Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52#include <linux/module.h>
53#include <linux/moduleparam.h>
54#include <linux/sched.h>
55#include <linux/fs.h>
56#include <linux/pagemap.h>
57#include <linux/file.h>
58#include <linux/stat.h>
59#include <linux/errno.h>
60#include <linux/major.h>
61#include <linux/wait.h>
62#include <linux/blkdev.h>
63#include <linux/blkpg.h>
64#include <linux/init.h>
65#include <linux/swap.h>
66#include <linux/slab.h>
67#include <linux/compat.h>
68#include <linux/suspend.h>
69#include <linux/freezer.h>
70#include <linux/mutex.h>
71#include <linux/writeback.h>
72#include <linux/completion.h>
73#include <linux/highmem.h>
74#include <linux/splice.h>
75#include <linux/sysfs.h>
76#include <linux/miscdevice.h>
77#include <linux/falloc.h>
78#include <linux/uio.h>
79#include <linux/ioprio.h>
80#include <linux/blk-cgroup.h>
81#include <linux/sched/mm.h>
82
83#include "loop.h"
84
85#include <linux/uaccess.h>
86
87#define LOOP_IDLE_WORKER_TIMEOUT (60 * HZ)
88
89static DEFINE_IDR(loop_index_idr);
90static DEFINE_MUTEX(loop_ctl_mutex);
91
92static int max_part;
93static int part_shift;
94
95static int transfer_xor(struct loop_device *lo, int cmd,
96 struct page *raw_page, unsigned raw_off,
97 struct page *loop_page, unsigned loop_off,
98 int size, sector_t real_block)
99{
100 char *raw_buf = kmap_atomic(raw_page) + raw_off;
101 char *loop_buf = kmap_atomic(loop_page) + loop_off;
102 char *in, *out, *key;
103 int i, keysize;
104
105 if (cmd == READ) {
106 in = raw_buf;
107 out = loop_buf;
108 } else {
109 in = loop_buf;
110 out = raw_buf;
111 }
112
113 key = lo->lo_encrypt_key;
114 keysize = lo->lo_encrypt_key_size;
115 for (i = 0; i < size; i++)
116 *out++ = *in++ ^ key[(i & 511) % keysize];
117
118 kunmap_atomic(loop_buf);
119 kunmap_atomic(raw_buf);
120 cond_resched();
121 return 0;
122}
123
124static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
125{
126 if (unlikely(info->lo_encrypt_key_size <= 0))
127 return -EINVAL;
128 return 0;
129}
130
131static struct loop_func_table none_funcs = {
132 .number = LO_CRYPT_NONE,
133};
134
135static struct loop_func_table xor_funcs = {
136 .number = LO_CRYPT_XOR,
137 .transfer = transfer_xor,
138 .init = xor_init
139};
140
141/* xfer_funcs[0] is special - its release function is never called */
142static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
143 &none_funcs,
144 &xor_funcs
145};
146
147static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
148{
149 loff_t loopsize;
150
151 /* Compute loopsize in bytes */
152 loopsize = i_size_read(file->f_mapping->host);
153 if (offset > 0)
154 loopsize -= offset;
155 /* offset is beyond i_size, weird but possible */
156 if (loopsize < 0)
157 return 0;
158
159 if (sizelimit > 0 && sizelimit < loopsize)
160 loopsize = sizelimit;
161 /*
162 * Unfortunately, if we want to do I/O on the device,
163 * the number of 512-byte sectors has to fit into a sector_t.
164 */
165 return loopsize >> 9;
166}
167
168static loff_t get_loop_size(struct loop_device *lo, struct file *file)
169{
170 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
171}
172
173static void __loop_update_dio(struct loop_device *lo, bool dio)
174{
175 struct file *file = lo->lo_backing_file;
176 struct address_space *mapping = file->f_mapping;
177 struct inode *inode = mapping->host;
178 unsigned short sb_bsize = 0;
179 unsigned dio_align = 0;
180 bool use_dio;
181
182 if (inode->i_sb->s_bdev) {
183 sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
184 dio_align = sb_bsize - 1;
185 }
186
187 /*
188 * We support direct I/O only if lo_offset is aligned with the
189 * logical I/O size of backing device, and the logical block
190 * size of loop is bigger than the backing device's and the loop
191 * needn't transform transfer.
192 *
193 * TODO: the above condition may be loosed in the future, and
194 * direct I/O may be switched runtime at that time because most
195 * of requests in sane applications should be PAGE_SIZE aligned
196 */
197 if (dio) {
198 if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
199 !(lo->lo_offset & dio_align) &&
200 mapping->a_ops->direct_IO &&
201 !lo->transfer)
202 use_dio = true;
203 else
204 use_dio = false;
205 } else {
206 use_dio = false;
207 }
208
209 if (lo->use_dio == use_dio)
210 return;
211
212 /* flush dirty pages before changing direct IO */
213 vfs_fsync(file, 0);
214
215 /*
216 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
217 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
218 * will get updated by ioctl(LOOP_GET_STATUS)
219 */
220 if (lo->lo_state == Lo_bound)
221 blk_mq_freeze_queue(lo->lo_queue);
222 lo->use_dio = use_dio;
223 if (use_dio) {
224 blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
225 lo->lo_flags |= LO_FLAGS_DIRECT_IO;
226 } else {
227 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
228 lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
229 }
230 if (lo->lo_state == Lo_bound)
231 blk_mq_unfreeze_queue(lo->lo_queue);
232}
233
234/**
235 * loop_validate_block_size() - validates the passed in block size
236 * @bsize: size to validate
237 */
238static int
239loop_validate_block_size(unsigned short bsize)
240{
241 if (bsize < 512 || bsize > PAGE_SIZE || !is_power_of_2(bsize))
242 return -EINVAL;
243
244 return 0;
245}
246
247/**
248 * loop_set_size() - sets device size and notifies userspace
249 * @lo: struct loop_device to set the size for
250 * @size: new size of the loop device
251 *
252 * Callers must validate that the size passed into this function fits into
253 * a sector_t, eg using loop_validate_size()
254 */
255static void loop_set_size(struct loop_device *lo, loff_t size)
256{
257 if (!set_capacity_and_notify(lo->lo_disk, size))
258 kobject_uevent(&disk_to_dev(lo->lo_disk)->kobj, KOBJ_CHANGE);
259}
260
261static inline int
262lo_do_transfer(struct loop_device *lo, int cmd,
263 struct page *rpage, unsigned roffs,
264 struct page *lpage, unsigned loffs,
265 int size, sector_t rblock)
266{
267 int ret;
268
269 ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
270 if (likely(!ret))
271 return 0;
272
273 printk_ratelimited(KERN_ERR
274 "loop: Transfer error at byte offset %llu, length %i.\n",
275 (unsigned long long)rblock << 9, size);
276 return ret;
277}
278
279static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
280{
281 struct iov_iter i;
282 ssize_t bw;
283
284 iov_iter_bvec(&i, WRITE, bvec, 1, bvec->bv_len);
285
286 file_start_write(file);
287 bw = vfs_iter_write(file, &i, ppos, 0);
288 file_end_write(file);
289
290 if (likely(bw == bvec->bv_len))
291 return 0;
292
293 printk_ratelimited(KERN_ERR
294 "loop: Write error at byte offset %llu, length %i.\n",
295 (unsigned long long)*ppos, bvec->bv_len);
296 if (bw >= 0)
297 bw = -EIO;
298 return bw;
299}
300
301static int lo_write_simple(struct loop_device *lo, struct request *rq,
302 loff_t pos)
303{
304 struct bio_vec bvec;
305 struct req_iterator iter;
306 int ret = 0;
307
308 rq_for_each_segment(bvec, rq, iter) {
309 ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
310 if (ret < 0)
311 break;
312 cond_resched();
313 }
314
315 return ret;
316}
317
318/*
319 * This is the slow, transforming version that needs to double buffer the
320 * data as it cannot do the transformations in place without having direct
321 * access to the destination pages of the backing file.
322 */
323static int lo_write_transfer(struct loop_device *lo, struct request *rq,
324 loff_t pos)
325{
326 struct bio_vec bvec, b;
327 struct req_iterator iter;
328 struct page *page;
329 int ret = 0;
330
331 page = alloc_page(GFP_NOIO);
332 if (unlikely(!page))
333 return -ENOMEM;
334
335 rq_for_each_segment(bvec, rq, iter) {
336 ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
337 bvec.bv_offset, bvec.bv_len, pos >> 9);
338 if (unlikely(ret))
339 break;
340
341 b.bv_page = page;
342 b.bv_offset = 0;
343 b.bv_len = bvec.bv_len;
344 ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
345 if (ret < 0)
346 break;
347 }
348
349 __free_page(page);
350 return ret;
351}
352
353static int lo_read_simple(struct loop_device *lo, struct request *rq,
354 loff_t pos)
355{
356 struct bio_vec bvec;
357 struct req_iterator iter;
358 struct iov_iter i;
359 ssize_t len;
360
361 rq_for_each_segment(bvec, rq, iter) {
362 iov_iter_bvec(&i, READ, &bvec, 1, bvec.bv_len);
363 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
364 if (len < 0)
365 return len;
366
367 flush_dcache_page(bvec.bv_page);
368
369 if (len != bvec.bv_len) {
370 struct bio *bio;
371
372 __rq_for_each_bio(bio, rq)
373 zero_fill_bio(bio);
374 break;
375 }
376 cond_resched();
377 }
378
379 return 0;
380}
381
382static int lo_read_transfer(struct loop_device *lo, struct request *rq,
383 loff_t pos)
384{
385 struct bio_vec bvec, b;
386 struct req_iterator iter;
387 struct iov_iter i;
388 struct page *page;
389 ssize_t len;
390 int ret = 0;
391
392 page = alloc_page(GFP_NOIO);
393 if (unlikely(!page))
394 return -ENOMEM;
395
396 rq_for_each_segment(bvec, rq, iter) {
397 loff_t offset = pos;
398
399 b.bv_page = page;
400 b.bv_offset = 0;
401 b.bv_len = bvec.bv_len;
402
403 iov_iter_bvec(&i, READ, &b, 1, b.bv_len);
404 len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
405 if (len < 0) {
406 ret = len;
407 goto out_free_page;
408 }
409
410 ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
411 bvec.bv_offset, len, offset >> 9);
412 if (ret)
413 goto out_free_page;
414
415 flush_dcache_page(bvec.bv_page);
416
417 if (len != bvec.bv_len) {
418 struct bio *bio;
419
420 __rq_for_each_bio(bio, rq)
421 zero_fill_bio(bio);
422 break;
423 }
424 }
425
426 ret = 0;
427out_free_page:
428 __free_page(page);
429 return ret;
430}
431
432static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
433 int mode)
434{
435 /*
436 * We use fallocate to manipulate the space mappings used by the image
437 * a.k.a. discard/zerorange. However we do not support this if
438 * encryption is enabled, because it may give an attacker useful
439 * information.
