Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/kernel_read_file.h>
20#include <linux/lsm_hooks.h>
21#include <linux/integrity.h>
22#include <linux/ima.h>
23#include <linux/evm.h>
24#include <linux/fsnotify.h>
25#include <linux/mman.h>
26#include <linux/mount.h>
27#include <linux/personality.h>
28#include <linux/backing-dev.h>
29#include <linux/string.h>
30#include <linux/msg.h>
31#include <net/flow.h>
32
33#define MAX_LSM_EVM_XATTR 2
34
35/* How many LSMs were built into the kernel? */
36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38/*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
62 [LOCKDOWN_KCORE] = "/proc/kcore access",
63 [LOCKDOWN_KPROBES] = "use of kprobes",
64 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
65 [LOCKDOWN_PERF] = "unsafe use of perf",
66 [LOCKDOWN_TRACEFS] = "use of tracefs",
67 [LOCKDOWN_XMON_RW] = "xmon read and write access",
68 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
69 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
70};
71
72struct security_hook_heads security_hook_heads __lsm_ro_after_init;
73static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
74
75static struct kmem_cache *lsm_file_cache;
76static struct kmem_cache *lsm_inode_cache;
77
78char *lsm_names;
79static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
80
81/* Boot-time LSM user choice */
82static __initdata const char *chosen_lsm_order;
83static __initdata const char *chosen_major_lsm;
84
85static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
86
87/* Ordered list of LSMs to initialize. */
88static __initdata struct lsm_info **ordered_lsms;
89static __initdata struct lsm_info *exclusive;
90
91static __initdata bool debug;
92#define init_debug(...) \
93 do { \
94 if (debug) \
95 pr_info(__VA_ARGS__); \
96 } while (0)
97
98static bool __init is_enabled(struct lsm_info *lsm)
99{
100 if (!lsm->enabled)
101 return false;
102
103 return *lsm->enabled;
104}
105
106/* Mark an LSM's enabled flag. */
107static int lsm_enabled_true __initdata = 1;
108static int lsm_enabled_false __initdata = 0;
109static void __init set_enabled(struct lsm_info *lsm, bool enabled)
110{
111 /*
112 * When an LSM hasn't configured an enable variable, we can use
113 * a hard-coded location for storing the default enabled state.
114 */
115 if (!lsm->enabled) {
116 if (enabled)
117 lsm->enabled = &lsm_enabled_true;
118 else
119 lsm->enabled = &lsm_enabled_false;
120 } else if (lsm->enabled == &lsm_enabled_true) {
121 if (!enabled)
122 lsm->enabled = &lsm_enabled_false;
123 } else if (lsm->enabled == &lsm_enabled_false) {
124 if (enabled)
125 lsm->enabled = &lsm_enabled_true;
126 } else {
127 *lsm->enabled = enabled;
128 }
129}
130
131/* Is an LSM already listed in the ordered LSMs list? */
132static bool __init exists_ordered_lsm(struct lsm_info *lsm)
133{
134 struct lsm_info **check;
135
136 for (check = ordered_lsms; *check; check++)
137 if (*check == lsm)
138 return true;
139
140 return false;
141}
142
143/* Append an LSM to the list of ordered LSMs to initialize. */
144static int last_lsm __initdata;
145static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
146{
147 /* Ignore duplicate selections. */
148 if (exists_ordered_lsm(lsm))
149 return;
150
151 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
152 return;
153
154 /* Enable this LSM, if it is not already set. */
155 if (!lsm->enabled)
156 lsm->enabled = &lsm_enabled_true;
157 ordered_lsms[last_lsm++] = lsm;
158
159 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
160 is_enabled(lsm) ? "en" : "dis");
161}
162
163/* Is an LSM allowed to be initialized? */
164static bool __init lsm_allowed(struct lsm_info *lsm)
165{
166 /* Skip if the LSM is disabled. */
167 if (!is_enabled(lsm))
168 return false;
169
170 /* Not allowed if another exclusive LSM already initialized. */
171 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
172 init_debug("exclusive disabled: %s\n", lsm->name);
173 return false;
174 }
175
176 return true;
177}
178
179static void __init lsm_set_blob_size(int *need, int *lbs)
180{
181 int offset;
182
183 if (*need > 0) {
184 offset = *lbs;
185 *lbs += *need;
186 *need = offset;
187 }
188}
189
190static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
191{
192 if (!needed)
193 return;
194
195 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
196 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
197 /*
198 * The inode blob gets an rcu_head in addition to
199 * what the modules might need.
200 */
201 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
202 blob_sizes.lbs_inode = sizeof(struct rcu_head);
203 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
204 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
205 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
206 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
207 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
208}
209
210/* Prepare LSM for initialization. */
211static void __init prepare_lsm(struct lsm_info *lsm)
212{
213 int enabled = lsm_allowed(lsm);
214
215 /* Record enablement (to handle any following exclusive LSMs). */
216 set_enabled(lsm, enabled);
217
218 /* If enabled, do pre-initialization work. */
219 if (enabled) {
220 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
221 exclusive = lsm;
222 init_debug("exclusive chosen: %s\n", lsm->name);
223 }
224
225 lsm_set_blob_sizes(lsm->blobs);
226 }
227}
228
229/* Initialize a given LSM, if it is enabled. */
230static void __init initialize_lsm(struct lsm_info *lsm)
231{
232 if (is_enabled(lsm)) {
233 int ret;
234
235 init_debug("initializing %s\n", lsm->name);
236 ret = lsm->init();
237 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
238 }
239}
240
241/* Populate ordered LSMs list from comma-separated LSM name list. */
242static void __init ordered_lsm_parse(const char *order, const char *origin)
243{
244 struct lsm_info *lsm;
245 char *sep, *name, *next;
246
247 /* LSM_ORDER_FIRST is always first. */
248 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
249 if (lsm->order == LSM_ORDER_FIRST)
250 append_ordered_lsm(lsm, "first");
251 }
252
253 /* Process "security=", if given. */
254 if (chosen_major_lsm) {
255 struct lsm_info *major;
256
257 /*
258 * To match the original "security=" behavior, this
259 * explicitly does NOT fallback to another Legacy Major
260 * if the selected one was separately disabled: disable
261 * all non-matching Legacy Major LSMs.
262 */
263 for (major = __start_lsm_info; major < __end_lsm_info;
264 major++) {
265 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
266 strcmp(major->name, chosen_major_lsm) != 0) {
267 set_enabled(major, false);
268 init_debug("security=%s disabled: %s\n",
269 chosen_major_lsm, major->name);
270 }
271 }
272 }
273
274 sep = kstrdup(order, GFP_KERNEL);
275 next = sep;
276 /* Walk the list, looking for matching LSMs. */
277 while ((name = strsep(&next, ",")) != NULL) {
278 bool found = false;
279
280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
281 if (lsm->order == LSM_ORDER_MUTABLE &&
282 strcmp(lsm->name, name) == 0) {
283 append_ordered_lsm(lsm, origin);
284 found = true;
285 }
286 }
287
288 if (!found)
289 init_debug("%s ignored: %s\n", origin, name);
290 }
291
292 /* Process "security=", if given. */
293 if (chosen_major_lsm) {
294 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
295 if (exists_ordered_lsm(lsm))
296 continue;
297 if (strcmp(lsm->name, chosen_major_lsm) == 0)
298 append_ordered_lsm(lsm, "security=");
299 }
300 }
301
302 /* Disable all LSMs not in the ordered list. */
303 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
304 if (exists_ordered_lsm(lsm))
305 continue;
306 set_enabled(lsm, false);
307 init_debug("%s disabled: %s\n", origin, lsm->name);
308 }
309
310 kfree(sep);
311}
312
313static void __init lsm_early_cred(struct cred *cred);
314static void __init lsm_early_task(struct task_struct *task);
315
316static int lsm_append(const char *new, char **result);
317
318static void __init ordered_lsm_init(void)
319{
320 struct lsm_info **lsm;
321
322 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
323 GFP_KERNEL);
324
325 if (chosen_lsm_order) {
326 if (chosen_major_lsm) {
327 pr_info("security= is ignored because it is superseded by lsm=\n");
328 chosen_major_lsm = NULL;
329 }
330 ordered_lsm_parse(chosen_lsm_order, "cmdline");
331 } else
332 ordered_lsm_parse(builtin_lsm_order, "builtin");
333
334 for (lsm = ordered_lsms; *lsm; lsm++)
335 prepare_lsm(*lsm);
336
337 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
338 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
339 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
340 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
341 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
342 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
343 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
344
345 /*
346 * Create any kmem_caches needed for blobs
347 */
348 if (blob_sizes.lbs_file)
349 lsm_file_cache = kmem_cache_create("lsm_file_cache",
350 blob_sizes.lbs_file, 0,
351 SLAB_PANIC, NULL);
352 if (blob_sizes.lbs_inode)
353 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
354 blob_sizes.lbs_inode, 0,
355 SLAB_PANIC, NULL);
356
357 lsm_early_cred((struct cred *) current->cred);
358 lsm_early_task(current);
359 for (lsm = ordered_lsms; *lsm; lsm++)
360 initialize_lsm(*lsm);
361
362 kfree(ordered_lsms);
363}
364
365int __init early_security_init(void)
366{
367 int i;
368 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
369 struct lsm_info *lsm;
370
371 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
372 i++)
373 INIT_HLIST_HEAD(&list[i]);
374
375 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
376 if (!lsm->enabled)
377 lsm->enabled = &lsm_enabled_true;
378 prepare_lsm(lsm);
379 initialize_lsm(lsm);
380 }
381
382 return 0;
383}
384
385/**
386 * security_init - initializes the security framework
387 *
388 * This should be called early in the kernel initialization sequence.
