646 if (*end == '-') { /* range */
4647 buf = end + 1;
4648 end_chunk = simple_strtoul(buf, &end, 0);
4649 if (buf == end) break;
4650 }
4651 if (*end && !isspace(*end)) break;
4652 md_bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4653 buf = skip_spaces(end);
4654 }
4655 md_bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4656out:
4657 mddev_unlock(mddev);
4658 return len;
4659}
4660
4661static struct md_sysfs_entry md_bitmap =
4662__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4663
4664static ssize_t
4665size_show(struct mddev *mddev, char *page)
4666{
4667 return sprintf(page, "%llu\n",
4668 (unsigned long long)mddev->dev_sectors / 2);
4669}
4670
4671static int update_size(struct mddev *mddev, sector_t num_sectors);
4672
4673static ssize_t
4674size_store(struct mddev *mddev, const char *buf, size_t len)
4675{
4676 /* If array is inactive, we can reduce the component size, but
4677 * not increase it (except from 0).
4678 * If array is active, we can try an on-line resize
4679 */
4680 sector_t sectors;
4681 int err = strict_blocks_to_sectors(buf, §ors);
4682
4683 if (err < 0)
4684 return err;
4685 err = mddev_lock(mddev);
4686 if (err)
4687 return err;
4688 if (mddev->pers) {
4689 err = update_size(mddev, sectors);
4690 if (err == 0)
4691 md_update_sb(mddev, 1);
4692 } else {
4693 if (mddev->dev_sectors == 0 ||
4694 mddev->dev_sectors > sectors)
4695 mddev->dev_sectors = sectors;
4696 else
4697 err = -ENOSPC;
4698 }
4699 mddev_unlock(mddev);
4700 return err ? err : len;
4701}
4702
4703static struct md_sysfs_entry md_size =
4704__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4705
4706/* Metadata version.
4707 * This is one of
4708 * 'none' for arrays with no metadata (good luck...)
4709 * 'external' for arrays with externally managed metadata,
4710 * or N.M for internally known formats
4711 */
4712static ssize_t
4713metadata_show(struct mddev *mddev, char *page)
4714{
4715 if (mddev->persistent)
4716 return sprintf(page, "%d.%d\n",
4717 mddev->major_version, mddev->minor_version);
4718 else if (mddev->external)
4719 return sprintf(page, "external:%s\n", mddev->metadata_type);
4720 else
4721 return sprintf(page, "none\n");
4722}
4723
4724static ssize_t
4725metadata_store(struct mddev *mddev, const char *buf, size_t len)
4726{
4727 int major, minor;
4728 char *e;
4729 int err;
4730 /* Changing the details of 'external' metadata is
4731 * always permitted. Otherwise there must be
4732 * no devices attached to the array.
4733 */
4734
4735 err = mddev_lock(mddev);
4736 if (err)
4737 return err;
4738 err = -EBUSY;
4739 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4740 ;
4741 else if (!list_empty(&mddev->disks))
4742 goto out_unlock;
4743
4744 err = 0;
4745 if (cmd_match(buf, "none")) {
4746 mddev->persistent = 0;
4747 mddev->external = 0;
4748 mddev->major_version = 0;
4749 mddev->minor_version = 90;
4750 goto out_unlock;
4751 }
4752 if (strncmp(buf, "external:", 9) == 0) {
4753 size_t namelen = len-9;
4754 if (namelen >= sizeof(mddev->metadata_type))
4755 namelen = sizeof(mddev->metadata_type)-1;
4756 strncpy(mddev->metadata_type, buf+9, namelen);
4757 mddev->metadata_type[namelen] = 0;
4758 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4759 mddev->metadata_type[--namelen] = 0;
4760 mddev->persistent = 0;
4761 mddev->external = 1;
4762 mddev->major_version = 0;
4763 mddev->minor_version = 90;
4764 goto out_unlock;
4765 }
4766 major = simple_strtoul(buf, &e, 10);
4767 err = -EINVAL;
4768 if (e==buf || *e != '.')
4769 goto out_unlock;
4770 buf = e+1;
4771 minor = simple_strtoul(buf, &e, 10);
4772 if (e==buf || (*e && *e != '\n') )
4773 goto out_unlock;
4774 err = -ENOENT;
4775 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4776 goto out_unlock;
4777 mddev->major_version = major;
4778 mddev->minor_version = minor;
4779 mddev->persistent = 1;
4780 mddev->external = 0;
4781 err = 0;
4782out_unlock:
4783 mddev_unlock(mddev);
4784 return err ?: len;
4785}
4786
4787static struct md_sysfs_entry md_metadata =
4788__ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4789
4790static ssize_t
4791action_show(struct mddev *mddev, char *page)
4792{
4793 char *type = "idle";
4794 unsigned long recovery = mddev->recovery;
4795 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4796 type = "frozen";
4797 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4798 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4799 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4800 type = "reshape";
4801 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4802 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4803 type = "resync";
4804 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4805 type = "check";
4806 else
4807 type = "repair";
4808 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4809 type = "recover";
4810 else if (mddev->reshape_position != MaxSector)
4811 type = "reshape";
4812 }
4813 return sprintf(page, "%s\n", type);
4814}
4815
4816static ssize_t
4817action_store(struct mddev *mddev, const char *page, size_t len)
4818{
4819 if (!mddev->pers || !mddev->pers->sync_request)
4820 return -EINVAL;
4821
4822
4823 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4824 if (cmd_match(page, "frozen"))
4825 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4826 else
4827 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4828 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4829 mddev_lock(mddev) == 0) {
4830 if (work_pending(&mddev->del_work))
4831 flush_workqueue(md_misc_wq);
4832 if (mddev->sync_thread) {
4833 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4834 md_reap_sync_thread(mddev);
4835 }
4836 mddev_unlock(mddev);
4837 }
4838 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4839 return -EBUSY;
4840 else if (cmd_match(page, "resync"))
4841 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4842 else if (cmd_match(page, "recover")) {
4843 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4844 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4845 } else if (cmd_match(page, "reshape")) {
4846 int err;
4847 if (mddev->pers->start_reshape == NULL)
4848 return -EINVAL;
4849 err = mddev_lock(mddev);
4850 if (!err) {
4851 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4852 err = -EBUSY;
4853 else {
4854 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4855 err = mddev->pers->start_reshape(mddev);
4856 }
4857 mddev_unlock(mddev);
4858 }
4859 if (err)
4860 return err;
4861 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
4862 } else {
4863 if (cmd_match(page, "check"))
4864 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4865 else if (!cmd_match(page, "repair"))
4866 return -EINVAL;
4867 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4868 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4869 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4870 }
4871 if (mddev->ro == 2) {
4872 /* A write to sync_action is enough to justify
4873 * canceling read-auto mode
4874 */
4875 mddev->ro = 0;
4876 md_wakeup_thread(mddev->sync_thread);
4877 }
4878 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4879 md_wakeup_thread(mddev->thread);
4880 sysfs_notify_dirent_safe(mddev->sysfs_action);
4881 return len;
4882}
4883
4884static struct md_sysfs_entry md_scan_mode =
4885__ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4886
4887static ssize_t
4888last_sync_action_show(struct mddev *mddev, char *page)
4889{
4890 return sprintf(page, "%s\n", mddev->last_sync_action);
4891}
4892
4893static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4894
4895static ssize_t
4896mismatch_cnt_show(struct mddev *mddev, char *page)
4897{
4898 return sprintf(page, "%llu\n",
4899 (unsigned long long)
4900 atomic64_read(&mddev->resync_mismatches));
4901}
4902
4903static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4904
4905static ssize_t
4906sync_min_show(struct mddev *mddev, char *page)
4907{
4908 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4909 mddev->sync_speed_min ? "local": "system");
4910}
4911
4912static ssize_t
4913sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4914{
4915 unsigned int min;
4916 int rv;
4917
4918 if (strncmp(buf, "system", 6)==0) {
4919 min = 0;
4920 } else {
4921 rv = kstrtouint(buf, 10, &min);
4922 if (rv < 0)
4923 return rv;
4924 if (min == 0)
4925 return -EINVAL;
4926 }
4927 mddev->sync_speed_min = min;
4928 return len;
4929}
4930
4931static struct md_sysfs_entry md_sync_min =
4932__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4933
4934static ssize_t
4935sync_max_show(struct mddev *mddev, char *page)
4936{
4937 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4938 mddev->sync_speed_max ? "local": "system");
4939}
4940
4941static ssize_t
4942sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4943{
4944 unsigned int max;
4945 int rv;
4946
4947 if (strncmp(buf, "system", 6)==0) {
4948 max = 0;
4949 } else {
4950 rv = kstrtouint(buf, 10, &max);
4951 if (rv < 0)
4952 return rv;
4953 if (max == 0)
4954 return -EINVAL;
4955 }
4956 mddev->sync_speed_max = max;
4957 return len;
4958}
4959
4960static struct md_sysfs_entry md_sync_max =
4961__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4962
4963static ssize_t
4964degraded_show(struct mddev *mddev, char *page)
4965{
4966 return sprintf(page, "%d\n", mddev->degraded);
4967}
4968static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4969
4970static ssize_t
4971sync_force_parallel_show(struct mddev *mddev, char *page)
4972{
4973 return sprintf(page, "%d\n", mddev->parallel_resync);
4974}
4975
4976static ssize_t
4977sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4978{
4979 long n;
4980
4981 if (kstrtol(buf, 10, &n))
4982 return -EINVAL;
4983
4984 if (n != 0 && n != 1)
4985 return -EINVAL;
4986
4987 mddev->parallel_resync = n;
4988
4989 if (mddev->sync_thread)
4990 wake_up(&resync_wait);
4991
4992 return len;
4993}
4994
4995/* force parallel resync, even with shared block devices */
4996static struct md_sysfs_entry md_sync_force_parallel =
4997__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4998 sync_force_parallel_show, sync_force_parallel_store);
4999
5000static ssize_t
5001sync_speed_show(struct mddev *mddev, char *page)
5002{
5003 unsigned long resync, dt, db;
5004 if (mddev->curr_resync == 0)
5005 return sprintf(page, "none\n");
5006 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
5007 dt = (jiffies - mddev->resync_mark) / HZ;
5008 if (!dt) dt++;
5009 db = resync - mddev->resync_mark_cnt;
5010 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
5011}
5012
5013static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
5014
5015static ssize_t
5016sync_completed_show(struct mddev *mddev, char *page)
5017{
5018 unsigned long long max_sectors, resync;
5019
5020 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5021 return sprintf(page, "none\n");
5022
5023 if (mddev->curr_resync == 1 ||
5024 mddev->curr_resync == 2)
5025 return sprintf(page, "delayed\n");
5026
5027 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
5028 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5029 max_sectors = mddev->resync_max_sectors;
5030 else
5031 max_sectors = mddev->dev_sectors;
5032
5033 resync = mddev->curr_resync_completed;
5034 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
5035}
5036
5037static struct md_sysfs_entry md_sync_completed =
5038 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
5039
5040static ssize_t
5041min_sync_show(struct mddev *mddev, char *page)
5042{
5043 return sprintf(page, "%llu\n",
5044 (unsigned long long)mddev->resync_min);
5045}
5046static ssize_t
5047min_sync_store(struct mddev *mddev, const char *buf, size_t len)
5048{
5049 unsigned long long min;
5050 int err;
5051
5052 if (kstrtoull(buf, 10, &min))
5053 return -EINVAL;
5054
5055 spin_lock(&mddev->lock);
5056 err = -EINVAL;
5057 if (min > mddev->resync_max)
5058 goto out_unlock;
5059
5060 err = -EBUSY;
5061 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5062 goto out_unlock;
5063
5064 /* Round down to multiple of 4K for safety */
5065 mddev->resync_min = round_down(min, 8);
5066 err = 0;
5067
5068out_unlock:
5069 spin_unlock(&mddev->lock);
5070 return err ?: len;
5071}
5072
5073static struct md_sysfs_entry md_min_sync =
5074__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
5075
5076static ssize_t
5077max_sync_show(struct mddev *mddev, char *page)
5078{
5079 if (mddev->resync_max == MaxSector)
5080 return sprintf(page, "max\n");
5081 else
5082 return sprintf(page, "%llu\n",
5083 (unsigned long long)mddev->resync_max);
5084}
5085static ssize_t
5086max_sync_store(struct mddev *mddev, const char *buf, size_t len)
5087{
5088 int err;
5089 spin_lock(&mddev->lock);
5090 if (strncmp(buf, "max", 3) == 0)
5091 mddev->resync_max = MaxSector;
5092 else {
5093 unsigned long long max;
5094 int chunk;
5095
5096 err = -EINVAL;
5097 if (kstrtoull(buf, 10, &max))
5098 goto out_unlock;
5099 if (max < mddev->resync_min)
5100 goto out_unlock;
5101
5102 err = -EBUSY;
5103 if (max < mddev->resync_max &&
5104 mddev->ro == 0 &&
5105 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5106 goto out_unlock;
5107
5108 /* Must be a multiple of chunk_size */
5109 chunk = mddev->chunk_sectors;
5110 if (chunk) {
5111 sector_t temp = max;
5112
5113 err = -EINVAL;
5114 if (sector_div(temp, chunk))
5115 goto out_unlock;
5116 }
5117 mddev->resync_max = max;
5118 }
5119 wake_up(&mddev->recovery_wait);
5120 err = 0;
5121out_unlock:
5122 spin_unlock(&mddev->lock);
5123 return err ?: len;
5124}
5125
5126static struct md_sysfs_entry md_max_sync =
5127__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
5128
5129static ssize_t
5130suspend_lo_show(struct mddev *mddev, char *page)
5131{
5132 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
5133}
5134
5135static ssize_t
5136suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
5137{
5138 unsigned long long new;
5139 int err;
5140
5141 err = kstrtoull(buf, 10, &new);
5142 if (err < 0)
5143 return err;
5144 if (new != (sector_t)new)
5145 return -EINVAL;
5146
5147 err = mddev_lock(mddev);
5148 if (err)
5149 return err;
5150 err = -EINVAL;
5151 if (mddev->pers == NULL ||
5152 mddev->pers->quiesce == NULL)
5153 goto unlock;
5154 mddev_suspend(mddev);
5155 mddev->suspend_lo = new;
5156 mddev_resume(mddev);
5157
5158 err = 0;
5159unlock:
5160 mddev_unlock(mddev);
5161 return err ?: len;
5162}
5163static struct md_sysfs_entry md_suspend_lo =
5164__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
5165
5166static ssize_t
5167suspend_hi_show(struct mddev *mddev, char *page)
5168{
5169 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
5170}
5171
5172static ssize_t
5173suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
5174{
5175 unsigned long long new;
5176 int err;
5177
5178 err = kstrtoull(buf, 10, &new);
5179 if (err < 0)
5180 return err;
5181 if (new != (sector_t)new)
5182 return -EINVAL;
5183
5184 err = mddev_lock(mddev);
5185 if (err)
5186 return err;
5187 err = -EINVAL;
5188 if (mddev->pers == NULL)
5189 goto unlock;
5190
5191 mddev_suspend(mddev);
5192 mddev->suspend_hi = new;
5193 mddev_resume(mddev);
5194
5195 err = 0;
5196unlock:
5197 mddev_unlock(mddev);
5198 return err ?: len;
5199}
5200static struct md_sysfs_entry md_suspend_hi =
5201__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
5202
5203static ssize_t
5204reshape_position_show(struct mddev *mddev, char *page)
5205{
5206 if (mddev->reshape_position != MaxSector)
5207 return sprintf(page, "%llu\n",
5208 (unsigned long long)mddev->reshape_position);
5209 strcpy(page, "none\n");
5210 return 5;
5211}
5212
5213static ssize_t
5214reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
5215{
5216 struct md_rdev *rdev;
5217 unsigned long long new;
5218 int err;
5219
5220 err = kstrtoull(buf, 10, &new);
5221 if (err < 0)
5222 return err;
5223 if (new != (sector_t)new)
5224 return -EINVAL;
5225 err = mddev_lock(mddev);
5226 if (err)
5227 return err;
5228 err = -EBUSY;
5229 if (mddev->pers)
5230 goto unlock;
5231 mddev->reshape_position = new;
5232 mddev->delta_disks = 0;
5233 mddev->reshape_backwards = 0;
5234 mddev->new_level = mddev->level;
5235 mddev->new_layout = mddev->layout;
5236 mddev->new_chunk_sectors = mddev->chunk_sectors;
5237 rdev_for_each(rdev, mddev)
5238 rdev->new_data_offset = rdev->data_offset;
5239 err = 0;
5240unlock:
5241 mddev_unlock(mddev);
5242 return err ?: len;
5243}
5244
5245static struct md_sysfs_entry md_reshape_position =
5246__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
5247 reshape_position_store);
5248
5249static ssize_t
5250reshape_direction_show(struct mddev *mddev, char *page)
5251{
5252 return sprintf(page, "%s\n",
5253 mddev->reshape_backwards ? "backwards" : "forwards");
5254}
5255
5256static ssize_t
5257reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
5258{
5259 int backwards = 0;
5260 int err;
5261
5262 if (cmd_match(buf, "forwards"))
5263 backwards = 0;
5264 else if (cmd_match(buf, "backwards"))
5265 backwards = 1;
5266 else
5267 return -EINVAL;
5268 if (mddev->reshape_backwards == backwards)
5269 return len;
5270
5271 err = mddev_lock(mddev);
5272 if (err)
5273 return err;
5274 /* check if we are allowed to change */
5275 if (mddev->delta_disks)
5276 err = -EBUSY;
5277 else if (mddev->persistent &&
5278 mddev->major_version == 0)
5279 err = -EINVAL;
5280 else
5281 mddev->reshape_backwards = backwards;
5282 mddev_unlock(mddev);
5283 return err ?: len;
5284}
5285
5286static struct md_sysfs_entry md_reshape_direction =
5287__ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
5288 reshape_direction_store);
5289
5290static ssize_t
5291array_size_show(struct mddev *mddev, char *page)
5292{
5293 if (mddev->external_size)
5294 return sprintf(page, "%llu\n",
5295 (unsigned long long)mddev->array_sectors/2);
5296 else
5297 return sprintf(page, "default\n");
5298}
5299
5300static ssize_t
5301array_size_store(struct mddev *mddev, const char *buf, size_t len)
5302{
5303 sector_t sectors;
5304 int err;
5305
5306 err = mddev_lock(mddev);
5307 if (err)
5308 return err;
5309
5310 /* cluster raid doesn't support change array_sectors */
5311 if (mddev_is_clustered(mddev)) {
5312 mddev_unlock(mddev);
5313 return -EINVAL;
5314 }
5315
5316 if (strncmp(buf, "default", 7) == 0) {
5317 if (mddev->pers)
5318 sectors = mddev->pers->size(mddev, 0, 0);
5319 else
5320 sectors = mddev->array_sectors;
5321
5322 mddev->external_size = 0;
5323 } else {
5324 if (strict_blocks_to_sectors(buf, §ors) < 0)
5325 err = -EINVAL;
5326 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
5327 err = -E2BIG;
5328 else
5329 mddev->external_size = 1;
5330 }
5331
5332 if (!err) {
5333 mddev->array_sectors = sectors;
5334 if (mddev->pers)
5335 set_capacity_and_notify(mddev->gendisk,
5336 mddev->array_sectors);
5337 }
5338 mddev_unlock(mddev);
5339 return err ?: len;
5340}
5341
5342static struct md_sysfs_entry md_array_size =
5343__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
5344 array_size_store);
5345
5346static ssize_t
5347consistency_policy_show(struct mddev *mddev, char *page)
5348{
5349 int ret;
5350
5351 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5352 ret = sprintf(page, "journal\n");
5353 } else if (test_bit(MD_HAS_PPL, &mddev->flags)) {
5354 ret = sprintf(page, "ppl\n");
5355 } else if (mddev->bitmap) {
5356 ret = sprintf(page, "bitmap\n");
5357 } else if (mddev->pers) {
5358 if (mddev->pers->sync_request)
5359 ret = sprintf(page, "resync\n");
5360 else
5361 ret = sprintf(page, "none\n");
5362 } else {
5363 ret = sprintf(page, "unknown\n");
5364 }
5365
5366 return ret;
5367}
5368
5369static ssize_t
5370consistency_policy_store(struct mddev *mddev, const char *buf, size_t len)
5371{
5372 int err = 0;
5373
5374 if (mddev->pers) {
5375 if (mddev->pers->change_consistency_policy)
5376 err = mddev->pers->change_consistency_policy(mddev, buf);
5377 else
5378 err = -EBUSY;
5379 } else if (mddev->external && strncmp(buf, "ppl", 3) == 0) {
5380 set_bit(MD_HAS_PPL, &mddev->flags);
5381 } else {
5382 err = -EINVAL;
5383 }
5384
5385 return err ? err : len;
5386}
5387
5388static struct md_sysfs_entry md_consistency_policy =
5389__ATTR(consistency_policy, S_IRUGO | S_IWUSR, consistency_policy_show,
5390 consistency_policy_store);
5391
5392static ssize_t fail_last_dev_show(struct mddev *mddev, char *page)
5393{
5394 return sprintf(page, "%d\n", mddev->fail_last_dev);
5395}
5396
5397/*
5398 * Setting fail_last_dev to true to allow last device to be forcibly removed
5399 * from RAID1/RAID10.
