Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <linux/inetdevice.h>
135#include <linux/cpu_rmap.h>
136#include <linux/static_key.h>
137#include <linux/hashtable.h>
138#include <linux/vmalloc.h>
139#include <linux/if_macvlan.h>
140#include <linux/errqueue.h>
141#include <linux/hrtimer.h>
142#include <linux/netfilter_ingress.h>
143#include <linux/crash_dump.h>
144#include <linux/sctp.h>
145#include <net/udp_tunnel.h>
146#include <linux/net_namespace.h>
147#include <linux/indirect_call_wrapper.h>
148#include <net/devlink.h>
149#include <linux/pm_runtime.h>
150#include <linux/prandom.h>
151
152#include "net-sysfs.h"
153
154#define MAX_GRO_SKBS 8
155
156/* This should be increased if a protocol with a bigger head is added. */
157#define GRO_MAX_HEAD (MAX_HEADER + 128)
158
159static DEFINE_SPINLOCK(ptype_lock);
160static DEFINE_SPINLOCK(offload_lock);
161struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162struct list_head ptype_all __read_mostly; /* Taps */
163static struct list_head offload_base __read_mostly;
164
165static int netif_rx_internal(struct sk_buff *skb);
166static int call_netdevice_notifiers_info(unsigned long val,
167 struct netdev_notifier_info *info);
168static int call_netdevice_notifiers_extack(unsigned long val,
169 struct net_device *dev,
170 struct netlink_ext_ack *extack);
171static struct napi_struct *napi_by_id(unsigned int napi_id);
172
173/*
174 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
175 * semaphore.
176 *
177 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
178 *
179 * Writers must hold the rtnl semaphore while they loop through the
180 * dev_base_head list, and hold dev_base_lock for writing when they do the
181 * actual updates. This allows pure readers to access the list even
182 * while a writer is preparing to update it.
183 *
184 * To put it another way, dev_base_lock is held for writing only to
185 * protect against pure readers; the rtnl semaphore provides the
186 * protection against other writers.
187 *
188 * See, for example usages, register_netdevice() and
189 * unregister_netdevice(), which must be called with the rtnl
190 * semaphore held.
191 */
192DEFINE_RWLOCK(dev_base_lock);
193EXPORT_SYMBOL(dev_base_lock);
194
195static DEFINE_MUTEX(ifalias_mutex);
196
197/* protects napi_hash addition/deletion and napi_gen_id */
198static DEFINE_SPINLOCK(napi_hash_lock);
199
200static unsigned int napi_gen_id = NR_CPUS;
201static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
202
203static DECLARE_RWSEM(devnet_rename_sem);
204
205static inline void dev_base_seq_inc(struct net *net)
206{
207 while (++net->dev_base_seq == 0)
208 ;
209}
210
211static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
212{
213 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
214
215 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
216}
217
218static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
219{
220 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
221}
222
223static inline void rps_lock(struct softnet_data *sd)
224{
225#ifdef CONFIG_RPS
226 spin_lock(&sd->input_pkt_queue.lock);
227#endif
228}
229
230static inline void rps_unlock(struct softnet_data *sd)
231{
232#ifdef CONFIG_RPS
233 spin_unlock(&sd->input_pkt_queue.lock);
234#endif
235}
236
237static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
238 const char *name)
239{
240 struct netdev_name_node *name_node;
241
242 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
243 if (!name_node)
244 return NULL;
245 INIT_HLIST_NODE(&name_node->hlist);
246 name_node->dev = dev;
247 name_node->name = name;
248 return name_node;
249}
250
251static struct netdev_name_node *
252netdev_name_node_head_alloc(struct net_device *dev)
253{
254 struct netdev_name_node *name_node;
255
256 name_node = netdev_name_node_alloc(dev, dev->name);
257 if (!name_node)
258 return NULL;
259 INIT_LIST_HEAD(&name_node->list);
260 return name_node;
261}
262
263static void netdev_name_node_free(struct netdev_name_node *name_node)
264{
265 kfree(name_node);
266}
267
268static void netdev_name_node_add(struct net *net,
269 struct netdev_name_node *name_node)
270{
271 hlist_add_head_rcu(&name_node->hlist,
272 dev_name_hash(net, name_node->name));
273}
274
275static void netdev_name_node_del(struct netdev_name_node *name_node)
276{
277 hlist_del_rcu(&name_node->hlist);
278}
279
280static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
281 const char *name)
282{
283 struct hlist_head *head = dev_name_hash(net, name);
284 struct netdev_name_node *name_node;
285
286 hlist_for_each_entry(name_node, head, hlist)
287 if (!strcmp(name_node->name, name))
288 return name_node;
289 return NULL;
290}
291
292static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
293 const char *name)
294{
295 struct hlist_head *head = dev_name_hash(net, name);
296 struct netdev_name_node *name_node;
297
298 hlist_for_each_entry_rcu(name_node, head, hlist)
299 if (!strcmp(name_node->name, name))
300 return name_node;
301 return NULL;
302}
303
304int netdev_name_node_alt_create(struct net_device *dev, const char *name)
305{
306 struct netdev_name_node *name_node;
307 struct net *net = dev_net(dev);
308
309 name_node = netdev_name_node_lookup(net, name);
310 if (name_node)
311 return -EEXIST;
312 name_node = netdev_name_node_alloc(dev, name);
313 if (!name_node)
314 return -ENOMEM;
315 netdev_name_node_add(net, name_node);
316 /* The node that holds dev->name acts as a head of per-device list. */
317 list_add_tail(&name_node->list, &dev->name_node->list);
318
319 return 0;
320}
321EXPORT_SYMBOL(netdev_name_node_alt_create);
322
323static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
324{
325 list_del(&name_node->list);
326 netdev_name_node_del(name_node);
327 kfree(name_node->name);
328 netdev_name_node_free(name_node);
329}
330
331int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
332{
333 struct netdev_name_node *name_node;
334 struct net *net = dev_net(dev);
335
336 name_node = netdev_name_node_lookup(net, name);
337 if (!name_node)
338 return -ENOENT;
339 /* lookup might have found our primary name or a name belonging
340 * to another device.
341 */
342 if (name_node == dev->name_node || name_node->dev != dev)
343 return -EINVAL;
344
345 __netdev_name_node_alt_destroy(name_node);
346
347 return 0;
348}
349EXPORT_SYMBOL(netdev_name_node_alt_destroy);
350
351static void netdev_name_node_alt_flush(struct net_device *dev)
352{
353 struct netdev_name_node *name_node, *tmp;
354
355 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
356 __netdev_name_node_alt_destroy(name_node);
357}
358
359/* Device list insertion */
360static void list_netdevice(struct net_device *dev)
361{
362 struct net *net = dev_net(dev);
363
364 ASSERT_RTNL();
365
366 write_lock_bh(&dev_base_lock);
367 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
368 netdev_name_node_add(net, dev->name_node);
369 hlist_add_head_rcu(&dev->index_hlist,
370 dev_index_hash(net, dev->ifindex));
371 write_unlock_bh(&dev_base_lock);
372
373 dev_base_seq_inc(net);
374}
375
376/* Device list removal
377 * caller must respect a RCU grace period before freeing/reusing dev
378 */
379static void unlist_netdevice(struct net_device *dev)
380{
381 ASSERT_RTNL();
382
383 /* Unlink dev from the device chain */
384 write_lock_bh(&dev_base_lock);
385 list_del_rcu(&dev->dev_list);
386 netdev_name_node_del(dev->name_node);
387 hlist_del_rcu(&dev->index_hlist);
388 write_unlock_bh(&dev_base_lock);
389
390 dev_base_seq_inc(dev_net(dev));
391}
392
393/*
394 * Our notifier list
395 */
396
397static RAW_NOTIFIER_HEAD(netdev_chain);
398
399/*
400 * Device drivers call our routines to queue packets here. We empty the
401 * queue in the local softnet handler.
402 */
403
404DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
405EXPORT_PER_CPU_SYMBOL(softnet_data);
406
407#ifdef CONFIG_LOCKDEP
408/*
409 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
410 * according to dev->type
411 */
412static const unsigned short netdev_lock_type[] = {
413 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
414 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
415 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
416 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
417 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
418 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
419 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
420 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
421 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
422 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
423 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
424 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
425 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
426 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
427 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
428
429static const char *const netdev_lock_name[] = {
430 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
431 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
432 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
433 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
434 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
435 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
436 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
437 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
438 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
439 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
440 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
441 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
442 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
443 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
444 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
445
446static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
447static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
448
449static inline unsigned short netdev_lock_pos(unsigned short dev_type)
450{
451 int i;
452
453 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
454 if (netdev_lock_type[i] == dev_type)
455 return i;
456 /* the last key is used by default */
457 return ARRAY_SIZE(netdev_lock_type) - 1;
458}
459
460static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
461 unsigned short dev_type)
462{
463 int i;
464
465 i = netdev_lock_pos(dev_type);
466 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
467 netdev_lock_name[i]);
468}
469
470static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
471{
472 int i;
473
474 i = netdev_lock_pos(dev->type);
475 lockdep_set_class_and_name(&dev->addr_list_lock,
476 &netdev_addr_lock_key[i],
477 netdev_lock_name[i]);
478}
479#else
480static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
481 unsigned short dev_type)
482{
483}
484
485static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
486{
487}
488#endif
489
490/*******************************************************************************
491 *
492 * Protocol management and registration routines
493 *
494 *******************************************************************************/
495
496
497/*
498 * Add a protocol ID to the list. Now that the input handler is
499 * smarter we can dispense with all the messy stuff that used to be
500 * here.
501 *
502 * BEWARE!!! Protocol handlers, mangling input packets,
503 * MUST BE last in hash buckets and checking protocol handlers
504 * MUST start from promiscuous ptype_all chain in net_bh.
505 * It is true now, do not change it.
506 * Explanation follows: if protocol handler, mangling packet, will
507 * be the first on list, it is not able to sense, that packet
508 * is cloned and should be copied-on-write, so that it will
509 * change it and subsequent readers will get broken packet.
510 * --ANK (980803)
511 */
512
513static inline struct list_head *ptype_head(const struct packet_type *pt)
514{
515 if (pt->type == htons(ETH_P_ALL))
516 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
517 else
518 return pt->dev ? &pt->dev->ptype_specific :
519 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
520}
521
522/**
523 * dev_add_pack - add packet handler
524 * @pt: packet type declaration
525 *
526 * Add a protocol handler to the networking stack. The passed &packet_type
527 * is linked into kernel lists and may not be freed until it has been
528 * removed from the kernel lists.
529 *
530 * This call does not sleep therefore it can not
531 * guarantee all CPU's that are in middle of receiving packets
532 * will see the new packet type (until the next received packet).
533 */
534
535void dev_add_pack(struct packet_type *pt)
536{
537 struct list_head *head = ptype_head(pt);
538
539 spin_lock(&ptype_lock);
540 list_add_rcu(&pt->list, head);
541 spin_unlock(&ptype_lock);
542}
543EXPORT_SYMBOL(dev_add_pack);
544
545/**
546 * __dev_remove_pack - remove packet handler
547 * @pt: packet type declaration
548 *
549 * Remove a protocol handler that was previously added to the kernel
550 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
551 * from the kernel lists and can be freed or reused once this function
552 * returns.
553 *
554 * The packet type might still be in use by receivers
555 * and must not be freed until after all the CPU's have gone
556 * through a quiescent state.
557 */
558void __dev_remove_pack(struct packet_type *pt)
559{
560 struct list_head *head = ptype_head(pt);
561 struct packet_type *pt1;
562
563 spin_lock(&ptype_lock);
564
565 list_for_each_entry(pt1, head, list) {
566 if (pt == pt1) {
567 list_del_rcu(&pt->list);
568 goto out;
569 }
570 }
571
572 pr_warn("dev_remove_pack: %p not found\n", pt);
573out:
574 spin_unlock(&ptype_lock);
575}
576EXPORT_SYMBOL(__dev_remove_pack);
577
578/**
579 * dev_remove_pack - remove packet handler
580 * @pt: packet type declaration
581 *
582 * Remove a protocol handler that was previously added to the kernel
583 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
584 * from the kernel lists and can be freed or reused once this function
585 * returns.
586 *
587 * This call sleeps to guarantee that no CPU is looking at the packet
588 * type after return.
589 */
590void dev_remove_pack(struct packet_type *pt)
591{
592 __dev_remove_pack(pt);
593
594 synchronize_net();
595}
596EXPORT_SYMBOL(dev_remove_pack);
597
598
599/**
600 * dev_add_offload - register offload handlers
601 * @po: protocol offload declaration
602 *
603 * Add protocol offload handlers to the networking stack. The passed
604 * &proto_offload is linked into kernel lists and may not be freed until
605 * it has been removed from the kernel lists.
606 *
607 * This call does not sleep therefore it can not
608 * guarantee all CPU's that are in middle of receiving packets
609 * will see the new offload handlers (until the next received packet).
610 */
611void dev_add_offload(struct packet_offload *po)
612{
613 struct packet_offload *elem;
614
615 spin_lock(&offload_lock);
616 list_for_each_entry(elem, &offload_base, list) {
617 if (po->priority < elem->priority)
618 break;
619 }
620 list_add_rcu(&po->list, elem->list.prev);
621 spin_unlock(&offload_lock);
622}
623EXPORT_SYMBOL(dev_add_offload);
624
625/**
626 * __dev_remove_offload - remove offload handler
627 * @po: packet offload declaration
628 *
629 * Remove a protocol offload handler that was previously added to the
630 * kernel offload handlers by dev_add_offload(). The passed &offload_type
631 * is removed from the kernel lists and can be freed or reused once this
632 * function returns.
633 *
634 * The packet type might still be in use by receivers
635 * and must not be freed until after all the CPU's have gone
636 * through a quiescent state.
637 */
638static void __dev_remove_offload(struct packet_offload *po)
639{
640 struct list_head *head = &offload_base;
641 struct packet_offload *po1;
642
643 spin_lock(&offload_lock);
644
645 list_for_each_entry(po1, head, list) {
646 if (po == po1) {
647 list_del_rcu(&po->list);
648 goto out;
649 }
650 }
651
652 pr_warn("dev_remove_offload: %p not found\n", po);
653out:
654 spin_unlock(&offload_lock);
655}
656
657/**
658 * dev_remove_offload - remove packet offload handler
659 * @po: packet offload declaration
660 *
661 * Remove a packet offload handler that was previously added to the kernel
662 * offload handlers by dev_add_offload(). The passed &offload_type is
663 * removed from the kernel lists and can be freed or reused once this
664 * function returns.
665 *
666 * This call sleeps to guarantee that no CPU is looking at the packet
667 * type after return.
668 */
669void dev_remove_offload(struct packet_offload *po)
670{
671 __dev_remove_offload(po);
672
673 synchronize_net();
674}
675EXPORT_SYMBOL(dev_remove_offload);
676
677/******************************************************************************
678 *
679 * Device Boot-time Settings Routines
680 *
681 ******************************************************************************/
682
683/* Boot time configuration table */
684static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
685
686/**
687 * netdev_boot_setup_add - add new setup entry
688 * @name: name of the device
689 * @map: configured settings for the device
690 *
691 * Adds new setup entry to the dev_boot_setup list. The function
692 * returns 0 on error and 1 on success. This is a generic routine to
693 * all netdevices.
694 */
695static int netdev_boot_setup_add(char *name, struct ifmap *map)
696{
697 struct netdev_boot_setup *s;
698 int i;
699
700 s = dev_boot_setup;
701 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
702 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
703 memset(s[i].name, 0, sizeof(s[i].name));
704 strlcpy(s[i].name, name, IFNAMSIZ);
705 memcpy(&s[i].map, map, sizeof(s[i].map));
706 break;
707 }
708 }
709
710 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
711}
712
713/**
714 * netdev_boot_setup_check - check boot time settings
715 * @dev: the netdevice
716 *
717 * Check boot time settings for the device.
718 * The found settings are set for the device to be used
719 * later in the device probing.
720 * Returns 0 if no settings found, 1 if they are.
721 */
722int netdev_boot_setup_check(struct net_device *dev)
723{
724 struct netdev_boot_setup *s = dev_boot_setup;
725 int i;
726
727 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
728 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
729 !strcmp(dev->name, s[i].name)) {
730 dev->irq = s[i].map.irq;
731 dev->base_addr = s[i].map.base_addr;
732 dev->mem_start = s[i].map.mem_start;
733 dev->mem_end = s[i].map.mem_end;
734 return 1;
735 }
736 }
737 return 0;
738}
739EXPORT_SYMBOL(netdev_boot_setup_check);
740
741
742/**
743 * netdev_boot_base - get address from boot time settings
744 * @prefix: prefix for network device
745 * @unit: id for network device
746 *
747 * Check boot time settings for the base address of device.
748 * The found settings are set for the device to be used
749 * later in the device probing.
750 * Returns 0 if no settings found.
751 */
752unsigned long netdev_boot_base(const char *prefix, int unit)
753{
754 const struct netdev_boot_setup *s = dev_boot_setup;
755 char name[IFNAMSIZ];
756 int i;
757
758 sprintf(name, "%s%d", prefix, unit);
759
760 /*
761 * If device already registered then return base of 1
762 * to indicate not to probe for this interface
763 */
764 if (__dev_get_by_name(&init_net, name))
765 return 1;
766
767 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
768 if (!strcmp(name, s[i].name))
769 return s[i].map.base_addr;
770 return 0;
771}
772
773/*
774 * Saves at boot time configured settings for any netdevice.
775 */
776int __init netdev_boot_setup(char *str)
777{
778 int ints[5];
779 struct ifmap map;
780
781 str = get_options(str, ARRAY_SIZE(ints), ints);
782 if (!str || !*str)
783 return 0;
784
785 /* Save settings */
786 memset(&map, 0, sizeof(map));
787 if (ints[0] > 0)
788 map.irq = ints[1];
789 if (ints[0] > 1)
790 map.base_addr = ints[2];
791 if (ints[0] > 2)
792 map.mem_start = ints[3];
793 if (ints[0] > 3)
794 map.mem_end = ints[4];
795
796 /* Add new entry to the list */
797 return netdev_boot_setup_add(str, &map);
798}
799
800__setup("netdev=", netdev_boot_setup);
801
802/*******************************************************************************
803 *
804 * Device Interface Subroutines
805 *
806 *******************************************************************************/
807
808/**
809 * dev_get_iflink - get 'iflink' value of a interface
810 * @dev: targeted interface
811 *
812 * Indicates the ifindex the interface is linked to.
813 * Physical interfaces have the same 'ifindex' and 'iflink' values.
814 */
815
816int dev_get_iflink(const struct net_device *dev)
817{
818 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
819 return dev->netdev_ops->ndo_get_iflink(dev);
820
821 return dev->ifindex;
822}
823EXPORT_SYMBOL(dev_get_iflink);
824
825/**
826 * dev_fill_metadata_dst - Retrieve tunnel egress information.
827 * @dev: targeted interface
828 * @skb: The packet.
829 *
830 * For better visibility of tunnel traffic OVS needs to retrieve
831 * egress tunnel information for a packet. Following API allows
832 * user to get this info.
833 */
834int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
835{
836 struct ip_tunnel_info *info;
837
838 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
839 return -EINVAL;
840
841 info = skb_tunnel_info_unclone(skb);
842 if (!info)
843 return -ENOMEM;
844 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
845 return -EINVAL;
846
847 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
848}
849EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
850
851static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
852{
853 int k = stack->num_paths++;
854
855 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
856 return NULL;
857
858 return &stack->path[k];
859}
860
861int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
862 struct net_device_path_stack *stack)
863{
864 const struct net_device *last_dev;
865 struct net_device_path_ctx ctx = {
866 .dev = dev,
867 .daddr = daddr,
868 };
869 struct net_device_path *path;
870 int ret = 0;
871
872 stack->num_paths = 0;
873 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
874 last_dev = ctx.dev;
875 path = dev_fwd_path(stack);
876 if (!path)
877 return -1;
878
879 memset(path, 0, sizeof(struct net_device_path));
880 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
881 if (ret < 0)
882 return -1;
883
884 if (WARN_ON_ONCE(last_dev == ctx.dev))
885 return -1;
886 }
887 path = dev_fwd_path(stack);
888 if (!path)
889 return -1;
890 path->type = DEV_PATH_ETHERNET;
891 path->dev = ctx.dev;
892
893 return ret;
894}
895EXPORT_SYMBOL_GPL(dev_fill_forward_path);
896
897/**
898 * __dev_get_by_name - find a device by its name
899 * @net: the applicable net namespace
900 * @name: name to find
901 *
902 * Find an interface by name. Must be called under RTNL semaphore
903 * or @dev_base_lock. If the name is found a pointer to the device
904 * is returned. If the name is not found then %NULL is returned. The
905 * reference counters are not incremented so the caller must be
906 * careful with locks.
907 */
908
909struct net_device *__dev_get_by_name(struct net *net, const char *name)
910{
911 struct netdev_name_node *node_name;
912
913 node_name = netdev_name_node_lookup(net, name);
914 return node_name ? node_name->dev : NULL;
915}
916EXPORT_SYMBOL(__dev_get_by_name);
917
918/**
919 * dev_get_by_name_rcu - find a device by its name
920 * @net: the applicable net namespace
921 * @name: name to find
922 *
923 * Find an interface by name.
924 * If the name is found a pointer to the device is returned.
925 * If the name is not found then %NULL is returned.
926 * The reference counters are not incremented so the caller must be
927 * careful with locks. The caller must hold RCU lock.
928 */
929
930struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
931{
932 struct netdev_name_node *node_name;
933
934 node_name = netdev_name_node_lookup_rcu(net, name);
935 return node_name ? node_name->dev : NULL;
936}
937EXPORT_SYMBOL(dev_get_by_name_rcu);
938
939/**
940 * dev_get_by_name - find a device by its name
941 * @net: the applicable net namespace
942 * @name: name to find
943 *
944 * Find an interface by name. This can be called from any
945 * context and does its own locking. The returned handle has
946 * the usage count incremented and the caller must use dev_put() to
947 * release it when it is no longer needed. %NULL is returned if no
948 * matching device is found.
949 */
950
951struct net_device *dev_get_by_name(struct net *net, const char *name)
952{
953 struct net_device *dev;
954
955 rcu_read_lock();
956 dev = dev_get_by_name_rcu(net, name);
957 if (dev)
958 dev_hold(dev);
959 rcu_read_unlock();
960 return dev;
961}
962EXPORT_SYMBOL(dev_get_by_name);
963
964/**
965 * __dev_get_by_index - find a device by its ifindex
966 * @net: the applicable net namespace
967 * @ifindex: index of device
968 *
969 * Search for an interface by index. Returns %NULL if the device
970 * is not found or a pointer to the device. The device has not
971 * had its reference counter increased so the caller must be careful
972 * about locking. The caller must hold either the RTNL semaphore
973 * or @dev_base_lock.
974 */
975
976struct net_device *__dev_get_by_index(struct net *net, int ifindex)
977{
978 struct net_device *dev;
979 struct hlist_head *head = dev_index_hash(net, ifindex);
980
981 hlist_for_each_entry(dev, head, index_hlist)
982 if (dev->ifindex == ifindex)
983 return dev;
984
985 return NULL;
986}
987EXPORT_SYMBOL(__dev_get_by_index);
988
989/**
990 * dev_get_by_index_rcu - find a device by its ifindex
991 * @net: the applicable net namespace
992 * @ifindex: index of device
993 *
994 * Search for an interface by index. Returns %NULL if the device
995 * is not found or a pointer to the device. The device has not
996 * had its reference counter increased so the caller must be careful
997 * about locking. The caller must hold RCU lock.
998 */
999
1000struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
1001{
1002 struct net_device *dev;
1003 struct hlist_head *head = dev_index_hash(net, ifindex);
1004
1005 hlist_for_each_entry_rcu(dev, head, index_hlist)
1006 if (dev->ifindex == ifindex)
1007 return dev;
1008
1009 return NULL;
1010}
1011EXPORT_SYMBOL(dev_get_by_index_rcu);
1012
1013
1014/**
1015 * dev_get_by_index - find a device by its ifindex
1016 * @net: the applicable net namespace
1017 * @ifindex: index of device
1018 *
1019 * Search for an interface by index. Returns NULL if the device
1020 * is not found or a pointer to the device. The device returned has
1021 * had a reference added and the pointer is safe until the user calls
1022 * dev_put to indicate they have finished with it.
1023 */
1024
1025struct net_device *dev_get_by_index(struct net *net, int ifindex)
1026{
1027 struct net_device *dev;
1028
1029 rcu_read_lock();
1030 dev = dev_get_by_index_rcu(net, ifindex);
1031 if (dev)
1032 dev_hold(dev);
1033 rcu_read_unlock();
1034 return dev;
1035}
1036EXPORT_SYMBOL(dev_get_by_index);
1037
1038/**
1039 * dev_get_by_napi_id - find a device by napi_id
1040 * @napi_id: ID of the NAPI struct
1041 *
1042 * Search for an interface by NAPI ID. Returns %NULL if the device
1043 * is not found or a pointer to the device. The device has not had
1044 * its reference counter increased so the caller must be careful
1045 * about locking. The caller must hold RCU lock.
1046 */
1047
1048struct net_device *dev_get_by_napi_id(unsigned int napi_id)
1049{
1050 struct napi_struct *napi;
1051
1052 WARN_ON_ONCE(!rcu_read_lock_held());
1053
1054 if (napi_id < MIN_NAPI_ID)
1055 return NULL;
1056
1057 napi = napi_by_id(napi_id);
1058
1059 return napi ? napi->dev : NULL;
1060}
1061EXPORT_SYMBOL(dev_get_by_napi_id);
1062
1063/**
1064 * netdev_get_name - get a netdevice name, knowing its ifindex.
1065 * @net: network namespace
1066 * @name: a pointer to the buffer where the name will be stored.
1067 * @ifindex: the ifindex of the interface to get the name from.
1068 */
1069int netdev_get_name(struct net *net, char *name, int ifindex)
1070{
1071 struct net_device *dev;
1072 int ret;
1073
1074 down_read(&devnet_rename_sem);
1075 rcu_read_lock();
1076
1077 dev = dev_get_by_index_rcu(net, ifindex);
1078 if (!dev) {
1079 ret = -ENODEV;
1080 goto out;
1081 }
1082
1083 strcpy(name, dev->name);
1084
1085 ret = 0;
1086out:
1087 rcu_read_unlock();
1088 up_read(&devnet_rename_sem);
1089 return ret;
1090}
1091
1092/**
1093 * dev_getbyhwaddr_rcu - find a device by its hardware address
1094 * @net: the applicable net namespace
1095 * @type: media type of device
1096 * @ha: hardware address
1097 *
1098 * Search for an interface by MAC address. Returns NULL if the device
1099 * is not found or a pointer to the device.
1100 * The caller must hold RCU or RTNL.
1101 * The returned device has not had its ref count increased
1102 * and the caller must therefore be careful about locking
1103 *
1104 */
1105
1106struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1107 const char *ha)
1108{
1109 struct net_device *dev;
1110
1111 for_each_netdev_rcu(net, dev)
1112 if (dev->type == type &&
1113 !memcmp(dev->dev_addr, ha, dev->addr_len))
1114 return dev;
1115
1116 return NULL;
1117}
1118EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
1119
1120struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
1121{
1122 struct net_device *dev, *ret = NULL;
1123
1124 rcu_read_lock();
1125 for_each_netdev_rcu(net, dev)
1126 if (dev->type == type) {
1127 dev_hold(dev);
1128 ret = dev;
1129 break;
1130 }
1131 rcu_read_unlock();
1132 return ret;
1133}
1134EXPORT_SYMBOL(dev_getfirstbyhwtype);
1135
1136/**
1137 * __dev_get_by_flags - find any device with given flags
1138 * @net: the applicable net namespace
1139 * @if_flags: IFF_* values
1140 * @mask: bitmask of bits in if_flags to check
1141 *
1142 * Search for any interface with the given flags. Returns NULL if a device
1143 * is not found or a pointer to the device. Must be called inside
1144 * rtnl_lock(), and result refcount is unchanged.
1145 */
1146
1147struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1148 unsigned short mask)
1149{
1150 struct net_device *dev, *ret;
1151
1152 ASSERT_RTNL();
1153
1154 ret = NULL;
1155 for_each_netdev(net, dev) {
1156 if (((dev->flags ^ if_flags) & mask) == 0) {
1157 ret = dev;
1158 break;
1159 }
1160 }
1161 return ret;
1162}
1163EXPORT_SYMBOL(__dev_get_by_flags);
1164
1165/**
1166 * dev_valid_name - check if name is okay for network device
1167 * @name: name string
1168 *
1169 * Network device names need to be valid file names to
1170 * allow sysfs to work. We also disallow any kind of
1171 * whitespace.
1172 */
1173bool dev_valid_name(const char *name)
1174{
1175 if (*name == '\0')
1176 return false;
1177 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1178 return false;
1179 if (!strcmp(name, ".") || !strcmp(name, ".."))
1180 return false;
1181
1182 while (*name) {
1183 if (*name == '/' || *name == ':' || isspace(*name))
1184 return false;
1185 name++;
1186 }
1187 return true;
1188}
1189EXPORT_SYMBOL(dev_valid_name);
1190
1191/**
1192 * __dev_alloc_name - allocate a name for a device
1193 * @net: network namespace to allocate the device name in
1194 * @name: name format string
1195 * @buf: scratch buffer and result name string
1196 *
1197 * Passed a format string - eg "lt%d" it will try and find a suitable
1198 * id. It scans list of devices to build up a free map, then chooses
1199 * the first empty slot. The caller must hold the dev_base or rtnl lock
1200 * while allocating the name and adding the device in order to avoid
1201 * duplicates.
1202 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1203 * Returns the number of the unit assigned or a negative errno code.
1204 */
1205
1206static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1207{
1208 int i = 0;
1209 const char *p;
1210 const int max_netdevices = 8*PAGE_SIZE;
1211 unsigned long *inuse;
1212 struct net_device *d;
1213
1214 if (!dev_valid_name(name))
1215 return -EINVAL;
1216
1217 p = strchr(name, '%');
1218 if (p) {
1219 /*
1220 * Verify the string as this thing may have come from
1221 * the user. There must be either one "%d" and no other "%"
1222 * characters.
1223 */
1224 if (p[1] != 'd' || strchr(p + 2, '%'))
1225 return -EINVAL;
1226
1227 /* Use one page as a bit array of possible slots */
1228 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1229 if (!inuse)
1230 return -ENOMEM;
1231
1232 for_each_netdev(net, d) {
1233 struct netdev_name_node *name_node;
1234 list_for_each_entry(name_node, &d->name_node->list, list) {
1235 if (!sscanf(name_node->name, name, &i))
1236 continue;
1237 if (i < 0 || i >= max_netdevices)
1238 continue;
1239
1240 /* avoid cases where sscanf is not exact inverse of printf */
1241 snprintf(buf, IFNAMSIZ, name, i);
1242 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1243 set_bit(i, inuse);
1244 }
1245 if (!sscanf(d->name, name, &i))
1246 continue;
1247 if (i < 0 || i >= max_netdevices)
1248 continue;
1249
1250 /* avoid cases where sscanf is not exact inverse of printf */
1251 snprintf(buf, IFNAMSIZ, name, i);
1252 if (!strncmp(buf, d->name, IFNAMSIZ))
1253 set_bit(i, inuse);
1254 }
1255
1256 i = find_first_zero_bit(inuse, max_netdevices);
1257 free_page((unsigned long) inuse);
1258 }
1259
1260 snprintf(buf, IFNAMSIZ, name, i);
1261 if (!__dev_get_by_name(net, buf))
1262 return i;
1263
1264 /* It is possible to run out of possible slots
1265 * when the name is long and there isn't enough space left
1266 * for the digits, or if all bits are used.
1267 */
1268 return -ENFILE;
1269}
1270
1271static int dev_alloc_name_ns(struct net *net,
1272 struct net_device *dev,
1273 const char *name)
1274{
1275 char buf[IFNAMSIZ];
1276 int ret;
1277
1278 BUG_ON(!net);
1279 ret = __dev_alloc_name(net, name, buf);
1280 if (ret >= 0)
1281 strlcpy(dev->name, buf, IFNAMSIZ);
1282 return ret;
1283}
1284
1285/**
1286 * dev_alloc_name - allocate a name for a device
1287 * @dev: device
1288 * @name: name format string
1289 *
1290 * Passed a format string - eg "lt%d" it will try and find a suitable
1291 * id. It scans list of devices to build up a free map, then chooses
1292 * the first empty slot. The caller must hold the dev_base or rtnl lock
1293 * while allocating the name and adding the device in order to avoid
1294 * duplicates.
1295 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1296 * Returns the number of the unit assigned or a negative errno code.
1297 */
1298
1299int dev_alloc_name(struct net_device *dev, const char *name)
1300{
1301 return dev_alloc_name_ns(dev_net(dev), dev, name);
1302}
1303EXPORT_SYMBOL(dev_alloc_name);
1304
1305static int dev_get_valid_name(struct net *net, struct net_device *dev,
1306 const char *name)
1307{
1308 BUG_ON(!net);
1309
1310 if (!dev_valid_name(name))
1311 return -EINVAL;
1312
1313 if (strchr(name, '%'))
1314 return dev_alloc_name_ns(net, dev, name);
1315 else if (__dev_get_by_name(net, name))
1316 return -EEXIST;
1317 else if (dev->name != name)
1318 strlcpy(dev->name, name, IFNAMSIZ);
1319
1320 return 0;
1321}
1322
1323/**
1324 * dev_change_name - change name of a device
1325 * @dev: device
1326 * @newname: name (or format string) must be at least IFNAMSIZ
1327 *
1328 * Change name of a device, can pass format strings "eth%d".
1329 * for wildcarding.
1330 */
1331int dev_change_name(struct net_device *dev, const char *newname)
1332{
1333 unsigned char old_assign_type;
1334 char oldname[IFNAMSIZ];
1335 int err = 0;
1336 int ret;
1337 struct net *net;
1338
1339 ASSERT_RTNL();
1340 BUG_ON(!dev_net(dev));
1341
1342 net = dev_net(dev);
1343
1344 /* Some auto-enslaved devices e.g. failover slaves are
1345 * special, as userspace might rename the device after
1346 * the interface had been brought up and running since
1347 * the point kernel initiated auto-enslavement. Allow
1348 * live name change even when these slave devices are
1349 * up and running.
1350 *
1351 * Typically, users of these auto-enslaving devices
1352 * don't actually care about slave name change, as
1353 * they are supposed to operate on master interface
1354 * directly.
1355 */
1356 if (dev->flags & IFF_UP &&
1357 likely(!(dev->priv_flags & IFF_LIVE_RENAME_OK)))
1358 return -EBUSY;
1359
1360 down_write(&devnet_rename_sem);
1361
1362 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1363 up_write(&devnet_rename_sem);
1364 return 0;
1365 }
1366
1367 memcpy(oldname, dev->name, IFNAMSIZ);
1368
1369 err = dev_get_valid_name(net, dev, newname);
1370 if (err < 0) {
1371 up_write(&devnet_rename_sem);
1372 return err;
1373 }
1374
1375 if (oldname[0] && !strchr(oldname, '%'))
1376 netdev_info(dev, "renamed from %s\n", oldname);
1377
1378 old_assign_type = dev->name_assign_type;
1379 dev->name_assign_type = NET_NAME_RENAMED;
1380
1381rollback:
1382 ret = device_rename(&dev->dev, dev->name);
1383 if (ret) {
1384 memcpy(dev->name, oldname, IFNAMSIZ);
1385 dev->name_assign_type = old_assign_type;
1386 up_write(&devnet_rename_sem);
1387 return ret;
1388 }
1389
1390 up_write(&devnet_rename_sem);
1391
1392 netdev_adjacent_rename_links(dev, oldname);
1393
1394 write_lock_bh(&dev_base_lock);
1395 netdev_name_node_del(dev->name_node);
1396 write_unlock_bh(&dev_base_lock);
1397
1398 synchronize_rcu();
1399
1400 write_lock_bh(&dev_base_lock);
1401 netdev_name_node_add(net, dev->name_node);
1402 write_unlock_bh(&dev_base_lock);
1403
1404 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1405 ret = notifier_to_errno(ret);
1406
1407 if (ret) {
1408 /* err >= 0 after dev_alloc_name() or stores the first errno */
1409 if (err >= 0) {
1410 err = ret;
1411 down_write(&devnet_rename_sem);
1412 memcpy(dev->name, oldname, IFNAMSIZ);
1413 memcpy(oldname, newname, IFNAMSIZ);
1414 dev->name_assign_type = old_assign_type;
1415 old_assign_type = NET_NAME_RENAMED;
1416 goto rollback;
1417 } else {
1418 pr_err("%s: name change rollback failed: %d\n",
1419 dev->name, ret);
1420 }
1421 }
1422
1423 return err;
1424}
1425
1426/**
1427 * dev_set_alias - change ifalias of a device
1428 * @dev: device
1429 * @alias: name up to IFALIASZ
1430 * @len: limit of bytes to copy from info
1431 *
1432 * Set ifalias for a device,
1433 */
1434int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1435{
1436 struct dev_ifalias *new_alias = NULL;
1437
1438 if (len >= IFALIASZ)
1439 return -EINVAL;
1440
1441 if (len) {
1442 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1443 if (!new_alias)
1444 return -ENOMEM;
1445
1446 memcpy(new_alias->ifalias, alias, len);
1447 new_alias->ifalias[len] = 0;
1448 }
1449
1450 mutex_lock(&ifalias_mutex);
1451 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1452 mutex_is_locked(&ifalias_mutex));
1453 mutex_unlock(&ifalias_mutex);
1454
1455 if (new_alias)
1456 kfree_rcu(new_alias, rcuhead);
1457
1458 return len;
1459}
1460EXPORT_SYMBOL(dev_set_alias);
1461
1462/**
1463 * dev_get_alias - get ifalias of a device
1464 * @dev: device
1465 * @name: buffer to store name of ifalias
1466 * @len: size of buffer
1467 *
1468 * get ifalias for a device. Caller must make sure dev cannot go
1469 * away, e.g. rcu read lock or own a reference count to device.
1470 */
1471int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1472{
1473 const struct dev_ifalias *alias;
1474 int ret = 0;
1475
1476 rcu_read_lock();
1477 alias = rcu_dereference(dev->ifalias);
1478 if (alias)
1479 ret = snprintf(name, len, "%s", alias->ifalias);
1480 rcu_read_unlock();
1481
1482 return ret;
1483}
1484
1485/**
1486 * netdev_features_change - device changes features
1487 * @dev: device to cause notification
1488 *
1489 * Called to indicate a device has changed features.
1490 */
1491void netdev_features_change(struct net_device *dev)
1492{
1493 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1494}
1495EXPORT_SYMBOL(netdev_features_change);
1496
1497/**
1498 * netdev_state_change - device changes state
1499 * @dev: device to cause notification
1500 *
1501 * Called to indicate a device has changed state. This function calls
1502 * the notifier chains for netdev_chain and sends a NEWLINK message
1503 * to the routing socket.
1504 */
1505void netdev_state_change(struct net_device *dev)
1506{
1507 if (dev->flags & IFF_UP) {
1508 struct netdev_notifier_change_info change_info = {
1509 .info.dev = dev,
1510 };
1511
1512 call_netdevice_notifiers_info(NETDEV_CHANGE,
1513 &change_info.info);
1514 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1515 }
1516}
1517EXPORT_SYMBOL(netdev_state_change);
1518
1519/**
1520 * __netdev_notify_peers - notify network peers about existence of @dev,
1521 * to be called when rtnl lock is already held.
1522 * @dev: network device
1523 *
1524 * Generate traffic such that interested network peers are aware of
1525 * @dev, such as by generating a gratuitous ARP. This may be used when
1526 * a device wants to inform the rest of the network about some sort of
1527 * reconfiguration such as a failover event or virtual machine
1528 * migration.
1529 */
1530void __netdev_notify_peers(struct net_device *dev)
1531{
1532 ASSERT_RTNL();
1533 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1534 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1535}
1536EXPORT_SYMBOL(__netdev_notify_peers);
1537
1538/**
1539 * netdev_notify_peers - notify network peers about existence of @dev
1540 * @dev: network device
1541 *
1542 * Generate traffic such that interested network peers are aware of
1543 * @dev, such as by generating a gratuitous ARP. This may be used when
1544 * a device wants to inform the rest of the network about some sort of
1545 * reconfiguration such as a failover event or virtual machine
1546 * migration.
1547 */
1548void netdev_notify_peers(struct net_device *dev)
1549{
1550 rtnl_lock();
1551 __netdev_notify_peers(dev);
1552 rtnl_unlock();
1553}
1554EXPORT_SYMBOL(netdev_notify_peers);
1555
1556static int napi_threaded_poll(void *data);
1557
1558static int napi_kthread_create(struct napi_struct *n)
1559{
1560 int err = 0;
1561
1562 /* Create and wake up the kthread once to put it in
1563 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1564 * warning and work with loadavg.
1565 */
1566 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1567 n->dev->name, n->napi_id);
1568 if (IS_ERR(n->thread)) {
1569 err = PTR_ERR(n->thread);
1570 pr_err("kthread_run failed with err %d\n", err);
1571 n->thread = NULL;
1572 }
1573
1574 return err;
1575}
1576
1577static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1578{
1579 const struct net_device_ops *ops = dev->netdev_ops;
1580 int ret;
1581
1582 ASSERT_RTNL();
1583
1584 if (!netif_device_present(dev)) {
1585 /* may be detached because parent is runtime-suspended */
1586 if (dev->dev.parent)
1587 pm_runtime_resume(dev->dev.parent);
1588 if (!netif_device_present(dev))
1589 return -ENODEV;
1590 }
1591
1592 /* Block netpoll from trying to do any rx path servicing.