389 */
390int __init security_init(void)
391{
392 struct lsm_info *lsm;
393
394 pr_info("Security Framework initializing\n");
395
396 /*
397 * Append the names of the early LSM modules now that kmalloc() is
398 * available
399 */
400 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
401 if (lsm->enabled)
402 lsm_append(lsm->name, &lsm_names);
403 }
404
405 /* Load LSMs in specified order. */
406 ordered_lsm_init();
407
408 return 0;
409}
410
411/* Save user chosen LSM */
412static int __init choose_major_lsm(char *str)
413{
414 chosen_major_lsm = str;
415 return 1;
416}
417__setup("security=", choose_major_lsm);
418
419/* Explicitly choose LSM initialization order. */
420static int __init choose_lsm_order(char *str)
421{
422 chosen_lsm_order = str;
423 return 1;
424}
425__setup("lsm=", choose_lsm_order);
426
427/* Enable LSM order debugging. */
428static int __init enable_debug(char *str)
429{
430 debug = true;
431 return 1;
432}
433__setup("lsm.debug", enable_debug);
434
435static bool match_last_lsm(const char *list, const char *lsm)
436{
437 const char *last;
438
439 if (WARN_ON(!list || !lsm))
440 return false;
441 last = strrchr(list, ',');
442 if (last)
443 /* Pass the comma, strcmp() will check for '\0' */
444 last++;
445 else
446 last = list;
447 return !strcmp(last, lsm);
448}
449
450static int lsm_append(const char *new, char **result)
451{
452 char *cp;
453
454 if (*result == NULL) {
455 *result = kstrdup(new, GFP_KERNEL);
456 if (*result == NULL)
457 return -ENOMEM;
458 } else {
459 /* Check if it is the last registered name */
460 if (match_last_lsm(*result, new))
461 return 0;
462 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
463 if (cp == NULL)
464 return -ENOMEM;
465 kfree(*result);
466 *result = cp;
467 }
468 return 0;
469}
470
471/**
472 * security_add_hooks - Add a modules hooks to the hook lists.
473 * @hooks: the hooks to add
474 * @count: the number of hooks to add
475 * @lsm: the name of the security module
476 *
477 * Each LSM has to register its hooks with the infrastructure.
478 */
479void __init security_add_hooks(struct security_hook_list *hooks, int count,
480 char *lsm)
481{
482 int i;
483
484 for (i = 0; i < count; i++) {
485 hooks[i].lsm = lsm;
486 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
487 }
488
489 /*
490 * Don't try to append during early_security_init(), we'll come back
491 * and fix this up afterwards.
492 */
493 if (slab_is_available()) {
494 if (lsm_append(lsm, &lsm_names) < 0)
495 panic("%s - Cannot get early memory.\n", __func__);
496 }
497}
498
499int call_blocking_lsm_notifier(enum lsm_event event, void *data)
500{
501 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
502 event, data);
503}
504EXPORT_SYMBOL(call_blocking_lsm_notifier);
505
506int register_blocking_lsm_notifier(struct notifier_block *nb)
507{
508 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
509 nb);
510}
511EXPORT_SYMBOL(register_blocking_lsm_notifier);
512
513int unregister_blocking_lsm_notifier(struct notifier_block *nb)
514{
515 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
516 nb);
517}
518EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
519
520/**
521 * lsm_cred_alloc - allocate a composite cred blob
522 * @cred: the cred that needs a blob
523 * @gfp: allocation type
524 *
525 * Allocate the cred blob for all the modules
526 *
527 * Returns 0, or -ENOMEM if memory can't be allocated.
528 */
529static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
530{
531 if (blob_sizes.lbs_cred == 0) {
532 cred->security = NULL;
533 return 0;
534 }
535
536 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
537 if (cred->security == NULL)
538 return -ENOMEM;
539 return 0;
540}
541
542/**
543 * lsm_early_cred - during initialization allocate a composite cred blob
544 * @cred: the cred that needs a blob
545 *
546 * Allocate the cred blob for all the modules
547 */
548static void __init lsm_early_cred(struct cred *cred)
549{
550 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
551
552 if (rc)
553 panic("%s: Early cred alloc failed.\n", __func__);
554}
555
556/**
557 * lsm_file_alloc - allocate a composite file blob
558 * @file: the file that needs a blob
559 *
560 * Allocate the file blob for all the modules
561 *
562 * Returns 0, or -ENOMEM if memory can't be allocated.
563 */
564static int lsm_file_alloc(struct file *file)
565{
566 if (!lsm_file_cache) {
567 file->f_security = NULL;
568 return 0;
569 }
570
571 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
572 if (file->f_security == NULL)
573 return -ENOMEM;
574 return 0;
575}
576
577/**
578 * lsm_inode_alloc - allocate a composite inode blob
579 * @inode: the inode that needs a blob
580 *
581 * Allocate the inode blob for all the modules
582 *
583 * Returns 0, or -ENOMEM if memory can't be allocated.
584 */
585int lsm_inode_alloc(struct inode *inode)
586{
587 if (!lsm_inode_cache) {
588 inode->i_security = NULL;
589 return 0;
590 }
591
592 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
593 if (inode->i_security == NULL)
594 return -ENOMEM;
595 return 0;
596}
597
598/**
599 * lsm_task_alloc - allocate a composite task blob
600 * @task: the task that needs a blob
601 *
602 * Allocate the task blob for all the modules
603 *
604 * Returns 0, or -ENOMEM if memory can't be allocated.
605 */
606static int lsm_task_alloc(struct task_struct *task)
607{
608 if (blob_sizes.lbs_task == 0) {
609 task->security = NULL;
610 return 0;
611 }
612
613 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
614 if (task->security == NULL)
615 return -ENOMEM;
616 return 0;
617}
618
619/**
620 * lsm_ipc_alloc - allocate a composite ipc blob
621 * @kip: the ipc that needs a blob
622 *
623 * Allocate the ipc blob for all the modules
624 *
625 * Returns 0, or -ENOMEM if memory can't be allocated.
626 */
627static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
628{
629 if (blob_sizes.lbs_ipc == 0) {
630 kip->security = NULL;
631 return 0;
632 }
633
634 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
635 if (kip->security == NULL)
636 return -ENOMEM;
637 return 0;
638}
639
640/**
641 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
642 * @mp: the msg_msg that needs a blob
643 *
644 * Allocate the ipc blob for all the modules
645 *
646 * Returns 0, or -ENOMEM if memory can't be allocated.
647 */
648static int lsm_msg_msg_alloc(struct msg_msg *mp)
649{
650 if (blob_sizes.lbs_msg_msg == 0) {
651 mp->security = NULL;
652 return 0;
653 }
654
655 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
656 if (mp->security == NULL)
657 return -ENOMEM;
658 return 0;
659}
660
661/**
662 * lsm_early_task - during initialization allocate a composite task blob
663 * @task: the task that needs a blob
664 *
665 * Allocate the task blob for all the modules
666 */
667static void __init lsm_early_task(struct task_struct *task)
668{
669 int rc = lsm_task_alloc(task);
670
671 if (rc)
672 panic("%s: Early task alloc failed.\n", __func__);
673}
674
675/**
676 * lsm_superblock_alloc - allocate a composite superblock blob
677 * @sb: the superblock that needs a blob
678 *
679 * Allocate the superblock blob for all the modules
680 *
681 * Returns 0, or -ENOMEM if memory can't be allocated.