5400 */
5401static ssize_t
5402fail_last_dev_store(struct mddev *mddev, const char *buf, size_t len)
5403{
5404 int ret;
5405 bool value;
5406
5407 ret = kstrtobool(buf, &value);
5408 if (ret)
5409 return ret;
5410
5411 if (value != mddev->fail_last_dev)
5412 mddev->fail_last_dev = value;
5413
5414 return len;
5415}
5416static struct md_sysfs_entry md_fail_last_dev =
5417__ATTR(fail_last_dev, S_IRUGO | S_IWUSR, fail_last_dev_show,
5418 fail_last_dev_store);
5419
5420static ssize_t serialize_policy_show(struct mddev *mddev, char *page)
5421{
5422 if (mddev->pers == NULL || (mddev->pers->level != 1))
5423 return sprintf(page, "n/a\n");
5424 else
5425 return sprintf(page, "%d\n", mddev->serialize_policy);
5426}
5427
5428/*
5429 * Setting serialize_policy to true to enforce write IO is not reordered
5430 * for raid1.
5431 */
5432static ssize_t
5433serialize_policy_store(struct mddev *mddev, const char *buf, size_t len)
5434{
5435 int err;
5436 bool value;
5437
5438 err = kstrtobool(buf, &value);
5439 if (err)
5440 return err;
5441
5442 if (value == mddev->serialize_policy)
5443 return len;
5444
5445 err = mddev_lock(mddev);
5446 if (err)
5447 return err;
5448 if (mddev->pers == NULL || (mddev->pers->level != 1)) {
5449 pr_err("md: serialize_policy is only effective for raid1\n");
5450 err = -EINVAL;
5451 goto unlock;
5452 }
5453
5454 mddev_suspend(mddev);
5455 if (value)
5456 mddev_create_serial_pool(mddev, NULL, true);
5457 else
5458 mddev_destroy_serial_pool(mddev, NULL, true);
5459 mddev->serialize_policy = value;
5460 mddev_resume(mddev);
5461unlock:
5462 mddev_unlock(mddev);
5463 return err ?: len;
5464}
5465
5466static struct md_sysfs_entry md_serialize_policy =
5467__ATTR(serialize_policy, S_IRUGO | S_IWUSR, serialize_policy_show,
5468 serialize_policy_store);
5469
5470
5471static struct attribute *md_default_attrs[] = {
5472 &md_level.attr,
5473 &md_layout.attr,
5474 &md_raid_disks.attr,
5475 &md_uuid.attr,
5476 &md_chunk_size.attr,
5477 &md_size.attr,
5478 &md_resync_start.attr,
5479 &md_metadata.attr,
5480 &md_new_device.attr,
5481 &md_safe_delay.attr,
5482 &md_array_state.attr,
5483 &md_reshape_position.attr,
5484 &md_reshape_direction.attr,
5485 &md_array_size.attr,
5486 &max_corr_read_errors.attr,
5487 &md_consistency_policy.attr,
5488 &md_fail_last_dev.attr,
5489 &md_serialize_policy.attr,
5490 NULL,
5491};
5492
5493static struct attribute *md_redundancy_attrs[] = {
5494 &md_scan_mode.attr,
5495 &md_last_scan_mode.attr,
5496 &md_mismatches.attr,
5497 &md_sync_min.attr,
5498 &md_sync_max.attr,
5499 &md_sync_speed.attr,
5500 &md_sync_force_parallel.attr,
5501 &md_sync_completed.attr,
5502 &md_min_sync.attr,
5503 &md_max_sync.attr,
5504 &md_suspend_lo.attr,
5505 &md_suspend_hi.attr,
5506 &md_bitmap.attr,
5507 &md_degraded.attr,
5508 NULL,
5509};
5510static const struct attribute_group md_redundancy_group = {
5511 .name = NULL,
5512 .attrs = md_redundancy_attrs,
5513};
5514
5515static ssize_t
5516md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
5517{
5518 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5519 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5520 ssize_t rv;
5521
5522 if (!entry->show)
5523 return -EIO;
5524 spin_lock(&all_mddevs_lock);
5525 if (list_empty(&mddev->all_mddevs)) {
5526 spin_unlock(&all_mddevs_lock);
5527 return -EBUSY;
5528 }
5529 mddev_get(mddev);
5530 spin_unlock(&all_mddevs_lock);
5531
5532 rv = entry->show(mddev, page);
5533 mddev_put(mddev);
5534 return rv;
5535}
5536
5537static ssize_t
5538md_attr_store(struct kobject *kobj, struct attribute *attr,
5539 const char *page, size_t length)
5540{
5541 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
5542 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
5543 ssize_t rv;
5544
5545 if (!entry->store)
5546 return -EIO;
5547 if (!capable(CAP_SYS_ADMIN))
5548 return -EACCES;
5549 spin_lock(&all_mddevs_lock);
5550 if (list_empty(&mddev->all_mddevs)) {
5551 spin_unlock(&all_mddevs_lock);
5552 return -EBUSY;
5553 }
5554 mddev_get(mddev);
5555 spin_unlock(&all_mddevs_lock);
5556 rv = entry->store(mddev, page, length);
5557 mddev_put(mddev);
5558 return rv;
5559}
5560
5561static void md_free(struct kobject *ko)
5562{
5563 struct mddev *mddev = container_of(ko, struct mddev, kobj);
5564
5565 if (mddev->sysfs_state)
5566 sysfs_put(mddev->sysfs_state);
5567 if (mddev->sysfs_level)
5568 sysfs_put(mddev->sysfs_level);
5569
5570 if (mddev->gendisk) {
5571 del_gendisk(mddev->gendisk);
5572 blk_cleanup_disk(mddev->gendisk);
5573 }
5574 percpu_ref_exit(&mddev->writes_pending);
5575
5576 bioset_exit(&mddev->bio_set);
5577 bioset_exit(&mddev->sync_set);
5578 if (mddev->level != 1 && mddev->level != 10)
5579 bioset_exit(&mddev->io_acct_set);
5580 kfree(mddev);
5581}
5582
5583static const struct sysfs_ops md_sysfs_ops = {
5584 .show = md_attr_show,
5585 .store = md_attr_store,
5586};
5587static struct kobj_type md_ktype = {
5588 .release = md_free,
5589 .sysfs_ops = &md_sysfs_ops,
5590 .default_attrs = md_default_attrs,
5591};
5592
5593int mdp_major = 0;
5594
5595static void mddev_delayed_delete(struct work_struct *ws)
5596{
5597 struct mddev *mddev = container_of(ws, struct mddev, del_work);
5598
5599 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
5600 kobject_del(&mddev->kobj);
5601 kobject_put(&mddev->kobj);
5602}
5603
5604static void no_op(struct percpu_ref *r) {}
5605
5606int mddev_init_writes_pending(struct mddev *mddev)
5607{
5608 if (mddev->writes_pending.percpu_count_ptr)
5609 return 0;
5610 if (percpu_ref_init(&mddev->writes_pending, no_op,
5611 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL) < 0)
5612 return -ENOMEM;
5613 /* We want to start with the refcount at zero */
5614 percpu_ref_put(&mddev->writes_pending);
5615 return 0;
5616}
5617EXPORT_SYMBOL_GPL(mddev_init_writes_pending);
5618
5619static int md_alloc(dev_t dev, char *name)
5620{
5621 /*
5622 * If dev is zero, name is the name of a device to allocate with
5623 * an arbitrary minor number. It will be "md_???"
5624 * If dev is non-zero it must be a device number with a MAJOR of
5625 * MD_MAJOR or mdp_major. In this case, if "name" is NULL, then
5626 * the device is being created by opening a node in /dev.
5627 * If "name" is not NULL, the device is being created by
5628 * writing to /sys/module/md_mod/parameters/new_array.
5629 */
5630 static DEFINE_MUTEX(disks_mutex);
5631 struct mddev *mddev;
5632 struct gendisk *disk;
5633 int partitioned;
5634 int shift;
5635 int unit;
5636 int error ;
5637
5638 /*
5639 * Wait for any previous instance of this device to be completely
5640 * removed (mddev_delayed_delete).
5641 */
5642 flush_workqueue(md_misc_wq);
5643
5644 mutex_lock(&disks_mutex);
5645 mddev = mddev_alloc(dev);
5646 if (IS_ERR(mddev)) {
5647 mutex_unlock(&disks_mutex);
5648 return PTR_ERR(mddev);
5649 }
5650
5651 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
5652 shift = partitioned ? MdpMinorShift : 0;
5653 unit = MINOR(mddev->unit) >> shift;
5654
5655 if (name && !dev) {
5656 /* Need to ensure that 'name' is not a duplicate.
5657 */
5658 struct mddev *mddev2;
5659 spin_lock(&all_mddevs_lock);
5660
5661 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5662 if (mddev2->gendisk &&
5663 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5664 spin_unlock(&all_mddevs_lock);
5665 error = -EEXIST;
5666 goto abort;
5667 }
5668 spin_unlock(&all_mddevs_lock);
5669 }
5670 if (name && dev)
5671 /*
5672 * Creating /dev/mdNNN via "newarray", so adjust hold_active.
5673 */
5674 mddev->hold_active = UNTIL_STOP;
5675
5676 error = -ENOMEM;
5677 disk = blk_alloc_disk(NUMA_NO_NODE);
5678 if (!disk)
5679 goto abort;
5680
5681 disk->major = MAJOR(mddev->unit);
5682 disk->first_minor = unit << shift;
5683 disk->minors = 1 << shift;
5684 if (name)
5685 strcpy(disk->disk_name, name);
5686 else if (partitioned)
5687 sprintf(disk->disk_name, "md_d%d", unit);
5688 else
5689 sprintf(disk->disk_name, "md%d", unit);
5690 disk->fops = &md_fops;
5691 disk->private_data = mddev;
5692
5693 mddev->queue = disk->queue;
5694 blk_set_stacking_limits(&mddev->queue->limits);
5695 blk_queue_write_cache(mddev->queue, true, true);
5696 /* Allow extended partitions. This makes the
5697 * 'mdp' device redundant, but we can't really
5698 * remove it now.
5699 */
5700 disk->flags |= GENHD_FL_EXT_DEVT;
5701 disk->events |= DISK_EVENT_MEDIA_CHANGE;
5702 mddev->gendisk = disk;
5703 /* As soon as we call add_disk(), another thread could get
5704 * through to md_open, so make sure it doesn't get too far
5705 */
5706 mutex_lock(&mddev->open_mutex);
5707 add_disk(disk);
5708
5709 error = kobject_add(&mddev->kobj, &disk_to_dev(disk)->kobj, "%s", "md");
5710 if (error) {
5711 /* This isn't possible, but as kobject_init_and_add is marked
5712 * __must_check, we must do something with the result
5713 */
5714 pr_debug("md: cannot register %s/md - name in use\n",
5715 disk->disk_name);
5716 error = 0;
5717 }
5718 if (mddev->kobj.sd &&
5719 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5720 pr_debug("pointless warning\n");
5721 mutex_unlock(&mddev->open_mutex);
5722 abort:
5723 mutex_unlock(&disks_mutex);
5724 if (!error && mddev->kobj.sd) {
5725 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5726 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5727 mddev->sysfs_level = sysfs_get_dirent_safe(mddev->kobj.sd, "level");
5728 }
5729 mddev_put(mddev);
5730 return error;
5731}
5732
5733static void md_probe(dev_t dev)
5734{
5735 if (MAJOR(dev) == MD_MAJOR && MINOR(dev) >= 512)
5736 return;
5737 if (create_on_open)
5738 md_alloc(dev, NULL);
5739}
5740
5741static int add_named_array(const char *val, const struct kernel_param *kp)
5742{
5743 /*
5744 * val must be "md_*" or "mdNNN".
5745 * For "md_*" we allocate an array with a large free minor number, and
5746 * set the name to val. val must not already be an active name.
5747 * For "mdNNN" we allocate an array with the minor number NNN
5748 * which must not already be in use.
5749 */
5750 int len = strlen(val);
5751 char buf[DISK_NAME_LEN];
5752 unsigned long devnum;
5753
5754 while (len && val[len-1] == '\n')
5755 len--;
5756 if (len >= DISK_NAME_LEN)
5757 return -E2BIG;
5758 strlcpy(buf, val, len+1);
5759 if (strncmp(buf, "md_", 3) == 0)
5760 return md_alloc(0, buf);
5761 if (strncmp(buf, "md", 2) == 0 &&
5762 isdigit(buf[2]) &&
5763 kstrtoul(buf+2, 10, &devnum) == 0 &&
5764 devnum <= MINORMASK)
5765 return md_alloc(MKDEV(MD_MAJOR, devnum), NULL);
5766
5767 return -EINVAL;
5768}
5769
5770static void md_safemode_timeout(struct timer_list *t)
5771{
5772 struct mddev *mddev = from_timer(mddev, t, safemode_timer);
5773
5774 mddev->safemode = 1;
5775 if (mddev->external)
5776 sysfs_notify_dirent_safe(mddev->sysfs_state);
5777
5778 md_wakeup_thread(mddev->thread);
5779}
5780
5781static int start_dirty_degraded;
5782
5783int md_run(struct mddev *mddev)
5784{
5785 int err;
5786 struct md_rdev *rdev;
5787 struct md_personality *pers;
5788
5789 if (list_empty(&mddev->disks))
5790 /* cannot run an array with no devices.. */
5791 return -EINVAL;
5792
5793 if (mddev->pers)
5794 return -EBUSY;
5795 /* Cannot run until previous stop completes properly */
5796 if (mddev->sysfs_active)
5797 return -EBUSY;
5798
5799 /*
5800 * Analyze all RAID superblock(s)
5801 */
5802 if (!mddev->raid_disks) {
5803 if (!mddev->persistent)
5804 return -EINVAL;
5805 err = analyze_sbs(mddev);
5806 if (err)
5807 return -EINVAL;
5808 }
5809
5810 if (mddev->level != LEVEL_NONE)
5811 request_module("md-level-%d", mddev->level);
5812 else if (mddev->clevel[0])
5813 request_module("md-%s", mddev->clevel);
5814
5815 /*
5816 * Drop all container device buffers, from now on
5817 * the only valid external interface is through the md
5818 * device.
5819 */
5820 mddev->has_superblocks = false;
5821 rdev_for_each(rdev, mddev) {
5822 if (test_bit(Faulty, &rdev->flags))
5823 continue;
5824 sync_blockdev(rdev->bdev);
5825 invalidate_bdev(rdev->bdev);
5826 if (mddev->ro != 1 && rdev_read_only(rdev)) {
5827 mddev->ro = 1;
5828 if (mddev->gendisk)
5829 set_disk_ro(mddev->gendisk, 1);
5830 }
5831
5832 if (rdev->sb_page)
5833 mddev->has_superblocks = true;
5834
5835 /* perform some consistency tests on the device.
5836 * We don't want the data to overlap the metadata,
5837 * Internal Bitmap issues have been handled elsewhere.
5838 */
5839 if (rdev->meta_bdev) {
5840 /* Nothing to check */;
5841 } else if (rdev->data_offset < rdev->sb_start) {
5842 if (mddev->dev_sectors &&
5843 rdev->data_offset + mddev->dev_sectors
5844 > rdev->sb_start) {
5845 pr_warn("md: %s: data overlaps metadata\n",
5846 mdname(mddev));
5847 return -EINVAL;
5848 }
5849 } else {
5850 if (rdev->sb_start + rdev->sb_size/512
5851 > rdev->data_offset) {
5852 pr_warn("md: %s: metadata overlaps data\n",
5853 mdname(mddev));
5854 return -EINVAL;
5855 }
5856 }
5857 sysfs_notify_dirent_safe(rdev->sysfs_state);
5858 }
5859
5860 if (!bioset_initialized(&mddev->bio_set)) {
5861 err = bioset_init(&mddev->bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5862 if (err)
5863 return err;
5864 }
5865 if (!bioset_initialized(&mddev->sync_set)) {
5866 err = bioset_init(&mddev->sync_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
5867 if (err)
5868 goto exit_bio_set;
5869 }
5870 if (mddev->level != 1 && mddev->level != 10 &&
5871 !bioset_initialized(&mddev->io_acct_set)) {
5872 err = bioset_init(&mddev->io_acct_set, BIO_POOL_SIZE,
5873 offsetof(struct md_io_acct, bio_clone), 0);
5874 if (err)
5875 goto exit_sync_set;
5876 }
5877
5878 spin_lock(&pers_lock);
5879 pers = find_pers(mddev->level, mddev->clevel);
5880 if (!pers || !try_module_get(pers->owner)) {
5881 spin_unlock(&pers_lock);
5882 if (mddev->level != LEVEL_NONE)
5883 pr_warn("md: personality for level %d is not loaded!\n",
5884 mddev->level);
5885 else
5886 pr_warn("md: personality for level %s is not loaded!\n",
5887 mddev->clevel);
5888 err = -EINVAL;
5889 goto abort;
5890 }
5891 spin_unlock(&pers_lock);
5892 if (mddev->level != pers->level) {
5893 mddev->level = pers->level;
5894 mddev->new_level = pers->level;
5895 }
5896 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5897
5898 if (mddev->reshape_position != MaxSector &&
5899 pers->start_reshape == NULL) {
5900 /* This personality cannot handle reshaping... */
5901 module_put(pers->owner);
5902 err = -EINVAL;
5903 goto abort;
5904 }
5905
5906 if (pers->sync_request) {
5907 /* Warn if this is a potentially silly
5908 * configuration.
5909 */
5910 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5911 struct md_rdev *rdev2;
5912 int warned = 0;
5913
5914 rdev_for_each(rdev, mddev)
5915 rdev_for_each(rdev2, mddev) {
5916 if (rdev < rdev2 &&
5917 rdev->bdev->bd_disk ==
5918 rdev2->bdev->bd_disk) {
5919 pr_warn("%s: WARNING: %s appears to be on the same physical disk as %s.\n",
5920 mdname(mddev),
5921 bdevname(rdev->bdev,b),
5922 bdevname(rdev2->bdev,b2));
5923 warned = 1;
5924 }
5925 }
5926
5927 if (warned)
5928 pr_warn("True protection against single-disk failure might be compromised.\n");
5929 }
5930
5931 mddev->recovery = 0;
5932 /* may be over-ridden by personality */
5933 mddev->resync_max_sectors = mddev->dev_sectors;
5934
5935 mddev->ok_start_degraded = start_dirty_degraded;
5936
5937 if (start_readonly && mddev->ro == 0)
5938 mddev->ro = 2; /* read-only, but switch on first write */
5939
5940 err = pers->run(mddev);
5941 if (err)
5942 pr_warn("md: pers->run() failed ...\n");
5943 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5944 WARN_ONCE(!mddev->external_size,
5945 "%s: default size too small, but 'external_size' not in effect?\n",
5946 __func__);
5947 pr_warn("md: invalid array_size %llu > default size %llu\n",
5948 (unsigned long long)mddev->array_sectors / 2,
5949 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5950 err = -EINVAL;
5951 }
5952 if (err == 0 && pers->sync_request &&
5953 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5954 struct bitmap *bitmap;
5955
5956 bitmap = md_bitmap_create(mddev, -1);
5957 if (IS_ERR(bitmap)) {
5958 err = PTR_ERR(bitmap);
5959 pr_warn("%s: failed to create bitmap (%d)\n",
5960 mdname(mddev), err);
5961 } else
5962 mddev->bitmap = bitmap;
5963
5964 }
5965 if (err)
5966 goto bitmap_abort;
5967
5968 if (mddev->bitmap_info.max_write_behind > 0) {
5969 bool create_pool = false;
5970
5971 rdev_for_each(rdev, mddev) {
5972 if (test_bit(WriteMostly, &rdev->flags) &&
5973 rdev_init_serial(rdev))
5974 create_pool = true;
5975 }
5976 if (create_pool && mddev->serial_info_pool == NULL) {
5977 mddev->serial_info_pool =
5978 mempool_create_kmalloc_pool(NR_SERIAL_INFOS,
5979 sizeof(struct serial_info));
5980 if (!mddev->serial_info_pool) {
5981 err = -ENOMEM;
5982 goto bitmap_abort;
5983 }
5984 }
5985 }
5986
5987 if (mddev->queue) {
5988 bool nonrot = true;
5989
5990 rdev_for_each(rdev, mddev) {
5991 if (rdev->raid_disk >= 0 &&
5992 !blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
5993 nonrot = false;
5994 break;
5995 }
5996 }
5997 if (mddev->degraded)
5998 nonrot = false;
5999 if (nonrot)
6000 blk_queue_flag_set(QUEUE_FLAG_NONROT, mddev->queue);
6001 else
6002 blk_queue_flag_clear(QUEUE_FLAG_NONROT, mddev->queue);
6003 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, mddev->queue);
6004 }
6005 if (pers->sync_request) {
6006 if (mddev->kobj.sd &&
6007 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
6008 pr_warn("md: cannot register extra attributes for %s\n",
6009 mdname(mddev));
6010 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
6011 mddev->sysfs_completed = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_completed");
6012 mddev->sysfs_degraded = sysfs_get_dirent_safe(mddev->kobj.sd, "degraded");
6013 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
6014 mddev->ro = 0;
6015
6016 atomic_set(&mddev->max_corr_read_errors,
6017 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
6018 mddev->safemode = 0;
6019 if (mddev_is_clustered(mddev))
6020 mddev->safemode_delay = 0;
6021 else
6022 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
6023 mddev->in_sync = 1;
6024 smp_wmb();
6025 spin_lock(&mddev->lock);
6026 mddev->pers = pers;
6027 spin_unlock(&mddev->lock);
6028 rdev_for_each(rdev, mddev)
6029 if (rdev->raid_disk >= 0)
6030 sysfs_link_rdev(mddev, rdev); /* failure here is OK */
6031
6032 if (mddev->degraded && !mddev->ro)
6033 /* This ensures that recovering status is reported immediately
6034 * via sysfs - until a lack of spares is confirmed.
