Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
31
32#include "internal.h"
33
34#define NUMA_STATS_THRESHOLD (U16_MAX - 2)
35
36#ifdef CONFIG_NUMA
37int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
38
39/* zero numa counters within a zone */
40static void zero_zone_numa_counters(struct zone *zone)
41{
42 int item, cpu;
43
44 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++) {
45 atomic_long_set(&zone->vm_numa_stat[item], 0);
46 for_each_online_cpu(cpu)
47 per_cpu_ptr(zone->pageset, cpu)->vm_numa_stat_diff[item]
48 = 0;
49 }
50}
51
52/* zero numa counters of all the populated zones */
53static void zero_zones_numa_counters(void)
54{
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59}
60
61/* zero global numa counters */
62static void zero_global_numa_counters(void)
63{
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_STAT_ITEMS; item++)
67 atomic_long_set(&vm_numa_stat[item], 0);
68}
69
70static void invalid_numa_statistics(void)
71{
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74}
75
76static DEFINE_MUTEX(vm_numa_stat_lock);
77
78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
80{
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104}
105#endif
106
107#ifdef CONFIG_VM_EVENT_COUNTERS
108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
111static void sum_vm_events(unsigned long *ret)
112{
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124}
125
126/*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130*/
131void all_vm_events(unsigned long *ret)
132{
133 get_online_cpus();
134 sum_vm_events(ret);
135 put_online_cpus();
136}
137EXPORT_SYMBOL_GPL(all_vm_events);
138
139/*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145void vm_events_fold_cpu(int cpu)
146{
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154}
155
156#endif /* CONFIG_VM_EVENT_COUNTERS */
157
158/*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_numa_stat[NR_VM_NUMA_STAT_ITEMS] __cacheline_aligned_in_smp;
165atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
166EXPORT_SYMBOL(vm_zone_stat);
167EXPORT_SYMBOL(vm_numa_stat);
168EXPORT_SYMBOL(vm_node_stat);
169
170#ifdef CONFIG_SMP
171
172int calculate_pressure_threshold(struct zone *zone)
173{
174 int threshold;
175 int watermark_distance;
176
177 /*
178 * As vmstats are not up to date, there is drift between the estimated
179 * and real values. For high thresholds and a high number of CPUs, it
180 * is possible for the min watermark to be breached while the estimated
181 * value looks fine. The pressure threshold is a reduced value such
182 * that even the maximum amount of drift will not accidentally breach
183 * the min watermark
184 */
185 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
186 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
187
188 /*
189 * Maximum threshold is 125
190 */
191 threshold = min(125, threshold);
192
193 return threshold;
194}
195
196int calculate_normal_threshold(struct zone *zone)
197{
198 int threshold;
199 int mem; /* memory in 128 MB units */
200
201 /*
202 * The threshold scales with the number of processors and the amount
203 * of memory per zone. More memory means that we can defer updates for
204 * longer, more processors could lead to more contention.
205 * fls() is used to have a cheap way of logarithmic scaling.
206 *
207 * Some sample thresholds:
208 *
209 * Threshold Processors (fls) Zonesize fls(mem+1)
210 * ------------------------------------------------------------------
211 * 8 1 1 0.9-1 GB 4
212 * 16 2 2 0.9-1 GB 4
213 * 20 2 2 1-2 GB 5
214 * 24 2 2 2-4 GB 6
215 * 28 2 2 4-8 GB 7
216 * 32 2 2 8-16 GB 8
217 * 4 2 2 <128M 1
218 * 30 4 3 2-4 GB 5
219 * 48 4 3 8-16 GB 8
220 * 32 8 4 1-2 GB 4
221 * 32 8 4 0.9-1GB 4
222 * 10 16 5 <128M 1
223 * 40 16 5 900M 4
224 * 70 64 7 2-4 GB 5
225 * 84 64 7 4-8 GB 6
226 * 108 512 9 4-8 GB 6
227 * 125 1024 10 8-16 GB 8
228 * 125 1024 10 16-32 GB 9
229 */
230
231 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
232
233 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
234
235 /*
236 * Maximum threshold is 125
237 */
238 threshold = min(125, threshold);
239
240 return threshold;
241}
242
243/*
244 * Refresh the thresholds for each zone.
245 */
246void refresh_zone_stat_thresholds(void)
247{
248 struct pglist_data *pgdat;
249 struct zone *zone;
250 int cpu;
251 int threshold;
252
253 /* Zero current pgdat thresholds */
254 for_each_online_pgdat(pgdat) {
255 for_each_online_cpu(cpu) {
256 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
257 }
258 }
259
260 for_each_populated_zone(zone) {
261 struct pglist_data *pgdat = zone->zone_pgdat;
262 unsigned long max_drift, tolerate_drift;
263
264 threshold = calculate_normal_threshold(zone);
265
266 for_each_online_cpu(cpu) {
267 int pgdat_threshold;
268
269 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
270 = threshold;
271
272 /* Base nodestat threshold on the largest populated zone. */
273 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
274 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
275 = max(threshold, pgdat_threshold);
276 }
277
278 /*
279 * Only set percpu_drift_mark if there is a danger that
280 * NR_FREE_PAGES reports the low watermark is ok when in fact
281 * the min watermark could be breached by an allocation
282 */
283 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
284 max_drift = num_online_cpus() * threshold;
285 if (max_drift > tolerate_drift)
286 zone->percpu_drift_mark = high_wmark_pages(zone) +
287 max_drift;
288 }
289}
290
291void set_pgdat_percpu_threshold(pg_data_t *pgdat,
292 int (*calculate_pressure)(struct zone *))
293{
294 struct zone *zone;
295 int cpu;
296 int threshold;
297 int i;
298
299 for (i = 0; i < pgdat->nr_zones; i++) {
300 zone = &pgdat->node_zones[i];
301 if (!zone->percpu_drift_mark)
302 continue;
303
304 threshold = (*calculate_pressure)(zone);
305 for_each_online_cpu(cpu)
306 per_cpu_ptr(zone->pageset, cpu)->stat_threshold
307 = threshold;
308 }
309}
310
311/*
312 * For use when we know that interrupts are disabled,
313 * or when we know that preemption is disabled and that
314 * particular counter cannot be updated from interrupt context.
315 */
316void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
317 long delta)
318{
319 struct per_cpu_pageset __percpu *pcp = zone->pageset;
320 s8 __percpu *p = pcp->vm_stat_diff + item;
321 long x;
322 long t;
323
324 x = delta + __this_cpu_read(*p);
325
326 t = __this_cpu_read(pcp->stat_threshold);
327
328 if (unlikely(abs(x) > t)) {
329 zone_page_state_add(x, zone, item);
330 x = 0;
331 }
332 __this_cpu_write(*p, x);
333}
334EXPORT_SYMBOL(__mod_zone_page_state);
335
336void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
337 long delta)
338{
339 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
340 s8 __percpu *p = pcp->vm_node_stat_diff + item;
341 long x;
342 long t;
343
344 if (vmstat_item_in_bytes(item)) {
345 /*
346 * Only cgroups use subpage accounting right now; at
347 * the global level, these items still change in
348 * multiples of whole pages. Store them as pages
349 * internally to keep the per-cpu counters compact.
350 */
351 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
352 delta >>= PAGE_SHIFT;
353 }
354
355 x = delta + __this_cpu_read(*p);
356
357 t = __this_cpu_read(pcp->stat_threshold);
358
359 if (unlikely(abs(x) > t)) {
360 node_page_state_add(x, pgdat, item);
361 x = 0;
362 }
363 __this_cpu_write(*p, x);
364}
365EXPORT_SYMBOL(__mod_node_page_state);
366
367/*
368 * Optimized increment and decrement functions.
369 *
370 * These are only for a single page and therefore can take a struct page *
371 * argument instead of struct zone *. This allows the inclusion of the code
372 * generated for page_zone(page) into the optimized functions.
373 *
374 * No overflow check is necessary and therefore the differential can be
375 * incremented or decremented in place which may allow the compilers to
376 * generate better code.