682 */
683static int lsm_superblock_alloc(struct super_block *sb)
684{
685 if (blob_sizes.lbs_superblock == 0) {
686 sb->s_security = NULL;
687 return 0;
688 }
689
690 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
691 if (sb->s_security == NULL)
692 return -ENOMEM;
693 return 0;
694}
695
696/*
697 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
698 * can be accessed with:
699 *
700 * LSM_RET_DEFAULT(<hook_name>)
701 *
702 * The macros below define static constants for the default value of each
703 * LSM hook.
704 */
705#define LSM_RET_DEFAULT(NAME) (NAME##_default)
706#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
707#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
708 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
709#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
710 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
711
712#include <linux/lsm_hook_defs.h>
713#undef LSM_HOOK
714
715/*
716 * Hook list operation macros.
717 *
718 * call_void_hook:
719 * This is a hook that does not return a value.
720 *
721 * call_int_hook:
722 * This is a hook that returns a value.
723 */
724
725#define call_void_hook(FUNC, ...) \
726 do { \
727 struct security_hook_list *P; \
728 \
729 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
730 P->hook.FUNC(__VA_ARGS__); \
731 } while (0)
732
733#define call_int_hook(FUNC, IRC, ...) ({ \
734 int RC = IRC; \
735 do { \
736 struct security_hook_list *P; \
737 \
738 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
739 RC = P->hook.FUNC(__VA_ARGS__); \
740 if (RC != 0) \
741 break; \
742 } \
743 } while (0); \
744 RC; \
745})
746
747/* Security operations */
748
749int security_binder_set_context_mgr(struct task_struct *mgr)
750{
751 return call_int_hook(binder_set_context_mgr, 0, mgr);
752}
753
754int security_binder_transaction(struct task_struct *from,
755 struct task_struct *to)
756{
757 return call_int_hook(binder_transaction, 0, from, to);
758}
759
760int security_binder_transfer_binder(struct task_struct *from,
761 struct task_struct *to)
762{
763 return call_int_hook(binder_transfer_binder, 0, from, to);
764}
765
766int security_binder_transfer_file(struct task_struct *from,
767 struct task_struct *to, struct file *file)
768{
769 return call_int_hook(binder_transfer_file, 0, from, to, file);
770}
771
772int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
773{
774 return call_int_hook(ptrace_access_check, 0, child, mode);
775}
776
777int security_ptrace_traceme(struct task_struct *parent)
778{
779 return call_int_hook(ptrace_traceme, 0, parent);
780}
781
782int security_capget(struct task_struct *target,
783 kernel_cap_t *effective,
784 kernel_cap_t *inheritable,
785 kernel_cap_t *permitted)
786{
787 return call_int_hook(capget, 0, target,
788 effective, inheritable, permitted);
789}
790
791int security_capset(struct cred *new, const struct cred *old,
792 const kernel_cap_t *effective,
793 const kernel_cap_t *inheritable,
794 const kernel_cap_t *permitted)
795{
796 return call_int_hook(capset, 0, new, old,
797 effective, inheritable, permitted);
798}
799
800int security_capable(const struct cred *cred,
801 struct user_namespace *ns,
802 int cap,
803 unsigned int opts)
804{
805 return call_int_hook(capable, 0, cred, ns, cap, opts);
806}
807
808int security_quotactl(int cmds, int type, int id, struct super_block *sb)
809{
810 return call_int_hook(quotactl, 0, cmds, type, id, sb);
811}
812
813int security_quota_on(struct dentry *dentry)
814{
815 return call_int_hook(quota_on, 0, dentry);
816}
817
818int security_syslog(int type)
819{
820 return call_int_hook(syslog, 0, type);
821}
822
823int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
824{
825 return call_int_hook(settime, 0, ts, tz);
826}
827
828int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
829{
830 struct security_hook_list *hp;
831 int cap_sys_admin = 1;
832 int rc;
833
834 /*
835 * The module will respond with a positive value if
836 * it thinks the __vm_enough_memory() call should be
837 * made with the cap_sys_admin set. If all of the modules
838 * agree that it should be set it will. If any module
839 * thinks it should not be set it won't.
840 */
841 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
842 rc = hp->hook.vm_enough_memory(mm, pages);
843 if (rc <= 0) {
844 cap_sys_admin = 0;
845 break;
846 }
847 }
848 return __vm_enough_memory(mm, pages, cap_sys_admin);
849}
850
851int security_bprm_creds_for_exec(struct linux_binprm *bprm)
852{
853 return call_int_hook(bprm_creds_for_exec, 0, bprm);
854}
855
856int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
857{
858 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
859}
860
861int security_bprm_check(struct linux_binprm *bprm)
862{
863 int ret;
864
865 ret = call_int_hook(bprm_check_security, 0, bprm);
866 if (ret)
867 return ret;
868 return ima_bprm_check(bprm);
869}
870
871void security_bprm_committing_creds(struct linux_binprm *bprm)
872{
873 call_void_hook(bprm_committing_creds, bprm);
874}
875
876void security_bprm_committed_creds(struct linux_binprm *bprm)
877{
878 call_void_hook(bprm_committed_creds, bprm);
879}
880
881int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
882{
883 return call_int_hook(fs_context_dup, 0, fc, src_fc);
884}
885
886int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
887{
888 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
889}
890
891int security_sb_alloc(struct super_block *sb)
892{
893 int rc = lsm_superblock_alloc(sb);
894
895 if (unlikely(rc))
896 return rc;
897 rc = call_int_hook(sb_alloc_security, 0, sb);
898 if (unlikely(rc))
899 security_sb_free(sb);
900 return rc;
901}
902
903void security_sb_delete(struct super_block *sb)
904{
905 call_void_hook(sb_delete, sb);
906}
907
908void security_sb_free(struct super_block *sb)
909{
910 call_void_hook(sb_free_security, sb);
911 kfree(sb->s_security);
912 sb->s_security = NULL;
913}
914
915void security_free_mnt_opts(void **mnt_opts)
916{
917 if (!*mnt_opts)
918 return;
919 call_void_hook(sb_free_mnt_opts, *mnt_opts);
920 *mnt_opts = NULL;
921}
922EXPORT_SYMBOL(security_free_mnt_opts);
923
924int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
925{
926 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
927}
928EXPORT_SYMBOL(security_sb_eat_lsm_opts);
929
930int security_sb_mnt_opts_compat(struct super_block *sb,
931 void *mnt_opts)
932{
933 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
934}
935EXPORT_SYMBOL(security_sb_mnt_opts_compat);
936
937int security_sb_remount(struct super_block *sb,
938 void *mnt_opts)
939{
940 return call_int_hook(sb_remount, 0, sb, mnt_opts);
941}
942EXPORT_SYMBOL(security_sb_remount);
943
944int security_sb_kern_mount(struct super_block *sb)
945{
946 return call_int_hook(sb_kern_mount, 0, sb);
947}
948
949int security_sb_show_options(struct seq_file *m, struct super_block *sb)
950{
951 return call_int_hook(sb_show_options, 0, m, sb);
952}
953
954int security_sb_statfs(struct dentry *dentry)
955{
956 return call_int_hook(sb_statfs, 0, dentry);
957}
958
959int security_sb_mount(const char *dev_name, const struct path *path,
960 const char *type, unsigned long flags, void *data)
961{
962 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
963}
964
965int security_sb_umount(struct vfsmount *mnt, int flags)
966{
967 return call_int_hook(sb_umount, 0, mnt, flags);
968}
969
970int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
971{
972 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
973}
974
975int security_sb_set_mnt_opts(struct super_block *sb,
976 void *mnt_opts,
977 unsigned long kern_flags,
978 unsigned long *set_kern_flags)
979{
980 return call_int_hook(sb_set_mnt_opts,
981 mnt_opts ? -EOPNOTSUPP : 0, sb,
982 mnt_opts, kern_flags, set_kern_flags);
983}
984EXPORT_SYMBOL(security_sb_set_mnt_opts);
985
986int security_sb_clone_mnt_opts(const struct super_block *oldsb,
987 struct super_block *newsb,
988 unsigned long kern_flags,
989 unsigned long *set_kern_flags)
990{
991 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
992 kern_flags, set_kern_flags);
993}
994EXPORT_SYMBOL(security_sb_clone_mnt_opts);
995
996int security_add_mnt_opt(const char *option, const char *val, int len,
997 void **mnt_opts)
998{
999 return call_int_hook(sb_add_mnt_opt, -EINVAL,
1000 option, val, len, mnt_opts);
1001}
1002EXPORT_SYMBOL(security_add_mnt_opt);
1003
1004int security_move_mount(const struct path *from_path, const struct path *to_path)
1005{
1006 return call_int_hook(move_mount, 0, from_path, to_path);
1007}
1008
1009int security_path_notify(const struct path *path, u64 mask,
1010 unsigned int obj_type)
1011{
1012 return call_int_hook(path_notify, 0, path, mask, obj_type);
1013}
1014
1015int security_inode_alloc(struct inode *inode)
1016{
1017 int rc = lsm_inode_alloc(inode);
1018
1019 if (unlikely(rc))
1020 return rc;
1021 rc = call_int_hook(inode_alloc_security, 0, inode);
1022 if (unlikely(rc))
1023 security_inode_free(inode);
1024 return rc;
1025}
1026
1027static void inode_free_by_rcu(struct rcu_head *head)
1028{
1029 /*
1030 * The rcu head is at the start of the inode blob
1031 */
1032 kmem_cache_free(lsm_inode_cache, head);
1033}
1034
1035void security_inode_free(struct inode *inode)
1036{
1037 integrity_inode_free(inode);
1038 call_void_hook(inode_free_security, inode);
1039 /*
1040 * The inode may still be referenced in a path walk and
1041 * a call to security_inode_permission() can be made
1042 * after inode_free_security() is called. Ideally, the VFS
1043 * wouldn't do this, but fixing that is a much harder
1044 * job. For now, simply free the i_security via RCU, and
1045 * leave the current inode->i_security pointer intact.