6035 */
6036 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6037 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6038
6039 if (mddev->sb_flags)
6040 md_update_sb(mddev, 0);
6041
6042 md_new_event(mddev);
6043 return 0;
6044
6045bitmap_abort:
6046 mddev_detach(mddev);
6047 if (mddev->private)
6048 pers->free(mddev, mddev->private);
6049 mddev->private = NULL;
6050 module_put(pers->owner);
6051 md_bitmap_destroy(mddev);
6052abort:
6053 if (mddev->level != 1 && mddev->level != 10)
6054 bioset_exit(&mddev->io_acct_set);
6055exit_sync_set:
6056 bioset_exit(&mddev->sync_set);
6057exit_bio_set:
6058 bioset_exit(&mddev->bio_set);
6059 return err;
6060}
6061EXPORT_SYMBOL_GPL(md_run);
6062
6063int do_md_run(struct mddev *mddev)
6064{
6065 int err;
6066
6067 set_bit(MD_NOT_READY, &mddev->flags);
6068 err = md_run(mddev);
6069 if (err)
6070 goto out;
6071 err = md_bitmap_load(mddev);
6072 if (err) {
6073 md_bitmap_destroy(mddev);
6074 goto out;
6075 }
6076
6077 if (mddev_is_clustered(mddev))
6078 md_allow_write(mddev);
6079
6080 /* run start up tasks that require md_thread */
6081 md_start(mddev);
6082
6083 md_wakeup_thread(mddev->thread);
6084 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
6085
6086 set_capacity_and_notify(mddev->gendisk, mddev->array_sectors);
6087 clear_bit(MD_NOT_READY, &mddev->flags);
6088 mddev->changed = 1;
6089 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
6090 sysfs_notify_dirent_safe(mddev->sysfs_state);
6091 sysfs_notify_dirent_safe(mddev->sysfs_action);
6092 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
6093out:
6094 clear_bit(MD_NOT_READY, &mddev->flags);
6095 return err;
6096}
6097
6098int md_start(struct mddev *mddev)
6099{
6100 int ret = 0;
6101
6102 if (mddev->pers->start) {
6103 set_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6104 md_wakeup_thread(mddev->thread);
6105 ret = mddev->pers->start(mddev);
6106 clear_bit(MD_RECOVERY_WAIT, &mddev->recovery);
6107 md_wakeup_thread(mddev->sync_thread);
6108 }
6109 return ret;
6110}
6111EXPORT_SYMBOL_GPL(md_start);
6112
6113static int restart_array(struct mddev *mddev)
6114{
6115 struct gendisk *disk = mddev->gendisk;
6116 struct md_rdev *rdev;
6117 bool has_journal = false;
6118 bool has_readonly = false;
6119
6120 /* Complain if it has no devices */
6121 if (list_empty(&mddev->disks))
6122 return -ENXIO;
6123 if (!mddev->pers)
6124 return -EINVAL;
6125 if (!mddev->ro)
6126 return -EBUSY;
6127
6128 rcu_read_lock();
6129 rdev_for_each_rcu(rdev, mddev) {
6130 if (test_bit(Journal, &rdev->flags) &&
6131 !test_bit(Faulty, &rdev->flags))
6132 has_journal = true;
6133 if (rdev_read_only(rdev))
6134 has_readonly = true;
6135 }
6136 rcu_read_unlock();
6137 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) && !has_journal)
6138 /* Don't restart rw with journal missing/faulty */
6139 return -EINVAL;
6140 if (has_readonly)
6141 return -EROFS;
6142
6143 mddev->safemode = 0;
6144 mddev->ro = 0;
6145 set_disk_ro(disk, 0);
6146 pr_debug("md: %s switched to read-write mode.\n", mdname(mddev));
6147 /* Kick recovery or resync if necessary */
6148 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6149 md_wakeup_thread(mddev->thread);
6150 md_wakeup_thread(mddev->sync_thread);
6151 sysfs_notify_dirent_safe(mddev->sysfs_state);
6152 return 0;
6153}
6154
6155static void md_clean(struct mddev *mddev)
6156{
6157 mddev->array_sectors = 0;
6158 mddev->external_size = 0;
6159 mddev->dev_sectors = 0;
6160 mddev->raid_disks = 0;
6161 mddev->recovery_cp = 0;
6162 mddev->resync_min = 0;
6163 mddev->resync_max = MaxSector;
6164 mddev->reshape_position = MaxSector;
6165 mddev->external = 0;
6166 mddev->persistent = 0;
6167 mddev->level = LEVEL_NONE;
6168 mddev->clevel[0] = 0;
6169 mddev->flags = 0;
6170 mddev->sb_flags = 0;
6171 mddev->ro = 0;
6172 mddev->metadata_type[0] = 0;
6173 mddev->chunk_sectors = 0;
6174 mddev->ctime = mddev->utime = 0;
6175 mddev->layout = 0;
6176 mddev->max_disks = 0;
6177 mddev->events = 0;
6178 mddev->can_decrease_events = 0;
6179 mddev->delta_disks = 0;
6180 mddev->reshape_backwards = 0;
6181 mddev->new_level = LEVEL_NONE;
6182 mddev->new_layout = 0;
6183 mddev->new_chunk_sectors = 0;
6184 mddev->curr_resync = 0;
6185 atomic64_set(&mddev->resync_mismatches, 0);
6186 mddev->suspend_lo = mddev->suspend_hi = 0;
6187 mddev->sync_speed_min = mddev->sync_speed_max = 0;
6188 mddev->recovery = 0;
6189 mddev->in_sync = 0;
6190 mddev->changed = 0;
6191 mddev->degraded = 0;
6192 mddev->safemode = 0;
6193 mddev->private = NULL;
6194 mddev->cluster_info = NULL;
6195 mddev->bitmap_info.offset = 0;
6196 mddev->bitmap_info.default_offset = 0;
6197 mddev->bitmap_info.default_space = 0;
6198 mddev->bitmap_info.chunksize = 0;
6199 mddev->bitmap_info.daemon_sleep = 0;
6200 mddev->bitmap_info.max_write_behind = 0;
6201 mddev->bitmap_info.nodes = 0;
6202}
6203
6204static void __md_stop_writes(struct mddev *mddev)
6205{
6206 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6207 if (work_pending(&mddev->del_work))
6208 flush_workqueue(md_misc_wq);
6209 if (mddev->sync_thread) {
6210 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6211 md_reap_sync_thread(mddev);
6212 }
6213
6214 del_timer_sync(&mddev->safemode_timer);
6215
6216 if (mddev->pers && mddev->pers->quiesce) {
6217 mddev->pers->quiesce(mddev, 1);
6218 mddev->pers->quiesce(mddev, 0);
6219 }
6220 md_bitmap_flush(mddev);
6221
6222 if (mddev->ro == 0 &&
6223 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
6224 mddev->sb_flags)) {
6225 /* mark array as shutdown cleanly */
6226 if (!mddev_is_clustered(mddev))
6227 mddev->in_sync = 1;
6228 md_update_sb(mddev, 1);
6229 }
6230 /* disable policy to guarantee rdevs free resources for serialization */
6231 mddev->serialize_policy = 0;
6232 mddev_destroy_serial_pool(mddev, NULL, true);
6233}
6234
6235void md_stop_writes(struct mddev *mddev)
6236{
6237 mddev_lock_nointr(mddev);
6238 __md_stop_writes(mddev);
6239 mddev_unlock(mddev);
6240}
6241EXPORT_SYMBOL_GPL(md_stop_writes);
6242
6243static void mddev_detach(struct mddev *mddev)
6244{
6245 md_bitmap_wait_behind_writes(mddev);
6246 if (mddev->pers && mddev->pers->quiesce && !mddev->suspended) {
6247 mddev->pers->quiesce(mddev, 1);
6248 mddev->pers->quiesce(mddev, 0);
6249 }
6250 md_unregister_thread(&mddev->thread);
6251 if (mddev->queue)
6252 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
6253}
6254
6255static void __md_stop(struct mddev *mddev)
6256{
6257 struct md_personality *pers = mddev->pers;
6258 md_bitmap_destroy(mddev);
6259 mddev_detach(mddev);
6260 /* Ensure ->event_work is done */
6261 if (mddev->event_work.func)
6262 flush_workqueue(md_misc_wq);
6263 spin_lock(&mddev->lock);
6264 mddev->pers = NULL;
6265 spin_unlock(&mddev->lock);
6266 pers->free(mddev, mddev->private);
6267 mddev->private = NULL;
6268 if (pers->sync_request && mddev->to_remove == NULL)
6269 mddev->to_remove = &md_redundancy_group;
6270 module_put(pers->owner);
6271 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6272}
6273
6274void md_stop(struct mddev *mddev)
6275{
6276 /* stop the array and free an attached data structures.
6277 * This is called from dm-raid
6278 */
6279 __md_stop(mddev);
6280 bioset_exit(&mddev->bio_set);
6281 bioset_exit(&mddev->sync_set);
6282 if (mddev->level != 1 && mddev->level != 10)
6283 bioset_exit(&mddev->io_acct_set);
6284}
6285
6286EXPORT_SYMBOL_GPL(md_stop);
6287
6288static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
6289{
6290 int err = 0;
6291 int did_freeze = 0;
6292
6293 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6294 did_freeze = 1;
6295 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6296 md_wakeup_thread(mddev->thread);
6297 }
6298 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6299 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6300 if (mddev->sync_thread)
6301 /* Thread might be blocked waiting for metadata update
6302 * which will now never happen */
6303 wake_up_process(mddev->sync_thread->tsk);
6304
6305 if (mddev->external && test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6306 return -EBUSY;
6307 mddev_unlock(mddev);
6308 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
6309 &mddev->recovery));
6310 wait_event(mddev->sb_wait,
6311 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
6312 mddev_lock_nointr(mddev);
6313
6314 mutex_lock(&mddev->open_mutex);
6315 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6316 mddev->sync_thread ||
6317 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6318 pr_warn("md: %s still in use.\n",mdname(mddev));
6319 if (did_freeze) {
6320 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6321 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6322 md_wakeup_thread(mddev->thread);
6323 }
6324 err = -EBUSY;
6325 goto out;
6326 }
6327 if (mddev->pers) {
6328 __md_stop_writes(mddev);
6329
6330 err = -ENXIO;
6331 if (mddev->ro==1)
6332 goto out;
6333 mddev->ro = 1;
6334 set_disk_ro(mddev->gendisk, 1);
6335 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6336 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6337 md_wakeup_thread(mddev->thread);
6338 sysfs_notify_dirent_safe(mddev->sysfs_state);
6339 err = 0;
6340 }
6341out:
6342 mutex_unlock(&mddev->open_mutex);
6343 return err;
6344}
6345
6346/* mode:
6347 * 0 - completely stop and dis-assemble array
6348 * 2 - stop but do not disassemble array
6349 */
6350static int do_md_stop(struct mddev *mddev, int mode,
6351 struct block_device *bdev)
6352{
6353 struct gendisk *disk = mddev->gendisk;
6354 struct md_rdev *rdev;
6355 int did_freeze = 0;
6356
6357 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
6358 did_freeze = 1;
6359 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6360 md_wakeup_thread(mddev->thread);
6361 }
6362 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6363 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6364 if (mddev->sync_thread)
6365 /* Thread might be blocked waiting for metadata update
6366 * which will now never happen */
6367 wake_up_process(mddev->sync_thread->tsk);
6368
6369 mddev_unlock(mddev);
6370 wait_event(resync_wait, (mddev->sync_thread == NULL &&
6371 !test_bit(MD_RECOVERY_RUNNING,
6372 &mddev->recovery)));
6373 mddev_lock_nointr(mddev);
6374
6375 mutex_lock(&mddev->open_mutex);
6376 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
6377 mddev->sysfs_active ||
6378 mddev->sync_thread ||
6379 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) {
6380 pr_warn("md: %s still in use.\n",mdname(mddev));
6381 mutex_unlock(&mddev->open_mutex);
6382 if (did_freeze) {
6383 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
6384 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6385 md_wakeup_thread(mddev->thread);
6386 }
6387 return -EBUSY;
6388 }
6389 if (mddev->pers) {
6390 if (mddev->ro)
6391 set_disk_ro(disk, 0);
6392
6393 __md_stop_writes(mddev);
6394 __md_stop(mddev);
6395
6396 /* tell userspace to handle 'inactive' */
6397 sysfs_notify_dirent_safe(mddev->sysfs_state);
6398
6399 rdev_for_each(rdev, mddev)
6400 if (rdev->raid_disk >= 0)
6401 sysfs_unlink_rdev(mddev, rdev);
6402
6403 set_capacity_and_notify(disk, 0);
6404 mutex_unlock(&mddev->open_mutex);
6405 mddev->changed = 1;
6406
6407 if (mddev->ro)
6408 mddev->ro = 0;
6409 } else
6410 mutex_unlock(&mddev->open_mutex);
6411 /*
6412 * Free resources if final stop
6413 */
6414 if (mode == 0) {
6415 pr_info("md: %s stopped.\n", mdname(mddev));
6416
6417 if (mddev->bitmap_info.file) {
6418 struct file *f = mddev->bitmap_info.file;
6419 spin_lock(&mddev->lock);
6420 mddev->bitmap_info.file = NULL;
6421 spin_unlock(&mddev->lock);
6422 fput(f);
6423 }
6424 mddev->bitmap_info.offset = 0;
6425
6426 export_array(mddev);
6427
6428 md_clean(mddev);
6429 if (mddev->hold_active == UNTIL_STOP)
6430 mddev->hold_active = 0;
6431 }
6432 md_new_event(mddev);
6433 sysfs_notify_dirent_safe(mddev->sysfs_state);
6434 return 0;
6435}
6436
6437#ifndef MODULE
6438static void autorun_array(struct mddev *mddev)
6439{
6440 struct md_rdev *rdev;
6441 int err;
6442
6443 if (list_empty(&mddev->disks))
6444 return;
6445
6446 pr_info("md: running: ");
6447
6448 rdev_for_each(rdev, mddev) {
6449 char b[BDEVNAME_SIZE];
6450 pr_cont("<%s>", bdevname(rdev->bdev,b));
6451 }
6452 pr_cont("\n");
6453
6454 err = do_md_run(mddev);
6455 if (err) {
6456 pr_warn("md: do_md_run() returned %d\n", err);
6457 do_md_stop(mddev, 0, NULL);
6458 }
6459}
6460
6461/*
6462 * lets try to run arrays based on all disks that have arrived
6463 * until now. (those are in pending_raid_disks)
6464 *
6465 * the method: pick the first pending disk, collect all disks with
6466 * the same UUID, remove all from the pending list and put them into
6467 * the 'same_array' list. Then order this list based on superblock
6468 * update time (freshest comes first), kick out 'old' disks and
6469 * compare superblocks. If everything's fine then run it.
6470 *
6471 * If "unit" is allocated, then bump its reference count
6472 */
6473static void autorun_devices(int part)
6474{
6475 struct md_rdev *rdev0, *rdev, *tmp;
6476 struct mddev *mddev;
6477 char b[BDEVNAME_SIZE];
6478
6479 pr_info("md: autorun ...\n");
6480 while (!list_empty(&pending_raid_disks)) {
6481 int unit;
6482 dev_t dev;
6483 LIST_HEAD(candidates);
6484 rdev0 = list_entry(pending_raid_disks.next,
6485 struct md_rdev, same_set);
6486
6487 pr_debug("md: considering %s ...\n", bdevname(rdev0->bdev,b));
6488 INIT_LIST_HEAD(&candidates);
6489 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
6490 if (super_90_load(rdev, rdev0, 0) >= 0) {
6491 pr_debug("md: adding %s ...\n",
6492 bdevname(rdev->bdev,b));
6493 list_move(&rdev->same_set, &candidates);
6494 }
6495 /*
6496 * now we have a set of devices, with all of them having
6497 * mostly sane superblocks. It's time to allocate the
6498 * mddev.
6499 */
6500 if (part) {
6501 dev = MKDEV(mdp_major,
6502 rdev0->preferred_minor << MdpMinorShift);
6503 unit = MINOR(dev) >> MdpMinorShift;
6504 } else {
6505 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
6506 unit = MINOR(dev);
6507 }
6508 if (rdev0->preferred_minor != unit) {
6509 pr_warn("md: unit number in %s is bad: %d\n",
6510 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
6511 break;
6512 }
6513
6514 md_probe(dev);
6515 mddev = mddev_find(dev);
6516 if (!mddev)
6517 break;
6518
6519 if (mddev_lock(mddev))
6520 pr_warn("md: %s locked, cannot run\n", mdname(mddev));
6521 else if (mddev->raid_disks || mddev->major_version
6522 || !list_empty(&mddev->disks)) {
6523 pr_warn("md: %s already running, cannot run %s\n",
6524 mdname(mddev), bdevname(rdev0->bdev,b));
6525 mddev_unlock(mddev);
6526 } else {
6527 pr_debug("md: created %s\n", mdname(mddev));
6528 mddev->persistent = 1;
6529 rdev_for_each_list(rdev, tmp, &candidates) {
6530 list_del_init(&rdev->same_set);
6531 if (bind_rdev_to_array(rdev, mddev))
6532 export_rdev(rdev);
6533 }
6534 autorun_array(mddev);
6535 mddev_unlock(mddev);
6536 }
6537 /* on success, candidates will be empty, on error
6538 * it won't...
6539 */
6540 rdev_for_each_list(rdev, tmp, &candidates) {
6541 list_del_init(&rdev->same_set);
6542 export_rdev(rdev);
6543 }
6544 mddev_put(mddev);
6545 }
6546 pr_info("md: ... autorun DONE.\n");
6547}
6548#endif /* !MODULE */
6549
6550static int get_version(void __user *arg)
6551{
6552 mdu_version_t ver;
6553
6554 ver.major = MD_MAJOR_VERSION;
6555 ver.minor = MD_MINOR_VERSION;
6556 ver.patchlevel = MD_PATCHLEVEL_VERSION;
6557
6558 if (copy_to_user(arg, &ver, sizeof(ver)))
6559 return -EFAULT;
6560
6561 return 0;
6562}
6563
6564static int get_array_info(struct mddev *mddev, void __user *arg)
6565{
6566 mdu_array_info_t info;
6567 int nr,working,insync,failed,spare;
6568 struct md_rdev *rdev;
6569
6570 nr = working = insync = failed = spare = 0;
6571 rcu_read_lock();
6572 rdev_for_each_rcu(rdev, mddev) {
6573 nr++;
6574 if (test_bit(Faulty, &rdev->flags))
6575 failed++;
6576 else {
6577 working++;
6578 if (test_bit(In_sync, &rdev->flags))
6579 insync++;
6580 else if (test_bit(Journal, &rdev->flags))
6581 /* TODO: add journal count to md_u.h */
6582 ;
6583 else
6584 spare++;
6585 }
6586 }
6587 rcu_read_unlock();
6588
6589 info.major_version = mddev->major_version;
6590 info.minor_version = mddev->minor_version;
6591 info.patch_version = MD_PATCHLEVEL_VERSION;
6592 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
6593 info.level = mddev->level;
6594 info.size = mddev->dev_sectors / 2;
6595 if (info.size != mddev->dev_sectors / 2) /* overflow */
6596 info.size = -1;
6597 info.nr_disks = nr;
6598 info.raid_disks = mddev->raid_disks;
6599 info.md_minor = mddev->md_minor;
6600 info.not_persistent= !mddev->persistent;
6601
6602 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
6603 info.state = 0;
6604 if (mddev->in_sync)
6605 info.state = (1<<MD_SB_CLEAN);
6606 if (mddev->bitmap && mddev->bitmap_info.offset)
6607 info.state |= (1<<MD_SB_BITMAP_PRESENT);
6608 if (mddev_is_clustered(mddev))
6609 info.state |= (1<<MD_SB_CLUSTERED);
6610 info.active_disks = insync;
6611 info.working_disks = working;
6612 info.failed_disks = failed;
6613 info.spare_disks = spare;
6614
6615 info.layout = mddev->layout;
6616 info.chunk_size = mddev->chunk_sectors << 9;
6617
6618 if (copy_to_user(arg, &info, sizeof(info)))
6619 return -EFAULT;
6620
6621 return 0;
6622}
6623
6624static int get_bitmap_file(struct mddev *mddev, void __user * arg)
6625{
6626 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
6627 char *ptr;
6628 int err;
6629
6630 file = kzalloc(sizeof(*file), GFP_NOIO);
6631 if (!file)
6632 return -ENOMEM;
6633
6634 err = 0;
6635 spin_lock(&mddev->lock);
6636 /* bitmap enabled */
6637 if (mddev->bitmap_info.file) {
6638 ptr = file_path(mddev->bitmap_info.file, file->pathname,
6639 sizeof(file->pathname));
6640 if (IS_ERR(ptr))
6641 err = PTR_ERR(ptr);
6642 else
6643 memmove(file->pathname, ptr,
6644 sizeof(file->pathname)-(ptr-file->pathname));
6645 }
6646 spin_unlock(&mddev->lock);
6647
6648 if (err == 0 &&
6649 copy_to_user(arg, file, sizeof(*file)))
6650 err = -EFAULT;
6651
6652 kfree(file);
6653 return err;
6654}
6655
6656static int get_disk_info(struct mddev *mddev, void __user * arg)
6657{
6658 mdu_disk_info_t info;
6659 struct md_rdev *rdev;
6660
6661 if (copy_from_user(&info, arg, sizeof(info)))
6662 return -EFAULT;
6663
6664 rcu_read_lock();
6665 rdev = md_find_rdev_nr_rcu(mddev, info.number);
6666 if (rdev) {
6667 info.major = MAJOR(rdev->bdev->bd_dev);
6668 info.minor = MINOR(rdev->bdev->bd_dev);
6669 info.raid_disk = rdev->raid_disk;
6670 info.state = 0;
6671 if (test_bit(Faulty, &rdev->flags))
6672 info.state |= (1<<MD_DISK_FAULTY);
6673 else if (test_bit(In_sync, &rdev->flags)) {
6674 info.state |= (1<<MD_DISK_ACTIVE);
6675 info.state |= (1<<MD_DISK_SYNC);
6676 }
6677 if (test_bit(Journal, &rdev->flags))
6678 info.state |= (1<<MD_DISK_JOURNAL);
6679 if (test_bit(WriteMostly, &rdev->flags))
6680 info.state |= (1<<MD_DISK_WRITEMOSTLY);
6681 if (test_bit(FailFast, &rdev->flags))
6682 info.state |= (1<<MD_DISK_FAILFAST);
6683 } else {
6684 info.major = info.minor = 0;
6685 info.raid_disk = -1;
6686 info.state = (1<<MD_DISK_REMOVED);
6687 }
6688 rcu_read_unlock();
6689
6690 if (copy_to_user(arg, &info, sizeof(info)))
6691 return -EFAULT;
6692
6693 return 0;
6694}
6695
6696int md_add_new_disk(struct mddev *mddev, struct mdu_disk_info_s *info)
6697{
6698 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
6699 struct md_rdev *rdev;
6700 dev_t dev = MKDEV(info->major,info->minor);
6701
6702 if (mddev_is_clustered(mddev) &&
6703 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
6704 pr_warn("%s: Cannot add to clustered mddev.\n",
6705 mdname(mddev));
6706 return -EINVAL;
6707 }
6708
6709 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
6710 return -EOVERFLOW;
6711
6712 if (!mddev->raid_disks) {
6713 int err;
6714 /* expecting a device which has a superblock */
6715 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
6716 if (IS_ERR(rdev)) {
6717 pr_warn("md: md_import_device returned %ld\n",
6718 PTR_ERR(rdev));
6719 return PTR_ERR(rdev);
6720 }
6721 if (!list_empty(&mddev->disks)) {
6722 struct md_rdev *rdev0
6723 = list_entry(mddev->disks.next,
6724 struct md_rdev, same_set);
6725 err = super_types[mddev->major_version]
6726 .load_super(rdev, rdev0, mddev->minor_version);
6727 if (err < 0) {
6728 pr_warn("md: %s has different UUID to %s\n",
6729 bdevname(rdev->bdev,b),
6730 bdevname(rdev0->bdev,b2));
6731 export_rdev(rdev);
6732 return -EINVAL;
6733 }
6734 }
6735 err = bind_rdev_to_array(rdev, mddev);
6736 if (err)
6737 export_rdev(rdev);
6738 return err;
6739 }
6740
6741 /*
6742 * md_add_new_disk can be used once the array is assembled
6743 * to add "hot spares". They must already have a superblock
6744 * written
6745 */
6746 if (mddev->pers) {
6747 int err;
6748 if (!mddev->pers->hot_add_disk) {
6749 pr_warn("%s: personality does not support diskops!\n",
6750 mdname(mddev));
6751 return -EINVAL;
6752 }
6753 if (mddev->persistent)
6754 rdev = md_import_device(dev, mddev->major_version,
6755 mddev->minor_version);
6756 else
6757 rdev = md_import_device(dev, -1, -1);
6758 if (IS_ERR(rdev)) {
6759 pr_warn("md: md_import_device returned %ld\n",
6760 PTR_ERR(rdev));
6761 return PTR_ERR(rdev);
6762 }
6763 /* set saved_raid_disk if appropriate */
6764 if (!mddev->persistent) {
6765 if (info->state & (1<<MD_DISK_SYNC) &&
6766 info->raid_disk < mddev->raid_disks) {
6767 rdev->raid_disk = info->raid_disk;
6768 set_bit(In_sync, &rdev->flags);
6769 clear_bit(Bitmap_sync, &rdev->flags);
6770 } else
6771 rdev->raid_disk = -1;
6772 rdev->saved_raid_disk = rdev->raid_disk;
6773 } else
6774 super_types[mddev->major_version].