377 * The increment or decrement is known and therefore one boundary check can
378 * be omitted.
379 *
380 * NOTE: These functions are very performance sensitive. Change only
381 * with care.
382 *
383 * Some processors have inc/dec instructions that are atomic vs an interrupt.
384 * However, the code must first determine the differential location in a zone
385 * based on the processor number and then inc/dec the counter. There is no
386 * guarantee without disabling preemption that the processor will not change
387 * in between and therefore the atomicity vs. interrupt cannot be exploited
388 * in a useful way here.
389 */
390void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
391{
392 struct per_cpu_pageset __percpu *pcp = zone->pageset;
393 s8 __percpu *p = pcp->vm_stat_diff + item;
394 s8 v, t;
395
396 v = __this_cpu_inc_return(*p);
397 t = __this_cpu_read(pcp->stat_threshold);
398 if (unlikely(v > t)) {
399 s8 overstep = t >> 1;
400
401 zone_page_state_add(v + overstep, zone, item);
402 __this_cpu_write(*p, -overstep);
403 }
404}
405
406void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
407{
408 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
409 s8 __percpu *p = pcp->vm_node_stat_diff + item;
410 s8 v, t;
411
412 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
413
414 v = __this_cpu_inc_return(*p);
415 t = __this_cpu_read(pcp->stat_threshold);
416 if (unlikely(v > t)) {
417 s8 overstep = t >> 1;
418
419 node_page_state_add(v + overstep, pgdat, item);
420 __this_cpu_write(*p, -overstep);
421 }
422}
423
424void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
425{
426 __inc_zone_state(page_zone(page), item);
427}
428EXPORT_SYMBOL(__inc_zone_page_state);
429
430void __inc_node_page_state(struct page *page, enum node_stat_item item)
431{
432 __inc_node_state(page_pgdat(page), item);
433}
434EXPORT_SYMBOL(__inc_node_page_state);
435
436void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
437{
438 struct per_cpu_pageset __percpu *pcp = zone->pageset;
439 s8 __percpu *p = pcp->vm_stat_diff + item;
440 s8 v, t;
441
442 v = __this_cpu_dec_return(*p);
443 t = __this_cpu_read(pcp->stat_threshold);
444 if (unlikely(v < - t)) {
445 s8 overstep = t >> 1;
446
447 zone_page_state_add(v - overstep, zone, item);
448 __this_cpu_write(*p, overstep);
449 }
450}
451
452void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
453{
454 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
455 s8 __percpu *p = pcp->vm_node_stat_diff + item;
456 s8 v, t;
457
458 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
459
460 v = __this_cpu_dec_return(*p);
461 t = __this_cpu_read(pcp->stat_threshold);
462 if (unlikely(v < - t)) {
463 s8 overstep = t >> 1;
464
465 node_page_state_add(v - overstep, pgdat, item);
466 __this_cpu_write(*p, overstep);
467 }
468}
469
470void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
471{
472 __dec_zone_state(page_zone(page), item);
473}
474EXPORT_SYMBOL(__dec_zone_page_state);
475
476void __dec_node_page_state(struct page *page, enum node_stat_item item)
477{
478 __dec_node_state(page_pgdat(page), item);
479}
480EXPORT_SYMBOL(__dec_node_page_state);
481
482#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
483/*
484 * If we have cmpxchg_local support then we do not need to incur the overhead
485 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
486 *
487 * mod_state() modifies the zone counter state through atomic per cpu
488 * operations.
489 *
490 * Overstep mode specifies how overstep should handled:
491 * 0 No overstepping
492 * 1 Overstepping half of threshold
493 * -1 Overstepping minus half of threshold
494*/
495static inline void mod_zone_state(struct zone *zone,
496 enum zone_stat_item item, long delta, int overstep_mode)
497{
498 struct per_cpu_pageset __percpu *pcp = zone->pageset;
499 s8 __percpu *p = pcp->vm_stat_diff + item;
500 long o, n, t, z;
501
502 do {
503 z = 0; /* overflow to zone counters */
504
505 /*
506 * The fetching of the stat_threshold is racy. We may apply
507 * a counter threshold to the wrong the cpu if we get
508 * rescheduled while executing here. However, the next
509 * counter update will apply the threshold again and
510 * therefore bring the counter under the threshold again.
511 *
512 * Most of the time the thresholds are the same anyways
513 * for all cpus in a zone.
514 */
515 t = this_cpu_read(pcp->stat_threshold);
516
517 o = this_cpu_read(*p);
518 n = delta + o;
519
520 if (abs(n) > t) {
521 int os = overstep_mode * (t >> 1) ;
522
523 /* Overflow must be added to zone counters */
524 z = n + os;
525 n = -os;
526 }
527 } while (this_cpu_cmpxchg(*p, o, n) != o);
528
529 if (z)
530 zone_page_state_add(z, zone, item);
531}
532
533void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
534 long delta)
535{
536 mod_zone_state(zone, item, delta, 0);
537}
538EXPORT_SYMBOL(mod_zone_page_state);
539
540void inc_zone_page_state(struct page *page, enum zone_stat_item item)
541{
542 mod_zone_state(page_zone(page), item, 1, 1);
543}
544EXPORT_SYMBOL(inc_zone_page_state);
545
546void dec_zone_page_state(struct page *page, enum zone_stat_item item)
547{
548 mod_zone_state(page_zone(page), item, -1, -1);
549}
550EXPORT_SYMBOL(dec_zone_page_state);
551
552static inline void mod_node_state(struct pglist_data *pgdat,
553 enum node_stat_item item, int delta, int overstep_mode)
554{
555 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
556 s8 __percpu *p = pcp->vm_node_stat_diff + item;
557 long o, n, t, z;
558
559 if (vmstat_item_in_bytes(item)) {
560 /*
561 * Only cgroups use subpage accounting right now; at
562 * the global level, these items still change in
563 * multiples of whole pages. Store them as pages
564 * internally to keep the per-cpu counters compact.
565 */
566 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
567 delta >>= PAGE_SHIFT;
568 }
569
570 do {
571 z = 0; /* overflow to node counters */
572
573 /*
574 * The fetching of the stat_threshold is racy. We may apply
575 * a counter threshold to the wrong the cpu if we get
576 * rescheduled while executing here. However, the next
577 * counter update will apply the threshold again and
578 * therefore bring the counter under the threshold again.
579 *
580 * Most of the time the thresholds are the same anyways
581 * for all cpus in a node.