1046 * The inode will be freed after the RCU grace period too.
1047 */
1048 if (inode->i_security)
1049 call_rcu((struct rcu_head *)inode->i_security,
1050 inode_free_by_rcu);
1051}
1052
1053int security_dentry_init_security(struct dentry *dentry, int mode,
1054 const struct qstr *name, void **ctx,
1055 u32 *ctxlen)
1056{
1057 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1058 name, ctx, ctxlen);
1059}
1060EXPORT_SYMBOL(security_dentry_init_security);
1061
1062int security_dentry_create_files_as(struct dentry *dentry, int mode,
1063 struct qstr *name,
1064 const struct cred *old, struct cred *new)
1065{
1066 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1067 name, old, new);
1068}
1069EXPORT_SYMBOL(security_dentry_create_files_as);
1070
1071int security_inode_init_security(struct inode *inode, struct inode *dir,
1072 const struct qstr *qstr,
1073 const initxattrs initxattrs, void *fs_data)
1074{
1075 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1076 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1077 int ret;
1078
1079 if (unlikely(IS_PRIVATE(inode)))
1080 return 0;
1081
1082 if (!initxattrs)
1083 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1084 dir, qstr, NULL, NULL, NULL);
1085 memset(new_xattrs, 0, sizeof(new_xattrs));
1086 lsm_xattr = new_xattrs;
1087 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1088 &lsm_xattr->name,
1089 &lsm_xattr->value,
1090 &lsm_xattr->value_len);
1091 if (ret)
1092 goto out;
1093
1094 evm_xattr = lsm_xattr + 1;
1095 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1096 if (ret)
1097 goto out;
1098 ret = initxattrs(inode, new_xattrs, fs_data);
1099out:
1100 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1101 kfree(xattr->value);
1102 return (ret == -EOPNOTSUPP) ? 0 : ret;
1103}
1104EXPORT_SYMBOL(security_inode_init_security);
1105
1106int security_inode_init_security_anon(struct inode *inode,
1107 const struct qstr *name,
1108 const struct inode *context_inode)
1109{
1110 return call_int_hook(inode_init_security_anon, 0, inode, name,
1111 context_inode);
1112}
1113
1114int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1115 const struct qstr *qstr, const char **name,
1116 void **value, size_t *len)
1117{
1118 if (unlikely(IS_PRIVATE(inode)))
1119 return -EOPNOTSUPP;
1120 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1121 qstr, name, value, len);
1122}
1123EXPORT_SYMBOL(security_old_inode_init_security);
1124
1125#ifdef CONFIG_SECURITY_PATH
1126int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1127 unsigned int dev)
1128{
1129 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1130 return 0;
1131 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1132}
1133EXPORT_SYMBOL(security_path_mknod);
1134
1135int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1136{
1137 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1138 return 0;
1139 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1140}
1141EXPORT_SYMBOL(security_path_mkdir);
1142
1143int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1144{
1145 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1146 return 0;
1147 return call_int_hook(path_rmdir, 0, dir, dentry);
1148}
1149
1150int security_path_unlink(const struct path *dir, struct dentry *dentry)
1151{
1152 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1153 return 0;
1154 return call_int_hook(path_unlink, 0, dir, dentry);
1155}
1156EXPORT_SYMBOL(security_path_unlink);
1157
1158int security_path_symlink(const struct path *dir, struct dentry *dentry,
1159 const char *old_name)
1160{
1161 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1162 return 0;
1163 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1164}
1165
1166int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1167 struct dentry *new_dentry)
1168{
1169 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1170 return 0;
1171 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1172}
1173
1174int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1175 const struct path *new_dir, struct dentry *new_dentry,
1176 unsigned int flags)
1177{
1178 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1179 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1180 return 0;
1181
1182 if (flags & RENAME_EXCHANGE) {
1183 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1184 old_dir, old_dentry);
1185 if (err)
1186 return err;
1187 }
1188
1189 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1190 new_dentry);
1191}
1192EXPORT_SYMBOL(security_path_rename);
1193
1194int security_path_truncate(const struct path *path)
1195{
1196 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1197 return 0;
1198 return call_int_hook(path_truncate, 0, path);
1199}
1200
1201int security_path_chmod(const struct path *path, umode_t mode)
1202{
1203 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1204 return 0;
1205 return call_int_hook(path_chmod, 0, path, mode);
1206}
1207
1208int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1209{
1210 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1211 return 0;
1212 return call_int_hook(path_chown, 0, path, uid, gid);
1213}
1214
1215int security_path_chroot(const struct path *path)
1216{
1217 return call_int_hook(path_chroot, 0, path);
1218}
1219#endif
1220
1221int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1222{
1223 if (unlikely(IS_PRIVATE(dir)))
1224 return 0;
1225 return call_int_hook(inode_create, 0, dir, dentry, mode);
1226}
1227EXPORT_SYMBOL_GPL(security_inode_create);
1228
1229int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1230 struct dentry *new_dentry)
1231{
1232 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1233 return 0;
1234 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1235}
1236
1237int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1238{
1239 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1240 return 0;
1241 return call_int_hook(inode_unlink, 0, dir, dentry);
1242}
1243
1244int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1245 const char *old_name)
1246{
1247 if (unlikely(IS_PRIVATE(dir)))
1248 return 0;
1249 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1250}
1251
1252int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1253{
1254 if (unlikely(IS_PRIVATE(dir)))
1255 return 0;
1256 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1257}
1258EXPORT_SYMBOL_GPL(security_inode_mkdir);
1259
1260int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1261{
1262 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1263 return 0;
1264 return call_int_hook(inode_rmdir, 0, dir, dentry);
1265}
1266
1267int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1268{
1269 if (unlikely(IS_PRIVATE(dir)))
1270 return 0;
1271 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1272}
1273
1274int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1275 struct inode *new_dir, struct dentry *new_dentry,
1276 unsigned int flags)
1277{
1278 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1279 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1280 return 0;
1281
1282 if (flags & RENAME_EXCHANGE) {
1283 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1284 old_dir, old_dentry);
1285 if (err)
1286 return err;
1287 }
1288
1289 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1290 new_dir, new_dentry);
1291}
1292
1293int security_inode_readlink(struct dentry *dentry)
1294{
1295 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1296 return 0;
1297 return call_int_hook(inode_readlink, 0, dentry);
1298}
1299
1300int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1301 bool rcu)
1302{
1303 if (unlikely(IS_PRIVATE(inode)))
1304 return 0;
1305 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1306}
1307
1308int security_inode_permission(struct inode *inode, int mask)
1309{
1310 if (unlikely(IS_PRIVATE(inode)))
1311 return 0;
1312 return call_int_hook(inode_permission, 0, inode, mask);
1313}
1314
1315int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1316{
1317 int ret;
1318
1319 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1320 return 0;
1321 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1322 if (ret)
1323 return ret;
1324 return evm_inode_setattr(dentry, attr);
1325}
1326EXPORT_SYMBOL_GPL(security_inode_setattr);
1327
1328int security_inode_getattr(const struct path *path)
1329{
1330 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1331 return 0;
1332 return call_int_hook(inode_getattr, 0, path);
1333}
1334
1335int security_inode_setxattr(struct user_namespace *mnt_userns,
1336 struct dentry *dentry, const char *name,
1337 const void *value, size_t size, int flags)
1338{
1339 int ret;
1340
1341 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1342 return 0;
1343 /*
1344 * SELinux and Smack integrate the cap call,
1345 * so assume that all LSMs supplying this call do so.