6775 validate_super(mddev, rdev);
6776 if ((info->state & (1<<MD_DISK_SYNC)) &&
6777 rdev->raid_disk != info->raid_disk) {
6778 /* This was a hot-add request, but events doesn't
6779 * match, so reject it.
6780 */
6781 export_rdev(rdev);
6782 return -EINVAL;
6783 }
6784
6785 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6786 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6787 set_bit(WriteMostly, &rdev->flags);
6788 else
6789 clear_bit(WriteMostly, &rdev->flags);
6790 if (info->state & (1<<MD_DISK_FAILFAST))
6791 set_bit(FailFast, &rdev->flags);
6792 else
6793 clear_bit(FailFast, &rdev->flags);
6794
6795 if (info->state & (1<<MD_DISK_JOURNAL)) {
6796 struct md_rdev *rdev2;
6797 bool has_journal = false;
6798
6799 /* make sure no existing journal disk */
6800 rdev_for_each(rdev2, mddev) {
6801 if (test_bit(Journal, &rdev2->flags)) {
6802 has_journal = true;
6803 break;
6804 }
6805 }
6806 if (has_journal || mddev->bitmap) {
6807 export_rdev(rdev);
6808 return -EBUSY;
6809 }
6810 set_bit(Journal, &rdev->flags);
6811 }
6812 /*
6813 * check whether the device shows up in other nodes
6814 */
6815 if (mddev_is_clustered(mddev)) {
6816 if (info->state & (1 << MD_DISK_CANDIDATE))
6817 set_bit(Candidate, &rdev->flags);
6818 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6819 /* --add initiated by this node */
6820 err = md_cluster_ops->add_new_disk(mddev, rdev);
6821 if (err) {
6822 export_rdev(rdev);
6823 return err;
6824 }
6825 }
6826 }
6827
6828 rdev->raid_disk = -1;
6829 err = bind_rdev_to_array(rdev, mddev);
6830
6831 if (err)
6832 export_rdev(rdev);
6833
6834 if (mddev_is_clustered(mddev)) {
6835 if (info->state & (1 << MD_DISK_CANDIDATE)) {
6836 if (!err) {
6837 err = md_cluster_ops->new_disk_ack(mddev,
6838 err == 0);
6839 if (err)
6840 md_kick_rdev_from_array(rdev);
6841 }
6842 } else {
6843 if (err)
6844 md_cluster_ops->add_new_disk_cancel(mddev);
6845 else
6846 err = add_bound_rdev(rdev);
6847 }
6848
6849 } else if (!err)
6850 err = add_bound_rdev(rdev);
6851
6852 return err;
6853 }
6854
6855 /* otherwise, md_add_new_disk is only allowed
6856 * for major_version==0 superblocks
6857 */
6858 if (mddev->major_version != 0) {
6859 pr_warn("%s: ADD_NEW_DISK not supported\n", mdname(mddev));
6860 return -EINVAL;
6861 }
6862
6863 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6864 int err;
6865 rdev = md_import_device(dev, -1, 0);
6866 if (IS_ERR(rdev)) {
6867 pr_warn("md: error, md_import_device() returned %ld\n",
6868 PTR_ERR(rdev));
6869 return PTR_ERR(rdev);
6870 }
6871 rdev->desc_nr = info->number;
6872 if (info->raid_disk < mddev->raid_disks)
6873 rdev->raid_disk = info->raid_disk;
6874 else
6875 rdev->raid_disk = -1;
6876
6877 if (rdev->raid_disk < mddev->raid_disks)
6878 if (info->state & (1<<MD_DISK_SYNC))
6879 set_bit(In_sync, &rdev->flags);
6880
6881 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6882 set_bit(WriteMostly, &rdev->flags);
6883 if (info->state & (1<<MD_DISK_FAILFAST))
6884 set_bit(FailFast, &rdev->flags);
6885
6886 if (!mddev->persistent) {
6887 pr_debug("md: nonpersistent superblock ...\n");
6888 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6889 } else
6890 rdev->sb_start = calc_dev_sboffset(rdev);
6891 rdev->sectors = rdev->sb_start;
6892
6893 err = bind_rdev_to_array(rdev, mddev);
6894 if (err) {
6895 export_rdev(rdev);
6896 return err;
6897 }
6898 }
6899
6900 return 0;
6901}
6902
6903static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6904{
6905 char b[BDEVNAME_SIZE];
6906 struct md_rdev *rdev;
6907
6908 if (!mddev->pers)
6909 return -ENODEV;
6910
6911 rdev = find_rdev(mddev, dev);
6912 if (!rdev)
6913 return -ENXIO;
6914
6915 if (rdev->raid_disk < 0)
6916 goto kick_rdev;
6917
6918 clear_bit(Blocked, &rdev->flags);
6919 remove_and_add_spares(mddev, rdev);
6920
6921 if (rdev->raid_disk >= 0)
6922 goto busy;
6923
6924kick_rdev:
6925 if (mddev_is_clustered(mddev)) {
6926 if (md_cluster_ops->remove_disk(mddev, rdev))
6927 goto busy;
6928 }
6929
6930 md_kick_rdev_from_array(rdev);
6931 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6932 if (mddev->thread)
6933 md_wakeup_thread(mddev->thread);
6934 else
6935 md_update_sb(mddev, 1);
6936 md_new_event(mddev);
6937
6938 return 0;
6939busy:
6940 pr_debug("md: cannot remove active disk %s from %s ...\n",
6941 bdevname(rdev->bdev,b), mdname(mddev));
6942 return -EBUSY;
6943}
6944
6945static int hot_add_disk(struct mddev *mddev, dev_t dev)
6946{
6947 char b[BDEVNAME_SIZE];
6948 int err;
6949 struct md_rdev *rdev;
6950
6951 if (!mddev->pers)
6952 return -ENODEV;
6953
6954 if (mddev->major_version != 0) {
6955 pr_warn("%s: HOT_ADD may only be used with version-0 superblocks.\n",
6956 mdname(mddev));
6957 return -EINVAL;
6958 }
6959 if (!mddev->pers->hot_add_disk) {
6960 pr_warn("%s: personality does not support diskops!\n",
6961 mdname(mddev));
6962 return -EINVAL;
6963 }
6964
6965 rdev = md_import_device(dev, -1, 0);
6966 if (IS_ERR(rdev)) {
6967 pr_warn("md: error, md_import_device() returned %ld\n",
6968 PTR_ERR(rdev));
6969 return -EINVAL;
6970 }
6971
6972 if (mddev->persistent)
6973 rdev->sb_start = calc_dev_sboffset(rdev);
6974 else
6975 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6976
6977 rdev->sectors = rdev->sb_start;
6978
6979 if (test_bit(Faulty, &rdev->flags)) {
6980 pr_warn("md: can not hot-add faulty %s disk to %s!\n",
6981 bdevname(rdev->bdev,b), mdname(mddev));
6982 err = -EINVAL;
6983 goto abort_export;
6984 }
6985
6986 clear_bit(In_sync, &rdev->flags);
6987 rdev->desc_nr = -1;
6988 rdev->saved_raid_disk = -1;
6989 err = bind_rdev_to_array(rdev, mddev);
6990 if (err)
6991 goto abort_export;
6992
6993 /*
6994 * The rest should better be atomic, we can have disk failures
6995 * noticed in interrupt contexts ...
6996 */
6997
6998 rdev->raid_disk = -1;
6999
7000 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7001 if (!mddev->thread)
7002 md_update_sb(mddev, 1);
7003 /*
7004 * Kick recovery, maybe this spare has to be added to the
7005 * array immediately.
7006 */
7007 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7008 md_wakeup_thread(mddev->thread);
7009 md_new_event(mddev);
7010 return 0;
7011
7012abort_export:
7013 export_rdev(rdev);
7014 return err;
7015}
7016
7017static int set_bitmap_file(struct mddev *mddev, int fd)
7018{
7019 int err = 0;
7020
7021 if (mddev->pers) {
7022 if (!mddev->pers->quiesce || !mddev->thread)
7023 return -EBUSY;
7024 if (mddev->recovery || mddev->sync_thread)
7025 return -EBUSY;
7026 /* we should be able to change the bitmap.. */
7027 }
7028
7029 if (fd >= 0) {
7030 struct inode *inode;
7031 struct file *f;
7032
7033 if (mddev->bitmap || mddev->bitmap_info.file)
7034 return -EEXIST; /* cannot add when bitmap is present */
7035 f = fget(fd);
7036
7037 if (f == NULL) {
7038 pr_warn("%s: error: failed to get bitmap file\n",
7039 mdname(mddev));
7040 return -EBADF;
7041 }
7042
7043 inode = f->f_mapping->host;
7044 if (!S_ISREG(inode->i_mode)) {
7045 pr_warn("%s: error: bitmap file must be a regular file\n",
7046 mdname(mddev));
7047 err = -EBADF;
7048 } else if (!(f->f_mode & FMODE_WRITE)) {
7049 pr_warn("%s: error: bitmap file must open for write\n",
7050 mdname(mddev));
7051 err = -EBADF;
7052 } else if (atomic_read(&inode->i_writecount) != 1) {
7053 pr_warn("%s: error: bitmap file is already in use\n",
7054 mdname(mddev));
7055 err = -EBUSY;
7056 }
7057 if (err) {
7058 fput(f);
7059 return err;
7060 }
7061 mddev->bitmap_info.file = f;
7062 mddev->bitmap_info.offset = 0; /* file overrides offset */
7063 } else if (mddev->bitmap == NULL)
7064 return -ENOENT; /* cannot remove what isn't there */
7065 err = 0;
7066 if (mddev->pers) {
7067 if (fd >= 0) {
7068 struct bitmap *bitmap;
7069
7070 bitmap = md_bitmap_create(mddev, -1);
7071 mddev_suspend(mddev);
7072 if (!IS_ERR(bitmap)) {
7073 mddev->bitmap = bitmap;
7074 err = md_bitmap_load(mddev);
7075 } else
7076 err = PTR_ERR(bitmap);
7077 if (err) {
7078 md_bitmap_destroy(mddev);
7079 fd = -1;
7080 }
7081 mddev_resume(mddev);
7082 } else if (fd < 0) {
7083 mddev_suspend(mddev);
7084 md_bitmap_destroy(mddev);
7085 mddev_resume(mddev);
7086 }
7087 }
7088 if (fd < 0) {
7089 struct file *f = mddev->bitmap_info.file;
7090 if (f) {
7091 spin_lock(&mddev->lock);
7092 mddev->bitmap_info.file = NULL;
7093 spin_unlock(&mddev->lock);
7094 fput(f);
7095 }
7096 }
7097
7098 return err;
7099}
7100
7101/*
7102 * md_set_array_info is used two different ways
7103 * The original usage is when creating a new array.
7104 * In this usage, raid_disks is > 0 and it together with
7105 * level, size, not_persistent,layout,chunksize determine the
7106 * shape of the array.
7107 * This will always create an array with a type-0.90.0 superblock.
7108 * The newer usage is when assembling an array.
7109 * In this case raid_disks will be 0, and the major_version field is
7110 * use to determine which style super-blocks are to be found on the devices.
7111 * The minor and patch _version numbers are also kept incase the
7112 * super_block handler wishes to interpret them.
7113 */
7114int md_set_array_info(struct mddev *mddev, struct mdu_array_info_s *info)
7115{
7116 if (info->raid_disks == 0) {
7117 /* just setting version number for superblock loading */
7118 if (info->major_version < 0 ||
7119 info->major_version >= ARRAY_SIZE(super_types) ||
7120 super_types[info->major_version].name == NULL) {
7121 /* maybe try to auto-load a module? */
7122 pr_warn("md: superblock version %d not known\n",
7123 info->major_version);
7124 return -EINVAL;
7125 }
7126 mddev->major_version = info->major_version;
7127 mddev->minor_version = info->minor_version;
7128 mddev->patch_version = info->patch_version;
7129 mddev->persistent = !info->not_persistent;
7130 /* ensure mddev_put doesn't delete this now that there
7131 * is some minimal configuration.
7132 */
7133 mddev->ctime = ktime_get_real_seconds();
7134 return 0;
7135 }
7136 mddev->major_version = MD_MAJOR_VERSION;
7137 mddev->minor_version = MD_MINOR_VERSION;
7138 mddev->patch_version = MD_PATCHLEVEL_VERSION;
7139 mddev->ctime = ktime_get_real_seconds();
7140
7141 mddev->level = info->level;
7142 mddev->clevel[0] = 0;
7143 mddev->dev_sectors = 2 * (sector_t)info->size;
7144 mddev->raid_disks = info->raid_disks;
7145 /* don't set md_minor, it is determined by which /dev/md* was
7146 * openned
7147 */
7148 if (info->state & (1<<MD_SB_CLEAN))
7149 mddev->recovery_cp = MaxSector;
7150 else
7151 mddev->recovery_cp = 0;
7152 mddev->persistent = ! info->not_persistent;
7153 mddev->external = 0;
7154
7155 mddev->layout = info->layout;
7156 if (mddev->level == 0)
7157 /* Cannot trust RAID0 layout info here */
7158 mddev->layout = -1;
7159 mddev->chunk_sectors = info->chunk_size >> 9;
7160
7161 if (mddev->persistent) {
7162 mddev->max_disks = MD_SB_DISKS;
7163 mddev->flags = 0;
7164 mddev->sb_flags = 0;
7165 }
7166 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7167
7168 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
7169 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
7170 mddev->bitmap_info.offset = 0;
7171
7172 mddev->reshape_position = MaxSector;
7173
7174 /*
7175 * Generate a 128 bit UUID
7176 */
7177 get_random_bytes(mddev->uuid, 16);
7178
7179 mddev->new_level = mddev->level;
7180 mddev->new_chunk_sectors = mddev->chunk_sectors;
7181 mddev->new_layout = mddev->layout;
7182 mddev->delta_disks = 0;
7183 mddev->reshape_backwards = 0;
7184
7185 return 0;
7186}
7187
7188void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
7189{
7190 lockdep_assert_held(&mddev->reconfig_mutex);
7191
7192 if (mddev->external_size)
7193 return;
7194
7195 mddev->array_sectors = array_sectors;
7196}
7197EXPORT_SYMBOL(md_set_array_sectors);
7198
7199static int update_size(struct mddev *mddev, sector_t num_sectors)
7200{
7201 struct md_rdev *rdev;
7202 int rv;
7203 int fit = (num_sectors == 0);
7204 sector_t old_dev_sectors = mddev->dev_sectors;
7205
7206 if (mddev->pers->resize == NULL)
7207 return -EINVAL;
7208 /* The "num_sectors" is the number of sectors of each device that
7209 * is used. This can only make sense for arrays with redundancy.
7210 * linear and raid0 always use whatever space is available. We can only
7211 * consider changing this number if no resync or reconstruction is
7212 * happening, and if the new size is acceptable. It must fit before the
7213 * sb_start or, if that is <data_offset, it must fit before the size
7214 * of each device. If num_sectors is zero, we find the largest size
7215 * that fits.
7216 */
7217 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7218 mddev->sync_thread)
7219 return -EBUSY;
7220 if (mddev->ro)
7221 return -EROFS;
7222
7223 rdev_for_each(rdev, mddev) {
7224 sector_t avail = rdev->sectors;
7225
7226 if (fit && (num_sectors == 0 || num_sectors > avail))
7227 num_sectors = avail;
7228 if (avail < num_sectors)
7229 return -ENOSPC;
7230 }
7231 rv = mddev->pers->resize(mddev, num_sectors);
7232 if (!rv) {
7233 if (mddev_is_clustered(mddev))
7234 md_cluster_ops->update_size(mddev, old_dev_sectors);
7235 else if (mddev->queue) {
7236 set_capacity_and_notify(mddev->gendisk,
7237 mddev->array_sectors);
7238 }
7239 }
7240 return rv;
7241}
7242
7243static int update_raid_disks(struct mddev *mddev, int raid_disks)
7244{
7245 int rv;
7246 struct md_rdev *rdev;
7247 /* change the number of raid disks */
7248 if (mddev->pers->check_reshape == NULL)
7249 return -EINVAL;
7250 if (mddev->ro)
7251 return -EROFS;
7252 if (raid_disks <= 0 ||
7253 (mddev->max_disks && raid_disks >= mddev->max_disks))
7254 return -EINVAL;
7255 if (mddev->sync_thread ||
7256 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
7257 test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) ||
7258 mddev->reshape_position != MaxSector)
7259 return -EBUSY;
7260
7261 rdev_for_each(rdev, mddev) {
7262 if (mddev->raid_disks < raid_disks &&
7263 rdev->data_offset < rdev->new_data_offset)
7264 return -EINVAL;
7265 if (mddev->raid_disks > raid_disks &&
7266 rdev->data_offset > rdev->new_data_offset)
7267 return -EINVAL;
7268 }
7269
7270 mddev->delta_disks = raid_disks - mddev->raid_disks;
7271 if (mddev->delta_disks < 0)
7272 mddev->reshape_backwards = 1;
7273 else if (mddev->delta_disks > 0)
7274 mddev->reshape_backwards = 0;
7275
7276 rv = mddev->pers->check_reshape(mddev);
7277 if (rv < 0) {
7278 mddev->delta_disks = 0;
7279 mddev->reshape_backwards = 0;
7280 }
7281 return rv;
7282}
7283
7284/*
7285 * update_array_info is used to change the configuration of an
7286 * on-line array.
7287 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
7288 * fields in the info are checked against the array.
7289 * Any differences that cannot be handled will cause an error.
7290 * Normally, only one change can be managed at a time.
