Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET An implementation of the SOCKET network access protocol.
4 *
5 * Version: @(#)socket.c 1.1.93 18/02/95
6 *
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
8 * Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 *
11 * Fixes:
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
13 * shutdown()
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
18 * top level.
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
23 * tty drivers).
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
26 * configurable.
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
35 * stuff.
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
41 * moment.
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
48 *
49 * This module is effectively the top level interface to the BSD socket
50 * paradigm.
51 *
52 * Based upon Swansea University Computer Society NET3.039
53 */
54
55#include <linux/ethtool.h>
56#include <linux/mm.h>
57#include <linux/socket.h>
58#include <linux/file.h>
59#include <linux/net.h>
60#include <linux/interrupt.h>
61#include <linux/thread_info.h>
62#include <linux/rcupdate.h>
63#include <linux/netdevice.h>
64#include <linux/proc_fs.h>
65#include <linux/seq_file.h>
66#include <linux/mutex.h>
67#include <linux/if_bridge.h>
68#include <linux/if_vlan.h>
69#include <linux/ptp_classify.h>
70#include <linux/init.h>
71#include <linux/poll.h>
72#include <linux/cache.h>
73#include <linux/module.h>
74#include <linux/highmem.h>
75#include <linux/mount.h>
76#include <linux/pseudo_fs.h>
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/compat.h>
80#include <linux/kmod.h>
81#include <linux/audit.h>
82#include <linux/wireless.h>
83#include <linux/nsproxy.h>
84#include <linux/magic.h>
85#include <linux/slab.h>
86#include <linux/xattr.h>
87#include <linux/nospec.h>
88#include <linux/indirect_call_wrapper.h>
89
90#include <linux/uaccess.h>
91#include <asm/unistd.h>
92
93#include <net/compat.h>
94#include <net/wext.h>
95#include <net/cls_cgroup.h>
96
97#include <net/sock.h>
98#include <linux/netfilter.h>
99
100#include <linux/if_tun.h>
101#include <linux/ipv6_route.h>
102#include <linux/route.h>
103#include <linux/termios.h>
104#include <linux/sockios.h>
105#include <net/busy_poll.h>
106#include <linux/errqueue.h>
107
108#ifdef CONFIG_NET_RX_BUSY_POLL
109unsigned int sysctl_net_busy_read __read_mostly;
110unsigned int sysctl_net_busy_poll __read_mostly;
111#endif
112
113static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
114static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
115static int sock_mmap(struct file *file, struct vm_area_struct *vma);
116
117static int sock_close(struct inode *inode, struct file *file);
118static __poll_t sock_poll(struct file *file,
119 struct poll_table_struct *wait);
120static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
121#ifdef CONFIG_COMPAT
122static long compat_sock_ioctl(struct file *file,
123 unsigned int cmd, unsigned long arg);
124#endif
125static int sock_fasync(int fd, struct file *filp, int on);
126static ssize_t sock_sendpage(struct file *file, struct page *page,
127 int offset, size_t size, loff_t *ppos, int more);
128static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
129 struct pipe_inode_info *pipe, size_t len,
130 unsigned int flags);
131
132#ifdef CONFIG_PROC_FS
133static void sock_show_fdinfo(struct seq_file *m, struct file *f)
134{
135 struct socket *sock = f->private_data;
136
137 if (sock->ops->show_fdinfo)
138 sock->ops->show_fdinfo(m, sock);
139}
140#else
141#define sock_show_fdinfo NULL
142#endif
143
144/*
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
147 */
148
149static const struct file_operations socket_file_ops = {
150 .owner = THIS_MODULE,
151 .llseek = no_llseek,
152 .read_iter = sock_read_iter,
153 .write_iter = sock_write_iter,
154 .poll = sock_poll,
155 .unlocked_ioctl = sock_ioctl,
156#ifdef CONFIG_COMPAT
157 .compat_ioctl = compat_sock_ioctl,
158#endif
159 .mmap = sock_mmap,
160 .release = sock_close,
161 .fasync = sock_fasync,
162 .sendpage = sock_sendpage,
163 .splice_write = generic_splice_sendpage,
164 .splice_read = sock_splice_read,
165 .show_fdinfo = sock_show_fdinfo,
166};
167
168/*
169 * The protocol list. Each protocol is registered in here.
170 */
171
172static DEFINE_SPINLOCK(net_family_lock);
173static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
174
175/*
176 * Support routines.
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
179 */
180
181/**
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
186 *
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
190 */
191
192int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
193{
194 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
195 return -EINVAL;
196 if (ulen == 0)
197 return 0;
198 if (copy_from_user(kaddr, uaddr, ulen))
199 return -EFAULT;
200 return audit_sockaddr(ulen, kaddr);
201}
202
203/**
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
209 *
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
214 * accessible.
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
218 */
219
220static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
221 void __user *uaddr, int __user *ulen)
222{
223 int err;
224 int len;
225
226 BUG_ON(klen > sizeof(struct sockaddr_storage));
227 err = get_user(len, ulen);
228 if (err)
229 return err;
230 if (len > klen)
231 len = klen;
232 if (len < 0)
233 return -EINVAL;
234 if (len) {
235 if (audit_sockaddr(klen, kaddr))
236 return -ENOMEM;
237 if (copy_to_user(uaddr, kaddr, len))
238 return -EFAULT;
239 }
240 /*
241 * "fromlen shall refer to the value before truncation.."
242 * 1003.1g
243 */
244 return __put_user(klen, ulen);
245}
246
247static struct kmem_cache *sock_inode_cachep __ro_after_init;
248
249static struct inode *sock_alloc_inode(struct super_block *sb)
250{
251 struct socket_alloc *ei;
252
253 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
254 if (!ei)
255 return NULL;
256 init_waitqueue_head(&ei->socket.wq.wait);
257 ei->socket.wq.fasync_list = NULL;
258 ei->socket.wq.flags = 0;
259
260 ei->socket.state = SS_UNCONNECTED;
261 ei->socket.flags = 0;
262 ei->socket.ops = NULL;
263 ei->socket.sk = NULL;
264 ei->socket.file = NULL;
265
266 return &ei->vfs_inode;
267}
268
269static void sock_free_inode(struct inode *inode)
270{
271 struct socket_alloc *ei;
272
273 ei = container_of(inode, struct socket_alloc, vfs_inode);
274 kmem_cache_free(sock_inode_cachep, ei);
275}
276
277static void init_once(void *foo)
278{
279 struct socket_alloc *ei = (struct socket_alloc *)foo;
280
281 inode_init_once(&ei->vfs_inode);
282}
283
284static void init_inodecache(void)
285{
286 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc),
288 0,
289 (SLAB_HWCACHE_ALIGN |
290 SLAB_RECLAIM_ACCOUNT |
291 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
292 init_once);
293 BUG_ON(sock_inode_cachep == NULL);
294}
295
296static const struct super_operations sockfs_ops = {
297 .alloc_inode = sock_alloc_inode,
298 .free_inode = sock_free_inode,
299 .statfs = simple_statfs,
300};
301
302/*
303 * sockfs_dname() is called from d_path().
304 */
305static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
306{
307 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
308 d_inode(dentry)->i_ino);
309}
310
311static const struct dentry_operations sockfs_dentry_operations = {
312 .d_dname = sockfs_dname,
313};
314
315static int sockfs_xattr_get(const struct xattr_handler *handler,
316 struct dentry *dentry, struct inode *inode,
317 const char *suffix, void *value, size_t size)
318{
319 if (value) {
320 if (dentry->d_name.len + 1 > size)
321 return -ERANGE;
322 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
323 }
324 return dentry->d_name.len + 1;
325}
326
327#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
330
331static const struct xattr_handler sockfs_xattr_handler = {
332 .name = XATTR_NAME_SOCKPROTONAME,
333 .get = sockfs_xattr_get,
334};
335
336static int sockfs_security_xattr_set(const struct xattr_handler *handler,
337 struct user_namespace *mnt_userns,
338 struct dentry *dentry, struct inode *inode,
339 const char *suffix, const void *value,
340 size_t size, int flags)
341{
342 /* Handled by LSM. */
343 return -EAGAIN;
344}
345
346static const struct xattr_handler sockfs_security_xattr_handler = {
347 .prefix = XATTR_SECURITY_PREFIX,
348 .set = sockfs_security_xattr_set,
349};
350
351static const struct xattr_handler *sockfs_xattr_handlers[] = {
352 &sockfs_xattr_handler,
353 &sockfs_security_xattr_handler,
354 NULL
355};
356
357static int sockfs_init_fs_context(struct fs_context *fc)
358{
359 struct pseudo_fs_context *ctx = init_pseudo(fc, SOCKFS_MAGIC);
360 if (!ctx)
361 return -ENOMEM;
362 ctx->ops = &sockfs_ops;
363 ctx->dops = &sockfs_dentry_operations;
364 ctx->xattr = sockfs_xattr_handlers;
365 return 0;
366}
367
368static struct vfsmount *sock_mnt __read_mostly;
369
370static struct file_system_type sock_fs_type = {
371 .name = "sockfs",
372 .init_fs_context = sockfs_init_fs_context,
373 .kill_sb = kill_anon_super,
374};
375
376/*
377 * Obtains the first available file descriptor and sets it up for use.
378 *
379 * These functions create file structures and maps them to fd space
380 * of the current process. On success it returns file descriptor
381 * and file struct implicitly stored in sock->file.
382 * Note that another thread may close file descriptor before we return
383 * from this function. We use the fact that now we do not refer
384 * to socket after mapping. If one day we will need it, this
385 * function will increment ref. count on file by 1.
386 *
387 * In any case returned fd MAY BE not valid!
388 * This race condition is unavoidable
389 * with shared fd spaces, we cannot solve it inside kernel,
390 * but we take care of internal coherence yet.
391 */
392
393/**
394 * sock_alloc_file - Bind a &socket to a &file
395 * @sock: socket
396 * @flags: file status flags
397 * @dname: protocol name
398 *
399 * Returns the &file bound with @sock, implicitly storing it
400 * in sock->file. If dname is %NULL, sets to "".
401 * On failure the return is a ERR pointer (see linux/err.h).
402 * This function uses GFP_KERNEL internally.
403 */
404
405struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
406{
407 struct file *file;
408
409 if (!dname)
410 dname = sock->sk ? sock->sk->sk_prot_creator->name : "";
411
412 file = alloc_file_pseudo(SOCK_INODE(sock), sock_mnt, dname,
413 O_RDWR | (flags & O_NONBLOCK),
414 &socket_file_ops);
415 if (IS_ERR(file)) {
416 sock_release(sock);
417 return file;
418 }
419
420 sock->file = file;
421 file->private_data = sock;
422 stream_open(SOCK_INODE(sock), file);
423 return file;
424}
425EXPORT_SYMBOL(sock_alloc_file);
426
427static int sock_map_fd(struct socket *sock, int flags)
428{
429 struct file *newfile;
430 int fd = get_unused_fd_flags(flags);
431 if (unlikely(fd < 0)) {
432 sock_release(sock);
433 return fd;
434 }
435
436 newfile = sock_alloc_file(sock, flags, NULL);
437 if (!IS_ERR(newfile)) {
438 fd_install(fd, newfile);
439 return fd;
440 }
441
442 put_unused_fd(fd);
443 return PTR_ERR(newfile);
444}
445
446/**
447 * sock_from_file - Return the &socket bounded to @file.
448 * @file: file
449 *
450 * On failure returns %NULL.
451 */
452
453struct socket *sock_from_file(struct file *file)
454{
455 if (file->f_op == &socket_file_ops)
456 return file->private_data; /* set in sock_map_fd */
457
458 return NULL;
459}
460EXPORT_SYMBOL(sock_from_file);
461
462/**
463 * sockfd_lookup - Go from a file number to its socket slot
464 * @fd: file handle
465 * @err: pointer to an error code return
466 *
467 * The file handle passed in is locked and the socket it is bound
468 * to is returned. If an error occurs the err pointer is overwritten
469 * with a negative errno code and NULL is returned. The function checks
470 * for both invalid handles and passing a handle which is not a socket.
471 *
472 * On a success the socket object pointer is returned.
473 */
474
475struct socket *sockfd_lookup(int fd, int *err)
476{
477 struct file *file;
478 struct socket *sock;
479
480 file = fget(fd);
481 if (!file) {
482 *err = -EBADF;
483 return NULL;
484 }
485
486 sock = sock_from_file(file);
487 if (!sock) {
488 *err = -ENOTSOCK;
489 fput(file);
490 }
491 return sock;
492}
493EXPORT_SYMBOL(sockfd_lookup);
494
495static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
496{
497 struct fd f = fdget(fd);
498 struct socket *sock;
499
500 *err = -EBADF;
501 if (f.file) {
502 sock = sock_from_file(f.file);
503 if (likely(sock)) {
504 *fput_needed = f.flags & FDPUT_FPUT;
505 return sock;
506 }
507 *err = -ENOTSOCK;
508 fdput(f);
509 }
510 return NULL;
511}
512
513static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
514 size_t size)
515{
516 ssize_t len;
517 ssize_t used = 0;
518
519 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
520 if (len < 0)
521 return len;
522 used += len;
523 if (buffer) {
524 if (size < used)
525 return -ERANGE;
526 buffer += len;
527 }
528
529 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
530 used += len;
531 if (buffer) {
532 if (size < used)
533 return -ERANGE;
534 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
535 buffer += len;
536 }
537
538 return used;
539}
540
541static int sockfs_setattr(struct user_namespace *mnt_userns,
542 struct dentry *dentry, struct iattr *iattr)
543{
544 int err = simple_setattr(&init_user_ns, dentry, iattr);
545
546 if (!err && (iattr->ia_valid & ATTR_UID)) {
547 struct socket *sock = SOCKET_I(d_inode(dentry));
548
549 if (sock->sk)
550 sock->sk->sk_uid = iattr->ia_uid;
551 else
552 err = -ENOENT;
553 }
554
555 return err;
556}
557
558static const struct inode_operations sockfs_inode_ops = {
559 .listxattr = sockfs_listxattr,
560 .setattr = sockfs_setattr,
561};
562
563/**
564 * sock_alloc - allocate a socket
565 *
566 * Allocate a new inode and socket object. The two are bound together
567 * and initialised. The socket is then returned. If we are out of inodes
568 * NULL is returned. This functions uses GFP_KERNEL internally.