440 */
441 struct file *file = lo->lo_backing_file;
442 struct request_queue *q = lo->lo_queue;
443 int ret;
444
445 mode |= FALLOC_FL_KEEP_SIZE;
446
447 if (!blk_queue_discard(q)) {
448 ret = -EOPNOTSUPP;
449 goto out;
450 }
451
452 ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
453 if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
454 ret = -EIO;
455 out:
456 return ret;
457}
458
459static int lo_req_flush(struct loop_device *lo, struct request *rq)
460{
461 struct file *file = lo->lo_backing_file;
462 int ret = vfs_fsync(file, 0);
463 if (unlikely(ret && ret != -EINVAL))
464 ret = -EIO;
465
466 return ret;
467}
468
469static void lo_complete_rq(struct request *rq)
470{
471 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
472 blk_status_t ret = BLK_STS_OK;
473
474 if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
475 req_op(rq) != REQ_OP_READ) {
476 if (cmd->ret < 0)
477 ret = errno_to_blk_status(cmd->ret);
478 goto end_io;
479 }
480
481 /*
482 * Short READ - if we got some data, advance our request and
483 * retry it. If we got no data, end the rest with EIO.
484 */
485 if (cmd->ret) {
486 blk_update_request(rq, BLK_STS_OK, cmd->ret);
487 cmd->ret = 0;
488 blk_mq_requeue_request(rq, true);
489 } else {
490 if (cmd->use_aio) {
491 struct bio *bio = rq->bio;
492
493 while (bio) {
494 zero_fill_bio(bio);
495 bio = bio->bi_next;
496 }
497 }
498 ret = BLK_STS_IOERR;
499end_io:
500 blk_mq_end_request(rq, ret);
501 }
502}
503
504static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
505{
506 struct request *rq = blk_mq_rq_from_pdu(cmd);
507
508 if (!atomic_dec_and_test(&cmd->ref))
509 return;
510 kfree(cmd->bvec);
511 cmd->bvec = NULL;
512 if (likely(!blk_should_fake_timeout(rq->q)))
513 blk_mq_complete_request(rq);
514}
515
516static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
517{
518 struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
519
520 cmd->ret = ret;
521 lo_rw_aio_do_completion(cmd);
522}
523
524static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
525 loff_t pos, bool rw)
526{
527 struct iov_iter iter;
528 struct req_iterator rq_iter;
529 struct bio_vec *bvec;
530 struct request *rq = blk_mq_rq_from_pdu(cmd);
531 struct bio *bio = rq->bio;
532 struct file *file = lo->lo_backing_file;
533 struct bio_vec tmp;
534 unsigned int offset;
535 int nr_bvec = 0;
536 int ret;
537
538 rq_for_each_bvec(tmp, rq, rq_iter)
539 nr_bvec++;
540
541 if (rq->bio != rq->biotail) {
542
543 bvec = kmalloc_array(nr_bvec, sizeof(struct bio_vec),
544 GFP_NOIO);
545 if (!bvec)
546 return -EIO;
547 cmd->bvec = bvec;
548
549 /*
550 * The bios of the request may be started from the middle of
551 * the 'bvec' because of bio splitting, so we can't directly
552 * copy bio->bi_iov_vec to new bvec. The rq_for_each_bvec
553 * API will take care of all details for us.
554 */
555 rq_for_each_bvec(tmp, rq, rq_iter) {
556 *bvec = tmp;
557 bvec++;
558 }
559 bvec = cmd->bvec;
560 offset = 0;
561 } else {
562 /*
563 * Same here, this bio may be started from the middle of the
564 * 'bvec' because of bio splitting, so offset from the bvec
565 * must be passed to iov iterator
566 */
567 offset = bio->bi_iter.bi_bvec_done;
568 bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
569 }
570 atomic_set(&cmd->ref, 2);
571
572 iov_iter_bvec(&iter, rw, bvec, nr_bvec, blk_rq_bytes(rq));
573 iter.iov_offset = offset;
574
575 cmd->iocb.ki_pos = pos;
576 cmd->iocb.ki_filp = file;
577 cmd->iocb.ki_complete = lo_rw_aio_complete;
578 cmd->iocb.ki_flags = IOCB_DIRECT;
579 cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
580
581 if (rw == WRITE)
582 ret = call_write_iter(file, &cmd->iocb, &iter);
583 else
584 ret = call_read_iter(file, &cmd->iocb, &iter);
585
586 lo_rw_aio_do_completion(cmd);
587
588 if (ret != -EIOCBQUEUED)
589 cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
590 return 0;
591}
592
593static int do_req_filebacked(struct loop_device *lo, struct request *rq)
594{
595 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
596 loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
597
598 /*
599 * lo_write_simple and lo_read_simple should have been covered
600 * by io submit style function like lo_rw_aio(), one blocker
601 * is that lo_read_simple() need to call flush_dcache_page after
602 * the page is written from kernel, and it isn't easy to handle
603 * this in io submit style function which submits all segments
604 * of the req at one time. And direct read IO doesn't need to
605 * run flush_dcache_page().
606 */
607 switch (req_op(rq)) {
608 case REQ_OP_FLUSH:
609 return lo_req_flush(lo, rq);
610 case REQ_OP_WRITE_ZEROES:
611 /*
612 * If the caller doesn't want deallocation, call zeroout to
613 * write zeroes the range. Otherwise, punch them out.
614 */
615 return lo_fallocate(lo, rq, pos,
616 (rq->cmd_flags & REQ_NOUNMAP) ?
617 FALLOC_FL_ZERO_RANGE :
618 FALLOC_FL_PUNCH_HOLE);
619 case REQ_OP_DISCARD:
620 return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
621 case REQ_OP_WRITE:
622 if (lo->transfer)
623 return lo_write_transfer(lo, rq, pos);
624 else if (cmd->use_aio)
625 return lo_rw_aio(lo, cmd, pos, WRITE);
626 else
627 return lo_write_simple(lo, rq, pos);
628 case REQ_OP_READ:
629 if (lo->transfer)
630 return lo_read_transfer(lo, rq, pos);
631 else if (cmd->use_aio)
632 return lo_rw_aio(lo, cmd, pos, READ);
633 else
634 return lo_read_simple(lo, rq, pos);
635 default:
636 WARN_ON_ONCE(1);
637 return -EIO;
638 }
639}
640
641static inline void loop_update_dio(struct loop_device *lo)
642{
643 __loop_update_dio(lo, (lo->lo_backing_file->f_flags & O_DIRECT) |
644 lo->use_dio);
645}
646
647static void loop_reread_partitions(struct loop_device *lo)
648{
649 int rc;
650
651 mutex_lock(&lo->lo_disk->open_mutex);
652 rc = bdev_disk_changed(lo->lo_disk, false);
653 mutex_unlock(&lo->lo_disk->open_mutex);
654 if (rc)
655 pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
656 __func__, lo->lo_number, lo->lo_file_name, rc);
657}
658
659static inline int is_loop_device(struct file *file)
660{
661 struct inode *i = file->f_mapping->host;
662
663 return i && S_ISBLK(i->i_mode) && imajor(i) == LOOP_MAJOR;
664}
665
666static int loop_validate_file(struct file *file, struct block_device *bdev)
667{
668 struct inode *inode = file->f_mapping->host;
669 struct file *f = file;
670
671 /* Avoid recursion */
672 while (is_loop_device(f)) {
673 struct loop_device *l;
674
675 if (f->f_mapping->host->i_rdev == bdev->bd_dev)
676 return -EBADF;
677
678 l = I_BDEV(f->f_mapping->host)->bd_disk->private_data;
679 if (l->lo_state != Lo_bound) {
680 return -EINVAL;
681 }
682 f = l->lo_backing_file;
683 }
684 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
685 return -EINVAL;
686 return 0;
687}
688
689/*
690 * loop_change_fd switched the backing store of a loopback device to
691 * a new file. This is useful for operating system installers to free up
692 * the original file and in High Availability environments to switch to
693 * an alternative location for the content in case of server meltdown.
694 * This can only work if the loop device is used read-only, and if the
695 * new backing store is the same size and type as the old backing store.