1346 */
1347 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1348 size, flags);
1349
1350 if (ret == 1)
1351 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1352 if (ret)
1353 return ret;
1354 ret = ima_inode_setxattr(dentry, name, value, size);
1355 if (ret)
1356 return ret;
1357 return evm_inode_setxattr(dentry, name, value, size);
1358}
1359
1360void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1361 const void *value, size_t size, int flags)
1362{
1363 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1364 return;
1365 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1366 evm_inode_post_setxattr(dentry, name, value, size);
1367}
1368
1369int security_inode_getxattr(struct dentry *dentry, const char *name)
1370{
1371 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1372 return 0;
1373 return call_int_hook(inode_getxattr, 0, dentry, name);
1374}
1375
1376int security_inode_listxattr(struct dentry *dentry)
1377{
1378 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1379 return 0;
1380 return call_int_hook(inode_listxattr, 0, dentry);
1381}
1382
1383int security_inode_removexattr(struct user_namespace *mnt_userns,
1384 struct dentry *dentry, const char *name)
1385{
1386 int ret;
1387
1388 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1389 return 0;
1390 /*
1391 * SELinux and Smack integrate the cap call,
1392 * so assume that all LSMs supplying this call do so.
1393 */
1394 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1395 if (ret == 1)
1396 ret = cap_inode_removexattr(mnt_userns, dentry, name);
1397 if (ret)
1398 return ret;
1399 ret = ima_inode_removexattr(dentry, name);
1400 if (ret)
1401 return ret;
1402 return evm_inode_removexattr(dentry, name);
1403}
1404
1405int security_inode_need_killpriv(struct dentry *dentry)
1406{
1407 return call_int_hook(inode_need_killpriv, 0, dentry);
1408}
1409
1410int security_inode_killpriv(struct user_namespace *mnt_userns,
1411 struct dentry *dentry)
1412{
1413 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1414}
1415
1416int security_inode_getsecurity(struct user_namespace *mnt_userns,
1417 struct inode *inode, const char *name,
1418 void **buffer, bool alloc)
1419{
1420 struct security_hook_list *hp;
1421 int rc;
1422
1423 if (unlikely(IS_PRIVATE(inode)))
1424 return LSM_RET_DEFAULT(inode_getsecurity);
1425 /*
1426 * Only one module will provide an attribute with a given name.
1427 */
1428 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1429 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1430 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1431 return rc;
1432 }
1433 return LSM_RET_DEFAULT(inode_getsecurity);
1434}
1435
1436int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1437{
1438 struct security_hook_list *hp;
1439 int rc;
1440
1441 if (unlikely(IS_PRIVATE(inode)))
1442 return LSM_RET_DEFAULT(inode_setsecurity);
1443 /*
1444 * Only one module will provide an attribute with a given name.
1445 */
1446 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1447 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1448 flags);
1449 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1450 return rc;
1451 }
1452 return LSM_RET_DEFAULT(inode_setsecurity);
1453}
1454
1455int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1456{
1457 if (unlikely(IS_PRIVATE(inode)))
1458 return 0;
1459 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1460}
1461EXPORT_SYMBOL(security_inode_listsecurity);
1462
1463void security_inode_getsecid(struct inode *inode, u32 *secid)
1464{
1465 call_void_hook(inode_getsecid, inode, secid);
1466}
1467
1468int security_inode_copy_up(struct dentry *src, struct cred **new)
1469{
1470 return call_int_hook(inode_copy_up, 0, src, new);
1471}
1472EXPORT_SYMBOL(security_inode_copy_up);
1473
1474int security_inode_copy_up_xattr(const char *name)
1475{
1476 struct security_hook_list *hp;
1477 int rc;
1478
1479 /*
1480 * The implementation can return 0 (accept the xattr), 1 (discard the
1481 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1482 * any other error code incase of an error.
1483 */
1484 hlist_for_each_entry(hp,
1485 &security_hook_heads.inode_copy_up_xattr, list) {
1486 rc = hp->hook.inode_copy_up_xattr(name);
1487 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1488 return rc;
1489 }
1490
1491 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1492}
1493EXPORT_SYMBOL(security_inode_copy_up_xattr);
1494
1495int security_kernfs_init_security(struct kernfs_node *kn_dir,
1496 struct kernfs_node *kn)
1497{
1498 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1499}
1500
1501int security_file_permission(struct file *file, int mask)
1502{
1503 int ret;
1504
1505 ret = call_int_hook(file_permission, 0, file, mask);
1506 if (ret)
1507 return ret;
1508
1509 return fsnotify_perm(file, mask);
1510}
1511
1512int security_file_alloc(struct file *file)
1513{
1514 int rc = lsm_file_alloc(file);
1515
1516 if (rc)
1517 return rc;
1518 rc = call_int_hook(file_alloc_security, 0, file);
1519 if (unlikely(rc))
1520 security_file_free(file);
1521 return rc;
1522}
1523
1524void security_file_free(struct file *file)
1525{
1526 void *blob;
1527
1528 call_void_hook(file_free_security, file);
1529
1530 blob = file->f_security;
1531 if (blob) {
1532 file->f_security = NULL;
1533 kmem_cache_free(lsm_file_cache, blob);
1534 }
1535}
1536
1537int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1538{
1539 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1540}
1541EXPORT_SYMBOL_GPL(security_file_ioctl);
1542
1543static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1544{
1545 /*
1546 * Does we have PROT_READ and does the application expect
1547 * it to imply PROT_EXEC? If not, nothing to talk about...
1548 */
1549 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1550 return prot;
1551 if (!(current->personality & READ_IMPLIES_EXEC))
1552 return prot;
1553 /*
1554 * if that's an anonymous mapping, let it.
1555 */
1556 if (!file)
1557 return prot | PROT_EXEC;
1558 /*
1559 * ditto if it's not on noexec mount, except that on !MMU we need
1560 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1561 */
1562 if (!path_noexec(&file->f_path)) {
1563#ifndef CONFIG_MMU
1564 if (file->f_op->mmap_capabilities) {
1565 unsigned caps = file->f_op->mmap_capabilities(file);
1566 if (!(caps & NOMMU_MAP_EXEC))
1567 return prot;
1568 }
1569#endif
1570 return prot | PROT_EXEC;
1571 }
1572 /* anything on noexec mount won't get PROT_EXEC */
1573 return prot;
1574}
1575
1576int security_mmap_file(struct file *file, unsigned long prot,
1577 unsigned long flags)
1578{
1579 int ret;
1580 ret = call_int_hook(mmap_file, 0, file, prot,
1581 mmap_prot(file, prot), flags);
1582 if (ret)
1583 return ret;
1584 return ima_file_mmap(file, prot);
1585}
1586
1587int security_mmap_addr(unsigned long addr)
1588{
1589 return call_int_hook(mmap_addr, 0, addr);
1590}
1591
1592int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1593 unsigned long prot)
1594{
1595 int ret;
1596
1597 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1598 if (ret)
1599 return ret;
1600 return ima_file_mprotect(vma, prot);
1601}
1602
1603int security_file_lock(struct file *file, unsigned int cmd)
1604{
1605 return call_int_hook(file_lock, 0, file, cmd);
1606}
1607
1608int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1609{
1610 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1611}
1612
1613void security_file_set_fowner(struct file *file)
1614{
1615 call_void_hook(file_set_fowner, file);
1616}
1617
1618int security_file_send_sigiotask(struct task_struct *tsk,
1619 struct fown_struct *fown, int sig)
1620{
1621 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1622}
1623
1624int security_file_receive(struct file *file)
1625{
1626 return call_int_hook(file_receive, 0, file);
1627}
1628
1629int security_file_open(struct file *file)
1630{
1631 int ret;
1632
1633 ret = call_int_hook(file_open, 0, file);
1634 if (ret)
1635 return ret;
1636
1637 return fsnotify_perm(file, MAY_OPEN);
1638}
1639
1640int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1641{
1642 int rc = lsm_task_alloc(task);
1643
1644 if (rc)
1645 return rc;
1646 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1647 if (unlikely(rc))
1648 security_task_free(task);
1649 return rc;
1650}
1651
1652void security_task_free(struct task_struct *task)
1653{
1654 call_void_hook(task_free, task);
1655
1656 kfree(task->security);
1657 task->security = NULL;
1658}
1659
1660int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1661{
1662 int rc = lsm_cred_alloc(cred, gfp);
1663
1664 if (rc)
1665 return rc;
1666
1667 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1668 if (unlikely(rc))
1669 security_cred_free(cred);
1670 return rc;
1671}
1672
1673void security_cred_free(struct cred *cred)
1674{
1675 /*
1676 * There is a failure case in prepare_creds() that
1677 * may result in a call here with ->security being NULL.