569 */
570
571struct socket *sock_alloc(void)
572{
573 struct inode *inode;
574 struct socket *sock;
575
576 inode = new_inode_pseudo(sock_mnt->mnt_sb);
577 if (!inode)
578 return NULL;
579
580 sock = SOCKET_I(inode);
581
582 inode->i_ino = get_next_ino();
583 inode->i_mode = S_IFSOCK | S_IRWXUGO;
584 inode->i_uid = current_fsuid();
585 inode->i_gid = current_fsgid();
586 inode->i_op = &sockfs_inode_ops;
587
588 return sock;
589}
590EXPORT_SYMBOL(sock_alloc);
591
592static void __sock_release(struct socket *sock, struct inode *inode)
593{
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 if (inode)
598 inode_lock(inode);
599 sock->ops->release(sock);
600 sock->sk = NULL;
601 if (inode)
602 inode_unlock(inode);
603 sock->ops = NULL;
604 module_put(owner);
605 }
606
607 if (sock->wq.fasync_list)
608 pr_err("%s: fasync list not empty!\n", __func__);
609
610 if (!sock->file) {
611 iput(SOCK_INODE(sock));
612 return;
613 }
614 sock->file = NULL;
615}
616
617/**
618 * sock_release - close a socket
619 * @sock: socket to close
620 *
621 * The socket is released from the protocol stack if it has a release
622 * callback, and the inode is then released if the socket is bound to
623 * an inode not a file.
624 */
625void sock_release(struct socket *sock)
626{
627 __sock_release(sock, NULL);
628}
629EXPORT_SYMBOL(sock_release);
630
631void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
632{
633 u8 flags = *tx_flags;
634
635 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
636 flags |= SKBTX_HW_TSTAMP;
637
638 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
639 flags |= SKBTX_SW_TSTAMP;
640
641 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
642 flags |= SKBTX_SCHED_TSTAMP;
643
644 *tx_flags = flags;
645}
646EXPORT_SYMBOL(__sock_tx_timestamp);
647
648INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket *, struct msghdr *,
649 size_t));
650INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket *, struct msghdr *,
651 size_t));
652static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
653{
654 int ret = INDIRECT_CALL_INET(sock->ops->sendmsg, inet6_sendmsg,
655 inet_sendmsg, sock, msg,
656 msg_data_left(msg));
657 BUG_ON(ret == -EIOCBQUEUED);
658 return ret;
659}
660
661/**
662 * sock_sendmsg - send a message through @sock
663 * @sock: socket
664 * @msg: message to send
665 *
666 * Sends @msg through @sock, passing through LSM.
667 * Returns the number of bytes sent, or an error code.
668 */
669int sock_sendmsg(struct socket *sock, struct msghdr *msg)
670{
671 int err = security_socket_sendmsg(sock, msg,
672 msg_data_left(msg));
673
674 return err ?: sock_sendmsg_nosec(sock, msg);
675}
676EXPORT_SYMBOL(sock_sendmsg);
677
678/**
679 * kernel_sendmsg - send a message through @sock (kernel-space)
680 * @sock: socket
681 * @msg: message header
682 * @vec: kernel vec
683 * @num: vec array length
684 * @size: total message data size
685 *
686 * Builds the message data with @vec and sends it through @sock.
687 * Returns the number of bytes sent, or an error code.
688 */
689
690int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
691 struct kvec *vec, size_t num, size_t size)
692{
693 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
694 return sock_sendmsg(sock, msg);
695}
696EXPORT_SYMBOL(kernel_sendmsg);
697
698/**
699 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
700 * @sk: sock
701 * @msg: message header
702 * @vec: output s/g array
703 * @num: output s/g array length
704 * @size: total message data size
705 *
706 * Builds the message data with @vec and sends it through @sock.
707 * Returns the number of bytes sent, or an error code.
708 * Caller must hold @sk.
709 */
710
711int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
712 struct kvec *vec, size_t num, size_t size)
713{
714 struct socket *sock = sk->sk_socket;
715
716 if (!sock->ops->sendmsg_locked)
717 return sock_no_sendmsg_locked(sk, msg, size);
718
719 iov_iter_kvec(&msg->msg_iter, WRITE, vec, num, size);
720
721 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
722}
723EXPORT_SYMBOL(kernel_sendmsg_locked);
724
725static bool skb_is_err_queue(const struct sk_buff *skb)
726{
727 /* pkt_type of skbs enqueued on the error queue are set to
728 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
729 * in recvmsg, since skbs received on a local socket will never
730 * have a pkt_type of PACKET_OUTGOING.
731 */
732 return skb->pkt_type == PACKET_OUTGOING;
733}
734
735/* On transmit, software and hardware timestamps are returned independently.
736 * As the two skb clones share the hardware timestamp, which may be updated
737 * before the software timestamp is received, a hardware TX timestamp may be
738 * returned only if there is no software TX timestamp. Ignore false software
739 * timestamps, which may be made in the __sock_recv_timestamp() call when the
740 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
741 * hardware timestamp.
742 */
743static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
744{
745 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
746}
747
748static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
749{
750 struct scm_ts_pktinfo ts_pktinfo;
751 struct net_device *orig_dev;
752
753 if (!skb_mac_header_was_set(skb))
754 return;
755
756 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
757
758 rcu_read_lock();
759 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
760 if (orig_dev)
761 ts_pktinfo.if_index = orig_dev->ifindex;
762 rcu_read_unlock();
763
764 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
766 sizeof(ts_pktinfo), &ts_pktinfo);
767}
768
769/*
770 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
771 */
772void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
773 struct sk_buff *skb)
774{
775 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
776 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
777 struct scm_timestamping_internal tss;
778
779 int empty = 1, false_tstamp = 0;
780 struct skb_shared_hwtstamps *shhwtstamps =
781 skb_hwtstamps(skb);
782
783 /* Race occurred between timestamp enabling and packet
784 receiving. Fill in the current time for now. */
785 if (need_software_tstamp && skb->tstamp == 0) {
786 __net_timestamp(skb);
787 false_tstamp = 1;
788 }
789
790 if (need_software_tstamp) {
791 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
792 if (new_tstamp) {
793 struct __kernel_sock_timeval tv;
794
795 skb_get_new_timestamp(skb, &tv);
796 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
797 sizeof(tv), &tv);
798 } else {
799 struct __kernel_old_timeval tv;
800
801 skb_get_timestamp(skb, &tv);
802 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
803 sizeof(tv), &tv);
804 }
805 } else {
806 if (new_tstamp) {
807 struct __kernel_timespec ts;
808
809 skb_get_new_timestampns(skb, &ts);
810 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
811 sizeof(ts), &ts);
812 } else {
813 struct __kernel_old_timespec ts;
814
815 skb_get_timestampns(skb, &ts);
816 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
817 sizeof(ts), &ts);
818 }
819 }
820 }
821
822 memset(&tss, 0, sizeof(tss));
823 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
824 ktime_to_timespec64_cond(skb->tstamp, tss.ts + 0))
825 empty = 0;
826 if (shhwtstamps &&
827 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
828 !skb_is_swtx_tstamp(skb, false_tstamp) &&
829 ktime_to_timespec64_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
830 empty = 0;
831 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
832 !skb_is_err_queue(skb))
833 put_ts_pktinfo(msg, skb);
834 }
835 if (!empty) {
836 if (sock_flag(sk, SOCK_TSTAMP_NEW))
837 put_cmsg_scm_timestamping64(msg, &tss);
838 else
839 put_cmsg_scm_timestamping(msg, &tss);
840
841 if (skb_is_err_queue(skb) && skb->len &&
842 SKB_EXT_ERR(skb)->opt_stats)
843 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
844 skb->len, skb->data);
845 }
846}
847EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
848
849void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
850 struct sk_buff *skb)
851{
852 int ack;
853
854 if (!sock_flag(sk, SOCK_WIFI_STATUS))
855 return;
856 if (!skb->wifi_acked_valid)
857 return;
858
859 ack = skb->wifi_acked;
860
861 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
862}
863EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
864
865static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
866 struct sk_buff *skb)
867{
868 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
869 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
870 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
871}
872
873void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
874 struct sk_buff *skb)
875{
876 sock_recv_timestamp(msg, sk, skb);
877 sock_recv_drops(msg, sk, skb);
878}
879EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
880
881INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket *, struct msghdr *,
882 size_t, int));
883INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket *, struct msghdr *,
884 size_t, int));
885static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
886 int flags)
887{
888 return INDIRECT_CALL_INET(sock->ops->recvmsg, inet6_recvmsg,
889 inet_recvmsg, sock, msg, msg_data_left(msg),
890 flags);
891}
892
893/**
894 * sock_recvmsg - receive a message from @sock
895 * @sock: socket
896 * @msg: message to receive
897 * @flags: message flags
898 *
899 * Receives @msg from @sock, passing through LSM. Returns the total number
900 * of bytes received, or an error.
901 */
902int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
903{
904 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
905
906 return err ?: sock_recvmsg_nosec(sock, msg, flags);
907}
908EXPORT_SYMBOL(sock_recvmsg);
909
910/**
911 * kernel_recvmsg - Receive a message from a socket (kernel space)
912 * @sock: The socket to receive the message from
913 * @msg: Received message
914 * @vec: Input s/g array for message data
915 * @num: Size of input s/g array
916 * @size: Number of bytes to read
917 * @flags: Message flags (MSG_DONTWAIT, etc...)
918 *
919 * On return the msg structure contains the scatter/gather array passed in the
920 * vec argument. The array is modified so that it consists of the unfilled
921 * portion of the original array.
922 *
923 * The returned value is the total number of bytes received, or an error.
924 */
925
926int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
927 struct kvec *vec, size_t num, size_t size, int flags)
928{
929 msg->msg_control_is_user = false;
930 iov_iter_kvec(&msg->msg_iter, READ, vec, num, size);
931 return sock_recvmsg(sock, msg, flags);
932}
933EXPORT_SYMBOL(kernel_recvmsg);
934
935static ssize_t sock_sendpage(struct file *file, struct page *page,
936 int offset, size_t size, loff_t *ppos, int more)
937{
938 struct socket *sock;
939 int flags;
940
941 sock = file->private_data;
942
943 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
944 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
945 flags |= more;
946
947 return kernel_sendpage(sock, page, offset, size, flags);
948}
949
950static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
951 struct pipe_inode_info *pipe, size_t len,
952 unsigned int flags)
953{
954 struct socket *sock = file->private_data;
955
956 if (unlikely(!sock->ops->splice_read))
957 return generic_file_splice_read(file, ppos, pipe, len, flags);
958
959 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
960}
961
962static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
963{
964 struct file *file = iocb->ki_filp;
965 struct socket *sock = file->private_data;
966 struct msghdr msg = {.msg_iter = *to,
967 .msg_iocb = iocb};
968 ssize_t res;
969
970 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
971 msg.msg_flags = MSG_DONTWAIT;
972
973 if (iocb->ki_pos != 0)
974 return -ESPIPE;
975
976 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
977 return 0;
978
979 res = sock_recvmsg(sock, &msg, msg.msg_flags);
980 *to = msg.msg_iter;
981 return res;
982}
983
984static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
985{
986 struct file *file = iocb->ki_filp;
987 struct socket *sock = file->private_data;
988 struct msghdr msg = {.msg_iter = *from,
989 .msg_iocb = iocb};
990 ssize_t res;
991
992 if (iocb->ki_pos != 0)
993 return -ESPIPE;
994
995 if (file->f_flags & O_NONBLOCK || (iocb->ki_flags & IOCB_NOWAIT))
996 msg.msg_flags = MSG_DONTWAIT;
997
998 if (sock->type == SOCK_SEQPACKET)
999 msg.msg_flags |= MSG_EOR;
1000
1001 res = sock_sendmsg(sock, &msg);
1002 *from = msg.msg_iter;
1003 return res;
1004}
1005
1006/*
1007 * Atomic setting of ioctl hooks to avoid race
1008 * with module unload.
1009 */
1010
1011static DEFINE_MUTEX(br_ioctl_mutex);
1012static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
1013
1014void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
1015{
1016 mutex_lock(&br_ioctl_mutex);
1017 br_ioctl_hook = hook;
1018 mutex_unlock(&br_ioctl_mutex);
1019}
1020EXPORT_SYMBOL(brioctl_set);
1021
1022static DEFINE_MUTEX(vlan_ioctl_mutex);
1023static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
1024
1025void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
1026{
1027 mutex_lock(&vlan_ioctl_mutex);
1028 vlan_ioctl_hook = hook;
1029 mutex_unlock(&vlan_ioctl_mutex);
1030}
1031EXPORT_SYMBOL(vlan_ioctl_set);
1032
1033static long sock_do_ioctl(struct net *net, struct socket *sock,
1034 unsigned int cmd, unsigned long arg)
1035{
1036 int err;
1037 void __user *argp = (void __user *)arg;
1038
1039 err = sock->ops->ioctl(sock, cmd, arg);
1040
1041 /*
1042 * If this ioctl is unknown try to hand it down
1043 * to the NIC driver.