7291 */
7292static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
7293{
7294 int rv = 0;
7295 int cnt = 0;
7296 int state = 0;
7297
7298 /* calculate expected state,ignoring low bits */
7299 if (mddev->bitmap && mddev->bitmap_info.offset)
7300 state |= (1 << MD_SB_BITMAP_PRESENT);
7301
7302 if (mddev->major_version != info->major_version ||
7303 mddev->minor_version != info->minor_version ||
7304/* mddev->patch_version != info->patch_version || */
7305 mddev->ctime != info->ctime ||
7306 mddev->level != info->level ||
7307/* mddev->layout != info->layout || */
7308 mddev->persistent != !info->not_persistent ||
7309 mddev->chunk_sectors != info->chunk_size >> 9 ||
7310 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
7311 ((state^info->state) & 0xfffffe00)
7312 )
7313 return -EINVAL;
7314 /* Check there is only one change */
7315 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7316 cnt++;
7317 if (mddev->raid_disks != info->raid_disks)
7318 cnt++;
7319 if (mddev->layout != info->layout)
7320 cnt++;
7321 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
7322 cnt++;
7323 if (cnt == 0)
7324 return 0;
7325 if (cnt > 1)
7326 return -EINVAL;
7327
7328 if (mddev->layout != info->layout) {
7329 /* Change layout
7330 * we don't need to do anything at the md level, the
7331 * personality will take care of it all.
7332 */
7333 if (mddev->pers->check_reshape == NULL)
7334 return -EINVAL;
7335 else {
7336 mddev->new_layout = info->layout;
7337 rv = mddev->pers->check_reshape(mddev);
7338 if (rv)
7339 mddev->new_layout = mddev->layout;
7340 return rv;
7341 }
7342 }
7343 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
7344 rv = update_size(mddev, (sector_t)info->size * 2);
7345
7346 if (mddev->raid_disks != info->raid_disks)
7347 rv = update_raid_disks(mddev, info->raid_disks);
7348
7349 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
7350 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
7351 rv = -EINVAL;
7352 goto err;
7353 }
7354 if (mddev->recovery || mddev->sync_thread) {
7355 rv = -EBUSY;
7356 goto err;
7357 }
7358 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
7359 struct bitmap *bitmap;
7360 /* add the bitmap */
7361 if (mddev->bitmap) {
7362 rv = -EEXIST;
7363 goto err;
7364 }
7365 if (mddev->bitmap_info.default_offset == 0) {
7366 rv = -EINVAL;
7367 goto err;
7368 }
7369 mddev->bitmap_info.offset =
7370 mddev->bitmap_info.default_offset;
7371 mddev->bitmap_info.space =
7372 mddev->bitmap_info.default_space;
7373 bitmap = md_bitmap_create(mddev, -1);
7374 mddev_suspend(mddev);
7375 if (!IS_ERR(bitmap)) {
7376 mddev->bitmap = bitmap;
7377 rv = md_bitmap_load(mddev);
7378 } else
7379 rv = PTR_ERR(bitmap);
7380 if (rv)
7381 md_bitmap_destroy(mddev);
7382 mddev_resume(mddev);
7383 } else {
7384 /* remove the bitmap */
7385 if (!mddev->bitmap) {
7386 rv = -ENOENT;
7387 goto err;
7388 }
7389 if (mddev->bitmap->storage.file) {
7390 rv = -EINVAL;
7391 goto err;
7392 }
7393 if (mddev->bitmap_info.nodes) {
7394 /* hold PW on all the bitmap lock */
7395 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
7396 pr_warn("md: can't change bitmap to none since the array is in use by more than one node\n");
7397 rv = -EPERM;
7398 md_cluster_ops->unlock_all_bitmaps(mddev);
7399 goto err;
7400 }
7401
7402 mddev->bitmap_info.nodes = 0;
7403 md_cluster_ops->leave(mddev);
7404 module_put(md_cluster_mod);
7405 mddev->safemode_delay = DEFAULT_SAFEMODE_DELAY;
7406 }
7407 mddev_suspend(mddev);
7408 md_bitmap_destroy(mddev);
7409 mddev_resume(mddev);
7410 mddev->bitmap_info.offset = 0;
7411 }
7412 }
7413 md_update_sb(mddev, 1);
7414 return rv;
7415err:
7416 return rv;
7417}
7418
7419static int set_disk_faulty(struct mddev *mddev, dev_t dev)
7420{
7421 struct md_rdev *rdev;
7422 int err = 0;
7423
7424 if (mddev->pers == NULL)
7425 return -ENODEV;
7426
7427 rcu_read_lock();
7428 rdev = md_find_rdev_rcu(mddev, dev);
7429 if (!rdev)
7430 err = -ENODEV;
7431 else {
7432 md_error(mddev, rdev);
7433 if (!test_bit(Faulty, &rdev->flags))
7434 err = -EBUSY;
7435 }
7436 rcu_read_unlock();
7437 return err;
7438}
7439
7440/*
7441 * We have a problem here : there is no easy way to give a CHS
7442 * virtual geometry. We currently pretend that we have a 2 heads
7443 * 4 sectors (with a BIG number of cylinders...). This drives
7444 * dosfs just mad... ;-)
7445 */
7446static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
7447{
7448 struct mddev *mddev = bdev->bd_disk->private_data;
7449
7450 geo->heads = 2;
7451 geo->sectors = 4;
7452 geo->cylinders = mddev->array_sectors / 8;
7453 return 0;
7454}
7455
7456static inline bool md_ioctl_valid(unsigned int cmd)
7457{
7458 switch (cmd) {
7459 case ADD_NEW_DISK:
7460 case GET_ARRAY_INFO:
7461 case GET_BITMAP_FILE:
7462 case GET_DISK_INFO:
7463 case HOT_ADD_DISK:
7464 case HOT_REMOVE_DISK:
7465 case RAID_VERSION:
7466 case RESTART_ARRAY_RW:
7467 case RUN_ARRAY:
7468 case SET_ARRAY_INFO:
7469 case SET_BITMAP_FILE:
7470 case SET_DISK_FAULTY:
7471 case STOP_ARRAY:
7472 case STOP_ARRAY_RO:
7473 case CLUSTERED_DISK_NACK:
7474 return true;
7475 default:
7476 return false;
7477 }
7478}
7479
7480static int md_ioctl(struct block_device *bdev, fmode_t mode,
7481 unsigned int cmd, unsigned long arg)
7482{
7483 int err = 0;
7484 void __user *argp = (void __user *)arg;
7485 struct mddev *mddev = NULL;
7486 bool did_set_md_closing = false;
7487
7488 if (!md_ioctl_valid(cmd))
7489 return -ENOTTY;
7490
7491 switch (cmd) {
7492 case RAID_VERSION:
7493 case GET_ARRAY_INFO:
7494 case GET_DISK_INFO:
7495 break;
7496 default:
7497 if (!capable(CAP_SYS_ADMIN))
7498 return -EACCES;
7499 }
7500
7501 /*
7502 * Commands dealing with the RAID driver but not any
7503 * particular array:
7504 */
7505 switch (cmd) {
7506 case RAID_VERSION:
7507 err = get_version(argp);
7508 goto out;
7509 default:;
7510 }
7511
7512 /*
7513 * Commands creating/starting a new array:
7514 */
7515
7516 mddev = bdev->bd_disk->private_data;
7517
7518 if (!mddev) {
7519 BUG();
7520 goto out;
7521 }
7522
7523 /* Some actions do not requires the mutex */
7524 switch (cmd) {
7525 case GET_ARRAY_INFO:
7526 if (!mddev->raid_disks && !mddev->external)
7527 err = -ENODEV;
7528 else
7529 err = get_array_info(mddev, argp);
7530 goto out;
7531
7532 case GET_DISK_INFO:
7533 if (!mddev->raid_disks && !mddev->external)
7534 err = -ENODEV;
7535 else
7536 err = get_disk_info(mddev, argp);
7537 goto out;
7538
7539 case SET_DISK_FAULTY:
7540 err = set_disk_faulty(mddev, new_decode_dev(arg));
7541 goto out;
7542
7543 case GET_BITMAP_FILE:
7544 err = get_bitmap_file(mddev, argp);
7545 goto out;
7546
7547 }
7548
7549 if (cmd == ADD_NEW_DISK || cmd == HOT_ADD_DISK)
7550 flush_rdev_wq(mddev);
7551
7552 if (cmd == HOT_REMOVE_DISK)
7553 /* need to ensure recovery thread has run */
7554 wait_event_interruptible_timeout(mddev->sb_wait,
7555 !test_bit(MD_RECOVERY_NEEDED,
7556 &mddev->recovery),
7557 msecs_to_jiffies(5000));
7558 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
7559 /* Need to flush page cache, and ensure no-one else opens
7560 * and writes
7561 */
7562 mutex_lock(&mddev->open_mutex);
7563 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
7564 mutex_unlock(&mddev->open_mutex);
7565 err = -EBUSY;
7566 goto out;
7567 }
7568 if (test_and_set_bit(MD_CLOSING, &mddev->flags)) {
7569 mutex_unlock(&mddev->open_mutex);
7570 err = -EBUSY;
7571 goto out;
7572 }
7573 did_set_md_closing = true;
7574 mutex_unlock(&mddev->open_mutex);
7575 sync_blockdev(bdev);
7576 }
7577 err = mddev_lock(mddev);
7578 if (err) {
7579 pr_debug("md: ioctl lock interrupted, reason %d, cmd %d\n",
7580 err, cmd);
7581 goto out;
7582 }
7583
7584 if (cmd == SET_ARRAY_INFO) {
7585 mdu_array_info_t info;
7586 if (!arg)
7587 memset(&info, 0, sizeof(info));
7588 else if (copy_from_user(&info, argp, sizeof(info))) {
7589 err = -EFAULT;
7590 goto unlock;
7591 }
7592 if (mddev->pers) {
7593 err = update_array_info(mddev, &info);
7594 if (err) {
7595 pr_warn("md: couldn't update array info. %d\n", err);
7596 goto unlock;
7597 }
7598 goto unlock;
7599 }
7600 if (!list_empty(&mddev->disks)) {
7601 pr_warn("md: array %s already has disks!\n", mdname(mddev));
7602 err = -EBUSY;
7603 goto unlock;
7604 }
7605 if (mddev->raid_disks) {
7606 pr_warn("md: array %s already initialised!\n", mdname(mddev));
7607 err = -EBUSY;
7608 goto unlock;
7609 }
7610 err = md_set_array_info(mddev, &info);
7611 if (err) {
7612 pr_warn("md: couldn't set array info. %d\n", err);
7613 goto unlock;
7614 }
7615 goto unlock;
7616 }
7617
7618 /*
7619 * Commands querying/configuring an existing array:
7620 */
7621 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
7622 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
7623 if ((!mddev->raid_disks && !mddev->external)
7624 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
7625 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
7626 && cmd != GET_BITMAP_FILE) {
7627 err = -ENODEV;
7628 goto unlock;
7629 }
7630
7631 /*
7632 * Commands even a read-only array can execute:
7633 */
7634 switch (cmd) {
7635 case RESTART_ARRAY_RW:
7636 err = restart_array(mddev);
7637 goto unlock;
7638
7639 case STOP_ARRAY:
7640 err = do_md_stop(mddev, 0, bdev);
7641 goto unlock;
7642
7643 case STOP_ARRAY_RO:
7644 err = md_set_readonly(mddev, bdev);
7645 goto unlock;
7646
7647 case HOT_REMOVE_DISK:
7648 err = hot_remove_disk(mddev, new_decode_dev(arg));
7649 goto unlock;
7650
7651 case ADD_NEW_DISK:
7652 /* We can support ADD_NEW_DISK on read-only arrays
7653 * only if we are re-adding a preexisting device.
7654 * So require mddev->pers and MD_DISK_SYNC.
7655 */
7656 if (mddev->pers) {
7657 mdu_disk_info_t info;
7658 if (copy_from_user(&info, argp, sizeof(info)))
7659 err = -EFAULT;
7660 else if (!(info.state & (1<<MD_DISK_SYNC)))
7661 /* Need to clear read-only for this */
7662 break;
7663 else
7664 err = md_add_new_disk(mddev, &info);
7665 goto unlock;
7666 }
7667 break;
7668 }
7669
7670 /*
7671 * The remaining ioctls are changing the state of the
7672 * superblock, so we do not allow them on read-only arrays.
7673 */
7674 if (mddev->ro && mddev->pers) {
7675 if (mddev->ro == 2) {
7676 mddev->ro = 0;
7677 sysfs_notify_dirent_safe(mddev->sysfs_state);
7678 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7679 /* mddev_unlock will wake thread */
7680 /* If a device failed while we were read-only, we
7681 * need to make sure the metadata is updated now.
7682 */
7683 if (test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)) {
7684 mddev_unlock(mddev);
7685 wait_event(mddev->sb_wait,
7686 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags) &&
7687 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
7688 mddev_lock_nointr(mddev);
7689 }
7690 } else {
7691 err = -EROFS;
7692 goto unlock;
7693 }
7694 }
7695
7696 switch (cmd) {
7697 case ADD_NEW_DISK:
7698 {
7699 mdu_disk_info_t info;
7700 if (copy_from_user(&info, argp, sizeof(info)))
7701 err = -EFAULT;
7702 else
7703 err = md_add_new_disk(mddev, &info);
7704 goto unlock;
7705 }
7706
7707 case CLUSTERED_DISK_NACK:
7708 if (mddev_is_clustered(mddev))
7709 md_cluster_ops->new_disk_ack(mddev, false);
7710 else
7711 err = -EINVAL;
7712 goto unlock;
7713
7714 case HOT_ADD_DISK:
7715 err = hot_add_disk(mddev, new_decode_dev(arg));
7716 goto unlock;
7717
7718 case RUN_ARRAY:
7719 err = do_md_run(mddev);
7720 goto unlock;
7721
7722 case SET_BITMAP_FILE:
7723 err = set_bitmap_file(mddev, (int)arg);
7724 goto unlock;
7725
7726 default:
7727 err = -EINVAL;
7728 goto unlock;
7729 }
7730
7731unlock:
7732 if (mddev->hold_active == UNTIL_IOCTL &&
7733 err != -EINVAL)
7734 mddev->hold_active = 0;
7735 mddev_unlock(mddev);
7736out:
7737 if(did_set_md_closing)
7738 clear_bit(MD_CLOSING, &mddev->flags);
7739 return err;
7740}
7741#ifdef CONFIG_COMPAT
7742static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7743 unsigned int cmd, unsigned long arg)
7744{
7745 switch (cmd) {
7746 case HOT_REMOVE_DISK:
7747 case HOT_ADD_DISK:
7748 case SET_DISK_FAULTY:
7749 case SET_BITMAP_FILE:
7750 /* These take in integer arg, do not convert */
7751 break;
7752 default:
7753 arg = (unsigned long)compat_ptr(arg);
7754 break;
7755 }
7756
7757 return md_ioctl(bdev, mode, cmd, arg);
7758}
7759#endif /* CONFIG_COMPAT */
7760
7761static int md_set_read_only(struct block_device *bdev, bool ro)
7762{
7763 struct mddev *mddev = bdev->bd_disk->private_data;
7764 int err;
7765
7766 err = mddev_lock(mddev);
7767 if (err)
7768 return err;
7769
7770 if (!mddev->raid_disks && !mddev->external) {
7771 err = -ENODEV;
7772 goto out_unlock;
7773 }
7774
7775 /*
7776 * Transitioning to read-auto need only happen for arrays that call
7777 * md_write_start and which are not ready for writes yet.
7778 */
7779 if (!ro && mddev->ro == 1 && mddev->pers) {
7780 err = restart_array(mddev);
7781 if (err)
7782 goto out_unlock;
7783 mddev->ro = 2;
7784 }
7785
7786out_unlock:
7787 mddev_unlock(mddev);
7788 return err;
7789}
7790
7791static int md_open(struct block_device *bdev, fmode_t mode)
7792{
7793 /*
7794 * Succeed if we can lock the mddev, which confirms that
7795 * it isn't being stopped right now.
7796 */
7797 struct mddev *mddev = mddev_find(bdev->bd_dev);
7798 int err;
7799
7800 if (!mddev)
7801 return -ENODEV;
7802
7803 if (mddev->gendisk != bdev->bd_disk) {
7804 /* we are racing with mddev_put which is discarding this
7805 * bd_disk.
7806 */
7807 mddev_put(mddev);
7808 /* Wait until bdev->bd_disk is definitely gone */
7809 if (work_pending(&mddev->del_work))
7810 flush_workqueue(md_misc_wq);
7811 return -EBUSY;
7812 }
7813 BUG_ON(mddev != bdev->bd_disk->private_data);
7814
7815 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7816 goto out;
7817
7818 if (test_bit(MD_CLOSING, &mddev->flags)) {
7819 mutex_unlock(&mddev->open_mutex);
7820 err = -ENODEV;
7821 goto out;
7822 }
7823
7824 err = 0;
7825 atomic_inc(&mddev->openers);
7826 mutex_unlock(&mddev->open_mutex);
7827
7828 bdev_check_media_change(bdev);
7829 out:
7830 if (err)
7831 mddev_put(mddev);
7832 return err;
7833}
7834
7835static void md_release(struct gendisk *disk, fmode_t mode)
7836{
7837 struct mddev *mddev = disk->private_data;
7838
7839 BUG_ON(!mddev);
7840 atomic_dec(&mddev->openers);
7841 mddev_put(mddev);
7842}
7843
7844static unsigned int md_check_events(struct gendisk *disk, unsigned int clearing)
7845{
7846 struct mddev *mddev = disk->private_data;
7847 unsigned int ret = 0;
7848
7849 if (mddev->changed)
7850 ret = DISK_EVENT_MEDIA_CHANGE;
7851 mddev->changed = 0;
7852 return ret;
7853}
7854
7855const struct block_device_operations md_fops =
7856{
7857 .owner = THIS_MODULE,
7858 .submit_bio = md_submit_bio,
7859 .open = md_open,
7860 .release = md_release,
7861 .ioctl = md_ioctl,
7862#ifdef CONFIG_COMPAT
7863 .compat_ioctl = md_compat_ioctl,
7864#endif
7865 .getgeo = md_getgeo,
7866 .check_events = md_check_events,
7867 .set_read_only = md_set_read_only,
7868};
7869
7870static int md_thread(void *arg)
7871{
7872 struct md_thread *thread = arg;
7873
7874 /*
7875 * md_thread is a 'system-thread', it's priority should be very
7876 * high. We avoid resource deadlocks individually in each
7877 * raid personality. (RAID5 does preallocation) We also use RR and
7878 * the very same RT priority as kswapd, thus we will never get
7879 * into a priority inversion deadlock.
7880 *
7881 * we definitely have to have equal or higher priority than
7882 * bdflush, otherwise bdflush will deadlock if there are too
7883 * many dirty RAID5 blocks.
7884 */
7885
7886 allow_signal(SIGKILL);
7887 while (!kthread_should_stop()) {
7888
7889 /* We need to wait INTERRUPTIBLE so that
7890 * we don't add to the load-average.
7891 * That means we need to be sure no signals are
7892 * pending
7893 */
7894 if (signal_pending(current))
7895 flush_signals(current);
7896
7897 wait_event_interruptible_timeout
7898 (thread->wqueue,
7899 test_bit(THREAD_WAKEUP, &thread->flags)
7900 || kthread_should_stop() || kthread_should_park(),
7901 thread->timeout);
7902
7903 clear_bit(THREAD_WAKEUP, &thread->flags);
7904 if (kthread_should_park())
7905 kthread_parkme();
7906 if (!kthread_should_stop())
7907 thread->run(thread);
7908 }
7909
7910 return 0;
7911}
7912
7913void md_wakeup_thread(struct md_thread *thread)
7914{
7915 if (thread) {
7916 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7917 set_bit(THREAD_WAKEUP, &thread->flags);
7918 wake_up(&thread->wqueue);
7919 }
7920}
7921EXPORT_SYMBOL(md_wakeup_thread);
7922
7923struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7924 struct mddev *mddev, const char *name)
7925{
7926 struct md_thread *thread;
7927
7928 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7929 if (!thread)
7930 return NULL;
7931
7932 init_waitqueue_head(&thread->wqueue);
7933
7934 thread->run = run;
7935 thread->mddev = mddev;
7936 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7937 thread->tsk = kthread_run(md_thread, thread,
7938 "%s_%s",
7939 mdname(thread->mddev),
7940 name);
7941 if (IS_ERR(thread->tsk)) {
7942 kfree(thread);
7943 return NULL;
7944 }
7945 return thread;
7946}
7947EXPORT_SYMBOL(md_register_thread);
7948
7949void md_unregister_thread(struct md_thread **threadp)
7950{
7951 struct md_thread *thread = *threadp;
7952 if (!thread)
7953 return;
7954 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7955 /* Locking ensures that mddev_unlock does not wake_up a
7956 * non-existent thread
7957 */
7958 spin_lock(&pers_lock);
7959 *threadp = NULL;
7960 spin_unlock(&pers_lock);
7961
7962 kthread_stop(thread->tsk);
7963 kfree(thread);
7964}
7965EXPORT_SYMBOL(md_unregister_thread);
7966
7967void md_error(struct mddev *mddev, struct md_rdev *rdev)
7968{
7969 if (!rdev || test_bit(Faulty, &rdev->flags))
7970 return;
7971
7972 if (!mddev->pers || !mddev->pers->error_handler)
7973 return;
7974 mddev->pers->error_handler(mddev,rdev);
7975 if (mddev->degraded)
7976 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7977 sysfs_notify_dirent_safe(rdev->sysfs_state);
7978 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7979 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7980 md_wakeup_thread(mddev->thread);
7981 if (mddev->event_work.func)
7982 queue_work(md_misc_wq, &mddev->event_work);
7983 md_new_event(mddev);
7984}
7985EXPORT_SYMBOL(md_error);
7986
7987/* seq_file implementation /proc/mdstat */
7988
7989static void status_unused(struct seq_file *seq)
7990{
7991 int i = 0;
7992 struct md_rdev *rdev;
7993
7994 seq_printf(seq, "unused devices: ");
7995
7996 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7997 char b[BDEVNAME_SIZE];
7998 i++;
7999 seq_printf(seq, "%s ",
8000 bdevname(rdev->bdev,b));
8001 }
8002 if (!i)
8003 seq_printf(seq, "<none>");
8004
8005 seq_printf(seq, "\n");
8006}
8007
8008static int status_resync(struct seq_file *seq, struct mddev *mddev)
8009{
8010 sector_t max_sectors, resync, res;
8011 unsigned long dt, db = 0;
8012 sector_t rt, curr_mark_cnt, resync_mark_cnt;
8013 int scale, recovery_active;
8014 unsigned int per_milli;
8015
8016 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8017 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8018 max_sectors = mddev->resync_max_sectors;
8019 else
8020 max_sectors = mddev->dev_sectors;
8021
8022 resync = mddev->curr_resync;
8023 if (resync <= 3) {
8024 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
8025 /* Still cleaning up */
8026 resync = max_sectors;
8027 } else if (resync > max_sectors)
8028 resync = max_sectors;
8029 else
8030 resync -= atomic_read(&mddev->recovery_active);
8031
8032 if (resync == 0) {
8033 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery)) {
8034 struct md_rdev *rdev;
8035
8036 rdev_for_each(rdev, mddev)
8037 if (rdev->raid_disk >= 0 &&
8038 !test_bit(Faulty, &rdev->flags) &&
8039 rdev->recovery_offset != MaxSector &&
8040 rdev->recovery_offset) {
8041 seq_printf(seq, "\trecover=REMOTE");
8042 return 1;
8043 }
8044 if (mddev->reshape_position != MaxSector)
8045 seq_printf(seq, "\treshape=REMOTE");
8046 else
8047 seq_printf(seq, "\tresync=REMOTE");
8048 return 1;
8049 }
8050 if (mddev->recovery_cp < MaxSector) {
8051 seq_printf(seq, "\tresync=PENDING");
8052 return 1;
8053 }
8054 return 0;
8055 }
8056 if (resync < 3) {
8057 seq_printf(seq, "\tresync=DELAYED");
8058 return 1;
8059 }
8060
8061 WARN_ON(max_sectors == 0);
8062 /* Pick 'scale' such that (resync>>scale)*1000 will fit
8063 * in a sector_t, and (max_sectors>>scale) will fit in a
8064 * u32, as those are the requirements for sector_div.