582 */
583 t = this_cpu_read(pcp->stat_threshold);
584
585 o = this_cpu_read(*p);
586 n = delta + o;
587
588 if (abs(n) > t) {
589 int os = overstep_mode * (t >> 1) ;
590
591 /* Overflow must be added to node counters */
592 z = n + os;
593 n = -os;
594 }
595 } while (this_cpu_cmpxchg(*p, o, n) != o);
596
597 if (z)
598 node_page_state_add(z, pgdat, item);
599}
600
601void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
602 long delta)
603{
604 mod_node_state(pgdat, item, delta, 0);
605}
606EXPORT_SYMBOL(mod_node_page_state);
607
608void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
609{
610 mod_node_state(pgdat, item, 1, 1);
611}
612
613void inc_node_page_state(struct page *page, enum node_stat_item item)
614{
615 mod_node_state(page_pgdat(page), item, 1, 1);
616}
617EXPORT_SYMBOL(inc_node_page_state);
618
619void dec_node_page_state(struct page *page, enum node_stat_item item)
620{
621 mod_node_state(page_pgdat(page), item, -1, -1);
622}
623EXPORT_SYMBOL(dec_node_page_state);
624#else
625/*
626 * Use interrupt disable to serialize counter updates
627 */
628void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
629 long delta)
630{
631 unsigned long flags;
632
633 local_irq_save(flags);
634 __mod_zone_page_state(zone, item, delta);
635 local_irq_restore(flags);
636}
637EXPORT_SYMBOL(mod_zone_page_state);
638
639void inc_zone_page_state(struct page *page, enum zone_stat_item item)
640{
641 unsigned long flags;
642 struct zone *zone;
643
644 zone = page_zone(page);
645 local_irq_save(flags);
646 __inc_zone_state(zone, item);
647 local_irq_restore(flags);
648}
649EXPORT_SYMBOL(inc_zone_page_state);
650
651void dec_zone_page_state(struct page *page, enum zone_stat_item item)
652{
653 unsigned long flags;
654
655 local_irq_save(flags);
656 __dec_zone_page_state(page, item);
657 local_irq_restore(flags);
658}
659EXPORT_SYMBOL(dec_zone_page_state);
660
661void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
662{
663 unsigned long flags;
664
665 local_irq_save(flags);
666 __inc_node_state(pgdat, item);
667 local_irq_restore(flags);
668}
669EXPORT_SYMBOL(inc_node_state);
670
671void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
672 long delta)
673{
674 unsigned long flags;
675
676 local_irq_save(flags);
677 __mod_node_page_state(pgdat, item, delta);
678 local_irq_restore(flags);
679}
680EXPORT_SYMBOL(mod_node_page_state);
681
682void inc_node_page_state(struct page *page, enum node_stat_item item)
683{
684 unsigned long flags;
685 struct pglist_data *pgdat;
686
687 pgdat = page_pgdat(page);
688 local_irq_save(flags);
689 __inc_node_state(pgdat, item);
690 local_irq_restore(flags);
691}
692EXPORT_SYMBOL(inc_node_page_state);
693
694void dec_node_page_state(struct page *page, enum node_stat_item item)
695{
696 unsigned long flags;
697
698 local_irq_save(flags);
699 __dec_node_page_state(page, item);
700 local_irq_restore(flags);
701}
702EXPORT_SYMBOL(dec_node_page_state);
703#endif
704
705/*
706 * Fold a differential into the global counters.
707 * Returns the number of counters updated.
708 */
709#ifdef CONFIG_NUMA
710static int fold_diff(int *zone_diff, int *numa_diff, int *node_diff)
711{
712 int i;
713 int changes = 0;
714
715 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
716 if (zone_diff[i]) {
717 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
718 changes++;
719 }
720
721 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
722 if (numa_diff[i]) {
723 atomic_long_add(numa_diff[i], &vm_numa_stat[i]);
724 changes++;
725 }
726
727 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
728 if (node_diff[i]) {
729 atomic_long_add(node_diff[i], &vm_node_stat[i]);
730 changes++;
731 }
732 return changes;
733}
734#else
735static int fold_diff(int *zone_diff, int *node_diff)
736{
737 int i;
738 int changes = 0;
739
740 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
741 if (zone_diff[i]) {
742 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
743 changes++;
744 }
745
746 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
747 if (node_diff[i]) {
748 atomic_long_add(node_diff[i], &vm_node_stat[i]);
749 changes++;
750 }
751 return changes;
752}
753#endif /* CONFIG_NUMA */
754
755/*
756 * Update the zone counters for the current cpu.
757 *
758 * Note that refresh_cpu_vm_stats strives to only access
759 * node local memory. The per cpu pagesets on remote zones are placed
760 * in the memory local to the processor using that pageset. So the
761 * loop over all zones will access a series of cachelines local to
762 * the processor.
763 *
764 * The call to zone_page_state_add updates the cachelines with the
765 * statistics in the remote zone struct as well as the global cachelines
766 * with the global counters. These could cause remote node cache line
767 * bouncing and will have to be only done when necessary.
768 *
769 * The function returns the number of global counters updated.
770 */
771static int refresh_cpu_vm_stats(bool do_pagesets)
772{
773 struct pglist_data *pgdat;
774 struct zone *zone;
775 int i;
776 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
777#ifdef CONFIG_NUMA
778 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
779#endif
780 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
781 int changes = 0;
782
783 for_each_populated_zone(zone) {
784 struct per_cpu_pageset __percpu *p = zone->pageset;
785
786 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
787 int v;
788
789 v = this_cpu_xchg(p->vm_stat_diff[i], 0);
790 if (v) {
791
792 atomic_long_add(v, &zone->vm_stat[i]);
793 global_zone_diff[i] += v;
794#ifdef CONFIG_NUMA
795 /* 3 seconds idle till flush */
796 __this_cpu_write(p->expire, 3);
797#endif
798 }
799 }
800#ifdef CONFIG_NUMA
801 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++) {
802 int v;
803
804 v = this_cpu_xchg(p->vm_numa_stat_diff[i], 0);
805 if (v) {
806
807 atomic_long_add(v, &zone->vm_numa_stat[i]);
808 global_numa_diff[i] += v;
809 __this_cpu_write(p->expire, 3);
810 }
811 }
812
813 if (do_pagesets) {
814 cond_resched();
815 /*
816 * Deal with draining the remote pageset of this
817 * processor
818 *
819 * Check if there are pages remaining in this pageset
820 * if not then there is nothing to expire.
821 */
822 if (!__this_cpu_read(p->expire) ||
823 !__this_cpu_read(p->pcp.count))
824 continue;
825
826 /*
827 * We never drain zones local to this processor.
828 */
829 if (zone_to_nid(zone) == numa_node_id()) {
830 __this_cpu_write(p->expire, 0);
831 continue;
832 }
833
834 if (__this_cpu_dec_return(p->expire))
835 continue;
836
837 if (__this_cpu_read(p->pcp.count)) {
838 drain_zone_pages(zone, this_cpu_ptr(&p->pcp));
839 changes++;
840 }
841 }
842#endif
843 }
844
845 for_each_online_pgdat(pgdat) {
846 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
847
848 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
849 int v;
850
851 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
852 if (v) {
853 atomic_long_add(v, &pgdat->vm_stat[i]);
854 global_node_diff[i] += v;
855 }
856 }
857 }
858
859#ifdef CONFIG_NUMA
860 changes += fold_diff(global_zone_diff, global_numa_diff,
861 global_node_diff);
862#else
863 changes += fold_diff(global_zone_diff, global_node_diff);
864#endif
865 return changes;
866}
867
868/*
869 * Fold the data for an offline cpu into the global array.
870 * There cannot be any access by the offline cpu and therefore
871 * synchronization is simplified.
872 */
873void cpu_vm_stats_fold(int cpu)
874{
875 struct pglist_data *pgdat;
876 struct zone *zone;
877 int i;
878 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
879#ifdef CONFIG_NUMA
880 int global_numa_diff[NR_VM_NUMA_STAT_ITEMS] = { 0, };
881#endif
882 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
883
884 for_each_populated_zone(zone) {
885 struct per_cpu_pageset *p;
886
887 p = per_cpu_ptr(zone->pageset, cpu);
888
889 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
890 if (p->vm_stat_diff[i]) {
891 int v;
892
893 v = p->vm_stat_diff[i];
894 p->vm_stat_diff[i] = 0;
895 atomic_long_add(v, &zone->vm_stat[i]);
896 global_zone_diff[i] += v;
897 }
898
899#ifdef CONFIG_NUMA
900 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
901 if (p->vm_numa_stat_diff[i]) {
902 int v;
903
904 v = p->vm_numa_stat_diff[i];
905 p->vm_numa_stat_diff[i] = 0;
906 atomic_long_add(v, &zone->vm_numa_stat[i]);
907 global_numa_diff[i] += v;
908 }
909#endif
910 }
911
912 for_each_online_pgdat(pgdat) {
913 struct per_cpu_nodestat *p;
914
915 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
916
917 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
918 if (p->vm_node_stat_diff[i]) {
919 int v;
920
921 v = p->vm_node_stat_diff[i];
922 p->vm_node_stat_diff[i] = 0;
923 atomic_long_add(v, &pgdat->vm_stat[i]);
924 global_node_diff[i] += v;
925 }
926 }
927
928#ifdef CONFIG_NUMA
929 fold_diff(global_zone_diff, global_numa_diff, global_node_diff);
930#else
931 fold_diff(global_zone_diff, global_node_diff);
932#endif
933}
934
935/*
936 * this is only called if !populated_zone(zone), which implies no other users of
937 * pset->vm_stat_diff[] exist.