1044 */
1045 if (err != -ENOIOCTLCMD)
1046 return err;
1047
1048 if (cmd == SIOCGIFCONF) {
1049 struct ifconf ifc;
1050 if (copy_from_user(&ifc, argp, sizeof(struct ifconf)))
1051 return -EFAULT;
1052 rtnl_lock();
1053 err = dev_ifconf(net, &ifc, sizeof(struct ifreq));
1054 rtnl_unlock();
1055 if (!err && copy_to_user(argp, &ifc, sizeof(struct ifconf)))
1056 err = -EFAULT;
1057 } else {
1058 struct ifreq ifr;
1059 bool need_copyout;
1060 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1061 return -EFAULT;
1062 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1063 if (!err && need_copyout)
1064 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1065 return -EFAULT;
1066 }
1067 return err;
1068}
1069
1070/*
1071 * With an ioctl, arg may well be a user mode pointer, but we don't know
1072 * what to do with it - that's up to the protocol still.
1073 */
1074
1075static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1076{
1077 struct socket *sock;
1078 struct sock *sk;
1079 void __user *argp = (void __user *)arg;
1080 int pid, err;
1081 struct net *net;
1082
1083 sock = file->private_data;
1084 sk = sock->sk;
1085 net = sock_net(sk);
1086 if (unlikely(cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))) {
1087 struct ifreq ifr;
1088 bool need_copyout;
1089 if (copy_from_user(&ifr, argp, sizeof(struct ifreq)))
1090 return -EFAULT;
1091 err = dev_ioctl(net, cmd, &ifr, &need_copyout);
1092 if (!err && need_copyout)
1093 if (copy_to_user(argp, &ifr, sizeof(struct ifreq)))
1094 return -EFAULT;
1095 } else
1096#ifdef CONFIG_WEXT_CORE
1097 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
1098 err = wext_handle_ioctl(net, cmd, argp);
1099 } else
1100#endif
1101 switch (cmd) {
1102 case FIOSETOWN:
1103 case SIOCSPGRP:
1104 err = -EFAULT;
1105 if (get_user(pid, (int __user *)argp))
1106 break;
1107 err = f_setown(sock->file, pid, 1);
1108 break;
1109 case FIOGETOWN:
1110 case SIOCGPGRP:
1111 err = put_user(f_getown(sock->file),
1112 (int __user *)argp);
1113 break;
1114 case SIOCGIFBR:
1115 case SIOCSIFBR:
1116 case SIOCBRADDBR:
1117 case SIOCBRDELBR:
1118 err = -ENOPKG;
1119 if (!br_ioctl_hook)
1120 request_module("bridge");
1121
1122 mutex_lock(&br_ioctl_mutex);
1123 if (br_ioctl_hook)
1124 err = br_ioctl_hook(net, cmd, argp);
1125 mutex_unlock(&br_ioctl_mutex);
1126 break;
1127 case SIOCGIFVLAN:
1128 case SIOCSIFVLAN:
1129 err = -ENOPKG;
1130 if (!vlan_ioctl_hook)
1131 request_module("8021q");
1132
1133 mutex_lock(&vlan_ioctl_mutex);
1134 if (vlan_ioctl_hook)
1135 err = vlan_ioctl_hook(net, argp);
1136 mutex_unlock(&vlan_ioctl_mutex);
1137 break;
1138 case SIOCGSKNS:
1139 err = -EPERM;
1140 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1141 break;
1142
1143 err = open_related_ns(&net->ns, get_net_ns);
1144 break;
1145 case SIOCGSTAMP_OLD:
1146 case SIOCGSTAMPNS_OLD:
1147 if (!sock->ops->gettstamp) {
1148 err = -ENOIOCTLCMD;
1149 break;
1150 }
1151 err = sock->ops->gettstamp(sock, argp,
1152 cmd == SIOCGSTAMP_OLD,
1153 !IS_ENABLED(CONFIG_64BIT));
1154 break;
1155 case SIOCGSTAMP_NEW:
1156 case SIOCGSTAMPNS_NEW:
1157 if (!sock->ops->gettstamp) {
1158 err = -ENOIOCTLCMD;
1159 break;
1160 }
1161 err = sock->ops->gettstamp(sock, argp,
1162 cmd == SIOCGSTAMP_NEW,
1163 false);
1164 break;
1165 default:
1166 err = sock_do_ioctl(net, sock, cmd, arg);
1167 break;
1168 }
1169 return err;
1170}
1171
1172/**
1173 * sock_create_lite - creates a socket
1174 * @family: protocol family (AF_INET, ...)
1175 * @type: communication type (SOCK_STREAM, ...)
1176 * @protocol: protocol (0, ...)
1177 * @res: new socket
1178 *
1179 * Creates a new socket and assigns it to @res, passing through LSM.
1180 * The new socket initialization is not complete, see kernel_accept().
1181 * Returns 0 or an error. On failure @res is set to %NULL.
1182 * This function internally uses GFP_KERNEL.
1183 */
1184
1185int sock_create_lite(int family, int type, int protocol, struct socket **res)
1186{
1187 int err;
1188 struct socket *sock = NULL;
1189
1190 err = security_socket_create(family, type, protocol, 1);
1191 if (err)
1192 goto out;
1193
1194 sock = sock_alloc();
1195 if (!sock) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
1199
1200 sock->type = type;
1201 err = security_socket_post_create(sock, family, type, protocol, 1);
1202 if (err)
1203 goto out_release;
1204
1205out:
1206 *res = sock;
1207 return err;
1208out_release:
1209 sock_release(sock);
1210 sock = NULL;
1211 goto out;
1212}
1213EXPORT_SYMBOL(sock_create_lite);
1214
1215/* No kernel lock held - perfect */
1216static __poll_t sock_poll(struct file *file, poll_table *wait)
1217{
1218 struct socket *sock = file->private_data;
1219 __poll_t events = poll_requested_events(wait), flag = 0;
1220
1221 if (!sock->ops->poll)
1222 return 0;
1223
1224 if (sk_can_busy_loop(sock->sk)) {
1225 /* poll once if requested by the syscall */
1226 if (events & POLL_BUSY_LOOP)
1227 sk_busy_loop(sock->sk, 1);
1228
1229 /* if this socket can poll_ll, tell the system call */
1230 flag = POLL_BUSY_LOOP;
1231 }
1232
1233 return sock->ops->poll(file, sock, wait) | flag;
1234}
1235
1236static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1237{
1238 struct socket *sock = file->private_data;
1239
1240 return sock->ops->mmap(file, sock, vma);
1241}
1242
1243static int sock_close(struct inode *inode, struct file *filp)
1244{
1245 __sock_release(SOCKET_I(inode), inode);
1246 return 0;
1247}
1248
1249/*
1250 * Update the socket async list
1251 *
1252 * Fasync_list locking strategy.
1253 *
1254 * 1. fasync_list is modified only under process context socket lock
1255 * i.e. under semaphore.
1256 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1257 * or under socket lock
1258 */
1259
1260static int sock_fasync(int fd, struct file *filp, int on)
1261{
1262 struct socket *sock = filp->private_data;
1263 struct sock *sk = sock->sk;
1264 struct socket_wq *wq = &sock->wq;
1265
1266 if (sk == NULL)
1267 return -EINVAL;
1268
1269 lock_sock(sk);
1270 fasync_helper(fd, filp, on, &wq->fasync_list);
1271
1272 if (!wq->fasync_list)
1273 sock_reset_flag(sk, SOCK_FASYNC);
1274 else
1275 sock_set_flag(sk, SOCK_FASYNC);
1276
1277 release_sock(sk);
1278 return 0;
1279}
1280
1281/* This function may be called only under rcu_lock */
1282
1283int sock_wake_async(struct socket_wq *wq, int how, int band)
1284{
1285 if (!wq || !wq->fasync_list)
1286 return -1;
1287
1288 switch (how) {
1289 case SOCK_WAKE_WAITD:
1290 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1291 break;
1292 goto call_kill;
1293 case SOCK_WAKE_SPACE:
1294 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1295 break;
1296 fallthrough;
1297 case SOCK_WAKE_IO:
1298call_kill:
1299 kill_fasync(&wq->fasync_list, SIGIO, band);
1300 break;
1301 case SOCK_WAKE_URG:
1302 kill_fasync(&wq->fasync_list, SIGURG, band);
1303 }
1304
1305 return 0;
1306}
1307EXPORT_SYMBOL(sock_wake_async);
1308
1309/**
1310 * __sock_create - creates a socket
1311 * @net: net namespace
1312 * @family: protocol family (AF_INET, ...)
1313 * @type: communication type (SOCK_STREAM, ...)
1314 * @protocol: protocol (0, ...)
1315 * @res: new socket
1316 * @kern: boolean for kernel space sockets
1317 *
1318 * Creates a new socket and assigns it to @res, passing through LSM.
1319 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1320 * be set to true if the socket resides in kernel space.
1321 * This function internally uses GFP_KERNEL.
1322 */
1323
1324int __sock_create(struct net *net, int family, int type, int protocol,
1325 struct socket **res, int kern)
1326{
1327 int err;
1328 struct socket *sock;
1329 const struct net_proto_family *pf;
1330
1331 /*
1332 * Check protocol is in range
1333 */
1334 if (family < 0 || family >= NPROTO)
1335 return -EAFNOSUPPORT;
1336 if (type < 0 || type >= SOCK_MAX)
1337 return -EINVAL;
1338
1339 /* Compatibility.
1340
1341 This uglymoron is moved from INET layer to here to avoid
1342 deadlock in module load.
1343 */
1344 if (family == PF_INET && type == SOCK_PACKET) {
1345 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1346 current->comm);
1347 family = PF_PACKET;
1348 }
1349
1350 err = security_socket_create(family, type, protocol, kern);
1351 if (err)
1352 return err;
1353
1354 /*
1355 * Allocate the socket and allow the family to set things up. if
1356 * the protocol is 0, the family is instructed to select an appropriate
1357 * default.
1358 */
1359 sock = sock_alloc();
1360 if (!sock) {
1361 net_warn_ratelimited("socket: no more sockets\n");
1362 return -ENFILE; /* Not exactly a match, but its the
1363 closest posix thing */
1364 }
1365
1366 sock->type = type;
1367
1368#ifdef CONFIG_MODULES
1369 /* Attempt to load a protocol module if the find failed.
1370 *
1371 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1372 * requested real, full-featured networking support upon configuration.
1373 * Otherwise module support will break!
1374 */
1375 if (rcu_access_pointer(net_families[family]) == NULL)
1376 request_module("net-pf-%d", family);
1377#endif
1378
1379 rcu_read_lock();
1380 pf = rcu_dereference(net_families[family]);
1381 err = -EAFNOSUPPORT;
1382 if (!pf)
1383 goto out_release;
1384
1385 /*
1386 * We will call the ->create function, that possibly is in a loadable
1387 * module, so we have to bump that loadable module refcnt first.
1388 */
1389 if (!try_module_get(pf->owner))
1390 goto out_release;
1391
1392 /* Now protected by module ref count */
1393 rcu_read_unlock();
1394
1395 err = pf->create(net, sock, protocol, kern);
1396 if (err < 0)
1397 goto out_module_put;
1398
1399 /*
1400 * Now to bump the refcnt of the [loadable] module that owns this
1401 * socket at sock_release time we decrement its refcnt.
1402 */
1403 if (!try_module_get(sock->ops->owner))
1404 goto out_module_busy;
1405
1406 /*
1407 * Now that we're done with the ->create function, the [loadable]
1408 * module can have its refcnt decremented
1409 */
1410 module_put(pf->owner);
1411 err = security_socket_post_create(sock, family, type, protocol, kern);
1412 if (err)
1413 goto out_sock_release;
1414 *res = sock;
1415
1416 return 0;
1417
1418out_module_busy:
1419 err = -EAFNOSUPPORT;
1420out_module_put:
1421 sock->ops = NULL;
1422 module_put(pf->owner);
1423out_sock_release:
1424 sock_release(sock);
1425 return err;
1426
1427out_release:
1428 rcu_read_unlock();
1429 goto out_sock_release;
1430}
1431EXPORT_SYMBOL(__sock_create);
1432
1433/**
1434 * sock_create - creates a socket
1435 * @family: protocol family (AF_INET, ...)
1436 * @type: communication type (SOCK_STREAM, ...)
1437 * @protocol: protocol (0, ...)
1438 * @res: new socket
1439 *
1440 * A wrapper around __sock_create().
1441 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1442 */
1443
1444int sock_create(int family, int type, int protocol, struct socket **res)
1445{
1446 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1447}
1448EXPORT_SYMBOL(sock_create);
1449
1450/**
1451 * sock_create_kern - creates a socket (kernel space)
1452 * @net: net namespace
1453 * @family: protocol family (AF_INET, ...)
1454 * @type: communication type (SOCK_STREAM, ...)
1455 * @protocol: protocol (0, ...)
1456 * @res: new socket
1457 *
1458 * A wrapper around __sock_create().
1459 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1460 */
1461
1462int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1463{
1464 return __sock_create(net, family, type, protocol, res, 1);
1465}
1466EXPORT_SYMBOL(sock_create_kern);
1467
1468int __sys_socket(int family, int type, int protocol)
1469{
1470 int retval;
1471 struct socket *sock;
1472 int flags;
1473
1474 /* Check the SOCK_* constants for consistency. */
1475 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1476 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1477 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1478 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1479
1480 flags = type & ~SOCK_TYPE_MASK;
1481 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1482 return -EINVAL;
1483 type &= SOCK_TYPE_MASK;
1484
1485 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1486 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1487
1488 retval = sock_create(family, type, protocol, &sock);
1489 if (retval < 0)
1490 return retval;
1491
1492 return sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1493}
1494
1495SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1496{
1497 return __sys_socket(family, type, protocol);
1498}
1499
1500/*
1501 * Create a pair of connected sockets.