8065 * Thus 'scale' must be at least 10
8066 */
8067 scale = 10;
8068 if (sizeof(sector_t) > sizeof(unsigned long)) {
8069 while ( max_sectors/2 > (1ULL<<(scale+32)))
8070 scale++;
8071 }
8072 res = (resync>>scale)*1000;
8073 sector_div(res, (u32)((max_sectors>>scale)+1));
8074
8075 per_milli = res;
8076 {
8077 int i, x = per_milli/50, y = 20-x;
8078 seq_printf(seq, "[");
8079 for (i = 0; i < x; i++)
8080 seq_printf(seq, "=");
8081 seq_printf(seq, ">");
8082 for (i = 0; i < y; i++)
8083 seq_printf(seq, ".");
8084 seq_printf(seq, "] ");
8085 }
8086 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
8087 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
8088 "reshape" :
8089 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
8090 "check" :
8091 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
8092 "resync" : "recovery"))),
8093 per_milli/10, per_milli % 10,
8094 (unsigned long long) resync/2,
8095 (unsigned long long) max_sectors/2);
8096
8097 /*
8098 * dt: time from mark until now
8099 * db: blocks written from mark until now
8100 * rt: remaining time
8101 *
8102 * rt is a sector_t, which is always 64bit now. We are keeping
8103 * the original algorithm, but it is not really necessary.
8104 *
8105 * Original algorithm:
8106 * So we divide before multiply in case it is 32bit and close
8107 * to the limit.
8108 * We scale the divisor (db) by 32 to avoid losing precision
8109 * near the end of resync when the number of remaining sectors
8110 * is close to 'db'.
8111 * We then divide rt by 32 after multiplying by db to compensate.
8112 * The '+1' avoids division by zero if db is very small.
8113 */
8114 dt = ((jiffies - mddev->resync_mark) / HZ);
8115 if (!dt) dt++;
8116
8117 curr_mark_cnt = mddev->curr_mark_cnt;
8118 recovery_active = atomic_read(&mddev->recovery_active);
8119 resync_mark_cnt = mddev->resync_mark_cnt;
8120
8121 if (curr_mark_cnt >= (recovery_active + resync_mark_cnt))
8122 db = curr_mark_cnt - (recovery_active + resync_mark_cnt);
8123
8124 rt = max_sectors - resync; /* number of remaining sectors */
8125 rt = div64_u64(rt, db/32+1);
8126 rt *= dt;
8127 rt >>= 5;
8128
8129 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
8130 ((unsigned long)rt % 60)/6);
8131
8132 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
8133 return 1;
8134}
8135
8136static void *md_seq_start(struct seq_file *seq, loff_t *pos)
8137{
8138 struct list_head *tmp;
8139 loff_t l = *pos;
8140 struct mddev *mddev;
8141
8142 if (l == 0x10000) {
8143 ++*pos;
8144 return (void *)2;
8145 }
8146 if (l > 0x10000)
8147 return NULL;
8148 if (!l--)
8149 /* header */
8150 return (void*)1;
8151
8152 spin_lock(&all_mddevs_lock);
8153 list_for_each(tmp,&all_mddevs)
8154 if (!l--) {
8155 mddev = list_entry(tmp, struct mddev, all_mddevs);
8156 mddev_get(mddev);
8157 spin_unlock(&all_mddevs_lock);
8158 return mddev;
8159 }
8160 spin_unlock(&all_mddevs_lock);
8161 if (!l--)
8162 return (void*)2;/* tail */
8163 return NULL;
8164}
8165
8166static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
8167{
8168 struct list_head *tmp;
8169 struct mddev *next_mddev, *mddev = v;
8170
8171 ++*pos;
8172 if (v == (void*)2)
8173 return NULL;
8174
8175 spin_lock(&all_mddevs_lock);
8176 if (v == (void*)1)
8177 tmp = all_mddevs.next;
8178 else
8179 tmp = mddev->all_mddevs.next;
8180 if (tmp != &all_mddevs)
8181 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
8182 else {
8183 next_mddev = (void*)2;
8184 *pos = 0x10000;
8185 }
8186 spin_unlock(&all_mddevs_lock);
8187
8188 if (v != (void*)1)
8189 mddev_put(mddev);
8190 return next_mddev;
8191
8192}
8193
8194static void md_seq_stop(struct seq_file *seq, void *v)
8195{
8196 struct mddev *mddev = v;
8197
8198 if (mddev && v != (void*)1 && v != (void*)2)
8199 mddev_put(mddev);
8200}
8201
8202static int md_seq_show(struct seq_file *seq, void *v)
8203{
8204 struct mddev *mddev = v;
8205 sector_t sectors;
8206 struct md_rdev *rdev;
8207
8208 if (v == (void*)1) {
8209 struct md_personality *pers;
8210 seq_printf(seq, "Personalities : ");
8211 spin_lock(&pers_lock);
8212 list_for_each_entry(pers, &pers_list, list)
8213 seq_printf(seq, "[%s] ", pers->name);
8214
8215 spin_unlock(&pers_lock);
8216 seq_printf(seq, "\n");
8217 seq->poll_event = atomic_read(&md_event_count);
8218 return 0;
8219 }
8220 if (v == (void*)2) {
8221 status_unused(seq);
8222 return 0;
8223 }
8224
8225 spin_lock(&mddev->lock);
8226 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
8227 seq_printf(seq, "%s : %sactive", mdname(mddev),
8228 mddev->pers ? "" : "in");
8229 if (mddev->pers) {
8230 if (mddev->ro==1)
8231 seq_printf(seq, " (read-only)");
8232 if (mddev->ro==2)
8233 seq_printf(seq, " (auto-read-only)");
8234 seq_printf(seq, " %s", mddev->pers->name);
8235 }
8236
8237 sectors = 0;
8238 rcu_read_lock();
8239 rdev_for_each_rcu(rdev, mddev) {
8240 char b[BDEVNAME_SIZE];
8241 seq_printf(seq, " %s[%d]",
8242 bdevname(rdev->bdev,b), rdev->desc_nr);
8243 if (test_bit(WriteMostly, &rdev->flags))
8244 seq_printf(seq, "(W)");
8245 if (test_bit(Journal, &rdev->flags))
8246 seq_printf(seq, "(J)");
8247 if (test_bit(Faulty, &rdev->flags)) {
8248 seq_printf(seq, "(F)");
8249 continue;
8250 }
8251 if (rdev->raid_disk < 0)
8252 seq_printf(seq, "(S)"); /* spare */
8253 if (test_bit(Replacement, &rdev->flags))
8254 seq_printf(seq, "(R)");
8255 sectors += rdev->sectors;
8256 }
8257 rcu_read_unlock();
8258
8259 if (!list_empty(&mddev->disks)) {
8260 if (mddev->pers)
8261 seq_printf(seq, "\n %llu blocks",
8262 (unsigned long long)
8263 mddev->array_sectors / 2);
8264 else
8265 seq_printf(seq, "\n %llu blocks",
8266 (unsigned long long)sectors / 2);
8267 }
8268 if (mddev->persistent) {
8269 if (mddev->major_version != 0 ||
8270 mddev->minor_version != 90) {
8271 seq_printf(seq," super %d.%d",
8272 mddev->major_version,
8273 mddev->minor_version);
8274 }
8275 } else if (mddev->external)
8276 seq_printf(seq, " super external:%s",
8277 mddev->metadata_type);
8278 else
8279 seq_printf(seq, " super non-persistent");
8280
8281 if (mddev->pers) {
8282 mddev->pers->status(seq, mddev);
8283 seq_printf(seq, "\n ");
8284 if (mddev->pers->sync_request) {
8285 if (status_resync(seq, mddev))
8286 seq_printf(seq, "\n ");
8287 }
8288 } else
8289 seq_printf(seq, "\n ");
8290
8291 md_bitmap_status(seq, mddev->bitmap);
8292
8293 seq_printf(seq, "\n");
8294 }
8295 spin_unlock(&mddev->lock);
8296
8297 return 0;
8298}
8299
8300static const struct seq_operations md_seq_ops = {
8301 .start = md_seq_start,
8302 .next = md_seq_next,
8303 .stop = md_seq_stop,
8304 .show = md_seq_show,
8305};
8306
8307static int md_seq_open(struct inode *inode, struct file *file)
8308{
8309 struct seq_file *seq;
8310 int error;
8311
8312 error = seq_open(file, &md_seq_ops);
8313 if (error)
8314 return error;
8315
8316 seq = file->private_data;
8317 seq->poll_event = atomic_read(&md_event_count);
8318 return error;
8319}
8320
8321static int md_unloading;
8322static __poll_t mdstat_poll(struct file *filp, poll_table *wait)
8323{
8324 struct seq_file *seq = filp->private_data;
8325 __poll_t mask;
8326
8327 if (md_unloading)
8328 return EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
8329 poll_wait(filp, &md_event_waiters, wait);
8330
8331 /* always allow read */
8332 mask = EPOLLIN | EPOLLRDNORM;
8333
8334 if (seq->poll_event != atomic_read(&md_event_count))
8335 mask |= EPOLLERR | EPOLLPRI;
8336 return mask;
8337}
8338
8339static const struct proc_ops mdstat_proc_ops = {
8340 .proc_open = md_seq_open,
8341 .proc_read = seq_read,
8342 .proc_lseek = seq_lseek,
8343 .proc_release = seq_release,
8344 .proc_poll = mdstat_poll,
8345};
8346
8347int register_md_personality(struct md_personality *p)
8348{
8349 pr_debug("md: %s personality registered for level %d\n",
8350 p->name, p->level);
8351 spin_lock(&pers_lock);
8352 list_add_tail(&p->list, &pers_list);
8353 spin_unlock(&pers_lock);
8354 return 0;
8355}
8356EXPORT_SYMBOL(register_md_personality);
8357
8358int unregister_md_personality(struct md_personality *p)
8359{
8360 pr_debug("md: %s personality unregistered\n", p->name);
8361 spin_lock(&pers_lock);
8362 list_del_init(&p->list);
8363 spin_unlock(&pers_lock);
8364 return 0;
8365}
8366EXPORT_SYMBOL(unregister_md_personality);
8367
8368int register_md_cluster_operations(struct md_cluster_operations *ops,
8369 struct module *module)
8370{
8371 int ret = 0;
8372 spin_lock(&pers_lock);
8373 if (md_cluster_ops != NULL)
8374 ret = -EALREADY;
8375 else {
8376 md_cluster_ops = ops;
8377 md_cluster_mod = module;
8378 }
8379 spin_unlock(&pers_lock);
8380 return ret;
8381}
8382EXPORT_SYMBOL(register_md_cluster_operations);
8383
8384int unregister_md_cluster_operations(void)
8385{
8386 spin_lock(&pers_lock);
8387 md_cluster_ops = NULL;
8388 spin_unlock(&pers_lock);
8389 return 0;
8390}
8391EXPORT_SYMBOL(unregister_md_cluster_operations);
8392
8393int md_setup_cluster(struct mddev *mddev, int nodes)
8394{
8395 int ret;
8396 if (!md_cluster_ops)
8397 request_module("md-cluster");
8398 spin_lock(&pers_lock);
8399 /* ensure module won't be unloaded */
8400 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
8401 pr_warn("can't find md-cluster module or get it's reference.\n");
8402 spin_unlock(&pers_lock);
8403 return -ENOENT;
8404 }
8405 spin_unlock(&pers_lock);
8406
8407 ret = md_cluster_ops->join(mddev, nodes);
8408 if (!ret)
8409 mddev->safemode_delay = 0;
8410 return ret;
8411}
8412
8413void md_cluster_stop(struct mddev *mddev)
8414{
8415 if (!md_cluster_ops)
8416 return;
8417 md_cluster_ops->leave(mddev);
8418 module_put(md_cluster_mod);
8419}
8420
8421static int is_mddev_idle(struct mddev *mddev, int init)
8422{
8423 struct md_rdev *rdev;
8424 int idle;
8425 int curr_events;
8426
8427 idle = 1;
8428 rcu_read_lock();
8429 rdev_for_each_rcu(rdev, mddev) {
8430 struct gendisk *disk = rdev->bdev->bd_disk;
8431 curr_events = (int)part_stat_read_accum(disk->part0, sectors) -
8432 atomic_read(&disk->sync_io);
8433 /* sync IO will cause sync_io to increase before the disk_stats
8434 * as sync_io is counted when a request starts, and
8435 * disk_stats is counted when it completes.
8436 * So resync activity will cause curr_events to be smaller than
8437 * when there was no such activity.
8438 * non-sync IO will cause disk_stat to increase without
8439 * increasing sync_io so curr_events will (eventually)
8440 * be larger than it was before. Once it becomes
8441 * substantially larger, the test below will cause
8442 * the array to appear non-idle, and resync will slow
8443 * down.
8444 * If there is a lot of outstanding resync activity when
8445 * we set last_event to curr_events, then all that activity
8446 * completing might cause the array to appear non-idle
8447 * and resync will be slowed down even though there might
8448 * not have been non-resync activity. This will only
8449 * happen once though. 'last_events' will soon reflect
8450 * the state where there is little or no outstanding
8451 * resync requests, and further resync activity will
8452 * always make curr_events less than last_events.
8453 *
8454 */
8455 if (init || curr_events - rdev->last_events > 64) {
8456 rdev->last_events = curr_events;
8457 idle = 0;
8458 }
8459 }
8460 rcu_read_unlock();
8461 return idle;
8462}
8463
8464void md_done_sync(struct mddev *mddev, int blocks, int ok)
8465{
8466 /* another "blocks" (512byte) blocks have been synced */
8467 atomic_sub(blocks, &mddev->recovery_active);
8468 wake_up(&mddev->recovery_wait);
8469 if (!ok) {
8470 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8471 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
8472 md_wakeup_thread(mddev->thread);
8473 // stop recovery, signal do_sync ....
8474 }
8475}
8476EXPORT_SYMBOL(md_done_sync);
8477
8478/* md_write_start(mddev, bi)
8479 * If we need to update some array metadata (e.g. 'active' flag
8480 * in superblock) before writing, schedule a superblock update
8481 * and wait for it to complete.
8482 * A return value of 'false' means that the write wasn't recorded
8483 * and cannot proceed as the array is being suspend.
8484 */
8485bool md_write_start(struct mddev *mddev, struct bio *bi)
8486{
8487 int did_change = 0;
8488
8489 if (bio_data_dir(bi) != WRITE)
8490 return true;
8491
8492 BUG_ON(mddev->ro == 1);
8493 if (mddev->ro == 2) {
8494 /* need to switch to read/write */
8495 mddev->ro = 0;
8496 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8497 md_wakeup_thread(mddev->thread);
8498 md_wakeup_thread(mddev->sync_thread);
8499 did_change = 1;
8500 }
8501 rcu_read_lock();
8502 percpu_ref_get(&mddev->writes_pending);
8503 smp_mb(); /* Match smp_mb in set_in_sync() */
8504 if (mddev->safemode == 1)
8505 mddev->safemode = 0;
8506 /* sync_checkers is always 0 when writes_pending is in per-cpu mode */
8507 if (mddev->in_sync || mddev->sync_checkers) {
8508 spin_lock(&mddev->lock);
8509 if (mddev->in_sync) {
8510 mddev->in_sync = 0;
8511 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8512 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8513 md_wakeup_thread(mddev->thread);
8514 did_change = 1;
8515 }
8516 spin_unlock(&mddev->lock);
8517 }
8518 rcu_read_unlock();
8519 if (did_change)
8520 sysfs_notify_dirent_safe(mddev->sysfs_state);
8521 if (!mddev->has_superblocks)
8522 return true;
8523 wait_event(mddev->sb_wait,
8524 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) ||
8525 mddev->suspended);
8526 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
8527 percpu_ref_put(&mddev->writes_pending);
8528 return false;
8529 }
8530 return true;
8531}
8532EXPORT_SYMBOL(md_write_start);
8533
8534/* md_write_inc can only be called when md_write_start() has
8535 * already been called at least once of the current request.
8536 * It increments the counter and is useful when a single request
8537 * is split into several parts. Each part causes an increment and
8538 * so needs a matching md_write_end().
8539 * Unlike md_write_start(), it is safe to call md_write_inc() inside
8540 * a spinlocked region.
8541 */
8542void md_write_inc(struct mddev *mddev, struct bio *bi)
8543{
8544 if (bio_data_dir(bi) != WRITE)
8545 return;
8546 WARN_ON_ONCE(mddev->in_sync || mddev->ro);
8547 percpu_ref_get(&mddev->writes_pending);
8548}
8549EXPORT_SYMBOL(md_write_inc);
8550
8551void md_write_end(struct mddev *mddev)
8552{
8553 percpu_ref_put(&mddev->writes_pending);
8554
8555 if (mddev->safemode == 2)
8556 md_wakeup_thread(mddev->thread);
8557 else if (mddev->safemode_delay)
8558 /* The roundup() ensures this only performs locking once
8559 * every ->safemode_delay jiffies
8560 */
8561 mod_timer(&mddev->safemode_timer,
8562 roundup(jiffies, mddev->safemode_delay) +
8563 mddev->safemode_delay);
8564}
8565
8566EXPORT_SYMBOL(md_write_end);
8567
8568/* This is used by raid0 and raid10 */
8569void md_submit_discard_bio(struct mddev *mddev, struct md_rdev *rdev,
8570 struct bio *bio, sector_t start, sector_t size)
8571{
8572 struct bio *discard_bio = NULL;
8573
8574 if (__blkdev_issue_discard(rdev->bdev, start, size, GFP_NOIO, 0,
8575 &discard_bio) || !discard_bio)
8576 return;
8577
8578 bio_chain(discard_bio, bio);
8579 bio_clone_blkg_association(discard_bio, bio);
8580 if (mddev->gendisk)
8581 trace_block_bio_remap(discard_bio,
8582 disk_devt(mddev->gendisk),
8583 bio->bi_iter.bi_sector);
8584 submit_bio_noacct(discard_bio);
8585}
8586EXPORT_SYMBOL_GPL(md_submit_discard_bio);
8587
8588static void md_end_io_acct(struct bio *bio)
8589{
8590 struct md_io_acct *md_io_acct = bio->bi_private;
8591 struct bio *orig_bio = md_io_acct->orig_bio;
8592
8593 orig_bio->bi_status = bio->bi_status;
8594
8595 bio_end_io_acct(orig_bio, md_io_acct->start_time);
8596 bio_put(bio);
8597 bio_endio(orig_bio);
8598}
8599
8600/*
8601 * Used by personalities that don't already clone the bio and thus can't
8602 * easily add the timestamp to their extended bio structure.
8603 */
8604void md_account_bio(struct mddev *mddev, struct bio **bio)
8605{
8606 struct md_io_acct *md_io_acct;
8607 struct bio *clone;
8608
8609 if (!blk_queue_io_stat((*bio)->bi_bdev->bd_disk->queue))
8610 return;
8611
8612 clone = bio_clone_fast(*bio, GFP_NOIO, &mddev->io_acct_set);
8613 md_io_acct = container_of(clone, struct md_io_acct, bio_clone);
8614 md_io_acct->orig_bio = *bio;
8615 md_io_acct->start_time = bio_start_io_acct(*bio);
8616
8617 clone->bi_end_io = md_end_io_acct;
8618 clone->bi_private = md_io_acct;
8619 *bio = clone;
8620}
8621EXPORT_SYMBOL_GPL(md_account_bio);
8622
8623/* md_allow_write(mddev)
8624 * Calling this ensures that the array is marked 'active' so that writes
8625 * may proceed without blocking. It is important to call this before
8626 * attempting a GFP_KERNEL allocation while holding the mddev lock.