696 */
697static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
698 unsigned int arg)
699{
700 struct file *file = NULL, *old_file;
701 int error;
702 bool partscan;
703
704 error = mutex_lock_killable(&lo->lo_mutex);
705 if (error)
706 return error;
707 error = -ENXIO;
708 if (lo->lo_state != Lo_bound)
709 goto out_err;
710
711 /* the loop device has to be read-only */
712 error = -EINVAL;
713 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
714 goto out_err;
715
716 error = -EBADF;
717 file = fget(arg);
718 if (!file)
719 goto out_err;
720
721 error = loop_validate_file(file, bdev);
722 if (error)
723 goto out_err;
724
725 old_file = lo->lo_backing_file;
726
727 error = -EINVAL;
728
729 /* size of the new backing store needs to be the same */
730 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
731 goto out_err;
732
733 /* and ... switch */
734 blk_mq_freeze_queue(lo->lo_queue);
735 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
736 lo->lo_backing_file = file;
737 lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
738 mapping_set_gfp_mask(file->f_mapping,
739 lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
740 loop_update_dio(lo);
741 blk_mq_unfreeze_queue(lo->lo_queue);
742 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
743 mutex_unlock(&lo->lo_mutex);
744 /*
745 * We must drop file reference outside of lo_mutex as dropping
746 * the file ref can take open_mutex which creates circular locking
747 * dependency.
748 */
749 fput(old_file);
750 if (partscan)
751 loop_reread_partitions(lo);
752 return 0;
753
754out_err:
755 mutex_unlock(&lo->lo_mutex);
756 if (file)
757 fput(file);
758 return error;
759}
760
761/* loop sysfs attributes */
762
763static ssize_t loop_attr_show(struct device *dev, char *page,
764 ssize_t (*callback)(struct loop_device *, char *))
765{
766 struct gendisk *disk = dev_to_disk(dev);
767 struct loop_device *lo = disk->private_data;
768
769 return callback(lo, page);
770}
771
772#define LOOP_ATTR_RO(_name) \
773static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
774static ssize_t loop_attr_do_show_##_name(struct device *d, \
775 struct device_attribute *attr, char *b) \
776{ \
777 return loop_attr_show(d, b, loop_attr_##_name##_show); \
778} \
779static struct device_attribute loop_attr_##_name = \
780 __ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
781
782static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
783{
784 ssize_t ret;
785 char *p = NULL;
786
787 spin_lock_irq(&lo->lo_lock);
788 if (lo->lo_backing_file)
789 p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
790 spin_unlock_irq(&lo->lo_lock);
791
792 if (IS_ERR_OR_NULL(p))
793 ret = PTR_ERR(p);
794 else {
795 ret = strlen(p);
796 memmove(buf, p, ret);
797 buf[ret++] = '\n';
798 buf[ret] = 0;
799 }
800
801 return ret;
802}
803
804static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
805{
806 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
807}
808
809static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
810{
811 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
812}
813
814static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
815{
816 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
817
818 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
819}
820
821static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
822{
823 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
824
825 return sprintf(buf, "%s\n", partscan ? "1" : "0");
826}
827
828static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
829{
830 int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
831
832 return sprintf(buf, "%s\n", dio ? "1" : "0");
833}
834
835LOOP_ATTR_RO(backing_file);
836LOOP_ATTR_RO(offset);
837LOOP_ATTR_RO(sizelimit);
838LOOP_ATTR_RO(autoclear);
839LOOP_ATTR_RO(partscan);
840LOOP_ATTR_RO(dio);
841
842static struct attribute *loop_attrs[] = {
843 &loop_attr_backing_file.attr,
844 &loop_attr_offset.attr,
845 &loop_attr_sizelimit.attr,
846 &loop_attr_autoclear.attr,
847 &loop_attr_partscan.attr,
848 &loop_attr_dio.attr,
849 NULL,
850};
851
852static struct attribute_group loop_attribute_group = {
853 .name = "loop",
854 .attrs= loop_attrs,
855};
856
857static void loop_sysfs_init(struct loop_device *lo)
858{
859 lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
860 &loop_attribute_group);
861}
862
863static void loop_sysfs_exit(struct loop_device *lo)
864{
865 if (lo->sysfs_inited)
866 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
867 &loop_attribute_group);
868}
869
870static void loop_config_discard(struct loop_device *lo)
871{
872 struct file *file = lo->lo_backing_file;
873 struct inode *inode = file->f_mapping->host;
874 struct request_queue *q = lo->lo_queue;
875 u32 granularity, max_discard_sectors;
876
877 /*
878 * If the backing device is a block device, mirror its zeroing
879 * capability. Set the discard sectors to the block device's zeroing
880 * capabilities because loop discards result in blkdev_issue_zeroout(),
881 * not blkdev_issue_discard(). This maintains consistent behavior with
882 * file-backed loop devices: discarded regions read back as zero.
883 */
884 if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
885 struct request_queue *backingq = bdev_get_queue(I_BDEV(inode));
886
887 max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
888 granularity = backingq->limits.discard_granularity ?:
889 queue_physical_block_size(backingq);
890
891 /*
892 * We use punch hole to reclaim the free space used by the
893 * image a.k.a. discard. However we do not support discard if
894 * encryption is enabled, because it may give an attacker
895 * useful information.
896 */
897 } else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
898 max_discard_sectors = 0;
899 granularity = 0;
900
901 } else {
902 max_discard_sectors = UINT_MAX >> 9;
903 granularity = inode->i_sb->s_blocksize;
904 }
905
906 if (max_discard_sectors) {
907 q->limits.discard_granularity = granularity;
908 blk_queue_max_discard_sectors(q, max_discard_sectors);
909 blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
910 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
911 } else {
912 q->limits.discard_granularity = 0;
913 blk_queue_max_discard_sectors(q, 0);
914 blk_queue_max_write_zeroes_sectors(q, 0);
915 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
916 }
917 q->limits.discard_alignment = 0;
918}
919
920struct loop_worker {
921 struct rb_node rb_node;
922 struct work_struct work;
923 struct list_head cmd_list;
924 struct list_head idle_list;
925 struct loop_device *lo;
926 struct cgroup_subsys_state *blkcg_css;
927 unsigned long last_ran_at;
928};
929
930static void loop_workfn(struct work_struct *work);
931static void loop_rootcg_workfn(struct work_struct *work);
932static void loop_free_idle_workers(struct timer_list *timer);
933
934#ifdef CONFIG_BLK_CGROUP
935static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
936{
937 return !css || css == blkcg_root_css;
938}
939#else
940static inline int queue_on_root_worker(struct cgroup_subsys_state *css)
941{
942 return !css;
943}
944#endif
945
946static void loop_queue_work(struct loop_device *lo, struct loop_cmd *cmd)
947{
948 struct rb_node **node = &(lo->worker_tree.rb_node), *parent = NULL;
949 struct loop_worker *cur_worker, *worker = NULL;
950 struct work_struct *work;
951 struct list_head *cmd_list;
952
953 spin_lock_irq(&lo->lo_work_lock);
954
955 if (queue_on_root_worker(cmd->blkcg_css))
956 goto queue_work;
957
958 node = &lo->worker_tree.rb_node;
959
960 while (*node) {
961 parent = *node;
962 cur_worker = container_of(*node, struct loop_worker, rb_node);
963 if (cur_worker->blkcg_css == cmd->blkcg_css) {
964 worker = cur_worker;
965 break;
966 } else if ((long)cur_worker->blkcg_css < (long)cmd->blkcg_css) {
967 node = &(*node)->rb_left;
968 } else {
969 node = &(*node)->rb_right;
970 }
971 }
972 if (worker)
973 goto queue_work;
974
975 worker = kzalloc(sizeof(struct loop_worker), GFP_NOWAIT | __GFP_NOWARN);
976 /*
977 * In the event we cannot allocate a worker, just queue on the
978 * rootcg worker and issue the I/O as the rootcg
979 */
980 if (!worker) {
981 cmd->blkcg_css = NULL;
982 if (cmd->memcg_css)
983 css_put(cmd->memcg_css);
984 cmd->memcg_css = NULL;
985 goto queue_work;
986 }
987
988 worker->blkcg_css = cmd->blkcg_css;
989 css_get(worker->blkcg_css);
990 INIT_WORK(&worker->work, loop_workfn);
991 INIT_LIST_HEAD(&worker->cmd_list);
992 INIT_LIST_HEAD(&worker->idle_list);
993 worker->lo = lo;
994 rb_link_node(&worker->rb_node, parent, node);
995 rb_insert_color(&worker->rb_node, &lo->worker_tree);
996queue_work:
997 if (worker) {
998 /*
999 * We need to remove from the idle list here while
1000 * holding the lock so that the idle timer doesn't
1001 * free the worker
1002 */
1003 if (!list_empty(&worker->idle_list))
1004 list_del_init(&worker->idle_list);
1005 work = &worker->work;
1006 cmd_list = &worker->cmd_list;
1007 } else {
1008 work = &lo->rootcg_work;
1009 cmd_list = &lo->rootcg_cmd_list;
1010 }
1011 list_add_tail(&cmd->list_entry, cmd_list);
1012 queue_work(lo->workqueue, work);
1013 spin_unlock_irq(&lo->lo_work_lock);
1014}
1015
1016static void loop_update_rotational(struct loop_device *lo)
1017{
1018 struct file *file = lo->lo_backing_file;
1019 struct inode *file_inode = file->f_mapping->host;
1020 struct block_device *file_bdev = file_inode->i_sb->s_bdev;
1021 struct request_queue *q = lo->lo_queue;
1022 bool nonrot = true;
1023
1024 /* not all filesystems (e.g. tmpfs) have a sb->s_bdev */
1025 if (file_bdev)
1026 nonrot = blk_queue_nonrot(bdev_get_queue(file_bdev));
1027
1028 if (nonrot)
1029 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
1030 else
1031 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
1032}
1033
1034static int
1035loop_release_xfer(struct loop_device *lo)
1036{
1037 int err = 0;
1038 struct loop_func_table *xfer = lo->lo_encryption;
1039
1040 if (xfer) {
1041 if (xfer->release)
1042 err = xfer->release(lo);
1043 lo->transfer = NULL;
1044 lo->lo_encryption = NULL;
1045 module_put(xfer->owner);
1046 }
1047 return err;
1048}
1049
1050static int
1051loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1052 const struct loop_info64 *i)
1053{
1054 int err = 0;
1055
1056 if (xfer) {
1057 struct module *owner = xfer->owner;
1058
1059 if (!try_module_get(owner))
1060 return -EINVAL;
1061 if (xfer->init)
1062 err = xfer->init(lo, i);
1063 if (err)
1064 module_put(owner);
1065 else
1066 lo->lo_encryption = xfer;
1067 }
1068 return err;
1069}
1070
1071/**
1072 * loop_set_status_from_info - configure device from loop_info
1073 * @lo: struct loop_device to configure
1074 * @info: struct loop_info64 to configure the device with
1075 *
1076 * Configures the loop device parameters according to the passed
1077 * in loop_info64 configuration.