938 */
939void drain_zonestat(struct zone *zone, struct per_cpu_pageset *pset)
940{
941 int i;
942
943 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
944 if (pset->vm_stat_diff[i]) {
945 int v = pset->vm_stat_diff[i];
946 pset->vm_stat_diff[i] = 0;
947 atomic_long_add(v, &zone->vm_stat[i]);
948 atomic_long_add(v, &vm_zone_stat[i]);
949 }
950
951#ifdef CONFIG_NUMA
952 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
953 if (pset->vm_numa_stat_diff[i]) {
954 int v = pset->vm_numa_stat_diff[i];
955
956 pset->vm_numa_stat_diff[i] = 0;
957 atomic_long_add(v, &zone->vm_numa_stat[i]);
958 atomic_long_add(v, &vm_numa_stat[i]);
959 }
960#endif
961}
962#endif
963
964#ifdef CONFIG_NUMA
965void __inc_numa_state(struct zone *zone,
966 enum numa_stat_item item)
967{
968 struct per_cpu_pageset __percpu *pcp = zone->pageset;
969 u16 __percpu *p = pcp->vm_numa_stat_diff + item;
970 u16 v;
971
972 v = __this_cpu_inc_return(*p);
973
974 if (unlikely(v > NUMA_STATS_THRESHOLD)) {
975 zone_numa_state_add(v, zone, item);
976 __this_cpu_write(*p, 0);
977 }
978}
979
980/*
981 * Determine the per node value of a stat item. This function
982 * is called frequently in a NUMA machine, so try to be as
983 * frugal as possible.
984 */
985unsigned long sum_zone_node_page_state(int node,
986 enum zone_stat_item item)
987{
988 struct zone *zones = NODE_DATA(node)->node_zones;
989 int i;
990 unsigned long count = 0;
991
992 for (i = 0; i < MAX_NR_ZONES; i++)
993 count += zone_page_state(zones + i, item);
994
995 return count;
996}
997
998/*
999 * Determine the per node value of a numa stat item. To avoid deviation,
1000 * the per cpu stat number in vm_numa_stat_diff[] is also included.
1001 */
1002unsigned long sum_zone_numa_state(int node,
1003 enum numa_stat_item item)
1004{
1005 struct zone *zones = NODE_DATA(node)->node_zones;
1006 int i;
1007 unsigned long count = 0;
1008
1009 for (i = 0; i < MAX_NR_ZONES; i++)
1010 count += zone_numa_state_snapshot(zones + i, item);
1011
1012 return count;
1013}
1014
1015/*
1016 * Determine the per node value of a stat item.
1017 */
1018unsigned long node_page_state_pages(struct pglist_data *pgdat,
1019 enum node_stat_item item)
1020{
1021 long x = atomic_long_read(&pgdat->vm_stat[item]);
1022#ifdef CONFIG_SMP
1023 if (x < 0)
1024 x = 0;
1025#endif
1026 return x;
1027}
1028
1029unsigned long node_page_state(struct pglist_data *pgdat,
1030 enum node_stat_item item)
1031{
1032 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1033
1034 return node_page_state_pages(pgdat, item);
1035}
1036#endif
1037
1038#ifdef CONFIG_COMPACTION
1039
1040struct contig_page_info {
1041 unsigned long free_pages;
1042 unsigned long free_blocks_total;
1043 unsigned long free_blocks_suitable;
1044};
1045
1046/*
1047 * Calculate the number of free pages in a zone, how many contiguous
1048 * pages are free and how many are large enough to satisfy an allocation of
1049 * the target size. Note that this function makes no attempt to estimate
1050 * how many suitable free blocks there *might* be if MOVABLE pages were
1051 * migrated. Calculating that is possible, but expensive and can be
1052 * figured out from userspace
1053 */
1054static void fill_contig_page_info(struct zone *zone,
1055 unsigned int suitable_order,
1056 struct contig_page_info *info)
1057{
1058 unsigned int order;
1059
1060 info->free_pages = 0;
1061 info->free_blocks_total = 0;
1062 info->free_blocks_suitable = 0;
1063
1064 for (order = 0; order < MAX_ORDER; order++) {
1065 unsigned long blocks;
1066
1067 /* Count number of free blocks */
1068 blocks = zone->free_area[order].nr_free;
1069 info->free_blocks_total += blocks;
1070
1071 /* Count free base pages */
1072 info->free_pages += blocks << order;
1073
1074 /* Count the suitable free blocks */
1075 if (order >= suitable_order)
1076 info->free_blocks_suitable += blocks <<
1077 (order - suitable_order);
1078 }
1079}
1080
1081/*
1082 * A fragmentation index only makes sense if an allocation of a requested
1083 * size would fail. If that is true, the fragmentation index indicates
1084 * whether external fragmentation or a lack of memory was the problem.
1085 * The value can be used to determine if page reclaim or compaction
1086 * should be used
1087 */
1088static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1089{
1090 unsigned long requested = 1UL << order;
1091
1092 if (WARN_ON_ONCE(order >= MAX_ORDER))
1093 return 0;
1094
1095 if (!info->free_blocks_total)
1096 return 0;
1097
1098 /* Fragmentation index only makes sense when a request would fail */
1099 if (info->free_blocks_suitable)
1100 return -1000;
1101
1102 /*
1103 * Index is between 0 and 1 so return within 3 decimal places
1104 *
1105 * 0 => allocation would fail due to lack of memory
1106 * 1 => allocation would fail due to fragmentation
1107 */
1108 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1109}
1110
1111/*
1112 * Calculates external fragmentation within a zone wrt the given order.
1113 * It is defined as the percentage of pages found in blocks of size
1114 * less than 1 << order. It returns values in range [0, 100].