8627 * Must be called with mddev_lock held.
8628 */
8629void md_allow_write(struct mddev *mddev)
8630{
8631 if (!mddev->pers)
8632 return;
8633 if (mddev->ro)
8634 return;
8635 if (!mddev->pers->sync_request)
8636 return;
8637
8638 spin_lock(&mddev->lock);
8639 if (mddev->in_sync) {
8640 mddev->in_sync = 0;
8641 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8642 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
8643 if (mddev->safemode_delay &&
8644 mddev->safemode == 0)
8645 mddev->safemode = 1;
8646 spin_unlock(&mddev->lock);
8647 md_update_sb(mddev, 0);
8648 sysfs_notify_dirent_safe(mddev->sysfs_state);
8649 /* wait for the dirty state to be recorded in the metadata */
8650 wait_event(mddev->sb_wait,
8651 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
8652 } else
8653 spin_unlock(&mddev->lock);
8654}
8655EXPORT_SYMBOL_GPL(md_allow_write);
8656
8657#define SYNC_MARKS 10
8658#define SYNC_MARK_STEP (3*HZ)
8659#define UPDATE_FREQUENCY (5*60*HZ)
8660void md_do_sync(struct md_thread *thread)
8661{
8662 struct mddev *mddev = thread->mddev;
8663 struct mddev *mddev2;
8664 unsigned int currspeed = 0, window;
8665 sector_t max_sectors,j, io_sectors, recovery_done;
8666 unsigned long mark[SYNC_MARKS];
8667 unsigned long update_time;
8668 sector_t mark_cnt[SYNC_MARKS];
8669 int last_mark,m;
8670 struct list_head *tmp;
8671 sector_t last_check;
8672 int skipped = 0;
8673 struct md_rdev *rdev;
8674 char *desc, *action = NULL;
8675 struct blk_plug plug;
8676 int ret;
8677
8678 /* just incase thread restarts... */
8679 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8680 test_bit(MD_RECOVERY_WAIT, &mddev->recovery))
8681 return;
8682 if (mddev->ro) {/* never try to sync a read-only array */
8683 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8684 return;
8685 }
8686
8687 if (mddev_is_clustered(mddev)) {
8688 ret = md_cluster_ops->resync_start(mddev);
8689 if (ret)
8690 goto skip;
8691
8692 set_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags);
8693 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
8694 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
8695 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
8696 && ((unsigned long long)mddev->curr_resync_completed
8697 < (unsigned long long)mddev->resync_max_sectors))
8698 goto skip;
8699 }
8700
8701 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8702 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
8703 desc = "data-check";
8704 action = "check";
8705 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8706 desc = "requested-resync";
8707 action = "repair";
8708 } else
8709 desc = "resync";
8710 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
8711 desc = "reshape";
8712 else
8713 desc = "recovery";
8714
8715 mddev->last_sync_action = action ?: desc;
8716
8717 /* we overload curr_resync somewhat here.
8718 * 0 == not engaged in resync at all
8719 * 2 == checking that there is no conflict with another sync
8720 * 1 == like 2, but have yielded to allow conflicting resync to
8721 * commence
8722 * other == active in resync - this many blocks
8723 *
8724 * Before starting a resync we must have set curr_resync to
8725 * 2, and then checked that every "conflicting" array has curr_resync
8726 * less than ours. When we find one that is the same or higher
8727 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
8728 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
8729 * This will mean we have to start checking from the beginning again.
8730 *
8731 */
8732
8733 do {
8734 int mddev2_minor = -1;
8735 mddev->curr_resync = 2;
8736
8737 try_again:
8738 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8739 goto skip;
8740 for_each_mddev(mddev2, tmp) {
8741 if (mddev2 == mddev)
8742 continue;
8743 if (!mddev->parallel_resync
8744 && mddev2->curr_resync
8745 && match_mddev_units(mddev, mddev2)) {
8746 DEFINE_WAIT(wq);
8747 if (mddev < mddev2 && mddev->curr_resync == 2) {
8748 /* arbitrarily yield */
8749 mddev->curr_resync = 1;
8750 wake_up(&resync_wait);
8751 }
8752 if (mddev > mddev2 && mddev->curr_resync == 1)
8753 /* no need to wait here, we can wait the next
8754 * time 'round when curr_resync == 2
8755 */
8756 continue;
8757 /* We need to wait 'interruptible' so as not to
8758 * contribute to the load average, and not to
8759 * be caught by 'softlockup'
8760 */
8761 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
8762 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8763 mddev2->curr_resync >= mddev->curr_resync) {
8764 if (mddev2_minor != mddev2->md_minor) {
8765 mddev2_minor = mddev2->md_minor;
8766 pr_info("md: delaying %s of %s until %s has finished (they share one or more physical units)\n",
8767 desc, mdname(mddev),
8768 mdname(mddev2));
8769 }
8770 mddev_put(mddev2);
8771 if (signal_pending(current))
8772 flush_signals(current);
8773 schedule();
8774 finish_wait(&resync_wait, &wq);
8775 goto try_again;
8776 }
8777 finish_wait(&resync_wait, &wq);
8778 }
8779 }
8780 } while (mddev->curr_resync < 2);
8781
8782 j = 0;
8783 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8784 /* resync follows the size requested by the personality,
8785 * which defaults to physical size, but can be virtual size
8786 */
8787 max_sectors = mddev->resync_max_sectors;
8788 atomic64_set(&mddev->resync_mismatches, 0);
8789 /* we don't use the checkpoint if there's a bitmap */
8790 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8791 j = mddev->resync_min;
8792 else if (!mddev->bitmap)
8793 j = mddev->recovery_cp;
8794
8795 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
8796 max_sectors = mddev->resync_max_sectors;
8797 /*
8798 * If the original node aborts reshaping then we continue the
8799 * reshaping, so set j again to avoid restart reshape from the
8800 * first beginning
8801 */
8802 if (mddev_is_clustered(mddev) &&
8803 mddev->reshape_position != MaxSector)
8804 j = mddev->reshape_position;
8805 } else {
8806 /* recovery follows the physical size of devices */
8807 max_sectors = mddev->dev_sectors;
8808 j = MaxSector;
8809 rcu_read_lock();
8810 rdev_for_each_rcu(rdev, mddev)
8811 if (rdev->raid_disk >= 0 &&
8812 !test_bit(Journal, &rdev->flags) &&
8813 !test_bit(Faulty, &rdev->flags) &&
8814 !test_bit(In_sync, &rdev->flags) &&
8815 rdev->recovery_offset < j)
8816 j = rdev->recovery_offset;
8817 rcu_read_unlock();
8818
8819 /* If there is a bitmap, we need to make sure all
8820 * writes that started before we added a spare
8821 * complete before we start doing a recovery.
8822 * Otherwise the write might complete and (via
8823 * bitmap_endwrite) set a bit in the bitmap after the
8824 * recovery has checked that bit and skipped that
8825 * region.
8826 */
8827 if (mddev->bitmap) {
8828 mddev->pers->quiesce(mddev, 1);
8829 mddev->pers->quiesce(mddev, 0);
8830 }
8831 }
8832
8833 pr_info("md: %s of RAID array %s\n", desc, mdname(mddev));
8834 pr_debug("md: minimum _guaranteed_ speed: %d KB/sec/disk.\n", speed_min(mddev));
8835 pr_debug("md: using maximum available idle IO bandwidth (but not more than %d KB/sec) for %s.\n",
8836 speed_max(mddev), desc);
8837
8838 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
8839
8840 io_sectors = 0;
8841 for (m = 0; m < SYNC_MARKS; m++) {
8842 mark[m] = jiffies;
8843 mark_cnt[m] = io_sectors;
8844 }
8845 last_mark = 0;
8846 mddev->resync_mark = mark[last_mark];
8847 mddev->resync_mark_cnt = mark_cnt[last_mark];
8848
8849 /*
8850 * Tune reconstruction:
8851 */
8852 window = 32 * (PAGE_SIZE / 512);
8853 pr_debug("md: using %dk window, over a total of %lluk.\n",
8854 window/2, (unsigned long long)max_sectors/2);
8855
8856 atomic_set(&mddev->recovery_active, 0);
8857 last_check = 0;
8858
8859 if (j>2) {
8860 pr_debug("md: resuming %s of %s from checkpoint.\n",
8861 desc, mdname(mddev));
8862 mddev->curr_resync = j;
8863 } else
8864 mddev->curr_resync = 3; /* no longer delayed */
8865 mddev->curr_resync_completed = j;
8866 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8867 md_new_event(mddev);
8868 update_time = jiffies;
8869
8870 blk_start_plug(&plug);
8871 while (j < max_sectors) {
8872 sector_t sectors;
8873
8874 skipped = 0;
8875
8876 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8877 ((mddev->curr_resync > mddev->curr_resync_completed &&
8878 (mddev->curr_resync - mddev->curr_resync_completed)
8879 > (max_sectors >> 4)) ||
8880 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
8881 (j - mddev->curr_resync_completed)*2
8882 >= mddev->resync_max - mddev->curr_resync_completed ||
8883 mddev->curr_resync_completed > mddev->resync_max
8884 )) {
8885 /* time to update curr_resync_completed */
8886 wait_event(mddev->recovery_wait,
8887 atomic_read(&mddev->recovery_active) == 0);
8888 mddev->curr_resync_completed = j;
8889 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8890 j > mddev->recovery_cp)
8891 mddev->recovery_cp = j;
8892 update_time = jiffies;
8893 set_bit(MD_SB_CHANGE_CLEAN, &mddev->sb_flags);
8894 sysfs_notify_dirent_safe(mddev->sysfs_completed);
8895 }
8896
8897 while (j >= mddev->resync_max &&
8898 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8899 /* As this condition is controlled by user-space,
8900 * we can block indefinitely, so use '_interruptible'
8901 * to avoid triggering warnings.
8902 */
8903 flush_signals(current); /* just in case */
8904 wait_event_interruptible(mddev->recovery_wait,
8905 mddev->resync_max > j
8906 || test_bit(MD_RECOVERY_INTR,
8907 &mddev->recovery));
8908 }
8909
8910 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8911 break;
8912
8913 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8914 if (sectors == 0) {
8915 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8916 break;
8917 }
8918
8919 if (!skipped) { /* actual IO requested */
8920 io_sectors += sectors;
8921 atomic_add(sectors, &mddev->recovery_active);
8922 }
8923
8924 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8925 break;
8926
8927 j += sectors;
8928 if (j > max_sectors)
8929 /* when skipping, extra large numbers can be returned. */
8930 j = max_sectors;
8931 if (j > 2)
8932 mddev->curr_resync = j;
8933 mddev->curr_mark_cnt = io_sectors;
8934 if (last_check == 0)
8935 /* this is the earliest that rebuild will be
8936 * visible in /proc/mdstat
8937 */
8938 md_new_event(mddev);
8939
8940 if (last_check + window > io_sectors || j == max_sectors)
8941 continue;
8942
8943 last_check = io_sectors;
8944 repeat:
8945 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8946 /* step marks */
8947 int next = (last_mark+1) % SYNC_MARKS;
8948
8949 mddev->resync_mark = mark[next];
8950 mddev->resync_mark_cnt = mark_cnt[next];
8951 mark[next] = jiffies;
8952 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8953 last_mark = next;
8954 }
8955
8956 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8957 break;
8958
8959 /*
8960 * this loop exits only if either when we are slower than
8961 * the 'hard' speed limit, or the system was IO-idle for
8962 * a jiffy.
8963 * the system might be non-idle CPU-wise, but we only care
8964 * about not overloading the IO subsystem. (things like an
8965 * e2fsck being done on the RAID array should execute fast)
8966 */
8967 cond_resched();
8968
8969 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8970 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8971 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8972
8973 if (currspeed > speed_min(mddev)) {
8974 if (currspeed > speed_max(mddev)) {
8975 msleep(500);
8976 goto repeat;
8977 }
8978 if (!is_mddev_idle(mddev, 0)) {
8979 /*
8980 * Give other IO more of a chance.
8981 * The faster the devices, the less we wait.
8982 */
8983 wait_event(mddev->recovery_wait,
8984 !atomic_read(&mddev->recovery_active));
8985 }
8986 }
8987 }
8988 pr_info("md: %s: %s %s.\n",mdname(mddev), desc,
8989 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8990 ? "interrupted" : "done");
8991 /*
8992 * this also signals 'finished resyncing' to md_stop
8993 */
8994 blk_finish_plug(&plug);
8995 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8996
8997 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8998 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8999 mddev->curr_resync > 3) {
9000 mddev->curr_resync_completed = mddev->curr_resync;
9001 sysfs_notify_dirent_safe(mddev->sysfs_completed);
9002 }
9003 mddev->pers->sync_request(mddev, max_sectors, &skipped);
9004
9005 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
9006 mddev->curr_resync > 3) {
9007 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
9008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9009 if (mddev->curr_resync >= mddev->recovery_cp) {
9010 pr_debug("md: checkpointing %s of %s.\n",
9011 desc, mdname(mddev));
9012 if (test_bit(MD_RECOVERY_ERROR,
9013 &mddev->recovery))
9014 mddev->recovery_cp =
9015 mddev->curr_resync_completed;
9016 else
9017 mddev->recovery_cp =
9018 mddev->curr_resync;
9019 }
9020 } else
9021 mddev->recovery_cp = MaxSector;
9022 } else {
9023 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
9024 mddev->curr_resync = MaxSector;
9025 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9026 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery)) {
9027 rcu_read_lock();
9028 rdev_for_each_rcu(rdev, mddev)
9029 if (rdev->raid_disk >= 0 &&
9030 mddev->delta_disks >= 0 &&
9031 !test_bit(Journal, &rdev->flags) &&
9032 !test_bit(Faulty, &rdev->flags) &&
9033 !test_bit(In_sync, &rdev->flags) &&
9034 rdev->recovery_offset < mddev->curr_resync)
9035 rdev->recovery_offset = mddev->curr_resync;
9036 rcu_read_unlock();
9037 }
9038 }
9039 }
9040 skip:
9041 /* set CHANGE_PENDING here since maybe another update is needed,
9042 * so other nodes are informed. It should be harmless for normal
9043 * raid */
9044 set_mask_bits(&mddev->sb_flags, 0,
9045 BIT(MD_SB_CHANGE_PENDING) | BIT(MD_SB_CHANGE_DEVS));
9046
9047 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9048 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9049 mddev->delta_disks > 0 &&
9050 mddev->pers->finish_reshape &&
9051 mddev->pers->size &&
9052 mddev->queue) {
9053 mddev_lock_nointr(mddev);
9054 md_set_array_sectors(mddev, mddev->pers->size(mddev, 0, 0));
9055 mddev_unlock(mddev);
9056 if (!mddev_is_clustered(mddev))
9057 set_capacity_and_notify(mddev->gendisk,
9058 mddev->array_sectors);
9059 }
9060
9061 spin_lock(&mddev->lock);
9062 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
9063 /* We completed so min/max setting can be forgotten if used. */
9064 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9065 mddev->resync_min = 0;
9066 mddev->resync_max = MaxSector;
9067 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
9068 mddev->resync_min = mddev->curr_resync_completed;
9069 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
9070 mddev->curr_resync = 0;
9071 spin_unlock(&mddev->lock);
9072
9073 wake_up(&resync_wait);
9074 md_wakeup_thread(mddev->thread);
9075 return;
9076}
9077EXPORT_SYMBOL_GPL(md_do_sync);
9078
9079static int remove_and_add_spares(struct mddev *mddev,
9080 struct md_rdev *this)
9081{
9082 struct md_rdev *rdev;
9083 int spares = 0;
9084 int removed = 0;
9085 bool remove_some = false;
9086
9087 if (this && test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
9088 /* Mustn't remove devices when resync thread is running */
9089 return 0;
9090
9091 rdev_for_each(rdev, mddev) {
9092 if ((this == NULL || rdev == this) &&
9093 rdev->raid_disk >= 0 &&
9094 !test_bit(Blocked, &rdev->flags) &&
9095 test_bit(Faulty, &rdev->flags) &&
9096 atomic_read(&rdev->nr_pending)==0) {
9097 /* Faulty non-Blocked devices with nr_pending == 0
9098 * never get nr_pending incremented,
9099 * never get Faulty cleared, and never get Blocked set.
9100 * So we can synchronize_rcu now rather than once per device
9101 */
9102 remove_some = true;
9103 set_bit(RemoveSynchronized, &rdev->flags);
9104 }
9105 }
9106
9107 if (remove_some)
9108 synchronize_rcu();
9109 rdev_for_each(rdev, mddev) {
9110 if ((this == NULL || rdev == this) &&
9111 rdev->raid_disk >= 0 &&
9112 !test_bit(Blocked, &rdev->flags) &&
9113 ((test_bit(RemoveSynchronized, &rdev->flags) ||
9114 (!test_bit(In_sync, &rdev->flags) &&
9115 !test_bit(Journal, &rdev->flags))) &&
9116 atomic_read(&rdev->nr_pending)==0)) {
9117 if (mddev->pers->hot_remove_disk(
9118 mddev, rdev) == 0) {
9119 sysfs_unlink_rdev(mddev, rdev);
9120 rdev->saved_raid_disk = rdev->raid_disk;
9121 rdev->raid_disk = -1;
9122 removed++;
9123 }
9124 }
9125 if (remove_some && test_bit(RemoveSynchronized, &rdev->flags))
9126 clear_bit(RemoveSynchronized, &rdev->flags);
9127 }
9128
9129 if (removed && mddev->kobj.sd)
9130 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9131
9132 if (this && removed)
9133 goto no_add;
9134
9135 rdev_for_each(rdev, mddev) {
9136 if (this && this != rdev)
9137 continue;
9138 if (test_bit(Candidate, &rdev->flags))
9139 continue;
9140 if (rdev->raid_disk >= 0 &&
9141 !test_bit(In_sync, &rdev->flags) &&
9142 !test_bit(Journal, &rdev->flags) &&
9143 !test_bit(Faulty, &rdev->flags))
9144 spares++;
9145 if (rdev->raid_disk >= 0)
9146 continue;
9147 if (test_bit(Faulty, &rdev->flags))
9148 continue;
9149 if (!test_bit(Journal, &rdev->flags)) {
9150 if (mddev->ro &&
9151 ! (rdev->saved_raid_disk >= 0 &&
9152 !test_bit(Bitmap_sync, &rdev->flags)))
9153 continue;
9154
9155 rdev->recovery_offset = 0;
9156 }
9157 if (mddev->pers->hot_add_disk(mddev, rdev) == 0) {
9158 /* failure here is OK */
9159 sysfs_link_rdev(mddev, rdev);
9160 if (!test_bit(Journal, &rdev->flags))
9161 spares++;
9162 md_new_event(mddev);
9163 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9164 }
9165 }
9166no_add:
9167 if (removed)
9168 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9169 return spares;
9170}
9171
9172static void md_start_sync(struct work_struct *ws)
9173{
9174 struct mddev *mddev = container_of(ws, struct mddev, del_work);
9175
9176 mddev->sync_thread = md_register_thread(md_do_sync,
9177 mddev,
9178 "resync");
9179 if (!mddev->sync_thread) {
9180 pr_warn("%s: could not start resync thread...\n",
9181 mdname(mddev));
9182 /* leave the spares where they are, it shouldn't hurt */
9183 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9184 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9185 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9186 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9187 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9188 wake_up(&resync_wait);
9189 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9190 &mddev->recovery))
9191 if (mddev->sysfs_action)
9192 sysfs_notify_dirent_safe(mddev->sysfs_action);
9193 } else
9194 md_wakeup_thread(mddev->sync_thread);
9195 sysfs_notify_dirent_safe(mddev->sysfs_action);
9196 md_new_event(mddev);
9197}
9198
9199/*
9200 * This routine is regularly called by all per-raid-array threads to
9201 * deal with generic issues like resync and super-block update.
9202 * Raid personalities that don't have a thread (linear/raid0) do not
9203 * need this as they never do any recovery or update the superblock.
9204 *
9205 * It does not do any resync itself, but rather "forks" off other threads
9206 * to do that as needed.
9207 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
9208 * "->recovery" and create a thread at ->sync_thread.
9209 * When the thread finishes it sets MD_RECOVERY_DONE
9210 * and wakeups up this thread which will reap the thread and finish up.
9211 * This thread also removes any faulty devices (with nr_pending == 0).
9212 *
9213 * The overall approach is:
9214 * 1/ if the superblock needs updating, update it.
9215 * 2/ If a recovery thread is running, don't do anything else.
9216 * 3/ If recovery has finished, clean up, possibly marking spares active.
9217 * 4/ If there are any faulty devices, remove them.
9218 * 5/ If array is degraded, try to add spares devices
9219 * 6/ If array has spares or is not in-sync, start a resync thread.
9220 */
9221void md_check_recovery(struct mddev *mddev)
9222{
9223 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags) && mddev->sb_flags) {
9224 /* Write superblock - thread that called mddev_suspend()
9225 * holds reconfig_mutex for us.