1678 */
1679 if (unlikely(cred->security == NULL))
1680 return;
1681
1682 call_void_hook(cred_free, cred);
1683
1684 kfree(cred->security);
1685 cred->security = NULL;
1686}
1687
1688int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1689{
1690 int rc = lsm_cred_alloc(new, gfp);
1691
1692 if (rc)
1693 return rc;
1694
1695 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1696 if (unlikely(rc))
1697 security_cred_free(new);
1698 return rc;
1699}
1700
1701void security_transfer_creds(struct cred *new, const struct cred *old)
1702{
1703 call_void_hook(cred_transfer, new, old);
1704}
1705
1706void security_cred_getsecid(const struct cred *c, u32 *secid)
1707{
1708 *secid = 0;
1709 call_void_hook(cred_getsecid, c, secid);
1710}
1711EXPORT_SYMBOL(security_cred_getsecid);
1712
1713int security_kernel_act_as(struct cred *new, u32 secid)
1714{
1715 return call_int_hook(kernel_act_as, 0, new, secid);
1716}
1717
1718int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1719{
1720 return call_int_hook(kernel_create_files_as, 0, new, inode);
1721}
1722
1723int security_kernel_module_request(char *kmod_name)
1724{
1725 int ret;
1726
1727 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1728 if (ret)
1729 return ret;
1730 return integrity_kernel_module_request(kmod_name);
1731}
1732
1733int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1734 bool contents)
1735{
1736 int ret;
1737
1738 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1739 if (ret)
1740 return ret;
1741 return ima_read_file(file, id, contents);
1742}
1743EXPORT_SYMBOL_GPL(security_kernel_read_file);
1744
1745int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1746 enum kernel_read_file_id id)
1747{
1748 int ret;
1749
1750 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1751 if (ret)
1752 return ret;
1753 return ima_post_read_file(file, buf, size, id);
1754}
1755EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1756
1757int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1758{
1759 int ret;
1760
1761 ret = call_int_hook(kernel_load_data, 0, id, contents);
1762 if (ret)
1763 return ret;
1764 return ima_load_data(id, contents);
1765}
1766EXPORT_SYMBOL_GPL(security_kernel_load_data);
1767
1768int security_kernel_post_load_data(char *buf, loff_t size,
1769 enum kernel_load_data_id id,
1770 char *description)
1771{
1772 int ret;
1773
1774 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1775 description);
1776 if (ret)
1777 return ret;
1778 return ima_post_load_data(buf, size, id, description);
1779}
1780EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1781
1782int security_task_fix_setuid(struct cred *new, const struct cred *old,
1783 int flags)
1784{
1785 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1786}
1787
1788int security_task_fix_setgid(struct cred *new, const struct cred *old,
1789 int flags)
1790{
1791 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1792}
1793
1794int security_task_setpgid(struct task_struct *p, pid_t pgid)
1795{
1796 return call_int_hook(task_setpgid, 0, p, pgid);
1797}
1798
1799int security_task_getpgid(struct task_struct *p)
1800{
1801 return call_int_hook(task_getpgid, 0, p);
1802}
1803
1804int security_task_getsid(struct task_struct *p)
1805{
1806 return call_int_hook(task_getsid, 0, p);
1807}
1808
1809void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1810{
1811 *secid = 0;
1812 call_void_hook(task_getsecid_subj, p, secid);
1813}
1814EXPORT_SYMBOL(security_task_getsecid_subj);
1815
1816void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1817{
1818 *secid = 0;
1819 call_void_hook(task_getsecid_obj, p, secid);
1820}
1821EXPORT_SYMBOL(security_task_getsecid_obj);
1822
1823int security_task_setnice(struct task_struct *p, int nice)
1824{
1825 return call_int_hook(task_setnice, 0, p, nice);
1826}
1827
1828int security_task_setioprio(struct task_struct *p, int ioprio)
1829{
1830 return call_int_hook(task_setioprio, 0, p, ioprio);
1831}
1832
1833int security_task_getioprio(struct task_struct *p)
1834{
1835 return call_int_hook(task_getioprio, 0, p);
1836}
1837
1838int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1839 unsigned int flags)
1840{
1841 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1842}
1843
1844int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1845 struct rlimit *new_rlim)
1846{
1847 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1848}
1849
1850int security_task_setscheduler(struct task_struct *p)
1851{
1852 return call_int_hook(task_setscheduler, 0, p);
1853}
1854
1855int security_task_getscheduler(struct task_struct *p)
1856{
1857 return call_int_hook(task_getscheduler, 0, p);
1858}
1859
1860int security_task_movememory(struct task_struct *p)
1861{
1862 return call_int_hook(task_movememory, 0, p);
1863}
1864
1865int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1866 int sig, const struct cred *cred)
1867{
1868 return call_int_hook(task_kill, 0, p, info, sig, cred);
1869}
1870
1871int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1872 unsigned long arg4, unsigned long arg5)
1873{
1874 int thisrc;
1875 int rc = LSM_RET_DEFAULT(task_prctl);
1876 struct security_hook_list *hp;
1877
1878 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1879 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1880 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1881 rc = thisrc;
1882 if (thisrc != 0)
1883 break;
1884 }
1885 }
1886 return rc;
1887}
1888
1889void security_task_to_inode(struct task_struct *p, struct inode *inode)
1890{
1891 call_void_hook(task_to_inode, p, inode);
1892}
1893
1894int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1895{
1896 return call_int_hook(ipc_permission, 0, ipcp, flag);
1897}
1898
1899void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1900{
1901 *secid = 0;
1902 call_void_hook(ipc_getsecid, ipcp, secid);
1903}
1904
1905int security_msg_msg_alloc(struct msg_msg *msg)
1906{
1907 int rc = lsm_msg_msg_alloc(msg);
1908
1909 if (unlikely(rc))
1910 return rc;
1911 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1912 if (unlikely(rc))
1913 security_msg_msg_free(msg);
1914 return rc;
1915}
1916
1917void security_msg_msg_free(struct msg_msg *msg)
1918{
1919 call_void_hook(msg_msg_free_security, msg);
1920 kfree(msg->security);
1921 msg->security = NULL;
1922}
1923
1924int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1925{
1926 int rc = lsm_ipc_alloc(msq);
1927
1928 if (unlikely(rc))
1929 return rc;
1930 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1931 if (unlikely(rc))
1932 security_msg_queue_free(msq);
1933 return rc;
1934}
1935
1936void security_msg_queue_free(struct kern_ipc_perm *msq)
1937{
1938 call_void_hook(msg_queue_free_security, msq);
1939 kfree(msq->security);
1940 msq->security = NULL;
1941}
1942
1943int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1944{
1945 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1946}
1947
1948int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1949{
1950 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1951}
1952
1953int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1954 struct msg_msg *msg, int msqflg)
1955{
1956 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1957}
1958
1959int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1960 struct task_struct *target, long type, int mode)
1961{
1962 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1963}
1964
1965int security_shm_alloc(struct kern_ipc_perm *shp)
1966{
1967 int rc = lsm_ipc_alloc(shp);
1968
1969 if (unlikely(rc))
1970 return rc;
1971 rc = call_int_hook(shm_alloc_security, 0, shp);
1972 if (unlikely(rc))
1973 security_shm_free(shp);
1974 return rc;
1975}
1976
1977void security_shm_free(struct kern_ipc_perm *shp)
1978{
1979 call_void_hook(shm_free_security, shp);
1980 kfree(shp->security);
1981 shp->security = NULL;
1982}
1983
1984int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1985{
1986 return call_int_hook(shm_associate, 0, shp, shmflg);
1987}
1988
1989int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1990{
1991 return call_int_hook(shm_shmctl, 0, shp, cmd);
1992}
1993
1994int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1995{
1996 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1997}
1998
1999int security_sem_alloc(struct kern_ipc_perm *sma)
2000{
2001 int rc = lsm_ipc_alloc(sma);
2002
2003 if (unlikely(rc))
2004 return rc;
2005 rc = call_int_hook(sem_alloc_security, 0, sma);
2006 if (unlikely(rc))
2007 security_sem_free(sma);
2008 return rc;
2009}
2010
2011void security_sem_free(struct kern_ipc_perm *sma)
2012{
2013 call_void_hook(sem_free_security, sma);
2014 kfree(sma->security);
2015 sma->security = NULL;
2016}
2017
2018int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2019{
2020 return call_int_hook(sem_associate, 0, sma, semflg);
2021}
2022
2023int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2024{
2025 return call_int_hook(sem_semctl, 0, sma, cmd);
2026}
2027
2028int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2029 unsigned nsops, int alter)
2030{
2031 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2032}
2033
2034void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2035{
2036 if (unlikely(inode && IS_PRIVATE(inode)))
2037 return;
2038 call_void_hook(d_instantiate, dentry, inode);
2039}
2040EXPORT_SYMBOL(security_d_instantiate);
2041
2042int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2043 char **value)
2044{
2045 struct security_hook_list *hp;
2046
2047 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2048 if (lsm != NULL && strcmp(lsm, hp->lsm))
2049 continue;
2050 return hp->hook.getprocattr(p, name, value);
2051 }
2052 return LSM_RET_DEFAULT(getprocattr);
2053}
2054
2055int security_setprocattr(const char *lsm, const char *name, void *value,
2056 size_t size)
2057{
2058 struct security_hook_list *hp;
2059
2060 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2061 if (lsm != NULL && strcmp(lsm, hp->lsm))
2062 continue;
2063 return hp->hook.setprocattr(name, value, size);
2064 }
2065 return LSM_RET_DEFAULT(setprocattr);
2066}
2067
2068int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2069{
2070 return call_int_hook(netlink_send, 0, sk, skb);
2071}
2072
2073int security_ismaclabel(const char *name)
2074{
2075 return call_int_hook(ismaclabel, 0, name);
2076}
2077EXPORT_SYMBOL(security_ismaclabel);
2078
2079int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2080{
2081 struct security_hook_list *hp;
2082 int rc;
2083
2084 /*
2085 * Currently, only one LSM can implement secid_to_secctx (i.e this
2086 * LSM hook is not "stackable").