1115 */
1116unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1117{
1118 struct contig_page_info info;
1119
1120 fill_contig_page_info(zone, order, &info);
1121 if (info.free_pages == 0)
1122 return 0;
1123
1124 return div_u64((info.free_pages -
1125 (info.free_blocks_suitable << order)) * 100,
1126 info.free_pages);
1127}
1128
1129/* Same as __fragmentation index but allocs contig_page_info on stack */
1130int fragmentation_index(struct zone *zone, unsigned int order)
1131{
1132 struct contig_page_info info;
1133
1134 fill_contig_page_info(zone, order, &info);
1135 return __fragmentation_index(order, &info);
1136}
1137#endif
1138
1139#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141#ifdef CONFIG_ZONE_DMA
1142#define TEXT_FOR_DMA(xx) xx "_dma",
1143#else
1144#define TEXT_FOR_DMA(xx)
1145#endif
1146
1147#ifdef CONFIG_ZONE_DMA32
1148#define TEXT_FOR_DMA32(xx) xx "_dma32",
1149#else
1150#define TEXT_FOR_DMA32(xx)
1151#endif
1152
1153#ifdef CONFIG_HIGHMEM
1154#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155#else
1156#define TEXT_FOR_HIGHMEM(xx)
1157#endif
1158
1159#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1160 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1161
1162const char * const vmstat_text[] = {
1163 /* enum zone_stat_item counters */
1164 "nr_free_pages",
1165 "nr_zone_inactive_anon",
1166 "nr_zone_active_anon",
1167 "nr_zone_inactive_file",
1168 "nr_zone_active_file",
1169 "nr_zone_unevictable",
1170 "nr_zone_write_pending",
1171 "nr_mlock",
1172 "nr_bounce",
1173#if IS_ENABLED(CONFIG_ZSMALLOC)
1174 "nr_zspages",
1175#endif
1176 "nr_free_cma",
1177
1178 /* enum numa_stat_item counters */
1179#ifdef CONFIG_NUMA
1180 "numa_hit",
1181 "numa_miss",
1182 "numa_foreign",
1183 "numa_interleave",
1184 "numa_local",
1185 "numa_other",
1186#endif
1187
1188 /* enum node_stat_item counters */
1189 "nr_inactive_anon",
1190 "nr_active_anon",
1191 "nr_inactive_file",
1192 "nr_active_file",
1193 "nr_unevictable",
1194 "nr_slab_reclaimable",
1195 "nr_slab_unreclaimable",
1196 "nr_isolated_anon",
1197 "nr_isolated_file",
1198 "workingset_nodes",
1199 "workingset_refault_anon",
1200 "workingset_refault_file",
1201 "workingset_activate_anon",
1202 "workingset_activate_file",
1203 "workingset_restore_anon",
1204 "workingset_restore_file",
1205 "workingset_nodereclaim",
1206 "nr_anon_pages",
1207 "nr_mapped",
1208 "nr_file_pages",
1209 "nr_dirty",
1210 "nr_writeback",
1211 "nr_writeback_temp",
1212 "nr_shmem",
1213 "nr_shmem_hugepages",
1214 "nr_shmem_pmdmapped",
1215 "nr_file_hugepages",
1216 "nr_file_pmdmapped",
1217 "nr_anon_transparent_hugepages",
1218 "nr_vmscan_write",
1219 "nr_vmscan_immediate_reclaim",
1220 "nr_dirtied",
1221 "nr_written",
1222 "nr_kernel_misc_reclaimable",
1223 "nr_foll_pin_acquired",
1224 "nr_foll_pin_released",
1225 "nr_kernel_stack",
1226#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1227 "nr_shadow_call_stack",
1228#endif
1229 "nr_page_table_pages",
1230#ifdef CONFIG_SWAP
1231 "nr_swapcached",
1232#endif
1233
1234 /* enum writeback_stat_item counters */
1235 "nr_dirty_threshold",
1236 "nr_dirty_background_threshold",
1237
1238#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1239 /* enum vm_event_item counters */
1240 "pgpgin",
1241 "pgpgout",
1242 "pswpin",
1243 "pswpout",
1244
1245 TEXTS_FOR_ZONES("pgalloc")
1246 TEXTS_FOR_ZONES("allocstall")
1247 TEXTS_FOR_ZONES("pgskip")
1248
1249 "pgfree",
1250 "pgactivate",
1251 "pgdeactivate",
1252 "pglazyfree",
1253
1254 "pgfault",
1255 "pgmajfault",
1256 "pglazyfreed",
1257
1258 "pgrefill",
1259 "pgreuse",
1260 "pgsteal_kswapd",
1261 "pgsteal_direct",
1262 "pgscan_kswapd",
1263 "pgscan_direct",
1264 "pgscan_direct_throttle",
1265 "pgscan_anon",
1266 "pgscan_file",
1267 "pgsteal_anon",
1268 "pgsteal_file",
1269
1270#ifdef CONFIG_NUMA
1271 "zone_reclaim_failed",
1272#endif
1273 "pginodesteal",
1274 "slabs_scanned",
1275 "kswapd_inodesteal",
1276 "kswapd_low_wmark_hit_quickly",
1277 "kswapd_high_wmark_hit_quickly",
1278 "pageoutrun",
1279
1280 "pgrotated",
1281
1282 "drop_pagecache",
1283 "drop_slab",
1284 "oom_kill",
1285
1286#ifdef CONFIG_NUMA_BALANCING
1287 "numa_pte_updates",
1288 "numa_huge_pte_updates",
1289 "numa_hint_faults",
1290 "numa_hint_faults_local",
1291 "numa_pages_migrated",
1292#endif
1293#ifdef CONFIG_MIGRATION
1294 "pgmigrate_success",
1295 "pgmigrate_fail",
1296 "thp_migration_success",
1297 "thp_migration_fail",
1298 "thp_migration_split",
1299#endif
1300#ifdef CONFIG_COMPACTION
1301 "compact_migrate_scanned",
1302 "compact_free_scanned",
1303 "compact_isolated",
1304 "compact_stall",
1305 "compact_fail",
1306 "compact_success",
1307 "compact_daemon_wake",
1308 "compact_daemon_migrate_scanned",
1309 "compact_daemon_free_scanned",
1310#endif
1311
1312#ifdef CONFIG_HUGETLB_PAGE
1313 "htlb_buddy_alloc_success",
1314 "htlb_buddy_alloc_fail",
1315#endif
1316#ifdef CONFIG_CMA
1317 "cma_alloc_success",
1318 "cma_alloc_fail",
1319#endif
1320 "unevictable_pgs_culled",
1321 "unevictable_pgs_scanned",
1322 "unevictable_pgs_rescued",
1323 "unevictable_pgs_mlocked",
1324 "unevictable_pgs_munlocked",
1325 "unevictable_pgs_cleared",
1326 "unevictable_pgs_stranded",
1327
1328#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1329 "thp_fault_alloc",
1330 "thp_fault_fallback",
1331 "thp_fault_fallback_charge",
1332 "thp_collapse_alloc",
1333 "thp_collapse_alloc_failed",
1334 "thp_file_alloc",
1335 "thp_file_fallback",
1336 "thp_file_fallback_charge",
1337 "thp_file_mapped",
1338 "thp_split_page",
1339 "thp_split_page_failed",
1340 "thp_deferred_split_page",
1341 "thp_split_pmd",
1342#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1343 "thp_split_pud",
1344#endif
1345 "thp_zero_page_alloc",
1346 "thp_zero_page_alloc_failed",
1347 "thp_swpout",
1348 "thp_swpout_fallback",
1349#endif
1350#ifdef CONFIG_MEMORY_BALLOON
1351 "balloon_inflate",
1352 "balloon_deflate",
1353#ifdef CONFIG_BALLOON_COMPACTION
1354 "balloon_migrate",
1355#endif
1356#endif /* CONFIG_MEMORY_BALLOON */
1357#ifdef CONFIG_DEBUG_TLBFLUSH
1358 "nr_tlb_remote_flush",
1359 "nr_tlb_remote_flush_received",
1360 "nr_tlb_local_flush_all",
1361 "nr_tlb_local_flush_one",
1362#endif /* CONFIG_DEBUG_TLBFLUSH */
1363
1364#ifdef CONFIG_DEBUG_VM_VMACACHE
1365 "vmacache_find_calls",
1366 "vmacache_find_hits",
1367#endif
1368#ifdef CONFIG_SWAP
1369 "swap_ra",
1370 "swap_ra_hit",
1371#endif
1372#ifdef CONFIG_X86
1373 "direct_map_level2_splits",
1374 "direct_map_level3_splits",
1375#endif
1376#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1377};
1378#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1379
1380#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1381 defined(CONFIG_PROC_FS)
1382static void *frag_start(struct seq_file *m, loff_t *pos)
1383{
1384 pg_data_t *pgdat;
1385 loff_t node = *pos;
1386
1387 for (pgdat = first_online_pgdat();
1388 pgdat && node;
1389 pgdat = next_online_pgdat(pgdat))
1390 --node;
1391
1392 return pgdat;
1393}
1394
1395static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1396{
1397 pg_data_t *pgdat = (pg_data_t *)arg;
1398
1399 (*pos)++;
1400 return next_online_pgdat(pgdat);
1401}
1402
1403static void frag_stop(struct seq_file *m, void *arg)
1404{
1405}
1406
1407/*
1408 * Walk zones in a node and print using a callback.
1409 * If @assert_populated is true, only use callback for zones that are populated.
1410 */
1411static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1412 bool assert_populated, bool nolock,
1413 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1414{
1415 struct zone *zone;
1416 struct zone *node_zones = pgdat->node_zones;
1417 unsigned long flags;
1418
1419 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1420 if (assert_populated && !populated_zone(zone))
1421 continue;
1422
1423 if (!nolock)
1424 spin_lock_irqsave(&zone->lock, flags);
1425 print(m, pgdat, zone);
1426 if (!nolock)
1427 spin_unlock_irqrestore(&zone->lock, flags);
1428 }
1429}
1430#endif
1431
1432#ifdef CONFIG_PROC_FS
1433static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1434 struct zone *zone)
1435{
1436 int order;
1437
1438 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1439 for (order = 0; order < MAX_ORDER; ++order)
1440 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
1441 seq_putc(m, '\n');
1442}
1443
1444/*
1445 * This walks the free areas for each zone.