9226 */
9227 set_bit(MD_UPDATING_SB, &mddev->flags);
9228 smp_mb__after_atomic();
9229 if (test_bit(MD_ALLOW_SB_UPDATE, &mddev->flags))
9230 md_update_sb(mddev, 0);
9231 clear_bit_unlock(MD_UPDATING_SB, &mddev->flags);
9232 wake_up(&mddev->sb_wait);
9233 }
9234
9235 if (mddev->suspended)
9236 return;
9237
9238 if (mddev->bitmap)
9239 md_bitmap_daemon_work(mddev);
9240
9241 if (signal_pending(current)) {
9242 if (mddev->pers->sync_request && !mddev->external) {
9243 pr_debug("md: %s in immediate safe mode\n",
9244 mdname(mddev));
9245 mddev->safemode = 2;
9246 }
9247 flush_signals(current);
9248 }
9249
9250 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
9251 return;
9252 if ( ! (
9253 (mddev->sb_flags & ~ (1<<MD_SB_CHANGE_PENDING)) ||
9254 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9255 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
9256 (mddev->external == 0 && mddev->safemode == 1) ||
9257 (mddev->safemode == 2
9258 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
9259 ))
9260 return;
9261
9262 if (mddev_trylock(mddev)) {
9263 int spares = 0;
9264 bool try_set_sync = mddev->safemode != 0;
9265
9266 if (!mddev->external && mddev->safemode == 1)
9267 mddev->safemode = 0;
9268
9269 if (mddev->ro) {
9270 struct md_rdev *rdev;
9271 if (!mddev->external && mddev->in_sync)
9272 /* 'Blocked' flag not needed as failed devices
9273 * will be recorded if array switched to read/write.
9274 * Leaving it set will prevent the device
9275 * from being removed.
9276 */
9277 rdev_for_each(rdev, mddev)
9278 clear_bit(Blocked, &rdev->flags);
9279 /* On a read-only array we can:
9280 * - remove failed devices
9281 * - add already-in_sync devices if the array itself
9282 * is in-sync.
9283 * As we only add devices that are already in-sync,
9284 * we can activate the spares immediately.
9285 */
9286 remove_and_add_spares(mddev, NULL);
9287 /* There is no thread, but we need to call
9288 * ->spare_active and clear saved_raid_disk
9289 */
9290 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
9291 md_reap_sync_thread(mddev);
9292 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9293 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9294 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
9295 goto unlock;
9296 }
9297
9298 if (mddev_is_clustered(mddev)) {
9299 struct md_rdev *rdev, *tmp;
9300 /* kick the device if another node issued a
9301 * remove disk.
9302 */
9303 rdev_for_each_safe(rdev, tmp, mddev) {
9304 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
9305 rdev->raid_disk < 0)
9306 md_kick_rdev_from_array(rdev);
9307 }
9308 }
9309
9310 if (try_set_sync && !mddev->external && !mddev->in_sync) {
9311 spin_lock(&mddev->lock);
9312 set_in_sync(mddev);
9313 spin_unlock(&mddev->lock);
9314 }
9315
9316 if (mddev->sb_flags)
9317 md_update_sb(mddev, 0);
9318
9319 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
9320 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
9321 /* resync/recovery still happening */
9322 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9323 goto unlock;
9324 }
9325 if (mddev->sync_thread) {
9326 md_reap_sync_thread(mddev);
9327 goto unlock;
9328 }
9329 /* Set RUNNING before clearing NEEDED to avoid
9330 * any transients in the value of "sync_action".
9331 */
9332 mddev->curr_resync_completed = 0;
9333 spin_lock(&mddev->lock);
9334 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9335 spin_unlock(&mddev->lock);
9336 /* Clear some bits that don't mean anything, but
9337 * might be left set
9338 */
9339 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
9340 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9341
9342 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
9343 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
9344 goto not_running;
9345 /* no recovery is running.
9346 * remove any failed drives, then
9347 * add spares if possible.
9348 * Spares are also removed and re-added, to allow
9349 * the personality to fail the re-add.
9350 */
9351
9352 if (mddev->reshape_position != MaxSector) {
9353 if (mddev->pers->check_reshape == NULL ||
9354 mddev->pers->check_reshape(mddev) != 0)
9355 /* Cannot proceed */
9356 goto not_running;
9357 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9358 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9359 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
9360 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9361 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9362 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9363 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9364 } else if (mddev->recovery_cp < MaxSector) {
9365 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9366 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
9367 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
9368 /* nothing to be done ... */
9369 goto not_running;
9370
9371 if (mddev->pers->sync_request) {
9372 if (spares) {
9373 /* We are adding a device or devices to an array
9374 * which has the bitmap stored on all devices.
9375 * So make sure all bitmap pages get written
9376 */
9377 md_bitmap_write_all(mddev->bitmap);
9378 }
9379 INIT_WORK(&mddev->del_work, md_start_sync);
9380 queue_work(md_misc_wq, &mddev->del_work);
9381 goto unlock;
9382 }
9383 not_running:
9384 if (!mddev->sync_thread) {
9385 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9386 wake_up(&resync_wait);
9387 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
9388 &mddev->recovery))
9389 if (mddev->sysfs_action)
9390 sysfs_notify_dirent_safe(mddev->sysfs_action);
9391 }
9392 unlock:
9393 wake_up(&mddev->sb_wait);
9394 mddev_unlock(mddev);
9395 }
9396}
9397EXPORT_SYMBOL(md_check_recovery);
9398
9399void md_reap_sync_thread(struct mddev *mddev)
9400{
9401 struct md_rdev *rdev;
9402 sector_t old_dev_sectors = mddev->dev_sectors;
9403 bool is_reshaped = false;
9404
9405 /* resync has finished, collect result */
9406 md_unregister_thread(&mddev->sync_thread);
9407 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
9408 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
9409 mddev->degraded != mddev->raid_disks) {
9410 /* success...*/
9411 /* activate any spares */
9412 if (mddev->pers->spare_active(mddev)) {
9413 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9414 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
9415 }
9416 }
9417 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
9418 mddev->pers->finish_reshape) {
9419 mddev->pers->finish_reshape(mddev);
9420 if (mddev_is_clustered(mddev))
9421 is_reshaped = true;
9422 }
9423
9424 /* If array is no-longer degraded, then any saved_raid_disk
9425 * information must be scrapped.
9426 */
9427 if (!mddev->degraded)
9428 rdev_for_each(rdev, mddev)
9429 rdev->saved_raid_disk = -1;
9430
9431 md_update_sb(mddev, 1);
9432 /* MD_SB_CHANGE_PENDING should be cleared by md_update_sb, so we can
9433 * call resync_finish here if MD_CLUSTER_RESYNC_LOCKED is set by
9434 * clustered raid */
9435 if (test_and_clear_bit(MD_CLUSTER_RESYNC_LOCKED, &mddev->flags))
9436 md_cluster_ops->resync_finish(mddev);
9437 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
9438 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
9439 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
9440 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
9441 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
9442 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
9443 /*
9444 * We call md_cluster_ops->update_size here because sync_size could
9445 * be changed by md_update_sb, and MD_RECOVERY_RESHAPE is cleared,
9446 * so it is time to update size across cluster.
9447 */
9448 if (mddev_is_clustered(mddev) && is_reshaped
9449 && !test_bit(MD_CLOSING, &mddev->flags))
9450 md_cluster_ops->update_size(mddev, old_dev_sectors);
9451 wake_up(&resync_wait);
9452 /* flag recovery needed just to double check */
9453 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9454 sysfs_notify_dirent_safe(mddev->sysfs_action);
9455 md_new_event(mddev);
9456 if (mddev->event_work.func)
9457 queue_work(md_misc_wq, &mddev->event_work);
9458}
9459EXPORT_SYMBOL(md_reap_sync_thread);
9460
9461void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
9462{
9463 sysfs_notify_dirent_safe(rdev->sysfs_state);
9464 wait_event_timeout(rdev->blocked_wait,
9465 !test_bit(Blocked, &rdev->flags) &&
9466 !test_bit(BlockedBadBlocks, &rdev->flags),
9467 msecs_to_jiffies(5000));
9468 rdev_dec_pending(rdev, mddev);
9469}
9470EXPORT_SYMBOL(md_wait_for_blocked_rdev);
9471
9472void md_finish_reshape(struct mddev *mddev)
9473{
9474 /* called be personality module when reshape completes. */
9475 struct md_rdev *rdev;
9476
9477 rdev_for_each(rdev, mddev) {
9478 if (rdev->data_offset > rdev->new_data_offset)
9479 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
9480 else
9481 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
9482 rdev->data_offset = rdev->new_data_offset;
9483 }
9484}
9485EXPORT_SYMBOL(md_finish_reshape);
9486
9487/* Bad block management */
9488
9489/* Returns 1 on success, 0 on failure */
9490int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9491 int is_new)
9492{
9493 struct mddev *mddev = rdev->mddev;
9494 int rv;
9495 if (is_new)
9496 s += rdev->new_data_offset;
9497 else
9498 s += rdev->data_offset;
9499 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
9500 if (rv == 0) {
9501 /* Make sure they get written out promptly */
9502 if (test_bit(ExternalBbl, &rdev->flags))
9503 sysfs_notify_dirent_safe(rdev->sysfs_unack_badblocks);
9504 sysfs_notify_dirent_safe(rdev->sysfs_state);
9505 set_mask_bits(&mddev->sb_flags, 0,
9506 BIT(MD_SB_CHANGE_CLEAN) | BIT(MD_SB_CHANGE_PENDING));
9507 md_wakeup_thread(rdev->mddev->thread);
9508 return 1;
9509 } else
9510 return 0;
9511}
9512EXPORT_SYMBOL_GPL(rdev_set_badblocks);
9513
9514int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
9515 int is_new)
9516{
9517 int rv;
9518 if (is_new)
9519 s += rdev->new_data_offset;
9520 else
9521 s += rdev->data_offset;
9522 rv = badblocks_clear(&rdev->badblocks, s, sectors);
9523 if ((rv == 0) && test_bit(ExternalBbl, &rdev->flags))
9524 sysfs_notify_dirent_safe(rdev->sysfs_badblocks);
9525 return rv;
9526}
9527EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
9528
9529static int md_notify_reboot(struct notifier_block *this,
9530 unsigned long code, void *x)
9531{
9532 struct list_head *tmp;
9533 struct mddev *mddev;
9534 int need_delay = 0;
9535
9536 for_each_mddev(mddev, tmp) {
9537 if (mddev_trylock(mddev)) {
9538 if (mddev->pers)
9539 __md_stop_writes(mddev);
9540 if (mddev->persistent)
9541 mddev->safemode = 2;
9542 mddev_unlock(mddev);
9543 }
9544 need_delay = 1;
9545 }
9546 /*
9547 * certain more exotic SCSI devices are known to be
9548 * volatile wrt too early system reboots. While the
9549 * right place to handle this issue is the given
9550 * driver, we do want to have a safe RAID driver ...
9551 */
9552 if (need_delay)
9553 mdelay(1000*1);
9554
9555 return NOTIFY_DONE;
9556}
9557
9558static struct notifier_block md_notifier = {
9559 .notifier_call = md_notify_reboot,
9560 .next = NULL,
9561 .priority = INT_MAX, /* before any real devices */
9562};
9563
9564static void md_geninit(void)
9565{
9566 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
9567
9568 proc_create("mdstat", S_IRUGO, NULL, &mdstat_proc_ops);
9569}
9570
9571static int __init md_init(void)
9572{
9573 int ret = -ENOMEM;
9574
9575 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
9576 if (!md_wq)
9577 goto err_wq;
9578
9579 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
9580 if (!md_misc_wq)
9581 goto err_misc_wq;
9582
9583 md_rdev_misc_wq = alloc_workqueue("md_rdev_misc", 0, 0);
9584 if (!md_rdev_misc_wq)
9585 goto err_rdev_misc_wq;
9586
9587 ret = __register_blkdev(MD_MAJOR, "md", md_probe);
9588 if (ret < 0)
9589 goto err_md;
9590
9591 ret = __register_blkdev(0, "mdp", md_probe);
9592 if (ret < 0)
9593 goto err_mdp;
9594 mdp_major = ret;
9595
9596 register_reboot_notifier(&md_notifier);
9597 raid_table_header = register_sysctl_table(raid_root_table);
9598
9599 md_geninit();
9600 return 0;
9601
9602err_mdp:
9603 unregister_blkdev(MD_MAJOR, "md");
9604err_md:
9605 destroy_workqueue(md_rdev_misc_wq);
9606err_rdev_misc_wq:
9607 destroy_workqueue(md_misc_wq);
9608err_misc_wq:
9609 destroy_workqueue(md_wq);
9610err_wq:
9611 return ret;
9612}
9613
9614static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
9615{
9616 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
9617 struct md_rdev *rdev2, *tmp;
9618 int role, ret;
9619 char b[BDEVNAME_SIZE];
9620
9621 /*
9622 * If size is changed in another node then we need to
9623 * do resize as well.
9624 */
9625 if (mddev->dev_sectors != le64_to_cpu(sb->size)) {
9626 ret = mddev->pers->resize(mddev, le64_to_cpu(sb->size));
9627 if (ret)
9628 pr_info("md-cluster: resize failed\n");
9629 else
9630 md_bitmap_update_sb(mddev->bitmap);
9631 }
9632
9633 /* Check for change of roles in the active devices */
9634 rdev_for_each_safe(rdev2, tmp, mddev) {
9635 if (test_bit(Faulty, &rdev2->flags))
9636 continue;
9637
9638 /* Check if the roles changed */
9639 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
9640
9641 if (test_bit(Candidate, &rdev2->flags)) {
9642 if (role == 0xfffe) {
9643 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
9644 md_kick_rdev_from_array(rdev2);
9645 continue;
9646 }
9647 else
9648 clear_bit(Candidate, &rdev2->flags);
9649 }
9650
9651 if (role != rdev2->raid_disk) {
9652 /*
9653 * got activated except reshape is happening.
9654 */
9655 if (rdev2->raid_disk == -1 && role != 0xffff &&
9656 !(le32_to_cpu(sb->feature_map) &
9657 MD_FEATURE_RESHAPE_ACTIVE)) {
9658 rdev2->saved_raid_disk = role;
9659 ret = remove_and_add_spares(mddev, rdev2);
9660 pr_info("Activated spare: %s\n",
9661 bdevname(rdev2->bdev,b));
9662 /* wakeup mddev->thread here, so array could
9663 * perform resync with the new activated disk */
9664 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
9665 md_wakeup_thread(mddev->thread);
9666 }
9667 /* device faulty
9668 * We just want to do the minimum to mark the disk
9669 * as faulty. The recovery is performed by the
9670 * one who initiated the error.
9671 */
9672 if ((role == 0xfffe) || (role == 0xfffd)) {
9673 md_error(mddev, rdev2);
9674 clear_bit(Blocked, &rdev2->flags);
9675 }
9676 }
9677 }
9678
9679 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) {
9680 ret = update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
9681 if (ret)
9682 pr_warn("md: updating array disks failed. %d\n", ret);
9683 }
9684
9685 /*
9686 * Since mddev->delta_disks has already updated in update_raid_disks,
9687 * so it is time to check reshape.
9688 */
9689 if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9690 (le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9691 /*
9692 * reshape is happening in the remote node, we need to
9693 * update reshape_position and call start_reshape.
9694 */
9695 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
9696 if (mddev->pers->update_reshape_pos)
9697 mddev->pers->update_reshape_pos(mddev);
9698 if (mddev->pers->start_reshape)
9699 mddev->pers->start_reshape(mddev);
9700 } else if (test_bit(MD_RESYNCING_REMOTE, &mddev->recovery) &&
9701 mddev->reshape_position != MaxSector &&
9702 !(le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
9703 /* reshape is just done in another node. */
9704 mddev->reshape_position = MaxSector;
9705 if (mddev->pers->update_reshape_pos)
9706 mddev->pers->update_reshape_pos(mddev);
9707 }
9708
9709 /* Finally set the event to be up to date */
9710 mddev->events = le64_to_cpu(sb->events);
9711}
9712
9713static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
9714{
9715 int err;
9716 struct page *swapout = rdev->sb_page;
9717 struct mdp_superblock_1 *sb;
9718
9719 /* Store the sb page of the rdev in the swapout temporary
9720 * variable in case we err in the future
9721 */
9722 rdev->sb_page = NULL;
9723 err = alloc_disk_sb(rdev);
9724 if (err == 0) {
9725 ClearPageUptodate(rdev->sb_page);
9726 rdev->sb_loaded = 0;
9727 err = super_types[mddev->major_version].
9728 load_super(rdev, NULL, mddev->minor_version);
9729 }
9730 if (err < 0) {
9731 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
9732 __func__, __LINE__, rdev->desc_nr, err);
9733 if (rdev->sb_page)
9734 put_page(rdev->sb_page);
9735 rdev->sb_page = swapout;
9736 rdev->sb_loaded = 1;
9737 return err;
9738 }
9739
9740 sb = page_address(rdev->sb_page);
9741 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
9742 * is not set
9743 */
9744
9745 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
9746 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
9747
9748 /* The other node finished recovery, call spare_active to set
9749 * device In_sync and mddev->degraded
9750 */
9751 if (rdev->recovery_offset == MaxSector &&
9752 !test_bit(In_sync, &rdev->flags) &&
9753 mddev->pers->spare_active(mddev))
9754 sysfs_notify_dirent_safe(mddev->sysfs_degraded);
9755
9756 put_page(swapout);
9757 return 0;
9758}
9759
9760void md_reload_sb(struct mddev *mddev, int nr)
9761{
9762 struct md_rdev *rdev;
9763 int err;
9764
9765 /* Find the rdev */
9766 rdev_for_each_rcu(rdev, mddev) {
9767 if (rdev->desc_nr == nr)
9768 break;
9769 }
9770
9771 if (!rdev || rdev->desc_nr != nr) {
9772 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
9773 return;
9774 }
9775
9776 err = read_rdev(mddev, rdev);
9777 if (err < 0)
9778 return;
9779
9780 check_sb_changes(mddev, rdev);
9781
9782 /* Read all rdev's to update recovery_offset */
9783 rdev_for_each_rcu(rdev, mddev) {
9784 if (!test_bit(Faulty, &rdev->flags))
9785 read_rdev(mddev, rdev);
9786 }
9787}
9788EXPORT_SYMBOL(md_reload_sb);
9789
9790#ifndef MODULE
9791
9792/*
9793 * Searches all registered partitions for autorun RAID arrays
9794 * at boot time.
9795 */
9796
9797static DEFINE_MUTEX(detected_devices_mutex);
9798static LIST_HEAD(all_detected_devices);
9799struct detected_devices_node {
9800 struct list_head list;
9801 dev_t dev;
9802};
9803
9804void md_autodetect_dev(dev_t dev)
9805{
9806 struct detected_devices_node *node_detected_dev;
9807
9808 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
9809 if (node_detected_dev) {
9810 node_detected_dev->dev = dev;
9811 mutex_lock(&detected_devices_mutex);
9812 list_add_tail(&node_detected_dev->list, &all_detected_devices);
9813 mutex_unlock(&detected_devices_mutex);
9814 }
9815}
9816
9817void md_autostart_arrays(int part)
9818{
9819 struct md_rdev *rdev;
9820 struct detected_devices_node *node_detected_dev;
9821 dev_t dev;
9822 int i_scanned, i_passed;
9823
9824 i_scanned = 0;
9825 i_passed = 0;
9826
9827 pr_info("md: Autodetecting RAID arrays.\n");
9828
9829 mutex_lock(&detected_devices_mutex);
9830 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9831 i_scanned++;
9832 node_detected_dev = list_entry(all_detected_devices.next,
9833 struct detected_devices_node, list);
9834 list_del(&node_detected_dev->list);
9835 dev = node_detected_dev->dev;
9836 kfree(node_detected_dev);
9837 mutex_unlock(&detected_devices_mutex);
9838 rdev = md_import_device(dev,0, 90);
9839 mutex_lock(&detected_devices_mutex);
9840 if (IS_ERR(rdev))
9841 continue;
9842
9843 if (test_bit(Faulty, &rdev->flags))
9844 continue;
9845
9846 set_bit(AutoDetected, &rdev->flags);
9847 list_add(&rdev->same_set, &pending_raid_disks);
9848 i_passed++;
9849 }
9850 mutex_unlock(&detected_devices_mutex);
9851
9852 pr_debug("md: Scanned %d and added %d devices.\n", i_scanned, i_passed);
9853
9854 autorun_devices(part);
9855}
9856
9857#endif /* !MODULE */
9858
9859static __exit void md_exit(void)
9860{
9861 struct mddev *mddev;
9862 struct list_head *tmp;
9863 int delay = 1;
9864
9865 unregister_blkdev(MD_MAJOR,"md");
9866 unregister_blkdev(mdp_major, "mdp");
9867 unregister_reboot_notifier(&md_notifier);
9868 unregister_sysctl_table(raid_table_header);
9869
9870 /* We cannot unload the modules while some process is
9871 * waiting for us in select() or poll() - wake them up
9872 */
9873 md_unloading = 1;
9874 while (waitqueue_active(&md_event_waiters)) {
9875 /* not safe to leave yet */
9876 wake_up(&md_event_waiters);
9877 msleep(delay);
9878 delay += delay;
9879 }
9880 remove_proc_entry("mdstat", NULL);
9881
9882 for_each_mddev(mddev, tmp) {
9883 export_array(mddev);
9884 mddev->ctime = 0;
9885 mddev->hold_active = 0;
9886 /*
9887 * for_each_mddev() will call mddev_put() at the end of each
9888 * iteration. As the mddev is now fully clear, this will
9889 * schedule the mddev for destruction by a workqueue, and the
9890 * destroy_workqueue() below will wait for that to complete.
9891 */
9892 }
9893 destroy_workqueue(md_rdev_misc_wq);
9894 destroy_workqueue(md_misc_wq);
9895 destroy_workqueue(md_wq);
9896}
9897
9898subsys_initcall(md_init);
9899module_exit(md_exit)
9900
9901static int get_ro(char *buffer, const struct kernel_param *kp)
9902{
9903 return sprintf(buffer, "%d\n", start_readonly);
9904}
9905static int set_ro(const char *val, const struct kernel_param *kp)
9906{
9907 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9908}
9909
9910module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9911module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9912module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9913module_param(create_on_open, bool, S_IRUSR|S_IWUSR);
9914
9915MODULE_LICENSE("GPL");
9916MODULE_DESCRIPTION("MD RAID framework");
9917MODULE_ALIAS("md");
9918MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);