1078 */
1079static int
1080loop_set_status_from_info(struct loop_device *lo,
1081 const struct loop_info64 *info)
1082{
1083 int err;
1084 struct loop_func_table *xfer;
1085 kuid_t uid = current_uid();
1086
1087 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1088 return -EINVAL;
1089
1090 err = loop_release_xfer(lo);
1091 if (err)
1092 return err;
1093
1094 if (info->lo_encrypt_type) {
1095 unsigned int type = info->lo_encrypt_type;
1096
1097 if (type >= MAX_LO_CRYPT)
1098 return -EINVAL;
1099 xfer = xfer_funcs[type];
1100 if (xfer == NULL)
1101 return -EINVAL;
1102 } else
1103 xfer = NULL;
1104
1105 err = loop_init_xfer(lo, xfer, info);
1106 if (err)
1107 return err;
1108
1109 lo->lo_offset = info->lo_offset;
1110 lo->lo_sizelimit = info->lo_sizelimit;
1111 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1112 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1113 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1114 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1115
1116 if (!xfer)
1117 xfer = &none_funcs;
1118 lo->transfer = xfer->transfer;
1119 lo->ioctl = xfer->ioctl;
1120
1121 lo->lo_flags = info->lo_flags;
1122
1123 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1124 lo->lo_init[0] = info->lo_init[0];
1125 lo->lo_init[1] = info->lo_init[1];
1126 if (info->lo_encrypt_key_size) {
1127 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1128 info->lo_encrypt_key_size);
1129 lo->lo_key_owner = uid;
1130 }
1131
1132 return 0;
1133}
1134
1135static int loop_configure(struct loop_device *lo, fmode_t mode,
1136 struct block_device *bdev,
1137 const struct loop_config *config)
1138{
1139 struct file *file;
1140 struct inode *inode;
1141 struct address_space *mapping;
1142 int error;
1143 loff_t size;
1144 bool partscan;
1145 unsigned short bsize;
1146
1147 /* This is safe, since we have a reference from open(). */
1148 __module_get(THIS_MODULE);
1149
1150 error = -EBADF;
1151 file = fget(config->fd);
1152 if (!file)
1153 goto out;
1154
1155 /*
1156 * If we don't hold exclusive handle for the device, upgrade to it
1157 * here to avoid changing device under exclusive owner.
1158 */
1159 if (!(mode & FMODE_EXCL)) {
1160 error = bd_prepare_to_claim(bdev, loop_configure);
1161 if (error)
1162 goto out_putf;
1163 }
1164
1165 error = mutex_lock_killable(&lo->lo_mutex);
1166 if (error)
1167 goto out_bdev;
1168
1169 error = -EBUSY;
1170 if (lo->lo_state != Lo_unbound)
1171 goto out_unlock;
1172
1173 error = loop_validate_file(file, bdev);
1174 if (error)
1175 goto out_unlock;
1176
1177 mapping = file->f_mapping;
1178 inode = mapping->host;
1179
1180 if ((config->info.lo_flags & ~LOOP_CONFIGURE_SETTABLE_FLAGS) != 0) {
1181 error = -EINVAL;
1182 goto out_unlock;
1183 }
1184
1185 if (config->block_size) {
1186 error = loop_validate_block_size(config->block_size);
1187 if (error)
1188 goto out_unlock;
1189 }
1190
1191 error = loop_set_status_from_info(lo, &config->info);
1192 if (error)
1193 goto out_unlock;
1194
1195 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
1196 !file->f_op->write_iter)
1197 lo->lo_flags |= LO_FLAGS_READ_ONLY;
1198
1199 lo->workqueue = alloc_workqueue("loop%d",
1200 WQ_UNBOUND | WQ_FREEZABLE,
1201 0,
1202 lo->lo_number);
1203 if (!lo->workqueue) {
1204 error = -ENOMEM;
1205 goto out_unlock;
1206 }
1207
1208 set_disk_ro(lo->lo_disk, (lo->lo_flags & LO_FLAGS_READ_ONLY) != 0);
1209
1210 INIT_WORK(&lo->rootcg_work, loop_rootcg_workfn);
1211 INIT_LIST_HEAD(&lo->rootcg_cmd_list);
1212 INIT_LIST_HEAD(&lo->idle_worker_list);
1213 lo->worker_tree = RB_ROOT;
1214 timer_setup(&lo->timer, loop_free_idle_workers,
1215 TIMER_DEFERRABLE);
1216 lo->use_dio = lo->lo_flags & LO_FLAGS_DIRECT_IO;
1217 lo->lo_device = bdev;
1218 lo->lo_backing_file = file;
1219 lo->old_gfp_mask = mapping_gfp_mask(mapping);
1220 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
1221
1222 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
1223 blk_queue_write_cache(lo->lo_queue, true, false);
1224
1225 if (config->block_size)
1226 bsize = config->block_size;
1227 else if ((lo->lo_backing_file->f_flags & O_DIRECT) && inode->i_sb->s_bdev)
1228 /* In case of direct I/O, match underlying block size */
1229 bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
1230 else
1231 bsize = 512;
1232
1233 blk_queue_logical_block_size(lo->lo_queue, bsize);
1234 blk_queue_physical_block_size(lo->lo_queue, bsize);
1235 blk_queue_io_min(lo->lo_queue, bsize);
1236
1237 loop_config_discard(lo);
1238 loop_update_rotational(lo);
1239 loop_update_dio(lo);
1240 loop_sysfs_init(lo);
1241
1242 size = get_loop_size(lo, file);
1243 loop_set_size(lo, size);
1244
1245 lo->lo_state = Lo_bound;
1246 if (part_shift)
1247 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1248 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1249 if (partscan)
1250 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1251
1252 /* Grab the block_device to prevent its destruction after we
1253 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1254 */
1255 bdgrab(bdev);
1256 mutex_unlock(&lo->lo_mutex);
1257 if (partscan)
1258 loop_reread_partitions(lo);
1259 if (!(mode & FMODE_EXCL))
1260 bd_abort_claiming(bdev, loop_configure);
1261 return 0;
1262
1263out_unlock:
1264 mutex_unlock(&lo->lo_mutex);
1265out_bdev:
1266 if (!(mode & FMODE_EXCL))
1267 bd_abort_claiming(bdev, loop_configure);
1268out_putf:
1269 fput(file);
1270out:
1271 /* This is safe: open() is still holding a reference. */
1272 module_put(THIS_MODULE);
1273 return error;
1274}
1275
1276static int __loop_clr_fd(struct loop_device *lo, bool release)
1277{
1278 struct file *filp = NULL;
1279 gfp_t gfp = lo->old_gfp_mask;
1280 struct block_device *bdev = lo->lo_device;
1281 int err = 0;
1282 bool partscan = false;
1283 int lo_number;
1284 struct loop_worker *pos, *worker;
1285
1286 mutex_lock(&lo->lo_mutex);
1287 if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1288 err = -ENXIO;
1289 goto out_unlock;
1290 }
1291
1292 filp = lo->lo_backing_file;
1293 if (filp == NULL) {
1294 err = -EINVAL;
1295 goto out_unlock;
1296 }
1297
1298 if (test_bit(QUEUE_FLAG_WC, &lo->lo_queue->queue_flags))
1299 blk_queue_write_cache(lo->lo_queue, false, false);
1300
1301 /* freeze request queue during the transition */
1302 blk_mq_freeze_queue(lo->lo_queue);
1303
1304 destroy_workqueue(lo->workqueue);
1305 spin_lock_irq(&lo->lo_work_lock);
1306 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
1307 idle_list) {
1308 list_del(&worker->idle_list);
1309 rb_erase(&worker->rb_node, &lo->worker_tree);
1310 css_put(worker->blkcg_css);
1311 kfree(worker);
1312 }
1313 spin_unlock_irq(&lo->lo_work_lock);
1314 del_timer_sync(&lo->timer);
1315
1316 spin_lock_irq(&lo->lo_lock);
1317 lo->lo_backing_file = NULL;
1318 spin_unlock_irq(&lo->lo_lock);
1319
1320 loop_release_xfer(lo);
1321 lo->transfer = NULL;
1322 lo->ioctl = NULL;
1323 lo->lo_device = NULL;
1324 lo->lo_encryption = NULL;
1325 lo->lo_offset = 0;
1326 lo->lo_sizelimit = 0;
1327 lo->lo_encrypt_key_size = 0;
1328 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1329 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1330 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1331 blk_queue_logical_block_size(lo->lo_queue, 512);
1332 blk_queue_physical_block_size(lo->lo_queue, 512);
1333 blk_queue_io_min(lo->lo_queue, 512);
1334 if (bdev) {
1335 bdput(bdev);
1336 invalidate_bdev(bdev);
1337 bdev->bd_inode->i_mapping->wb_err = 0;
1338 }
1339 set_capacity(lo->lo_disk, 0);
1340 loop_sysfs_exit(lo);
1341 if (bdev) {
1342 /* let user-space know about this change */
1343 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1344 }
1345 mapping_set_gfp_mask(filp->f_mapping, gfp);
1346 /* This is safe: open() is still holding a reference. */
1347 module_put(THIS_MODULE);
1348 blk_mq_unfreeze_queue(lo->lo_queue);
1349
1350 partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1351 lo_number = lo->lo_number;
1352out_unlock:
1353 mutex_unlock(&lo->lo_mutex);
1354 if (partscan) {
1355 /*
1356 * open_mutex has been held already in release path, so don't
1357 * acquire it if this function is called in such case.