1502 */
1503
1504int __sys_socketpair(int family, int type, int protocol, int __user *usockvec)
1505{
1506 struct socket *sock1, *sock2;
1507 int fd1, fd2, err;
1508 struct file *newfile1, *newfile2;
1509 int flags;
1510
1511 flags = type & ~SOCK_TYPE_MASK;
1512 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1513 return -EINVAL;
1514 type &= SOCK_TYPE_MASK;
1515
1516 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1517 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1518
1519 /*
1520 * reserve descriptors and make sure we won't fail
1521 * to return them to userland.
1522 */
1523 fd1 = get_unused_fd_flags(flags);
1524 if (unlikely(fd1 < 0))
1525 return fd1;
1526
1527 fd2 = get_unused_fd_flags(flags);
1528 if (unlikely(fd2 < 0)) {
1529 put_unused_fd(fd1);
1530 return fd2;
1531 }
1532
1533 err = put_user(fd1, &usockvec[0]);
1534 if (err)
1535 goto out;
1536
1537 err = put_user(fd2, &usockvec[1]);
1538 if (err)
1539 goto out;
1540
1541 /*
1542 * Obtain the first socket and check if the underlying protocol
1543 * supports the socketpair call.
1544 */
1545
1546 err = sock_create(family, type, protocol, &sock1);
1547 if (unlikely(err < 0))
1548 goto out;
1549
1550 err = sock_create(family, type, protocol, &sock2);
1551 if (unlikely(err < 0)) {
1552 sock_release(sock1);
1553 goto out;
1554 }
1555
1556 err = security_socket_socketpair(sock1, sock2);
1557 if (unlikely(err)) {
1558 sock_release(sock2);
1559 sock_release(sock1);
1560 goto out;
1561 }
1562
1563 err = sock1->ops->socketpair(sock1, sock2);
1564 if (unlikely(err < 0)) {
1565 sock_release(sock2);
1566 sock_release(sock1);
1567 goto out;
1568 }
1569
1570 newfile1 = sock_alloc_file(sock1, flags, NULL);
1571 if (IS_ERR(newfile1)) {
1572 err = PTR_ERR(newfile1);
1573 sock_release(sock2);
1574 goto out;
1575 }
1576
1577 newfile2 = sock_alloc_file(sock2, flags, NULL);
1578 if (IS_ERR(newfile2)) {
1579 err = PTR_ERR(newfile2);
1580 fput(newfile1);
1581 goto out;
1582 }
1583
1584 audit_fd_pair(fd1, fd2);
1585
1586 fd_install(fd1, newfile1);
1587 fd_install(fd2, newfile2);
1588 return 0;
1589
1590out:
1591 put_unused_fd(fd2);
1592 put_unused_fd(fd1);
1593 return err;
1594}
1595
1596SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1597 int __user *, usockvec)
1598{
1599 return __sys_socketpair(family, type, protocol, usockvec);
1600}
1601
1602/*
1603 * Bind a name to a socket. Nothing much to do here since it's
1604 * the protocol's responsibility to handle the local address.
1605 *
1606 * We move the socket address to kernel space before we call
1607 * the protocol layer (having also checked the address is ok).
1608 */
1609
1610int __sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1611{
1612 struct socket *sock;
1613 struct sockaddr_storage address;
1614 int err, fput_needed;
1615
1616 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1617 if (sock) {
1618 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1619 if (!err) {
1620 err = security_socket_bind(sock,
1621 (struct sockaddr *)&address,
1622 addrlen);
1623 if (!err)
1624 err = sock->ops->bind(sock,
1625 (struct sockaddr *)
1626 &address, addrlen);
1627 }
1628 fput_light(sock->file, fput_needed);
1629 }
1630 return err;
1631}
1632
1633SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1634{
1635 return __sys_bind(fd, umyaddr, addrlen);
1636}
1637
1638/*
1639 * Perform a listen. Basically, we allow the protocol to do anything
1640 * necessary for a listen, and if that works, we mark the socket as
1641 * ready for listening.
1642 */
1643
1644int __sys_listen(int fd, int backlog)
1645{
1646 struct socket *sock;
1647 int err, fput_needed;
1648 int somaxconn;
1649
1650 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1651 if (sock) {
1652 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1653 if ((unsigned int)backlog > somaxconn)
1654 backlog = somaxconn;
1655
1656 err = security_socket_listen(sock, backlog);
1657 if (!err)
1658 err = sock->ops->listen(sock, backlog);
1659
1660 fput_light(sock->file, fput_needed);
1661 }
1662 return err;
1663}
1664
1665SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1666{
1667 return __sys_listen(fd, backlog);
1668}
1669
1670int __sys_accept4_file(struct file *file, unsigned file_flags,
1671 struct sockaddr __user *upeer_sockaddr,
1672 int __user *upeer_addrlen, int flags,
1673 unsigned long nofile)
1674{
1675 struct socket *sock, *newsock;
1676 struct file *newfile;
1677 int err, len, newfd;
1678 struct sockaddr_storage address;
1679
1680 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1681 return -EINVAL;
1682
1683 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1684 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1685
1686 sock = sock_from_file(file);
1687 if (!sock) {
1688 err = -ENOTSOCK;
1689 goto out;
1690 }
1691
1692 err = -ENFILE;
1693 newsock = sock_alloc();
1694 if (!newsock)
1695 goto out;
1696
1697 newsock->type = sock->type;
1698 newsock->ops = sock->ops;
1699
1700 /*
1701 * We don't need try_module_get here, as the listening socket (sock)
1702 * has the protocol module (sock->ops->owner) held.
1703 */
1704 __module_get(newsock->ops->owner);
1705
1706 newfd = __get_unused_fd_flags(flags, nofile);
1707 if (unlikely(newfd < 0)) {
1708 err = newfd;
1709 sock_release(newsock);
1710 goto out;
1711 }
1712 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1713 if (IS_ERR(newfile)) {
1714 err = PTR_ERR(newfile);
1715 put_unused_fd(newfd);
1716 goto out;
1717 }
1718
1719 err = security_socket_accept(sock, newsock);
1720 if (err)
1721 goto out_fd;
1722
1723 err = sock->ops->accept(sock, newsock, sock->file->f_flags | file_flags,
1724 false);
1725 if (err < 0)
1726 goto out_fd;
1727
1728 if (upeer_sockaddr) {
1729 len = newsock->ops->getname(newsock,
1730 (struct sockaddr *)&address, 2);
1731 if (len < 0) {
1732 err = -ECONNABORTED;
1733 goto out_fd;
1734 }
1735 err = move_addr_to_user(&address,
1736 len, upeer_sockaddr, upeer_addrlen);
1737 if (err < 0)
1738 goto out_fd;
1739 }
1740
1741 /* File flags are not inherited via accept() unlike another OSes. */
1742
1743 fd_install(newfd, newfile);
1744 err = newfd;
1745out:
1746 return err;
1747out_fd:
1748 fput(newfile);
1749 put_unused_fd(newfd);
1750 goto out;
1751
1752}
1753
1754/*
1755 * For accept, we attempt to create a new socket, set up the link
1756 * with the client, wake up the client, then return the new
1757 * connected fd. We collect the address of the connector in kernel
1758 * space and move it to user at the very end. This is unclean because
1759 * we open the socket then return an error.
1760 *
1761 * 1003.1g adds the ability to recvmsg() to query connection pending
1762 * status to recvmsg. We need to add that support in a way thats
1763 * clean when we restructure accept also.
1764 */
1765
1766int __sys_accept4(int fd, struct sockaddr __user *upeer_sockaddr,
1767 int __user *upeer_addrlen, int flags)
1768{
1769 int ret = -EBADF;
1770 struct fd f;
1771
1772 f = fdget(fd);
1773 if (f.file) {
1774 ret = __sys_accept4_file(f.file, 0, upeer_sockaddr,
1775 upeer_addrlen, flags,
1776 rlimit(RLIMIT_NOFILE));
1777 fdput(f);
1778 }
1779
1780 return ret;
1781}
1782
1783SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1784 int __user *, upeer_addrlen, int, flags)
1785{
1786 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, flags);
1787}
1788
1789SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1790 int __user *, upeer_addrlen)
1791{
1792 return __sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1793}
1794
1795/*
1796 * Attempt to connect to a socket with the server address. The address
1797 * is in user space so we verify it is OK and move it to kernel space.
1798 *
1799 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1800 * break bindings
1801 *
1802 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1803 * other SEQPACKET protocols that take time to connect() as it doesn't
1804 * include the -EINPROGRESS status for such sockets.
1805 */
1806
1807int __sys_connect_file(struct file *file, struct sockaddr_storage *address,
1808 int addrlen, int file_flags)
1809{
1810 struct socket *sock;
1811 int err;
1812
1813 sock = sock_from_file(file);
1814 if (!sock) {
1815 err = -ENOTSOCK;
1816 goto out;
1817 }
1818
1819 err =
1820 security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1821 if (err)
1822 goto out;
1823
1824 err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1825 sock->file->f_flags | file_flags);
1826out:
1827 return err;
1828}
1829
1830int __sys_connect(int fd, struct sockaddr __user *uservaddr, int addrlen)
1831{
1832 int ret = -EBADF;
1833 struct fd f;
1834
1835 f = fdget(fd);
1836 if (f.file) {
1837 struct sockaddr_storage address;
1838
1839 ret = move_addr_to_kernel(uservaddr, addrlen, &address);
1840 if (!ret)
1841 ret = __sys_connect_file(f.file, &address, addrlen, 0);
1842 fdput(f);
1843 }
1844
1845 return ret;
1846}
1847
1848SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1849 int, addrlen)
1850{
1851 return __sys_connect(fd, uservaddr, addrlen);
1852}
1853
1854/*
1855 * Get the local address ('name') of a socket object. Move the obtained
1856 * name to user space.
1857 */
1858
1859int __sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1860 int __user *usockaddr_len)
1861{
1862 struct socket *sock;
1863 struct sockaddr_storage address;
1864 int err, fput_needed;
1865
1866 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1867 if (!sock)
1868 goto out;
1869
1870 err = security_socket_getsockname(sock);
1871 if (err)
1872 goto out_put;
1873
1874 err = sock->ops->getname(sock, (struct sockaddr *)&address, 0);
1875 if (err < 0)
1876 goto out_put;
1877 /* "err" is actually length in this case */
1878 err = move_addr_to_user(&address, err, usockaddr, usockaddr_len);
1879
1880out_put:
1881 fput_light(sock->file, fput_needed);
1882out:
1883 return err;
1884}
1885
1886SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1887 int __user *, usockaddr_len)
1888{
1889 return __sys_getsockname(fd, usockaddr, usockaddr_len);
1890}
1891
1892/*
1893 * Get the remote address ('name') of a socket object. Move the obtained
1894 * name to user space.
1895 */
1896
1897int __sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1898 int __user *usockaddr_len)
1899{
1900 struct socket *sock;
1901 struct sockaddr_storage address;
1902 int err, fput_needed;
1903
1904 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1905 if (sock != NULL) {
1906 err = security_socket_getpeername(sock);
1907 if (err) {
1908 fput_light(sock->file, fput_needed);
1909 return err;
1910 }
1911
1912 err = sock->ops->getname(sock, (struct sockaddr *)&address, 1);
1913 if (err >= 0)
1914 /* "err" is actually length in this case */
1915 err = move_addr_to_user(&address, err, usockaddr,
1916 usockaddr_len);
1917 fput_light(sock->file, fput_needed);
1918 }
1919 return err;
1920}
1921
1922SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1923 int __user *, usockaddr_len)
1924{
1925 return __sys_getpeername(fd, usockaddr, usockaddr_len);
1926}
1927
1928/*
1929 * Send a datagram to a given address. We move the address into kernel
1930 * space and check the user space data area is readable before invoking
1931 * the protocol.
1932 */
1933int __sys_sendto(int fd, void __user *buff, size_t len, unsigned int flags,
1934 struct sockaddr __user *addr, int addr_len)
1935{
1936 struct socket *sock;
1937 struct sockaddr_storage address;
1938 int err;
1939 struct msghdr msg;
1940 struct iovec iov;
1941 int fput_needed;
1942
1943 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1944 if (unlikely(err))
1945 return err;
1946 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1947 if (!sock)
1948 goto out;
1949
1950 msg.msg_name = NULL;
1951 msg.msg_control = NULL;
1952 msg.msg_controllen = 0;
1953 msg.msg_namelen = 0;
1954 if (addr) {
1955 err = move_addr_to_kernel(addr, addr_len, &address);
1956 if (err < 0)
1957 goto out_put;
1958 msg.msg_name = (struct sockaddr *)&address;
1959 msg.msg_namelen = addr_len;
1960 }
1961 if (sock->file->f_flags & O_NONBLOCK)
1962 flags |= MSG_DONTWAIT;
1963 msg.msg_flags = flags;
1964 err = sock_sendmsg(sock, &msg);
1965
1966out_put:
1967 fput_light(sock->file, fput_needed);
1968out:
1969 return err;
1970}
1971
1972SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1973 unsigned int, flags, struct sockaddr __user *, addr,
1974 int, addr_len)
1975{
1976 return __sys_sendto(fd, buff, len, flags, addr, addr_len);
1977}
1978
1979/*
1980 * Send a datagram down a socket.