1446 */
1447static int frag_show(struct seq_file *m, void *arg)
1448{
1449 pg_data_t *pgdat = (pg_data_t *)arg;
1450 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1451 return 0;
1452}
1453
1454static void pagetypeinfo_showfree_print(struct seq_file *m,
1455 pg_data_t *pgdat, struct zone *zone)
1456{
1457 int order, mtype;
1458
1459 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1460 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1461 pgdat->node_id,
1462 zone->name,
1463 migratetype_names[mtype]);
1464 for (order = 0; order < MAX_ORDER; ++order) {
1465 unsigned long freecount = 0;
1466 struct free_area *area;
1467 struct list_head *curr;
1468 bool overflow = false;
1469
1470 area = &(zone->free_area[order]);
1471
1472 list_for_each(curr, &area->free_list[mtype]) {
1473 /*
1474 * Cap the free_list iteration because it might
1475 * be really large and we are under a spinlock
1476 * so a long time spent here could trigger a
1477 * hard lockup detector. Anyway this is a
1478 * debugging tool so knowing there is a handful
1479 * of pages of this order should be more than
1480 * sufficient.
1481 */
1482 if (++freecount >= 100000) {
1483 overflow = true;
1484 break;
1485 }
1486 }
1487 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1488 spin_unlock_irq(&zone->lock);
1489 cond_resched();
1490 spin_lock_irq(&zone->lock);
1491 }
1492 seq_putc(m, '\n');
1493 }
1494}
1495
1496/* Print out the free pages at each order for each migatetype */
1497static int pagetypeinfo_showfree(struct seq_file *m, void *arg)
1498{
1499 int order;
1500 pg_data_t *pgdat = (pg_data_t *)arg;
1501
1502 /* Print header */
1503 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1504 for (order = 0; order < MAX_ORDER; ++order)
1505 seq_printf(m, "%6d ", order);
1506 seq_putc(m, '\n');
1507
1508 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1509
1510 return 0;
1511}
1512
1513static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1514 pg_data_t *pgdat, struct zone *zone)
1515{
1516 int mtype;
1517 unsigned long pfn;
1518 unsigned long start_pfn = zone->zone_start_pfn;
1519 unsigned long end_pfn = zone_end_pfn(zone);
1520 unsigned long count[MIGRATE_TYPES] = { 0, };
1521
1522 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1523 struct page *page;
1524
1525 page = pfn_to_online_page(pfn);
1526 if (!page)
1527 continue;
1528
1529 if (page_zone(page) != zone)
1530 continue;
1531
1532 mtype = get_pageblock_migratetype(page);
1533
1534 if (mtype < MIGRATE_TYPES)
1535 count[mtype]++;
1536 }
1537
1538 /* Print counts */
1539 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1540 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1541 seq_printf(m, "%12lu ", count[mtype]);
1542 seq_putc(m, '\n');
1543}
1544
1545/* Print out the number of pageblocks for each migratetype */
1546static int pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1547{
1548 int mtype;
1549 pg_data_t *pgdat = (pg_data_t *)arg;
1550
1551 seq_printf(m, "\n%-23s", "Number of blocks type ");
1552 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1553 seq_printf(m, "%12s ", migratetype_names[mtype]);
1554 seq_putc(m, '\n');
1555 walk_zones_in_node(m, pgdat, true, false,
1556 pagetypeinfo_showblockcount_print);
1557
1558 return 0;
1559}
1560
1561/*
1562 * Print out the number of pageblocks for each migratetype that contain pages
1563 * of other types. This gives an indication of how well fallbacks are being
1564 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1565 * to determine what is going on
1566 */
1567static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1568{
1569#ifdef CONFIG_PAGE_OWNER
1570 int mtype;
1571
1572 if (!static_branch_unlikely(&page_owner_inited))
1573 return;
1574
1575 drain_all_pages(NULL);
1576
1577 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1578 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 seq_printf(m, "%12s ", migratetype_names[mtype]);
1580 seq_putc(m, '\n');
1581
1582 walk_zones_in_node(m, pgdat, true, true,
1583 pagetypeinfo_showmixedcount_print);
1584#endif /* CONFIG_PAGE_OWNER */
1585}
1586
1587/*
1588 * This prints out statistics in relation to grouping pages by mobility.
1589 * It is expensive to collect so do not constantly read the file.
1590 */
1591static int pagetypeinfo_show(struct seq_file *m, void *arg)
1592{
1593 pg_data_t *pgdat = (pg_data_t *)arg;
1594
1595 /* check memoryless node */
1596 if (!node_state(pgdat->node_id, N_MEMORY))
1597 return 0;
1598
1599 seq_printf(m, "Page block order: %d\n", pageblock_order);
1600 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1601 seq_putc(m, '\n');
1602 pagetypeinfo_showfree(m, pgdat);
1603 pagetypeinfo_showblockcount(m, pgdat);
1604 pagetypeinfo_showmixedcount(m, pgdat);
1605
1606 return 0;
1607}
1608
1609static const struct seq_operations fragmentation_op = {
1610 .start = frag_start,
1611 .next = frag_next,
1612 .stop = frag_stop,
1613 .show = frag_show,
1614};
1615
1616static const struct seq_operations pagetypeinfo_op = {
1617 .start = frag_start,
1618 .next = frag_next,
1619 .stop = frag_stop,
1620 .show = pagetypeinfo_show,
1621};
1622
1623static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1624{
1625 int zid;
1626
1627 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1628 struct zone *compare = &pgdat->node_zones[zid];
1629
1630 if (populated_zone(compare))
1631 return zone == compare;
1632 }
1633
1634 return false;
1635}
1636
1637static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1638 struct zone *zone)
1639{
1640 int i;
1641 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1642 if (is_zone_first_populated(pgdat, zone)) {
1643 seq_printf(m, "\n per-node stats");
1644 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1645 unsigned long pages = node_page_state_pages(pgdat, i);
1646
1647 if (vmstat_item_print_in_thp(i))
1648 pages /= HPAGE_PMD_NR;
1649 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1650 pages);
1651 }
1652 }
1653 seq_printf(m,
1654 "\n pages free %lu"
1655 "\n min %lu"
1656 "\n low %lu"
1657 "\n high %lu"
1658 "\n spanned %lu"
1659 "\n present %lu"
1660 "\n managed %lu"
1661 "\n cma %lu",
1662 zone_page_state(zone, NR_FREE_PAGES),
1663 min_wmark_pages(zone),
1664 low_wmark_pages(zone),
1665 high_wmark_pages(zone),
1666 zone->spanned_pages,
1667 zone->present_pages,
1668 zone_managed_pages(zone),
1669 zone_cma_pages(zone));
1670
1671 seq_printf(m,
1672 "\n protection: (%ld",
1673 zone->lowmem_reserve[0]);
1674 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1675 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1676 seq_putc(m, ')');
1677
1678 /* If unpopulated, no other information is useful */
1679 if (!populated_zone(zone)) {
1680 seq_putc(m, '\n');
1681 return;
1682 }
1683
1684 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1685 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1686 zone_page_state(zone, i));
1687
1688#ifdef CONFIG_NUMA