1358 *
1359 * If the reread partition isn't from release path, lo_refcnt
1360 * must be at least one and it can only become zero when the
1361 * current holder is released.
1362 */
1363 if (!release)
1364 mutex_lock(&lo->lo_disk->open_mutex);
1365 err = bdev_disk_changed(lo->lo_disk, false);
1366 if (!release)
1367 mutex_unlock(&lo->lo_disk->open_mutex);
1368 if (err)
1369 pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1370 __func__, lo_number, err);
1371 /* Device is gone, no point in returning error */
1372 err = 0;
1373 }
1374
1375 /*
1376 * lo->lo_state is set to Lo_unbound here after above partscan has
1377 * finished.
1378 *
1379 * There cannot be anybody else entering __loop_clr_fd() as
1380 * lo->lo_backing_file is already cleared and Lo_rundown state
1381 * protects us from all the other places trying to change the 'lo'
1382 * device.
1383 */
1384 mutex_lock(&lo->lo_mutex);
1385 lo->lo_flags = 0;
1386 if (!part_shift)
1387 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1388 lo->lo_state = Lo_unbound;
1389 mutex_unlock(&lo->lo_mutex);
1390
1391 /*
1392 * Need not hold lo_mutex to fput backing file. Calling fput holding
1393 * lo_mutex triggers a circular lock dependency possibility warning as
1394 * fput can take open_mutex which is usually taken before lo_mutex.
1395 */
1396 if (filp)
1397 fput(filp);
1398 return err;
1399}
1400
1401static int loop_clr_fd(struct loop_device *lo)
1402{
1403 int err;
1404
1405 err = mutex_lock_killable(&lo->lo_mutex);
1406 if (err)
1407 return err;
1408 if (lo->lo_state != Lo_bound) {
1409 mutex_unlock(&lo->lo_mutex);
1410 return -ENXIO;
1411 }
1412 /*
1413 * If we've explicitly asked to tear down the loop device,
1414 * and it has an elevated reference count, set it for auto-teardown when
1415 * the last reference goes away. This stops $!~#$@ udev from
1416 * preventing teardown because it decided that it needs to run blkid on
1417 * the loopback device whenever they appear. xfstests is notorious for
1418 * failing tests because blkid via udev races with a losetup
1419 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1420 * command to fail with EBUSY.
1421 */
1422 if (atomic_read(&lo->lo_refcnt) > 1) {
1423 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1424 mutex_unlock(&lo->lo_mutex);
1425 return 0;
1426 }
1427 lo->lo_state = Lo_rundown;
1428 mutex_unlock(&lo->lo_mutex);
1429
1430 return __loop_clr_fd(lo, false);
1431}
1432
1433static int
1434loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1435{
1436 int err;
1437 kuid_t uid = current_uid();
1438 int prev_lo_flags;
1439 bool partscan = false;
1440 bool size_changed = false;
1441
1442 err = mutex_lock_killable(&lo->lo_mutex);
1443 if (err)
1444 return err;
1445 if (lo->lo_encrypt_key_size &&
1446 !uid_eq(lo->lo_key_owner, uid) &&
1447 !capable(CAP_SYS_ADMIN)) {
1448 err = -EPERM;
1449 goto out_unlock;
1450 }
1451 if (lo->lo_state != Lo_bound) {
1452 err = -ENXIO;
1453 goto out_unlock;
1454 }
1455
1456 if (lo->lo_offset != info->lo_offset ||
1457 lo->lo_sizelimit != info->lo_sizelimit) {
1458 size_changed = true;
1459 sync_blockdev(lo->lo_device);
1460 invalidate_bdev(lo->lo_device);
1461 }
1462
1463 /* I/O need to be drained during transfer transition */
1464 blk_mq_freeze_queue(lo->lo_queue);
1465
1466 if (size_changed && lo->lo_device->bd_inode->i_mapping->nrpages) {
1467 /* If any pages were dirtied after invalidate_bdev(), try again */
1468 err = -EAGAIN;
1469 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1470 __func__, lo->lo_number, lo->lo_file_name,
1471 lo->lo_device->bd_inode->i_mapping->nrpages);
1472 goto out_unfreeze;
1473 }
1474
1475 prev_lo_flags = lo->lo_flags;
1476
1477 err = loop_set_status_from_info(lo, info);
1478 if (err)
1479 goto out_unfreeze;
1480
1481 /* Mask out flags that can't be set using LOOP_SET_STATUS. */
1482 lo->lo_flags &= LOOP_SET_STATUS_SETTABLE_FLAGS;
1483 /* For those flags, use the previous values instead */
1484 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_SETTABLE_FLAGS;
1485 /* For flags that can't be cleared, use previous values too */
1486 lo->lo_flags |= prev_lo_flags & ~LOOP_SET_STATUS_CLEARABLE_FLAGS;
1487
1488 if (size_changed) {
1489 loff_t new_size = get_size(lo->lo_offset, lo->lo_sizelimit,
1490 lo->lo_backing_file);
1491 loop_set_size(lo, new_size);
1492 }
1493
1494 loop_config_discard(lo);
1495
1496 /* update dio if lo_offset or transfer is changed */
1497 __loop_update_dio(lo, lo->use_dio);
1498
1499out_unfreeze:
1500 blk_mq_unfreeze_queue(lo->lo_queue);
1501
1502 if (!err && (lo->lo_flags & LO_FLAGS_PARTSCAN) &&
1503 !(prev_lo_flags & LO_FLAGS_PARTSCAN)) {
1504 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1505 partscan = true;
1506 }
1507out_unlock:
1508 mutex_unlock(&lo->lo_mutex);
1509 if (partscan)
1510 loop_reread_partitions(lo);
1511
1512 return err;
1513}
1514
1515static int
1516loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1517{
1518 struct path path;
1519 struct kstat stat;
1520 int ret;
1521
1522 ret = mutex_lock_killable(&lo->lo_mutex);
1523 if (ret)
1524 return ret;
1525 if (lo->lo_state != Lo_bound) {
1526 mutex_unlock(&lo->lo_mutex);
1527 return -ENXIO;
1528 }
1529
1530 memset(info, 0, sizeof(*info));
1531 info->lo_number = lo->lo_number;
1532 info->lo_offset = lo->lo_offset;
1533 info->lo_sizelimit = lo->lo_sizelimit;
1534 info->lo_flags = lo->lo_flags;
1535 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1536 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1537 info->lo_encrypt_type =
1538 lo->lo_encryption ? lo->lo_encryption->number : 0;
1539 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1540 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1541 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1542 lo->lo_encrypt_key_size);
1543 }
1544
1545 /* Drop lo_mutex while we call into the filesystem. */
1546 path = lo->lo_backing_file->f_path;
1547 path_get(&path);
1548 mutex_unlock(&lo->lo_mutex);
1549 ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1550 if (!ret) {
1551 info->lo_device = huge_encode_dev(stat.dev);
1552 info->lo_inode = stat.ino;
1553 info->lo_rdevice = huge_encode_dev(stat.rdev);
1554 }
1555 path_put(&path);
1556 return ret;
1557}
1558
1559static void
1560loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1561{
1562 memset(info64, 0, sizeof(*info64));
1563 info64->lo_number = info->lo_number;
1564 info64->lo_device = info->lo_device;
1565 info64->lo_inode = info->lo_inode;
1566 info64->lo_rdevice = info->lo_rdevice;
1567 info64->lo_offset = info->lo_offset;
1568 info64->lo_sizelimit = 0;
1569 info64->lo_encrypt_type = info->lo_encrypt_type;
1570 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1571 info64->lo_flags = info->lo_flags;
1572 info64->lo_init[0] = info->lo_init[0];
1573 info64->lo_init[1] = info->lo_init[1];
1574 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1575 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1576 else
1577 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1578 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1579}
1580
1581static int
1582loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1583{
1584 memset(info, 0, sizeof(*info));
1585 info->lo_number = info64->lo_number;
1586 info->lo_device = info64->lo_device;
1587 info->lo_inode = info64->lo_inode;
1588 info->lo_rdevice = info64->lo_rdevice;
1589 info->lo_offset = info64->lo_offset;
1590 info->lo_encrypt_type = info64->lo_encrypt_type;
1591 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1592 info->lo_flags = info64->lo_flags;
1593 info->lo_init[0] = info64->lo_init[0];
1594 info->lo_init[1] = info64->lo_init[1];
1595 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1596 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1597 else
1598 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1599 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1600
1601 /* error in case values were truncated */
1602 if (info->lo_device != info64->lo_device ||
1603 info->lo_rdevice != info64->lo_rdevice ||
1604 info->lo_inode != info64->lo_inode ||
1605 info->lo_offset != info64->lo_offset)
1606 return -EOVERFLOW;
1607
1608 return 0;
1609}
1610
1611static int
1612loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1613{
1614 struct loop_info info;
1615 struct loop_info64 info64;
1616
1617 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1618 return -EFAULT;
1619 loop_info64_from_old(&info, &info64);
1620 return loop_set_status(lo, &info64);
1621}
1622
1623static int
1624loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1625{
1626 struct loop_info64 info64;
1627
1628 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1629 return -EFAULT;
1630 return loop_set_status(lo, &info64);
1631}
1632
1633static int
1634loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1635 struct loop_info info;
1636 struct loop_info64 info64;
1637 int err;
1638
1639 if (!arg)
1640 return -EINVAL;
1641 err = loop_get_status(lo, &info64);
1642 if (!err)
1643 err = loop_info64_to_old(&info64, &info);
1644 if (!err && copy_to_user(arg, &info, sizeof(info)))
1645 err = -EFAULT;
1646
1647 return err;
1648}
1649
1650static int
1651loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1652 struct loop_info64 info64;
1653 int err;
1654
1655 if (!arg)
1656 return -EINVAL;
1657 err = loop_get_status(lo, &info64);
1658 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1659 err = -EFAULT;
1660
1661 return err;
1662}
1663
1664static int loop_set_capacity(struct loop_device *lo)
1665{
1666 loff_t size;