1593 * If we don't do this there is a chance ndo_poll_controller
1594 * or ndo_poll may be running while we open the device
1595 */
1596 netpoll_poll_disable(dev);
1597
1598 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1599 ret = notifier_to_errno(ret);
1600 if (ret)
1601 return ret;
1602
1603 set_bit(__LINK_STATE_START, &dev->state);
1604
1605 if (ops->ndo_validate_addr)
1606 ret = ops->ndo_validate_addr(dev);
1607
1608 if (!ret && ops->ndo_open)
1609 ret = ops->ndo_open(dev);
1610
1611 netpoll_poll_enable(dev);
1612
1613 if (ret)
1614 clear_bit(__LINK_STATE_START, &dev->state);
1615 else {
1616 dev->flags |= IFF_UP;
1617 dev_set_rx_mode(dev);
1618 dev_activate(dev);
1619 add_device_randomness(dev->dev_addr, dev->addr_len);
1620 }
1621
1622 return ret;
1623}
1624
1625/**
1626 * dev_open - prepare an interface for use.
1627 * @dev: device to open
1628 * @extack: netlink extended ack
1629 *
1630 * Takes a device from down to up state. The device's private open
1631 * function is invoked and then the multicast lists are loaded. Finally
1632 * the device is moved into the up state and a %NETDEV_UP message is
1633 * sent to the netdev notifier chain.
1634 *
1635 * Calling this function on an active interface is a nop. On a failure
1636 * a negative errno code is returned.
1637 */
1638int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1639{
1640 int ret;
1641
1642 if (dev->flags & IFF_UP)
1643 return 0;
1644
1645 ret = __dev_open(dev, extack);
1646 if (ret < 0)
1647 return ret;
1648
1649 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1650 call_netdevice_notifiers(NETDEV_UP, dev);
1651
1652 return ret;
1653}
1654EXPORT_SYMBOL(dev_open);
1655
1656static void __dev_close_many(struct list_head *head)
1657{
1658 struct net_device *dev;
1659
1660 ASSERT_RTNL();
1661 might_sleep();
1662
1663 list_for_each_entry(dev, head, close_list) {
1664 /* Temporarily disable netpoll until the interface is down */
1665 netpoll_poll_disable(dev);
1666
1667 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1668
1669 clear_bit(__LINK_STATE_START, &dev->state);
1670
1671 /* Synchronize to scheduled poll. We cannot touch poll list, it
1672 * can be even on different cpu. So just clear netif_running().
1673 *
1674 * dev->stop() will invoke napi_disable() on all of it's
1675 * napi_struct instances on this device.
1676 */
1677 smp_mb__after_atomic(); /* Commit netif_running(). */
1678 }
1679
1680 dev_deactivate_many(head);
1681
1682 list_for_each_entry(dev, head, close_list) {
1683 const struct net_device_ops *ops = dev->netdev_ops;
1684
1685 /*
1686 * Call the device specific close. This cannot fail.
1687 * Only if device is UP
1688 *
1689 * We allow it to be called even after a DETACH hot-plug
1690 * event.
1691 */
1692 if (ops->ndo_stop)
1693 ops->ndo_stop(dev);
1694
1695 dev->flags &= ~IFF_UP;
1696 netpoll_poll_enable(dev);
1697 }
1698}
1699
1700static void __dev_close(struct net_device *dev)
1701{
1702 LIST_HEAD(single);
1703
1704 list_add(&dev->close_list, &single);
1705 __dev_close_many(&single);
1706 list_del(&single);
1707}
1708
1709void dev_close_many(struct list_head *head, bool unlink)
1710{
1711 struct net_device *dev, *tmp;
1712
1713 /* Remove the devices that don't need to be closed */
1714 list_for_each_entry_safe(dev, tmp, head, close_list)
1715 if (!(dev->flags & IFF_UP))
1716 list_del_init(&dev->close_list);
1717
1718 __dev_close_many(head);
1719
1720 list_for_each_entry_safe(dev, tmp, head, close_list) {
1721 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1722 call_netdevice_notifiers(NETDEV_DOWN, dev);
1723 if (unlink)
1724 list_del_init(&dev->close_list);
1725 }
1726}
1727EXPORT_SYMBOL(dev_close_many);
1728
1729/**
1730 * dev_close - shutdown an interface.
1731 * @dev: device to shutdown
1732 *
1733 * This function moves an active device into down state. A
1734 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1735 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1736 * chain.
1737 */
1738void dev_close(struct net_device *dev)
1739{
1740 if (dev->flags & IFF_UP) {
1741 LIST_HEAD(single);
1742
1743 list_add(&dev->close_list, &single);
1744 dev_close_many(&single, true);
1745 list_del(&single);
1746 }
1747}
1748EXPORT_SYMBOL(dev_close);
1749
1750
1751/**
1752 * dev_disable_lro - disable Large Receive Offload on a device
1753 * @dev: device
1754 *
1755 * Disable Large Receive Offload (LRO) on a net device. Must be
1756 * called under RTNL. This is needed if received packets may be
1757 * forwarded to another interface.
1758 */
1759void dev_disable_lro(struct net_device *dev)
1760{
1761 struct net_device *lower_dev;
1762 struct list_head *iter;
1763
1764 dev->wanted_features &= ~NETIF_F_LRO;
1765 netdev_update_features(dev);
1766
1767 if (unlikely(dev->features & NETIF_F_LRO))
1768 netdev_WARN(dev, "failed to disable LRO!\n");
1769
1770 netdev_for_each_lower_dev(dev, lower_dev, iter)
1771 dev_disable_lro(lower_dev);
1772}
1773EXPORT_SYMBOL(dev_disable_lro);
1774
1775/**
1776 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1777 * @dev: device
1778 *
1779 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1780 * called under RTNL. This is needed if Generic XDP is installed on
1781 * the device.
1782 */
1783static void dev_disable_gro_hw(struct net_device *dev)
1784{
1785 dev->wanted_features &= ~NETIF_F_GRO_HW;
1786 netdev_update_features(dev);
1787
1788 if (unlikely(dev->features & NETIF_F_GRO_HW))
1789 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1790}
1791
1792const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1793{
1794#define N(val) \
1795 case NETDEV_##val: \
1796 return "NETDEV_" __stringify(val);
1797 switch (cmd) {
1798 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1799 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1800 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1801 N(POST_INIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN) N(CHANGEUPPER)
1802 N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA) N(BONDING_INFO)
1803 N(PRECHANGEUPPER) N(CHANGELOWERSTATE) N(UDP_TUNNEL_PUSH_INFO)
1804 N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1805 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1806 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1807 N(PRE_CHANGEADDR)
1808 }
1809#undef N
1810 return "UNKNOWN_NETDEV_EVENT";
1811}
1812EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1813
1814static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1815 struct net_device *dev)
1816{
1817 struct netdev_notifier_info info = {
1818 .dev = dev,
1819 };
1820
1821 return nb->notifier_call(nb, val, &info);
1822}
1823
1824static int call_netdevice_register_notifiers(struct notifier_block *nb,
1825 struct net_device *dev)
1826{
1827 int err;
1828
1829 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1830 err = notifier_to_errno(err);
1831 if (err)
1832 return err;
1833
1834 if (!(dev->flags & IFF_UP))
1835 return 0;
1836
1837 call_netdevice_notifier(nb, NETDEV_UP, dev);
1838 return 0;
1839}
1840
1841static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1842 struct net_device *dev)
1843{
1844 if (dev->flags & IFF_UP) {
1845 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1846 dev);
1847 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1848 }
1849 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1850}
1851
1852static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1853 struct net *net)
1854{
1855 struct net_device *dev;
1856 int err;
1857
1858 for_each_netdev(net, dev) {
1859 err = call_netdevice_register_notifiers(nb, dev);
1860 if (err)
1861 goto rollback;
1862 }
1863 return 0;
1864
1865rollback:
1866 for_each_netdev_continue_reverse(net, dev)
1867 call_netdevice_unregister_notifiers(nb, dev);
1868 return err;
1869}
1870
1871static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1872 struct net *net)
1873{
1874 struct net_device *dev;
1875
1876 for_each_netdev(net, dev)
1877 call_netdevice_unregister_notifiers(nb, dev);
1878}
1879
1880static int dev_boot_phase = 1;
1881
1882/**
1883 * register_netdevice_notifier - register a network notifier block
1884 * @nb: notifier
1885 *
1886 * Register a notifier to be called when network device events occur.
1887 * The notifier passed is linked into the kernel structures and must
1888 * not be reused until it has been unregistered. A negative errno code
1889 * is returned on a failure.
1890 *
1891 * When registered all registration and up events are replayed
1892 * to the new notifier to allow device to have a race free
1893 * view of the network device list.
1894 */
1895
1896int register_netdevice_notifier(struct notifier_block *nb)
1897{
1898 struct net *net;
1899 int err;
1900
1901 /* Close race with setup_net() and cleanup_net() */
1902 down_write(&pernet_ops_rwsem);
1903 rtnl_lock();
1904 err = raw_notifier_chain_register(&netdev_chain, nb);
1905 if (err)
1906 goto unlock;
1907 if (dev_boot_phase)
1908 goto unlock;
1909 for_each_net(net) {
1910 err = call_netdevice_register_net_notifiers(nb, net);
1911 if (err)
1912 goto rollback;
1913 }
1914
1915unlock:
1916 rtnl_unlock();
1917 up_write(&pernet_ops_rwsem);
1918 return err;
1919
1920rollback:
1921 for_each_net_continue_reverse(net)
1922 call_netdevice_unregister_net_notifiers(nb, net);
1923
1924 raw_notifier_chain_unregister(&netdev_chain, nb);
1925 goto unlock;
1926}
1927EXPORT_SYMBOL(register_netdevice_notifier);
1928
1929/**
1930 * unregister_netdevice_notifier - unregister a network notifier block
1931 * @nb: notifier
1932 *
1933 * Unregister a notifier previously registered by
1934 * register_netdevice_notifier(). The notifier is unlinked into the
1935 * kernel structures and may then be reused. A negative errno code
1936 * is returned on a failure.
1937 *
1938 * After unregistering unregister and down device events are synthesized
1939 * for all devices on the device list to the removed notifier to remove
1940 * the need for special case cleanup code.
1941 */
1942
1943int unregister_netdevice_notifier(struct notifier_block *nb)
1944{
1945 struct net *net;
1946 int err;
1947
1948 /* Close race with setup_net() and cleanup_net() */
1949 down_write(&pernet_ops_rwsem);
1950 rtnl_lock();
1951 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1952 if (err)
1953 goto unlock;
1954
1955 for_each_net(net)
1956 call_netdevice_unregister_net_notifiers(nb, net);
1957
1958unlock:
1959 rtnl_unlock();
1960 up_write(&pernet_ops_rwsem);
1961 return err;
1962}
1963EXPORT_SYMBOL(unregister_netdevice_notifier);
1964
1965static int __register_netdevice_notifier_net(struct net *net,
1966 struct notifier_block *nb,
1967 bool ignore_call_fail)
1968{
1969 int err;
1970
1971 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1972 if (err)
1973 return err;
1974 if (dev_boot_phase)
1975 return 0;
1976
1977 err = call_netdevice_register_net_notifiers(nb, net);
1978 if (err && !ignore_call_fail)
1979 goto chain_unregister;
1980
1981 return 0;
1982
1983chain_unregister:
1984 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1985 return err;
1986}
1987
1988static int __unregister_netdevice_notifier_net(struct net *net,
1989 struct notifier_block *nb)
1990{
1991 int err;
1992
1993 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1994 if (err)
1995 return err;
1996
1997 call_netdevice_unregister_net_notifiers(nb, net);
1998 return 0;
1999}
2000
2001/**
2002 * register_netdevice_notifier_net - register a per-netns network notifier block
2003 * @net: network namespace
2004 * @nb: notifier
2005 *
2006 * Register a notifier to be called when network device events occur.
2007 * The notifier passed is linked into the kernel structures and must
2008 * not be reused until it has been unregistered. A negative errno code
2009 * is returned on a failure.
2010 *
2011 * When registered all registration and up events are replayed
2012 * to the new notifier to allow device to have a race free
2013 * view of the network device list.
2014 */
2015
2016int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
2017{
2018 int err;
2019
2020 rtnl_lock();
2021 err = __register_netdevice_notifier_net(net, nb, false);
2022 rtnl_unlock();
2023 return err;
2024}
2025EXPORT_SYMBOL(register_netdevice_notifier_net);
2026
2027/**
2028 * unregister_netdevice_notifier_net - unregister a per-netns
2029 * network notifier block
2030 * @net: network namespace
2031 * @nb: notifier
2032 *
2033 * Unregister a notifier previously registered by
2034 * register_netdevice_notifier(). The notifier is unlinked into the
2035 * kernel structures and may then be reused. A negative errno code
2036 * is returned on a failure.
2037 *
2038 * After unregistering unregister and down device events are synthesized
2039 * for all devices on the device list to the removed notifier to remove
2040 * the need for special case cleanup code.
2041 */
2042
2043int unregister_netdevice_notifier_net(struct net *net,
2044 struct notifier_block *nb)
2045{
2046 int err;
2047
2048 rtnl_lock();
2049 err = __unregister_netdevice_notifier_net(net, nb);
2050 rtnl_unlock();
2051 return err;
2052}
2053EXPORT_SYMBOL(unregister_netdevice_notifier_net);
2054
2055int register_netdevice_notifier_dev_net(struct net_device *dev,
2056 struct notifier_block *nb,
2057 struct netdev_net_notifier *nn)
2058{
2059 int err;
2060
2061 rtnl_lock();
2062 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
2063 if (!err) {
2064 nn->nb = nb;
2065 list_add(&nn->list, &dev->net_notifier_list);
2066 }
2067 rtnl_unlock();
2068 return err;
2069}
2070EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
2071
2072int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2073 struct notifier_block *nb,
2074 struct netdev_net_notifier *nn)
2075{
2076 int err;
2077
2078 rtnl_lock();
2079 list_del(&nn->list);
2080 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
2081 rtnl_unlock();
2082 return err;
2083}
2084EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
2085
2086static void move_netdevice_notifiers_dev_net(struct net_device *dev,
2087 struct net *net)
2088{
2089 struct netdev_net_notifier *nn;
2090
2091 list_for_each_entry(nn, &dev->net_notifier_list, list) {
2092 __unregister_netdevice_notifier_net(dev_net(dev), nn->nb);
2093 __register_netdevice_notifier_net(net, nn->nb, true);
2094 }
2095}
2096
2097/**
2098 * call_netdevice_notifiers_info - call all network notifier blocks
2099 * @val: value passed unmodified to notifier function
2100 * @info: notifier information data
2101 *
2102 * Call all network notifier blocks. Parameters and return value
2103 * are as for raw_notifier_call_chain().
2104 */
2105
2106static int call_netdevice_notifiers_info(unsigned long val,
2107 struct netdev_notifier_info *info)
2108{
2109 struct net *net = dev_net(info->dev);
2110 int ret;
2111
2112 ASSERT_RTNL();
2113
2114 /* Run per-netns notifier block chain first, then run the global one.
2115 * Hopefully, one day, the global one is going to be removed after
2116 * all notifier block registrators get converted to be per-netns.
2117 */
2118 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
2119 if (ret & NOTIFY_STOP_MASK)
2120 return ret;
2121 return raw_notifier_call_chain(&netdev_chain, val, info);
2122}
2123
2124static int call_netdevice_notifiers_extack(unsigned long val,
2125 struct net_device *dev,
2126 struct netlink_ext_ack *extack)
2127{
2128 struct netdev_notifier_info info = {
2129 .dev = dev,
2130 .extack = extack,
2131 };
2132
2133 return call_netdevice_notifiers_info(val, &info);
2134}
2135
2136/**
2137 * call_netdevice_notifiers - call all network notifier blocks
2138 * @val: value passed unmodified to notifier function
2139 * @dev: net_device pointer passed unmodified to notifier function
2140 *
2141 * Call all network notifier blocks. Parameters and return value
2142 * are as for raw_notifier_call_chain().
2143 */
2144
2145int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2146{
2147 return call_netdevice_notifiers_extack(val, dev, NULL);
2148}
2149EXPORT_SYMBOL(call_netdevice_notifiers);
2150
2151/**
2152 * call_netdevice_notifiers_mtu - call all network notifier blocks
2153 * @val: value passed unmodified to notifier function
2154 * @dev: net_device pointer passed unmodified to notifier function
2155 * @arg: additional u32 argument passed to the notifier function
2156 *
2157 * Call all network notifier blocks. Parameters and return value
2158 * are as for raw_notifier_call_chain().
2159 */
2160static int call_netdevice_notifiers_mtu(unsigned long val,
2161 struct net_device *dev, u32 arg)
2162{
2163 struct netdev_notifier_info_ext info = {
2164 .info.dev = dev,
2165 .ext.mtu = arg,
2166 };
2167
2168 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2169
2170 return call_netdevice_notifiers_info(val, &info.info);
2171}
2172
2173#ifdef CONFIG_NET_INGRESS
2174static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2175
2176void net_inc_ingress_queue(void)
2177{
2178 static_branch_inc(&ingress_needed_key);
2179}
2180EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2181
2182void net_dec_ingress_queue(void)
2183{
2184 static_branch_dec(&ingress_needed_key);
2185}
2186EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2187#endif
2188
2189#ifdef CONFIG_NET_EGRESS
2190static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2191
2192void net_inc_egress_queue(void)
2193{
2194 static_branch_inc(&egress_needed_key);
2195}
2196EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2197
2198void net_dec_egress_queue(void)
2199{
2200 static_branch_dec(&egress_needed_key);
2201}
2202EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2203#endif
2204
2205static DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2206#ifdef CONFIG_JUMP_LABEL
2207static atomic_t netstamp_needed_deferred;
2208static atomic_t netstamp_wanted;
2209static void netstamp_clear(struct work_struct *work)
2210{
2211 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2212 int wanted;
2213
2214 wanted = atomic_add_return(deferred, &netstamp_wanted);
2215 if (wanted > 0)
2216 static_branch_enable(&netstamp_needed_key);
2217 else
2218 static_branch_disable(&netstamp_needed_key);
2219}
2220static DECLARE_WORK(netstamp_work, netstamp_clear);
2221#endif
2222
2223void net_enable_timestamp(void)
2224{
2225#ifdef CONFIG_JUMP_LABEL
2226 int wanted;
2227
2228 while (1) {
2229 wanted = atomic_read(&netstamp_wanted);
2230 if (wanted <= 0)
2231 break;
2232 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted + 1) == wanted)
2233 return;
2234 }
2235 atomic_inc(&netstamp_needed_deferred);
2236 schedule_work(&netstamp_work);
2237#else
2238 static_branch_inc(&netstamp_needed_key);
2239#endif
2240}
2241EXPORT_SYMBOL(net_enable_timestamp);
2242
2243void net_disable_timestamp(void)
2244{
2245#ifdef CONFIG_JUMP_LABEL
2246 int wanted;
2247
2248 while (1) {
2249 wanted = atomic_read(&netstamp_wanted);
2250 if (wanted <= 1)
2251 break;
2252 if (atomic_cmpxchg(&netstamp_wanted, wanted, wanted - 1) == wanted)
2253 return;
2254 }
2255 atomic_dec(&netstamp_needed_deferred);
2256 schedule_work(&netstamp_work);
2257#else
2258 static_branch_dec(&netstamp_needed_key);
2259#endif
2260}
2261EXPORT_SYMBOL(net_disable_timestamp);
2262
2263static inline void net_timestamp_set(struct sk_buff *skb)
2264{
2265 skb->tstamp = 0;
2266 if (static_branch_unlikely(&netstamp_needed_key))
2267 __net_timestamp(skb);
2268}
2269
2270#define net_timestamp_check(COND, SKB) \
2271 if (static_branch_unlikely(&netstamp_needed_key)) { \
2272 if ((COND) && !(SKB)->tstamp) \
2273 __net_timestamp(SKB); \
2274 } \
2275
2276bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2277{
2278 return __is_skb_forwardable(dev, skb, true);
2279}
2280EXPORT_SYMBOL_GPL(is_skb_forwardable);
2281
2282static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2283 bool check_mtu)
2284{
2285 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2286
2287 if (likely(!ret)) {
2288 skb->protocol = eth_type_trans(skb, dev);
2289 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2290 }
2291
2292 return ret;
2293}
2294
2295int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2296{
2297 return __dev_forward_skb2(dev, skb, true);
2298}
2299EXPORT_SYMBOL_GPL(__dev_forward_skb);
2300
2301/**
2302 * dev_forward_skb - loopback an skb to another netif
2303 *
2304 * @dev: destination network device
2305 * @skb: buffer to forward
2306 *
2307 * return values:
2308 * NET_RX_SUCCESS (no congestion)
2309 * NET_RX_DROP (packet was dropped, but freed)
2310 *
2311 * dev_forward_skb can be used for injecting an skb from the
2312 * start_xmit function of one device into the receive queue
2313 * of another device.
2314 *
2315 * The receiving device may be in another namespace, so
2316 * we have to clear all information in the skb that could
2317 * impact namespace isolation.
2318 */
2319int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2320{
2321 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2322}
2323EXPORT_SYMBOL_GPL(dev_forward_skb);
2324
2325int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2326{
2327 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2328}
2329
2330static inline int deliver_skb(struct sk_buff *skb,
2331 struct packet_type *pt_prev,
2332 struct net_device *orig_dev)
2333{
2334 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2335 return -ENOMEM;
2336 refcount_inc(&skb->users);
2337 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2338}
2339
2340static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2341 struct packet_type **pt,
2342 struct net_device *orig_dev,
2343 __be16 type,
2344 struct list_head *ptype_list)
2345{
2346 struct packet_type *ptype, *pt_prev = *pt;
2347
2348 list_for_each_entry_rcu(ptype, ptype_list, list) {
2349 if (ptype->type != type)
2350 continue;
2351 if (pt_prev)
2352 deliver_skb(skb, pt_prev, orig_dev);
2353 pt_prev = ptype;
2354 }
2355 *pt = pt_prev;
2356}
2357
2358static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2359{
2360 if (!ptype->af_packet_priv || !skb->sk)
2361 return false;
2362
2363 if (ptype->id_match)
2364 return ptype->id_match(ptype, skb->sk);
2365 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2366 return true;
2367
2368 return false;
2369}
2370
2371/**
2372 * dev_nit_active - return true if any network interface taps are in use
2373 *
2374 * @dev: network device to check for the presence of taps
2375 */
2376bool dev_nit_active(struct net_device *dev)
2377{
2378 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2379}
2380EXPORT_SYMBOL_GPL(dev_nit_active);
2381
2382/*
2383 * Support routine. Sends outgoing frames to any network
2384 * taps currently in use.
2385 */
2386
2387void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2388{
2389 struct packet_type *ptype;
2390 struct sk_buff *skb2 = NULL;
2391 struct packet_type *pt_prev = NULL;
2392 struct list_head *ptype_list = &ptype_all;
2393
2394 rcu_read_lock();
2395again:
2396 list_for_each_entry_rcu(ptype, ptype_list, list) {
2397 if (ptype->ignore_outgoing)
2398 continue;
2399
2400 /* Never send packets back to the socket
2401 * they originated from - MvS (miquels@drinkel.ow.org)
2402 */
2403 if (skb_loop_sk(ptype, skb))
2404 continue;
2405
2406 if (pt_prev) {
2407 deliver_skb(skb2, pt_prev, skb->dev);
2408 pt_prev = ptype;
2409 continue;
2410 }
2411
2412 /* need to clone skb, done only once */
2413 skb2 = skb_clone(skb, GFP_ATOMIC);
2414 if (!skb2)
2415 goto out_unlock;
2416
2417 net_timestamp_set(skb2);
2418
2419 /* skb->nh should be correctly
2420 * set by sender, so that the second statement is
2421 * just protection against buggy protocols.
2422 */
2423 skb_reset_mac_header(skb2);
2424
2425 if (skb_network_header(skb2) < skb2->data ||
2426 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2427 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2428 ntohs(skb2->protocol),
2429 dev->name);
2430 skb_reset_network_header(skb2);
2431 }
2432
2433 skb2->transport_header = skb2->network_header;
2434 skb2->pkt_type = PACKET_OUTGOING;
2435 pt_prev = ptype;
2436 }
2437
2438 if (ptype_list == &ptype_all) {
2439 ptype_list = &dev->ptype_all;
2440 goto again;
2441 }
2442out_unlock:
2443 if (pt_prev) {
2444 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2445 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2446 else
2447 kfree_skb(skb2);
2448 }
2449 rcu_read_unlock();
2450}
2451EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2452
2453/**
2454 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2455 * @dev: Network device
2456 * @txq: number of queues available
2457 *
2458 * If real_num_tx_queues is changed the tc mappings may no longer be
2459 * valid. To resolve this verify the tc mapping remains valid and if
2460 * not NULL the mapping. With no priorities mapping to this
2461 * offset/count pair it will no longer be used. In the worst case TC0
2462 * is invalid nothing can be done so disable priority mappings. If is
2463 * expected that drivers will fix this mapping if they can before
2464 * calling netif_set_real_num_tx_queues.
2465 */
2466static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2467{
2468 int i;
2469 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2470
2471 /* If TC0 is invalidated disable TC mapping */
2472 if (tc->offset + tc->count > txq) {
2473 pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2474 dev->num_tc = 0;
2475 return;
2476 }
2477
2478 /* Invalidated prio to tc mappings set to TC0 */
2479 for (i = 1; i < TC_BITMASK + 1; i++) {
2480 int q = netdev_get_prio_tc_map(dev, i);
2481
2482 tc = &dev->tc_to_txq[q];
2483 if (tc->offset + tc->count > txq) {
2484 pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2485 i, q);
2486 netdev_set_prio_tc_map(dev, i, 0);
2487 }
2488 }
2489}
2490
2491int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2492{
2493 if (dev->num_tc) {
2494 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2495 int i;
2496
2497 /* walk through the TCs and see if it falls into any of them */
2498 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2499 if ((txq - tc->offset) < tc->count)
2500 return i;
2501 }
2502
2503 /* didn't find it, just return -1 to indicate no match */
2504 return -1;
2505 }
2506
2507 return 0;
2508}
2509EXPORT_SYMBOL(netdev_txq_to_tc);
2510
2511#ifdef CONFIG_XPS
2512static struct static_key xps_needed __read_mostly;
2513static struct static_key xps_rxqs_needed __read_mostly;
2514static DEFINE_MUTEX(xps_map_mutex);
2515#define xmap_dereference(P) \
2516 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2517
2518static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2519 struct xps_dev_maps *old_maps, int tci, u16 index)
2520{
2521 struct xps_map *map = NULL;
2522 int pos;
2523
2524 if (dev_maps)
2525 map = xmap_dereference(dev_maps->attr_map[tci]);
2526 if (!map)
2527 return false;
2528
2529 for (pos = map->len; pos--;) {
2530 if (map->queues[pos] != index)
2531 continue;
2532
2533 if (map->len > 1) {
2534 map->queues[pos] = map->queues[--map->len];
2535 break;
2536 }
2537
2538 if (old_maps)
2539 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2540 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2541 kfree_rcu(map, rcu);
2542 return false;
2543 }
2544
2545 return true;
2546}
2547
2548static bool remove_xps_queue_cpu(struct net_device *dev,
2549 struct xps_dev_maps *dev_maps,
2550 int cpu, u16 offset, u16 count)
2551{
2552 int num_tc = dev_maps->num_tc;
2553 bool active = false;
2554 int tci;
2555
2556 for (tci = cpu * num_tc; num_tc--; tci++) {
2557 int i, j;
2558
2559 for (i = count, j = offset; i--; j++) {
2560 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2561 break;
2562 }
2563
2564 active |= i < 0;
2565 }
2566
2567 return active;
2568}
2569
2570static void reset_xps_maps(struct net_device *dev,
2571 struct xps_dev_maps *dev_maps,
2572 enum xps_map_type type)
2573{
2574 static_key_slow_dec_cpuslocked(&xps_needed);
2575 if (type == XPS_RXQS)
2576 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2577
2578 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2579
2580 kfree_rcu(dev_maps, rcu);
2581}
2582
2583static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2584 u16 offset, u16 count)
2585{
2586 struct xps_dev_maps *dev_maps;
2587 bool active = false;
2588 int i, j;
2589
2590 dev_maps = xmap_dereference(dev->xps_maps[type]);
2591 if (!dev_maps)
2592 return;
2593
2594 for (j = 0; j < dev_maps->nr_ids; j++)
2595 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2596 if (!active)
2597 reset_xps_maps(dev, dev_maps, type);
2598
2599 if (type == XPS_CPUS) {
2600 for (i = offset + (count - 1); count--; i--)
2601 netdev_queue_numa_node_write(
2602 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2603 }
2604}
2605
2606static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2607 u16 count)
2608{
2609 if (!static_key_false(&xps_needed))
2610 return;
2611
2612 cpus_read_lock();
2613 mutex_lock(&xps_map_mutex);
2614
2615 if (static_key_false(&xps_rxqs_needed))
2616 clean_xps_maps(dev, XPS_RXQS, offset, count);
2617
2618 clean_xps_maps(dev, XPS_CPUS, offset, count);
2619
2620 mutex_unlock(&xps_map_mutex);
2621 cpus_read_unlock();
2622}
2623
2624static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2625{
2626 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2627}
2628
2629static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2630 u16 index, bool is_rxqs_map)
2631{
2632 struct xps_map *new_map;
2633 int alloc_len = XPS_MIN_MAP_ALLOC;
2634 int i, pos;
2635
2636 for (pos = 0; map && pos < map->len; pos++) {
2637 if (map->queues[pos] != index)
2638 continue;
2639 return map;
2640 }
2641
2642 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2643 if (map) {
2644 if (pos < map->alloc_len)
2645 return map;
2646
2647 alloc_len = map->alloc_len * 2;
2648 }
2649
2650 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2651 * map
2652 */
2653 if (is_rxqs_map)
2654 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2655 else
2656 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2657 cpu_to_node(attr_index));
2658 if (!new_map)
2659 return NULL;
2660
2661 for (i = 0; i < pos; i++)
2662 new_map->queues[i] = map->queues[i];
2663 new_map->alloc_len = alloc_len;
2664 new_map->len = pos;
2665
2666 return new_map;
2667}
2668
2669/* Copy xps maps at a given index */
2670static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2671 struct xps_dev_maps *new_dev_maps, int index,
2672 int tc, bool skip_tc)
2673{
2674 int i, tci = index * dev_maps->num_tc;
2675 struct xps_map *map;
2676
2677 /* copy maps belonging to foreign traffic classes */
2678 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2679 if (i == tc && skip_tc)
2680 continue;
2681
2682 /* fill in the new device map from the old device map */
2683 map = xmap_dereference(dev_maps->attr_map[tci]);
2684 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2685 }
2686}
2687
2688/* Must be called under cpus_read_lock */
2689int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2690 u16 index, enum xps_map_type type)
2691{
2692 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2693 const unsigned long *online_mask = NULL;
2694 bool active = false, copy = false;
2695 int i, j, tci, numa_node_id = -2;
2696 int maps_sz, num_tc = 1, tc = 0;
2697 struct xps_map *map, *new_map;
2698 unsigned int nr_ids;
2699
2700 if (dev->num_tc) {
2701 /* Do not allow XPS on subordinate device directly */
2702 num_tc = dev->num_tc;
2703 if (num_tc < 0)
2704 return -EINVAL;
2705
2706 /* If queue belongs to subordinate dev use its map */
2707 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2708
2709 tc = netdev_txq_to_tc(dev, index);
2710 if (tc < 0)
2711 return -EINVAL;
2712 }
2713
2714 mutex_lock(&xps_map_mutex);
2715
2716 dev_maps = xmap_dereference(dev->xps_maps[type]);
2717 if (type == XPS_RXQS) {
2718 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2719 nr_ids = dev->num_rx_queues;
2720 } else {
2721 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2722 if (num_possible_cpus() > 1)
2723 online_mask = cpumask_bits(cpu_online_mask);
2724 nr_ids = nr_cpu_ids;
2725 }
2726
2727 if (maps_sz < L1_CACHE_BYTES)
2728 maps_sz = L1_CACHE_BYTES;
2729
2730 /* The old dev_maps could be larger or smaller than the one we're
2731 * setting up now, as dev->num_tc or nr_ids could have been updated in
2732 * between. We could try to be smart, but let's be safe instead and only
2733 * copy foreign traffic classes if the two map sizes match.
2734 */
2735 if (dev_maps &&
2736 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2737 copy = true;
2738
2739 /* allocate memory for queue storage */
2740 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2741 j < nr_ids;) {
2742 if (!new_dev_maps) {
2743 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2744 if (!new_dev_maps) {
2745 mutex_unlock(&xps_map_mutex);
2746 return -ENOMEM;
2747 }
2748
2749 new_dev_maps->nr_ids = nr_ids;
2750 new_dev_maps->num_tc = num_tc;
2751 }
2752
2753 tci = j * num_tc + tc;
2754 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2755
2756 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2757 if (!map)
2758 goto error;
2759
2760 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2761 }
2762
2763 if (!new_dev_maps)
2764 goto out_no_new_maps;
2765
2766 if (!dev_maps) {
2767 /* Increment static keys at most once per type */
2768 static_key_slow_inc_cpuslocked(&xps_needed);
2769 if (type == XPS_RXQS)
2770 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2771 }
2772
2773 for (j = 0; j < nr_ids; j++) {
2774 bool skip_tc = false;
2775
2776 tci = j * num_tc + tc;
2777 if (netif_attr_test_mask(j, mask, nr_ids) &&
2778 netif_attr_test_online(j, online_mask, nr_ids)) {
2779 /* add tx-queue to CPU/rx-queue maps */
2780 int pos = 0;
2781
2782 skip_tc = true;
2783
2784 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2785 while ((pos < map->len) && (map->queues[pos] != index))
2786 pos++;
2787
2788 if (pos == map->len)
2789 map->queues[map->len++] = index;
2790#ifdef CONFIG_NUMA
2791 if (type == XPS_CPUS) {
2792 if (numa_node_id == -2)
2793 numa_node_id = cpu_to_node(j);
2794 else if (numa_node_id != cpu_to_node(j))
2795 numa_node_id = -1;
2796 }
2797#endif
2798 }
2799
2800 if (copy)
2801 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2802 skip_tc);
2803 }
2804
2805 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2806
2807 /* Cleanup old maps */
2808 if (!dev_maps)
2809 goto out_no_old_maps;
2810
2811 for (j = 0; j < dev_maps->nr_ids; j++) {
2812 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2813 map = xmap_dereference(dev_maps->attr_map[tci]);
2814 if (!map)
2815 continue;
2816
2817 if (copy) {
2818 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2819 if (map == new_map)
2820 continue;
2821 }
2822
2823 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2824 kfree_rcu(map, rcu);
2825 }
2826 }
2827
2828 old_dev_maps = dev_maps;
2829
2830out_no_old_maps:
2831 dev_maps = new_dev_maps;
2832 active = true;
2833
2834out_no_new_maps:
2835 if (type == XPS_CPUS)
2836 /* update Tx queue numa node */
2837 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2838 (numa_node_id >= 0) ?
2839 numa_node_id : NUMA_NO_NODE);
2840
2841 if (!dev_maps)
2842 goto out_no_maps;
2843
2844 /* removes tx-queue from unused CPUs/rx-queues */
2845 for (j = 0; j < dev_maps->nr_ids; j++) {
2846 tci = j * dev_maps->num_tc;
2847
2848 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2849 if (i == tc &&
2850 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2851 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2852 continue;
2853
2854 active |= remove_xps_queue(dev_maps,
2855 copy ? old_dev_maps : NULL,
2856 tci, index);
2857 }
2858 }
2859
2860 if (old_dev_maps)
2861 kfree_rcu(old_dev_maps, rcu);
2862
2863 /* free map if not active */
2864 if (!active)
2865 reset_xps_maps(dev, dev_maps, type);
2866
2867out_no_maps:
2868 mutex_unlock(&xps_map_mutex);
2869
2870 return 0;
2871error:
2872 /* remove any maps that we added */
2873 for (j = 0; j < nr_ids; j++) {
2874 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2875 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2876 map = copy ?
2877 xmap_dereference(dev_maps->attr_map[tci]) :
2878 NULL;
2879 if (new_map && new_map != map)
2880 kfree(new_map);
2881 }
2882 }
2883
2884 mutex_unlock(&xps_map_mutex);
2885
2886 kfree(new_dev_maps);
2887 return -ENOMEM;
2888}
2889EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2890
2891int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2892 u16 index)
2893{
2894 int ret;
2895
2896 cpus_read_lock();
2897 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2898 cpus_read_unlock();
2899
2900 return ret;
2901}
2902EXPORT_SYMBOL(netif_set_xps_queue);
2903
2904#endif
2905static void netdev_unbind_all_sb_channels(struct net_device *dev)
2906{
2907 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2908
2909 /* Unbind any subordinate channels */
2910 while (txq-- != &dev->_tx[0]) {
2911 if (txq->sb_dev)
2912 netdev_unbind_sb_channel(dev, txq->sb_dev);
2913 }
2914}
2915
2916void netdev_reset_tc(struct net_device *dev)
2917{
2918#ifdef CONFIG_XPS
2919 netif_reset_xps_queues_gt(dev, 0);
2920#endif
2921 netdev_unbind_all_sb_channels(dev);
2922
2923 /* Reset TC configuration of device */
2924 dev->num_tc = 0;
2925 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2926 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2927}
2928EXPORT_SYMBOL(netdev_reset_tc);
2929
2930int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2931{
2932 if (tc >= dev->num_tc)
2933 return -EINVAL;
2934
2935#ifdef CONFIG_XPS
2936 netif_reset_xps_queues(dev, offset, count);
2937#endif
2938 dev->tc_to_txq[tc].count = count;
2939 dev->tc_to_txq[tc].offset = offset;
2940 return 0;
2941}
2942EXPORT_SYMBOL(netdev_set_tc_queue);
2943
2944int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2945{
2946 if (num_tc > TC_MAX_QUEUE)
2947 return -EINVAL;
2948
2949#ifdef CONFIG_XPS
2950 netif_reset_xps_queues_gt(dev, 0);
2951#endif
2952 netdev_unbind_all_sb_channels(dev);
2953
2954 dev->num_tc = num_tc;
2955 return 0;
2956}
2957EXPORT_SYMBOL(netdev_set_num_tc);
2958
2959void netdev_unbind_sb_channel(struct net_device *dev,
2960 struct net_device *sb_dev)
2961{
2962 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2963
2964#ifdef CONFIG_XPS
2965 netif_reset_xps_queues_gt(sb_dev, 0);
2966#endif
2967 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2968 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2969
2970 while (txq-- != &dev->_tx[0]) {
2971 if (txq->sb_dev == sb_dev)
2972 txq->sb_dev = NULL;
2973 }
2974}
2975EXPORT_SYMBOL(netdev_unbind_sb_channel);
2976
2977int netdev_bind_sb_channel_queue(struct net_device *dev,
2978 struct net_device *sb_dev,
2979 u8 tc, u16 count, u16 offset)
2980{
2981 /* Make certain the sb_dev and dev are already configured */
2982 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2983 return -EINVAL;
2984
2985 /* We cannot hand out queues we don't have */
2986 if ((offset + count) > dev->real_num_tx_queues)
2987 return -EINVAL;
2988
2989 /* Record the mapping */
2990 sb_dev->tc_to_txq[tc].count = count;
2991 sb_dev->tc_to_txq[tc].offset = offset;
2992
2993 /* Provide a way for Tx queue to find the tc_to_txq map or
2994 * XPS map for itself.
2995 */
2996 while (count--)
2997 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2998
2999 return 0;
3000}
3001EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
3002
3003int netdev_set_sb_channel(struct net_device *dev, u16 channel)
3004{
3005 /* Do not use a multiqueue device to represent a subordinate channel */
3006 if (netif_is_multiqueue(dev))
3007 return -ENODEV;
3008
3009 /* We allow channels 1 - 32767 to be used for subordinate channels.
3010 * Channel 0 is meant to be "native" mode and used only to represent
3011 * the main root device. We allow writing 0 to reset the device back
3012 * to normal mode after being used as a subordinate channel.
3013 */
3014 if (channel > S16_MAX)
3015 return -EINVAL;
3016
3017 dev->num_tc = -channel;
3018
3019 return 0;
3020}
3021EXPORT_SYMBOL(netdev_set_sb_channel);
3022
3023/*
3024 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
3025 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
3026 */
3027int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
3028{
3029 bool disabling;
3030 int rc;
3031
3032 disabling = txq < dev->real_num_tx_queues;
3033
3034 if (txq < 1 || txq > dev->num_tx_queues)
3035 return -EINVAL;
3036
3037 if (dev->reg_state == NETREG_REGISTERED ||
3038 dev->reg_state == NETREG_UNREGISTERING) {
3039 ASSERT_RTNL();
3040
3041 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
3042 txq);
3043 if (rc)
3044 return rc;
3045
3046 if (dev->num_tc)
3047 netif_setup_tc(dev, txq);
3048
3049 dev->real_num_tx_queues = txq;
3050
3051 if (disabling) {
3052 synchronize_net();
3053 qdisc_reset_all_tx_gt(dev, txq);
3054#ifdef CONFIG_XPS
3055 netif_reset_xps_queues_gt(dev, txq);
3056#endif
3057 }
3058 } else {
3059 dev->real_num_tx_queues = txq;
3060 }
3061
3062 return 0;
3063}
3064EXPORT_SYMBOL(netif_set_real_num_tx_queues);
3065
3066#ifdef CONFIG_SYSFS
3067/**
3068 * netif_set_real_num_rx_queues - set actual number of RX queues used
3069 * @dev: Network device
3070 * @rxq: Actual number of RX queues
3071 *
3072 * This must be called either with the rtnl_lock held or before
3073 * registration of the net device. Returns 0 on success, or a
3074 * negative error code. If called before registration, it always
3075 * succeeds.
3076 */
3077int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
3078{
3079 int rc;
3080
3081 if (rxq < 1 || rxq > dev->num_rx_queues)
3082 return -EINVAL;
3083
3084 if (dev->reg_state == NETREG_REGISTERED) {
3085 ASSERT_RTNL();
3086
3087 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
3088 rxq);
3089 if (rc)
3090 return rc;
3091 }
3092
3093 dev->real_num_rx_queues = rxq;
3094 return 0;
3095}
3096EXPORT_SYMBOL(netif_set_real_num_rx_queues);
3097#endif
3098
3099/**
3100 * netif_get_num_default_rss_queues - default number of RSS queues
3101 *
3102 * This routine should set an upper limit on the number of RSS queues
3103 * used by default by multiqueue devices.