1981 */
1982
1983SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1984 unsigned int, flags)
1985{
1986 return __sys_sendto(fd, buff, len, flags, NULL, 0);
1987}
1988
1989/*
1990 * Receive a frame from the socket and optionally record the address of the
1991 * sender. We verify the buffers are writable and if needed move the
1992 * sender address from kernel to user space.
1993 */
1994int __sys_recvfrom(int fd, void __user *ubuf, size_t size, unsigned int flags,
1995 struct sockaddr __user *addr, int __user *addr_len)
1996{
1997 struct socket *sock;
1998 struct iovec iov;
1999 struct msghdr msg;
2000 struct sockaddr_storage address;
2001 int err, err2;
2002 int fput_needed;
2003
2004 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
2005 if (unlikely(err))
2006 return err;
2007 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2008 if (!sock)
2009 goto out;
2010
2011 msg.msg_control = NULL;
2012 msg.msg_controllen = 0;
2013 /* Save some cycles and don't copy the address if not needed */
2014 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
2015 /* We assume all kernel code knows the size of sockaddr_storage */
2016 msg.msg_namelen = 0;
2017 msg.msg_iocb = NULL;
2018 msg.msg_flags = 0;
2019 if (sock->file->f_flags & O_NONBLOCK)
2020 flags |= MSG_DONTWAIT;
2021 err = sock_recvmsg(sock, &msg, flags);
2022
2023 if (err >= 0 && addr != NULL) {
2024 err2 = move_addr_to_user(&address,
2025 msg.msg_namelen, addr, addr_len);
2026 if (err2 < 0)
2027 err = err2;
2028 }
2029
2030 fput_light(sock->file, fput_needed);
2031out:
2032 return err;
2033}
2034
2035SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
2036 unsigned int, flags, struct sockaddr __user *, addr,
2037 int __user *, addr_len)
2038{
2039 return __sys_recvfrom(fd, ubuf, size, flags, addr, addr_len);
2040}
2041
2042/*
2043 * Receive a datagram from a socket.
2044 */
2045
2046SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
2047 unsigned int, flags)
2048{
2049 return __sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
2050}
2051
2052static bool sock_use_custom_sol_socket(const struct socket *sock)
2053{
2054 const struct sock *sk = sock->sk;
2055
2056 /* Use sock->ops->setsockopt() for MPTCP */
2057 return IS_ENABLED(CONFIG_MPTCP) &&
2058 sk->sk_protocol == IPPROTO_MPTCP &&
2059 sk->sk_type == SOCK_STREAM &&
2060 (sk->sk_family == AF_INET || sk->sk_family == AF_INET6);
2061}
2062
2063/*
2064 * Set a socket option. Because we don't know the option lengths we have
2065 * to pass the user mode parameter for the protocols to sort out.
2066 */
2067int __sys_setsockopt(int fd, int level, int optname, char __user *user_optval,
2068 int optlen)
2069{
2070 sockptr_t optval = USER_SOCKPTR(user_optval);
2071 char *kernel_optval = NULL;
2072 int err, fput_needed;
2073 struct socket *sock;
2074
2075 if (optlen < 0)
2076 return -EINVAL;
2077
2078 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2079 if (!sock)
2080 return err;
2081
2082 err = security_socket_setsockopt(sock, level, optname);
2083 if (err)
2084 goto out_put;
2085
2086 if (!in_compat_syscall())
2087 err = BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock->sk, &level, &optname,
2088 user_optval, &optlen,
2089 &kernel_optval);
2090 if (err < 0)
2091 goto out_put;
2092 if (err > 0) {
2093 err = 0;
2094 goto out_put;
2095 }
2096
2097 if (kernel_optval)
2098 optval = KERNEL_SOCKPTR(kernel_optval);
2099 if (level == SOL_SOCKET && !sock_use_custom_sol_socket(sock))
2100 err = sock_setsockopt(sock, level, optname, optval, optlen);
2101 else if (unlikely(!sock->ops->setsockopt))
2102 err = -EOPNOTSUPP;
2103 else
2104 err = sock->ops->setsockopt(sock, level, optname, optval,
2105 optlen);
2106 kfree(kernel_optval);
2107out_put:
2108 fput_light(sock->file, fput_needed);
2109 return err;
2110}
2111
2112SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
2113 char __user *, optval, int, optlen)
2114{
2115 return __sys_setsockopt(fd, level, optname, optval, optlen);
2116}
2117
2118INDIRECT_CALLABLE_DECLARE(bool tcp_bpf_bypass_getsockopt(int level,
2119 int optname));
2120
2121/*
2122 * Get a socket option. Because we don't know the option lengths we have
2123 * to pass a user mode parameter for the protocols to sort out.
2124 */
2125int __sys_getsockopt(int fd, int level, int optname, char __user *optval,
2126 int __user *optlen)
2127{
2128 int err, fput_needed;
2129 struct socket *sock;
2130 int max_optlen;
2131
2132 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2133 if (!sock)
2134 return err;
2135
2136 err = security_socket_getsockopt(sock, level, optname);
2137 if (err)
2138 goto out_put;
2139
2140 if (!in_compat_syscall())
2141 max_optlen = BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen);
2142
2143 if (level == SOL_SOCKET)
2144 err = sock_getsockopt(sock, level, optname, optval, optlen);
2145 else if (unlikely(!sock->ops->getsockopt))
2146 err = -EOPNOTSUPP;
2147 else
2148 err = sock->ops->getsockopt(sock, level, optname, optval,
2149 optlen);
2150
2151 if (!in_compat_syscall())
2152 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock->sk, level, optname,
2153 optval, optlen, max_optlen,
2154 err);
2155out_put:
2156 fput_light(sock->file, fput_needed);
2157 return err;
2158}
2159
2160SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
2161 char __user *, optval, int __user *, optlen)
2162{
2163 return __sys_getsockopt(fd, level, optname, optval, optlen);
2164}
2165
2166/*
2167 * Shutdown a socket.
2168 */
2169
2170int __sys_shutdown_sock(struct socket *sock, int how)
2171{
2172 int err;
2173
2174 err = security_socket_shutdown(sock, how);
2175 if (!err)
2176 err = sock->ops->shutdown(sock, how);
2177
2178 return err;
2179}
2180
2181int __sys_shutdown(int fd, int how)
2182{
2183 int err, fput_needed;
2184 struct socket *sock;
2185
2186 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2187 if (sock != NULL) {
2188 err = __sys_shutdown_sock(sock, how);
2189 fput_light(sock->file, fput_needed);
2190 }
2191 return err;
2192}
2193
2194SYSCALL_DEFINE2(shutdown, int, fd, int, how)
2195{
2196 return __sys_shutdown(fd, how);
2197}
2198
2199/* A couple of helpful macros for getting the address of the 32/64 bit
2200 * fields which are the same type (int / unsigned) on our platforms.
2201 */
2202#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2203#define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2204#define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2205
2206struct used_address {
2207 struct sockaddr_storage name;
2208 unsigned int name_len;
2209};
2210
2211int __copy_msghdr_from_user(struct msghdr *kmsg,
2212 struct user_msghdr __user *umsg,
2213 struct sockaddr __user **save_addr,
2214 struct iovec __user **uiov, size_t *nsegs)
2215{
2216 struct user_msghdr msg;
2217 ssize_t err;
2218
2219 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
2220 return -EFAULT;
2221
2222 kmsg->msg_control_is_user = true;
2223 kmsg->msg_control_user = msg.msg_control;
2224 kmsg->msg_controllen = msg.msg_controllen;
2225 kmsg->msg_flags = msg.msg_flags;
2226
2227 kmsg->msg_namelen = msg.msg_namelen;
2228 if (!msg.msg_name)
2229 kmsg->msg_namelen = 0;
2230
2231 if (kmsg->msg_namelen < 0)
2232 return -EINVAL;
2233
2234 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
2235 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
2236
2237 if (save_addr)
2238 *save_addr = msg.msg_name;
2239
2240 if (msg.msg_name && kmsg->msg_namelen) {
2241 if (!save_addr) {
2242 err = move_addr_to_kernel(msg.msg_name,
2243 kmsg->msg_namelen,
2244 kmsg->msg_name);
2245 if (err < 0)
2246 return err;
2247 }
2248 } else {
2249 kmsg->msg_name = NULL;
2250 kmsg->msg_namelen = 0;
2251 }
2252
2253 if (msg.msg_iovlen > UIO_MAXIOV)
2254 return -EMSGSIZE;
2255
2256 kmsg->msg_iocb = NULL;
2257 *uiov = msg.msg_iov;
2258 *nsegs = msg.msg_iovlen;
2259 return 0;
2260}
2261
2262static int copy_msghdr_from_user(struct msghdr *kmsg,
2263 struct user_msghdr __user *umsg,
2264 struct sockaddr __user **save_addr,
2265 struct iovec **iov)
2266{
2267 struct user_msghdr msg;
2268 ssize_t err;
2269
2270 err = __copy_msghdr_from_user(kmsg, umsg, save_addr, &msg.msg_iov,
2271 &msg.msg_iovlen);
2272 if (err)
2273 return err;
2274
2275 err = import_iovec(save_addr ? READ : WRITE,
2276 msg.msg_iov, msg.msg_iovlen,
2277 UIO_FASTIOV, iov, &kmsg->msg_iter);
2278 return err < 0 ? err : 0;
2279}
2280
2281static int ____sys_sendmsg(struct socket *sock, struct msghdr *msg_sys,
2282 unsigned int flags, struct used_address *used_address,
2283 unsigned int allowed_msghdr_flags)
2284{
2285 unsigned char ctl[sizeof(struct cmsghdr) + 20]
2286 __aligned(sizeof(__kernel_size_t));
2287 /* 20 is size of ipv6_pktinfo */
2288 unsigned char *ctl_buf = ctl;
2289 int ctl_len;
2290 ssize_t err;
2291
2292 err = -ENOBUFS;
2293
2294 if (msg_sys->msg_controllen > INT_MAX)
2295 goto out;
2296 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2297 ctl_len = msg_sys->msg_controllen;
2298 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2299 err =
2300 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2301 sizeof(ctl));
2302 if (err)
2303 goto out;
2304 ctl_buf = msg_sys->msg_control;
2305 ctl_len = msg_sys->msg_controllen;
2306 } else if (ctl_len) {
2307 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2308 CMSG_ALIGN(sizeof(struct cmsghdr)));
2309 if (ctl_len > sizeof(ctl)) {
2310 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2311 if (ctl_buf == NULL)
2312 goto out;
2313 }
2314 err = -EFAULT;
2315 if (copy_from_user(ctl_buf, msg_sys->msg_control_user, ctl_len))
2316 goto out_freectl;
2317 msg_sys->msg_control = ctl_buf;
2318 msg_sys->msg_control_is_user = false;
2319 }
2320 msg_sys->msg_flags = flags;
2321
2322 if (sock->file->f_flags & O_NONBLOCK)
2323 msg_sys->msg_flags |= MSG_DONTWAIT;
2324 /*
2325 * If this is sendmmsg() and current destination address is same as
2326 * previously succeeded address, omit asking LSM's decision.
2327 * used_address->name_len is initialized to UINT_MAX so that the first
2328 * destination address never matches.
2329 */
2330 if (used_address && msg_sys->msg_name &&
2331 used_address->name_len == msg_sys->msg_namelen &&
2332 !memcmp(&used_address->name, msg_sys->msg_name,
2333 used_address->name_len)) {
2334 err = sock_sendmsg_nosec(sock, msg_sys);
2335 goto out_freectl;
2336 }
2337 err = sock_sendmsg(sock, msg_sys);
2338 /*
2339 * If this is sendmmsg() and sending to current destination address was
2340 * successful, remember it.