2087 */
2088 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2089 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2090 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2091 return rc;
2092 }
2093
2094 return LSM_RET_DEFAULT(secid_to_secctx);
2095}
2096EXPORT_SYMBOL(security_secid_to_secctx);
2097
2098int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2099{
2100 *secid = 0;
2101 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2102}
2103EXPORT_SYMBOL(security_secctx_to_secid);
2104
2105void security_release_secctx(char *secdata, u32 seclen)
2106{
2107 call_void_hook(release_secctx, secdata, seclen);
2108}
2109EXPORT_SYMBOL(security_release_secctx);
2110
2111void security_inode_invalidate_secctx(struct inode *inode)
2112{
2113 call_void_hook(inode_invalidate_secctx, inode);
2114}
2115EXPORT_SYMBOL(security_inode_invalidate_secctx);
2116
2117int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2118{
2119 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2120}
2121EXPORT_SYMBOL(security_inode_notifysecctx);
2122
2123int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2124{
2125 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2126}
2127EXPORT_SYMBOL(security_inode_setsecctx);
2128
2129int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2130{
2131 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2132}
2133EXPORT_SYMBOL(security_inode_getsecctx);
2134
2135#ifdef CONFIG_WATCH_QUEUE
2136int security_post_notification(const struct cred *w_cred,
2137 const struct cred *cred,
2138 struct watch_notification *n)
2139{
2140 return call_int_hook(post_notification, 0, w_cred, cred, n);
2141}
2142#endif /* CONFIG_WATCH_QUEUE */
2143
2144#ifdef CONFIG_KEY_NOTIFICATIONS
2145int security_watch_key(struct key *key)
2146{
2147 return call_int_hook(watch_key, 0, key);
2148}
2149#endif
2150
2151#ifdef CONFIG_SECURITY_NETWORK
2152
2153int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2154{
2155 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2156}
2157EXPORT_SYMBOL(security_unix_stream_connect);
2158
2159int security_unix_may_send(struct socket *sock, struct socket *other)
2160{
2161 return call_int_hook(unix_may_send, 0, sock, other);
2162}
2163EXPORT_SYMBOL(security_unix_may_send);
2164
2165int security_socket_create(int family, int type, int protocol, int kern)
2166{
2167 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2168}
2169
2170int security_socket_post_create(struct socket *sock, int family,
2171 int type, int protocol, int kern)
2172{
2173 return call_int_hook(socket_post_create, 0, sock, family, type,
2174 protocol, kern);
2175}
2176
2177int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2178{
2179 return call_int_hook(socket_socketpair, 0, socka, sockb);
2180}
2181EXPORT_SYMBOL(security_socket_socketpair);
2182
2183int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2184{
2185 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2186}
2187
2188int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2189{
2190 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2191}
2192
2193int security_socket_listen(struct socket *sock, int backlog)
2194{
2195 return call_int_hook(socket_listen, 0, sock, backlog);
2196}
2197
2198int security_socket_accept(struct socket *sock, struct socket *newsock)
2199{
2200 return call_int_hook(socket_accept, 0, sock, newsock);
2201}
2202
2203int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2204{
2205 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2206}
2207
2208int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2209 int size, int flags)
2210{
2211 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2212}
2213
2214int security_socket_getsockname(struct socket *sock)
2215{
2216 return call_int_hook(socket_getsockname, 0, sock);
2217}
2218
2219int security_socket_getpeername(struct socket *sock)
2220{
2221 return call_int_hook(socket_getpeername, 0, sock);
2222}
2223
2224int security_socket_getsockopt(struct socket *sock, int level, int optname)
2225{
2226 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2227}
2228
2229int security_socket_setsockopt(struct socket *sock, int level, int optname)
2230{
2231 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2232}
2233
2234int security_socket_shutdown(struct socket *sock, int how)
2235{
2236 return call_int_hook(socket_shutdown, 0, sock, how);
2237}
2238
2239int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2240{
2241 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2242}
2243EXPORT_SYMBOL(security_sock_rcv_skb);
2244
2245int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2246 int __user *optlen, unsigned len)
2247{
2248 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2249 optval, optlen, len);
2250}
2251
2252int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2253{
2254 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2255 skb, secid);
2256}
2257EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2258
2259int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2260{
2261 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2262}
2263
2264void security_sk_free(struct sock *sk)
2265{
2266 call_void_hook(sk_free_security, sk);
2267}
2268
2269void security_sk_clone(const struct sock *sk, struct sock *newsk)
2270{
2271 call_void_hook(sk_clone_security, sk, newsk);
2272}
2273EXPORT_SYMBOL(security_sk_clone);
2274
2275void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2276{
2277 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2278}
2279EXPORT_SYMBOL(security_sk_classify_flow);
2280
2281void security_req_classify_flow(const struct request_sock *req,
2282 struct flowi_common *flic)
2283{
2284 call_void_hook(req_classify_flow, req, flic);
2285}
2286EXPORT_SYMBOL(security_req_classify_flow);
2287
2288void security_sock_graft(struct sock *sk, struct socket *parent)
2289{
2290 call_void_hook(sock_graft, sk, parent);
2291}
2292EXPORT_SYMBOL(security_sock_graft);
2293
2294int security_inet_conn_request(const struct sock *sk,
2295 struct sk_buff *skb, struct request_sock *req)
2296{
2297 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2298}
2299EXPORT_SYMBOL(security_inet_conn_request);
2300
2301void security_inet_csk_clone(struct sock *newsk,
2302 const struct request_sock *req)
2303{
2304 call_void_hook(inet_csk_clone, newsk, req);
2305}
2306
2307void security_inet_conn_established(struct sock *sk,
2308 struct sk_buff *skb)
2309{
2310 call_void_hook(inet_conn_established, sk, skb);
2311}
2312EXPORT_SYMBOL(security_inet_conn_established);
2313
2314int security_secmark_relabel_packet(u32 secid)
2315{
2316 return call_int_hook(secmark_relabel_packet, 0, secid);
2317}
2318EXPORT_SYMBOL(security_secmark_relabel_packet);
2319
2320void security_secmark_refcount_inc(void)
2321{
2322 call_void_hook(secmark_refcount_inc);
2323}
2324EXPORT_SYMBOL(security_secmark_refcount_inc);
2325
2326void security_secmark_refcount_dec(void)
2327{
2328 call_void_hook(secmark_refcount_dec);
2329}
2330EXPORT_SYMBOL(security_secmark_refcount_dec);
2331
2332int security_tun_dev_alloc_security(void **security)
2333{
2334 return call_int_hook(tun_dev_alloc_security, 0, security);
2335}
2336EXPORT_SYMBOL(security_tun_dev_alloc_security);
2337
2338void security_tun_dev_free_security(void *security)
2339{
2340 call_void_hook(tun_dev_free_security, security);
2341}
2342EXPORT_SYMBOL(security_tun_dev_free_security);
2343
2344int security_tun_dev_create(void)
2345{
2346 return call_int_hook(tun_dev_create, 0);
2347}
2348EXPORT_SYMBOL(security_tun_dev_create);
2349
2350int security_tun_dev_attach_queue(void *security)
2351{
2352 return call_int_hook(tun_dev_attach_queue, 0, security);
2353}