3104 */
3105int netif_get_num_default_rss_queues(void)
3106{
3107 return is_kdump_kernel() ?
3108 1 : min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
3109}
3110EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3111
3112static void __netif_reschedule(struct Qdisc *q)
3113{
3114 struct softnet_data *sd;
3115 unsigned long flags;
3116
3117 local_irq_save(flags);
3118 sd = this_cpu_ptr(&softnet_data);
3119 q->next_sched = NULL;
3120 *sd->output_queue_tailp = q;
3121 sd->output_queue_tailp = &q->next_sched;
3122 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3123 local_irq_restore(flags);
3124}
3125
3126void __netif_schedule(struct Qdisc *q)
3127{
3128 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3129 __netif_reschedule(q);
3130}
3131EXPORT_SYMBOL(__netif_schedule);
3132
3133struct dev_kfree_skb_cb {
3134 enum skb_free_reason reason;
3135};
3136
3137static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3138{
3139 return (struct dev_kfree_skb_cb *)skb->cb;
3140}
3141
3142void netif_schedule_queue(struct netdev_queue *txq)
3143{
3144 rcu_read_lock();
3145 if (!netif_xmit_stopped(txq)) {
3146 struct Qdisc *q = rcu_dereference(txq->qdisc);
3147
3148 __netif_schedule(q);
3149 }
3150 rcu_read_unlock();
3151}
3152EXPORT_SYMBOL(netif_schedule_queue);
3153
3154void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3155{
3156 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3157 struct Qdisc *q;
3158
3159 rcu_read_lock();
3160 q = rcu_dereference(dev_queue->qdisc);
3161 __netif_schedule(q);
3162 rcu_read_unlock();
3163 }
3164}
3165EXPORT_SYMBOL(netif_tx_wake_queue);
3166
3167void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
3168{
3169 unsigned long flags;
3170
3171 if (unlikely(!skb))
3172 return;
3173
3174 if (likely(refcount_read(&skb->users) == 1)) {
3175 smp_rmb();
3176 refcount_set(&skb->users, 0);
3177 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3178 return;
3179 }
3180 get_kfree_skb_cb(skb)->reason = reason;
3181 local_irq_save(flags);
3182 skb->next = __this_cpu_read(softnet_data.completion_queue);
3183 __this_cpu_write(softnet_data.completion_queue, skb);
3184 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3185 local_irq_restore(flags);
3186}
3187EXPORT_SYMBOL(__dev_kfree_skb_irq);
3188
3189void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
3190{
3191 if (in_irq() || irqs_disabled())
3192 __dev_kfree_skb_irq(skb, reason);
3193 else
3194 dev_kfree_skb(skb);
3195}
3196EXPORT_SYMBOL(__dev_kfree_skb_any);
3197
3198
3199/**
3200 * netif_device_detach - mark device as removed
3201 * @dev: network device
3202 *
3203 * Mark device as removed from system and therefore no longer available.
3204 */
3205void netif_device_detach(struct net_device *dev)
3206{
3207 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3208 netif_running(dev)) {
3209 netif_tx_stop_all_queues(dev);
3210 }
3211}
3212EXPORT_SYMBOL(netif_device_detach);
3213
3214/**
3215 * netif_device_attach - mark device as attached
3216 * @dev: network device
3217 *
3218 * Mark device as attached from system and restart if needed.
3219 */
3220void netif_device_attach(struct net_device *dev)
3221{
3222 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3223 netif_running(dev)) {
3224 netif_tx_wake_all_queues(dev);
3225 __netdev_watchdog_up(dev);
3226 }
3227}
3228EXPORT_SYMBOL(netif_device_attach);
3229
3230/*
3231 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3232 * to be used as a distribution range.
3233 */
3234static u16 skb_tx_hash(const struct net_device *dev,
3235 const struct net_device *sb_dev,
3236 struct sk_buff *skb)
3237{
3238 u32 hash;
3239 u16 qoffset = 0;
3240 u16 qcount = dev->real_num_tx_queues;
3241
3242 if (dev->num_tc) {
3243 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3244
3245 qoffset = sb_dev->tc_to_txq[tc].offset;
3246 qcount = sb_dev->tc_to_txq[tc].count;
3247 }
3248
3249 if (skb_rx_queue_recorded(skb)) {
3250 hash = skb_get_rx_queue(skb);
3251 if (hash >= qoffset)
3252 hash -= qoffset;
3253 while (unlikely(hash >= qcount))
3254 hash -= qcount;
3255 return hash + qoffset;
3256 }
3257
3258 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3259}
3260
3261static void skb_warn_bad_offload(const struct sk_buff *skb)
3262{
3263 static const netdev_features_t null_features;
3264 struct net_device *dev = skb->dev;
3265 const char *name = "";
3266
3267 if (!net_ratelimit())
3268 return;
3269
3270 if (dev) {
3271 if (dev->dev.parent)
3272 name = dev_driver_string(dev->dev.parent);
3273 else
3274 name = netdev_name(dev);
3275 }
3276 skb_dump(KERN_WARNING, skb, false);
3277 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3278 name, dev ? &dev->features : &null_features,
3279 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3280}
3281
3282/*
3283 * Invalidate hardware checksum when packet is to be mangled, and
3284 * complete checksum manually on outgoing path.
3285 */
3286int skb_checksum_help(struct sk_buff *skb)
3287{
3288 __wsum csum;
3289 int ret = 0, offset;
3290
3291 if (skb->ip_summed == CHECKSUM_COMPLETE)
3292 goto out_set_summed;
3293
3294 if (unlikely(skb_is_gso(skb))) {
3295 skb_warn_bad_offload(skb);
3296 return -EINVAL;
3297 }
3298
3299 /* Before computing a checksum, we should make sure no frag could
3300 * be modified by an external entity : checksum could be wrong.
3301 */
3302 if (skb_has_shared_frag(skb)) {
3303 ret = __skb_linearize(skb);
3304 if (ret)
3305 goto out;
3306 }
3307
3308 offset = skb_checksum_start_offset(skb);
3309 BUG_ON(offset >= skb_headlen(skb));
3310 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3311
3312 offset += skb->csum_offset;
3313 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
3314
3315 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3316 if (ret)
3317 goto out;
3318
3319 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3320out_set_summed:
3321 skb->ip_summed = CHECKSUM_NONE;
3322out:
3323 return ret;
3324}
3325EXPORT_SYMBOL(skb_checksum_help);
3326
3327int skb_crc32c_csum_help(struct sk_buff *skb)
3328{
3329 __le32 crc32c_csum;
3330 int ret = 0, offset, start;
3331
3332 if (skb->ip_summed != CHECKSUM_PARTIAL)
3333 goto out;
3334
3335 if (unlikely(skb_is_gso(skb)))
3336 goto out;
3337
3338 /* Before computing a checksum, we should make sure no frag could
3339 * be modified by an external entity : checksum could be wrong.
3340 */
3341 if (unlikely(skb_has_shared_frag(skb))) {
3342 ret = __skb_linearize(skb);
3343 if (ret)
3344 goto out;
3345 }
3346 start = skb_checksum_start_offset(skb);
3347 offset = start + offsetof(struct sctphdr, checksum);
3348 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3349 ret = -EINVAL;
3350 goto out;
3351 }
3352
3353 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3354 if (ret)
3355 goto out;
3356
3357 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3358 skb->len - start, ~(__u32)0,
3359 crc32c_csum_stub));
3360 *(__le32 *)(skb->data + offset) = crc32c_csum;
3361 skb->ip_summed = CHECKSUM_NONE;
3362 skb->csum_not_inet = 0;
3363out:
3364 return ret;
3365}
3366
3367__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3368{
3369 __be16 type = skb->protocol;
3370
3371 /* Tunnel gso handlers can set protocol to ethernet. */
3372 if (type == htons(ETH_P_TEB)) {
3373 struct ethhdr *eth;
3374
3375 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3376 return 0;
3377
3378 eth = (struct ethhdr *)skb->data;
3379 type = eth->h_proto;
3380 }
3381
3382 return __vlan_get_protocol(skb, type, depth);
3383}
3384
3385/**
3386 * skb_mac_gso_segment - mac layer segmentation handler.
3387 * @skb: buffer to segment
3388 * @features: features for the output path (see dev->features)
3389 */
3390struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
3391 netdev_features_t features)
3392{
3393 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
3394 struct packet_offload *ptype;
3395 int vlan_depth = skb->mac_len;
3396 __be16 type = skb_network_protocol(skb, &vlan_depth);
3397
3398 if (unlikely(!type))
3399 return ERR_PTR(-EINVAL);
3400
3401 __skb_pull(skb, vlan_depth);
3402
3403 rcu_read_lock();
3404 list_for_each_entry_rcu(ptype, &offload_base, list) {
3405 if (ptype->type == type && ptype->callbacks.gso_segment) {
3406 segs = ptype->callbacks.gso_segment(skb, features);
3407 break;
3408 }
3409 }
3410 rcu_read_unlock();
3411
3412 __skb_push(skb, skb->data - skb_mac_header(skb));
3413
3414 return segs;
3415}
3416EXPORT_SYMBOL(skb_mac_gso_segment);
3417
3418
3419/* openvswitch calls this on rx path, so we need a different check.
3420 */
3421static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3422{
3423 if (tx_path)
3424 return skb->ip_summed != CHECKSUM_PARTIAL &&
3425 skb->ip_summed != CHECKSUM_UNNECESSARY;
3426
3427 return skb->ip_summed == CHECKSUM_NONE;
3428}
3429
3430/**
3431 * __skb_gso_segment - Perform segmentation on skb.
3432 * @skb: buffer to segment
3433 * @features: features for the output path (see dev->features)
3434 * @tx_path: whether it is called in TX path
3435 *
3436 * This function segments the given skb and returns a list of segments.
3437 *
3438 * It may return NULL if the skb requires no segmentation. This is
3439 * only possible when GSO is used for verifying header integrity.
3440 *
3441 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3442 */
3443struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3444 netdev_features_t features, bool tx_path)
3445{
3446 struct sk_buff *segs;
3447
3448 if (unlikely(skb_needs_check(skb, tx_path))) {
3449 int err;
3450
3451 /* We're going to init ->check field in TCP or UDP header */
3452 err = skb_cow_head(skb, 0);
3453 if (err < 0)
3454 return ERR_PTR(err);
3455 }
3456
3457 /* Only report GSO partial support if it will enable us to
3458 * support segmentation on this frame without needing additional
3459 * work.
3460 */
3461 if (features & NETIF_F_GSO_PARTIAL) {
3462 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3463 struct net_device *dev = skb->dev;
3464
3465 partial_features |= dev->features & dev->gso_partial_features;
3466 if (!skb_gso_ok(skb, features | partial_features))
3467 features &= ~NETIF_F_GSO_PARTIAL;
3468 }
3469
3470 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3471 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3472
3473 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3474 SKB_GSO_CB(skb)->encap_level = 0;
3475
3476 skb_reset_mac_header(skb);
3477 skb_reset_mac_len(skb);
3478
3479 segs = skb_mac_gso_segment(skb, features);
3480
3481 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3482 skb_warn_bad_offload(skb);
3483
3484 return segs;
3485}
3486EXPORT_SYMBOL(__skb_gso_segment);
3487
3488/* Take action when hardware reception checksum errors are detected. */
3489#ifdef CONFIG_BUG
3490void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3491{
3492 if (net_ratelimit()) {
3493 pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
3494 skb_dump(KERN_ERR, skb, true);
3495 dump_stack();
3496 }
3497}
3498EXPORT_SYMBOL(netdev_rx_csum_fault);
3499#endif
3500
3501/* XXX: check that highmem exists at all on the given machine. */
3502static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3503{
3504#ifdef CONFIG_HIGHMEM
3505 int i;
3506
3507 if (!(dev->features & NETIF_F_HIGHDMA)) {
3508 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3509 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3510
3511 if (PageHighMem(skb_frag_page(frag)))
3512 return 1;
3513 }
3514 }
3515#endif
3516 return 0;
3517}
3518
3519/* If MPLS offload request, verify we are testing hardware MPLS features
3520 * instead of standard features for the netdev.
3521 */
3522#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3523static netdev_features_t net_mpls_features(struct sk_buff *skb,
3524 netdev_features_t features,
3525 __be16 type)
3526{
3527 if (eth_p_mpls(type))
3528 features &= skb->dev->mpls_features;
3529
3530 return features;
3531}
3532#else
3533static netdev_features_t net_mpls_features(struct sk_buff *skb,
3534 netdev_features_t features,
3535 __be16 type)
3536{
3537 return features;
3538}
3539#endif
3540
3541static netdev_features_t harmonize_features(struct sk_buff *skb,
3542 netdev_features_t features)
3543{
3544 __be16 type;
3545
3546 type = skb_network_protocol(skb, NULL);
3547 features = net_mpls_features(skb, features, type);
3548
3549 if (skb->ip_summed != CHECKSUM_NONE &&
3550 !can_checksum_protocol(features, type)) {
3551 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3552 }
3553 if (illegal_highdma(skb->dev, skb))
3554 features &= ~NETIF_F_SG;
3555
3556 return features;
3557}
3558
3559netdev_features_t passthru_features_check(struct sk_buff *skb,
3560 struct net_device *dev,
3561 netdev_features_t features)
3562{
3563 return features;
3564}
3565EXPORT_SYMBOL(passthru_features_check);
3566
3567static netdev_features_t dflt_features_check(struct sk_buff *skb,
3568 struct net_device *dev,
3569 netdev_features_t features)
3570{
3571 return vlan_features_check(skb, features);
3572}
3573
3574static netdev_features_t gso_features_check(const struct sk_buff *skb,
3575 struct net_device *dev,
3576 netdev_features_t features)
3577{
3578 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3579
3580 if (gso_segs > dev->gso_max_segs)
3581 return features & ~NETIF_F_GSO_MASK;
3582
3583 if (!skb_shinfo(skb)->gso_type) {
3584 skb_warn_bad_offload(skb);
3585 return features & ~NETIF_F_GSO_MASK;
3586 }
3587
3588 /* Support for GSO partial features requires software
3589 * intervention before we can actually process the packets
3590 * so we need to strip support for any partial features now
3591 * and we can pull them back in after we have partially
3592 * segmented the frame.
3593 */
3594 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3595 features &= ~dev->gso_partial_features;
3596
3597 /* Make sure to clear the IPv4 ID mangling feature if the
3598 * IPv4 header has the potential to be fragmented.
3599 */
3600 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3601 struct iphdr *iph = skb->encapsulation ?
3602 inner_ip_hdr(skb) : ip_hdr(skb);
3603
3604 if (!(iph->frag_off & htons(IP_DF)))
3605 features &= ~NETIF_F_TSO_MANGLEID;
3606 }
3607
3608 return features;
3609}
3610
3611netdev_features_t netif_skb_features(struct sk_buff *skb)
3612{
3613 struct net_device *dev = skb->dev;
3614 netdev_features_t features = dev->features;
3615
3616 if (skb_is_gso(skb))
3617 features = gso_features_check(skb, dev, features);
3618
3619 /* If encapsulation offload request, verify we are testing
3620 * hardware encapsulation features instead of standard
3621 * features for the netdev
3622 */
3623 if (skb->encapsulation)
3624 features &= dev->hw_enc_features;
3625
3626 if (skb_vlan_tagged(skb))
3627 features = netdev_intersect_features(features,
3628 dev->vlan_features |
3629 NETIF_F_HW_VLAN_CTAG_TX |
3630 NETIF_F_HW_VLAN_STAG_TX);
3631
3632 if (dev->netdev_ops->ndo_features_check)
3633 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3634 features);
3635 else
3636 features &= dflt_features_check(skb, dev, features);
3637
3638 return harmonize_features(skb, features);
3639}
3640EXPORT_SYMBOL(netif_skb_features);
3641
3642static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3643 struct netdev_queue *txq, bool more)
3644{
3645 unsigned int len;
3646 int rc;
3647
3648 if (dev_nit_active(dev))
3649 dev_queue_xmit_nit(skb, dev);
3650
3651 len = skb->len;
3652 PRANDOM_ADD_NOISE(skb, dev, txq, len + jiffies);
3653 trace_net_dev_start_xmit(skb, dev);
3654 rc = netdev_start_xmit(skb, dev, txq, more);
3655 trace_net_dev_xmit(skb, rc, dev, len);
3656
3657 return rc;
3658}
3659
3660struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3661 struct netdev_queue *txq, int *ret)
3662{
3663 struct sk_buff *skb = first;
3664 int rc = NETDEV_TX_OK;
3665
3666 while (skb) {
3667 struct sk_buff *next = skb->next;
3668
3669 skb_mark_not_on_list(skb);
3670 rc = xmit_one(skb, dev, txq, next != NULL);
3671 if (unlikely(!dev_xmit_complete(rc))) {
3672 skb->next = next;
3673 goto out;
3674 }
3675
3676 skb = next;
3677 if (netif_tx_queue_stopped(txq) && skb) {
3678 rc = NETDEV_TX_BUSY;
3679 break;
3680 }
3681 }
3682
3683out:
3684 *ret = rc;
3685 return skb;
3686}
3687
3688static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3689 netdev_features_t features)
3690{
3691 if (skb_vlan_tag_present(skb) &&
3692 !vlan_hw_offload_capable(features, skb->vlan_proto))
3693 skb = __vlan_hwaccel_push_inside(skb);
3694 return skb;
3695}
3696
3697int skb_csum_hwoffload_help(struct sk_buff *skb,
3698 const netdev_features_t features)
3699{
3700 if (unlikely(skb_csum_is_sctp(skb)))
3701 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3702 skb_crc32c_csum_help(skb);
3703
3704 if (features & NETIF_F_HW_CSUM)
3705 return 0;
3706
3707 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3708 switch (skb->csum_offset) {
3709 case offsetof(struct tcphdr, check):
3710 case offsetof(struct udphdr, check):
3711 return 0;
3712 }
3713 }
3714
3715 return skb_checksum_help(skb);
3716}
3717EXPORT_SYMBOL(skb_csum_hwoffload_help);
3718
3719static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3720{
3721 netdev_features_t features;
3722
3723 features = netif_skb_features(skb);
3724 skb = validate_xmit_vlan(skb, features);
3725 if (unlikely(!skb))
3726 goto out_null;
3727
3728 skb = sk_validate_xmit_skb(skb, dev);
3729 if (unlikely(!skb))
3730 goto out_null;
3731
3732 if (netif_needs_gso(skb, features)) {
3733 struct sk_buff *segs;
3734
3735 segs = skb_gso_segment(skb, features);
3736 if (IS_ERR(segs)) {
3737 goto out_kfree_skb;
3738 } else if (segs) {
3739 consume_skb(skb);
3740 skb = segs;
3741 }
3742 } else {
3743 if (skb_needs_linearize(skb, features) &&
3744 __skb_linearize(skb))
3745 goto out_kfree_skb;
3746
3747 /* If packet is not checksummed and device does not
3748 * support checksumming for this protocol, complete
3749 * checksumming here.
3750 */
3751 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3752 if (skb->encapsulation)
3753 skb_set_inner_transport_header(skb,
3754 skb_checksum_start_offset(skb));
3755 else
3756 skb_set_transport_header(skb,
3757 skb_checksum_start_offset(skb));
3758 if (skb_csum_hwoffload_help(skb, features))
3759 goto out_kfree_skb;
3760 }
3761 }
3762
3763 skb = validate_xmit_xfrm(skb, features, again);
3764
3765 return skb;
3766
3767out_kfree_skb:
3768 kfree_skb(skb);
3769out_null:
3770 atomic_long_inc(&dev->tx_dropped);
3771 return NULL;
3772}
3773
3774struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3775{
3776 struct sk_buff *next, *head = NULL, *tail;
3777
3778 for (; skb != NULL; skb = next) {
3779 next = skb->next;
3780 skb_mark_not_on_list(skb);
3781
3782 /* in case skb wont be segmented, point to itself */
3783 skb->prev = skb;
3784
3785 skb = validate_xmit_skb(skb, dev, again);
3786 if (!skb)
3787 continue;
3788
3789 if (!head)
3790 head = skb;
3791 else
3792 tail->next = skb;
3793 /* If skb was segmented, skb->prev points to
3794 * the last segment. If not, it still contains skb.
3795 */
3796 tail = skb->prev;
3797 }
3798 return head;
3799}
3800EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3801
3802static void qdisc_pkt_len_init(struct sk_buff *skb)
3803{
3804 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3805
3806 qdisc_skb_cb(skb)->pkt_len = skb->len;
3807
3808 /* To get more precise estimation of bytes sent on wire,
3809 * we add to pkt_len the headers size of all segments
3810 */
3811 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3812 unsigned int hdr_len;
3813 u16 gso_segs = shinfo->gso_segs;
3814
3815 /* mac layer + network layer */
3816 hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3817
3818 /* + transport layer */
3819 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3820 const struct tcphdr *th;
3821 struct tcphdr _tcphdr;
3822
3823 th = skb_header_pointer(skb, skb_transport_offset(skb),
3824 sizeof(_tcphdr), &_tcphdr);
3825 if (likely(th))
3826 hdr_len += __tcp_hdrlen(th);
3827 } else {
3828 struct udphdr _udphdr;
3829
3830 if (skb_header_pointer(skb, skb_transport_offset(skb),
3831 sizeof(_udphdr), &_udphdr))
3832 hdr_len += sizeof(struct udphdr);
3833 }
3834
3835 if (shinfo->gso_type & SKB_GSO_DODGY)
3836 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3837 shinfo->gso_size);
3838
3839 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3840 }
3841}
3842
3843static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3844 struct net_device *dev,
3845 struct netdev_queue *txq)
3846{
3847 spinlock_t *root_lock = qdisc_lock(q);
3848 struct sk_buff *to_free = NULL;
3849 bool contended;
3850 int rc;
3851
3852 qdisc_calculate_pkt_len(skb, q);
3853
3854 if (q->flags & TCQ_F_NOLOCK) {
3855 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3856 if (likely(!netif_xmit_frozen_or_stopped(txq)))
3857 qdisc_run(q);
3858
3859 if (unlikely(to_free))
3860 kfree_skb_list(to_free);
3861 return rc;
3862 }
3863
3864 /*
3865 * Heuristic to force contended enqueues to serialize on a
3866 * separate lock before trying to get qdisc main lock.
3867 * This permits qdisc->running owner to get the lock more
3868 * often and dequeue packets faster.
3869 */
3870 contended = qdisc_is_running(q);
3871 if (unlikely(contended))
3872 spin_lock(&q->busylock);
3873
3874 spin_lock(root_lock);
3875 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3876 __qdisc_drop(skb, &to_free);
3877 rc = NET_XMIT_DROP;
3878 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3879 qdisc_run_begin(q)) {
3880 /*
3881 * This is a work-conserving queue; there are no old skbs
3882 * waiting to be sent out; and the qdisc is not running -
3883 * xmit the skb directly.
3884 */
3885
3886 qdisc_bstats_update(q, skb);
3887
3888 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3889 if (unlikely(contended)) {
3890 spin_unlock(&q->busylock);
3891 contended = false;
3892 }
3893 __qdisc_run(q);
3894 }
3895
3896 qdisc_run_end(q);
3897 rc = NET_XMIT_SUCCESS;
3898 } else {
3899 rc = q->enqueue(skb, q, &to_free) & NET_XMIT_MASK;
3900 if (qdisc_run_begin(q)) {
3901 if (unlikely(contended)) {
3902 spin_unlock(&q->busylock);
3903 contended = false;
3904 }
3905 __qdisc_run(q);
3906 qdisc_run_end(q);
3907 }
3908 }
3909 spin_unlock(root_lock);
3910 if (unlikely(to_free))
3911 kfree_skb_list(to_free);
3912 if (unlikely(contended))
3913 spin_unlock(&q->busylock);
3914 return rc;
3915}
3916
3917#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3918static void skb_update_prio(struct sk_buff *skb)
3919{
3920 const struct netprio_map *map;
3921 const struct sock *sk;
3922 unsigned int prioidx;
3923
3924 if (skb->priority)
3925 return;
3926 map = rcu_dereference_bh(skb->dev->priomap);
3927 if (!map)
3928 return;
3929 sk = skb_to_full_sk(skb);
3930 if (!sk)
3931 return;
3932
3933 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3934
3935 if (prioidx < map->priomap_len)
3936 skb->priority = map->priomap[prioidx];
3937}
3938#else
3939#define skb_update_prio(skb)
3940#endif
3941
3942/**
3943 * dev_loopback_xmit - loop back @skb
3944 * @net: network namespace this loopback is happening in
3945 * @sk: sk needed to be a netfilter okfn
3946 * @skb: buffer to transmit
3947 */
3948int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3949{
3950 skb_reset_mac_header(skb);
3951 __skb_pull(skb, skb_network_offset(skb));
3952 skb->pkt_type = PACKET_LOOPBACK;
3953 skb->ip_summed = CHECKSUM_UNNECESSARY;
3954 WARN_ON(!skb_dst(skb));
3955 skb_dst_force(skb);
3956 netif_rx_ni(skb);
3957 return 0;
3958}
3959EXPORT_SYMBOL(dev_loopback_xmit);
3960
3961#ifdef CONFIG_NET_EGRESS
3962static struct sk_buff *
3963sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3964{
3965 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3966 struct tcf_result cl_res;
3967
3968 if (!miniq)
3969 return skb;
3970
3971 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3972 qdisc_skb_cb(skb)->mru = 0;
3973 qdisc_skb_cb(skb)->post_ct = false;
3974 mini_qdisc_bstats_cpu_update(miniq, skb);
3975
3976 switch (tcf_classify(skb, miniq->filter_list, &cl_res, false)) {
3977 case TC_ACT_OK:
3978 case TC_ACT_RECLASSIFY:
3979 skb->tc_index = TC_H_MIN(cl_res.classid);
3980 break;
3981 case TC_ACT_SHOT:
3982 mini_qdisc_qstats_cpu_drop(miniq);
3983 *ret = NET_XMIT_DROP;
3984 kfree_skb(skb);
3985 return NULL;
3986 case TC_ACT_STOLEN:
3987 case TC_ACT_QUEUED:
3988 case TC_ACT_TRAP:
3989 *ret = NET_XMIT_SUCCESS;
3990 consume_skb(skb);
3991 return NULL;
3992 case TC_ACT_REDIRECT:
3993 /* No need to push/pop skb's mac_header here on egress! */
3994 skb_do_redirect(skb);
3995 *ret = NET_XMIT_SUCCESS;
3996 return NULL;
3997 default:
3998 break;
3999 }
4000
4001 return skb;
4002}
4003#endif /* CONFIG_NET_EGRESS */
4004
4005#ifdef CONFIG_XPS
4006static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4007 struct xps_dev_maps *dev_maps, unsigned int tci)
4008{
4009 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4010 struct xps_map *map;
4011 int queue_index = -1;
4012
4013 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4014 return queue_index;
4015
4016 tci *= dev_maps->num_tc;
4017 tci += tc;
4018
4019 map = rcu_dereference(dev_maps->attr_map[tci]);
4020 if (map) {
4021 if (map->len == 1)
4022 queue_index = map->queues[0];
4023 else
4024 queue_index = map->queues[reciprocal_scale(
4025 skb_get_hash(skb), map->len)];
4026 if (unlikely(queue_index >= dev->real_num_tx_queues))
4027 queue_index = -1;
4028 }
4029 return queue_index;
4030}
4031#endif
4032
4033static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4034 struct sk_buff *skb)
4035{
4036#ifdef CONFIG_XPS
4037 struct xps_dev_maps *dev_maps;
4038 struct sock *sk = skb->sk;
4039 int queue_index = -1;
4040
4041 if (!static_key_false(&xps_needed))
4042 return -1;
4043
4044 rcu_read_lock();
4045 if (!static_key_false(&xps_rxqs_needed))
4046 goto get_cpus_map;
4047
4048 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4049 if (dev_maps) {
4050 int tci = sk_rx_queue_get(sk);
4051
4052 if (tci >= 0)
4053 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4054 tci);
4055 }
4056
4057get_cpus_map:
4058 if (queue_index < 0) {
4059 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4060 if (dev_maps) {
4061 unsigned int tci = skb->sender_cpu - 1;
4062
4063 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4064 tci);
4065 }
4066 }
4067 rcu_read_unlock();
4068
4069 return queue_index;
4070#else
4071 return -1;
4072#endif
4073}
4074
4075u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4076 struct net_device *sb_dev)
4077{
4078 return 0;
4079}
4080EXPORT_SYMBOL(dev_pick_tx_zero);
4081
4082u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4083 struct net_device *sb_dev)
4084{
4085 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4086}
4087EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4088
4089u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4090 struct net_device *sb_dev)
4091{
4092 struct sock *sk = skb->sk;
4093 int queue_index = sk_tx_queue_get(sk);
4094
4095 sb_dev = sb_dev ? : dev;
4096
4097 if (queue_index < 0 || skb->ooo_okay ||
4098 queue_index >= dev->real_num_tx_queues) {
4099 int new_index = get_xps_queue(dev, sb_dev, skb);
4100
4101 if (new_index < 0)
4102 new_index = skb_tx_hash(dev, sb_dev, skb);
4103
4104 if (queue_index != new_index && sk &&
4105 sk_fullsock(sk) &&
4106 rcu_access_pointer(sk->sk_dst_cache))
4107 sk_tx_queue_set(sk, new_index);
4108
4109 queue_index = new_index;
4110 }
4111
4112 return queue_index;
4113}
4114EXPORT_SYMBOL(netdev_pick_tx);
4115
4116struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4117 struct sk_buff *skb,
4118 struct net_device *sb_dev)
4119{
4120 int queue_index = 0;
4121
4122#ifdef CONFIG_XPS
4123 u32 sender_cpu = skb->sender_cpu - 1;
4124
4125 if (sender_cpu >= (u32)NR_CPUS)
4126 skb->sender_cpu = raw_smp_processor_id() + 1;
4127#endif
4128
4129 if (dev->real_num_tx_queues != 1) {
4130 const struct net_device_ops *ops = dev->netdev_ops;
4131
4132 if (ops->ndo_select_queue)
4133 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4134 else
4135 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4136
4137 queue_index = netdev_cap_txqueue(dev, queue_index);
4138 }
4139
4140 skb_set_queue_mapping(skb, queue_index);
4141 return netdev_get_tx_queue(dev, queue_index);
4142}
4143
4144/**
4145 * __dev_queue_xmit - transmit a buffer
4146 * @skb: buffer to transmit
4147 * @sb_dev: suboordinate device used for L2 forwarding offload
4148 *
4149 * Queue a buffer for transmission to a network device. The caller must
4150 * have set the device and priority and built the buffer before calling
4151 * this function. The function can be called from an interrupt.
4152 *
4153 * A negative errno code is returned on a failure. A success does not
4154 * guarantee the frame will be transmitted as it may be dropped due
4155 * to congestion or traffic shaping.
4156 *
4157 * -----------------------------------------------------------------------------------
4158 * I notice this method can also return errors from the queue disciplines,
4159 * including NET_XMIT_DROP, which is a positive value. So, errors can also
4160 * be positive.
4161 *
4162 * Regardless of the return value, the skb is consumed, so it is currently
4163 * difficult to retry a send to this method. (You can bump the ref count
4164 * before sending to hold a reference for retry if you are careful.)
4165 *
4166 * When calling this method, interrupts MUST be enabled. This is because
4167 * the BH enable code must have IRQs enabled so that it will not deadlock.
4168 * --BLG
4169 */
4170static int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4171{
4172 struct net_device *dev = skb->dev;
4173 struct netdev_queue *txq;
4174 struct Qdisc *q;
4175 int rc = -ENOMEM;
4176 bool again = false;
4177
4178 skb_reset_mac_header(skb);
4179
4180 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4181 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4182
4183 /* Disable soft irqs for various locks below. Also
4184 * stops preemption for RCU.
4185 */
4186 rcu_read_lock_bh();
4187
4188 skb_update_prio(skb);
4189
4190 qdisc_pkt_len_init(skb);
4191#ifdef CONFIG_NET_CLS_ACT
4192 skb->tc_at_ingress = 0;
4193# ifdef CONFIG_NET_EGRESS
4194 if (static_branch_unlikely(&egress_needed_key)) {
4195 skb = sch_handle_egress(skb, &rc, dev);
4196 if (!skb)
4197 goto out;
4198 }
4199# endif
4200#endif
4201 /* If device/qdisc don't need skb->dst, release it right now while
4202 * its hot in this cpu cache.
4203 */
4204 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4205 skb_dst_drop(skb);
4206 else
4207 skb_dst_force(skb);
4208
4209 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4210 q = rcu_dereference_bh(txq->qdisc);
4211
4212 trace_net_dev_queue(skb);
4213 if (q->enqueue) {
4214 rc = __dev_xmit_skb(skb, q, dev, txq);
4215 goto out;
4216 }
4217
4218 /* The device has no queue. Common case for software devices:
4219 * loopback, all the sorts of tunnels...
4220
4221 * Really, it is unlikely that netif_tx_lock protection is necessary
4222 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4223 * counters.)
4224 * However, it is possible, that they rely on protection
4225 * made by us here.
4226
4227 * Check this and shot the lock. It is not prone from deadlocks.
4228 *Either shot noqueue qdisc, it is even simpler 8)
4229 */
4230 if (dev->flags & IFF_UP) {
4231 int cpu = smp_processor_id(); /* ok because BHs are off */
4232
4233 if (txq->xmit_lock_owner != cpu) {
4234 if (dev_xmit_recursion())
4235 goto recursion_alert;
4236
4237 skb = validate_xmit_skb(skb, dev, &again);
4238 if (!skb)
4239 goto out;
4240
4241 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4242 HARD_TX_LOCK(dev, txq, cpu);
4243
4244 if (!netif_xmit_stopped(txq)) {
4245 dev_xmit_recursion_inc();
4246 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4247 dev_xmit_recursion_dec();
4248 if (dev_xmit_complete(rc)) {
4249 HARD_TX_UNLOCK(dev, txq);
4250 goto out;
4251 }
4252 }
4253 HARD_TX_UNLOCK(dev, txq);
4254 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4255 dev->name);
4256 } else {
4257 /* Recursion is detected! It is possible,
4258 * unfortunately
4259 */
4260recursion_alert:
4261 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4262 dev->name);
4263 }
4264 }
4265
4266 rc = -ENETDOWN;
4267 rcu_read_unlock_bh();
4268
4269 atomic_long_inc(&dev->tx_dropped);
4270 kfree_skb_list(skb);
4271 return rc;
4272out:
4273 rcu_read_unlock_bh();
4274 return rc;
4275}
4276
4277int dev_queue_xmit(struct sk_buff *skb)
4278{
4279 return __dev_queue_xmit(skb, NULL);
4280}
4281EXPORT_SYMBOL(dev_queue_xmit);
4282
4283int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev)
4284{
4285 return __dev_queue_xmit(skb, sb_dev);
4286}
4287EXPORT_SYMBOL(dev_queue_xmit_accel);
4288
4289int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4290{
4291 struct net_device *dev = skb->dev;
4292 struct sk_buff *orig_skb = skb;
4293 struct netdev_queue *txq;
4294 int ret = NETDEV_TX_BUSY;
4295 bool again = false;
4296
4297 if (unlikely(!netif_running(dev) ||
4298 !netif_carrier_ok(dev)))
4299 goto drop;
4300
4301 skb = validate_xmit_skb_list(skb, dev, &again);
4302 if (skb != orig_skb)
4303 goto drop;
4304
4305 skb_set_queue_mapping(skb, queue_id);
4306 txq = skb_get_tx_queue(dev, skb);
4307 PRANDOM_ADD_NOISE(skb, dev, txq, jiffies);
4308
4309 local_bh_disable();
4310
4311 dev_xmit_recursion_inc();
4312 HARD_TX_LOCK(dev, txq, smp_processor_id());
4313 if (!netif_xmit_frozen_or_drv_stopped(txq))
4314 ret = netdev_start_xmit(skb, dev, txq, false);
4315 HARD_TX_UNLOCK(dev, txq);
4316 dev_xmit_recursion_dec();
4317
4318 local_bh_enable();
4319 return ret;
4320drop:
4321 atomic_long_inc(&dev->tx_dropped);
4322 kfree_skb_list(skb);
4323 return NET_XMIT_DROP;
4324}
4325EXPORT_SYMBOL(__dev_direct_xmit);
4326
4327/*************************************************************************
4328 * Receiver routines
4329 *************************************************************************/
4330
4331int netdev_max_backlog __read_mostly = 1000;
4332EXPORT_SYMBOL(netdev_max_backlog);
4333
4334int netdev_tstamp_prequeue __read_mostly = 1;
4335int netdev_budget __read_mostly = 300;
4336/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4337unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4338int weight_p __read_mostly = 64; /* old backlog weight */
4339int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4340int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4341int dev_rx_weight __read_mostly = 64;
4342int dev_tx_weight __read_mostly = 64;
4343/* Maximum number of GRO_NORMAL skbs to batch up for list-RX */
4344int gro_normal_batch __read_mostly = 8;
4345
4346/* Called with irq disabled */
4347static inline void ____napi_schedule(struct softnet_data *sd,
4348 struct napi_struct *napi)
4349{
4350 struct task_struct *thread;
4351
4352 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4353 /* Paired with smp_mb__before_atomic() in
4354 * napi_enable()/dev_set_threaded().
4355 * Use READ_ONCE() to guarantee a complete
4356 * read on napi->thread. Only call
4357 * wake_up_process() when it's not NULL.
4358 */
4359 thread = READ_ONCE(napi->thread);
4360 if (thread) {
4361 /* Avoid doing set_bit() if the thread is in
4362 * INTERRUPTIBLE state, cause napi_thread_wait()
4363 * makes sure to proceed with napi polling
4364 * if the thread is explicitly woken from here.
4365 */
4366 if (READ_ONCE(thread->state) != TASK_INTERRUPTIBLE)
4367 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4368 wake_up_process(thread);
4369 return;
4370 }
4371 }
4372
4373 list_add_tail(&napi->poll_list, &sd->poll_list);
4374 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4375}
4376
4377#ifdef CONFIG_RPS
4378
4379/* One global table that all flow-based protocols share. */
4380struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4381EXPORT_SYMBOL(rps_sock_flow_table);
4382u32 rps_cpu_mask __read_mostly;
4383EXPORT_SYMBOL(rps_cpu_mask);
4384
4385struct static_key_false rps_needed __read_mostly;
4386EXPORT_SYMBOL(rps_needed);
4387struct static_key_false rfs_needed __read_mostly;
4388EXPORT_SYMBOL(rfs_needed);
4389
4390static struct rps_dev_flow *
4391set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4392 struct rps_dev_flow *rflow, u16 next_cpu)
4393{
4394 if (next_cpu < nr_cpu_ids) {
4395#ifdef CONFIG_RFS_ACCEL
4396 struct netdev_rx_queue *rxqueue;
4397 struct rps_dev_flow_table *flow_table;
4398 struct rps_dev_flow *old_rflow;
4399 u32 flow_id;
4400 u16 rxq_index;
4401 int rc;
4402
4403 /* Should we steer this flow to a different hardware queue? */
4404 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4405 !(dev->features & NETIF_F_NTUPLE))
4406 goto out;
4407 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4408 if (rxq_index == skb_get_rx_queue(skb))
4409 goto out;
4410
4411 rxqueue = dev->_rx + rxq_index;
4412 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4413 if (!flow_table)
4414 goto out;
4415 flow_id = skb_get_hash(skb) & flow_table->mask;
4416 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4417 rxq_index, flow_id);
4418 if (rc < 0)
4419 goto out;
4420 old_rflow = rflow;
4421 rflow = &flow_table->flows[flow_id];
4422 rflow->filter = rc;
4423 if (old_rflow->filter == rflow->filter)
4424 old_rflow->filter = RPS_NO_FILTER;
4425 out:
4426#endif
4427 rflow->last_qtail =
4428 per_cpu(softnet_data, next_cpu).input_queue_head;
4429 }
4430
4431 rflow->cpu = next_cpu;
4432 return rflow;
4433}
4434
4435/*
4436 * get_rps_cpu is called from netif_receive_skb and returns the target
4437 * CPU from the RPS map of the receiving queue for a given skb.
4438 * rcu_read_lock must be held on entry.
4439 */
4440static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4441 struct rps_dev_flow **rflowp)
4442{
4443 const struct rps_sock_flow_table *sock_flow_table;
4444 struct netdev_rx_queue *rxqueue = dev->_rx;
4445 struct rps_dev_flow_table *flow_table;
4446 struct rps_map *map;
4447 int cpu = -1;
4448 u32 tcpu;
4449 u32 hash;
4450
4451 if (skb_rx_queue_recorded(skb)) {
4452 u16 index = skb_get_rx_queue(skb);
4453
4454 if (unlikely(index >= dev->real_num_rx_queues)) {
4455 WARN_ONCE(dev->real_num_rx_queues > 1,
4456 "%s received packet on queue %u, but number "
4457 "of RX queues is %u\n",
4458 dev->name, index, dev->real_num_rx_queues);
4459 goto done;
4460 }
4461 rxqueue += index;
4462 }
4463
4464 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4465
4466 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4467 map = rcu_dereference(rxqueue->rps_map);
4468 if (!flow_table && !map)
4469 goto done;
4470
4471 skb_reset_network_header(skb);
4472 hash = skb_get_hash(skb);
4473 if (!hash)
4474 goto done;
4475
4476 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4477 if (flow_table && sock_flow_table) {
4478 struct rps_dev_flow *rflow;
4479 u32 next_cpu;
4480 u32 ident;
4481
4482 /* First check into global flow table if there is a match */
4483 ident = sock_flow_table->ents[hash & sock_flow_table->mask];
4484 if ((ident ^ hash) & ~rps_cpu_mask)
4485 goto try_rps;
4486
4487 next_cpu = ident & rps_cpu_mask;
4488
4489 /* OK, now we know there is a match,
4490 * we can look at the local (per receive queue) flow table
4491 */
4492 rflow = &flow_table->flows[hash & flow_table->mask];
4493 tcpu = rflow->cpu;
4494
4495 /*
4496 * If the desired CPU (where last recvmsg was done) is
4497 * different from current CPU (one in the rx-queue flow
4498 * table entry), switch if one of the following holds:
4499 * - Current CPU is unset (>= nr_cpu_ids).