2341 */
2342 if (used_address && err >= 0) {
2343 used_address->name_len = msg_sys->msg_namelen;
2344 if (msg_sys->msg_name)
2345 memcpy(&used_address->name, msg_sys->msg_name,
2346 used_address->name_len);
2347 }
2348
2349out_freectl:
2350 if (ctl_buf != ctl)
2351 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2352out:
2353 return err;
2354}
2355
2356int sendmsg_copy_msghdr(struct msghdr *msg,
2357 struct user_msghdr __user *umsg, unsigned flags,
2358 struct iovec **iov)
2359{
2360 int err;
2361
2362 if (flags & MSG_CMSG_COMPAT) {
2363 struct compat_msghdr __user *msg_compat;
2364
2365 msg_compat = (struct compat_msghdr __user *) umsg;
2366 err = get_compat_msghdr(msg, msg_compat, NULL, iov);
2367 } else {
2368 err = copy_msghdr_from_user(msg, umsg, NULL, iov);
2369 }
2370 if (err < 0)
2371 return err;
2372
2373 return 0;
2374}
2375
2376static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
2377 struct msghdr *msg_sys, unsigned int flags,
2378 struct used_address *used_address,
2379 unsigned int allowed_msghdr_flags)
2380{
2381 struct sockaddr_storage address;
2382 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2383 ssize_t err;
2384
2385 msg_sys->msg_name = &address;
2386
2387 err = sendmsg_copy_msghdr(msg_sys, msg, flags, &iov);
2388 if (err < 0)
2389 return err;
2390
2391 err = ____sys_sendmsg(sock, msg_sys, flags, used_address,
2392 allowed_msghdr_flags);
2393 kfree(iov);
2394 return err;
2395}
2396
2397/*
2398 * BSD sendmsg interface
2399 */
2400long __sys_sendmsg_sock(struct socket *sock, struct msghdr *msg,
2401 unsigned int flags)
2402{
2403 return ____sys_sendmsg(sock, msg, flags, NULL, 0);
2404}
2405
2406long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2407 bool forbid_cmsg_compat)
2408{
2409 int fput_needed, err;
2410 struct msghdr msg_sys;
2411 struct socket *sock;
2412
2413 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2414 return -EINVAL;
2415
2416 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2417 if (!sock)
2418 goto out;
2419
2420 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2421
2422 fput_light(sock->file, fput_needed);
2423out:
2424 return err;
2425}
2426
2427SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2428{
2429 return __sys_sendmsg(fd, msg, flags, true);
2430}
2431
2432/*
2433 * Linux sendmmsg interface
2434 */
2435
2436int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2437 unsigned int flags, bool forbid_cmsg_compat)
2438{
2439 int fput_needed, err, datagrams;
2440 struct socket *sock;
2441 struct mmsghdr __user *entry;
2442 struct compat_mmsghdr __user *compat_entry;
2443 struct msghdr msg_sys;
2444 struct used_address used_address;
2445 unsigned int oflags = flags;
2446
2447 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2448 return -EINVAL;
2449
2450 if (vlen > UIO_MAXIOV)
2451 vlen = UIO_MAXIOV;
2452
2453 datagrams = 0;
2454
2455 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2456 if (!sock)
2457 return err;
2458
2459 used_address.name_len = UINT_MAX;
2460 entry = mmsg;
2461 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2462 err = 0;
2463 flags |= MSG_BATCH;
2464
2465 while (datagrams < vlen) {
2466 if (datagrams == vlen - 1)
2467 flags = oflags;
2468
2469 if (MSG_CMSG_COMPAT & flags) {
2470 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2471 &msg_sys, flags, &used_address, MSG_EOR);
2472 if (err < 0)
2473 break;
2474 err = __put_user(err, &compat_entry->msg_len);
2475 ++compat_entry;
2476 } else {
2477 err = ___sys_sendmsg(sock,
2478 (struct user_msghdr __user *)entry,
2479 &msg_sys, flags, &used_address, MSG_EOR);
2480 if (err < 0)
2481 break;
2482 err = put_user(err, &entry->msg_len);
2483 ++entry;
2484 }
2485
2486 if (err)
2487 break;
2488 ++datagrams;
2489 if (msg_data_left(&msg_sys))
2490 break;
2491 cond_resched();
2492 }
2493
2494 fput_light(sock->file, fput_needed);
2495
2496 /* We only return an error if no datagrams were able to be sent */
2497 if (datagrams != 0)
2498 return datagrams;
2499
2500 return err;
2501}
2502
2503SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2504 unsigned int, vlen, unsigned int, flags)
2505{
2506 return __sys_sendmmsg(fd, mmsg, vlen, flags, true);
2507}
2508
2509int recvmsg_copy_msghdr(struct msghdr *msg,
2510 struct user_msghdr __user *umsg, unsigned flags,
2511 struct sockaddr __user **uaddr,
2512 struct iovec **iov)
2513{
2514 ssize_t err;
2515
2516 if (MSG_CMSG_COMPAT & flags) {
2517 struct compat_msghdr __user *msg_compat;
2518
2519 msg_compat = (struct compat_msghdr __user *) umsg;
2520 err = get_compat_msghdr(msg, msg_compat, uaddr, iov);
2521 } else {
2522 err = copy_msghdr_from_user(msg, umsg, uaddr, iov);
2523 }
2524 if (err < 0)
2525 return err;
2526
2527 return 0;
2528}
2529
2530static int ____sys_recvmsg(struct socket *sock, struct msghdr *msg_sys,
2531 struct user_msghdr __user *msg,
2532 struct sockaddr __user *uaddr,
2533 unsigned int flags, int nosec)
2534{
2535 struct compat_msghdr __user *msg_compat =
2536 (struct compat_msghdr __user *) msg;
2537 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2538 struct sockaddr_storage addr;
2539 unsigned long cmsg_ptr;
2540 int len;
2541 ssize_t err;
2542
2543 msg_sys->msg_name = &addr;
2544 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2545 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2546
2547 /* We assume all kernel code knows the size of sockaddr_storage */
2548 msg_sys->msg_namelen = 0;
2549
2550 if (sock->file->f_flags & O_NONBLOCK)
2551 flags |= MSG_DONTWAIT;
2552
2553 if (unlikely(nosec))
2554 err = sock_recvmsg_nosec(sock, msg_sys, flags);
2555 else
2556 err = sock_recvmsg(sock, msg_sys, flags);
2557
2558 if (err < 0)
2559 goto out;
2560 len = err;
2561
2562 if (uaddr != NULL) {
2563 err = move_addr_to_user(&addr,
2564 msg_sys->msg_namelen, uaddr,
2565 uaddr_len);
2566 if (err < 0)
2567 goto out;
2568 }
2569 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2570 COMPAT_FLAGS(msg));
2571 if (err)
2572 goto out;
2573 if (MSG_CMSG_COMPAT & flags)
2574 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2575 &msg_compat->msg_controllen);
2576 else
2577 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2578 &msg->msg_controllen);
2579 if (err)
2580 goto out;
2581 err = len;
2582out:
2583 return err;
2584}
2585
2586static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2587 struct msghdr *msg_sys, unsigned int flags, int nosec)
2588{
2589 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
2590 /* user mode address pointers */
2591 struct sockaddr __user *uaddr;
2592 ssize_t err;
2593
2594 err = recvmsg_copy_msghdr(msg_sys, msg, flags, &uaddr, &iov);
2595 if (err < 0)
2596 return err;
2597
2598 err = ____sys_recvmsg(sock, msg_sys, msg, uaddr, flags, nosec);
2599 kfree(iov);
2600 return err;
2601}
2602
2603/*
2604 * BSD recvmsg interface
2605 */
2606
2607long __sys_recvmsg_sock(struct socket *sock, struct msghdr *msg,
2608 struct user_msghdr __user *umsg,
2609 struct sockaddr __user *uaddr, unsigned int flags)
2610{
2611 return ____sys_recvmsg(sock, msg, umsg, uaddr, flags, 0);
2612}
2613
2614long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned int flags,
2615 bool forbid_cmsg_compat)
2616{
2617 int fput_needed, err;
2618 struct msghdr msg_sys;
2619 struct socket *sock;
2620
2621 if (forbid_cmsg_compat && (flags & MSG_CMSG_COMPAT))
2622 return -EINVAL;
2623
2624 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2625 if (!sock)
2626 goto out;
2627
2628 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2629
2630 fput_light(sock->file, fput_needed);
2631out:
2632 return err;
2633}
2634
2635SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2636 unsigned int, flags)
2637{
2638 return __sys_recvmsg(fd, msg, flags, true);
2639}
2640
2641/*
2642 * Linux recvmmsg interface
2643 */
2644
2645static int do_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2646 unsigned int vlen, unsigned int flags,
2647 struct timespec64 *timeout)
2648{
2649 int fput_needed, err, datagrams;
2650 struct socket *sock;
2651 struct mmsghdr __user *entry;
2652 struct compat_mmsghdr __user *compat_entry;
2653 struct msghdr msg_sys;
2654 struct timespec64 end_time;
2655 struct timespec64 timeout64;
2656
2657 if (timeout &&
2658 poll_select_set_timeout(&end_time, timeout->tv_sec,
2659 timeout->tv_nsec))
2660 return -EINVAL;
2661
2662 datagrams = 0;
2663
2664 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2665 if (!sock)
2666 return err;
2667
2668 if (likely(!(flags & MSG_ERRQUEUE))) {
2669 err = sock_error(sock->sk);
2670 if (err) {
2671 datagrams = err;
2672 goto out_put;
2673 }
2674 }
2675
2676 entry = mmsg;
2677 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2678
2679 while (datagrams < vlen) {
2680 /*
2681 * No need to ask LSM for more than the first datagram.
2682 */
2683 if (MSG_CMSG_COMPAT & flags) {
2684 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2685 &msg_sys, flags & ~MSG_WAITFORONE,
2686 datagrams);
2687 if (err < 0)
2688 break;
2689 err = __put_user(err, &compat_entry->msg_len);
2690 ++compat_entry;
2691 } else {
2692 err = ___sys_recvmsg(sock,
2693 (struct user_msghdr __user *)entry,
2694 &msg_sys, flags & ~MSG_WAITFORONE,
2695 datagrams);
2696 if (err < 0)
2697 break;
2698 err = put_user(err, &entry->msg_len);
2699 ++entry;
2700 }
2701
2702 if (err)
2703 break;
2704 ++datagrams;
2705
2706 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2707 if (flags & MSG_WAITFORONE)
2708 flags |= MSG_DONTWAIT;
2709
2710 if (timeout) {
2711 ktime_get_ts64(&timeout64);
2712 *timeout = timespec64_sub(end_time, timeout64);
2713 if (timeout->tv_sec < 0) {
2714 timeout->tv_sec = timeout->tv_nsec = 0;
2715 break;
2716 }
2717
2718 /* Timeout, return less than vlen datagrams */
2719 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2720 break;
2721 }
2722
2723 /* Out of band data, return right away */
2724 if (msg_sys.msg_flags & MSG_OOB)
2725 break;
2726 cond_resched();
2727 }
2728
2729 if (err == 0)
2730 goto out_put;
2731
2732 if (datagrams == 0) {
2733 datagrams = err;
2734 goto out_put;
2735 }
2736
2737 /*
2738 * We may return less entries than requested (vlen) if the
2739 * sock is non block and there aren't enough datagrams...
2740 */
2741 if (err != -EAGAIN) {
2742 /*
2743 * ... or if recvmsg returns an error after we
2744 * received some datagrams, where we record the
2745 * error to return on the next call or if the
2746 * app asks about it using getsockopt(SO_ERROR).
2747 */
2748 sock->sk->sk_err = -err;
2749 }
2750out_put:
2751 fput_light(sock->file, fput_needed);
2752
2753 return datagrams;
2754}
2755
2756int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg,
2757 unsigned int vlen, unsigned int flags,
2758 struct __kernel_timespec __user *timeout,
2759 struct old_timespec32 __user *timeout32)
2760{
2761 int datagrams;
2762 struct timespec64 timeout_sys;
2763
2764 if (timeout && get_timespec64(&timeout_sys, timeout))
2765 return -EFAULT;
2766
2767 if (timeout32 && get_old_timespec32(&timeout_sys, timeout32))
2768 return -EFAULT;
2769
2770 if (!timeout && !timeout32)
2771 return do_recvmmsg(fd, mmsg, vlen, flags, NULL);
2772
2773 datagrams = do_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2774
2775 if (datagrams <= 0)
2776 return datagrams;
2777
2778 if (timeout && put_timespec64(&timeout_sys, timeout))
2779 datagrams = -EFAULT;
2780
2781 if (timeout32 && put_old_timespec32(&timeout_sys, timeout32))
2782 datagrams = -EFAULT;
2783
2784 return datagrams;
2785}
2786
2787SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2788 unsigned int, vlen, unsigned int, flags,
2789 struct __kernel_timespec __user *, timeout)
2790{
2791 if (flags & MSG_CMSG_COMPAT)
2792 return -EINVAL;
2793
2794 return __sys_recvmmsg(fd, mmsg, vlen, flags, timeout, NULL);
2795}
2796
2797#ifdef CONFIG_COMPAT_32BIT_TIME
2798SYSCALL_DEFINE5(recvmmsg_time32, int, fd, struct mmsghdr __user *, mmsg,
2799 unsigned int, vlen, unsigned int, flags,
2800 struct old_timespec32 __user *, timeout)
2801{
2802 if (flags & MSG_CMSG_COMPAT)
2803 return -EINVAL;
2804
2805 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL, timeout);
2806}
2807#endif
2808
2809#ifdef __ARCH_WANT_SYS_SOCKETCALL
2810/* Argument list sizes for sys_socketcall */
2811#define AL(x) ((x) * sizeof(unsigned long))
2812static const unsigned char nargs[21] = {
2813 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2814 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2815 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2816 AL(4), AL(5), AL(4)
2817};
2818
2819#undef AL
2820
2821/*
2822 * System call vectors.
2823 *
2824 * Argument checking cleaned up. Saved 20% in size.
2825 * This function doesn't need to set the kernel lock because
2826 * it is set by the callees.