1689 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1690 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1691 zone_numa_state_snapshot(zone, i));
1692#endif
1693
1694 seq_printf(m, "\n pagesets");
1695 for_each_online_cpu(i) {
1696 struct per_cpu_pageset *pageset;
1697
1698 pageset = per_cpu_ptr(zone->pageset, i);
1699 seq_printf(m,
1700 "\n cpu: %i"
1701 "\n count: %i"
1702 "\n high: %i"
1703 "\n batch: %i",
1704 i,
1705 pageset->pcp.count,
1706 pageset->pcp.high,
1707 pageset->pcp.batch);
1708#ifdef CONFIG_SMP
1709 seq_printf(m, "\n vm stats threshold: %d",
1710 pageset->stat_threshold);
1711#endif
1712 }
1713 seq_printf(m,
1714 "\n node_unreclaimable: %u"
1715 "\n start_pfn: %lu",
1716 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1717 zone->zone_start_pfn);
1718 seq_putc(m, '\n');
1719}
1720
1721/*
1722 * Output information about zones in @pgdat. All zones are printed regardless
1723 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1724 * set of all zones and userspace would not be aware of such zones if they are
1725 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1726 */
1727static int zoneinfo_show(struct seq_file *m, void *arg)
1728{
1729 pg_data_t *pgdat = (pg_data_t *)arg;
1730 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1731 return 0;
1732}
1733
1734static const struct seq_operations zoneinfo_op = {
1735 .start = frag_start, /* iterate over all zones. The same as in
1736 * fragmentation. */
1737 .next = frag_next,
1738 .stop = frag_stop,
1739 .show = zoneinfo_show,
1740};
1741
1742#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1743 NR_VM_NUMA_STAT_ITEMS + \
1744 NR_VM_NODE_STAT_ITEMS + \
1745 NR_VM_WRITEBACK_STAT_ITEMS + \
1746 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1747 NR_VM_EVENT_ITEMS : 0))
1748
1749static void *vmstat_start(struct seq_file *m, loff_t *pos)
1750{
1751 unsigned long *v;
1752 int i;
1753
1754 if (*pos >= NR_VMSTAT_ITEMS)
1755 return NULL;
1756
1757 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1758 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1759 m->private = v;
1760 if (!v)
1761 return ERR_PTR(-ENOMEM);
1762 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1763 v[i] = global_zone_page_state(i);
1764 v += NR_VM_ZONE_STAT_ITEMS;
1765
1766#ifdef CONFIG_NUMA
1767 for (i = 0; i < NR_VM_NUMA_STAT_ITEMS; i++)
1768 v[i] = global_numa_state(i);
1769 v += NR_VM_NUMA_STAT_ITEMS;
1770#endif
1771
1772 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1773 v[i] = global_node_page_state_pages(i);
1774 if (vmstat_item_print_in_thp(i))
1775 v[i] /= HPAGE_PMD_NR;
1776 }
1777 v += NR_VM_NODE_STAT_ITEMS;
1778
1779 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1780 v + NR_DIRTY_THRESHOLD);
1781 v += NR_VM_WRITEBACK_STAT_ITEMS;
1782
1783#ifdef CONFIG_VM_EVENT_COUNTERS
1784 all_vm_events(v);
1785 v[PGPGIN] /= 2; /* sectors -> kbytes */
1786 v[PGPGOUT] /= 2;
1787#endif
1788 return (unsigned long *)m->private + *pos;
1789}
1790
1791static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1792{
1793 (*pos)++;
1794 if (*pos >= NR_VMSTAT_ITEMS)
1795 return NULL;
1796 return (unsigned long *)m->private + *pos;
1797}
1798
1799static int vmstat_show(struct seq_file *m, void *arg)
1800{
1801 unsigned long *l = arg;
1802 unsigned long off = l - (unsigned long *)m->private;
1803
1804 seq_puts(m, vmstat_text[off]);
1805 seq_put_decimal_ull(m, " ", *l);
1806 seq_putc(m, '\n');
1807
1808 if (off == NR_VMSTAT_ITEMS - 1) {
1809 /*
1810 * We've come to the end - add any deprecated counters to avoid
1811 * breaking userspace which might depend on them being present.
1812 */
1813 seq_puts(m, "nr_unstable 0\n");
1814 }
1815 return 0;
1816}
1817
1818static void vmstat_stop(struct seq_file *m, void *arg)
1819{
1820 kfree(m->private);
1821 m->private = NULL;
1822}
1823
1824static const struct seq_operations vmstat_op = {
1825 .start = vmstat_start,
1826 .next = vmstat_next,
1827 .stop = vmstat_stop,
1828 .show = vmstat_show,
1829};
1830#endif /* CONFIG_PROC_FS */
1831
1832#ifdef CONFIG_SMP
1833static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1834int sysctl_stat_interval __read_mostly = HZ;
1835
1836#ifdef CONFIG_PROC_FS
1837static void refresh_vm_stats(struct work_struct *work)
1838{
1839 refresh_cpu_vm_stats(true);
1840}
1841
1842int vmstat_refresh(struct ctl_table *table, int write,
1843 void *buffer, size_t *lenp, loff_t *ppos)
1844{
1845 long val;
1846 int err;
1847 int i;
1848
1849 /*
1850 * The regular update, every sysctl_stat_interval, may come later
1851 * than expected: leaving a significant amount in per_cpu buckets.
1852 * This is particularly misleading when checking a quantity of HUGE
1853 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1854 * which can equally be echo'ed to or cat'ted from (by root),
1855 * can be used to update the stats just before reading them.
1856 *
1857 * Oh, and since global_zone_page_state() etc. are so careful to hide
1858 * transiently negative values, report an error here if any of
1859 * the stats is negative, so we know to go looking for imbalance.
1860 */
1861 err = schedule_on_each_cpu(refresh_vm_stats);
1862 if (err)
1863 return err;
1864 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1865 /*
1866 * Skip checking stats known to go negative occasionally.
1867 */
1868 switch (i) {
1869 case NR_ZONE_WRITE_PENDING:
1870 case NR_FREE_CMA_PAGES:
1871 continue;
1872 }
1873 val = atomic_long_read(&vm_zone_stat[i]);
1874 if (val < 0) {
1875 pr_warn("%s: %s %ld\n",
1876 __func__, zone_stat_name(i), val);
1877 }
1878 }
1879 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1880 /*
1881 * Skip checking stats known to go negative occasionally.
1882 */
1883 switch (i) {
1884 case NR_WRITEBACK:
1885 continue;
1886 }
1887 val = atomic_long_read(&vm_node_stat[i]);
1888 if (val < 0) {
1889 pr_warn("%s: %s %ld\n",
1890 __func__, node_stat_name(i), val);
1891 }
1892 }
1893 if (write)
1894 *ppos += *lenp;
1895 else
1896 *lenp = 0;
1897 return 0;
1898}
1899#endif /* CONFIG_PROC_FS */
1900
1901static void vmstat_update(struct work_struct *w)
1902{
1903 if (refresh_cpu_vm_stats(true)) {
1904 /*
1905 * Counters were updated so we expect more updates
1906 * to occur in the future. Keep on running the
1907 * update worker thread.
1908 */
1909 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1910 this_cpu_ptr(&vmstat_work),
1911 round_jiffies_relative(sysctl_stat_interval));
1912 }
1913}
1914
1915/*
1916 * Switch off vmstat processing and then fold all the remaining differentials
1917 * until the diffs stay at zero. The function is used by NOHZ and can only be
1918 * invoked when tick processing is not active.
1919 */
1920/*
1921 * Check if the diffs for a certain cpu indicate that
1922 * an update is needed.
1923 */
1924static bool need_update(int cpu)
1925{
1926 pg_data_t *last_pgdat = NULL;
1927 struct zone *zone;
1928
1929 for_each_populated_zone(zone) {
1930 struct per_cpu_pageset *p = per_cpu_ptr(zone->pageset, cpu);
1931 struct per_cpu_nodestat *n;
1932 /*
1933 * The fast way of checking if there are any vmstat diffs.