4500 * - Current CPU is offline.
4501 * - The current CPU's queue tail has advanced beyond the
4502 * last packet that was enqueued using this table entry.
4503 * This guarantees that all previous packets for the flow
4504 * have been dequeued, thus preserving in order delivery.
4505 */
4506 if (unlikely(tcpu != next_cpu) &&
4507 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4508 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4509 rflow->last_qtail)) >= 0)) {
4510 tcpu = next_cpu;
4511 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4512 }
4513
4514 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4515 *rflowp = rflow;
4516 cpu = tcpu;
4517 goto done;
4518 }
4519 }
4520
4521try_rps:
4522
4523 if (map) {
4524 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4525 if (cpu_online(tcpu)) {
4526 cpu = tcpu;
4527 goto done;
4528 }
4529 }
4530
4531done:
4532 return cpu;
4533}
4534
4535#ifdef CONFIG_RFS_ACCEL
4536
4537/**
4538 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4539 * @dev: Device on which the filter was set
4540 * @rxq_index: RX queue index
4541 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4542 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4543 *
4544 * Drivers that implement ndo_rx_flow_steer() should periodically call
4545 * this function for each installed filter and remove the filters for
4546 * which it returns %true.
4547 */
4548bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4549 u32 flow_id, u16 filter_id)
4550{
4551 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4552 struct rps_dev_flow_table *flow_table;
4553 struct rps_dev_flow *rflow;
4554 bool expire = true;
4555 unsigned int cpu;
4556
4557 rcu_read_lock();
4558 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4559 if (flow_table && flow_id <= flow_table->mask) {
4560 rflow = &flow_table->flows[flow_id];
4561 cpu = READ_ONCE(rflow->cpu);
4562 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4563 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4564 rflow->last_qtail) <
4565 (int)(10 * flow_table->mask)))
4566 expire = false;
4567 }
4568 rcu_read_unlock();
4569 return expire;
4570}
4571EXPORT_SYMBOL(rps_may_expire_flow);
4572
4573#endif /* CONFIG_RFS_ACCEL */
4574
4575/* Called from hardirq (IPI) context */
4576static void rps_trigger_softirq(void *data)
4577{
4578 struct softnet_data *sd = data;
4579
4580 ____napi_schedule(sd, &sd->backlog);
4581 sd->received_rps++;
4582}
4583
4584#endif /* CONFIG_RPS */
4585
4586/*
4587 * Check if this softnet_data structure is another cpu one
4588 * If yes, queue it to our IPI list and return 1
4589 * If no, return 0
4590 */
4591static int rps_ipi_queued(struct softnet_data *sd)
4592{
4593#ifdef CONFIG_RPS
4594 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4595
4596 if (sd != mysd) {
4597 sd->rps_ipi_next = mysd->rps_ipi_list;
4598 mysd->rps_ipi_list = sd;
4599
4600 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4601 return 1;
4602 }
4603#endif /* CONFIG_RPS */
4604 return 0;
4605}
4606
4607#ifdef CONFIG_NET_FLOW_LIMIT
4608int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4609#endif
4610
4611static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4612{
4613#ifdef CONFIG_NET_FLOW_LIMIT
4614 struct sd_flow_limit *fl;
4615 struct softnet_data *sd;
4616 unsigned int old_flow, new_flow;
4617
4618 if (qlen < (netdev_max_backlog >> 1))
4619 return false;
4620
4621 sd = this_cpu_ptr(&softnet_data);
4622
4623 rcu_read_lock();
4624 fl = rcu_dereference(sd->flow_limit);
4625 if (fl) {
4626 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4627 old_flow = fl->history[fl->history_head];
4628 fl->history[fl->history_head] = new_flow;
4629
4630 fl->history_head++;
4631 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4632
4633 if (likely(fl->buckets[old_flow]))
4634 fl->buckets[old_flow]--;
4635
4636 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4637 fl->count++;
4638 rcu_read_unlock();
4639 return true;
4640 }
4641 }
4642 rcu_read_unlock();
4643#endif
4644 return false;
4645}
4646
4647/*
4648 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4649 * queue (may be a remote CPU queue).
4650 */
4651static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4652 unsigned int *qtail)
4653{
4654 struct softnet_data *sd;
4655 unsigned long flags;
4656 unsigned int qlen;
4657
4658 sd = &per_cpu(softnet_data, cpu);
4659
4660 local_irq_save(flags);
4661
4662 rps_lock(sd);
4663 if (!netif_running(skb->dev))
4664 goto drop;
4665 qlen = skb_queue_len(&sd->input_pkt_queue);
4666 if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
4667 if (qlen) {
4668enqueue:
4669 __skb_queue_tail(&sd->input_pkt_queue, skb);
4670 input_queue_tail_incr_save(sd, qtail);
4671 rps_unlock(sd);
4672 local_irq_restore(flags);
4673 return NET_RX_SUCCESS;
4674 }
4675
4676 /* Schedule NAPI for backlog device
4677 * We can use non atomic operation since we own the queue lock
4678 */
4679 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
4680 if (!rps_ipi_queued(sd))
4681 ____napi_schedule(sd, &sd->backlog);
4682 }
4683 goto enqueue;
4684 }
4685
4686drop:
4687 sd->dropped++;
4688 rps_unlock(sd);
4689
4690 local_irq_restore(flags);
4691
4692 atomic_long_inc(&skb->dev->rx_dropped);
4693 kfree_skb(skb);
4694 return NET_RX_DROP;
4695}
4696
4697static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4698{
4699 struct net_device *dev = skb->dev;
4700 struct netdev_rx_queue *rxqueue;
4701
4702 rxqueue = dev->_rx;
4703
4704 if (skb_rx_queue_recorded(skb)) {
4705 u16 index = skb_get_rx_queue(skb);
4706
4707 if (unlikely(index >= dev->real_num_rx_queues)) {
4708 WARN_ONCE(dev->real_num_rx_queues > 1,
4709 "%s received packet on queue %u, but number "
4710 "of RX queues is %u\n",
4711 dev->name, index, dev->real_num_rx_queues);
4712
4713 return rxqueue; /* Return first rxqueue */
4714 }
4715 rxqueue += index;
4716 }
4717 return rxqueue;
4718}
4719
4720static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4721 struct xdp_buff *xdp,
4722 struct bpf_prog *xdp_prog)
4723{
4724 void *orig_data, *orig_data_end, *hard_start;
4725 struct netdev_rx_queue *rxqueue;
4726 u32 metalen, act = XDP_DROP;
4727 bool orig_bcast, orig_host;
4728 u32 mac_len, frame_sz;
4729 __be16 orig_eth_type;
4730 struct ethhdr *eth;
4731 int off;
4732
4733 /* Reinjected packets coming from act_mirred or similar should
4734 * not get XDP generic processing.
4735 */
4736 if (skb_is_redirected(skb))
4737 return XDP_PASS;
4738
4739 /* XDP packets must be linear and must have sufficient headroom
4740 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4741 * native XDP provides, thus we need to do it here as well.
4742 */
4743 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4744 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4745 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4746 int troom = skb->tail + skb->data_len - skb->end;
4747
4748 /* In case we have to go down the path and also linearize,
4749 * then lets do the pskb_expand_head() work just once here.
4750 */
4751 if (pskb_expand_head(skb,
4752 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4753 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4754 goto do_drop;
4755 if (skb_linearize(skb))
4756 goto do_drop;
4757 }
4758
4759 /* The XDP program wants to see the packet starting at the MAC
4760 * header.
4761 */
4762 mac_len = skb->data - skb_mac_header(skb);
4763 hard_start = skb->data - skb_headroom(skb);
4764
4765 /* SKB "head" area always have tailroom for skb_shared_info */
4766 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4767 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4768
4769 rxqueue = netif_get_rxqueue(skb);
4770 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4771 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4772 skb_headlen(skb) + mac_len, true);
4773
4774 orig_data_end = xdp->data_end;
4775 orig_data = xdp->data;
4776 eth = (struct ethhdr *)xdp->data;
4777 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4778 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4779 orig_eth_type = eth->h_proto;
4780
4781 act = bpf_prog_run_xdp(xdp_prog, xdp);
4782
4783 /* check if bpf_xdp_adjust_head was used */
4784 off = xdp->data - orig_data;
4785 if (off) {
4786 if (off > 0)
4787 __skb_pull(skb, off);
4788 else if (off < 0)
4789 __skb_push(skb, -off);
4790
4791 skb->mac_header += off;
4792 skb_reset_network_header(skb);
4793 }
4794
4795 /* check if bpf_xdp_adjust_tail was used */
4796 off = xdp->data_end - orig_data_end;
4797 if (off != 0) {
4798 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4799 skb->len += off; /* positive on grow, negative on shrink */
4800 }
4801
4802 /* check if XDP changed eth hdr such SKB needs update */
4803 eth = (struct ethhdr *)xdp->data;
4804 if ((orig_eth_type != eth->h_proto) ||
4805 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4806 skb->dev->dev_addr)) ||
4807 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4808 __skb_push(skb, ETH_HLEN);
4809 skb->pkt_type = PACKET_HOST;
4810 skb->protocol = eth_type_trans(skb, skb->dev);
4811 }
4812
4813 switch (act) {
4814 case XDP_REDIRECT:
4815 case XDP_TX:
4816 __skb_push(skb, mac_len);
4817 break;
4818 case XDP_PASS:
4819 metalen = xdp->data - xdp->data_meta;
4820 if (metalen)
4821 skb_metadata_set(skb, metalen);
4822 break;
4823 default:
4824 bpf_warn_invalid_xdp_action(act);
4825 fallthrough;
4826 case XDP_ABORTED:
4827 trace_xdp_exception(skb->dev, xdp_prog, act);
4828 fallthrough;
4829 case XDP_DROP:
4830 do_drop:
4831 kfree_skb(skb);
4832 break;
4833 }
4834
4835 return act;
4836}
4837
4838/* When doing generic XDP we have to bypass the qdisc layer and the
4839 * network taps in order to match in-driver-XDP behavior.
4840 */
4841void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4842{
4843 struct net_device *dev = skb->dev;
4844 struct netdev_queue *txq;
4845 bool free_skb = true;
4846 int cpu, rc;
4847
4848 txq = netdev_core_pick_tx(dev, skb, NULL);
4849 cpu = smp_processor_id();
4850 HARD_TX_LOCK(dev, txq, cpu);
4851 if (!netif_xmit_stopped(txq)) {
4852 rc = netdev_start_xmit(skb, dev, txq, 0);
4853 if (dev_xmit_complete(rc))
4854 free_skb = false;
4855 }
4856 HARD_TX_UNLOCK(dev, txq);
4857 if (free_skb) {
4858 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4859 kfree_skb(skb);
4860 }
4861}
4862
4863static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4864
4865int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4866{
4867 if (xdp_prog) {
4868 struct xdp_buff xdp;
4869 u32 act;
4870 int err;
4871
4872 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4873 if (act != XDP_PASS) {
4874 switch (act) {
4875 case XDP_REDIRECT:
4876 err = xdp_do_generic_redirect(skb->dev, skb,
4877 &xdp, xdp_prog);
4878 if (err)
4879 goto out_redir;
4880 break;
4881 case XDP_TX:
4882 generic_xdp_tx(skb, xdp_prog);
4883 break;
4884 }
4885 return XDP_DROP;
4886 }
4887 }
4888 return XDP_PASS;
4889out_redir:
4890 kfree_skb(skb);
4891 return XDP_DROP;
4892}
4893EXPORT_SYMBOL_GPL(do_xdp_generic);
4894
4895static int netif_rx_internal(struct sk_buff *skb)
4896{
4897 int ret;
4898
4899 net_timestamp_check(netdev_tstamp_prequeue, skb);
4900
4901 trace_netif_rx(skb);
4902
4903#ifdef CONFIG_RPS
4904 if (static_branch_unlikely(&rps_needed)) {
4905 struct rps_dev_flow voidflow, *rflow = &voidflow;
4906 int cpu;
4907
4908 preempt_disable();
4909 rcu_read_lock();
4910
4911 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4912 if (cpu < 0)
4913 cpu = smp_processor_id();
4914
4915 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4916
4917 rcu_read_unlock();
4918 preempt_enable();
4919 } else
4920#endif
4921 {
4922 unsigned int qtail;
4923
4924 ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
4925 put_cpu();
4926 }
4927 return ret;
4928}
4929
4930/**
4931 * netif_rx - post buffer to the network code
4932 * @skb: buffer to post
4933 *
4934 * This function receives a packet from a device driver and queues it for
4935 * the upper (protocol) levels to process. It always succeeds. The buffer
4936 * may be dropped during processing for congestion control or by the
4937 * protocol layers.
4938 *
4939 * return values:
4940 * NET_RX_SUCCESS (no congestion)
4941 * NET_RX_DROP (packet was dropped)
4942 *
4943 */
4944
4945int netif_rx(struct sk_buff *skb)
4946{
4947 int ret;
4948
4949 trace_netif_rx_entry(skb);
4950
4951 ret = netif_rx_internal(skb);
4952 trace_netif_rx_exit(ret);
4953
4954 return ret;
4955}
4956EXPORT_SYMBOL(netif_rx);
4957
4958int netif_rx_ni(struct sk_buff *skb)
4959{
4960 int err;
4961
4962 trace_netif_rx_ni_entry(skb);
4963
4964 preempt_disable();
4965 err = netif_rx_internal(skb);
4966 if (local_softirq_pending())
4967 do_softirq();
4968 preempt_enable();
4969 trace_netif_rx_ni_exit(err);
4970
4971 return err;
4972}
4973EXPORT_SYMBOL(netif_rx_ni);
4974
4975int netif_rx_any_context(struct sk_buff *skb)
4976{
4977 /*
4978 * If invoked from contexts which do not invoke bottom half
4979 * processing either at return from interrupt or when softrqs are
4980 * reenabled, use netif_rx_ni() which invokes bottomhalf processing
4981 * directly.
4982 */
4983 if (in_interrupt())
4984 return netif_rx(skb);
4985 else
4986 return netif_rx_ni(skb);
4987}
4988EXPORT_SYMBOL(netif_rx_any_context);
4989
4990static __latent_entropy void net_tx_action(struct softirq_action *h)
4991{
4992 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4993
4994 if (sd->completion_queue) {
4995 struct sk_buff *clist;
4996
4997 local_irq_disable();
4998 clist = sd->completion_queue;
4999 sd->completion_queue = NULL;
5000 local_irq_enable();
5001
5002 while (clist) {
5003 struct sk_buff *skb = clist;
5004
5005 clist = clist->next;
5006
5007 WARN_ON(refcount_read(&skb->users));
5008 if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
5009 trace_consume_skb(skb);
5010 else
5011 trace_kfree_skb(skb, net_tx_action);
5012
5013 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5014 __kfree_skb(skb);
5015 else
5016 __kfree_skb_defer(skb);
5017 }
5018 }
5019
5020 if (sd->output_queue) {
5021 struct Qdisc *head;
5022
5023 local_irq_disable();
5024 head = sd->output_queue;
5025 sd->output_queue = NULL;
5026 sd->output_queue_tailp = &sd->output_queue;
5027 local_irq_enable();
5028
5029 rcu_read_lock();
5030
5031 while (head) {
5032 struct Qdisc *q = head;
5033 spinlock_t *root_lock = NULL;
5034
5035 head = head->next_sched;
5036
5037 /* We need to make sure head->next_sched is read
5038 * before clearing __QDISC_STATE_SCHED
5039 */
5040 smp_mb__before_atomic();
5041
5042 if (!(q->flags & TCQ_F_NOLOCK)) {
5043 root_lock = qdisc_lock(q);
5044 spin_lock(root_lock);
5045 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5046 &q->state))) {
5047 /* There is a synchronize_net() between
5048 * STATE_DEACTIVATED flag being set and
5049 * qdisc_reset()/some_qdisc_is_busy() in
5050 * dev_deactivate(), so we can safely bail out
5051 * early here to avoid data race between
5052 * qdisc_deactivate() and some_qdisc_is_busy()
5053 * for lockless qdisc.
5054 */
5055 clear_bit(__QDISC_STATE_SCHED, &q->state);
5056 continue;
5057 }
5058
5059 clear_bit(__QDISC_STATE_SCHED, &q->state);
5060 qdisc_run(q);
5061 if (root_lock)
5062 spin_unlock(root_lock);
5063 }
5064
5065 rcu_read_unlock();
5066 }
5067
5068 xfrm_dev_backlog(sd);
5069}
5070
5071#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5072/* This hook is defined here for ATM LANE */
5073int (*br_fdb_test_addr_hook)(struct net_device *dev,
5074 unsigned char *addr) __read_mostly;
5075EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5076#endif
5077
5078static inline struct sk_buff *
5079sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5080 struct net_device *orig_dev, bool *another)
5081{
5082#ifdef CONFIG_NET_CLS_ACT
5083 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5084 struct tcf_result cl_res;
5085
5086 /* If there's at least one ingress present somewhere (so
5087 * we get here via enabled static key), remaining devices
5088 * that are not configured with an ingress qdisc will bail
5089 * out here.
5090 */
5091 if (!miniq)
5092 return skb;
5093
5094 if (*pt_prev) {
5095 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5096 *pt_prev = NULL;
5097 }
5098
5099 qdisc_skb_cb(skb)->pkt_len = skb->len;
5100 qdisc_skb_cb(skb)->mru = 0;
5101 qdisc_skb_cb(skb)->post_ct = false;
5102 skb->tc_at_ingress = 1;
5103 mini_qdisc_bstats_cpu_update(miniq, skb);
5104
5105 switch (tcf_classify_ingress(skb, miniq->block, miniq->filter_list,
5106 &cl_res, false)) {
5107 case TC_ACT_OK:
5108 case TC_ACT_RECLASSIFY:
5109 skb->tc_index = TC_H_MIN(cl_res.classid);
5110 break;
5111 case TC_ACT_SHOT:
5112 mini_qdisc_qstats_cpu_drop(miniq);
5113 kfree_skb(skb);
5114 return NULL;
5115 case TC_ACT_STOLEN:
5116 case TC_ACT_QUEUED:
5117 case TC_ACT_TRAP:
5118 consume_skb(skb);
5119 return NULL;
5120 case TC_ACT_REDIRECT:
5121 /* skb_mac_header check was done by cls/act_bpf, so
5122 * we can safely push the L2 header back before
5123 * redirecting to another netdev
5124 */
5125 __skb_push(skb, skb->mac_len);
5126 if (skb_do_redirect(skb) == -EAGAIN) {
5127 __skb_pull(skb, skb->mac_len);
5128 *another = true;
5129 break;
5130 }
5131 return NULL;
5132 case TC_ACT_CONSUMED:
5133 return NULL;
5134 default:
5135 break;
5136 }
5137#endif /* CONFIG_NET_CLS_ACT */
5138 return skb;
5139}
5140
5141/**
5142 * netdev_is_rx_handler_busy - check if receive handler is registered
5143 * @dev: device to check
5144 *
5145 * Check if a receive handler is already registered for a given device.
5146 * Return true if there one.
5147 *
5148 * The caller must hold the rtnl_mutex.
5149 */
5150bool netdev_is_rx_handler_busy(struct net_device *dev)
5151{
5152 ASSERT_RTNL();
5153 return dev && rtnl_dereference(dev->rx_handler);
5154}
5155EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5156
5157/**
5158 * netdev_rx_handler_register - register receive handler
5159 * @dev: device to register a handler for
5160 * @rx_handler: receive handler to register
5161 * @rx_handler_data: data pointer that is used by rx handler
5162 *
5163 * Register a receive handler for a device. This handler will then be
5164 * called from __netif_receive_skb. A negative errno code is returned
5165 * on a failure.
5166 *
5167 * The caller must hold the rtnl_mutex.
5168 *
5169 * For a general description of rx_handler, see enum rx_handler_result.
5170 */
5171int netdev_rx_handler_register(struct net_device *dev,
5172 rx_handler_func_t *rx_handler,
5173 void *rx_handler_data)
5174{
5175 if (netdev_is_rx_handler_busy(dev))
5176 return -EBUSY;
5177
5178 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5179 return -EINVAL;
5180
5181 /* Note: rx_handler_data must be set before rx_handler */
5182 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5183 rcu_assign_pointer(dev->rx_handler, rx_handler);
5184
5185 return 0;
5186}
5187EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5188
5189/**
5190 * netdev_rx_handler_unregister - unregister receive handler
5191 * @dev: device to unregister a handler from
5192 *
5193 * Unregister a receive handler from a device.
5194 *
5195 * The caller must hold the rtnl_mutex.
5196 */
5197void netdev_rx_handler_unregister(struct net_device *dev)
5198{
5199
5200 ASSERT_RTNL();
5201 RCU_INIT_POINTER(dev->rx_handler, NULL);
5202 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5203 * section has a guarantee to see a non NULL rx_handler_data
5204 * as well.
5205 */
5206 synchronize_net();
5207 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5208}
5209EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5210
5211/*
5212 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5213 * the special handling of PFMEMALLOC skbs.
5214 */
5215static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5216{
5217 switch (skb->protocol) {
5218 case htons(ETH_P_ARP):
5219 case htons(ETH_P_IP):
5220 case htons(ETH_P_IPV6):
5221 case htons(ETH_P_8021Q):
5222 case htons(ETH_P_8021AD):
5223 return true;
5224 default:
5225 return false;
5226 }
5227}
5228
5229static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5230 int *ret, struct net_device *orig_dev)
5231{
5232 if (nf_hook_ingress_active(skb)) {
5233 int ingress_retval;
5234
5235 if (*pt_prev) {
5236 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5237 *pt_prev = NULL;
5238 }
5239
5240 rcu_read_lock();
5241 ingress_retval = nf_hook_ingress(skb);
5242 rcu_read_unlock();
5243 return ingress_retval;
5244 }
5245 return 0;
5246}
5247
5248static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5249 struct packet_type **ppt_prev)
5250{
5251 struct packet_type *ptype, *pt_prev;
5252 rx_handler_func_t *rx_handler;
5253 struct sk_buff *skb = *pskb;
5254 struct net_device *orig_dev;
5255 bool deliver_exact = false;
5256 int ret = NET_RX_DROP;
5257 __be16 type;
5258
5259 net_timestamp_check(!netdev_tstamp_prequeue, skb);
5260
5261 trace_netif_receive_skb(skb);
5262
5263 orig_dev = skb->dev;
5264
5265 skb_reset_network_header(skb);
5266 if (!skb_transport_header_was_set(skb))
5267 skb_reset_transport_header(skb);
5268 skb_reset_mac_len(skb);
5269
5270 pt_prev = NULL;
5271
5272another_round:
5273 skb->skb_iif = skb->dev->ifindex;
5274
5275 __this_cpu_inc(softnet_data.processed);
5276
5277 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5278 int ret2;
5279
5280 preempt_disable();
5281 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5282 preempt_enable();
5283
5284 if (ret2 != XDP_PASS) {
5285 ret = NET_RX_DROP;
5286 goto out;
5287 }
5288 skb_reset_mac_len(skb);
5289 }
5290
5291 if (eth_type_vlan(skb->protocol)) {
5292 skb = skb_vlan_untag(skb);
5293 if (unlikely(!skb))
5294 goto out;
5295 }
5296
5297 if (skb_skip_tc_classify(skb))
5298 goto skip_classify;
5299
5300 if (pfmemalloc)
5301 goto skip_taps;
5302
5303 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5304 if (pt_prev)
5305 ret = deliver_skb(skb, pt_prev, orig_dev);
5306 pt_prev = ptype;
5307 }
5308
5309 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5310 if (pt_prev)
5311 ret = deliver_skb(skb, pt_prev, orig_dev);
5312 pt_prev = ptype;
5313 }
5314
5315skip_taps:
5316#ifdef CONFIG_NET_INGRESS
5317 if (static_branch_unlikely(&ingress_needed_key)) {
5318 bool another = false;
5319
5320 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5321 &another);
5322 if (another)
5323 goto another_round;
5324 if (!skb)
5325 goto out;
5326
5327 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5328 goto out;
5329 }
5330#endif
5331 skb_reset_redirect(skb);
5332skip_classify:
5333 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5334 goto drop;
5335
5336 if (skb_vlan_tag_present(skb)) {
5337 if (pt_prev) {
5338 ret = deliver_skb(skb, pt_prev, orig_dev);
5339 pt_prev = NULL;
5340 }
5341 if (vlan_do_receive(&skb))
5342 goto another_round;
5343 else if (unlikely(!skb))
5344 goto out;
5345 }
5346
5347 rx_handler = rcu_dereference(skb->dev->rx_handler);
5348 if (rx_handler) {
5349 if (pt_prev) {
5350 ret = deliver_skb(skb, pt_prev, orig_dev);
5351 pt_prev = NULL;
5352 }
5353 switch (rx_handler(&skb)) {
5354 case RX_HANDLER_CONSUMED:
5355 ret = NET_RX_SUCCESS;
5356 goto out;
5357 case RX_HANDLER_ANOTHER:
5358 goto another_round;
5359 case RX_HANDLER_EXACT:
5360 deliver_exact = true;
5361 break;
5362 case RX_HANDLER_PASS:
5363 break;
5364 default:
5365 BUG();
5366 }
5367 }
5368
5369 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5370check_vlan_id:
5371 if (skb_vlan_tag_get_id(skb)) {
5372 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5373 * find vlan device.
5374 */
5375 skb->pkt_type = PACKET_OTHERHOST;
5376 } else if (eth_type_vlan(skb->protocol)) {
5377 /* Outer header is 802.1P with vlan 0, inner header is
5378 * 802.1Q or 802.1AD and vlan_do_receive() above could
5379 * not find vlan dev for vlan id 0.
5380 */
5381 __vlan_hwaccel_clear_tag(skb);
5382 skb = skb_vlan_untag(skb);
5383 if (unlikely(!skb))
5384 goto out;
5385 if (vlan_do_receive(&skb))
5386 /* After stripping off 802.1P header with vlan 0
5387 * vlan dev is found for inner header.
5388 */
5389 goto another_round;
5390 else if (unlikely(!skb))
5391 goto out;
5392 else
5393 /* We have stripped outer 802.1P vlan 0 header.
5394 * But could not find vlan dev.
5395 * check again for vlan id to set OTHERHOST.
5396 */
5397 goto check_vlan_id;
5398 }
5399 /* Note: we might in the future use prio bits
5400 * and set skb->priority like in vlan_do_receive()
5401 * For the time being, just ignore Priority Code Point
5402 */
5403 __vlan_hwaccel_clear_tag(skb);
5404 }
5405
5406 type = skb->protocol;
5407
5408 /* deliver only exact match when indicated */
5409 if (likely(!deliver_exact)) {
5410 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5411 &ptype_base[ntohs(type) &
5412 PTYPE_HASH_MASK]);
5413 }
5414
5415 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5416 &orig_dev->ptype_specific);
5417
5418 if (unlikely(skb->dev != orig_dev)) {
5419 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5420 &skb->dev->ptype_specific);
5421 }
5422
5423 if (pt_prev) {
5424 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5425 goto drop;
5426 *ppt_prev = pt_prev;
5427 } else {
5428drop:
5429 if (!deliver_exact)
5430 atomic_long_inc(&skb->dev->rx_dropped);
5431 else
5432 atomic_long_inc(&skb->dev->rx_nohandler);
5433 kfree_skb(skb);
5434 /* Jamal, now you will not able to escape explaining
5435 * me how you were going to use this. :-)
5436 */
5437 ret = NET_RX_DROP;
5438 }
5439
5440out:
5441 /* The invariant here is that if *ppt_prev is not NULL
5442 * then skb should also be non-NULL.
5443 *
5444 * Apparently *ppt_prev assignment above holds this invariant due to
5445 * skb dereferencing near it.
5446 */
5447 *pskb = skb;
5448 return ret;
5449}
5450
5451static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5452{
5453 struct net_device *orig_dev = skb->dev;
5454 struct packet_type *pt_prev = NULL;
5455 int ret;
5456
5457 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5458 if (pt_prev)
5459 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5460 skb->dev, pt_prev, orig_dev);
5461 return ret;
5462}
5463
5464/**
5465 * netif_receive_skb_core - special purpose version of netif_receive_skb
5466 * @skb: buffer to process
5467 *
5468 * More direct receive version of netif_receive_skb(). It should
5469 * only be used by callers that have a need to skip RPS and Generic XDP.
5470 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5471 *
5472 * This function may only be called from softirq context and interrupts
5473 * should be enabled.
5474 *
5475 * Return values (usually ignored):
5476 * NET_RX_SUCCESS: no congestion
5477 * NET_RX_DROP: packet was dropped
5478 */
5479int netif_receive_skb_core(struct sk_buff *skb)
5480{
5481 int ret;
5482
5483 rcu_read_lock();
5484 ret = __netif_receive_skb_one_core(skb, false);
5485 rcu_read_unlock();
5486
5487 return ret;
5488}
5489EXPORT_SYMBOL(netif_receive_skb_core);
5490
5491static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5492 struct packet_type *pt_prev,
5493 struct net_device *orig_dev)
5494{
5495 struct sk_buff *skb, *next;
5496
5497 if (!pt_prev)
5498 return;
5499 if (list_empty(head))
5500 return;
5501 if (pt_prev->list_func != NULL)
5502 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5503 ip_list_rcv, head, pt_prev, orig_dev);
5504 else
5505 list_for_each_entry_safe(skb, next, head, list) {
5506 skb_list_del_init(skb);
5507 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5508 }
5509}
5510
5511static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5512{
5513 /* Fast-path assumptions:
5514 * - There is no RX handler.
5515 * - Only one packet_type matches.
5516 * If either of these fails, we will end up doing some per-packet
5517 * processing in-line, then handling the 'last ptype' for the whole
5518 * sublist. This can't cause out-of-order delivery to any single ptype,
5519 * because the 'last ptype' must be constant across the sublist, and all
5520 * other ptypes are handled per-packet.
5521 */
5522 /* Current (common) ptype of sublist */
5523 struct packet_type *pt_curr = NULL;
5524 /* Current (common) orig_dev of sublist */
5525 struct net_device *od_curr = NULL;
5526 struct list_head sublist;
5527 struct sk_buff *skb, *next;
5528
5529 INIT_LIST_HEAD(&sublist);
5530 list_for_each_entry_safe(skb, next, head, list) {
5531 struct net_device *orig_dev = skb->dev;
5532 struct packet_type *pt_prev = NULL;
5533
5534 skb_list_del_init(skb);
5535 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5536 if (!pt_prev)
5537 continue;
5538 if (pt_curr != pt_prev || od_curr != orig_dev) {
5539 /* dispatch old sublist */
5540 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5541 /* start new sublist */
5542 INIT_LIST_HEAD(&sublist);
5543 pt_curr = pt_prev;
5544 od_curr = orig_dev;
5545 }
5546 list_add_tail(&skb->list, &sublist);
5547 }
5548
5549 /* dispatch final sublist */
5550 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5551}
5552
5553static int __netif_receive_skb(struct sk_buff *skb)
5554{
5555 int ret;
5556
5557 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5558 unsigned int noreclaim_flag;
5559
5560 /*
5561 * PFMEMALLOC skbs are special, they should
5562 * - be delivered to SOCK_MEMALLOC sockets only
5563 * - stay away from userspace
5564 * - have bounded memory usage
5565 *
5566 * Use PF_MEMALLOC as this saves us from propagating the allocation
5567 * context down to all allocation sites.
5568 */
5569 noreclaim_flag = memalloc_noreclaim_save();
5570 ret = __netif_receive_skb_one_core(skb, true);
5571 memalloc_noreclaim_restore(noreclaim_flag);
5572 } else
5573 ret = __netif_receive_skb_one_core(skb, false);
5574
5575 return ret;
5576}
5577
5578static void __netif_receive_skb_list(struct list_head *head)
5579{
5580 unsigned long noreclaim_flag = 0;
5581 struct sk_buff *skb, *next;
5582 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5583
5584 list_for_each_entry_safe(skb, next, head, list) {
5585 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5586 struct list_head sublist;
5587
5588 /* Handle the previous sublist */
5589 list_cut_before(&sublist, head, &skb->list);
5590 if (!list_empty(&sublist))
5591 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5592 pfmemalloc = !pfmemalloc;
5593 /* See comments in __netif_receive_skb */
5594 if (pfmemalloc)
5595 noreclaim_flag = memalloc_noreclaim_save();
5596 else
5597 memalloc_noreclaim_restore(noreclaim_flag);
5598 }
5599 }
5600 /* Handle the remaining sublist */
5601 if (!list_empty(head))
5602 __netif_receive_skb_list_core(head, pfmemalloc);
5603 /* Restore pflags */
5604 if (pfmemalloc)
5605 memalloc_noreclaim_restore(noreclaim_flag);
5606}
5607
5608static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5609{
5610 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5611 struct bpf_prog *new = xdp->prog;
5612 int ret = 0;
5613
5614 if (new) {
5615 u32 i;
5616
5617 mutex_lock(&new->aux->used_maps_mutex);
5618
5619 /* generic XDP does not work with DEVMAPs that can
5620 * have a bpf_prog installed on an entry
5621 */
5622 for (i = 0; i < new->aux->used_map_cnt; i++) {
5623 if (dev_map_can_have_prog(new->aux->used_maps[i]) ||
5624 cpu_map_prog_allowed(new->aux->used_maps[i])) {
5625 mutex_unlock(&new->aux->used_maps_mutex);
5626 return -EINVAL;
5627 }
5628 }
5629
5630 mutex_unlock(&new->aux->used_maps_mutex);
5631 }
5632
5633 switch (xdp->command) {
5634 case XDP_SETUP_PROG:
5635 rcu_assign_pointer(dev->xdp_prog, new);
5636 if (old)
5637 bpf_prog_put(old);
5638
5639 if (old && !new) {
5640 static_branch_dec(&generic_xdp_needed_key);
5641 } else if (new && !old) {
5642 static_branch_inc(&generic_xdp_needed_key);
5643 dev_disable_lro(dev);
5644 dev_disable_gro_hw(dev);
5645 }
5646 break;
5647
5648 default:
5649 ret = -EINVAL;
5650 break;
5651 }
5652
5653 return ret;
5654}
5655
5656static int netif_receive_skb_internal(struct sk_buff *skb)
5657{
5658 int ret;
5659
5660 net_timestamp_check(netdev_tstamp_prequeue, skb);
5661
5662 if (skb_defer_rx_timestamp(skb))
5663 return NET_RX_SUCCESS;
5664
5665 rcu_read_lock();
5666#ifdef CONFIG_RPS
5667 if (static_branch_unlikely(&rps_needed)) {
5668 struct rps_dev_flow voidflow, *rflow = &voidflow;
5669 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5670
5671 if (cpu >= 0) {
5672 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5673 rcu_read_unlock();
5674 return ret;
5675 }
5676 }
5677#endif
5678 ret = __netif_receive_skb(skb);
5679 rcu_read_unlock();
5680 return ret;
5681}
5682
5683static void netif_receive_skb_list_internal(struct list_head *head)
5684{
5685 struct sk_buff *skb, *next;
5686 struct list_head sublist;
5687
5688 INIT_LIST_HEAD(&sublist);
5689 list_for_each_entry_safe(skb, next, head, list) {
5690 net_timestamp_check(netdev_tstamp_prequeue, skb);
5691 skb_list_del_init(skb);
5692 if (!skb_defer_rx_timestamp(skb))
5693 list_add_tail(&skb->list, &sublist);
5694 }
5695 list_splice_init(&sublist, head);
5696
5697 rcu_read_lock();
5698#ifdef CONFIG_RPS
5699 if (static_branch_unlikely(&rps_needed)) {
5700 list_for_each_entry_safe(skb, next, head, list) {
5701 struct rps_dev_flow voidflow, *rflow = &voidflow;
5702 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5703
5704 if (cpu >= 0) {
5705 /* Will be handled, remove from list */
5706 skb_list_del_init(skb);
5707 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5708 }
5709 }
5710 }
5711#endif
5712 __netif_receive_skb_list(head);
5713 rcu_read_unlock();
5714}
5715
5716/**
5717 * netif_receive_skb - process receive buffer from network
5718 * @skb: buffer to process
5719 *
5720 * netif_receive_skb() is the main receive data processing function.
5721 * It always succeeds. The buffer may be dropped during processing
5722 * for congestion control or by the protocol layers.
5723 *
5724 * This function may only be called from softirq context and interrupts
5725 * should be enabled.
5726 *
5727 * Return values (usually ignored):
5728 * NET_RX_SUCCESS: no congestion
5729 * NET_RX_DROP: packet was dropped
5730 */
5731int netif_receive_skb(struct sk_buff *skb)
5732{
5733 int ret;
5734
5735 trace_netif_receive_skb_entry(skb);
5736
5737 ret = netif_receive_skb_internal(skb);
5738 trace_netif_receive_skb_exit(ret);
5739
5740 return ret;
5741}
5742EXPORT_SYMBOL(netif_receive_skb);
5743
5744/**
5745 * netif_receive_skb_list - process many receive buffers from network
5746 * @head: list of skbs to process.
5747 *
5748 * Since return value of netif_receive_skb() is normally ignored, and
5749 * wouldn't be meaningful for a list, this function returns void.
5750 *
5751 * This function may only be called from softirq context and interrupts
5752 * should be enabled.
5753 */
5754void netif_receive_skb_list(struct list_head *head)
5755{
5756 struct sk_buff *skb;
5757
5758 if (list_empty(head))
5759 return;
5760 if (trace_netif_receive_skb_list_entry_enabled()) {
5761 list_for_each_entry(skb, head, list)
5762 trace_netif_receive_skb_list_entry(skb);
5763 }
5764 netif_receive_skb_list_internal(head);
5765 trace_netif_receive_skb_list_exit(0);
5766}
5767EXPORT_SYMBOL(netif_receive_skb_list);
5768
5769static DEFINE_PER_CPU(struct work_struct, flush_works);
5770
5771/* Network device is going away, flush any packets still pending */
5772static void flush_backlog(struct work_struct *work)
5773{
5774 struct sk_buff *skb, *tmp;
5775 struct softnet_data *sd;
5776
5777 local_bh_disable();
5778 sd = this_cpu_ptr(&softnet_data);
5779
5780 local_irq_disable();
5781 rps_lock(sd);
5782 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5783 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5784 __skb_unlink(skb, &sd->input_pkt_queue);
5785 dev_kfree_skb_irq(skb);
5786 input_queue_head_incr(sd);
5787 }
5788 }
5789 rps_unlock(sd);
5790 local_irq_enable();
5791
5792 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5793 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5794 __skb_unlink(skb, &sd->process_queue);
5795 kfree_skb(skb);
5796 input_queue_head_incr(sd);
5797 }
5798 }
5799 local_bh_enable();
5800}
5801
5802static bool flush_required(int cpu)
5803{
5804#if IS_ENABLED(CONFIG_RPS)
5805 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5806 bool do_flush;
5807
5808 local_irq_disable();
5809 rps_lock(sd);
5810
5811 /* as insertion into process_queue happens with the rps lock held,
5812 * process_queue access may race only with dequeue
5813 */
5814 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5815 !skb_queue_empty_lockless(&sd->process_queue);
5816 rps_unlock(sd);
5817 local_irq_enable();
5818
5819 return do_flush;
5820#endif
5821 /* without RPS we can't safely check input_pkt_queue: during a
5822 * concurrent remote skb_queue_splice() we can detect as empty both
5823 * input_pkt_queue and process_queue even if the latter could end-up
5824 * containing a lot of packets.
5825 */
5826 return true;
5827}
5828
5829static void flush_all_backlogs(void)
5830{
5831 static cpumask_t flush_cpus;
5832 unsigned int cpu;
5833
5834 /* since we are under rtnl lock protection we can use static data
5835 * for the cpumask and avoid allocating on stack the possibly
5836 * large mask
5837 */
5838 ASSERT_RTNL();
5839
5840 get_online_cpus();
5841
5842 cpumask_clear(&flush_cpus);
5843 for_each_online_cpu(cpu) {
5844 if (flush_required(cpu)) {
5845 queue_work_on(cpu, system_highpri_wq,
5846 per_cpu_ptr(&flush_works, cpu));
5847 cpumask_set_cpu(cpu, &flush_cpus);
5848 }
5849 }
5850
5851 /* we can have in flight packet[s] on the cpus we are not flushing,
5852 * synchronize_net() in unregister_netdevice_many() will take care of
5853 * them
5854 */
5855 for_each_cpu(cpu, &flush_cpus)
5856 flush_work(per_cpu_ptr(&flush_works, cpu));
5857
5858 put_online_cpus();
5859}
5860
5861/* Pass the currently batched GRO_NORMAL SKBs up to the stack. */
5862static void gro_normal_list(struct napi_struct *napi)
5863{
5864 if (!napi->rx_count)
5865 return;
5866 netif_receive_skb_list_internal(&napi->rx_list);
5867 INIT_LIST_HEAD(&napi->rx_list);
5868 napi->rx_count = 0;
5869}
5870
5871/* Queue one GRO_NORMAL SKB up for list processing. If batch size exceeded,
5872 * pass the whole batch up to the stack.