2827 */
2828
2829SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2830{
2831 unsigned long a[AUDITSC_ARGS];
2832 unsigned long a0, a1;
2833 int err;
2834 unsigned int len;
2835
2836 if (call < 1 || call > SYS_SENDMMSG)
2837 return -EINVAL;
2838 call = array_index_nospec(call, SYS_SENDMMSG + 1);
2839
2840 len = nargs[call];
2841 if (len > sizeof(a))
2842 return -EINVAL;
2843
2844 /* copy_from_user should be SMP safe. */
2845 if (copy_from_user(a, args, len))
2846 return -EFAULT;
2847
2848 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2849 if (err)
2850 return err;
2851
2852 a0 = a[0];
2853 a1 = a[1];
2854
2855 switch (call) {
2856 case SYS_SOCKET:
2857 err = __sys_socket(a0, a1, a[2]);
2858 break;
2859 case SYS_BIND:
2860 err = __sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2861 break;
2862 case SYS_CONNECT:
2863 err = __sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2864 break;
2865 case SYS_LISTEN:
2866 err = __sys_listen(a0, a1);
2867 break;
2868 case SYS_ACCEPT:
2869 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2870 (int __user *)a[2], 0);
2871 break;
2872 case SYS_GETSOCKNAME:
2873 err =
2874 __sys_getsockname(a0, (struct sockaddr __user *)a1,
2875 (int __user *)a[2]);
2876 break;
2877 case SYS_GETPEERNAME:
2878 err =
2879 __sys_getpeername(a0, (struct sockaddr __user *)a1,
2880 (int __user *)a[2]);
2881 break;
2882 case SYS_SOCKETPAIR:
2883 err = __sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2884 break;
2885 case SYS_SEND:
2886 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2887 NULL, 0);
2888 break;
2889 case SYS_SENDTO:
2890 err = __sys_sendto(a0, (void __user *)a1, a[2], a[3],
2891 (struct sockaddr __user *)a[4], a[5]);
2892 break;
2893 case SYS_RECV:
2894 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2895 NULL, NULL);
2896 break;
2897 case SYS_RECVFROM:
2898 err = __sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2899 (struct sockaddr __user *)a[4],
2900 (int __user *)a[5]);
2901 break;
2902 case SYS_SHUTDOWN:
2903 err = __sys_shutdown(a0, a1);
2904 break;
2905 case SYS_SETSOCKOPT:
2906 err = __sys_setsockopt(a0, a1, a[2], (char __user *)a[3],
2907 a[4]);
2908 break;
2909 case SYS_GETSOCKOPT:
2910 err =
2911 __sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2912 (int __user *)a[4]);
2913 break;
2914 case SYS_SENDMSG:
2915 err = __sys_sendmsg(a0, (struct user_msghdr __user *)a1,
2916 a[2], true);
2917 break;
2918 case SYS_SENDMMSG:
2919 err = __sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2],
2920 a[3], true);
2921 break;
2922 case SYS_RECVMSG:
2923 err = __sys_recvmsg(a0, (struct user_msghdr __user *)a1,
2924 a[2], true);
2925 break;
2926 case SYS_RECVMMSG:
2927 if (IS_ENABLED(CONFIG_64BIT))
2928 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2929 a[2], a[3],
2930 (struct __kernel_timespec __user *)a[4],
2931 NULL);
2932 else
2933 err = __sys_recvmmsg(a0, (struct mmsghdr __user *)a1,
2934 a[2], a[3], NULL,
2935 (struct old_timespec32 __user *)a[4]);
2936 break;
2937 case SYS_ACCEPT4:
2938 err = __sys_accept4(a0, (struct sockaddr __user *)a1,
2939 (int __user *)a[2], a[3]);
2940 break;
2941 default:
2942 err = -EINVAL;
2943 break;
2944 }
2945 return err;
2946}
2947
2948#endif /* __ARCH_WANT_SYS_SOCKETCALL */
2949
2950/**
2951 * sock_register - add a socket protocol handler
2952 * @ops: description of protocol
2953 *
2954 * This function is called by a protocol handler that wants to
2955 * advertise its address family, and have it linked into the
2956 * socket interface. The value ops->family corresponds to the
2957 * socket system call protocol family.
2958 */
2959int sock_register(const struct net_proto_family *ops)
2960{
2961 int err;
2962
2963 if (ops->family >= NPROTO) {
2964 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2965 return -ENOBUFS;
2966 }
2967
2968 spin_lock(&net_family_lock);
2969 if (rcu_dereference_protected(net_families[ops->family],
2970 lockdep_is_held(&net_family_lock)))
2971 err = -EEXIST;
2972 else {
2973 rcu_assign_pointer(net_families[ops->family], ops);
2974 err = 0;
2975 }
2976 spin_unlock(&net_family_lock);
2977
2978 pr_info("NET: Registered protocol family %d\n", ops->family);
2979 return err;
2980}
2981EXPORT_SYMBOL(sock_register);
2982
2983/**
2984 * sock_unregister - remove a protocol handler
2985 * @family: protocol family to remove
2986 *
2987 * This function is called by a protocol handler that wants to
2988 * remove its address family, and have it unlinked from the
2989 * new socket creation.
2990 *
2991 * If protocol handler is a module, then it can use module reference
2992 * counts to protect against new references. If protocol handler is not
2993 * a module then it needs to provide its own protection in
2994 * the ops->create routine.
2995 */
2996void sock_unregister(int family)
2997{
2998 BUG_ON(family < 0 || family >= NPROTO);
2999
3000 spin_lock(&net_family_lock);
3001 RCU_INIT_POINTER(net_families[family], NULL);
3002 spin_unlock(&net_family_lock);
3003
3004 synchronize_rcu();
3005
3006 pr_info("NET: Unregistered protocol family %d\n", family);
3007}
3008EXPORT_SYMBOL(sock_unregister);
3009
3010bool sock_is_registered(int family)
3011{
3012 return family < NPROTO && rcu_access_pointer(net_families[family]);
3013}
3014
3015static int __init sock_init(void)
3016{
3017 int err;
3018 /*
3019 * Initialize the network sysctl infrastructure.
3020 */
3021 err = net_sysctl_init();
3022 if (err)
3023 goto out;
3024
3025 /*
3026 * Initialize skbuff SLAB cache
3027 */
3028 skb_init();
3029
3030 /*
3031 * Initialize the protocols module.
3032 */
3033
3034 init_inodecache();
3035
3036 err = register_filesystem(&sock_fs_type);
3037 if (err)
3038 goto out;
3039 sock_mnt = kern_mount(&sock_fs_type);
3040 if (IS_ERR(sock_mnt)) {
3041 err = PTR_ERR(sock_mnt);
3042 goto out_mount;
3043 }
3044
3045 /* The real protocol initialization is performed in later initcalls.
3046 */
3047
3048#ifdef CONFIG_NETFILTER
3049 err = netfilter_init();
3050 if (err)
3051 goto out;
3052#endif
3053
3054 ptp_classifier_init();
3055
3056out:
3057 return err;
3058
3059out_mount:
3060 unregister_filesystem(&sock_fs_type);
3061 goto out;
3062}
3063
3064core_initcall(sock_init); /* early initcall */
3065
3066#ifdef CONFIG_PROC_FS
3067void socket_seq_show(struct seq_file *seq)
3068{
3069 seq_printf(seq, "sockets: used %d\n",
3070 sock_inuse_get(seq->private));
3071}
3072#endif /* CONFIG_PROC_FS */
3073
3074#ifdef CONFIG_COMPAT
3075static int compat_dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
3076{
3077 struct compat_ifconf ifc32;
3078 struct ifconf ifc;
3079 int err;
3080
3081 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
3082 return -EFAULT;
3083
3084 ifc.ifc_len = ifc32.ifc_len;
3085 ifc.ifc_req = compat_ptr(ifc32.ifcbuf);
3086
3087 rtnl_lock();
3088 err = dev_ifconf(net, &ifc, sizeof(struct compat_ifreq));
3089 rtnl_unlock();
3090 if (err)
3091 return err;
3092
3093 ifc32.ifc_len = ifc.ifc_len;
3094 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
3095 return -EFAULT;
3096
3097 return 0;
3098}
3099
3100static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
3101{
3102 struct compat_ethtool_rxnfc __user *compat_rxnfc;
3103 bool convert_in = false, convert_out = false;
3104 size_t buf_size = 0;
3105 struct ethtool_rxnfc __user *rxnfc = NULL;
3106 struct ifreq ifr;
3107 u32 rule_cnt = 0, actual_rule_cnt;
3108 u32 ethcmd;
3109 u32 data;
3110 int ret;
3111
3112 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
3113 return -EFAULT;
3114
3115 compat_rxnfc = compat_ptr(data);
3116
3117 if (get_user(ethcmd, &compat_rxnfc->cmd))
3118 return -EFAULT;
3119
3120 /* Most ethtool structures are defined without padding.
3121 * Unfortunately struct ethtool_rxnfc is an exception.
3122 */
3123 switch (ethcmd) {
3124 default:
3125 break;
3126 case ETHTOOL_GRXCLSRLALL:
3127 /* Buffer size is variable */
3128 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
3129 return -EFAULT;
3130 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
3131 return -ENOMEM;
3132 buf_size += rule_cnt * sizeof(u32);
3133 fallthrough;
3134 case ETHTOOL_GRXRINGS:
3135 case ETHTOOL_GRXCLSRLCNT:
3136 case ETHTOOL_GRXCLSRULE:
3137 case ETHTOOL_SRXCLSRLINS:
3138 convert_out = true;
3139 fallthrough;
3140 case ETHTOOL_SRXCLSRLDEL:
3141 buf_size += sizeof(struct ethtool_rxnfc);
3142 convert_in = true;
3143 rxnfc = compat_alloc_user_space(buf_size);
3144 break;
3145 }
3146
3147 if (copy_from_user(&ifr.ifr_name, &ifr32->ifr_name, IFNAMSIZ))
3148 return -EFAULT;
3149
3150 ifr.ifr_data = convert_in ? rxnfc : (void __user *)compat_rxnfc;
3151
3152 if (convert_in) {
3153 /* We expect there to be holes between fs.m_ext and
3154 * fs.ring_cookie and at the end of fs, but nowhere else.
3155 */
3156 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
3157 sizeof(compat_rxnfc->fs.m_ext) !=
3158 offsetof(struct ethtool_rxnfc, fs.m_ext) +
3159 sizeof(rxnfc->fs.m_ext));
3160 BUILD_BUG_ON(
3161 offsetof(struct compat_ethtool_rxnfc, fs.location) -
3162 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
3163 offsetof(struct ethtool_rxnfc, fs.location) -
3164 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
3165
3166 if (copy_in_user(rxnfc, compat_rxnfc,
3167 (void __user *)(&rxnfc->fs.m_ext + 1) -
3168 (void __user *)rxnfc) ||
3169 copy_in_user(&rxnfc->fs.ring_cookie,
3170 &compat_rxnfc->fs.ring_cookie,
3171 (void __user *)(&rxnfc->fs.location + 1) -
3172 (void __user *)&rxnfc->fs.ring_cookie))
3173 return -EFAULT;
3174 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3175 if (put_user(rule_cnt, &rxnfc->rule_cnt))
3176 return -EFAULT;
3177 } else if (copy_in_user(&rxnfc->rule_cnt,
3178 &compat_rxnfc->rule_cnt,
3179 sizeof(rxnfc->rule_cnt)))
3180 return -EFAULT;
3181 }
3182
3183 ret = dev_ioctl(net, SIOCETHTOOL, &ifr, NULL);
3184 if (ret)
3185 return ret;
3186
3187 if (convert_out) {
3188 if (copy_in_user(compat_rxnfc, rxnfc,
3189 (const void __user *)(&rxnfc->fs.m_ext + 1) -
3190 (const void __user *)rxnfc) ||
3191 copy_in_user(&compat_rxnfc->fs.ring_cookie,
3192 &rxnfc->fs.ring_cookie,
3193 (const void __user *)(&rxnfc->fs.location + 1) -
3194 (const void __user *)&rxnfc->fs.ring_cookie) ||
3195 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
3196 sizeof(rxnfc->rule_cnt)))
3197 return -EFAULT;
3198
3199 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
3200 /* As an optimisation, we only copy the actual
3201 * number of rules that the underlying
3202 * function returned. Since Mallory might
3203 * change the rule count in user memory, we
3204 * check that it is less than the rule count
3205 * originally given (as the user buffer size),
3206 * which has been range-checked.
3207 */
3208 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
3209 return -EFAULT;
3210 if (actual_rule_cnt < rule_cnt)
3211 rule_cnt = actual_rule_cnt;
3212 if (copy_in_user(&compat_rxnfc->rule_locs[0],
3213 &rxnfc->rule_locs[0],
3214 rule_cnt * sizeof(u32)))
3215 return -EFAULT;
3216 }
3217 }
3218
3219 return 0;
3220}
3221
3222static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
3223{
3224 compat_uptr_t uptr32;
3225 struct ifreq ifr;
3226 void __user *saved;
3227 int err;
3228
3229 if (copy_from_user(&ifr, uifr32, sizeof(struct compat_ifreq)))
3230 return -EFAULT;
3231
3232 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
3233 return -EFAULT;
3234
3235 saved = ifr.ifr_settings.ifs_ifsu.raw_hdlc;
3236 ifr.ifr_settings.ifs_ifsu.raw_hdlc = compat_ptr(uptr32);
3237
3238 err = dev_ioctl(net, SIOCWANDEV, &ifr, NULL);
3239 if (!err) {
3240 ifr.ifr_settings.ifs_ifsu.raw_hdlc = saved;
3241 if (copy_to_user(uifr32, &ifr, sizeof(struct compat_ifreq)))
3242 err = -EFAULT;
3243 }
3244 return err;
3245}
3246
3247/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3248static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
3249 struct compat_ifreq __user *u_ifreq32)
3250{
3251 struct ifreq ifreq;
3252 u32 data32;
3253
3254 if (copy_from_user(ifreq.ifr_name, u_ifreq32->ifr_name, IFNAMSIZ))
3255 return -EFAULT;
3256 if (get_user(data32, &u_ifreq32->ifr_data))
3257 return -EFAULT;
3258 ifreq.ifr_data = compat_ptr(data32);
3259
3260 return dev_ioctl(net, cmd, &ifreq, NULL);
3261}
3262
3263static int compat_ifreq_ioctl(struct net *net, struct socket *sock,
3264 unsigned int cmd,
3265 struct compat_ifreq __user *uifr32)
3266{
3267 struct ifreq __user *uifr;
3268 int err;
3269
3270 /* Handle the fact that while struct ifreq has the same *layout* on
3271 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3272 * which are handled elsewhere, it still has different *size* due to
3273 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3274 * resulting in struct ifreq being 32 and 40 bytes respectively).
3275 * As a result, if the struct happens to be at the end of a page and
3276 * the next page isn't readable/writable, we get a fault. To prevent
3277 * that, copy back and forth to the full size.