1667
1668 if (unlikely(lo->lo_state != Lo_bound))
1669 return -ENXIO;
1670
1671 size = get_loop_size(lo, lo->lo_backing_file);
1672 loop_set_size(lo, size);
1673
1674 return 0;
1675}
1676
1677static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1678{
1679 int error = -ENXIO;
1680 if (lo->lo_state != Lo_bound)
1681 goto out;
1682
1683 __loop_update_dio(lo, !!arg);
1684 if (lo->use_dio == !!arg)
1685 return 0;
1686 error = -EINVAL;
1687 out:
1688 return error;
1689}
1690
1691static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1692{
1693 int err = 0;
1694
1695 if (lo->lo_state != Lo_bound)
1696 return -ENXIO;
1697
1698 err = loop_validate_block_size(arg);
1699 if (err)
1700 return err;
1701
1702 if (lo->lo_queue->limits.logical_block_size == arg)
1703 return 0;
1704
1705 sync_blockdev(lo->lo_device);
1706 invalidate_bdev(lo->lo_device);
1707
1708 blk_mq_freeze_queue(lo->lo_queue);
1709
1710 /* invalidate_bdev should have truncated all the pages */
1711 if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1712 err = -EAGAIN;
1713 pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1714 __func__, lo->lo_number, lo->lo_file_name,
1715 lo->lo_device->bd_inode->i_mapping->nrpages);
1716 goto out_unfreeze;
1717 }
1718
1719 blk_queue_logical_block_size(lo->lo_queue, arg);
1720 blk_queue_physical_block_size(lo->lo_queue, arg);
1721 blk_queue_io_min(lo->lo_queue, arg);
1722 loop_update_dio(lo);
1723out_unfreeze:
1724 blk_mq_unfreeze_queue(lo->lo_queue);
1725
1726 return err;
1727}
1728
1729static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1730 unsigned long arg)
1731{
1732 int err;
1733
1734 err = mutex_lock_killable(&lo->lo_mutex);
1735 if (err)
1736 return err;
1737 switch (cmd) {
1738 case LOOP_SET_CAPACITY:
1739 err = loop_set_capacity(lo);
1740 break;
1741 case LOOP_SET_DIRECT_IO:
1742 err = loop_set_dio(lo, arg);
1743 break;
1744 case LOOP_SET_BLOCK_SIZE:
1745 err = loop_set_block_size(lo, arg);
1746 break;
1747 default:
1748 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1749 }
1750 mutex_unlock(&lo->lo_mutex);
1751 return err;
1752}
1753
1754static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1755 unsigned int cmd, unsigned long arg)
1756{
1757 struct loop_device *lo = bdev->bd_disk->private_data;
1758 void __user *argp = (void __user *) arg;
1759 int err;
1760
1761 switch (cmd) {
1762 case LOOP_SET_FD: {
1763 /*
1764 * Legacy case - pass in a zeroed out struct loop_config with
1765 * only the file descriptor set , which corresponds with the
1766 * default parameters we'd have used otherwise.
1767 */
1768 struct loop_config config;
1769
1770 memset(&config, 0, sizeof(config));
1771 config.fd = arg;
1772
1773 return loop_configure(lo, mode, bdev, &config);
1774 }
1775 case LOOP_CONFIGURE: {
1776 struct loop_config config;
1777
1778 if (copy_from_user(&config, argp, sizeof(config)))
1779 return -EFAULT;
1780
1781 return loop_configure(lo, mode, bdev, &config);
1782 }
1783 case LOOP_CHANGE_FD:
1784 return loop_change_fd(lo, bdev, arg);
1785 case LOOP_CLR_FD:
1786 return loop_clr_fd(lo);
1787 case LOOP_SET_STATUS:
1788 err = -EPERM;
1789 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1790 err = loop_set_status_old(lo, argp);
1791 }
1792 break;
1793 case LOOP_GET_STATUS:
1794 return loop_get_status_old(lo, argp);
1795 case LOOP_SET_STATUS64:
1796 err = -EPERM;
1797 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1798 err = loop_set_status64(lo, argp);
1799 }
1800 break;
1801 case LOOP_GET_STATUS64:
1802 return loop_get_status64(lo, argp);
1803 case LOOP_SET_CAPACITY:
1804 case LOOP_SET_DIRECT_IO:
1805 case LOOP_SET_BLOCK_SIZE:
1806 if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1807 return -EPERM;
1808 fallthrough;
1809 default:
1810 err = lo_simple_ioctl(lo, cmd, arg);
1811 break;
1812 }
1813
1814 return err;
1815}
1816
1817#ifdef CONFIG_COMPAT
1818struct compat_loop_info {
1819 compat_int_t lo_number; /* ioctl r/o */
1820 compat_dev_t lo_device; /* ioctl r/o */
1821 compat_ulong_t lo_inode; /* ioctl r/o */
1822 compat_dev_t lo_rdevice; /* ioctl r/o */
1823 compat_int_t lo_offset;
1824 compat_int_t lo_encrypt_type;
1825 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1826 compat_int_t lo_flags; /* ioctl r/o */
1827 char lo_name[LO_NAME_SIZE];
1828 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1829 compat_ulong_t lo_init[2];
1830 char reserved[4];
1831};
1832
1833/*
1834 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1835 * - noinlined to reduce stack space usage in main part of driver
1836 */
1837static noinline int
1838loop_info64_from_compat(const struct compat_loop_info __user *arg,
1839 struct loop_info64 *info64)
1840{
1841 struct compat_loop_info info;
1842
1843 if (copy_from_user(&info, arg, sizeof(info)))
1844 return -EFAULT;
1845
1846 memset(info64, 0, sizeof(*info64));
1847 info64->lo_number = info.lo_number;
1848 info64->lo_device = info.lo_device;
1849 info64->lo_inode = info.lo_inode;
1850 info64->lo_rdevice = info.lo_rdevice;
1851 info64->lo_offset = info.lo_offset;
1852 info64->lo_sizelimit = 0;
1853 info64->lo_encrypt_type = info.lo_encrypt_type;
1854 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1855 info64->lo_flags = info.lo_flags;
1856 info64->lo_init[0] = info.lo_init[0];
1857 info64->lo_init[1] = info.lo_init[1];
1858 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1859 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1860 else
1861 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1862 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1863 return 0;
1864}
1865
1866/*
1867 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1868 * - noinlined to reduce stack space usage in main part of driver
1869 */
1870static noinline int
1871loop_info64_to_compat(const struct loop_info64 *info64,
1872 struct compat_loop_info __user *arg)
1873{
1874 struct compat_loop_info info;
1875
1876 memset(&info, 0, sizeof(info));
1877 info.lo_number = info64->lo_number;
1878 info.lo_device = info64->lo_device;
1879 info.lo_inode = info64->lo_inode;
1880 info.lo_rdevice = info64->lo_rdevice;
1881 info.lo_offset = info64->lo_offset;
1882 info.lo_encrypt_type = info64->lo_encrypt_type;
1883 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1884 info.lo_flags = info64->lo_flags;
1885 info.lo_init[0] = info64->lo_init[0];
1886 info.lo_init[1] = info64->lo_init[1];
1887 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1888 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1889 else
1890 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1891 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1892
1893 /* error in case values were truncated */
1894 if (info.lo_device != info64->lo_device ||
1895 info.lo_rdevice != info64->lo_rdevice ||
1896 info.lo_inode != info64->lo_inode ||
1897 info.lo_offset != info64->lo_offset ||
1898 info.lo_init[0] != info64->lo_init[0] ||
1899 info.lo_init[1] != info64->lo_init[1])
1900 return -EOVERFLOW;
1901
1902 if (copy_to_user(arg, &info, sizeof(info)))
1903 return -EFAULT;
1904 return 0;
1905}
1906
1907static int
1908loop_set_status_compat(struct loop_device *lo,
1909 const struct compat_loop_info __user *arg)
1910{
1911 struct loop_info64 info64;
1912 int ret;
1913
1914 ret = loop_info64_from_compat(arg, &info64);
1915 if (ret < 0)
1916 return ret;
1917 return loop_set_status(lo, &info64);
1918}
1919
1920static int
1921loop_get_status_compat(struct loop_device *lo,
1922 struct compat_loop_info __user *arg)
1923{
1924 struct loop_info64 info64;
1925 int err;
1926
1927 if (!arg)
1928 return -EINVAL;
1929 err = loop_get_status(lo, &info64);
1930 if (!err)
1931 err = loop_info64_to_compat(&info64, arg);
1932 return err;
1933}
1934
1935static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1936 unsigned int cmd, unsigned long arg)
1937{
1938 struct loop_device *lo = bdev->bd_disk->private_data;
1939 int err;
1940
1941 switch(cmd) {
1942 case LOOP_SET_STATUS:
1943 err = loop_set_status_compat(lo,
1944 (const struct compat_loop_info __user *)arg);
1945 break;
1946 case LOOP_GET_STATUS:
1947 err = loop_get_status_compat(lo,
1948 (struct compat_loop_info __user *)arg);
1949 break;
1950 case LOOP_SET_CAPACITY:
1951 case LOOP_CLR_FD:
1952 case LOOP_GET_STATUS64:
1953 case LOOP_SET_STATUS64:
1954 case LOOP_CONFIGURE:
1955 arg = (unsigned long) compat_ptr(arg);
1956 fallthrough;
1957 case LOOP_SET_FD:
1958 case LOOP_CHANGE_FD:
1959 case LOOP_SET_BLOCK_SIZE:
1960 case LOOP_SET_DIRECT_IO:
1961 err = lo_ioctl(bdev, mode, cmd, arg);
1962 break;
1963 default:
1964 err = -ENOIOCTLCMD;
1965 break;
1966 }
1967 return err;
1968}
1969#endif
1970
1971static int lo_open(struct block_device *bdev, fmode_t mode)
1972{
1973 struct loop_device *lo = bdev->bd_disk->private_data;
1974 int err;
1975
1976 err = mutex_lock_killable(&lo->lo_mutex);
1977 if (err)
1978 return err;
1979 if (lo->lo_state == Lo_deleting)
1980 err = -ENXIO;
1981 else
1982 atomic_inc(&lo->lo_refcnt);
1983 mutex_unlock(&lo->lo_mutex);
1984 return err;
1985}
1986
1987static void lo_release(struct gendisk *disk, fmode_t mode)
1988{
1989 struct loop_device *lo = disk->private_data;
1990
1991 mutex_lock(&lo->lo_mutex);
1992 if (atomic_dec_return(&lo->lo_refcnt))
1993 goto out_unlock;
1994
1995 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1996 if (lo->lo_state != Lo_bound)
1997 goto out_unlock;
1998 lo->lo_state = Lo_rundown;
1999 mutex_unlock(&lo->lo_mutex);
2000 /*
2001 * In autoclear mode, stop the loop thread
2002 * and remove configuration after last close.