5873 */
5874static void gro_normal_one(struct napi_struct *napi, struct sk_buff *skb, int segs)
5875{
5876 list_add_tail(&skb->list, &napi->rx_list);
5877 napi->rx_count += segs;
5878 if (napi->rx_count >= gro_normal_batch)
5879 gro_normal_list(napi);
5880}
5881
5882static int napi_gro_complete(struct napi_struct *napi, struct sk_buff *skb)
5883{
5884 struct packet_offload *ptype;
5885 __be16 type = skb->protocol;
5886 struct list_head *head = &offload_base;
5887 int err = -ENOENT;
5888
5889 BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
5890
5891 if (NAPI_GRO_CB(skb)->count == 1) {
5892 skb_shinfo(skb)->gso_size = 0;
5893 goto out;
5894 }
5895
5896 rcu_read_lock();
5897 list_for_each_entry_rcu(ptype, head, list) {
5898 if (ptype->type != type || !ptype->callbacks.gro_complete)
5899 continue;
5900
5901 err = INDIRECT_CALL_INET(ptype->callbacks.gro_complete,
5902 ipv6_gro_complete, inet_gro_complete,
5903 skb, 0);
5904 break;
5905 }
5906 rcu_read_unlock();
5907
5908 if (err) {
5909 WARN_ON(&ptype->list == head);
5910 kfree_skb(skb);
5911 return NET_RX_SUCCESS;
5912 }
5913
5914out:
5915 gro_normal_one(napi, skb, NAPI_GRO_CB(skb)->count);
5916 return NET_RX_SUCCESS;
5917}
5918
5919static void __napi_gro_flush_chain(struct napi_struct *napi, u32 index,
5920 bool flush_old)
5921{
5922 struct list_head *head = &napi->gro_hash[index].list;
5923 struct sk_buff *skb, *p;
5924
5925 list_for_each_entry_safe_reverse(skb, p, head, list) {
5926 if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
5927 return;
5928 skb_list_del_init(skb);
5929 napi_gro_complete(napi, skb);
5930 napi->gro_hash[index].count--;
5931 }
5932
5933 if (!napi->gro_hash[index].count)
5934 __clear_bit(index, &napi->gro_bitmask);
5935}
5936
5937/* napi->gro_hash[].list contains packets ordered by age.
5938 * youngest packets at the head of it.
5939 * Complete skbs in reverse order to reduce latencies.
5940 */
5941void napi_gro_flush(struct napi_struct *napi, bool flush_old)
5942{
5943 unsigned long bitmask = napi->gro_bitmask;
5944 unsigned int i, base = ~0U;
5945
5946 while ((i = ffs(bitmask)) != 0) {
5947 bitmask >>= i;
5948 base += i;
5949 __napi_gro_flush_chain(napi, base, flush_old);
5950 }
5951}
5952EXPORT_SYMBOL(napi_gro_flush);
5953
5954static void gro_list_prepare(const struct list_head *head,
5955 const struct sk_buff *skb)
5956{
5957 unsigned int maclen = skb->dev->hard_header_len;
5958 u32 hash = skb_get_hash_raw(skb);
5959 struct sk_buff *p;
5960
5961 list_for_each_entry(p, head, list) {
5962 unsigned long diffs;
5963
5964 NAPI_GRO_CB(p)->flush = 0;
5965
5966 if (hash != skb_get_hash_raw(p)) {
5967 NAPI_GRO_CB(p)->same_flow = 0;
5968 continue;
5969 }
5970
5971 diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
5972 diffs |= skb_vlan_tag_present(p) ^ skb_vlan_tag_present(skb);
5973 if (skb_vlan_tag_present(p))
5974 diffs |= skb_vlan_tag_get(p) ^ skb_vlan_tag_get(skb);
5975 diffs |= skb_metadata_dst_cmp(p, skb);
5976 diffs |= skb_metadata_differs(p, skb);
5977 if (maclen == ETH_HLEN)
5978 diffs |= compare_ether_header(skb_mac_header(p),
5979 skb_mac_header(skb));
5980 else if (!diffs)
5981 diffs = memcmp(skb_mac_header(p),
5982 skb_mac_header(skb),
5983 maclen);
5984 NAPI_GRO_CB(p)->same_flow = !diffs;
5985 }
5986}
5987
5988static inline void skb_gro_reset_offset(struct sk_buff *skb, u32 nhoff)
5989{
5990 const struct skb_shared_info *pinfo = skb_shinfo(skb);
5991 const skb_frag_t *frag0 = &pinfo->frags[0];
5992
5993 NAPI_GRO_CB(skb)->data_offset = 0;
5994 NAPI_GRO_CB(skb)->frag0 = NULL;
5995 NAPI_GRO_CB(skb)->frag0_len = 0;
5996
5997 if (!skb_headlen(skb) && pinfo->nr_frags &&
5998 !PageHighMem(skb_frag_page(frag0)) &&
5999 (!NET_IP_ALIGN || !((skb_frag_off(frag0) + nhoff) & 3))) {
6000 NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
6001 NAPI_GRO_CB(skb)->frag0_len = min_t(unsigned int,
6002 skb_frag_size(frag0),
6003 skb->end - skb->tail);
6004 }
6005}
6006
6007static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
6008{
6009 struct skb_shared_info *pinfo = skb_shinfo(skb);
6010
6011 BUG_ON(skb->end - skb->tail < grow);
6012
6013 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
6014
6015 skb->data_len -= grow;
6016 skb->tail += grow;
6017
6018 skb_frag_off_add(&pinfo->frags[0], grow);
6019 skb_frag_size_sub(&pinfo->frags[0], grow);
6020
6021 if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
6022 skb_frag_unref(skb, 0);
6023 memmove(pinfo->frags, pinfo->frags + 1,
6024 --pinfo->nr_frags * sizeof(pinfo->frags[0]));
6025 }
6026}
6027
6028static void gro_flush_oldest(struct napi_struct *napi, struct list_head *head)
6029{
6030 struct sk_buff *oldest;
6031
6032 oldest = list_last_entry(head, struct sk_buff, list);
6033
6034 /* We are called with head length >= MAX_GRO_SKBS, so this is
6035 * impossible.
6036 */
6037 if (WARN_ON_ONCE(!oldest))
6038 return;
6039
6040 /* Do not adjust napi->gro_hash[].count, caller is adding a new
6041 * SKB to the chain.
6042 */
6043 skb_list_del_init(oldest);
6044 napi_gro_complete(napi, oldest);
6045}
6046
6047static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6048{
6049 u32 bucket = skb_get_hash_raw(skb) & (GRO_HASH_BUCKETS - 1);
6050 struct gro_list *gro_list = &napi->gro_hash[bucket];
6051 struct list_head *head = &offload_base;
6052 struct packet_offload *ptype;
6053 __be16 type = skb->protocol;
6054 struct sk_buff *pp = NULL;
6055 enum gro_result ret;
6056 int same_flow;
6057 int grow;
6058
6059 if (netif_elide_gro(skb->dev))
6060 goto normal;
6061
6062 gro_list_prepare(&gro_list->list, skb);
6063
6064 rcu_read_lock();
6065 list_for_each_entry_rcu(ptype, head, list) {
6066 if (ptype->type != type || !ptype->callbacks.gro_receive)
6067 continue;
6068
6069 skb_set_network_header(skb, skb_gro_offset(skb));
6070 skb_reset_mac_len(skb);
6071 NAPI_GRO_CB(skb)->same_flow = 0;
6072 NAPI_GRO_CB(skb)->flush = skb_is_gso(skb) || skb_has_frag_list(skb);
6073 NAPI_GRO_CB(skb)->free = 0;
6074 NAPI_GRO_CB(skb)->encap_mark = 0;
6075 NAPI_GRO_CB(skb)->recursion_counter = 0;
6076 NAPI_GRO_CB(skb)->is_fou = 0;
6077 NAPI_GRO_CB(skb)->is_atomic = 1;
6078 NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
6079
6080 /* Setup for GRO checksum validation */
6081 switch (skb->ip_summed) {
6082 case CHECKSUM_COMPLETE:
6083 NAPI_GRO_CB(skb)->csum = skb->csum;
6084 NAPI_GRO_CB(skb)->csum_valid = 1;
6085 NAPI_GRO_CB(skb)->csum_cnt = 0;
6086 break;
6087 case CHECKSUM_UNNECESSARY:
6088 NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
6089 NAPI_GRO_CB(skb)->csum_valid = 0;
6090 break;
6091 default:
6092 NAPI_GRO_CB(skb)->csum_cnt = 0;
6093 NAPI_GRO_CB(skb)->csum_valid = 0;
6094 }
6095
6096 pp = INDIRECT_CALL_INET(ptype->callbacks.gro_receive,
6097 ipv6_gro_receive, inet_gro_receive,
6098 &gro_list->list, skb);
6099 break;
6100 }
6101 rcu_read_unlock();
6102
6103 if (&ptype->list == head)
6104 goto normal;
6105
6106 if (PTR_ERR(pp) == -EINPROGRESS) {
6107 ret = GRO_CONSUMED;
6108 goto ok;
6109 }
6110
6111 same_flow = NAPI_GRO_CB(skb)->same_flow;
6112 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
6113
6114 if (pp) {
6115 skb_list_del_init(pp);
6116 napi_gro_complete(napi, pp);
6117 gro_list->count--;
6118 }
6119
6120 if (same_flow)
6121 goto ok;
6122
6123 if (NAPI_GRO_CB(skb)->flush)
6124 goto normal;
6125
6126 if (unlikely(gro_list->count >= MAX_GRO_SKBS))
6127 gro_flush_oldest(napi, &gro_list->list);
6128 else
6129 gro_list->count++;
6130
6131 NAPI_GRO_CB(skb)->count = 1;
6132 NAPI_GRO_CB(skb)->age = jiffies;
6133 NAPI_GRO_CB(skb)->last = skb;
6134 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
6135 list_add(&skb->list, &gro_list->list);
6136 ret = GRO_HELD;
6137
6138pull:
6139 grow = skb_gro_offset(skb) - skb_headlen(skb);
6140 if (grow > 0)
6141 gro_pull_from_frag0(skb, grow);
6142ok:
6143 if (gro_list->count) {
6144 if (!test_bit(bucket, &napi->gro_bitmask))
6145 __set_bit(bucket, &napi->gro_bitmask);
6146 } else if (test_bit(bucket, &napi->gro_bitmask)) {
6147 __clear_bit(bucket, &napi->gro_bitmask);
6148 }
6149
6150 return ret;
6151
6152normal:
6153 ret = GRO_NORMAL;
6154 goto pull;
6155}
6156
6157struct packet_offload *gro_find_receive_by_type(__be16 type)
6158{
6159 struct list_head *offload_head = &offload_base;
6160 struct packet_offload *ptype;
6161
6162 list_for_each_entry_rcu(ptype, offload_head, list) {
6163 if (ptype->type != type || !ptype->callbacks.gro_receive)
6164 continue;
6165 return ptype;
6166 }
6167 return NULL;
6168}
6169EXPORT_SYMBOL(gro_find_receive_by_type);
6170
6171struct packet_offload *gro_find_complete_by_type(__be16 type)
6172{
6173 struct list_head *offload_head = &offload_base;
6174 struct packet_offload *ptype;
6175
6176 list_for_each_entry_rcu(ptype, offload_head, list) {
6177 if (ptype->type != type || !ptype->callbacks.gro_complete)
6178 continue;
6179 return ptype;
6180 }
6181 return NULL;
6182}
6183EXPORT_SYMBOL(gro_find_complete_by_type);
6184
6185static gro_result_t napi_skb_finish(struct napi_struct *napi,
6186 struct sk_buff *skb,
6187 gro_result_t ret)
6188{
6189 switch (ret) {
6190 case GRO_NORMAL:
6191 gro_normal_one(napi, skb, 1);
6192 break;
6193
6194 case GRO_MERGED_FREE:
6195 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6196 napi_skb_free_stolen_head(skb);
6197 else
6198 __kfree_skb_defer(skb);
6199 break;
6200
6201 case GRO_HELD:
6202 case GRO_MERGED:
6203 case GRO_CONSUMED:
6204 break;
6205 }
6206
6207 return ret;
6208}
6209
6210gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
6211{
6212 gro_result_t ret;
6213
6214 skb_mark_napi_id(skb, napi);
6215 trace_napi_gro_receive_entry(skb);
6216
6217 skb_gro_reset_offset(skb, 0);
6218
6219 ret = napi_skb_finish(napi, skb, dev_gro_receive(napi, skb));
6220 trace_napi_gro_receive_exit(ret);
6221
6222 return ret;
6223}
6224EXPORT_SYMBOL(napi_gro_receive);
6225
6226static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
6227{
6228 if (unlikely(skb->pfmemalloc)) {
6229 consume_skb(skb);
6230 return;
6231 }
6232 __skb_pull(skb, skb_headlen(skb));
6233 /* restore the reserve we had after netdev_alloc_skb_ip_align() */
6234 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
6235 __vlan_hwaccel_clear_tag(skb);
6236 skb->dev = napi->dev;
6237 skb->skb_iif = 0;
6238
6239 /* eth_type_trans() assumes pkt_type is PACKET_HOST */
6240 skb->pkt_type = PACKET_HOST;
6241
6242 skb->encapsulation = 0;
6243 skb_shinfo(skb)->gso_type = 0;
6244 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6245 skb_ext_reset(skb);
6246
6247 napi->skb = skb;
6248}
6249
6250struct sk_buff *napi_get_frags(struct napi_struct *napi)
6251{
6252 struct sk_buff *skb = napi->skb;
6253
6254 if (!skb) {
6255 skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
6256 if (skb) {
6257 napi->skb = skb;
6258 skb_mark_napi_id(skb, napi);
6259 }
6260 }
6261 return skb;
6262}
6263EXPORT_SYMBOL(napi_get_frags);
6264
6265static gro_result_t napi_frags_finish(struct napi_struct *napi,
6266 struct sk_buff *skb,
6267 gro_result_t ret)
6268{
6269 switch (ret) {
6270 case GRO_NORMAL:
6271 case GRO_HELD:
6272 __skb_push(skb, ETH_HLEN);
6273 skb->protocol = eth_type_trans(skb, skb->dev);
6274 if (ret == GRO_NORMAL)
6275 gro_normal_one(napi, skb, 1);
6276 break;
6277
6278 case GRO_MERGED_FREE:
6279 if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD)
6280 napi_skb_free_stolen_head(skb);
6281 else
6282 napi_reuse_skb(napi, skb);
6283 break;
6284
6285 case GRO_MERGED:
6286 case GRO_CONSUMED:
6287 break;
6288 }
6289
6290 return ret;
6291}
6292
6293/* Upper GRO stack assumes network header starts at gro_offset=0
6294 * Drivers could call both napi_gro_frags() and napi_gro_receive()
6295 * We copy ethernet header into skb->data to have a common layout.
6296 */
6297static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
6298{
6299 struct sk_buff *skb = napi->skb;
6300 const struct ethhdr *eth;
6301 unsigned int hlen = sizeof(*eth);
6302
6303 napi->skb = NULL;
6304
6305 skb_reset_mac_header(skb);
6306 skb_gro_reset_offset(skb, hlen);
6307
6308 if (unlikely(skb_gro_header_hard(skb, hlen))) {
6309 eth = skb_gro_header_slow(skb, hlen, 0);
6310 if (unlikely(!eth)) {
6311 net_warn_ratelimited("%s: dropping impossible skb from %s\n",
6312 __func__, napi->dev->name);
6313 napi_reuse_skb(napi, skb);
6314 return NULL;
6315 }
6316 } else {
6317 eth = (const struct ethhdr *)skb->data;
6318 gro_pull_from_frag0(skb, hlen);
6319 NAPI_GRO_CB(skb)->frag0 += hlen;
6320 NAPI_GRO_CB(skb)->frag0_len -= hlen;
6321 }
6322 __skb_pull(skb, hlen);
6323
6324 /*
6325 * This works because the only protocols we care about don't require
6326 * special handling.
6327 * We'll fix it up properly in napi_frags_finish()
6328 */
6329 skb->protocol = eth->h_proto;
6330
6331 return skb;
6332}
6333
6334gro_result_t napi_gro_frags(struct napi_struct *napi)
6335{
6336 gro_result_t ret;
6337 struct sk_buff *skb = napi_frags_skb(napi);
6338
6339 trace_napi_gro_frags_entry(skb);
6340
6341 ret = napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
6342 trace_napi_gro_frags_exit(ret);
6343
6344 return ret;
6345}
6346EXPORT_SYMBOL(napi_gro_frags);
6347
6348/* Compute the checksum from gro_offset and return the folded value
6349 * after adding in any pseudo checksum.
6350 */
6351__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
6352{
6353 __wsum wsum;
6354 __sum16 sum;
6355
6356 wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
6357
6358 /* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
6359 sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
6360 /* See comments in __skb_checksum_complete(). */
6361 if (likely(!sum)) {
6362 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
6363 !skb->csum_complete_sw)
6364 netdev_rx_csum_fault(skb->dev, skb);
6365 }
6366
6367 NAPI_GRO_CB(skb)->csum = wsum;
6368 NAPI_GRO_CB(skb)->csum_valid = 1;
6369
6370 return sum;
6371}
6372EXPORT_SYMBOL(__skb_gro_checksum_complete);
6373
6374static void net_rps_send_ipi(struct softnet_data *remsd)
6375{
6376#ifdef CONFIG_RPS
6377 while (remsd) {
6378 struct softnet_data *next = remsd->rps_ipi_next;
6379
6380 if (cpu_online(remsd->cpu))
6381 smp_call_function_single_async(remsd->cpu, &remsd->csd);
6382 remsd = next;
6383 }
6384#endif
6385}
6386
6387/*
6388 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6389 * Note: called with local irq disabled, but exits with local irq enabled.
6390 */
6391static void net_rps_action_and_irq_enable(struct softnet_data *sd)
6392{
6393#ifdef CONFIG_RPS
6394 struct softnet_data *remsd = sd->rps_ipi_list;
6395
6396 if (remsd) {
6397 sd->rps_ipi_list = NULL;
6398
6399 local_irq_enable();
6400
6401 /* Send pending IPI's to kick RPS processing on remote cpus. */
6402 net_rps_send_ipi(remsd);
6403 } else
6404#endif
6405 local_irq_enable();
6406}
6407
6408static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
6409{
6410#ifdef CONFIG_RPS
6411 return sd->rps_ipi_list != NULL;
6412#else
6413 return false;
6414#endif
6415}
6416
6417static int process_backlog(struct napi_struct *napi, int quota)
6418{
6419 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
6420 bool again = true;
6421 int work = 0;
6422
6423 /* Check if we have pending ipi, its better to send them now,
6424 * not waiting net_rx_action() end.
6425 */
6426 if (sd_has_rps_ipi_waiting(sd)) {
6427 local_irq_disable();
6428 net_rps_action_and_irq_enable(sd);
6429 }
6430
6431 napi->weight = dev_rx_weight;
6432 while (again) {
6433 struct sk_buff *skb;
6434
6435 while ((skb = __skb_dequeue(&sd->process_queue))) {
6436 rcu_read_lock();
6437 __netif_receive_skb(skb);
6438 rcu_read_unlock();
6439 input_queue_head_incr(sd);
6440 if (++work >= quota)
6441 return work;
6442
6443 }
6444
6445 local_irq_disable();
6446 rps_lock(sd);
6447 if (skb_queue_empty(&sd->input_pkt_queue)) {
6448 /*
6449 * Inline a custom version of __napi_complete().
6450 * only current cpu owns and manipulates this napi,
6451 * and NAPI_STATE_SCHED is the only possible flag set
6452 * on backlog.
6453 * We can use a plain write instead of clear_bit(),
6454 * and we dont need an smp_mb() memory barrier.
6455 */
6456 napi->state = 0;
6457 again = false;
6458 } else {
6459 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6460 &sd->process_queue);
6461 }
6462 rps_unlock(sd);
6463 local_irq_enable();
6464 }
6465
6466 return work;
6467}
6468
6469/**
6470 * __napi_schedule - schedule for receive
6471 * @n: entry to schedule
6472 *
6473 * The entry's receive function will be scheduled to run.
6474 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6475 */
6476void __napi_schedule(struct napi_struct *n)
6477{
6478 unsigned long flags;
6479
6480 local_irq_save(flags);
6481 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6482 local_irq_restore(flags);
6483}
6484EXPORT_SYMBOL(__napi_schedule);
6485
6486/**
6487 * napi_schedule_prep - check if napi can be scheduled
6488 * @n: napi context
6489 *
6490 * Test if NAPI routine is already running, and if not mark
6491 * it as running. This is used as a condition variable to
6492 * insure only one NAPI poll instance runs. We also make
6493 * sure there is no pending NAPI disable.
6494 */
6495bool napi_schedule_prep(struct napi_struct *n)
6496{
6497 unsigned long val, new;
6498
6499 do {
6500 val = READ_ONCE(n->state);
6501 if (unlikely(val & NAPIF_STATE_DISABLE))
6502 return false;
6503 new = val | NAPIF_STATE_SCHED;
6504
6505 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6506 * This was suggested by Alexander Duyck, as compiler
6507 * emits better code than :
6508 * if (val & NAPIF_STATE_SCHED)
6509 * new |= NAPIF_STATE_MISSED;
6510 */
6511 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6512 NAPIF_STATE_MISSED;
6513 } while (cmpxchg(&n->state, val, new) != val);
6514
6515 return !(val & NAPIF_STATE_SCHED);
6516}
6517EXPORT_SYMBOL(napi_schedule_prep);
6518
6519/**
6520 * __napi_schedule_irqoff - schedule for receive
6521 * @n: entry to schedule
6522 *
6523 * Variant of __napi_schedule() assuming hard irqs are masked
6524 */
6525void __napi_schedule_irqoff(struct napi_struct *n)
6526{
6527 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6528}
6529EXPORT_SYMBOL(__napi_schedule_irqoff);
6530
6531bool napi_complete_done(struct napi_struct *n, int work_done)
6532{
6533 unsigned long flags, val, new, timeout = 0;
6534 bool ret = true;
6535
6536 /*
6537 * 1) Don't let napi dequeue from the cpu poll list
6538 * just in case its running on a different cpu.
6539 * 2) If we are busy polling, do nothing here, we have
6540 * the guarantee we will be called later.
6541 */
6542 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6543 NAPIF_STATE_IN_BUSY_POLL)))
6544 return false;
6545
6546 if (work_done) {
6547 if (n->gro_bitmask)
6548 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6549 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6550 }
6551 if (n->defer_hard_irqs_count > 0) {
6552 n->defer_hard_irqs_count--;
6553 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6554 if (timeout)
6555 ret = false;
6556 }
6557 if (n->gro_bitmask) {
6558 /* When the NAPI instance uses a timeout and keeps postponing
6559 * it, we need to bound somehow the time packets are kept in
6560 * the GRO layer
6561 */
6562 napi_gro_flush(n, !!timeout);
6563 }
6564
6565 gro_normal_list(n);
6566
6567 if (unlikely(!list_empty(&n->poll_list))) {
6568 /* If n->poll_list is not empty, we need to mask irqs */
6569 local_irq_save(flags);
6570 list_del_init(&n->poll_list);
6571 local_irq_restore(flags);
6572 }
6573
6574 do {
6575 val = READ_ONCE(n->state);
6576
6577 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6578
6579 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6580 NAPIF_STATE_SCHED_THREADED |
6581 NAPIF_STATE_PREFER_BUSY_POLL);
6582
6583 /* If STATE_MISSED was set, leave STATE_SCHED set,
6584 * because we will call napi->poll() one more time.
6585 * This C code was suggested by Alexander Duyck to help gcc.
6586 */
6587 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6588 NAPIF_STATE_SCHED;
6589 } while (cmpxchg(&n->state, val, new) != val);
6590
6591 if (unlikely(val & NAPIF_STATE_MISSED)) {
6592 __napi_schedule(n);
6593 return false;
6594 }
6595
6596 if (timeout)
6597 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6598 HRTIMER_MODE_REL_PINNED);
6599 return ret;
6600}
6601EXPORT_SYMBOL(napi_complete_done);
6602
6603/* must be called under rcu_read_lock(), as we dont take a reference */
6604static struct napi_struct *napi_by_id(unsigned int napi_id)
6605{
6606 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6607 struct napi_struct *napi;
6608
6609 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6610 if (napi->napi_id == napi_id)
6611 return napi;
6612
6613 return NULL;
6614}
6615
6616#if defined(CONFIG_NET_RX_BUSY_POLL)
6617
6618static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6619{
6620 if (!skip_schedule) {
6621 gro_normal_list(napi);
6622 __napi_schedule(napi);
6623 return;
6624 }
6625
6626 if (napi->gro_bitmask) {
6627 /* flush too old packets
6628 * If HZ < 1000, flush all packets.
6629 */
6630 napi_gro_flush(napi, HZ >= 1000);
6631 }
6632
6633 gro_normal_list(napi);
6634 clear_bit(NAPI_STATE_SCHED, &napi->state);
6635}
6636
6637static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6638 u16 budget)
6639{
6640 bool skip_schedule = false;
6641 unsigned long timeout;
6642 int rc;
6643
6644 /* Busy polling means there is a high chance device driver hard irq
6645 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6646 * set in napi_schedule_prep().
6647 * Since we are about to call napi->poll() once more, we can safely
6648 * clear NAPI_STATE_MISSED.
6649 *
6650 * Note: x86 could use a single "lock and ..." instruction
6651 * to perform these two clear_bit()
6652 */
6653 clear_bit(NAPI_STATE_MISSED, &napi->state);
6654 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6655
6656 local_bh_disable();
6657
6658 if (prefer_busy_poll) {
6659 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6660 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6661 if (napi->defer_hard_irqs_count && timeout) {
6662 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6663 skip_schedule = true;
6664 }
6665 }
6666
6667 /* All we really want here is to re-enable device interrupts.
6668 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6669 */
6670 rc = napi->poll(napi, budget);
6671 /* We can't gro_normal_list() here, because napi->poll() might have
6672 * rearmed the napi (napi_complete_done()) in which case it could
6673 * already be running on another CPU.
6674 */
6675 trace_napi_poll(napi, rc, budget);
6676 netpoll_poll_unlock(have_poll_lock);
6677 if (rc == budget)
6678 __busy_poll_stop(napi, skip_schedule);
6679 local_bh_enable();
6680}
6681
6682void napi_busy_loop(unsigned int napi_id,
6683 bool (*loop_end)(void *, unsigned long),
6684 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6685{
6686 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6687 int (*napi_poll)(struct napi_struct *napi, int budget);
6688 void *have_poll_lock = NULL;
6689 struct napi_struct *napi;
6690
6691restart:
6692 napi_poll = NULL;
6693
6694 rcu_read_lock();
6695
6696 napi = napi_by_id(napi_id);
6697 if (!napi)
6698 goto out;
6699
6700 preempt_disable();
6701 for (;;) {
6702 int work = 0;
6703
6704 local_bh_disable();
6705 if (!napi_poll) {
6706 unsigned long val = READ_ONCE(napi->state);
6707
6708 /* If multiple threads are competing for this napi,
6709 * we avoid dirtying napi->state as much as we can.
6710 */
6711 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6712 NAPIF_STATE_IN_BUSY_POLL)) {
6713 if (prefer_busy_poll)
6714 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6715 goto count;
6716 }
6717 if (cmpxchg(&napi->state, val,
6718 val | NAPIF_STATE_IN_BUSY_POLL |
6719 NAPIF_STATE_SCHED) != val) {
6720 if (prefer_busy_poll)
6721 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6722 goto count;
6723 }
6724 have_poll_lock = netpoll_poll_lock(napi);
6725 napi_poll = napi->poll;
6726 }
6727 work = napi_poll(napi, budget);
6728 trace_napi_poll(napi, work, budget);
6729 gro_normal_list(napi);
6730count:
6731 if (work > 0)
6732 __NET_ADD_STATS(dev_net(napi->dev),
6733 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6734 local_bh_enable();
6735
6736 if (!loop_end || loop_end(loop_end_arg, start_time))
6737 break;
6738
6739 if (unlikely(need_resched())) {
6740 if (napi_poll)
6741 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6742 preempt_enable();
6743 rcu_read_unlock();
6744 cond_resched();
6745 if (loop_end(loop_end_arg, start_time))
6746 return;
6747 goto restart;
6748 }
6749 cpu_relax();
6750 }
6751 if (napi_poll)
6752 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6753 preempt_enable();
6754out:
6755 rcu_read_unlock();
6756}
6757EXPORT_SYMBOL(napi_busy_loop);
6758
6759#endif /* CONFIG_NET_RX_BUSY_POLL */
6760
6761static void napi_hash_add(struct napi_struct *napi)
6762{
6763 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6764 return;
6765
6766 spin_lock(&napi_hash_lock);
6767
6768 /* 0..NR_CPUS range is reserved for sender_cpu use */
6769 do {
6770 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6771 napi_gen_id = MIN_NAPI_ID;
6772 } while (napi_by_id(napi_gen_id));
6773 napi->napi_id = napi_gen_id;
6774
6775 hlist_add_head_rcu(&napi->napi_hash_node,
6776 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6777
6778 spin_unlock(&napi_hash_lock);
6779}
6780
6781/* Warning : caller is responsible to make sure rcu grace period
6782 * is respected before freeing memory containing @napi
6783 */
6784static void napi_hash_del(struct napi_struct *napi)
6785{
6786 spin_lock(&napi_hash_lock);
6787
6788 hlist_del_init_rcu(&napi->napi_hash_node);
6789
6790 spin_unlock(&napi_hash_lock);
6791}
6792
6793static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6794{
6795 struct napi_struct *napi;
6796
6797 napi = container_of(timer, struct napi_struct, timer);
6798
6799 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6800 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6801 */
6802 if (!napi_disable_pending(napi) &&
6803 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6804 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6805 __napi_schedule_irqoff(napi);
6806 }
6807
6808 return HRTIMER_NORESTART;
6809}
6810
6811static void init_gro_hash(struct napi_struct *napi)
6812{
6813 int i;
6814
6815 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6816 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6817 napi->gro_hash[i].count = 0;
6818 }
6819 napi->gro_bitmask = 0;
6820}
6821
6822int dev_set_threaded(struct net_device *dev, bool threaded)
6823{
6824 struct napi_struct *napi;
6825 int err = 0;
6826
6827 if (dev->threaded == threaded)
6828 return 0;
6829
6830 if (threaded) {
6831 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6832 if (!napi->thread) {
6833 err = napi_kthread_create(napi);
6834 if (err) {
6835 threaded = false;
6836 break;
6837 }
6838 }
6839 }
6840 }
6841
6842 dev->threaded = threaded;
6843
6844 /* Make sure kthread is created before THREADED bit
6845 * is set.
6846 */
6847 smp_mb__before_atomic();
6848
6849 /* Setting/unsetting threaded mode on a napi might not immediately
6850 * take effect, if the current napi instance is actively being
6851 * polled. In this case, the switch between threaded mode and
6852 * softirq mode will happen in the next round of napi_schedule().
6853 * This should not cause hiccups/stalls to the live traffic.
6854 */
6855 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6856 if (threaded)
6857 set_bit(NAPI_STATE_THREADED, &napi->state);
6858 else
6859 clear_bit(NAPI_STATE_THREADED, &napi->state);
6860 }
6861
6862 return err;
6863}
6864EXPORT_SYMBOL(dev_set_threaded);
6865
6866void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
6867 int (*poll)(struct napi_struct *, int), int weight)
6868{
6869 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6870 return;
6871
6872 INIT_LIST_HEAD(&napi->poll_list);
6873 INIT_HLIST_NODE(&napi->napi_hash_node);
6874 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6875 napi->timer.function = napi_watchdog;
6876 init_gro_hash(napi);
6877 napi->skb = NULL;
6878 INIT_LIST_HEAD(&napi->rx_list);
6879 napi->rx_count = 0;
6880 napi->poll = poll;
6881 if (weight > NAPI_POLL_WEIGHT)
6882 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6883 weight);
6884 napi->weight = weight;
6885 napi->dev = dev;
6886#ifdef CONFIG_NETPOLL
6887 napi->poll_owner = -1;
6888#endif
6889 set_bit(NAPI_STATE_SCHED, &napi->state);
6890 set_bit(NAPI_STATE_NPSVC, &napi->state);
6891 list_add_rcu(&napi->dev_list, &dev->napi_list);
6892 napi_hash_add(napi);
6893 /* Create kthread for this napi if dev->threaded is set.
6894 * Clear dev->threaded if kthread creation failed so that
6895 * threaded mode will not be enabled in napi_enable().
6896 */
6897 if (dev->threaded && napi_kthread_create(napi))
6898 dev->threaded = 0;
6899}
6900EXPORT_SYMBOL(netif_napi_add);
6901
6902void napi_disable(struct napi_struct *n)
6903{
6904 might_sleep();
6905 set_bit(NAPI_STATE_DISABLE, &n->state);
6906
6907 while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
6908 msleep(1);
6909 while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
6910 msleep(1);
6911
6912 hrtimer_cancel(&n->timer);
6913
6914 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
6915 clear_bit(NAPI_STATE_DISABLE, &n->state);
6916 clear_bit(NAPI_STATE_THREADED, &n->state);
6917}
6918EXPORT_SYMBOL(napi_disable);
6919
6920/**
6921 * napi_enable - enable NAPI scheduling
6922 * @n: NAPI context
6923 *
6924 * Resume NAPI from being scheduled on this context.
6925 * Must be paired with napi_disable.
6926 */
6927void napi_enable(struct napi_struct *n)
6928{
6929 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
6930 smp_mb__before_atomic();
6931 clear_bit(NAPI_STATE_SCHED, &n->state);
6932 clear_bit(NAPI_STATE_NPSVC, &n->state);
6933 if (n->dev->threaded && n->thread)
6934 set_bit(NAPI_STATE_THREADED, &n->state);
6935}
6936EXPORT_SYMBOL(napi_enable);
6937
6938static void flush_gro_hash(struct napi_struct *napi)
6939{
6940 int i;
6941
6942 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6943 struct sk_buff *skb, *n;
6944
6945 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6946 kfree_skb(skb);
6947 napi->gro_hash[i].count = 0;
6948 }
6949}
6950
6951/* Must be called in process context */
6952void __netif_napi_del(struct napi_struct *napi)
6953{
6954 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6955 return;
6956
6957 napi_hash_del(napi);
6958 list_del_rcu(&napi->dev_list);
6959 napi_free_frags(napi);
6960
6961 flush_gro_hash(napi);
6962 napi->gro_bitmask = 0;
6963
6964 if (napi->thread) {
6965 kthread_stop(napi->thread);
6966 napi->thread = NULL;
6967 }
6968}
6969EXPORT_SYMBOL(__netif_napi_del);
6970
6971static int __napi_poll(struct napi_struct *n, bool *repoll)
6972{
6973 int work, weight;
6974
6975 weight = n->weight;
6976
6977 /* This NAPI_STATE_SCHED test is for avoiding a race
6978 * with netpoll's poll_napi(). Only the entity which
6979 * obtains the lock and sees NAPI_STATE_SCHED set will
6980 * actually make the ->poll() call. Therefore we avoid
6981 * accidentally calling ->poll() when NAPI is not scheduled.
6982 */
6983 work = 0;
6984 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6985 work = n->poll(n, weight);
6986 trace_napi_poll(n, work, weight);
6987 }
6988
6989 if (unlikely(work > weight))
6990 pr_err_once("NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6991 n->poll, work, weight);
6992
6993 if (likely(work < weight))
6994 return work;
6995
6996 /* Drivers must not modify the NAPI state if they
6997 * consume the entire weight. In such cases this code
6998 * still "owns" the NAPI instance and therefore can
6999 * move the instance around on the list at-will.
7000 */
7001 if (unlikely(napi_disable_pending(n))) {
7002 napi_complete(n);
7003 return work;
7004 }
7005
7006 /* The NAPI context has more processing work, but busy-polling
7007 * is preferred. Exit early.
7008 */
7009 if (napi_prefer_busy_poll(n)) {
7010 if (napi_complete_done(n, work)) {
7011 /* If timeout is not set, we need to make sure
7012 * that the NAPI is re-scheduled.
7013 */
7014 napi_schedule(n);
7015 }
7016 return work;
7017 }
7018
7019 if (n->gro_bitmask) {
7020 /* flush too old packets
7021 * If HZ < 1000, flush all packets.
7022 */
7023 napi_gro_flush(n, HZ >= 1000);
7024 }
7025
7026 gro_normal_list(n);
7027
7028 /* Some drivers may have called napi_schedule
7029 * prior to exhausting their budget.
7030 */
7031 if (unlikely(!list_empty(&n->poll_list))) {
7032 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
7033 n->dev ? n->dev->name : "backlog");
7034 return work;
7035 }
7036
7037 *repoll = true;
7038
7039 return work;
7040}
7041
7042static int napi_poll(struct napi_struct *n, struct list_head *repoll)
7043{
7044 bool do_repoll = false;
7045 void *have;
7046 int work;
7047
7048 list_del_init(&n->poll_list);
7049
7050 have = netpoll_poll_lock(n);
7051
7052 work = __napi_poll(n, &do_repoll);
7053
7054 if (do_repoll)
7055 list_add_tail(&n->poll_list, repoll);
7056
7057 netpoll_poll_unlock(have);
7058
7059 return work;
7060}
7061
7062static int napi_thread_wait(struct napi_struct *napi)
7063{
7064 bool woken = false;
7065
7066 set_current_state(TASK_INTERRUPTIBLE);
7067
7068 while (!kthread_should_stop()) {
7069 /* Testing SCHED_THREADED bit here to make sure the current
7070 * kthread owns this napi and could poll on this napi.
7071 * Testing SCHED bit is not enough because SCHED bit might be
7072 * set by some other busy poll thread or by napi_disable().
7073 */
7074 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
7075 WARN_ON(!list_empty(&napi->poll_list));
7076 __set_current_state(TASK_RUNNING);
7077 return 0;
7078 }
7079
7080 schedule();
7081 /* woken being true indicates this thread owns this napi. */
7082 woken = true;
7083 set_current_state(TASK_INTERRUPTIBLE);
7084 }
7085 __set_current_state(TASK_RUNNING);
7086
7087 return -1;
7088}
7089
7090static int napi_threaded_poll(void *data)
7091{
7092 struct napi_struct *napi = data;
7093 void *have;
7094
7095 while (!napi_thread_wait(napi)) {
7096 for (;;) {
7097 bool repoll = false;
7098
7099 local_bh_disable();
7100
7101 have = netpoll_poll_lock(napi);
7102 __napi_poll(napi, &repoll);
7103 netpoll_poll_unlock(have);
7104
7105 local_bh_enable();
7106
7107 if (!repoll)
7108 break;
7109
7110 cond_resched();
7111 }
7112 }
7113 return 0;
7114}
7115
7116static __latent_entropy void net_rx_action(struct softirq_action *h)
7117{
7118 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
7119 unsigned long time_limit = jiffies +
7120 usecs_to_jiffies(netdev_budget_usecs);
7121 int budget = netdev_budget;
7122 LIST_HEAD(list);
7123 LIST_HEAD(repoll);
7124
7125 local_irq_disable();
7126 list_splice_init(&sd->poll_list, &list);
7127 local_irq_enable();
7128
7129 for (;;) {
7130 struct napi_struct *n;
7131
7132 if (list_empty(&list)) {
7133 if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
7134 return;
7135 break;
7136 }
7137
7138 n = list_first_entry(&list, struct napi_struct, poll_list);
7139 budget -= napi_poll(n, &repoll);
7140
7141 /* If softirq window is exhausted then punt.
7142 * Allow this to run for 2 jiffies since which will allow
7143 * an average latency of 1.5/HZ.
7144 */
7145 if (unlikely(budget <= 0 ||
7146 time_after_eq(jiffies, time_limit))) {
7147 sd->time_squeeze++;
7148 break;
7149 }
7150 }
7151
7152 local_irq_disable();
7153
7154 list_splice_tail_init(&sd->poll_list, &list);
7155 list_splice_tail(&repoll, &list);
7156 list_splice(&list, &sd->poll_list);
7157 if (!list_empty(&sd->poll_list))
7158 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
7159
7160 net_rps_action_and_irq_enable(sd);
7161}
7162
7163struct netdev_adjacent {
7164 struct net_device *dev;
7165
7166 /* upper master flag, there can only be one master device per list */
7167 bool master;
7168
7169 /* lookup ignore flag */
7170 bool ignore;
7171
7172 /* counter for the number of times this device was added to us */
7173 u16 ref_nr;
7174
7175 /* private field for the users */
7176 void *private;
7177
7178 struct list_head list;
7179 struct rcu_head rcu;
7180};
7181
7182static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
7183 struct list_head *adj_list)
7184{
7185 struct netdev_adjacent *adj;
7186
7187 list_for_each_entry(adj, adj_list, list) {
7188 if (adj->dev == adj_dev)
7189 return adj;
7190 }
7191 return NULL;
7192}
7193
7194static int ____netdev_has_upper_dev(struct net_device *upper_dev,
7195 struct netdev_nested_priv *priv)
7196{
7197 struct net_device *dev = (struct net_device *)priv->data;
7198
7199 return upper_dev == dev;
7200}
7201
7202/**
7203 * netdev_has_upper_dev - Check if device is linked to an upper device
7204 * @dev: device
7205 * @upper_dev: upper device to check
7206 *
7207 * Find out if a device is linked to specified upper device and return true
7208 * in case it is. Note that this checks only immediate upper device,
7209 * not through a complete stack of devices. The caller must hold the RTNL lock.
7210 */
7211bool netdev_has_upper_dev(struct net_device *dev,
7212 struct net_device *upper_dev)
7213{
7214 struct netdev_nested_priv priv = {
7215 .data = (void *)upper_dev,
7216 };
7217
7218 ASSERT_RTNL();
7219
7220 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7221 &priv);
7222}
7223EXPORT_SYMBOL(netdev_has_upper_dev);
7224
7225/**
7226 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7227 * @dev: device
7228 * @upper_dev: upper device to check
7229 *
7230 * Find out if a device is linked to specified upper device and return true
7231 * in case it is. Note that this checks the entire upper device chain.
7232 * The caller must hold rcu lock.
7233 */
7234
7235bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
7236 struct net_device *upper_dev)
7237{
7238 struct netdev_nested_priv priv = {
7239 .data = (void *)upper_dev,
7240 };
7241
7242 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
7243 &priv);
7244}
7245EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
7246
7247/**
7248 * netdev_has_any_upper_dev - Check if device is linked to some device
7249 * @dev: device
7250 *
7251 * Find out if a device is linked to an upper device and return true in case
7252 * it is. The caller must hold the RTNL lock.