1934 */
1935 if (memchr_inv(p->vm_stat_diff, 0, NR_VM_ZONE_STAT_ITEMS *
1936 sizeof(p->vm_stat_diff[0])))
1937 return true;
1938#ifdef CONFIG_NUMA
1939 if (memchr_inv(p->vm_numa_stat_diff, 0, NR_VM_NUMA_STAT_ITEMS *
1940 sizeof(p->vm_numa_stat_diff[0])))
1941 return true;
1942#endif
1943 if (last_pgdat == zone->zone_pgdat)
1944 continue;
1945 last_pgdat = zone->zone_pgdat;
1946 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1947 if (memchr_inv(n->vm_node_stat_diff, 0, NR_VM_NODE_STAT_ITEMS *
1948 sizeof(n->vm_node_stat_diff[0])))
1949 return true;
1950 }
1951 return false;
1952}
1953
1954/*
1955 * Switch off vmstat processing and then fold all the remaining differentials
1956 * until the diffs stay at zero. The function is used by NOHZ and can only be
1957 * invoked when tick processing is not active.
1958 */
1959void quiet_vmstat(void)
1960{
1961 if (system_state != SYSTEM_RUNNING)
1962 return;
1963
1964 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1965 return;
1966
1967 if (!need_update(smp_processor_id()))
1968 return;
1969
1970 /*
1971 * Just refresh counters and do not care about the pending delayed
1972 * vmstat_update. It doesn't fire that often to matter and canceling
1973 * it would be too expensive from this path.
1974 * vmstat_shepherd will take care about that for us.
1975 */
1976 refresh_cpu_vm_stats(false);
1977}
1978
1979/*
1980 * Shepherd worker thread that checks the
1981 * differentials of processors that have their worker
1982 * threads for vm statistics updates disabled because of
1983 * inactivity.
1984 */
1985static void vmstat_shepherd(struct work_struct *w);
1986
1987static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1988
1989static void vmstat_shepherd(struct work_struct *w)
1990{
1991 int cpu;
1992
1993 get_online_cpus();
1994 /* Check processors whose vmstat worker threads have been disabled */
1995 for_each_online_cpu(cpu) {
1996 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
1997
1998 if (!delayed_work_pending(dw) && need_update(cpu))
1999 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2000
2001 cond_resched();
2002 }
2003 put_online_cpus();
2004
2005 schedule_delayed_work(&shepherd,
2006 round_jiffies_relative(sysctl_stat_interval));
2007}
2008
2009static void __init start_shepherd_timer(void)
2010{
2011 int cpu;
2012
2013 for_each_possible_cpu(cpu)
2014 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2015 vmstat_update);
2016
2017 schedule_delayed_work(&shepherd,
2018 round_jiffies_relative(sysctl_stat_interval));
2019}
2020
2021static void __init init_cpu_node_state(void)
2022{
2023 int node;
2024
2025 for_each_online_node(node) {
2026 if (cpumask_weight(cpumask_of_node(node)) > 0)
2027 node_set_state(node, N_CPU);
2028 }
2029}
2030
2031static int vmstat_cpu_online(unsigned int cpu)
2032{
2033 refresh_zone_stat_thresholds();
2034 node_set_state(cpu_to_node(cpu), N_CPU);
2035 return 0;
2036}
2037
2038static int vmstat_cpu_down_prep(unsigned int cpu)
2039{
2040 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2041 return 0;
2042}
2043
2044static int vmstat_cpu_dead(unsigned int cpu)
2045{
2046 const struct cpumask *node_cpus;
2047 int node;
2048
2049 node = cpu_to_node(cpu);
2050
2051 refresh_zone_stat_thresholds();
2052 node_cpus = cpumask_of_node(node);
2053 if (cpumask_weight(node_cpus) > 0)
2054 return 0;
2055
2056 node_clear_state(node, N_CPU);
2057 return 0;
2058}
2059
2060#endif
2061
2062struct workqueue_struct *mm_percpu_wq;
2063
2064void __init init_mm_internals(void)
2065{
2066 int ret __maybe_unused;
2067
2068 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2069
2070#ifdef CONFIG_SMP
2071 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2072 NULL, vmstat_cpu_dead);
2073 if (ret < 0)
2074 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2075
2076 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2077 vmstat_cpu_online,
2078 vmstat_cpu_down_prep);
2079 if (ret < 0)
2080 pr_err("vmstat: failed to register 'online' hotplug state\n");
2081
2082 get_online_cpus();
2083 init_cpu_node_state();
2084 put_online_cpus();
2085
2086 start_shepherd_timer();
2087#endif
2088#ifdef CONFIG_PROC_FS
2089 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2090 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2091 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2092 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2093#endif
2094}
2095
2096#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2097
2098/*
2099 * Return an index indicating how much of the available free memory is
2100 * unusable for an allocation of the requested size.
2101 */
2102static int unusable_free_index(unsigned int order,
2103 struct contig_page_info *info)
2104{
2105 /* No free memory is interpreted as all free memory is unusable */
2106 if (info->free_pages == 0)
2107 return 1000;
2108
2109 /*
2110 * Index should be a value between 0 and 1. Return a value to 3
2111 * decimal places.
2112 *
2113 * 0 => no fragmentation
2114 * 1 => high fragmentation
2115 */
2116 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2117
2118}
2119
2120static void unusable_show_print(struct seq_file *m,
2121 pg_data_t *pgdat, struct zone *zone)
2122{
2123 unsigned int order;
2124 int index;
2125 struct contig_page_info info;
2126
2127 seq_printf(m, "Node %d, zone %8s ",
2128 pgdat->node_id,
2129 zone->name);
2130 for (order = 0; order < MAX_ORDER; ++order) {
2131 fill_contig_page_info(zone, order, &info);
2132 index = unusable_free_index(order, &info);
2133 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2134 }
2135
2136 seq_putc(m, '\n');
2137}
2138
2139/*
2140 * Display unusable free space index
2141 *
2142 * The unusable free space index measures how much of the available free
2143 * memory cannot be used to satisfy an allocation of a given size and is a
2144 * value between 0 and 1. The higher the value, the more of free memory is
2145 * unusable and by implication, the worse the external fragmentation is. This
2146 * can be expressed as a percentage by multiplying by 100.
2147 */
2148static int unusable_show(struct seq_file *m, void *arg)
2149{
2150 pg_data_t *pgdat = (pg_data_t *)arg;
2151
2152 /* check memoryless node */
2153 if (!node_state(pgdat->node_id, N_MEMORY))
2154 return 0;
2155
2156 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2157
2158 return 0;
2159}
2160
2161static const struct seq_operations unusable_sops = {
2162 .start = frag_start,
2163 .next = frag_next,
2164 .stop = frag_stop,
2165 .show = unusable_show,
2166};
2167
2168DEFINE_SEQ_ATTRIBUTE(unusable);
2169
2170static void extfrag_show_print(struct seq_file *m,
2171 pg_data_t *pgdat, struct zone *zone)
2172{
2173 unsigned int order;
2174 int index;
2175
2176 /* Alloc on stack as interrupts are disabled for zone walk */
2177 struct contig_page_info info;
2178
2179 seq_printf(m, "Node %d, zone %8s ",
2180 pgdat->node_id,
2181 zone->name);
2182 for (order = 0; order < MAX_ORDER; ++order) {
2183 fill_contig_page_info(zone, order, &info);
2184 index = __fragmentation_index(order, &info);
2185 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2186 }
2187
2188 seq_putc(m, '\n');
2189}
2190
2191/*
2192 * Display fragmentation index for orders that allocations would fail for
2193 */
2194static int extfrag_show(struct seq_file *m, void *arg)
2195{
2196 pg_data_t *pgdat = (pg_data_t *)arg;
2197
2198 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2199
2200 return 0;
2201}
2202
2203static const struct seq_operations extfrag_sops = {
2204 .start = frag_start,
2205 .next = frag_next,
2206 .stop = frag_stop,
2207 .show = extfrag_show,
2208};
2209
2210DEFINE_SEQ_ATTRIBUTE(extfrag);
2211
2212static int __init extfrag_debug_init(void)
2213{
2214 struct dentry *extfrag_debug_root;
2215
2216 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2217
2218 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2219 &unusable_fops);
2220
2221 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2222 &extfrag_fops);
2223
2224 return 0;
2225}
2226
2227module_init(extfrag_debug_init);
2228#endif