2354EXPORT_SYMBOL(security_tun_dev_attach_queue);
2355
2356int security_tun_dev_attach(struct sock *sk, void *security)
2357{
2358 return call_int_hook(tun_dev_attach, 0, sk, security);
2359}
2360EXPORT_SYMBOL(security_tun_dev_attach);
2361
2362int security_tun_dev_open(void *security)
2363{
2364 return call_int_hook(tun_dev_open, 0, security);
2365}
2366EXPORT_SYMBOL(security_tun_dev_open);
2367
2368int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2369{
2370 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2371}
2372EXPORT_SYMBOL(security_sctp_assoc_request);
2373
2374int security_sctp_bind_connect(struct sock *sk, int optname,
2375 struct sockaddr *address, int addrlen)
2376{
2377 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2378 address, addrlen);
2379}
2380EXPORT_SYMBOL(security_sctp_bind_connect);
2381
2382void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2383 struct sock *newsk)
2384{
2385 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2386}
2387EXPORT_SYMBOL(security_sctp_sk_clone);
2388
2389#endif /* CONFIG_SECURITY_NETWORK */
2390
2391#ifdef CONFIG_SECURITY_INFINIBAND
2392
2393int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2394{
2395 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2396}
2397EXPORT_SYMBOL(security_ib_pkey_access);
2398
2399int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2400{
2401 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2402}
2403EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2404
2405int security_ib_alloc_security(void **sec)
2406{
2407 return call_int_hook(ib_alloc_security, 0, sec);
2408}
2409EXPORT_SYMBOL(security_ib_alloc_security);
2410
2411void security_ib_free_security(void *sec)
2412{
2413 call_void_hook(ib_free_security, sec);
2414}
2415EXPORT_SYMBOL(security_ib_free_security);
2416#endif /* CONFIG_SECURITY_INFINIBAND */
2417
2418#ifdef CONFIG_SECURITY_NETWORK_XFRM
2419
2420int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2421 struct xfrm_user_sec_ctx *sec_ctx,
2422 gfp_t gfp)
2423{
2424 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2425}
2426EXPORT_SYMBOL(security_xfrm_policy_alloc);
2427
2428int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2429 struct xfrm_sec_ctx **new_ctxp)
2430{
2431 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2432}
2433
2434void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2435{
2436 call_void_hook(xfrm_policy_free_security, ctx);
2437}
2438EXPORT_SYMBOL(security_xfrm_policy_free);
2439
2440int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2441{
2442 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2443}
2444
2445int security_xfrm_state_alloc(struct xfrm_state *x,
2446 struct xfrm_user_sec_ctx *sec_ctx)
2447{
2448 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2449}
2450EXPORT_SYMBOL(security_xfrm_state_alloc);
2451
2452int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2453 struct xfrm_sec_ctx *polsec, u32 secid)
2454{
2455 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2456}
2457
2458int security_xfrm_state_delete(struct xfrm_state *x)
2459{
2460 return call_int_hook(xfrm_state_delete_security, 0, x);
2461}
2462EXPORT_SYMBOL(security_xfrm_state_delete);
2463
2464void security_xfrm_state_free(struct xfrm_state *x)
2465{
2466 call_void_hook(xfrm_state_free_security, x);
2467}
2468
2469int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2470{
2471 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2472}
2473
2474int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2475 struct xfrm_policy *xp,
2476 const struct flowi_common *flic)
2477{
2478 struct security_hook_list *hp;
2479 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2480
2481 /*
2482 * Since this function is expected to return 0 or 1, the judgment
2483 * becomes difficult if multiple LSMs supply this call. Fortunately,
2484 * we can use the first LSM's judgment because currently only SELinux
2485 * supplies this call.
2486 *
2487 * For speed optimization, we explicitly break the loop rather than
2488 * using the macro
2489 */
2490 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2491 list) {
2492 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2493 break;
2494 }
2495 return rc;
2496}
2497
2498int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2499{
2500 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2501}
2502
2503void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2504{
2505 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2506 0);
2507
2508 BUG_ON(rc);
2509}
2510EXPORT_SYMBOL(security_skb_classify_flow);
2511
2512#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2513
2514#ifdef CONFIG_KEYS
2515
2516int security_key_alloc(struct key *key, const struct cred *cred,
2517 unsigned long flags)
2518{
2519 return call_int_hook(key_alloc, 0, key, cred, flags);
2520}
2521
2522void security_key_free(struct key *key)
2523{
2524 call_void_hook(key_free, key);
2525}
2526
2527int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2528 enum key_need_perm need_perm)
2529{
2530 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2531}
2532
2533int security_key_getsecurity(struct key *key, char **_buffer)
2534{
2535 *_buffer = NULL;
2536 return call_int_hook(key_getsecurity, 0, key, _buffer);
2537}
2538
2539#endif /* CONFIG_KEYS */
2540
2541#ifdef CONFIG_AUDIT
2542
2543int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2544{
2545 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2546}
2547
2548int security_audit_rule_known(struct audit_krule *krule)
2549{
2550 return call_int_hook(audit_rule_known, 0, krule);
2551}
2552
2553void security_audit_rule_free(void *lsmrule)
2554{
2555 call_void_hook(audit_rule_free, lsmrule);
2556}
2557
2558int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2559{
2560 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2561}
2562#endif /* CONFIG_AUDIT */
2563
2564#ifdef CONFIG_BPF_SYSCALL
2565int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2566{
2567 return call_int_hook(bpf, 0, cmd, attr, size);
2568}
2569int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2570{
2571 return call_int_hook(bpf_map, 0, map, fmode);
2572}
2573int security_bpf_prog(struct bpf_prog *prog)
2574{
2575 return call_int_hook(bpf_prog, 0, prog);
2576}
2577int security_bpf_map_alloc(struct bpf_map *map)
2578{
2579 return call_int_hook(bpf_map_alloc_security, 0, map);
2580}
2581int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2582{
2583 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2584}
2585void security_bpf_map_free(struct bpf_map *map)
2586{
2587 call_void_hook(bpf_map_free_security, map);
2588}
2589void security_bpf_prog_free(struct bpf_prog_aux *aux)
2590{
2591 call_void_hook(bpf_prog_free_security, aux);
2592}
2593#endif /* CONFIG_BPF_SYSCALL */
2594
2595int security_locked_down(enum lockdown_reason what)
2596{
2597 return call_int_hook(locked_down, 0, what);
2598}
2599EXPORT_SYMBOL(security_locked_down);
2600
2601#ifdef CONFIG_PERF_EVENTS
2602int security_perf_event_open(struct perf_event_attr *attr, int type)
2603{
2604 return call_int_hook(perf_event_open, 0, attr, type);
2605}
2606
2607int security_perf_event_alloc(struct perf_event *event)
2608{
2609 return call_int_hook(perf_event_alloc, 0, event);
2610}
2611
2612void security_perf_event_free(struct perf_event *event)
2613{
2614 call_void_hook(perf_event_free, event);
2615}
2616
2617int security_perf_event_read(struct perf_event *event)
2618{
2619 return call_int_hook(perf_event_read, 0, event);
2620}
2621
2622int security_perf_event_write(struct perf_event *event)
2623{
2624 return call_int_hook(perf_event_write, 0, event);
2625}
2626#endif /* CONFIG_PERF_EVENTS */