7253 */
7254bool netdev_has_any_upper_dev(struct net_device *dev)
7255{
7256 ASSERT_RTNL();
7257
7258 return !list_empty(&dev->adj_list.upper);
7259}
7260EXPORT_SYMBOL(netdev_has_any_upper_dev);
7261
7262/**
7263 * netdev_master_upper_dev_get - Get master upper device
7264 * @dev: device
7265 *
7266 * Find a master upper device and return pointer to it or NULL in case
7267 * it's not there. The caller must hold the RTNL lock.
7268 */
7269struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
7270{
7271 struct netdev_adjacent *upper;
7272
7273 ASSERT_RTNL();
7274
7275 if (list_empty(&dev->adj_list.upper))
7276 return NULL;
7277
7278 upper = list_first_entry(&dev->adj_list.upper,
7279 struct netdev_adjacent, list);
7280 if (likely(upper->master))
7281 return upper->dev;
7282 return NULL;
7283}
7284EXPORT_SYMBOL(netdev_master_upper_dev_get);
7285
7286static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
7287{
7288 struct netdev_adjacent *upper;
7289
7290 ASSERT_RTNL();
7291
7292 if (list_empty(&dev->adj_list.upper))
7293 return NULL;
7294
7295 upper = list_first_entry(&dev->adj_list.upper,
7296 struct netdev_adjacent, list);
7297 if (likely(upper->master) && !upper->ignore)
7298 return upper->dev;
7299 return NULL;
7300}
7301
7302/**
7303 * netdev_has_any_lower_dev - Check if device is linked to some device
7304 * @dev: device
7305 *
7306 * Find out if a device is linked to a lower device and return true in case
7307 * it is. The caller must hold the RTNL lock.
7308 */
7309static bool netdev_has_any_lower_dev(struct net_device *dev)
7310{
7311 ASSERT_RTNL();
7312
7313 return !list_empty(&dev->adj_list.lower);
7314}
7315
7316void *netdev_adjacent_get_private(struct list_head *adj_list)
7317{
7318 struct netdev_adjacent *adj;
7319
7320 adj = list_entry(adj_list, struct netdev_adjacent, list);
7321
7322 return adj->private;
7323}
7324EXPORT_SYMBOL(netdev_adjacent_get_private);
7325
7326/**
7327 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7328 * @dev: device
7329 * @iter: list_head ** of the current position
7330 *
7331 * Gets the next device from the dev's upper list, starting from iter
7332 * position. The caller must hold RCU read lock.
7333 */
7334struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
7335 struct list_head **iter)
7336{
7337 struct netdev_adjacent *upper;
7338
7339 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7340
7341 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7342
7343 if (&upper->list == &dev->adj_list.upper)
7344 return NULL;
7345
7346 *iter = &upper->list;
7347
7348 return upper->dev;
7349}
7350EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
7351
7352static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
7353 struct list_head **iter,
7354 bool *ignore)
7355{
7356 struct netdev_adjacent *upper;
7357
7358 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
7359
7360 if (&upper->list == &dev->adj_list.upper)
7361 return NULL;
7362
7363 *iter = &upper->list;
7364 *ignore = upper->ignore;
7365
7366 return upper->dev;
7367}
7368
7369static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
7370 struct list_head **iter)
7371{
7372 struct netdev_adjacent *upper;
7373
7374 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7375
7376 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7377
7378 if (&upper->list == &dev->adj_list.upper)
7379 return NULL;
7380
7381 *iter = &upper->list;
7382
7383 return upper->dev;
7384}
7385
7386static int __netdev_walk_all_upper_dev(struct net_device *dev,
7387 int (*fn)(struct net_device *dev,
7388 struct netdev_nested_priv *priv),
7389 struct netdev_nested_priv *priv)
7390{
7391 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7392 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7393 int ret, cur = 0;
7394 bool ignore;
7395
7396 now = dev;
7397 iter = &dev->adj_list.upper;
7398
7399 while (1) {
7400 if (now != dev) {
7401 ret = fn(now, priv);
7402 if (ret)
7403 return ret;
7404 }
7405
7406 next = NULL;
7407 while (1) {
7408 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7409 if (!udev)
7410 break;
7411 if (ignore)
7412 continue;
7413
7414 next = udev;
7415 niter = &udev->adj_list.upper;
7416 dev_stack[cur] = now;
7417 iter_stack[cur++] = iter;
7418 break;
7419 }
7420
7421 if (!next) {
7422 if (!cur)
7423 return 0;
7424 next = dev_stack[--cur];
7425 niter = iter_stack[cur];
7426 }
7427
7428 now = next;
7429 iter = niter;
7430 }
7431
7432 return 0;
7433}
7434
7435int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7436 int (*fn)(struct net_device *dev,
7437 struct netdev_nested_priv *priv),
7438 struct netdev_nested_priv *priv)
7439{
7440 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7441 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7442 int ret, cur = 0;
7443
7444 now = dev;
7445 iter = &dev->adj_list.upper;
7446
7447 while (1) {
7448 if (now != dev) {
7449 ret = fn(now, priv);
7450 if (ret)
7451 return ret;
7452 }
7453
7454 next = NULL;
7455 while (1) {
7456 udev = netdev_next_upper_dev_rcu(now, &iter);
7457 if (!udev)
7458 break;
7459
7460 next = udev;
7461 niter = &udev->adj_list.upper;
7462 dev_stack[cur] = now;
7463 iter_stack[cur++] = iter;
7464 break;
7465 }
7466
7467 if (!next) {
7468 if (!cur)
7469 return 0;
7470 next = dev_stack[--cur];
7471 niter = iter_stack[cur];
7472 }
7473
7474 now = next;
7475 iter = niter;
7476 }
7477
7478 return 0;
7479}
7480EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7481
7482static bool __netdev_has_upper_dev(struct net_device *dev,
7483 struct net_device *upper_dev)
7484{
7485 struct netdev_nested_priv priv = {
7486 .flags = 0,
7487 .data = (void *)upper_dev,
7488 };
7489
7490 ASSERT_RTNL();
7491
7492 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7493 &priv);
7494}
7495
7496/**
7497 * netdev_lower_get_next_private - Get the next ->private from the
7498 * lower neighbour list
7499 * @dev: device
7500 * @iter: list_head ** of the current position
7501 *
7502 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7503 * list, starting from iter position. The caller must hold either hold the
7504 * RTNL lock or its own locking that guarantees that the neighbour lower
7505 * list will remain unchanged.
7506 */
7507void *netdev_lower_get_next_private(struct net_device *dev,
7508 struct list_head **iter)
7509{
7510 struct netdev_adjacent *lower;
7511
7512 lower = list_entry(*iter, struct netdev_adjacent, list);
7513
7514 if (&lower->list == &dev->adj_list.lower)
7515 return NULL;
7516
7517 *iter = lower->list.next;
7518
7519 return lower->private;
7520}
7521EXPORT_SYMBOL(netdev_lower_get_next_private);
7522
7523/**
7524 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7525 * lower neighbour list, RCU
7526 * variant
7527 * @dev: device
7528 * @iter: list_head ** of the current position
7529 *
7530 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7531 * list, starting from iter position. The caller must hold RCU read lock.
7532 */
7533void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7534 struct list_head **iter)
7535{
7536 struct netdev_adjacent *lower;
7537
7538 WARN_ON_ONCE(!rcu_read_lock_held());
7539
7540 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7541
7542 if (&lower->list == &dev->adj_list.lower)
7543 return NULL;
7544
7545 *iter = &lower->list;
7546
7547 return lower->private;
7548}
7549EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7550
7551/**
7552 * netdev_lower_get_next - Get the next device from the lower neighbour
7553 * list
7554 * @dev: device
7555 * @iter: list_head ** of the current position
7556 *
7557 * Gets the next netdev_adjacent from the dev's lower neighbour
7558 * list, starting from iter position. The caller must hold RTNL lock or
7559 * its own locking that guarantees that the neighbour lower
7560 * list will remain unchanged.
7561 */
7562void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7563{
7564 struct netdev_adjacent *lower;
7565
7566 lower = list_entry(*iter, struct netdev_adjacent, list);
7567
7568 if (&lower->list == &dev->adj_list.lower)
7569 return NULL;
7570
7571 *iter = lower->list.next;
7572
7573 return lower->dev;
7574}
7575EXPORT_SYMBOL(netdev_lower_get_next);
7576
7577static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7578 struct list_head **iter)
7579{
7580 struct netdev_adjacent *lower;
7581
7582 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7583
7584 if (&lower->list == &dev->adj_list.lower)
7585 return NULL;
7586
7587 *iter = &lower->list;
7588
7589 return lower->dev;
7590}
7591
7592static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7593 struct list_head **iter,
7594 bool *ignore)
7595{
7596 struct netdev_adjacent *lower;
7597
7598 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7599
7600 if (&lower->list == &dev->adj_list.lower)
7601 return NULL;
7602
7603 *iter = &lower->list;
7604 *ignore = lower->ignore;
7605
7606 return lower->dev;
7607}
7608
7609int netdev_walk_all_lower_dev(struct net_device *dev,
7610 int (*fn)(struct net_device *dev,
7611 struct netdev_nested_priv *priv),
7612 struct netdev_nested_priv *priv)
7613{
7614 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7615 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7616 int ret, cur = 0;
7617
7618 now = dev;
7619 iter = &dev->adj_list.lower;
7620
7621 while (1) {
7622 if (now != dev) {
7623 ret = fn(now, priv);
7624 if (ret)
7625 return ret;
7626 }
7627
7628 next = NULL;
7629 while (1) {
7630 ldev = netdev_next_lower_dev(now, &iter);
7631 if (!ldev)
7632 break;
7633
7634 next = ldev;
7635 niter = &ldev->adj_list.lower;
7636 dev_stack[cur] = now;
7637 iter_stack[cur++] = iter;
7638 break;
7639 }
7640
7641 if (!next) {
7642 if (!cur)
7643 return 0;
7644 next = dev_stack[--cur];
7645 niter = iter_stack[cur];
7646 }
7647
7648 now = next;
7649 iter = niter;
7650 }
7651
7652 return 0;
7653}
7654EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7655
7656static int __netdev_walk_all_lower_dev(struct net_device *dev,
7657 int (*fn)(struct net_device *dev,
7658 struct netdev_nested_priv *priv),
7659 struct netdev_nested_priv *priv)
7660{
7661 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7662 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7663 int ret, cur = 0;
7664 bool ignore;
7665
7666 now = dev;
7667 iter = &dev->adj_list.lower;
7668
7669 while (1) {
7670 if (now != dev) {
7671 ret = fn(now, priv);
7672 if (ret)
7673 return ret;
7674 }
7675
7676 next = NULL;
7677 while (1) {
7678 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7679 if (!ldev)
7680 break;
7681 if (ignore)
7682 continue;
7683
7684 next = ldev;
7685 niter = &ldev->adj_list.lower;
7686 dev_stack[cur] = now;
7687 iter_stack[cur++] = iter;
7688 break;
7689 }
7690
7691 if (!next) {
7692 if (!cur)
7693 return 0;
7694 next = dev_stack[--cur];
7695 niter = iter_stack[cur];
7696 }
7697
7698 now = next;
7699 iter = niter;
7700 }
7701
7702 return 0;
7703}
7704
7705struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7706 struct list_head **iter)
7707{
7708 struct netdev_adjacent *lower;
7709
7710 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7711 if (&lower->list == &dev->adj_list.lower)
7712 return NULL;
7713
7714 *iter = &lower->list;
7715
7716 return lower->dev;
7717}
7718EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7719
7720static u8 __netdev_upper_depth(struct net_device *dev)
7721{
7722 struct net_device *udev;
7723 struct list_head *iter;
7724 u8 max_depth = 0;
7725 bool ignore;
7726
7727 for (iter = &dev->adj_list.upper,
7728 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7729 udev;
7730 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7731 if (ignore)
7732 continue;
7733 if (max_depth < udev->upper_level)
7734 max_depth = udev->upper_level;
7735 }
7736
7737 return max_depth;
7738}
7739
7740static u8 __netdev_lower_depth(struct net_device *dev)
7741{
7742 struct net_device *ldev;
7743 struct list_head *iter;
7744 u8 max_depth = 0;
7745 bool ignore;
7746
7747 for (iter = &dev->adj_list.lower,
7748 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7749 ldev;
7750 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7751 if (ignore)
7752 continue;
7753 if (max_depth < ldev->lower_level)
7754 max_depth = ldev->lower_level;
7755 }
7756
7757 return max_depth;
7758}
7759
7760static int __netdev_update_upper_level(struct net_device *dev,
7761 struct netdev_nested_priv *__unused)
7762{
7763 dev->upper_level = __netdev_upper_depth(dev) + 1;
7764 return 0;
7765}
7766
7767static int __netdev_update_lower_level(struct net_device *dev,
7768 struct netdev_nested_priv *priv)
7769{
7770 dev->lower_level = __netdev_lower_depth(dev) + 1;
7771
7772#ifdef CONFIG_LOCKDEP
7773 if (!priv)
7774 return 0;
7775
7776 if (priv->flags & NESTED_SYNC_IMM)
7777 dev->nested_level = dev->lower_level - 1;
7778 if (priv->flags & NESTED_SYNC_TODO)
7779 net_unlink_todo(dev);
7780#endif
7781 return 0;
7782}
7783
7784int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7785 int (*fn)(struct net_device *dev,
7786 struct netdev_nested_priv *priv),
7787 struct netdev_nested_priv *priv)
7788{
7789 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7790 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7791 int ret, cur = 0;
7792
7793 now = dev;
7794 iter = &dev->adj_list.lower;
7795
7796 while (1) {
7797 if (now != dev) {
7798 ret = fn(now, priv);
7799 if (ret)
7800 return ret;
7801 }
7802
7803 next = NULL;
7804 while (1) {
7805 ldev = netdev_next_lower_dev_rcu(now, &iter);
7806 if (!ldev)
7807 break;
7808
7809 next = ldev;
7810 niter = &ldev->adj_list.lower;
7811 dev_stack[cur] = now;
7812 iter_stack[cur++] = iter;
7813 break;
7814 }
7815
7816 if (!next) {
7817 if (!cur)
7818 return 0;
7819 next = dev_stack[--cur];
7820 niter = iter_stack[cur];
7821 }
7822
7823 now = next;
7824 iter = niter;
7825 }
7826
7827 return 0;
7828}
7829EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7830
7831/**
7832 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7833 * lower neighbour list, RCU
7834 * variant
7835 * @dev: device
7836 *
7837 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7838 * list. The caller must hold RCU read lock.
7839 */
7840void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7841{
7842 struct netdev_adjacent *lower;
7843
7844 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7845 struct netdev_adjacent, list);
7846 if (lower)
7847 return lower->private;
7848 return NULL;
7849}
7850EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7851
7852/**
7853 * netdev_master_upper_dev_get_rcu - Get master upper device
7854 * @dev: device
7855 *
7856 * Find a master upper device and return pointer to it or NULL in case
7857 * it's not there. The caller must hold the RCU read lock.
7858 */
7859struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7860{
7861 struct netdev_adjacent *upper;
7862
7863 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7864 struct netdev_adjacent, list);
7865 if (upper && likely(upper->master))
7866 return upper->dev;
7867 return NULL;
7868}
7869EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7870
7871static int netdev_adjacent_sysfs_add(struct net_device *dev,
7872 struct net_device *adj_dev,
7873 struct list_head *dev_list)
7874{
7875 char linkname[IFNAMSIZ+7];
7876
7877 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7878 "upper_%s" : "lower_%s", adj_dev->name);
7879 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7880 linkname);
7881}
7882static void netdev_adjacent_sysfs_del(struct net_device *dev,
7883 char *name,
7884 struct list_head *dev_list)
7885{
7886 char linkname[IFNAMSIZ+7];
7887
7888 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7889 "upper_%s" : "lower_%s", name);
7890 sysfs_remove_link(&(dev->dev.kobj), linkname);
7891}
7892
7893static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7894 struct net_device *adj_dev,
7895 struct list_head *dev_list)
7896{
7897 return (dev_list == &dev->adj_list.upper ||
7898 dev_list == &dev->adj_list.lower) &&
7899 net_eq(dev_net(dev), dev_net(adj_dev));
7900}
7901
7902static int __netdev_adjacent_dev_insert(struct net_device *dev,
7903 struct net_device *adj_dev,
7904 struct list_head *dev_list,
7905 void *private, bool master)
7906{
7907 struct netdev_adjacent *adj;
7908 int ret;
7909
7910 adj = __netdev_find_adj(adj_dev, dev_list);
7911
7912 if (adj) {
7913 adj->ref_nr += 1;
7914 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7915 dev->name, adj_dev->name, adj->ref_nr);
7916
7917 return 0;
7918 }
7919
7920 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7921 if (!adj)
7922 return -ENOMEM;
7923
7924 adj->dev = adj_dev;
7925 adj->master = master;
7926 adj->ref_nr = 1;
7927 adj->private = private;
7928 adj->ignore = false;
7929 dev_hold(adj_dev);
7930
7931 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7932 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7933
7934 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7935 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7936 if (ret)
7937 goto free_adj;
7938 }
7939
7940 /* Ensure that master link is always the first item in list. */
7941 if (master) {
7942 ret = sysfs_create_link(&(dev->dev.kobj),
7943 &(adj_dev->dev.kobj), "master");
7944 if (ret)
7945 goto remove_symlinks;
7946
7947 list_add_rcu(&adj->list, dev_list);
7948 } else {
7949 list_add_tail_rcu(&adj->list, dev_list);
7950 }
7951
7952 return 0;
7953
7954remove_symlinks:
7955 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7956 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7957free_adj:
7958 kfree(adj);
7959 dev_put(adj_dev);
7960
7961 return ret;
7962}
7963
7964static void __netdev_adjacent_dev_remove(struct net_device *dev,
7965 struct net_device *adj_dev,
7966 u16 ref_nr,
7967 struct list_head *dev_list)
7968{
7969 struct netdev_adjacent *adj;
7970
7971 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7972 dev->name, adj_dev->name, ref_nr);
7973
7974 adj = __netdev_find_adj(adj_dev, dev_list);
7975
7976 if (!adj) {
7977 pr_err("Adjacency does not exist for device %s from %s\n",
7978 dev->name, adj_dev->name);
7979 WARN_ON(1);
7980 return;
7981 }
7982
7983 if (adj->ref_nr > ref_nr) {
7984 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7985 dev->name, adj_dev->name, ref_nr,
7986 adj->ref_nr - ref_nr);
7987 adj->ref_nr -= ref_nr;
7988 return;
7989 }
7990
7991 if (adj->master)
7992 sysfs_remove_link(&(dev->dev.kobj), "master");
7993
7994 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7995 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7996
7997 list_del_rcu(&adj->list);
7998 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7999 adj_dev->name, dev->name, adj_dev->name);
8000 dev_put(adj_dev);
8001 kfree_rcu(adj, rcu);
8002}
8003
8004static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
8005 struct net_device *upper_dev,
8006 struct list_head *up_list,
8007 struct list_head *down_list,
8008 void *private, bool master)
8009{
8010 int ret;
8011
8012 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
8013 private, master);
8014 if (ret)
8015 return ret;
8016
8017 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
8018 private, false);
8019 if (ret) {
8020 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
8021 return ret;
8022 }
8023
8024 return 0;
8025}
8026
8027static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
8028 struct net_device *upper_dev,
8029 u16 ref_nr,
8030 struct list_head *up_list,
8031 struct list_head *down_list)
8032{
8033 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
8034 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
8035}
8036
8037static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
8038 struct net_device *upper_dev,
8039 void *private, bool master)
8040{
8041 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
8042 &dev->adj_list.upper,
8043 &upper_dev->adj_list.lower,
8044 private, master);
8045}
8046
8047static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
8048 struct net_device *upper_dev)
8049{
8050 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
8051 &dev->adj_list.upper,
8052 &upper_dev->adj_list.lower);
8053}
8054
8055static int __netdev_upper_dev_link(struct net_device *dev,
8056 struct net_device *upper_dev, bool master,
8057 void *upper_priv, void *upper_info,
8058 struct netdev_nested_priv *priv,
8059 struct netlink_ext_ack *extack)
8060{
8061 struct netdev_notifier_changeupper_info changeupper_info = {
8062 .info = {
8063 .dev = dev,
8064 .extack = extack,
8065 },
8066 .upper_dev = upper_dev,
8067 .master = master,
8068 .linking = true,
8069 .upper_info = upper_info,
8070 };
8071 struct net_device *master_dev;
8072 int ret = 0;
8073
8074 ASSERT_RTNL();
8075
8076 if (dev == upper_dev)
8077 return -EBUSY;
8078
8079 /* To prevent loops, check if dev is not upper device to upper_dev. */
8080 if (__netdev_has_upper_dev(upper_dev, dev))
8081 return -EBUSY;
8082
8083 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
8084 return -EMLINK;
8085
8086 if (!master) {
8087 if (__netdev_has_upper_dev(dev, upper_dev))
8088 return -EEXIST;
8089 } else {
8090 master_dev = __netdev_master_upper_dev_get(dev);
8091 if (master_dev)
8092 return master_dev == upper_dev ? -EEXIST : -EBUSY;
8093 }
8094
8095 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8096 &changeupper_info.info);
8097 ret = notifier_to_errno(ret);
8098 if (ret)
8099 return ret;
8100
8101 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
8102 master);
8103 if (ret)
8104 return ret;
8105
8106 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8107 &changeupper_info.info);
8108 ret = notifier_to_errno(ret);
8109 if (ret)
8110 goto rollback;
8111
8112 __netdev_update_upper_level(dev, NULL);
8113 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8114
8115 __netdev_update_lower_level(upper_dev, priv);
8116 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8117 priv);
8118
8119 return 0;
8120
8121rollback:
8122 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8123
8124 return ret;
8125}
8126
8127/**
8128 * netdev_upper_dev_link - Add a link to the upper device
8129 * @dev: device
8130 * @upper_dev: new upper device
8131 * @extack: netlink extended ack
8132 *
8133 * Adds a link to device which is upper to this one. The caller must hold
8134 * the RTNL lock. On a failure a negative errno code is returned.
8135 * On success the reference counts are adjusted and the function
8136 * returns zero.
8137 */
8138int netdev_upper_dev_link(struct net_device *dev,
8139 struct net_device *upper_dev,
8140 struct netlink_ext_ack *extack)
8141{
8142 struct netdev_nested_priv priv = {
8143 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8144 .data = NULL,
8145 };
8146
8147 return __netdev_upper_dev_link(dev, upper_dev, false,
8148 NULL, NULL, &priv, extack);
8149}
8150EXPORT_SYMBOL(netdev_upper_dev_link);
8151
8152/**
8153 * netdev_master_upper_dev_link - Add a master link to the upper device
8154 * @dev: device
8155 * @upper_dev: new upper device
8156 * @upper_priv: upper device private
8157 * @upper_info: upper info to be passed down via notifier
8158 * @extack: netlink extended ack
8159 *
8160 * Adds a link to device which is upper to this one. In this case, only
8161 * one master upper device can be linked, although other non-master devices
8162 * might be linked as well. The caller must hold the RTNL lock.
8163 * On a failure a negative errno code is returned. On success the reference
8164 * counts are adjusted and the function returns zero.
8165 */
8166int netdev_master_upper_dev_link(struct net_device *dev,
8167 struct net_device *upper_dev,
8168 void *upper_priv, void *upper_info,
8169 struct netlink_ext_ack *extack)
8170{
8171 struct netdev_nested_priv priv = {
8172 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8173 .data = NULL,
8174 };
8175
8176 return __netdev_upper_dev_link(dev, upper_dev, true,
8177 upper_priv, upper_info, &priv, extack);
8178}
8179EXPORT_SYMBOL(netdev_master_upper_dev_link);
8180
8181static void __netdev_upper_dev_unlink(struct net_device *dev,
8182 struct net_device *upper_dev,
8183 struct netdev_nested_priv *priv)
8184{
8185 struct netdev_notifier_changeupper_info changeupper_info = {
8186 .info = {
8187 .dev = dev,
8188 },
8189 .upper_dev = upper_dev,
8190 .linking = false,
8191 };
8192
8193 ASSERT_RTNL();
8194
8195 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
8196
8197 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
8198 &changeupper_info.info);
8199
8200 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
8201
8202 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
8203 &changeupper_info.info);
8204
8205 __netdev_update_upper_level(dev, NULL);
8206 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
8207
8208 __netdev_update_lower_level(upper_dev, priv);
8209 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
8210 priv);
8211}
8212
8213/**
8214 * netdev_upper_dev_unlink - Removes a link to upper device
8215 * @dev: device
8216 * @upper_dev: new upper device
8217 *
8218 * Removes a link to device which is upper to this one. The caller must hold
8219 * the RTNL lock.
8220 */
8221void netdev_upper_dev_unlink(struct net_device *dev,
8222 struct net_device *upper_dev)
8223{
8224 struct netdev_nested_priv priv = {
8225 .flags = NESTED_SYNC_TODO,
8226 .data = NULL,
8227 };
8228
8229 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
8230}
8231EXPORT_SYMBOL(netdev_upper_dev_unlink);
8232
8233static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
8234 struct net_device *lower_dev,
8235 bool val)
8236{
8237 struct netdev_adjacent *adj;
8238
8239 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
8240 if (adj)
8241 adj->ignore = val;
8242
8243 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
8244 if (adj)
8245 adj->ignore = val;
8246}
8247
8248static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
8249 struct net_device *lower_dev)
8250{
8251 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
8252}
8253
8254static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
8255 struct net_device *lower_dev)
8256{
8257 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
8258}
8259
8260int netdev_adjacent_change_prepare(struct net_device *old_dev,
8261 struct net_device *new_dev,
8262 struct net_device *dev,
8263 struct netlink_ext_ack *extack)
8264{
8265 struct netdev_nested_priv priv = {
8266 .flags = 0,
8267 .data = NULL,
8268 };
8269 int err;
8270
8271 if (!new_dev)
8272 return 0;
8273
8274 if (old_dev && new_dev != old_dev)
8275 netdev_adjacent_dev_disable(dev, old_dev);
8276 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
8277 extack);
8278 if (err) {
8279 if (old_dev && new_dev != old_dev)
8280 netdev_adjacent_dev_enable(dev, old_dev);
8281 return err;
8282 }
8283
8284 return 0;
8285}
8286EXPORT_SYMBOL(netdev_adjacent_change_prepare);
8287
8288void netdev_adjacent_change_commit(struct net_device *old_dev,
8289 struct net_device *new_dev,
8290 struct net_device *dev)
8291{
8292 struct netdev_nested_priv priv = {
8293 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
8294 .data = NULL,
8295 };
8296
8297 if (!new_dev || !old_dev)
8298 return;
8299
8300 if (new_dev == old_dev)
8301 return;
8302
8303 netdev_adjacent_dev_enable(dev, old_dev);
8304 __netdev_upper_dev_unlink(old_dev, dev, &priv);
8305}
8306EXPORT_SYMBOL(netdev_adjacent_change_commit);
8307
8308void netdev_adjacent_change_abort(struct net_device *old_dev,
8309 struct net_device *new_dev,
8310 struct net_device *dev)
8311{
8312 struct netdev_nested_priv priv = {
8313 .flags = 0,
8314 .data = NULL,
8315 };
8316
8317 if (!new_dev)
8318 return;
8319
8320 if (old_dev && new_dev != old_dev)
8321 netdev_adjacent_dev_enable(dev, old_dev);
8322
8323 __netdev_upper_dev_unlink(new_dev, dev, &priv);
8324}
8325EXPORT_SYMBOL(netdev_adjacent_change_abort);
8326
8327/**
8328 * netdev_bonding_info_change - Dispatch event about slave change
8329 * @dev: device
8330 * @bonding_info: info to dispatch
8331 *
8332 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8333 * The caller must hold the RTNL lock.
8334 */
8335void netdev_bonding_info_change(struct net_device *dev,
8336 struct netdev_bonding_info *bonding_info)
8337{
8338 struct netdev_notifier_bonding_info info = {
8339 .info.dev = dev,
8340 };
8341
8342 memcpy(&info.bonding_info, bonding_info,
8343 sizeof(struct netdev_bonding_info));
8344 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
8345 &info.info);
8346}
8347EXPORT_SYMBOL(netdev_bonding_info_change);
8348
8349/**
8350 * netdev_get_xmit_slave - Get the xmit slave of master device
8351 * @dev: device
8352 * @skb: The packet
8353 * @all_slaves: assume all the slaves are active
8354 *
8355 * The reference counters are not incremented so the caller must be
8356 * careful with locks. The caller must hold RCU lock.
8357 * %NULL is returned if no slave is found.
8358 */
8359
8360struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8361 struct sk_buff *skb,
8362 bool all_slaves)
8363{
8364 const struct net_device_ops *ops = dev->netdev_ops;
8365
8366 if (!ops->ndo_get_xmit_slave)
8367 return NULL;
8368 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8369}
8370EXPORT_SYMBOL(netdev_get_xmit_slave);
8371
8372static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8373 struct sock *sk)
8374{
8375 const struct net_device_ops *ops = dev->netdev_ops;
8376
8377 if (!ops->ndo_sk_get_lower_dev)
8378 return NULL;
8379 return ops->ndo_sk_get_lower_dev(dev, sk);
8380}
8381
8382/**
8383 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8384 * @dev: device
8385 * @sk: the socket
8386 *
8387 * %NULL is returned if no lower device is found.
8388 */
8389
8390struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8391 struct sock *sk)
8392{
8393 struct net_device *lower;
8394
8395 lower = netdev_sk_get_lower_dev(dev, sk);
8396 while (lower) {
8397 dev = lower;
8398 lower = netdev_sk_get_lower_dev(dev, sk);
8399 }
8400
8401 return dev;
8402}
8403EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8404
8405static void netdev_adjacent_add_links(struct net_device *dev)
8406{
8407 struct netdev_adjacent *iter;
8408
8409 struct net *net = dev_net(dev);
8410
8411 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8412 if (!net_eq(net, dev_net(iter->dev)))
8413 continue;
8414 netdev_adjacent_sysfs_add(iter->dev, dev,
8415 &iter->dev->adj_list.lower);
8416 netdev_adjacent_sysfs_add(dev, iter->dev,
8417 &dev->adj_list.upper);
8418 }
8419
8420 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8421 if (!net_eq(net, dev_net(iter->dev)))
8422 continue;
8423 netdev_adjacent_sysfs_add(iter->dev, dev,
8424 &iter->dev->adj_list.upper);
8425 netdev_adjacent_sysfs_add(dev, iter->dev,
8426 &dev->adj_list.lower);
8427 }
8428}
8429
8430static void netdev_adjacent_del_links(struct net_device *dev)
8431{
8432 struct netdev_adjacent *iter;
8433
8434 struct net *net = dev_net(dev);
8435
8436 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8437 if (!net_eq(net, dev_net(iter->dev)))
8438 continue;
8439 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8440 &iter->dev->adj_list.lower);
8441 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8442 &dev->adj_list.upper);
8443 }
8444
8445 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8446 if (!net_eq(net, dev_net(iter->dev)))
8447 continue;
8448 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8449 &iter->dev->adj_list.upper);
8450 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8451 &dev->adj_list.lower);
8452 }
8453}
8454
8455void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8456{
8457 struct netdev_adjacent *iter;
8458
8459 struct net *net = dev_net(dev);
8460
8461 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8462 if (!net_eq(net, dev_net(iter->dev)))
8463 continue;
8464 netdev_adjacent_sysfs_del(iter->dev, oldname,
8465 &iter->dev->adj_list.lower);
8466 netdev_adjacent_sysfs_add(iter->dev, dev,
8467 &iter->dev->adj_list.lower);
8468 }
8469
8470 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8471 if (!net_eq(net, dev_net(iter->dev)))
8472 continue;
8473 netdev_adjacent_sysfs_del(iter->dev, oldname,
8474 &iter->dev->adj_list.upper);
8475 netdev_adjacent_sysfs_add(iter->dev, dev,
8476 &iter->dev->adj_list.upper);
8477 }
8478}
8479
8480void *netdev_lower_dev_get_private(struct net_device *dev,
8481 struct net_device *lower_dev)
8482{
8483 struct netdev_adjacent *lower;
8484
8485 if (!lower_dev)
8486 return NULL;
8487 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8488 if (!lower)
8489 return NULL;
8490
8491 return lower->private;
8492}
8493EXPORT_SYMBOL(netdev_lower_dev_get_private);
8494
8495
8496/**
8497 * netdev_lower_state_changed - Dispatch event about lower device state change
8498 * @lower_dev: device
8499 * @lower_state_info: state to dispatch
8500 *
8501 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8502 * The caller must hold the RTNL lock.
8503 */
8504void netdev_lower_state_changed(struct net_device *lower_dev,
8505 void *lower_state_info)
8506{
8507 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8508 .info.dev = lower_dev,
8509 };
8510
8511 ASSERT_RTNL();
8512 changelowerstate_info.lower_state_info = lower_state_info;
8513 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8514 &changelowerstate_info.info);
8515}
8516EXPORT_SYMBOL(netdev_lower_state_changed);
8517
8518static void dev_change_rx_flags(struct net_device *dev, int flags)
8519{
8520 const struct net_device_ops *ops = dev->netdev_ops;
8521
8522 if (ops->ndo_change_rx_flags)
8523 ops->ndo_change_rx_flags(dev, flags);
8524}
8525
8526static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8527{
8528 unsigned int old_flags = dev->flags;
8529 kuid_t uid;
8530 kgid_t gid;
8531
8532 ASSERT_RTNL();
8533
8534 dev->flags |= IFF_PROMISC;
8535 dev->promiscuity += inc;
8536 if (dev->promiscuity == 0) {
8537 /*
8538 * Avoid overflow.
8539 * If inc causes overflow, untouch promisc and return error.
8540 */
8541 if (inc < 0)
8542 dev->flags &= ~IFF_PROMISC;
8543 else {
8544 dev->promiscuity -= inc;
8545 pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
8546 dev->name);
8547 return -EOVERFLOW;
8548 }
8549 }
8550 if (dev->flags != old_flags) {
8551 pr_info("device %s %s promiscuous mode\n",
8552 dev->name,
8553 dev->flags & IFF_PROMISC ? "entered" : "left");
8554 if (audit_enabled) {
8555 current_uid_gid(&uid, &gid);
8556 audit_log(audit_context(), GFP_ATOMIC,
8557 AUDIT_ANOM_PROMISCUOUS,
8558 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8559 dev->name, (dev->flags & IFF_PROMISC),
8560 (old_flags & IFF_PROMISC),
8561 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8562 from_kuid(&init_user_ns, uid),
8563 from_kgid(&init_user_ns, gid),
8564 audit_get_sessionid(current));
8565 }
8566
8567 dev_change_rx_flags(dev, IFF_PROMISC);
8568 }
8569 if (notify)
8570 __dev_notify_flags(dev, old_flags, IFF_PROMISC);
8571 return 0;
8572}
8573
8574/**
8575 * dev_set_promiscuity - update promiscuity count on a device
8576 * @dev: device
8577 * @inc: modifier
8578 *
8579 * Add or remove promiscuity from a device. While the count in the device
8580 * remains above zero the interface remains promiscuous. Once it hits zero
8581 * the device reverts back to normal filtering operation. A negative inc
8582 * value is used to drop promiscuity on the device.
8583 * Return 0 if successful or a negative errno code on error.
8584 */
8585int dev_set_promiscuity(struct net_device *dev, int inc)
8586{
8587 unsigned int old_flags = dev->flags;
8588 int err;
8589
8590 err = __dev_set_promiscuity(dev, inc, true);
8591 if (err < 0)
8592 return err;
8593 if (dev->flags != old_flags)
8594 dev_set_rx_mode(dev);
8595 return err;
8596}
8597EXPORT_SYMBOL(dev_set_promiscuity);
8598
8599static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8600{
8601 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8602
8603 ASSERT_RTNL();
8604
8605 dev->flags |= IFF_ALLMULTI;
8606 dev->allmulti += inc;
8607 if (dev->allmulti == 0) {
8608 /*
8609 * Avoid overflow.
8610 * If inc causes overflow, untouch allmulti and return error.
8611 */
8612 if (inc < 0)
8613 dev->flags &= ~IFF_ALLMULTI;
8614 else {
8615 dev->allmulti -= inc;
8616 pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
8617 dev->name);
8618 return -EOVERFLOW;
8619 }
8620 }
8621 if (dev->flags ^ old_flags) {
8622 dev_change_rx_flags(dev, IFF_ALLMULTI);
8623 dev_set_rx_mode(dev);
8624 if (notify)
8625 __dev_notify_flags(dev, old_flags,
8626 dev->gflags ^ old_gflags);
8627 }
8628 return 0;
8629}
8630
8631/**
8632 * dev_set_allmulti - update allmulti count on a device
8633 * @dev: device
8634 * @inc: modifier
8635 *
8636 * Add or remove reception of all multicast frames to a device. While the
8637 * count in the device remains above zero the interface remains listening
8638 * to all interfaces. Once it hits zero the device reverts back to normal
8639 * filtering operation. A negative @inc value is used to drop the counter
8640 * when releasing a resource needing all multicasts.
8641 * Return 0 if successful or a negative errno code on error.
8642 */
8643
8644int dev_set_allmulti(struct net_device *dev, int inc)
8645{
8646 return __dev_set_allmulti(dev, inc, true);
8647}
8648EXPORT_SYMBOL(dev_set_allmulti);
8649
8650/*
8651 * Upload unicast and multicast address lists to device and
8652 * configure RX filtering. When the device doesn't support unicast
8653 * filtering it is put in promiscuous mode while unicast addresses
8654 * are present.
8655 */
8656void __dev_set_rx_mode(struct net_device *dev)
8657{
8658 const struct net_device_ops *ops = dev->netdev_ops;
8659
8660 /* dev_open will call this function so the list will stay sane. */
8661 if (!(dev->flags&IFF_UP))
8662 return;
8663
8664 if (!netif_device_present(dev))
8665 return;
8666
8667 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8668 /* Unicast addresses changes may only happen under the rtnl,
8669 * therefore calling __dev_set_promiscuity here is safe.
8670 */
8671 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8672 __dev_set_promiscuity(dev, 1, false);
8673 dev->uc_promisc = true;
8674 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8675 __dev_set_promiscuity(dev, -1, false);
8676 dev->uc_promisc = false;
8677 }
8678 }
8679
8680 if (ops->ndo_set_rx_mode)
8681 ops->ndo_set_rx_mode(dev);
8682}
8683
8684void dev_set_rx_mode(struct net_device *dev)
8685{
8686 netif_addr_lock_bh(dev);
8687 __dev_set_rx_mode(dev);
8688 netif_addr_unlock_bh(dev);
8689}
8690
8691/**
8692 * dev_get_flags - get flags reported to userspace
8693 * @dev: device
8694 *
8695 * Get the combination of flag bits exported through APIs to userspace.
8696 */
8697unsigned int dev_get_flags(const struct net_device *dev)
8698{
8699 unsigned int flags;
8700
8701 flags = (dev->flags & ~(IFF_PROMISC |
8702 IFF_ALLMULTI |
8703 IFF_RUNNING |
8704 IFF_LOWER_UP |
8705 IFF_DORMANT)) |
8706 (dev->gflags & (IFF_PROMISC |
8707 IFF_ALLMULTI));
8708
8709 if (netif_running(dev)) {
8710 if (netif_oper_up(dev))
8711 flags |= IFF_RUNNING;
8712 if (netif_carrier_ok(dev))
8713 flags |= IFF_LOWER_UP;
8714 if (netif_dormant(dev))
8715 flags |= IFF_DORMANT;
8716 }
8717
8718 return flags;
8719}
8720EXPORT_SYMBOL(dev_get_flags);
8721
8722int __dev_change_flags(struct net_device *dev, unsigned int flags,
8723 struct netlink_ext_ack *extack)
8724{
8725 unsigned int old_flags = dev->flags;
8726 int ret;
8727
8728 ASSERT_RTNL();
8729
8730 /*
8731 * Set the flags on our device.
8732 */
8733
8734 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8735 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8736 IFF_AUTOMEDIA)) |
8737 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8738 IFF_ALLMULTI));
8739
8740 /*
8741 * Load in the correct multicast list now the flags have changed.
8742 */
8743
8744 if ((old_flags ^ flags) & IFF_MULTICAST)
8745 dev_change_rx_flags(dev, IFF_MULTICAST);
8746
8747 dev_set_rx_mode(dev);
8748
8749 /*
8750 * Have we downed the interface. We handle IFF_UP ourselves
8751 * according to user attempts to set it, rather than blindly
8752 * setting it.
8753 */
8754
8755 ret = 0;
8756 if ((old_flags ^ flags) & IFF_UP) {
8757 if (old_flags & IFF_UP)
8758 __dev_close(dev);
8759 else
8760 ret = __dev_open(dev, extack);
8761 }
8762
8763 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8764 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8765 unsigned int old_flags = dev->flags;
8766
8767 dev->gflags ^= IFF_PROMISC;
8768
8769 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8770 if (dev->flags != old_flags)
8771 dev_set_rx_mode(dev);
8772 }
8773
8774 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8775 * is important. Some (broken) drivers set IFF_PROMISC, when
8776 * IFF_ALLMULTI is requested not asking us and not reporting.
8777 */
8778 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8779 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8780
8781 dev->gflags ^= IFF_ALLMULTI;
8782 __dev_set_allmulti(dev, inc, false);
8783 }
8784
8785 return ret;
8786}
8787
8788void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8789 unsigned int gchanges)
8790{
8791 unsigned int changes = dev->flags ^ old_flags;
8792
8793 if (gchanges)
8794 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
8795
8796 if (changes & IFF_UP) {
8797 if (dev->flags & IFF_UP)
8798 call_netdevice_notifiers(NETDEV_UP, dev);
8799 else
8800 call_netdevice_notifiers(NETDEV_DOWN, dev);
8801 }
8802
8803 if (dev->flags & IFF_UP &&
8804 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8805 struct netdev_notifier_change_info change_info = {
8806 .info = {
8807 .dev = dev,
8808 },
8809 .flags_changed = changes,
8810 };
8811
8812 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8813 }
8814}
8815
8816/**
8817 * dev_change_flags - change device settings
8818 * @dev: device
8819 * @flags: device state flags
8820 * @extack: netlink extended ack
8821 *
8822 * Change settings on device based state flags. The flags are
8823 * in the userspace exported format.