2003 */
2004 __loop_clr_fd(lo, true);
2005 return;
2006 } else if (lo->lo_state == Lo_bound) {
2007 /*
2008 * Otherwise keep thread (if running) and config,
2009 * but flush possible ongoing bios in thread.
2010 */
2011 blk_mq_freeze_queue(lo->lo_queue);
2012 blk_mq_unfreeze_queue(lo->lo_queue);
2013 }
2014
2015out_unlock:
2016 mutex_unlock(&lo->lo_mutex);
2017}
2018
2019static const struct block_device_operations lo_fops = {
2020 .owner = THIS_MODULE,
2021 .open = lo_open,
2022 .release = lo_release,
2023 .ioctl = lo_ioctl,
2024#ifdef CONFIG_COMPAT
2025 .compat_ioctl = lo_compat_ioctl,
2026#endif
2027};
2028
2029/*
2030 * And now the modules code and kernel interface.
2031 */
2032static int max_loop;
2033module_param(max_loop, int, 0444);
2034MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
2035module_param(max_part, int, 0444);
2036MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
2037MODULE_LICENSE("GPL");
2038MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
2039
2040int loop_register_transfer(struct loop_func_table *funcs)
2041{
2042 unsigned int n = funcs->number;
2043
2044 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
2045 return -EINVAL;
2046 xfer_funcs[n] = funcs;
2047 return 0;
2048}
2049
2050static int unregister_transfer_cb(int id, void *ptr, void *data)
2051{
2052 struct loop_device *lo = ptr;
2053 struct loop_func_table *xfer = data;
2054
2055 mutex_lock(&lo->lo_mutex);
2056 if (lo->lo_encryption == xfer)
2057 loop_release_xfer(lo);
2058 mutex_unlock(&lo->lo_mutex);
2059 return 0;
2060}
2061
2062int loop_unregister_transfer(int number)
2063{
2064 unsigned int n = number;
2065 struct loop_func_table *xfer;
2066
2067 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
2068 return -EINVAL;
2069
2070 xfer_funcs[n] = NULL;
2071 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
2072 return 0;
2073}
2074
2075EXPORT_SYMBOL(loop_register_transfer);
2076EXPORT_SYMBOL(loop_unregister_transfer);
2077
2078static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
2079 const struct blk_mq_queue_data *bd)
2080{
2081 struct request *rq = bd->rq;
2082 struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
2083 struct loop_device *lo = rq->q->queuedata;
2084
2085 blk_mq_start_request(rq);
2086
2087 if (lo->lo_state != Lo_bound)
2088 return BLK_STS_IOERR;
2089
2090 switch (req_op(rq)) {
2091 case REQ_OP_FLUSH:
2092 case REQ_OP_DISCARD:
2093 case REQ_OP_WRITE_ZEROES:
2094 cmd->use_aio = false;
2095 break;
2096 default:
2097 cmd->use_aio = lo->use_dio;
2098 break;
2099 }
2100
2101 /* always use the first bio's css */
2102 cmd->blkcg_css = NULL;
2103 cmd->memcg_css = NULL;
2104#ifdef CONFIG_BLK_CGROUP
2105 if (rq->bio && rq->bio->bi_blkg) {
2106 cmd->blkcg_css = &bio_blkcg(rq->bio)->css;
2107#ifdef CONFIG_MEMCG
2108 cmd->memcg_css =
2109 cgroup_get_e_css(cmd->blkcg_css->cgroup,
2110 &memory_cgrp_subsys);
2111#endif
2112 }
2113#endif
2114 loop_queue_work(lo, cmd);
2115
2116 return BLK_STS_OK;
2117}
2118
2119static void loop_handle_cmd(struct loop_cmd *cmd)
2120{
2121 struct request *rq = blk_mq_rq_from_pdu(cmd);
2122 const bool write = op_is_write(req_op(rq));
2123 struct loop_device *lo = rq->q->queuedata;
2124 int ret = 0;
2125 struct mem_cgroup *old_memcg = NULL;
2126
2127 if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
2128 ret = -EIO;
2129 goto failed;
2130 }
2131
2132 if (cmd->blkcg_css)
2133 kthread_associate_blkcg(cmd->blkcg_css);
2134 if (cmd->memcg_css)
2135 old_memcg = set_active_memcg(
2136 mem_cgroup_from_css(cmd->memcg_css));
2137
2138 ret = do_req_filebacked(lo, rq);
2139
2140 if (cmd->blkcg_css)
2141 kthread_associate_blkcg(NULL);
2142
2143 if (cmd->memcg_css) {
2144 set_active_memcg(old_memcg);
2145 css_put(cmd->memcg_css);
2146 }
2147 failed:
2148 /* complete non-aio request */
2149 if (!cmd->use_aio || ret) {
2150 if (ret == -EOPNOTSUPP)
2151 cmd->ret = ret;
2152 else
2153 cmd->ret = ret ? -EIO : 0;
2154 if (likely(!blk_should_fake_timeout(rq->q)))
2155 blk_mq_complete_request(rq);
2156 }
2157}
2158
2159static void loop_set_timer(struct loop_device *lo)
2160{
2161 timer_reduce(&lo->timer, jiffies + LOOP_IDLE_WORKER_TIMEOUT);
2162}
2163
2164static void loop_process_work(struct loop_worker *worker,
2165 struct list_head *cmd_list, struct loop_device *lo)
2166{
2167 int orig_flags = current->flags;
2168 struct loop_cmd *cmd;
2169
2170 current->flags |= PF_LOCAL_THROTTLE | PF_MEMALLOC_NOIO;
2171 spin_lock_irq(&lo->lo_work_lock);
2172 while (!list_empty(cmd_list)) {
2173 cmd = container_of(
2174 cmd_list->next, struct loop_cmd, list_entry);
2175 list_del(cmd_list->next);
2176 spin_unlock_irq(&lo->lo_work_lock);
2177
2178 loop_handle_cmd(cmd);
2179 cond_resched();
2180
2181 spin_lock_irq(&lo->lo_work_lock);
2182 }
2183
2184 /*
2185 * We only add to the idle list if there are no pending cmds
2186 * *and* the worker will not run again which ensures that it
2187 * is safe to free any worker on the idle list
2188 */
2189 if (worker && !work_pending(&worker->work)) {
2190 worker->last_ran_at = jiffies;
2191 list_add_tail(&worker->idle_list, &lo->idle_worker_list);
2192 loop_set_timer(lo);
2193 }
2194 spin_unlock_irq(&lo->lo_work_lock);
2195 current->flags = orig_flags;
2196}
2197
2198static void loop_workfn(struct work_struct *work)
2199{
2200 struct loop_worker *worker =
2201 container_of(work, struct loop_worker, work);
2202 loop_process_work(worker, &worker->cmd_list, worker->lo);
2203}
2204
2205static void loop_rootcg_workfn(struct work_struct *work)
2206{
2207 struct loop_device *lo =
2208 container_of(work, struct loop_device, rootcg_work);
2209 loop_process_work(NULL, &lo->rootcg_cmd_list, lo);
2210}
2211
2212static void loop_free_idle_workers(struct timer_list *timer)
2213{
2214 struct loop_device *lo = container_of(timer, struct loop_device, timer);
2215 struct loop_worker *pos, *worker;
2216
2217 spin_lock_irq(&lo->lo_work_lock);
2218 list_for_each_entry_safe(worker, pos, &lo->idle_worker_list,
2219 idle_list) {
2220 if (time_is_after_jiffies(worker->last_ran_at +
2221 LOOP_IDLE_WORKER_TIMEOUT))
2222 break;
2223 list_del(&worker->idle_list);
2224 rb_erase(&worker->rb_node, &lo->worker_tree);
2225 css_put(worker->blkcg_css);
2226 kfree(worker);
2227 }
2228 if (!list_empty(&lo->idle_worker_list))
2229 loop_set_timer(lo);
2230 spin_unlock_irq(&lo->lo_work_lock);
2231}
2232
2233static const struct blk_mq_ops loop_mq_ops = {
2234 .queue_rq = loop_queue_rq,
2235 .complete = lo_complete_rq,
2236};
2237
2238static int loop_add(int i)
2239{
2240 struct loop_device *lo;
2241 struct gendisk *disk;
2242 int err;
2243
2244 err = -ENOMEM;
2245 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
2246 if (!lo)
2247 goto out;
2248 lo->lo_state = Lo_unbound;
2249
2250 err = mutex_lock_killable(&loop_ctl_mutex);
2251 if (err)
2252 goto out_free_dev;
2253
2254 /* allocate id, if @id >= 0, we're requesting that specific id */
2255 if (i >= 0) {
2256 err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
2257 if (err == -ENOSPC)
2258 err = -EEXIST;
2259 } else {
2260 err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
2261 }
2262 if (err < 0)
2263 goto out_unlock;
2264 i = err;
2265
2266 err = -ENOMEM;
2267 lo->tag_set.ops = &loop_mq_ops;
2268 lo->tag_set.nr_hw_queues = 1;
2269 lo->tag_set.queue_depth = 128;
2270 lo->tag_set.numa_node = NUMA_NO_NODE;
2271 lo->tag_set.cmd_size = sizeof(struct loop_cmd);
2272 lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_STACKING;
2273 lo->tag_set.driver_data = lo;
2274
2275 err = blk_mq_alloc_tag_set(&lo->tag_set);
2276 if (err)
2277 goto out_free_idr;
2278
2279 disk = lo->lo_disk = blk_mq_alloc_disk(&lo->tag_set, lo);
2280 if (IS_ERR(disk)) {
2281 err = PTR_ERR(disk);
2282 goto out_cleanup_tags;
2283 }
2284 lo->lo_queue = lo->lo_disk->queue;
2285
2286 blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2287
2288 /*
2289 * By default, we do buffer IO, so it doesn't make sense to enable
2290 * merge because the I/O submitted to backing file is handled page by
2291 * page. For directio mode, merge does help to dispatch bigger request
2292 * to underlayer disk. We will enable merge once directio is enabled.