3278 */
3279
3280 uifr = compat_alloc_user_space(sizeof(*uifr));
3281 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
3282 return -EFAULT;
3283
3284 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
3285
3286 if (!err) {
3287 switch (cmd) {
3288 case SIOCGIFFLAGS:
3289 case SIOCGIFMETRIC:
3290 case SIOCGIFMTU:
3291 case SIOCGIFMEM:
3292 case SIOCGIFHWADDR:
3293 case SIOCGIFINDEX:
3294 case SIOCGIFADDR:
3295 case SIOCGIFBRDADDR:
3296 case SIOCGIFDSTADDR:
3297 case SIOCGIFNETMASK:
3298 case SIOCGIFPFLAGS:
3299 case SIOCGIFTXQLEN:
3300 case SIOCGMIIPHY:
3301 case SIOCGMIIREG:
3302 case SIOCGIFNAME:
3303 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3304 err = -EFAULT;
3305 break;
3306 }
3307 }
3308 return err;
3309}
3310
3311static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3312 struct compat_ifreq __user *uifr32)
3313{
3314 struct ifreq ifr;
3315 struct compat_ifmap __user *uifmap32;
3316 int err;
3317
3318 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3319 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3320 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3321 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3322 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3323 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3324 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3325 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3326 if (err)
3327 return -EFAULT;
3328
3329 err = dev_ioctl(net, cmd, &ifr, NULL);
3330
3331 if (cmd == SIOCGIFMAP && !err) {
3332 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3333 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3334 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3335 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3336 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3337 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3338 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3339 if (err)
3340 err = -EFAULT;
3341 }
3342 return err;
3343}
3344
3345/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3346 * for some operations; this forces use of the newer bridge-utils that
3347 * use compatible ioctls
3348 */
3349static int old_bridge_ioctl(compat_ulong_t __user *argp)
3350{
3351 compat_ulong_t tmp;
3352
3353 if (get_user(tmp, argp))
3354 return -EFAULT;
3355 if (tmp == BRCTL_GET_VERSION)
3356 return BRCTL_VERSION + 1;
3357 return -EINVAL;
3358}
3359
3360static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3361 unsigned int cmd, unsigned long arg)
3362{
3363 void __user *argp = compat_ptr(arg);
3364 struct sock *sk = sock->sk;
3365 struct net *net = sock_net(sk);
3366
3367 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3368 return compat_ifr_data_ioctl(net, cmd, argp);
3369
3370 switch (cmd) {
3371 case SIOCSIFBR:
3372 case SIOCGIFBR:
3373 return old_bridge_ioctl(argp);
3374 case SIOCGIFCONF:
3375 return compat_dev_ifconf(net, argp);
3376 case SIOCETHTOOL:
3377 return ethtool_ioctl(net, argp);
3378 case SIOCWANDEV:
3379 return compat_siocwandev(net, argp);
3380 case SIOCGIFMAP:
3381 case SIOCSIFMAP:
3382 return compat_sioc_ifmap(net, cmd, argp);
3383 case SIOCGSTAMP_OLD:
3384 case SIOCGSTAMPNS_OLD:
3385 if (!sock->ops->gettstamp)
3386 return -ENOIOCTLCMD;
3387 return sock->ops->gettstamp(sock, argp, cmd == SIOCGSTAMP_OLD,
3388 !COMPAT_USE_64BIT_TIME);
3389
3390 case SIOCBONDSLAVEINFOQUERY:
3391 case SIOCBONDINFOQUERY:
3392 case SIOCSHWTSTAMP:
3393 case SIOCGHWTSTAMP:
3394 return compat_ifr_data_ioctl(net, cmd, argp);
3395
3396 case FIOSETOWN:
3397 case SIOCSPGRP:
3398 case FIOGETOWN:
3399 case SIOCGPGRP:
3400 case SIOCBRADDBR:
3401 case SIOCBRDELBR:
3402 case SIOCGIFVLAN:
3403 case SIOCSIFVLAN:
3404 case SIOCGSKNS:
3405 case SIOCGSTAMP_NEW:
3406 case SIOCGSTAMPNS_NEW:
3407 return sock_ioctl(file, cmd, arg);
3408
3409 case SIOCGIFFLAGS:
3410 case SIOCSIFFLAGS:
3411 case SIOCGIFMETRIC:
3412 case SIOCSIFMETRIC:
3413 case SIOCGIFMTU:
3414 case SIOCSIFMTU:
3415 case SIOCGIFMEM:
3416 case SIOCSIFMEM:
3417 case SIOCGIFHWADDR:
3418 case SIOCSIFHWADDR:
3419 case SIOCADDMULTI:
3420 case SIOCDELMULTI:
3421 case SIOCGIFINDEX:
3422 case SIOCGIFADDR:
3423 case SIOCSIFADDR:
3424 case SIOCSIFHWBROADCAST:
3425 case SIOCDIFADDR:
3426 case SIOCGIFBRDADDR:
3427 case SIOCSIFBRDADDR:
3428 case SIOCGIFDSTADDR:
3429 case SIOCSIFDSTADDR:
3430 case SIOCGIFNETMASK:
3431 case SIOCSIFNETMASK:
3432 case SIOCSIFPFLAGS:
3433 case SIOCGIFPFLAGS:
3434 case SIOCGIFTXQLEN:
3435 case SIOCSIFTXQLEN:
3436 case SIOCBRADDIF:
3437 case SIOCBRDELIF:
3438 case SIOCGIFNAME:
3439 case SIOCSIFNAME:
3440 case SIOCGMIIPHY:
3441 case SIOCGMIIREG:
3442 case SIOCSMIIREG:
3443 case SIOCBONDENSLAVE:
3444 case SIOCBONDRELEASE:
3445 case SIOCBONDSETHWADDR:
3446 case SIOCBONDCHANGEACTIVE:
3447 return compat_ifreq_ioctl(net, sock, cmd, argp);
3448
3449 case SIOCSARP:
3450 case SIOCGARP:
3451 case SIOCDARP:
3452 case SIOCOUTQ:
3453 case SIOCOUTQNSD:
3454 case SIOCATMARK:
3455 return sock_do_ioctl(net, sock, cmd, arg);
3456 }
3457
3458 return -ENOIOCTLCMD;
3459}
3460
3461static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3462 unsigned long arg)
3463{
3464 struct socket *sock = file->private_data;
3465 int ret = -ENOIOCTLCMD;
3466 struct sock *sk;
3467 struct net *net;
3468
3469 sk = sock->sk;
3470 net = sock_net(sk);
3471
3472 if (sock->ops->compat_ioctl)
3473 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3474
3475 if (ret == -ENOIOCTLCMD &&
3476 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3477 ret = compat_wext_handle_ioctl(net, cmd, arg);
3478
3479 if (ret == -ENOIOCTLCMD)
3480 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3481
3482 return ret;
3483}
3484#endif
3485
3486/**
3487 * kernel_bind - bind an address to a socket (kernel space)
3488 * @sock: socket
3489 * @addr: address
3490 * @addrlen: length of address
3491 *
3492 * Returns 0 or an error.
3493 */
3494
3495int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3496{
3497 return sock->ops->bind(sock, addr, addrlen);
3498}
3499EXPORT_SYMBOL(kernel_bind);
3500
3501/**
3502 * kernel_listen - move socket to listening state (kernel space)
3503 * @sock: socket
3504 * @backlog: pending connections queue size
3505 *
3506 * Returns 0 or an error.
3507 */
3508
3509int kernel_listen(struct socket *sock, int backlog)
3510{
3511 return sock->ops->listen(sock, backlog);
3512}
3513EXPORT_SYMBOL(kernel_listen);
3514
3515/**
3516 * kernel_accept - accept a connection (kernel space)
3517 * @sock: listening socket
3518 * @newsock: new connected socket
3519 * @flags: flags
3520 *
3521 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3522 * If it fails, @newsock is guaranteed to be %NULL.
3523 * Returns 0 or an error.
3524 */
3525
3526int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3527{
3528 struct sock *sk = sock->sk;
3529 int err;
3530
3531 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3532 newsock);
3533 if (err < 0)
3534 goto done;
3535
3536 err = sock->ops->accept(sock, *newsock, flags, true);
3537 if (err < 0) {
3538 sock_release(*newsock);
3539 *newsock = NULL;
3540 goto done;
3541 }
3542
3543 (*newsock)->ops = sock->ops;
3544 __module_get((*newsock)->ops->owner);
3545
3546done:
3547 return err;
3548}
3549EXPORT_SYMBOL(kernel_accept);
3550
3551/**
3552 * kernel_connect - connect a socket (kernel space)
3553 * @sock: socket
3554 * @addr: address
3555 * @addrlen: address length
3556 * @flags: flags (O_NONBLOCK, ...)
3557 *
3558 * For datagram sockets, @addr is the address to which datagrams are sent
3559 * by default, and the only address from which datagrams are received.
3560 * For stream sockets, attempts to connect to @addr.
3561 * Returns 0 or an error code.
3562 */
3563
3564int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3565 int flags)
3566{
3567 return sock->ops->connect(sock, addr, addrlen, flags);
3568}
3569EXPORT_SYMBOL(kernel_connect);
3570
3571/**
3572 * kernel_getsockname - get the address which the socket is bound (kernel space)
3573 * @sock: socket
3574 * @addr: address holder
3575 *
3576 * Fills the @addr pointer with the address which the socket is bound.
3577 * Returns 0 or an error code.
3578 */
3579
3580int kernel_getsockname(struct socket *sock, struct sockaddr *addr)
3581{
3582 return sock->ops->getname(sock, addr, 0);
3583}
3584EXPORT_SYMBOL(kernel_getsockname);
3585
3586/**
3587 * kernel_getpeername - get the address which the socket is connected (kernel space)
3588 * @sock: socket
3589 * @addr: address holder
3590 *
3591 * Fills the @addr pointer with the address which the socket is connected.
3592 * Returns 0 or an error code.
3593 */
3594
3595int kernel_getpeername(struct socket *sock, struct sockaddr *addr)
3596{
3597 return sock->ops->getname(sock, addr, 1);
3598}
3599EXPORT_SYMBOL(kernel_getpeername);
3600
3601/**
3602 * kernel_sendpage - send a &page through a socket (kernel space)
3603 * @sock: socket
3604 * @page: page
3605 * @offset: page offset
3606 * @size: total size in bytes
3607 * @flags: flags (MSG_DONTWAIT, ...)
3608 *
3609 * Returns the total amount sent in bytes or an error.
3610 */
3611
3612int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3613 size_t size, int flags)
3614{
3615 if (sock->ops->sendpage) {
3616 /* Warn in case the improper page to zero-copy send */
3617 WARN_ONCE(!sendpage_ok(page), "improper page for zero-copy send");
3618 return sock->ops->sendpage(sock, page, offset, size, flags);
3619 }
3620 return sock_no_sendpage(sock, page, offset, size, flags);
3621}
3622EXPORT_SYMBOL(kernel_sendpage);
3623
3624/**
3625 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3626 * @sk: sock
3627 * @page: page
3628 * @offset: page offset
3629 * @size: total size in bytes
3630 * @flags: flags (MSG_DONTWAIT, ...)
3631 *
3632 * Returns the total amount sent in bytes or an error.
3633 * Caller must hold @sk.
3634 */
3635
3636int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3637 size_t size, int flags)
3638{
3639 struct socket *sock = sk->sk_socket;
3640
3641 if (sock->ops->sendpage_locked)
3642 return sock->ops->sendpage_locked(sk, page, offset, size,
3643 flags);
3644
3645 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3646}
3647EXPORT_SYMBOL(kernel_sendpage_locked);
3648
3649/**
3650 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3651 * @sock: socket
3652 * @how: connection part
3653 *
3654 * Returns 0 or an error.
3655 */
3656
3657int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3658{
3659 return sock->ops->shutdown(sock, how);
3660}
3661EXPORT_SYMBOL(kernel_sock_shutdown);
3662
3663/**
3664 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3665 * @sk: socket
3666 *
3667 * This routine returns the IP overhead imposed by a socket i.e.
3668 * the length of the underlying IP header, depending on whether
3669 * this is an IPv4 or IPv6 socket and the length from IP options turned
3670 * on at the socket. Assumes that the caller has a lock on the socket.
3671 */
3672
3673u32 kernel_sock_ip_overhead(struct sock *sk)
3674{
3675 struct inet_sock *inet;
3676 struct ip_options_rcu *opt;
3677 u32 overhead = 0;
3678#if IS_ENABLED(CONFIG_IPV6)
3679 struct ipv6_pinfo *np;
3680 struct ipv6_txoptions *optv6 = NULL;
3681#endif /* IS_ENABLED(CONFIG_IPV6) */
3682
3683 if (!sk)
3684 return overhead;
3685
3686 switch (sk->sk_family) {
3687 case AF_INET:
3688 inet = inet_sk(sk);
3689 overhead += sizeof(struct iphdr);
3690 opt = rcu_dereference_protected(inet->inet_opt,
3691 sock_owned_by_user(sk));
3692 if (opt)
3693 overhead += opt->opt.optlen;
3694 return overhead;
3695#if IS_ENABLED(CONFIG_IPV6)
3696 case AF_INET6:
3697 np = inet6_sk(sk);
3698 overhead += sizeof(struct ipv6hdr);
3699 if (np)
3700 optv6 = rcu_dereference_protected(np->opt,
3701 sock_owned_by_user(sk));
3702 if (optv6)
3703 overhead += (optv6->opt_flen + optv6->opt_nflen);
3704 return overhead;
3705#endif /* IS_ENABLED(CONFIG_IPV6) */
3706 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3707 return overhead;
3708 }
3709}
3710EXPORT_SYMBOL(kernel_sock_ip_overhead);