8824 */
8825int dev_change_flags(struct net_device *dev, unsigned int flags,
8826 struct netlink_ext_ack *extack)
8827{
8828 int ret;
8829 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8830
8831 ret = __dev_change_flags(dev, flags, extack);
8832 if (ret < 0)
8833 return ret;
8834
8835 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8836 __dev_notify_flags(dev, old_flags, changes);
8837 return ret;
8838}
8839EXPORT_SYMBOL(dev_change_flags);
8840
8841int __dev_set_mtu(struct net_device *dev, int new_mtu)
8842{
8843 const struct net_device_ops *ops = dev->netdev_ops;
8844
8845 if (ops->ndo_change_mtu)
8846 return ops->ndo_change_mtu(dev, new_mtu);
8847
8848 /* Pairs with all the lockless reads of dev->mtu in the stack */
8849 WRITE_ONCE(dev->mtu, new_mtu);
8850 return 0;
8851}
8852EXPORT_SYMBOL(__dev_set_mtu);
8853
8854int dev_validate_mtu(struct net_device *dev, int new_mtu,
8855 struct netlink_ext_ack *extack)
8856{
8857 /* MTU must be positive, and in range */
8858 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8859 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8860 return -EINVAL;
8861 }
8862
8863 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8864 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8865 return -EINVAL;
8866 }
8867 return 0;
8868}
8869
8870/**
8871 * dev_set_mtu_ext - Change maximum transfer unit
8872 * @dev: device
8873 * @new_mtu: new transfer unit
8874 * @extack: netlink extended ack
8875 *
8876 * Change the maximum transfer size of the network device.
8877 */
8878int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8879 struct netlink_ext_ack *extack)
8880{
8881 int err, orig_mtu;
8882
8883 if (new_mtu == dev->mtu)
8884 return 0;
8885
8886 err = dev_validate_mtu(dev, new_mtu, extack);
8887 if (err)
8888 return err;
8889
8890 if (!netif_device_present(dev))
8891 return -ENODEV;
8892
8893 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8894 err = notifier_to_errno(err);
8895 if (err)
8896 return err;
8897
8898 orig_mtu = dev->mtu;
8899 err = __dev_set_mtu(dev, new_mtu);
8900
8901 if (!err) {
8902 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8903 orig_mtu);
8904 err = notifier_to_errno(err);
8905 if (err) {
8906 /* setting mtu back and notifying everyone again,
8907 * so that they have a chance to revert changes.
8908 */
8909 __dev_set_mtu(dev, orig_mtu);
8910 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8911 new_mtu);
8912 }
8913 }
8914 return err;
8915}
8916
8917int dev_set_mtu(struct net_device *dev, int new_mtu)
8918{
8919 struct netlink_ext_ack extack;
8920 int err;
8921
8922 memset(&extack, 0, sizeof(extack));
8923 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8924 if (err && extack._msg)
8925 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8926 return err;
8927}
8928EXPORT_SYMBOL(dev_set_mtu);
8929
8930/**
8931 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8932 * @dev: device
8933 * @new_len: new tx queue length
8934 */
8935int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8936{
8937 unsigned int orig_len = dev->tx_queue_len;
8938 int res;
8939
8940 if (new_len != (unsigned int)new_len)
8941 return -ERANGE;
8942
8943 if (new_len != orig_len) {
8944 dev->tx_queue_len = new_len;
8945 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8946 res = notifier_to_errno(res);
8947 if (res)
8948 goto err_rollback;
8949 res = dev_qdisc_change_tx_queue_len(dev);
8950 if (res)
8951 goto err_rollback;
8952 }
8953
8954 return 0;
8955
8956err_rollback:
8957 netdev_err(dev, "refused to change device tx_queue_len\n");
8958 dev->tx_queue_len = orig_len;
8959 return res;
8960}
8961
8962/**
8963 * dev_set_group - Change group this device belongs to
8964 * @dev: device
8965 * @new_group: group this device should belong to
8966 */
8967void dev_set_group(struct net_device *dev, int new_group)
8968{
8969 dev->group = new_group;
8970}
8971EXPORT_SYMBOL(dev_set_group);
8972
8973/**
8974 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8975 * @dev: device
8976 * @addr: new address
8977 * @extack: netlink extended ack
8978 */
8979int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8980 struct netlink_ext_ack *extack)
8981{
8982 struct netdev_notifier_pre_changeaddr_info info = {
8983 .info.dev = dev,
8984 .info.extack = extack,
8985 .dev_addr = addr,
8986 };
8987 int rc;
8988
8989 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8990 return notifier_to_errno(rc);
8991}
8992EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8993
8994/**
8995 * dev_set_mac_address - Change Media Access Control Address
8996 * @dev: device
8997 * @sa: new address
8998 * @extack: netlink extended ack
8999 *
9000 * Change the hardware (MAC) address of the device
9001 */
9002int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
9003 struct netlink_ext_ack *extack)
9004{
9005 const struct net_device_ops *ops = dev->netdev_ops;
9006 int err;
9007
9008 if (!ops->ndo_set_mac_address)
9009 return -EOPNOTSUPP;
9010 if (sa->sa_family != dev->type)
9011 return -EINVAL;
9012 if (!netif_device_present(dev))
9013 return -ENODEV;
9014 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
9015 if (err)
9016 return err;
9017 err = ops->ndo_set_mac_address(dev, sa);
9018 if (err)
9019 return err;
9020 dev->addr_assign_type = NET_ADDR_SET;
9021 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
9022 add_device_randomness(dev->dev_addr, dev->addr_len);
9023 return 0;
9024}
9025EXPORT_SYMBOL(dev_set_mac_address);
9026
9027static DECLARE_RWSEM(dev_addr_sem);
9028
9029int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
9030 struct netlink_ext_ack *extack)
9031{
9032 int ret;
9033
9034 down_write(&dev_addr_sem);
9035 ret = dev_set_mac_address(dev, sa, extack);
9036 up_write(&dev_addr_sem);
9037 return ret;
9038}
9039EXPORT_SYMBOL(dev_set_mac_address_user);
9040
9041int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
9042{
9043 size_t size = sizeof(sa->sa_data);
9044 struct net_device *dev;
9045 int ret = 0;
9046
9047 down_read(&dev_addr_sem);
9048 rcu_read_lock();
9049
9050 dev = dev_get_by_name_rcu(net, dev_name);
9051 if (!dev) {
9052 ret = -ENODEV;
9053 goto unlock;
9054 }
9055 if (!dev->addr_len)
9056 memset(sa->sa_data, 0, size);
9057 else
9058 memcpy(sa->sa_data, dev->dev_addr,
9059 min_t(size_t, size, dev->addr_len));
9060 sa->sa_family = dev->type;
9061
9062unlock:
9063 rcu_read_unlock();
9064 up_read(&dev_addr_sem);
9065 return ret;
9066}
9067EXPORT_SYMBOL(dev_get_mac_address);
9068
9069/**
9070 * dev_change_carrier - Change device carrier
9071 * @dev: device
9072 * @new_carrier: new value
9073 *
9074 * Change device carrier
9075 */
9076int dev_change_carrier(struct net_device *dev, bool new_carrier)
9077{
9078 const struct net_device_ops *ops = dev->netdev_ops;
9079
9080 if (!ops->ndo_change_carrier)
9081 return -EOPNOTSUPP;
9082 if (!netif_device_present(dev))
9083 return -ENODEV;
9084 return ops->ndo_change_carrier(dev, new_carrier);
9085}
9086EXPORT_SYMBOL(dev_change_carrier);
9087
9088/**
9089 * dev_get_phys_port_id - Get device physical port ID
9090 * @dev: device
9091 * @ppid: port ID
9092 *
9093 * Get device physical port ID
9094 */
9095int dev_get_phys_port_id(struct net_device *dev,
9096 struct netdev_phys_item_id *ppid)
9097{
9098 const struct net_device_ops *ops = dev->netdev_ops;
9099
9100 if (!ops->ndo_get_phys_port_id)
9101 return -EOPNOTSUPP;
9102 return ops->ndo_get_phys_port_id(dev, ppid);
9103}
9104EXPORT_SYMBOL(dev_get_phys_port_id);
9105
9106/**
9107 * dev_get_phys_port_name - Get device physical port name
9108 * @dev: device
9109 * @name: port name
9110 * @len: limit of bytes to copy to name
9111 *
9112 * Get device physical port name
9113 */
9114int dev_get_phys_port_name(struct net_device *dev,
9115 char *name, size_t len)
9116{
9117 const struct net_device_ops *ops = dev->netdev_ops;
9118 int err;
9119
9120 if (ops->ndo_get_phys_port_name) {
9121 err = ops->ndo_get_phys_port_name(dev, name, len);
9122 if (err != -EOPNOTSUPP)
9123 return err;
9124 }
9125 return devlink_compat_phys_port_name_get(dev, name, len);
9126}
9127EXPORT_SYMBOL(dev_get_phys_port_name);
9128
9129/**
9130 * dev_get_port_parent_id - Get the device's port parent identifier
9131 * @dev: network device
9132 * @ppid: pointer to a storage for the port's parent identifier
9133 * @recurse: allow/disallow recursion to lower devices
9134 *
9135 * Get the devices's port parent identifier
9136 */
9137int dev_get_port_parent_id(struct net_device *dev,
9138 struct netdev_phys_item_id *ppid,
9139 bool recurse)
9140{
9141 const struct net_device_ops *ops = dev->netdev_ops;
9142 struct netdev_phys_item_id first = { };
9143 struct net_device *lower_dev;
9144 struct list_head *iter;
9145 int err;
9146
9147 if (ops->ndo_get_port_parent_id) {
9148 err = ops->ndo_get_port_parent_id(dev, ppid);
9149 if (err != -EOPNOTSUPP)
9150 return err;
9151 }
9152
9153 err = devlink_compat_switch_id_get(dev, ppid);
9154 if (!err || err != -EOPNOTSUPP)
9155 return err;
9156
9157 if (!recurse)
9158 return -EOPNOTSUPP;
9159
9160 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9161 err = dev_get_port_parent_id(lower_dev, ppid, recurse);
9162 if (err)
9163 break;
9164 if (!first.id_len)
9165 first = *ppid;
9166 else if (memcmp(&first, ppid, sizeof(*ppid)))
9167 return -EOPNOTSUPP;
9168 }
9169
9170 return err;
9171}
9172EXPORT_SYMBOL(dev_get_port_parent_id);
9173
9174/**
9175 * netdev_port_same_parent_id - Indicate if two network devices have
9176 * the same port parent identifier
9177 * @a: first network device
9178 * @b: second network device
9179 */
9180bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9181{
9182 struct netdev_phys_item_id a_id = { };
9183 struct netdev_phys_item_id b_id = { };
9184
9185 if (dev_get_port_parent_id(a, &a_id, true) ||
9186 dev_get_port_parent_id(b, &b_id, true))
9187 return false;
9188
9189 return netdev_phys_item_id_same(&a_id, &b_id);
9190}
9191EXPORT_SYMBOL(netdev_port_same_parent_id);
9192
9193/**
9194 * dev_change_proto_down - update protocol port state information
9195 * @dev: device
9196 * @proto_down: new value
9197 *
9198 * This info can be used by switch drivers to set the phys state of the
9199 * port.
9200 */
9201int dev_change_proto_down(struct net_device *dev, bool proto_down)
9202{
9203 const struct net_device_ops *ops = dev->netdev_ops;
9204
9205 if (!ops->ndo_change_proto_down)
9206 return -EOPNOTSUPP;
9207 if (!netif_device_present(dev))
9208 return -ENODEV;
9209 return ops->ndo_change_proto_down(dev, proto_down);
9210}
9211EXPORT_SYMBOL(dev_change_proto_down);
9212
9213/**
9214 * dev_change_proto_down_generic - generic implementation for
9215 * ndo_change_proto_down that sets carrier according to
9216 * proto_down.
9217 *
9218 * @dev: device
9219 * @proto_down: new value
9220 */
9221int dev_change_proto_down_generic(struct net_device *dev, bool proto_down)
9222{
9223 if (proto_down)
9224 netif_carrier_off(dev);
9225 else
9226 netif_carrier_on(dev);
9227 dev->proto_down = proto_down;
9228 return 0;
9229}
9230EXPORT_SYMBOL(dev_change_proto_down_generic);
9231
9232/**
9233 * dev_change_proto_down_reason - proto down reason
9234 *
9235 * @dev: device
9236 * @mask: proto down mask
9237 * @value: proto down value
9238 */
9239void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9240 u32 value)
9241{
9242 int b;
9243
9244 if (!mask) {
9245 dev->proto_down_reason = value;
9246 } else {
9247 for_each_set_bit(b, &mask, 32) {
9248 if (value & (1 << b))
9249 dev->proto_down_reason |= BIT(b);
9250 else
9251 dev->proto_down_reason &= ~BIT(b);
9252 }
9253 }
9254}
9255EXPORT_SYMBOL(dev_change_proto_down_reason);
9256
9257struct bpf_xdp_link {
9258 struct bpf_link link;
9259 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9260 int flags;
9261};
9262
9263static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9264{
9265 if (flags & XDP_FLAGS_HW_MODE)
9266 return XDP_MODE_HW;
9267 if (flags & XDP_FLAGS_DRV_MODE)
9268 return XDP_MODE_DRV;
9269 if (flags & XDP_FLAGS_SKB_MODE)
9270 return XDP_MODE_SKB;
9271 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9272}
9273
9274static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9275{
9276 switch (mode) {
9277 case XDP_MODE_SKB:
9278 return generic_xdp_install;
9279 case XDP_MODE_DRV:
9280 case XDP_MODE_HW:
9281 return dev->netdev_ops->ndo_bpf;
9282 default:
9283 return NULL;
9284 }
9285}
9286
9287static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9288 enum bpf_xdp_mode mode)
9289{
9290 return dev->xdp_state[mode].link;
9291}
9292
9293static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9294 enum bpf_xdp_mode mode)
9295{
9296 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9297
9298 if (link)
9299 return link->link.prog;
9300 return dev->xdp_state[mode].prog;
9301}
9302
9303static u8 dev_xdp_prog_count(struct net_device *dev)
9304{
9305 u8 count = 0;
9306 int i;
9307
9308 for (i = 0; i < __MAX_XDP_MODE; i++)
9309 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9310 count++;
9311 return count;
9312}
9313
9314u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9315{
9316 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9317
9318 return prog ? prog->aux->id : 0;
9319}
9320
9321static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9322 struct bpf_xdp_link *link)
9323{
9324 dev->xdp_state[mode].link = link;
9325 dev->xdp_state[mode].prog = NULL;
9326}
9327
9328static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9329 struct bpf_prog *prog)
9330{
9331 dev->xdp_state[mode].link = NULL;
9332 dev->xdp_state[mode].prog = prog;
9333}
9334
9335static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9336 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9337 u32 flags, struct bpf_prog *prog)
9338{
9339 struct netdev_bpf xdp;
9340 int err;
9341
9342 memset(&xdp, 0, sizeof(xdp));
9343 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9344 xdp.extack = extack;
9345 xdp.flags = flags;
9346 xdp.prog = prog;
9347
9348 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9349 * "moved" into driver), so they don't increment it on their own, but
9350 * they do decrement refcnt when program is detached or replaced.
9351 * Given net_device also owns link/prog, we need to bump refcnt here
9352 * to prevent drivers from underflowing it.
9353 */
9354 if (prog)
9355 bpf_prog_inc(prog);
9356 err = bpf_op(dev, &xdp);
9357 if (err) {
9358 if (prog)
9359 bpf_prog_put(prog);
9360 return err;
9361 }
9362
9363 if (mode != XDP_MODE_HW)
9364 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9365
9366 return 0;
9367}
9368
9369static void dev_xdp_uninstall(struct net_device *dev)
9370{
9371 struct bpf_xdp_link *link;
9372 struct bpf_prog *prog;
9373 enum bpf_xdp_mode mode;
9374 bpf_op_t bpf_op;
9375
9376 ASSERT_RTNL();
9377
9378 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9379 prog = dev_xdp_prog(dev, mode);
9380 if (!prog)
9381 continue;
9382
9383 bpf_op = dev_xdp_bpf_op(dev, mode);
9384 if (!bpf_op)
9385 continue;
9386
9387 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9388
9389 /* auto-detach link from net device */
9390 link = dev_xdp_link(dev, mode);
9391 if (link)
9392 link->dev = NULL;
9393 else
9394 bpf_prog_put(prog);
9395
9396 dev_xdp_set_link(dev, mode, NULL);
9397 }
9398}
9399
9400static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9401 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9402 struct bpf_prog *old_prog, u32 flags)
9403{
9404 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9405 struct bpf_prog *cur_prog;
9406 enum bpf_xdp_mode mode;
9407 bpf_op_t bpf_op;
9408 int err;
9409
9410 ASSERT_RTNL();
9411
9412 /* either link or prog attachment, never both */
9413 if (link && (new_prog || old_prog))
9414 return -EINVAL;
9415 /* link supports only XDP mode flags */
9416 if (link && (flags & ~XDP_FLAGS_MODES)) {
9417 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9418 return -EINVAL;
9419 }
9420 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9421 if (num_modes > 1) {
9422 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9423 return -EINVAL;
9424 }
9425 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9426 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9427 NL_SET_ERR_MSG(extack,
9428 "More than one program loaded, unset mode is ambiguous");
9429 return -EINVAL;
9430 }
9431 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9432 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9433 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9434 return -EINVAL;
9435 }
9436
9437 mode = dev_xdp_mode(dev, flags);
9438 /* can't replace attached link */
9439 if (dev_xdp_link(dev, mode)) {
9440 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9441 return -EBUSY;
9442 }
9443
9444 cur_prog = dev_xdp_prog(dev, mode);
9445 /* can't replace attached prog with link */
9446 if (link && cur_prog) {
9447 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9448 return -EBUSY;
9449 }
9450 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9451 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9452 return -EEXIST;
9453 }
9454
9455 /* put effective new program into new_prog */
9456 if (link)
9457 new_prog = link->link.prog;
9458
9459 if (new_prog) {
9460 bool offload = mode == XDP_MODE_HW;
9461 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9462 ? XDP_MODE_DRV : XDP_MODE_SKB;
9463
9464 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9465 NL_SET_ERR_MSG(extack, "XDP program already attached");
9466 return -EBUSY;
9467 }
9468 if (!offload && dev_xdp_prog(dev, other_mode)) {
9469 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9470 return -EEXIST;
9471 }
9472 if (!offload && bpf_prog_is_dev_bound(new_prog->aux)) {
9473 NL_SET_ERR_MSG(extack, "Using device-bound program without HW_MODE flag is not supported");
9474 return -EINVAL;
9475 }
9476 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9477 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9478 return -EINVAL;
9479 }
9480 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9481 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9482 return -EINVAL;
9483 }
9484 }
9485
9486 /* don't call drivers if the effective program didn't change */
9487 if (new_prog != cur_prog) {
9488 bpf_op = dev_xdp_bpf_op(dev, mode);
9489 if (!bpf_op) {
9490 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9491 return -EOPNOTSUPP;
9492 }
9493
9494 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9495 if (err)
9496 return err;
9497 }
9498
9499 if (link)
9500 dev_xdp_set_link(dev, mode, link);
9501 else
9502 dev_xdp_set_prog(dev, mode, new_prog);
9503 if (cur_prog)
9504 bpf_prog_put(cur_prog);
9505
9506 return 0;
9507}
9508
9509static int dev_xdp_attach_link(struct net_device *dev,
9510 struct netlink_ext_ack *extack,
9511 struct bpf_xdp_link *link)
9512{
9513 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9514}
9515
9516static int dev_xdp_detach_link(struct net_device *dev,
9517 struct netlink_ext_ack *extack,
9518 struct bpf_xdp_link *link)
9519{
9520 enum bpf_xdp_mode mode;
9521 bpf_op_t bpf_op;
9522
9523 ASSERT_RTNL();
9524
9525 mode = dev_xdp_mode(dev, link->flags);
9526 if (dev_xdp_link(dev, mode) != link)
9527 return -EINVAL;
9528
9529 bpf_op = dev_xdp_bpf_op(dev, mode);
9530 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9531 dev_xdp_set_link(dev, mode, NULL);
9532 return 0;
9533}
9534
9535static void bpf_xdp_link_release(struct bpf_link *link)
9536{
9537 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9538
9539 rtnl_lock();
9540
9541 /* if racing with net_device's tear down, xdp_link->dev might be
9542 * already NULL, in which case link was already auto-detached
9543 */
9544 if (xdp_link->dev) {
9545 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9546 xdp_link->dev = NULL;
9547 }
9548
9549 rtnl_unlock();
9550}
9551
9552static int bpf_xdp_link_detach(struct bpf_link *link)
9553{
9554 bpf_xdp_link_release(link);
9555 return 0;
9556}
9557
9558static void bpf_xdp_link_dealloc(struct bpf_link *link)
9559{
9560 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9561
9562 kfree(xdp_link);
9563}
9564
9565static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9566 struct seq_file *seq)
9567{
9568 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9569 u32 ifindex = 0;
9570
9571 rtnl_lock();
9572 if (xdp_link->dev)
9573 ifindex = xdp_link->dev->ifindex;
9574 rtnl_unlock();
9575
9576 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9577}
9578
9579static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9580 struct bpf_link_info *info)
9581{
9582 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9583 u32 ifindex = 0;
9584
9585 rtnl_lock();
9586 if (xdp_link->dev)
9587 ifindex = xdp_link->dev->ifindex;
9588 rtnl_unlock();
9589
9590 info->xdp.ifindex = ifindex;
9591 return 0;
9592}
9593
9594static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9595 struct bpf_prog *old_prog)
9596{
9597 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9598 enum bpf_xdp_mode mode;
9599 bpf_op_t bpf_op;
9600 int err = 0;
9601
9602 rtnl_lock();
9603
9604 /* link might have been auto-released already, so fail */
9605 if (!xdp_link->dev) {
9606 err = -ENOLINK;
9607 goto out_unlock;
9608 }
9609
9610 if (old_prog && link->prog != old_prog) {
9611 err = -EPERM;
9612 goto out_unlock;
9613 }
9614 old_prog = link->prog;
9615 if (old_prog == new_prog) {
9616 /* no-op, don't disturb drivers */
9617 bpf_prog_put(new_prog);
9618 goto out_unlock;
9619 }
9620
9621 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9622 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9623 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9624 xdp_link->flags, new_prog);
9625 if (err)
9626 goto out_unlock;
9627
9628 old_prog = xchg(&link->prog, new_prog);
9629 bpf_prog_put(old_prog);
9630
9631out_unlock:
9632 rtnl_unlock();
9633 return err;
9634}
9635
9636static const struct bpf_link_ops bpf_xdp_link_lops = {
9637 .release = bpf_xdp_link_release,
9638 .dealloc = bpf_xdp_link_dealloc,
9639 .detach = bpf_xdp_link_detach,
9640 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9641 .fill_link_info = bpf_xdp_link_fill_link_info,
9642 .update_prog = bpf_xdp_link_update,
9643};
9644
9645int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9646{
9647 struct net *net = current->nsproxy->net_ns;
9648 struct bpf_link_primer link_primer;
9649 struct bpf_xdp_link *link;
9650 struct net_device *dev;
9651 int err, fd;
9652
9653 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9654 if (!dev)
9655 return -EINVAL;
9656
9657 link = kzalloc(sizeof(*link), GFP_USER);
9658 if (!link) {
9659 err = -ENOMEM;
9660 goto out_put_dev;
9661 }
9662
9663 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9664 link->dev = dev;
9665 link->flags = attr->link_create.flags;
9666
9667 err = bpf_link_prime(&link->link, &link_primer);
9668 if (err) {
9669 kfree(link);
9670 goto out_put_dev;
9671 }
9672
9673 rtnl_lock();
9674 err = dev_xdp_attach_link(dev, NULL, link);
9675 rtnl_unlock();
9676
9677 if (err) {
9678 bpf_link_cleanup(&link_primer);
9679 goto out_put_dev;
9680 }
9681
9682 fd = bpf_link_settle(&link_primer);
9683 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9684 dev_put(dev);
9685 return fd;
9686
9687out_put_dev:
9688 dev_put(dev);
9689 return err;
9690}
9691
9692/**
9693 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9694 * @dev: device
9695 * @extack: netlink extended ack
9696 * @fd: new program fd or negative value to clear
9697 * @expected_fd: old program fd that userspace expects to replace or clear
9698 * @flags: xdp-related flags
9699 *
9700 * Set or clear a bpf program for a device
9701 */
9702int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9703 int fd, int expected_fd, u32 flags)
9704{
9705 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9706 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9707 int err;
9708
9709 ASSERT_RTNL();
9710
9711 if (fd >= 0) {
9712 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9713 mode != XDP_MODE_SKB);
9714 if (IS_ERR(new_prog))
9715 return PTR_ERR(new_prog);
9716 }
9717
9718 if (expected_fd >= 0) {
9719 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9720 mode != XDP_MODE_SKB);
9721 if (IS_ERR(old_prog)) {
9722 err = PTR_ERR(old_prog);
9723 old_prog = NULL;
9724 goto err_out;
9725 }
9726 }
9727
9728 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9729
9730err_out:
9731 if (err && new_prog)
9732 bpf_prog_put(new_prog);
9733 if (old_prog)
9734 bpf_prog_put(old_prog);
9735 return err;
9736}
9737
9738/**
9739 * dev_new_index - allocate an ifindex
9740 * @net: the applicable net namespace
9741 *
9742 * Returns a suitable unique value for a new device interface
9743 * number. The caller must hold the rtnl semaphore or the
9744 * dev_base_lock to be sure it remains unique.
9745 */
9746static int dev_new_index(struct net *net)
9747{
9748 int ifindex = net->ifindex;
9749
9750 for (;;) {
9751 if (++ifindex <= 0)
9752 ifindex = 1;
9753 if (!__dev_get_by_index(net, ifindex))
9754 return net->ifindex = ifindex;
9755 }
9756}
9757
9758/* Delayed registration/unregisteration */
9759static LIST_HEAD(net_todo_list);
9760DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9761
9762static void net_set_todo(struct net_device *dev)
9763{
9764 list_add_tail(&dev->todo_list, &net_todo_list);
9765 dev_net(dev)->dev_unreg_count++;
9766}
9767
9768static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9769 struct net_device *upper, netdev_features_t features)
9770{
9771 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9772 netdev_features_t feature;
9773 int feature_bit;
9774
9775 for_each_netdev_feature(upper_disables, feature_bit) {
9776 feature = __NETIF_F_BIT(feature_bit);
9777 if (!(upper->wanted_features & feature)
9778 && (features & feature)) {
9779 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9780 &feature, upper->name);
9781 features &= ~feature;
9782 }
9783 }
9784
9785 return features;
9786}
9787
9788static void netdev_sync_lower_features(struct net_device *upper,
9789 struct net_device *lower, netdev_features_t features)
9790{
9791 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9792 netdev_features_t feature;
9793 int feature_bit;
9794
9795 for_each_netdev_feature(upper_disables, feature_bit) {
9796 feature = __NETIF_F_BIT(feature_bit);
9797 if (!(features & feature) && (lower->features & feature)) {
9798 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9799 &feature, lower->name);
9800 lower->wanted_features &= ~feature;
9801 __netdev_update_features(lower);
9802
9803 if (unlikely(lower->features & feature))
9804 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9805 &feature, lower->name);
9806 else
9807 netdev_features_change(lower);
9808 }
9809 }
9810}
9811
9812static netdev_features_t netdev_fix_features(struct net_device *dev,
9813 netdev_features_t features)
9814{
9815 /* Fix illegal checksum combinations */
9816 if ((features & NETIF_F_HW_CSUM) &&
9817 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9818 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9819 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9820 }
9821
9822 /* TSO requires that SG is present as well. */
9823 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9824 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9825 features &= ~NETIF_F_ALL_TSO;
9826 }
9827
9828 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9829 !(features & NETIF_F_IP_CSUM)) {
9830 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9831 features &= ~NETIF_F_TSO;
9832 features &= ~NETIF_F_TSO_ECN;
9833 }
9834
9835 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9836 !(features & NETIF_F_IPV6_CSUM)) {
9837 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9838 features &= ~NETIF_F_TSO6;
9839 }
9840
9841 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9842 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9843 features &= ~NETIF_F_TSO_MANGLEID;
9844
9845 /* TSO ECN requires that TSO is present as well. */
9846 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9847 features &= ~NETIF_F_TSO_ECN;
9848
9849 /* Software GSO depends on SG. */
9850 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9851 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9852 features &= ~NETIF_F_GSO;
9853 }
9854
9855 /* GSO partial features require GSO partial be set */
9856 if ((features & dev->gso_partial_features) &&
9857 !(features & NETIF_F_GSO_PARTIAL)) {
9858 netdev_dbg(dev,
9859 "Dropping partially supported GSO features since no GSO partial.\n");
9860 features &= ~dev->gso_partial_features;
9861 }
9862
9863 if (!(features & NETIF_F_RXCSUM)) {
9864 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9865 * successfully merged by hardware must also have the
9866 * checksum verified by hardware. If the user does not
9867 * want to enable RXCSUM, logically, we should disable GRO_HW.
9868 */
9869 if (features & NETIF_F_GRO_HW) {
9870 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9871 features &= ~NETIF_F_GRO_HW;
9872 }
9873 }
9874
9875 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9876 if (features & NETIF_F_RXFCS) {
9877 if (features & NETIF_F_LRO) {
9878 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9879 features &= ~NETIF_F_LRO;
9880 }
9881
9882 if (features & NETIF_F_GRO_HW) {
9883 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9884 features &= ~NETIF_F_GRO_HW;
9885 }
9886 }
9887
9888 if (features & NETIF_F_HW_TLS_TX) {
9889 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9890 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9891 bool hw_csum = features & NETIF_F_HW_CSUM;
9892
9893 if (!ip_csum && !hw_csum) {
9894 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9895 features &= ~NETIF_F_HW_TLS_TX;
9896 }
9897 }
9898
9899 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9900 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9901 features &= ~NETIF_F_HW_TLS_RX;
9902 }
9903
9904 return features;
9905}
9906
9907int __netdev_update_features(struct net_device *dev)
9908{
9909 struct net_device *upper, *lower;
9910 netdev_features_t features;
9911 struct list_head *iter;
9912 int err = -1;
9913
9914 ASSERT_RTNL();
9915
9916 features = netdev_get_wanted_features(dev);
9917
9918 if (dev->netdev_ops->ndo_fix_features)
9919 features = dev->netdev_ops->ndo_fix_features(dev, features);
9920
9921 /* driver might be less strict about feature dependencies */
9922 features = netdev_fix_features(dev, features);
9923
9924 /* some features can't be enabled if they're off on an upper device */
9925 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9926 features = netdev_sync_upper_features(dev, upper, features);
9927
9928 if (dev->features == features)
9929 goto sync_lower;
9930
9931 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9932 &dev->features, &features);
9933
9934 if (dev->netdev_ops->ndo_set_features)
9935 err = dev->netdev_ops->ndo_set_features(dev, features);
9936 else
9937 err = 0;
9938
9939 if (unlikely(err < 0)) {
9940 netdev_err(dev,
9941 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9942 err, &features, &dev->features);
9943 /* return non-0 since some features might have changed and
9944 * it's better to fire a spurious notification than miss it
9945 */
9946 return -1;
9947 }
9948
9949sync_lower:
9950 /* some features must be disabled on lower devices when disabled
9951 * on an upper device (think: bonding master or bridge)
9952 */
9953 netdev_for_each_lower_dev(dev, lower, iter)
9954 netdev_sync_lower_features(dev, lower, features);
9955
9956 if (!err) {
9957 netdev_features_t diff = features ^ dev->features;
9958
9959 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9960 /* udp_tunnel_{get,drop}_rx_info both need
9961 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9962 * device, or they won't do anything.
9963 * Thus we need to update dev->features
9964 * *before* calling udp_tunnel_get_rx_info,
9965 * but *after* calling udp_tunnel_drop_rx_info.
9966 */
9967 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9968 dev->features = features;
9969 udp_tunnel_get_rx_info(dev);
9970 } else {
9971 udp_tunnel_drop_rx_info(dev);
9972 }
9973 }
9974
9975 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9976 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9977 dev->features = features;
9978 err |= vlan_get_rx_ctag_filter_info(dev);
9979 } else {
9980 vlan_drop_rx_ctag_filter_info(dev);
9981 }
9982 }
9983
9984 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9985 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9986 dev->features = features;
9987 err |= vlan_get_rx_stag_filter_info(dev);
9988 } else {
9989 vlan_drop_rx_stag_filter_info(dev);
9990 }
9991 }
9992
9993 dev->features = features;
9994 }
9995
9996 return err < 0 ? 0 : 1;
9997}
9998
9999/**
10000 * netdev_update_features - recalculate device features
10001 * @dev: the device to check
10002 *
10003 * Recalculate dev->features set and send notifications if it
10004 * has changed. Should be called after driver or hardware dependent
10005 * conditions might have changed that influence the features.
10006 */
10007void netdev_update_features(struct net_device *dev)
10008{
10009 if (__netdev_update_features(dev))
10010 netdev_features_change(dev);
10011}
10012EXPORT_SYMBOL(netdev_update_features);
10013
10014/**
10015 * netdev_change_features - recalculate device features
10016 * @dev: the device to check
10017 *
10018 * Recalculate dev->features set and send notifications even
10019 * if they have not changed. Should be called instead of
10020 * netdev_update_features() if also dev->vlan_features might
10021 * have changed to allow the changes to be propagated to stacked
10022 * VLAN devices.
10023 */
10024void netdev_change_features(struct net_device *dev)
10025{
10026 __netdev_update_features(dev);
10027 netdev_features_change(dev);
10028}
10029EXPORT_SYMBOL(netdev_change_features);
10030
10031/**
10032 * netif_stacked_transfer_operstate - transfer operstate
10033 * @rootdev: the root or lower level device to transfer state from
10034 * @dev: the device to transfer operstate to
10035 *
10036 * Transfer operational state from root to device. This is normally
10037 * called when a stacking relationship exists between the root
10038 * device and the device(a leaf device).
10039 */
10040void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10041 struct net_device *dev)
10042{
10043 if (rootdev->operstate == IF_OPER_DORMANT)
10044 netif_dormant_on(dev);
10045 else
10046 netif_dormant_off(dev);
10047
10048 if (rootdev->operstate == IF_OPER_TESTING)
10049 netif_testing_on(dev);
10050 else
10051 netif_testing_off(dev);
10052
10053 if (netif_carrier_ok(rootdev))
10054 netif_carrier_on(dev);
10055 else
10056 netif_carrier_off(dev);
10057}
10058EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10059
10060static int netif_alloc_rx_queues(struct net_device *dev)
10061{
10062 unsigned int i, count = dev->num_rx_queues;
10063 struct netdev_rx_queue *rx;
10064 size_t sz = count * sizeof(*rx);
10065 int err = 0;
10066
10067 BUG_ON(count < 1);
10068
10069 rx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10070 if (!rx)
10071 return -ENOMEM;
10072
10073 dev->_rx = rx;
10074
10075 for (i = 0; i < count; i++) {
10076 rx[i].dev = dev;
10077
10078 /* XDP RX-queue setup */
10079 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10080 if (err < 0)
10081 goto err_rxq_info;
10082 }
10083 return 0;
10084
10085err_rxq_info:
10086 /* Rollback successful reg's and free other resources */
10087 while (i--)
10088 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10089 kvfree(dev->_rx);
10090 dev->_rx = NULL;
10091 return err;
10092}
10093
10094static void netif_free_rx_queues(struct net_device *dev)
10095{
10096 unsigned int i, count = dev->num_rx_queues;
10097
10098 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10099 if (!dev->_rx)
10100 return;
10101
10102 for (i = 0; i < count; i++)
10103 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10104
10105 kvfree(dev->_rx);
10106}
10107
10108static void netdev_init_one_queue(struct net_device *dev,
10109 struct netdev_queue *queue, void *_unused)
10110{
10111 /* Initialize queue lock */
10112 spin_lock_init(&queue->_xmit_lock);
10113 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10114 queue->xmit_lock_owner = -1;
10115 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10116 queue->dev = dev;
10117#ifdef CONFIG_BQL
10118 dql_init(&queue->dql, HZ);
10119#endif
10120}
10121
10122static void netif_free_tx_queues(struct net_device *dev)
10123{
10124 kvfree(dev->_tx);
10125}
10126
10127static int netif_alloc_netdev_queues(struct net_device *dev)
10128{
10129 unsigned int count = dev->num_tx_queues;
10130 struct netdev_queue *tx;
10131 size_t sz = count * sizeof(*tx);
10132
10133 if (count < 1 || count > 0xffff)
10134 return -EINVAL;
10135
10136 tx = kvzalloc(sz, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10137 if (!tx)
10138 return -ENOMEM;
10139
10140 dev->_tx = tx;
10141
10142 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10143 spin_lock_init(&dev->tx_global_lock);
10144
10145 return 0;
10146}
10147
10148void netif_tx_stop_all_queues(struct net_device *dev)
10149{
10150 unsigned int i;
10151
10152 for (i = 0; i < dev->num_tx_queues; i++) {
10153 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10154
10155 netif_tx_stop_queue(txq);
10156 }
10157}
10158EXPORT_SYMBOL(netif_tx_stop_all_queues);
10159
10160/**
10161 * register_netdevice - register a network device
10162 * @dev: device to register
10163 *
10164 * Take a completed network device structure and add it to the kernel
10165 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10166 * chain. 0 is returned on success. A negative errno code is returned
10167 * on a failure to set up the device, or if the name is a duplicate.
10168 *
10169 * Callers must hold the rtnl semaphore. You may want
10170 * register_netdev() instead of this.
10171 *
10172 * BUGS:
10173 * The locking appears insufficient to guarantee two parallel registers
10174 * will not get the same name.
10175 */
10176
10177int register_netdevice(struct net_device *dev)
10178{
10179 int ret;
10180 struct net *net = dev_net(dev);
10181
10182 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10183 NETDEV_FEATURE_COUNT);
10184 BUG_ON(dev_boot_phase);
10185 ASSERT_RTNL();
10186
10187 might_sleep();
10188
10189 /* When net_device's are persistent, this will be fatal. */
10190 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10191 BUG_ON(!net);
10192
10193 ret = ethtool_check_ops(dev->ethtool_ops);
10194 if (ret)
10195 return ret;
10196
10197 spin_lock_init(&dev->addr_list_lock);
10198 netdev_set_addr_lockdep_class(dev);
10199
10200 ret = dev_get_valid_name(net, dev, dev->name);
10201 if (ret < 0)
10202 goto out;
10203
10204 ret = -ENOMEM;
10205 dev->name_node = netdev_name_node_head_alloc(dev);
10206 if (!dev->name_node)
10207 goto out;
10208
10209 /* Init, if this function is available */
10210 if (dev->netdev_ops->ndo_init) {
10211 ret = dev->netdev_ops->ndo_init(dev);
10212 if (ret) {
10213 if (ret > 0)
10214 ret = -EIO;
10215 goto err_free_name;
10216 }
10217 }
10218
10219 if (((dev->hw_features | dev->features) &
10220 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10221 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10222 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10223 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10224 ret = -EINVAL;
10225 goto err_uninit;
10226 }
10227
10228 ret = -EBUSY;
10229 if (!dev->ifindex)
10230 dev->ifindex = dev_new_index(net);
10231 else if (__dev_get_by_index(net, dev->ifindex))
10232 goto err_uninit;
10233
10234 /* Transfer changeable features to wanted_features and enable
10235 * software offloads (GSO and GRO).
10236 */
10237 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10238 dev->features |= NETIF_F_SOFT_FEATURES;
10239
10240 if (dev->udp_tunnel_nic_info) {
10241 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10242 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10243 }
10244
10245 dev->wanted_features = dev->features & dev->hw_features;
10246
10247 if (!(dev->flags & IFF_LOOPBACK))
10248 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10249
10250 /* If IPv4 TCP segmentation offload is supported we should also
10251 * allow the device to enable segmenting the frame with the option
10252 * of ignoring a static IP ID value. This doesn't enable the
10253 * feature itself but allows the user to enable it later.
10254 */
10255 if (dev->hw_features & NETIF_F_TSO)
10256 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10257 if (dev->vlan_features & NETIF_F_TSO)
10258 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10259 if (dev->mpls_features & NETIF_F_TSO)
10260 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10261 if (dev->hw_enc_features & NETIF_F_TSO)
10262 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10263
10264 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10265 */
10266 dev->vlan_features |= NETIF_F_HIGHDMA;
10267
10268 /* Make NETIF_F_SG inheritable to tunnel devices.
10269 */
10270 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10271
10272 /* Make NETIF_F_SG inheritable to MPLS.
10273 */
10274 dev->mpls_features |= NETIF_F_SG;
10275
10276 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10277 ret = notifier_to_errno(ret);
10278 if (ret)
10279 goto err_uninit;
10280
10281 ret = netdev_register_kobject(dev);
10282 if (ret) {
10283 dev->reg_state = NETREG_UNREGISTERED;
10284 goto err_uninit;
10285 }
10286 dev->reg_state = NETREG_REGISTERED;
10287
10288 __netdev_update_features(dev);
10289
10290 /*
10291 * Default initial state at registry is that the
10292 * device is present.
10293 */
10294
10295 set_bit(__LINK_STATE_PRESENT, &dev->state);
10296
10297 linkwatch_init_dev(dev);
10298
10299 dev_init_scheduler(dev);
10300 dev_hold(dev);
10301 list_netdevice(dev);
10302 add_device_randomness(dev->dev_addr, dev->addr_len);
10303
10304 /* If the device has permanent device address, driver should
10305 * set dev_addr and also addr_assign_type should be set to
10306 * NET_ADDR_PERM (default value).