2293 */
2294 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2295
2296 /*
2297 * Disable partition scanning by default. The in-kernel partition
2298 * scanning can be requested individually per-device during its
2299 * setup. Userspace can always add and remove partitions from all
2300 * devices. The needed partition minors are allocated from the
2301 * extended minor space, the main loop device numbers will continue
2302 * to match the loop minors, regardless of the number of partitions
2303 * used.
2304 *
2305 * If max_part is given, partition scanning is globally enabled for
2306 * all loop devices. The minors for the main loop devices will be
2307 * multiples of max_part.
2308 *
2309 * Note: Global-for-all-devices, set-only-at-init, read-only module
2310 * parameteters like 'max_loop' and 'max_part' make things needlessly
2311 * complicated, are too static, inflexible and may surprise
2312 * userspace tools. Parameters like this in general should be avoided.
2313 */
2314 if (!part_shift)
2315 disk->flags |= GENHD_FL_NO_PART_SCAN;
2316 disk->flags |= GENHD_FL_EXT_DEVT;
2317 atomic_set(&lo->lo_refcnt, 0);
2318 mutex_init(&lo->lo_mutex);
2319 lo->lo_number = i;
2320 spin_lock_init(&lo->lo_lock);
2321 spin_lock_init(&lo->lo_work_lock);
2322 disk->major = LOOP_MAJOR;
2323 disk->first_minor = i << part_shift;
2324 disk->minors = 1 << part_shift;
2325 disk->fops = &lo_fops;
2326 disk->private_data = lo;
2327 disk->queue = lo->lo_queue;
2328 sprintf(disk->disk_name, "loop%d", i);
2329 add_disk(disk);
2330 mutex_unlock(&loop_ctl_mutex);
2331 return i;
2332
2333out_cleanup_tags:
2334 blk_mq_free_tag_set(&lo->tag_set);
2335out_free_idr:
2336 idr_remove(&loop_index_idr, i);
2337out_unlock:
2338 mutex_unlock(&loop_ctl_mutex);
2339out_free_dev:
2340 kfree(lo);
2341out:
2342 return err;
2343}
2344
2345static void loop_remove(struct loop_device *lo)
2346{
2347 del_gendisk(lo->lo_disk);
2348 blk_cleanup_disk(lo->lo_disk);
2349 blk_mq_free_tag_set(&lo->tag_set);
2350 mutex_destroy(&lo->lo_mutex);
2351 kfree(lo);
2352}
2353
2354static void loop_probe(dev_t dev)
2355{
2356 int idx = MINOR(dev) >> part_shift;
2357
2358 if (max_loop && idx >= max_loop)
2359 return;
2360 loop_add(idx);
2361}
2362
2363static int loop_control_remove(int idx)
2364{
2365 struct loop_device *lo;
2366 int ret;
2367
2368 if (idx < 0) {
2369 pr_warn("deleting an unspecified loop device is not supported.\n");
2370 return -EINVAL;
2371 }
2372
2373 ret = mutex_lock_killable(&loop_ctl_mutex);
2374 if (ret)
2375 return ret;
2376
2377 lo = idr_find(&loop_index_idr, idx);
2378 if (!lo) {
2379 ret = -ENODEV;
2380 goto out_unlock_ctrl;
2381 }
2382
2383 ret = mutex_lock_killable(&lo->lo_mutex);
2384 if (ret)
2385 goto out_unlock_ctrl;
2386 if (lo->lo_state != Lo_unbound ||
2387 atomic_read(&lo->lo_refcnt) > 0) {
2388 mutex_unlock(&lo->lo_mutex);
2389 ret = -EBUSY;
2390 goto out_unlock_ctrl;
2391 }
2392 lo->lo_state = Lo_deleting;
2393 mutex_unlock(&lo->lo_mutex);
2394
2395 idr_remove(&loop_index_idr, lo->lo_number);
2396 loop_remove(lo);
2397out_unlock_ctrl:
2398 mutex_unlock(&loop_ctl_mutex);
2399 return ret;
2400}
2401
2402static int loop_control_get_free(int idx)
2403{
2404 struct loop_device *lo;
2405 int id, ret;
2406
2407 ret = mutex_lock_killable(&loop_ctl_mutex);
2408 if (ret)
2409 return ret;
2410 idr_for_each_entry(&loop_index_idr, lo, id) {
2411 if (lo->lo_state == Lo_unbound)
2412 goto found;
2413 }
2414 mutex_unlock(&loop_ctl_mutex);
2415 return loop_add(-1);
2416found:
2417 mutex_unlock(&loop_ctl_mutex);
2418 return id;
2419}
2420
2421static long loop_control_ioctl(struct file *file, unsigned int cmd,
2422 unsigned long parm)
2423{
2424 switch (cmd) {
2425 case LOOP_CTL_ADD:
2426 return loop_add(parm);
2427 case LOOP_CTL_REMOVE:
2428 return loop_control_remove(parm);
2429 case LOOP_CTL_GET_FREE:
2430 return loop_control_get_free(parm);
2431 default:
2432 return -ENOSYS;
2433 }
2434}
2435
2436static const struct file_operations loop_ctl_fops = {
2437 .open = nonseekable_open,
2438 .unlocked_ioctl = loop_control_ioctl,
2439 .compat_ioctl = loop_control_ioctl,
2440 .owner = THIS_MODULE,
2441 .llseek = noop_llseek,
2442};
2443
2444static struct miscdevice loop_misc = {
2445 .minor = LOOP_CTRL_MINOR,
2446 .name = "loop-control",
2447 .fops = &loop_ctl_fops,
2448};
2449
2450MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2451MODULE_ALIAS("devname:loop-control");
2452
2453static int __init loop_init(void)
2454{
2455 int i, nr;
2456 int err;
2457
2458 part_shift = 0;
2459 if (max_part > 0) {
2460 part_shift = fls(max_part);
2461
2462 /*
2463 * Adjust max_part according to part_shift as it is exported
2464 * to user space so that user can decide correct minor number
2465 * if [s]he want to create more devices.
2466 *
2467 * Note that -1 is required because partition 0 is reserved
2468 * for the whole disk.
2469 */
2470 max_part = (1UL << part_shift) - 1;
2471 }
2472
2473 if ((1UL << part_shift) > DISK_MAX_PARTS) {
2474 err = -EINVAL;
2475 goto err_out;
2476 }
2477
2478 if (max_loop > 1UL << (MINORBITS - part_shift)) {
2479 err = -EINVAL;
2480 goto err_out;
2481 }
2482
2483 /*
2484 * If max_loop is specified, create that many devices upfront.
2485 * This also becomes a hard limit. If max_loop is not specified,
2486 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2487 * init time. Loop devices can be requested on-demand with the
2488 * /dev/loop-control interface, or be instantiated by accessing
2489 * a 'dead' device node.
2490 */
2491 if (max_loop)
2492 nr = max_loop;
2493 else
2494 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2495
2496 err = misc_register(&loop_misc);
2497 if (err < 0)
2498 goto err_out;
2499
2500
2501 if (__register_blkdev(LOOP_MAJOR, "loop", loop_probe)) {
2502 err = -EIO;
2503 goto misc_out;
2504 }
2505
2506 /* pre-create number of devices given by config or max_loop */
2507 for (i = 0; i < nr; i++)
2508 loop_add(i);
2509
2510 printk(KERN_INFO "loop: module loaded\n");
2511 return 0;
2512
2513misc_out:
2514 misc_deregister(&loop_misc);
2515err_out:
2516 return err;
2517}
2518
2519static void __exit loop_exit(void)
2520{
2521 struct loop_device *lo;
2522 int id;
2523
2524 unregister_blkdev(LOOP_MAJOR, "loop");
2525 misc_deregister(&loop_misc);
2526
2527 mutex_lock(&loop_ctl_mutex);
2528 idr_for_each_entry(&loop_index_idr, lo, id)
2529 loop_remove(lo);
2530 mutex_unlock(&loop_ctl_mutex);
2531
2532 idr_destroy(&loop_index_idr);
2533}
2534
2535module_init(loop_init);
2536module_exit(loop_exit);
2537
2538#ifndef MODULE
2539static int __init max_loop_setup(char *str)
2540{
2541 max_loop = simple_strtol(str, NULL, 0);
2542 return 1;
2543}
2544
2545__setup("max_loop=", max_loop_setup);
2546#endif