10307 */
10308 if (dev->addr_assign_type == NET_ADDR_PERM)
10309 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10310
10311 /* Notify protocols, that a new device appeared. */
10312 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10313 ret = notifier_to_errno(ret);
10314 if (ret) {
10315 /* Expect explicit free_netdev() on failure */
10316 dev->needs_free_netdev = false;
10317 unregister_netdevice_queue(dev, NULL);
10318 goto out;
10319 }
10320 /*
10321 * Prevent userspace races by waiting until the network
10322 * device is fully setup before sending notifications.
10323 */
10324 if (!dev->rtnl_link_ops ||
10325 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10326 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
10327
10328out:
10329 return ret;
10330
10331err_uninit:
10332 if (dev->netdev_ops->ndo_uninit)
10333 dev->netdev_ops->ndo_uninit(dev);
10334 if (dev->priv_destructor)
10335 dev->priv_destructor(dev);
10336err_free_name:
10337 netdev_name_node_free(dev->name_node);
10338 goto out;
10339}
10340EXPORT_SYMBOL(register_netdevice);
10341
10342/**
10343 * init_dummy_netdev - init a dummy network device for NAPI
10344 * @dev: device to init
10345 *
10346 * This takes a network device structure and initialize the minimum
10347 * amount of fields so it can be used to schedule NAPI polls without
10348 * registering a full blown interface. This is to be used by drivers
10349 * that need to tie several hardware interfaces to a single NAPI
10350 * poll scheduler due to HW limitations.
10351 */
10352int init_dummy_netdev(struct net_device *dev)
10353{
10354 /* Clear everything. Note we don't initialize spinlocks
10355 * are they aren't supposed to be taken by any of the
10356 * NAPI code and this dummy netdev is supposed to be
10357 * only ever used for NAPI polls
10358 */
10359 memset(dev, 0, sizeof(struct net_device));
10360
10361 /* make sure we BUG if trying to hit standard
10362 * register/unregister code path
10363 */
10364 dev->reg_state = NETREG_DUMMY;
10365
10366 /* NAPI wants this */
10367 INIT_LIST_HEAD(&dev->napi_list);
10368
10369 /* a dummy interface is started by default */
10370 set_bit(__LINK_STATE_PRESENT, &dev->state);
10371 set_bit(__LINK_STATE_START, &dev->state);
10372
10373 /* napi_busy_loop stats accounting wants this */
10374 dev_net_set(dev, &init_net);
10375
10376 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10377 * because users of this 'device' dont need to change
10378 * its refcount.
10379 */
10380
10381 return 0;
10382}
10383EXPORT_SYMBOL_GPL(init_dummy_netdev);
10384
10385
10386/**
10387 * register_netdev - register a network device
10388 * @dev: device to register
10389 *
10390 * Take a completed network device structure and add it to the kernel
10391 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10392 * chain. 0 is returned on success. A negative errno code is returned
10393 * on a failure to set up the device, or if the name is a duplicate.
10394 *
10395 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10396 * and expands the device name if you passed a format string to
10397 * alloc_netdev.
10398 */
10399int register_netdev(struct net_device *dev)
10400{
10401 int err;
10402
10403 if (rtnl_lock_killable())
10404 return -EINTR;
10405 err = register_netdevice(dev);
10406 rtnl_unlock();
10407 return err;
10408}
10409EXPORT_SYMBOL(register_netdev);
10410
10411int netdev_refcnt_read(const struct net_device *dev)
10412{
10413#ifdef CONFIG_PCPU_DEV_REFCNT
10414 int i, refcnt = 0;
10415
10416 for_each_possible_cpu(i)
10417 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10418 return refcnt;
10419#else
10420 return refcount_read(&dev->dev_refcnt);
10421#endif
10422}
10423EXPORT_SYMBOL(netdev_refcnt_read);
10424
10425int netdev_unregister_timeout_secs __read_mostly = 10;
10426
10427#define WAIT_REFS_MIN_MSECS 1
10428#define WAIT_REFS_MAX_MSECS 250
10429/**
10430 * netdev_wait_allrefs - wait until all references are gone.
10431 * @dev: target net_device
10432 *
10433 * This is called when unregistering network devices.
10434 *
10435 * Any protocol or device that holds a reference should register
10436 * for netdevice notification, and cleanup and put back the
10437 * reference if they receive an UNREGISTER event.
10438 * We can get stuck here if buggy protocols don't correctly
10439 * call dev_put.
10440 */
10441static void netdev_wait_allrefs(struct net_device *dev)
10442{
10443 unsigned long rebroadcast_time, warning_time;
10444 int wait = 0, refcnt;
10445
10446 linkwatch_forget_dev(dev);
10447
10448 rebroadcast_time = warning_time = jiffies;
10449 refcnt = netdev_refcnt_read(dev);
10450
10451 while (refcnt != 1) {
10452 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10453 rtnl_lock();
10454
10455 /* Rebroadcast unregister notification */
10456 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10457
10458 __rtnl_unlock();
10459 rcu_barrier();
10460 rtnl_lock();
10461
10462 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10463 &dev->state)) {
10464 /* We must not have linkwatch events
10465 * pending on unregister. If this
10466 * happens, we simply run the queue
10467 * unscheduled, resulting in a noop
10468 * for this device.
10469 */
10470 linkwatch_run_queue();
10471 }
10472
10473 __rtnl_unlock();
10474
10475 rebroadcast_time = jiffies;
10476 }
10477
10478 if (!wait) {
10479 rcu_barrier();
10480 wait = WAIT_REFS_MIN_MSECS;
10481 } else {
10482 msleep(wait);
10483 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10484 }
10485
10486 refcnt = netdev_refcnt_read(dev);
10487
10488 if (refcnt != 1 &&
10489 time_after(jiffies, warning_time +
10490 netdev_unregister_timeout_secs * HZ)) {
10491 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10492 dev->name, refcnt);
10493 warning_time = jiffies;
10494 }
10495 }
10496}
10497
10498/* The sequence is:
10499 *
10500 * rtnl_lock();
10501 * ...
10502 * register_netdevice(x1);
10503 * register_netdevice(x2);
10504 * ...
10505 * unregister_netdevice(y1);
10506 * unregister_netdevice(y2);
10507 * ...
10508 * rtnl_unlock();
10509 * free_netdev(y1);
10510 * free_netdev(y2);
10511 *
10512 * We are invoked by rtnl_unlock().
10513 * This allows us to deal with problems:
10514 * 1) We can delete sysfs objects which invoke hotplug
10515 * without deadlocking with linkwatch via keventd.
10516 * 2) Since we run with the RTNL semaphore not held, we can sleep
10517 * safely in order to wait for the netdev refcnt to drop to zero.
10518 *
10519 * We must not return until all unregister events added during
10520 * the interval the lock was held have been completed.
10521 */
10522void netdev_run_todo(void)
10523{
10524 struct list_head list;
10525#ifdef CONFIG_LOCKDEP
10526 struct list_head unlink_list;
10527
10528 list_replace_init(&net_unlink_list, &unlink_list);
10529
10530 while (!list_empty(&unlink_list)) {
10531 struct net_device *dev = list_first_entry(&unlink_list,
10532 struct net_device,
10533 unlink_list);
10534 list_del_init(&dev->unlink_list);
10535 dev->nested_level = dev->lower_level - 1;
10536 }
10537#endif
10538
10539 /* Snapshot list, allow later requests */
10540 list_replace_init(&net_todo_list, &list);
10541
10542 __rtnl_unlock();
10543
10544
10545 /* Wait for rcu callbacks to finish before next phase */
10546 if (!list_empty(&list))
10547 rcu_barrier();
10548
10549 while (!list_empty(&list)) {
10550 struct net_device *dev
10551 = list_first_entry(&list, struct net_device, todo_list);
10552 list_del(&dev->todo_list);
10553
10554 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10555 pr_err("network todo '%s' but state %d\n",
10556 dev->name, dev->reg_state);
10557 dump_stack();
10558 continue;
10559 }
10560
10561 dev->reg_state = NETREG_UNREGISTERED;
10562
10563 netdev_wait_allrefs(dev);
10564
10565 /* paranoia */
10566 BUG_ON(netdev_refcnt_read(dev) != 1);
10567 BUG_ON(!list_empty(&dev->ptype_all));
10568 BUG_ON(!list_empty(&dev->ptype_specific));
10569 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10570 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10571#if IS_ENABLED(CONFIG_DECNET)
10572 WARN_ON(dev->dn_ptr);
10573#endif
10574 if (dev->priv_destructor)
10575 dev->priv_destructor(dev);
10576 if (dev->needs_free_netdev)
10577 free_netdev(dev);
10578
10579 /* Report a network device has been unregistered */
10580 rtnl_lock();
10581 dev_net(dev)->dev_unreg_count--;
10582 __rtnl_unlock();
10583 wake_up(&netdev_unregistering_wq);
10584
10585 /* Free network device */
10586 kobject_put(&dev->dev.kobj);
10587 }
10588}
10589
10590/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10591 * all the same fields in the same order as net_device_stats, with only
10592 * the type differing, but rtnl_link_stats64 may have additional fields
10593 * at the end for newer counters.
10594 */
10595void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10596 const struct net_device_stats *netdev_stats)
10597{
10598#if BITS_PER_LONG == 64
10599 BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
10600 memcpy(stats64, netdev_stats, sizeof(*netdev_stats));
10601 /* zero out counters that only exist in rtnl_link_stats64 */
10602 memset((char *)stats64 + sizeof(*netdev_stats), 0,
10603 sizeof(*stats64) - sizeof(*netdev_stats));
10604#else
10605 size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
10606 const unsigned long *src = (const unsigned long *)netdev_stats;
10607 u64 *dst = (u64 *)stats64;
10608
10609 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10610 for (i = 0; i < n; i++)
10611 dst[i] = src[i];
10612 /* zero out counters that only exist in rtnl_link_stats64 */
10613 memset((char *)stats64 + n * sizeof(u64), 0,
10614 sizeof(*stats64) - n * sizeof(u64));
10615#endif
10616}
10617EXPORT_SYMBOL(netdev_stats_to_stats64);
10618
10619/**
10620 * dev_get_stats - get network device statistics
10621 * @dev: device to get statistics from
10622 * @storage: place to store stats
10623 *
10624 * Get network statistics from device. Return @storage.
10625 * The device driver may provide its own method by setting
10626 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10627 * otherwise the internal statistics structure is used.
10628 */
10629struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10630 struct rtnl_link_stats64 *storage)
10631{
10632 const struct net_device_ops *ops = dev->netdev_ops;
10633
10634 if (ops->ndo_get_stats64) {
10635 memset(storage, 0, sizeof(*storage));
10636 ops->ndo_get_stats64(dev, storage);
10637 } else if (ops->ndo_get_stats) {
10638 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10639 } else {
10640 netdev_stats_to_stats64(storage, &dev->stats);
10641 }
10642 storage->rx_dropped += (unsigned long)atomic_long_read(&dev->rx_dropped);
10643 storage->tx_dropped += (unsigned long)atomic_long_read(&dev->tx_dropped);
10644 storage->rx_nohandler += (unsigned long)atomic_long_read(&dev->rx_nohandler);
10645 return storage;
10646}
10647EXPORT_SYMBOL(dev_get_stats);
10648
10649/**
10650 * dev_fetch_sw_netstats - get per-cpu network device statistics
10651 * @s: place to store stats
10652 * @netstats: per-cpu network stats to read from
10653 *
10654 * Read per-cpu network statistics and populate the related fields in @s.
10655 */
10656void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10657 const struct pcpu_sw_netstats __percpu *netstats)
10658{
10659 int cpu;
10660
10661 for_each_possible_cpu(cpu) {
10662 const struct pcpu_sw_netstats *stats;
10663 struct pcpu_sw_netstats tmp;
10664 unsigned int start;
10665
10666 stats = per_cpu_ptr(netstats, cpu);
10667 do {
10668 start = u64_stats_fetch_begin_irq(&stats->syncp);
10669 tmp.rx_packets = stats->rx_packets;
10670 tmp.rx_bytes = stats->rx_bytes;
10671 tmp.tx_packets = stats->tx_packets;
10672 tmp.tx_bytes = stats->tx_bytes;
10673 } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
10674
10675 s->rx_packets += tmp.rx_packets;
10676 s->rx_bytes += tmp.rx_bytes;
10677 s->tx_packets += tmp.tx_packets;
10678 s->tx_bytes += tmp.tx_bytes;
10679 }
10680}
10681EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10682
10683/**
10684 * dev_get_tstats64 - ndo_get_stats64 implementation
10685 * @dev: device to get statistics from
10686 * @s: place to store stats
10687 *
10688 * Populate @s from dev->stats and dev->tstats. Can be used as
10689 * ndo_get_stats64() callback.
10690 */
10691void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10692{
10693 netdev_stats_to_stats64(s, &dev->stats);
10694 dev_fetch_sw_netstats(s, dev->tstats);
10695}
10696EXPORT_SYMBOL_GPL(dev_get_tstats64);
10697
10698struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10699{
10700 struct netdev_queue *queue = dev_ingress_queue(dev);
10701
10702#ifdef CONFIG_NET_CLS_ACT
10703 if (queue)
10704 return queue;
10705 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10706 if (!queue)
10707 return NULL;
10708 netdev_init_one_queue(dev, queue, NULL);
10709 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10710 queue->qdisc_sleeping = &noop_qdisc;
10711 rcu_assign_pointer(dev->ingress_queue, queue);
10712#endif
10713 return queue;
10714}
10715
10716static const struct ethtool_ops default_ethtool_ops;
10717
10718void netdev_set_default_ethtool_ops(struct net_device *dev,
10719 const struct ethtool_ops *ops)
10720{
10721 if (dev->ethtool_ops == &default_ethtool_ops)
10722 dev->ethtool_ops = ops;
10723}
10724EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10725
10726void netdev_freemem(struct net_device *dev)
10727{
10728 char *addr = (char *)dev - dev->padded;
10729
10730 kvfree(addr);
10731}
10732
10733/**
10734 * alloc_netdev_mqs - allocate network device
10735 * @sizeof_priv: size of private data to allocate space for
10736 * @name: device name format string
10737 * @name_assign_type: origin of device name
10738 * @setup: callback to initialize device
10739 * @txqs: the number of TX subqueues to allocate
10740 * @rxqs: the number of RX subqueues to allocate
10741 *
10742 * Allocates a struct net_device with private data area for driver use
10743 * and performs basic initialization. Also allocates subqueue structs
10744 * for each queue on the device.
10745 */
10746struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10747 unsigned char name_assign_type,
10748 void (*setup)(struct net_device *),
10749 unsigned int txqs, unsigned int rxqs)
10750{
10751 struct net_device *dev;
10752 unsigned int alloc_size;
10753 struct net_device *p;
10754
10755 BUG_ON(strlen(name) >= sizeof(dev->name));
10756
10757 if (txqs < 1) {
10758 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10759 return NULL;
10760 }
10761
10762 if (rxqs < 1) {
10763 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10764 return NULL;
10765 }
10766
10767 alloc_size = sizeof(struct net_device);
10768 if (sizeof_priv) {
10769 /* ensure 32-byte alignment of private area */
10770 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10771 alloc_size += sizeof_priv;
10772 }
10773 /* ensure 32-byte alignment of whole construct */
10774 alloc_size += NETDEV_ALIGN - 1;
10775
10776 p = kvzalloc(alloc_size, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
10777 if (!p)
10778 return NULL;
10779
10780 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10781 dev->padded = (char *)dev - (char *)p;
10782
10783#ifdef CONFIG_PCPU_DEV_REFCNT
10784 dev->pcpu_refcnt = alloc_percpu(int);
10785 if (!dev->pcpu_refcnt)
10786 goto free_dev;
10787 dev_hold(dev);
10788#else
10789 refcount_set(&dev->dev_refcnt, 1);
10790#endif
10791
10792 if (dev_addr_init(dev))
10793 goto free_pcpu;
10794
10795 dev_mc_init(dev);
10796 dev_uc_init(dev);
10797
10798 dev_net_set(dev, &init_net);
10799
10800 dev->gso_max_size = GSO_MAX_SIZE;
10801 dev->gso_max_segs = GSO_MAX_SEGS;
10802 dev->upper_level = 1;
10803 dev->lower_level = 1;
10804#ifdef CONFIG_LOCKDEP
10805 dev->nested_level = 0;
10806 INIT_LIST_HEAD(&dev->unlink_list);
10807#endif
10808
10809 INIT_LIST_HEAD(&dev->napi_list);
10810 INIT_LIST_HEAD(&dev->unreg_list);
10811 INIT_LIST_HEAD(&dev->close_list);
10812 INIT_LIST_HEAD(&dev->link_watch_list);
10813 INIT_LIST_HEAD(&dev->adj_list.upper);
10814 INIT_LIST_HEAD(&dev->adj_list.lower);
10815 INIT_LIST_HEAD(&dev->ptype_all);
10816 INIT_LIST_HEAD(&dev->ptype_specific);
10817 INIT_LIST_HEAD(&dev->net_notifier_list);
10818#ifdef CONFIG_NET_SCHED
10819 hash_init(dev->qdisc_hash);
10820#endif
10821 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10822 setup(dev);
10823
10824 if (!dev->tx_queue_len) {
10825 dev->priv_flags |= IFF_NO_QUEUE;
10826 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10827 }
10828
10829 dev->num_tx_queues = txqs;
10830 dev->real_num_tx_queues = txqs;
10831 if (netif_alloc_netdev_queues(dev))
10832 goto free_all;
10833
10834 dev->num_rx_queues = rxqs;
10835 dev->real_num_rx_queues = rxqs;
10836 if (netif_alloc_rx_queues(dev))
10837 goto free_all;
10838
10839 strcpy(dev->name, name);
10840 dev->name_assign_type = name_assign_type;
10841 dev->group = INIT_NETDEV_GROUP;
10842 if (!dev->ethtool_ops)
10843 dev->ethtool_ops = &default_ethtool_ops;
10844
10845 nf_hook_ingress_init(dev);
10846
10847 return dev;
10848
10849free_all:
10850 free_netdev(dev);
10851 return NULL;
10852
10853free_pcpu:
10854#ifdef CONFIG_PCPU_DEV_REFCNT
10855 free_percpu(dev->pcpu_refcnt);
10856free_dev:
10857#endif
10858 netdev_freemem(dev);
10859 return NULL;
10860}
10861EXPORT_SYMBOL(alloc_netdev_mqs);
10862
10863/**
10864 * free_netdev - free network device
10865 * @dev: device
10866 *
10867 * This function does the last stage of destroying an allocated device
10868 * interface. The reference to the device object is released. If this
10869 * is the last reference then it will be freed.Must be called in process
10870 * context.
10871 */
10872void free_netdev(struct net_device *dev)
10873{
10874 struct napi_struct *p, *n;
10875
10876 might_sleep();
10877
10878 /* When called immediately after register_netdevice() failed the unwind
10879 * handling may still be dismantling the device. Handle that case by
10880 * deferring the free.
10881 */
10882 if (dev->reg_state == NETREG_UNREGISTERING) {
10883 ASSERT_RTNL();
10884 dev->needs_free_netdev = true;
10885 return;
10886 }
10887
10888 netif_free_tx_queues(dev);
10889 netif_free_rx_queues(dev);
10890
10891 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10892
10893 /* Flush device addresses */
10894 dev_addr_flush(dev);
10895
10896 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10897 netif_napi_del(p);
10898
10899#ifdef CONFIG_PCPU_DEV_REFCNT
10900 free_percpu(dev->pcpu_refcnt);
10901 dev->pcpu_refcnt = NULL;
10902#endif
10903 free_percpu(dev->xdp_bulkq);
10904 dev->xdp_bulkq = NULL;
10905
10906 /* Compatibility with error handling in drivers */
10907 if (dev->reg_state == NETREG_UNINITIALIZED) {
10908 netdev_freemem(dev);
10909 return;
10910 }
10911
10912 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10913 dev->reg_state = NETREG_RELEASED;
10914
10915 /* will free via device release */
10916 put_device(&dev->dev);
10917}
10918EXPORT_SYMBOL(free_netdev);
10919
10920/**
10921 * synchronize_net - Synchronize with packet receive processing
10922 *
10923 * Wait for packets currently being received to be done.
10924 * Does not block later packets from starting.
10925 */
10926void synchronize_net(void)
10927{
10928 might_sleep();
10929 if (rtnl_is_locked())
10930 synchronize_rcu_expedited();
10931 else
10932 synchronize_rcu();
10933}
10934EXPORT_SYMBOL(synchronize_net);
10935
10936/**
10937 * unregister_netdevice_queue - remove device from the kernel
10938 * @dev: device
10939 * @head: list
10940 *
10941 * This function shuts down a device interface and removes it
10942 * from the kernel tables.
10943 * If head not NULL, device is queued to be unregistered later.
10944 *
10945 * Callers must hold the rtnl semaphore. You may want
10946 * unregister_netdev() instead of this.
10947 */
10948
10949void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10950{
10951 ASSERT_RTNL();
10952
10953 if (head) {
10954 list_move_tail(&dev->unreg_list, head);
10955 } else {
10956 LIST_HEAD(single);
10957
10958 list_add(&dev->unreg_list, &single);
10959 unregister_netdevice_many(&single);
10960 }
10961}
10962EXPORT_SYMBOL(unregister_netdevice_queue);
10963
10964/**
10965 * unregister_netdevice_many - unregister many devices
10966 * @head: list of devices
10967 *
10968 * Note: As most callers use a stack allocated list_head,
10969 * we force a list_del() to make sure stack wont be corrupted later.
10970 */
10971void unregister_netdevice_many(struct list_head *head)
10972{
10973 struct net_device *dev, *tmp;
10974 LIST_HEAD(close_head);
10975
10976 BUG_ON(dev_boot_phase);
10977 ASSERT_RTNL();
10978
10979 if (list_empty(head))
10980 return;
10981
10982 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10983 /* Some devices call without registering
10984 * for initialization unwind. Remove those
10985 * devices and proceed with the remaining.
10986 */
10987 if (dev->reg_state == NETREG_UNINITIALIZED) {
10988 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10989 dev->name, dev);
10990
10991 WARN_ON(1);
10992 list_del(&dev->unreg_list);
10993 continue;
10994 }
10995 dev->dismantle = true;
10996 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10997 }
10998
10999 /* If device is running, close it first. */
11000 list_for_each_entry(dev, head, unreg_list)
11001 list_add_tail(&dev->close_list, &close_head);
11002 dev_close_many(&close_head, true);
11003
11004 list_for_each_entry(dev, head, unreg_list) {
11005 /* And unlink it from device chain. */
11006 unlist_netdevice(dev);
11007
11008 dev->reg_state = NETREG_UNREGISTERING;
11009 }
11010 flush_all_backlogs();
11011
11012 synchronize_net();
11013
11014 list_for_each_entry(dev, head, unreg_list) {
11015 struct sk_buff *skb = NULL;
11016
11017 /* Shutdown queueing discipline. */
11018 dev_shutdown(dev);
11019
11020 dev_xdp_uninstall(dev);
11021
11022 /* Notify protocols, that we are about to destroy
11023 * this device. They should clean all the things.
11024 */
11025 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11026
11027 if (!dev->rtnl_link_ops ||
11028 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11029 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11030 GFP_KERNEL, NULL, 0);
11031
11032 /*
11033 * Flush the unicast and multicast chains
11034 */
11035 dev_uc_flush(dev);
11036 dev_mc_flush(dev);
11037
11038 netdev_name_node_alt_flush(dev);
11039 netdev_name_node_free(dev->name_node);
11040
11041 if (dev->netdev_ops->ndo_uninit)
11042 dev->netdev_ops->ndo_uninit(dev);
11043
11044 if (skb)
11045 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
11046
11047 /* Notifier chain MUST detach us all upper devices. */
11048 WARN_ON(netdev_has_any_upper_dev(dev));
11049 WARN_ON(netdev_has_any_lower_dev(dev));
11050
11051 /* Remove entries from kobject tree */
11052 netdev_unregister_kobject(dev);
11053#ifdef CONFIG_XPS
11054 /* Remove XPS queueing entries */
11055 netif_reset_xps_queues_gt(dev, 0);
11056#endif
11057 }
11058
11059 synchronize_net();
11060
11061 list_for_each_entry(dev, head, unreg_list) {
11062 dev_put(dev);
11063 net_set_todo(dev);
11064 }
11065
11066 list_del(head);
11067}
11068EXPORT_SYMBOL(unregister_netdevice_many);
11069
11070/**
11071 * unregister_netdev - remove device from the kernel
11072 * @dev: device
11073 *
11074 * This function shuts down a device interface and removes it
11075 * from the kernel tables.
11076 *
11077 * This is just a wrapper for unregister_netdevice that takes
11078 * the rtnl semaphore. In general you want to use this and not
11079 * unregister_netdevice.
11080 */
11081void unregister_netdev(struct net_device *dev)
11082{
11083 rtnl_lock();
11084 unregister_netdevice(dev);
11085 rtnl_unlock();
11086}
11087EXPORT_SYMBOL(unregister_netdev);
11088
11089/**
11090 * __dev_change_net_namespace - move device to different nethost namespace
11091 * @dev: device
11092 * @net: network namespace
11093 * @pat: If not NULL name pattern to try if the current device name
11094 * is already taken in the destination network namespace.
11095 * @new_ifindex: If not zero, specifies device index in the target
11096 * namespace.
11097 *
11098 * This function shuts down a device interface and moves it
11099 * to a new network namespace. On success 0 is returned, on
11100 * a failure a netagive errno code is returned.
11101 *
11102 * Callers must hold the rtnl semaphore.
11103 */
11104
11105int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11106 const char *pat, int new_ifindex)
11107{
11108 struct net *net_old = dev_net(dev);
11109 int err, new_nsid;
11110
11111 ASSERT_RTNL();
11112
11113 /* Don't allow namespace local devices to be moved. */
11114 err = -EINVAL;
11115 if (dev->features & NETIF_F_NETNS_LOCAL)
11116 goto out;
11117
11118 /* Ensure the device has been registrered */
11119 if (dev->reg_state != NETREG_REGISTERED)
11120 goto out;
11121
11122 /* Get out if there is nothing todo */
11123 err = 0;
11124 if (net_eq(net_old, net))
11125 goto out;
11126
11127 /* Pick the destination device name, and ensure
11128 * we can use it in the destination network namespace.
11129 */
11130 err = -EEXIST;
11131 if (__dev_get_by_name(net, dev->name)) {
11132 /* We get here if we can't use the current device name */
11133 if (!pat)
11134 goto out;
11135 err = dev_get_valid_name(net, dev, pat);
11136 if (err < 0)
11137 goto out;
11138 }
11139
11140 /* Check that new_ifindex isn't used yet. */
11141 err = -EBUSY;
11142 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11143 goto out;
11144
11145 /*
11146 * And now a mini version of register_netdevice unregister_netdevice.
11147 */
11148
11149 /* If device is running close it first. */
11150 dev_close(dev);
11151
11152 /* And unlink it from device chain */
11153 unlist_netdevice(dev);
11154
11155 synchronize_net();
11156
11157 /* Shutdown queueing discipline. */
11158 dev_shutdown(dev);
11159
11160 /* Notify protocols, that we are about to destroy
11161 * this device. They should clean all the things.
11162 *
11163 * Note that dev->reg_state stays at NETREG_REGISTERED.
11164 * This is wanted because this way 8021q and macvlan know
11165 * the device is just moving and can keep their slaves up.
11166 */
11167 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11168 rcu_barrier();
11169
11170 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11171 /* If there is an ifindex conflict assign a new one */
11172 if (!new_ifindex) {
11173 if (__dev_get_by_index(net, dev->ifindex))
11174 new_ifindex = dev_new_index(net);
11175 else
11176 new_ifindex = dev->ifindex;
11177 }
11178
11179 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11180 new_ifindex);
11181
11182 /*
11183 * Flush the unicast and multicast chains
11184 */
11185 dev_uc_flush(dev);
11186 dev_mc_flush(dev);
11187
11188 /* Send a netdev-removed uevent to the old namespace */
11189 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11190 netdev_adjacent_del_links(dev);
11191
11192 /* Move per-net netdevice notifiers that are following the netdevice */
11193 move_netdevice_notifiers_dev_net(dev, net);
11194
11195 /* Actually switch the network namespace */
11196 dev_net_set(dev, net);
11197 dev->ifindex = new_ifindex;
11198
11199 /* Send a netdev-add uevent to the new namespace */
11200 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11201 netdev_adjacent_add_links(dev);
11202
11203 /* Fixup kobjects */
11204 err = device_rename(&dev->dev, dev->name);
11205 WARN_ON(err);
11206
11207 /* Adapt owner in case owning user namespace of target network
11208 * namespace is different from the original one.
11209 */
11210 err = netdev_change_owner(dev, net_old, net);
11211 WARN_ON(err);
11212
11213 /* Add the device back in the hashes */
11214 list_netdevice(dev);
11215
11216 /* Notify protocols, that a new device appeared. */
11217 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11218
11219 /*
11220 * Prevent userspace races by waiting until the network
11221 * device is fully setup before sending notifications.
11222 */
11223 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
11224
11225 synchronize_net();
11226 err = 0;
11227out:
11228 return err;
11229}
11230EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11231
11232static int dev_cpu_dead(unsigned int oldcpu)
11233{
11234 struct sk_buff **list_skb;
11235 struct sk_buff *skb;
11236 unsigned int cpu;
11237 struct softnet_data *sd, *oldsd, *remsd = NULL;
11238
11239 local_irq_disable();
11240 cpu = smp_processor_id();
11241 sd = &per_cpu(softnet_data, cpu);
11242 oldsd = &per_cpu(softnet_data, oldcpu);
11243
11244 /* Find end of our completion_queue. */
11245 list_skb = &sd->completion_queue;
11246 while (*list_skb)
11247 list_skb = &(*list_skb)->next;
11248 /* Append completion queue from offline CPU. */
11249 *list_skb = oldsd->completion_queue;
11250 oldsd->completion_queue = NULL;
11251
11252 /* Append output queue from offline CPU. */
11253 if (oldsd->output_queue) {
11254 *sd->output_queue_tailp = oldsd->output_queue;
11255 sd->output_queue_tailp = oldsd->output_queue_tailp;
11256 oldsd->output_queue = NULL;
11257 oldsd->output_queue_tailp = &oldsd->output_queue;
11258 }
11259 /* Append NAPI poll list from offline CPU, with one exception :
11260 * process_backlog() must be called by cpu owning percpu backlog.
11261 * We properly handle process_queue & input_pkt_queue later.
11262 */
11263 while (!list_empty(&oldsd->poll_list)) {
11264 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11265 struct napi_struct,
11266 poll_list);
11267
11268 list_del_init(&napi->poll_list);
11269 if (napi->poll == process_backlog)
11270 napi->state = 0;
11271 else
11272 ____napi_schedule(sd, napi);
11273 }
11274
11275 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11276 local_irq_enable();
11277
11278#ifdef CONFIG_RPS
11279 remsd = oldsd->rps_ipi_list;
11280 oldsd->rps_ipi_list = NULL;
11281#endif
11282 /* send out pending IPI's on offline CPU */
11283 net_rps_send_ipi(remsd);
11284
11285 /* Process offline CPU's input_pkt_queue */
11286 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11287 netif_rx_ni(skb);
11288 input_queue_head_incr(oldsd);
11289 }
11290 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11291 netif_rx_ni(skb);
11292 input_queue_head_incr(oldsd);
11293 }
11294
11295 return 0;
11296}
11297
11298/**
11299 * netdev_increment_features - increment feature set by one
11300 * @all: current feature set
11301 * @one: new feature set
11302 * @mask: mask feature set
11303 *
11304 * Computes a new feature set after adding a device with feature set
11305 * @one to the master device with current feature set @all. Will not
11306 * enable anything that is off in @mask. Returns the new feature set.
11307 */
11308netdev_features_t netdev_increment_features(netdev_features_t all,
11309 netdev_features_t one, netdev_features_t mask)
11310{
11311 if (mask & NETIF_F_HW_CSUM)
11312 mask |= NETIF_F_CSUM_MASK;
11313 mask |= NETIF_F_VLAN_CHALLENGED;
11314
11315 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11316 all &= one | ~NETIF_F_ALL_FOR_ALL;
11317
11318 /* If one device supports hw checksumming, set for all. */
11319 if (all & NETIF_F_HW_CSUM)
11320 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11321
11322 return all;
11323}
11324EXPORT_SYMBOL(netdev_increment_features);
11325
11326static struct hlist_head * __net_init netdev_create_hash(void)
11327{
11328 int i;
11329 struct hlist_head *hash;
11330
11331 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11332 if (hash != NULL)
11333 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11334 INIT_HLIST_HEAD(&hash[i]);
11335
11336 return hash;
11337}
11338
11339/* Initialize per network namespace state */
11340static int __net_init netdev_init(struct net *net)
11341{
11342 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11343 8 * sizeof_field(struct napi_struct, gro_bitmask));
11344
11345 if (net != &init_net)
11346 INIT_LIST_HEAD(&net->dev_base_head);
11347
11348 net->dev_name_head = netdev_create_hash();
11349 if (net->dev_name_head == NULL)
11350 goto err_name;
11351
11352 net->dev_index_head = netdev_create_hash();
11353 if (net->dev_index_head == NULL)
11354 goto err_idx;
11355
11356 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11357
11358 return 0;
11359
11360err_idx:
11361 kfree(net->dev_name_head);
11362err_name:
11363 return -ENOMEM;
11364}
11365
11366/**
11367 * netdev_drivername - network driver for the device
11368 * @dev: network device
11369 *
11370 * Determine network driver for device.
11371 */
11372const char *netdev_drivername(const struct net_device *dev)
11373{
11374 const struct device_driver *driver;
11375 const struct device *parent;
11376 const char *empty = "";
11377
11378 parent = dev->dev.parent;
11379 if (!parent)
11380 return empty;
11381
11382 driver = parent->driver;
11383 if (driver && driver->name)
11384 return driver->name;
11385 return empty;
11386}
11387
11388static void __netdev_printk(const char *level, const struct net_device *dev,
11389 struct va_format *vaf)
11390{
11391 if (dev && dev->dev.parent) {
11392 dev_printk_emit(level[1] - '0',
11393 dev->dev.parent,
11394 "%s %s %s%s: %pV",
11395 dev_driver_string(dev->dev.parent),
11396 dev_name(dev->dev.parent),
11397 netdev_name(dev), netdev_reg_state(dev),
11398 vaf);
11399 } else if (dev) {
11400 printk("%s%s%s: %pV",
11401 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11402 } else {
11403 printk("%s(NULL net_device): %pV", level, vaf);
11404 }
11405}
11406
11407void netdev_printk(const char *level, const struct net_device *dev,
11408 const char *format, ...)
11409{
11410 struct va_format vaf;
11411 va_list args;
11412
11413 va_start(args, format);
11414
11415 vaf.fmt = format;
11416 vaf.va = &args;
11417
11418 __netdev_printk(level, dev, &vaf);
11419
11420 va_end(args);
11421}
11422EXPORT_SYMBOL(netdev_printk);
11423
11424#define define_netdev_printk_level(func, level) \
11425void func(const struct net_device *dev, const char *fmt, ...) \
11426{ \
11427 struct va_format vaf; \
11428 va_list args; \
11429 \
11430 va_start(args, fmt); \
11431 \
11432 vaf.fmt = fmt; \
11433 vaf.va = &args; \
11434 \
11435 __netdev_printk(level, dev, &vaf); \
11436 \
11437 va_end(args); \
11438} \
11439EXPORT_SYMBOL(func);
11440
11441define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11442define_netdev_printk_level(netdev_alert, KERN_ALERT);
11443define_netdev_printk_level(netdev_crit, KERN_CRIT);
11444define_netdev_printk_level(netdev_err, KERN_ERR);
11445define_netdev_printk_level(netdev_warn, KERN_WARNING);
11446define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11447define_netdev_printk_level(netdev_info, KERN_INFO);
11448
11449static void __net_exit netdev_exit(struct net *net)
11450{
11451 kfree(net->dev_name_head);
11452 kfree(net->dev_index_head);
11453 if (net != &init_net)
11454 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11455}
11456
11457static struct pernet_operations __net_initdata netdev_net_ops = {
11458 .init = netdev_init,
11459 .exit = netdev_exit,
11460};
11461
11462static void __net_exit default_device_exit(struct net *net)
11463{
11464 struct net_device *dev, *aux;
11465 /*
11466 * Push all migratable network devices back to the
11467 * initial network namespace
11468 */
11469 rtnl_lock();
11470 for_each_netdev_safe(net, dev, aux) {
11471 int err;
11472 char fb_name[IFNAMSIZ];
11473
11474 /* Ignore unmoveable devices (i.e. loopback) */
11475 if (dev->features & NETIF_F_NETNS_LOCAL)
11476 continue;
11477
11478 /* Leave virtual devices for the generic cleanup */
11479 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11480 continue;
11481
11482 /* Push remaining network devices to init_net */
11483 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11484 if (__dev_get_by_name(&init_net, fb_name))
11485 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11486 err = dev_change_net_namespace(dev, &init_net, fb_name);
11487 if (err) {
11488 pr_emerg("%s: failed to move %s to init_net: %d\n",
11489 __func__, dev->name, err);
11490 BUG();
11491 }
11492 }
11493 rtnl_unlock();
11494}
11495
11496static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
11497{
11498 /* Return with the rtnl_lock held when there are no network
11499 * devices unregistering in any network namespace in net_list.
11500 */
11501 struct net *net;
11502 bool unregistering;
11503 DEFINE_WAIT_FUNC(wait, woken_wake_function);
11504
11505 add_wait_queue(&netdev_unregistering_wq, &wait);
11506 for (;;) {
11507 unregistering = false;
11508 rtnl_lock();
11509 list_for_each_entry(net, net_list, exit_list) {
11510 if (net->dev_unreg_count > 0) {
11511 unregistering = true;
11512 break;
11513 }
11514 }
11515 if (!unregistering)
11516 break;
11517 __rtnl_unlock();
11518
11519 wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
11520 }
11521 remove_wait_queue(&netdev_unregistering_wq, &wait);
11522}
11523
11524static void __net_exit default_device_exit_batch(struct list_head *net_list)
11525{
11526 /* At exit all network devices most be removed from a network
11527 * namespace. Do this in the reverse order of registration.
11528 * Do this across as many network namespaces as possible to
11529 * improve batching efficiency.
11530 */
11531 struct net_device *dev;
11532 struct net *net;
11533 LIST_HEAD(dev_kill_list);
11534
11535 /* To prevent network device cleanup code from dereferencing
11536 * loopback devices or network devices that have been freed
11537 * wait here for all pending unregistrations to complete,
11538 * before unregistring the loopback device and allowing the
11539 * network namespace be freed.
11540 *
11541 * The netdev todo list containing all network devices
11542 * unregistrations that happen in default_device_exit_batch
11543 * will run in the rtnl_unlock() at the end of
11544 * default_device_exit_batch.
11545 */
11546 rtnl_lock_unregistering(net_list);
11547 list_for_each_entry(net, net_list, exit_list) {
11548 for_each_netdev_reverse(net, dev) {
11549 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11550 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11551 else
11552 unregister_netdevice_queue(dev, &dev_kill_list);
11553 }
11554 }
11555 unregister_netdevice_many(&dev_kill_list);
11556 rtnl_unlock();
11557}
11558
11559static struct pernet_operations __net_initdata default_device_ops = {
11560 .exit = default_device_exit,
11561 .exit_batch = default_device_exit_batch,
11562};
11563
11564/*
11565 * Initialize the DEV module. At boot time this walks the device list and
11566 * unhooks any devices that fail to initialise (normally hardware not
11567 * present) and leaves us with a valid list of present and active devices.
11568 *
11569 */
11570
11571/*
11572 * This is called single threaded during boot, so no need
11573 * to take the rtnl semaphore.
11574 */
11575static int __init net_dev_init(void)
11576{
11577 int i, rc = -ENOMEM;
11578
11579 BUG_ON(!dev_boot_phase);
11580
11581 if (dev_proc_init())
11582 goto out;
11583
11584 if (netdev_kobject_init())
11585 goto out;
11586
11587 INIT_LIST_HEAD(&ptype_all);
11588 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11589 INIT_LIST_HEAD(&ptype_base[i]);
11590
11591 INIT_LIST_HEAD(&offload_base);
11592
11593 if (register_pernet_subsys(&netdev_net_ops))
11594 goto out;
11595
11596 /*
11597 * Initialise the packet receive queues.
11598 */
11599
11600 for_each_possible_cpu(i) {
11601 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11602 struct softnet_data *sd = &per_cpu(softnet_data, i);
11603
11604 INIT_WORK(flush, flush_backlog);
11605
11606 skb_queue_head_init(&sd->input_pkt_queue);
11607 skb_queue_head_init(&sd->process_queue);
11608#ifdef CONFIG_XFRM_OFFLOAD
11609 skb_queue_head_init(&sd->xfrm_backlog);
11610#endif
11611 INIT_LIST_HEAD(&sd->poll_list);
11612 sd->output_queue_tailp = &sd->output_queue;
11613#ifdef CONFIG_RPS
11614 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11615 sd->cpu = i;
11616#endif
11617
11618 init_gro_hash(&sd->backlog);
11619 sd->backlog.poll = process_backlog;
11620 sd->backlog.weight = weight_p;
11621 }
11622
11623 dev_boot_phase = 0;
11624
11625 /* The loopback device is special if any other network devices
11626 * is present in a network namespace the loopback device must
11627 * be present. Since we now dynamically allocate and free the
11628 * loopback device ensure this invariant is maintained by
11629 * keeping the loopback device as the first device on the
11630 * list of network devices. Ensuring the loopback devices
11631 * is the first device that appears and the last network device
11632 * that disappears.
11633 */
11634 if (register_pernet_device(&loopback_net_ops))
11635 goto out;
11636
11637 if (register_pernet_device(&default_device_ops))
11638 goto out;
11639
11640 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11641 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11642
11643 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11644 NULL, dev_cpu_dead);
11645 WARN_ON(rc < 0);
11646 rc = 0;
11647out:
11648 return rc;
11649}
11650
11651subsys_initcall(net_dev_init);