Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/highmem.h>
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
24#include <linux/jiffies.h>
25#include <linux/memblock.h>
26#include <linux/compiler.h>
27#include <linux/kernel.h>
28#include <linux/kasan.h>
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
34#include <linux/ratelimit.h>
35#include <linux/oom.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
40#include <linux/memory_hotplug.h>
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
43#include <linux/vmstat.h>
44#include <linux/mempolicy.h>
45#include <linux/memremap.h>
46#include <linux/stop_machine.h>
47#include <linux/random.h>
48#include <linux/sort.h>
49#include <linux/pfn.h>
50#include <linux/backing-dev.h>
51#include <linux/fault-inject.h>
52#include <linux/page-isolation.h>
53#include <linux/debugobjects.h>
54#include <linux/kmemleak.h>
55#include <linux/compaction.h>
56#include <trace/events/kmem.h>
57#include <trace/events/oom.h>
58#include <linux/prefetch.h>
59#include <linux/mm_inline.h>
60#include <linux/mmu_notifier.h>
61#include <linux/migrate.h>
62#include <linux/hugetlb.h>
63#include <linux/sched/rt.h>
64#include <linux/sched/mm.h>
65#include <linux/page_owner.h>
66#include <linux/kthread.h>
67#include <linux/memcontrol.h>
68#include <linux/ftrace.h>
69#include <linux/lockdep.h>
70#include <linux/nmi.h>
71#include <linux/psi.h>
72#include <linux/padata.h>
73#include <linux/khugepaged.h>
74#include <linux/buffer_head.h>
75#include <asm/sections.h>
76#include <asm/tlbflush.h>
77#include <asm/div64.h>
78#include "internal.h"
79#include "shuffle.h"
80#include "page_reporting.h"
81
82/* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83typedef int __bitwise fpi_t;
84
85/* No special request */
86#define FPI_NONE ((__force fpi_t)0)
87
88/*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96#define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98/*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108#define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110/*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119#define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122static DEFINE_MUTEX(pcp_batch_high_lock);
123#define MIN_PERCPU_PAGELIST_FRACTION (8)
124
125#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126DEFINE_PER_CPU(int, numa_node);
127EXPORT_PER_CPU_SYMBOL(numa_node);
128#endif
129
130DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131
132#ifdef CONFIG_HAVE_MEMORYLESS_NODES
133/*
134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137 * defined in <linux/topology.h>.
138 */
139DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
140EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141#endif
142
143/* work_structs for global per-cpu drains */
144struct pcpu_drain {
145 struct zone *zone;
146 struct work_struct work;
147};
148static DEFINE_MUTEX(pcpu_drain_mutex);
149static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
150
151#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152volatile unsigned long latent_entropy __latent_entropy;
153EXPORT_SYMBOL(latent_entropy);
154#endif
155
156/*
157 * Array of node states.
158 */
159nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 [N_POSSIBLE] = NODE_MASK_ALL,
161 [N_ONLINE] = { { [0] = 1UL } },
162#ifndef CONFIG_NUMA
163 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
164#ifdef CONFIG_HIGHMEM
165 [N_HIGH_MEMORY] = { { [0] = 1UL } },
166#endif
167 [N_MEMORY] = { { [0] = 1UL } },
168 [N_CPU] = { { [0] = 1UL } },
169#endif /* NUMA */
170};
171EXPORT_SYMBOL(node_states);
172
173atomic_long_t _totalram_pages __read_mostly;
174EXPORT_SYMBOL(_totalram_pages);
175unsigned long totalreserve_pages __read_mostly;
176unsigned long totalcma_pages __read_mostly;
177
178int percpu_pagelist_fraction;
179gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181EXPORT_SYMBOL(init_on_alloc);
182
183DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184EXPORT_SYMBOL(init_on_free);
185
186static bool _init_on_alloc_enabled_early __read_mostly
187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188static int __init early_init_on_alloc(char *buf)
189{
190
191 return kstrtobool(buf, &_init_on_alloc_enabled_early);
192}
193early_param("init_on_alloc", early_init_on_alloc);
194
195static bool _init_on_free_enabled_early __read_mostly
196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197static int __init early_init_on_free(char *buf)
198{
199 return kstrtobool(buf, &_init_on_free_enabled_early);
200}
201early_param("init_on_free", early_init_on_free);
202
203/*
204 * A cached value of the page's pageblock's migratetype, used when the page is
205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207 * Also the migratetype set in the page does not necessarily match the pcplist
208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209 * other index - this ensures that it will be put on the correct CMA freelist.
210 */
211static inline int get_pcppage_migratetype(struct page *page)
212{
213 return page->index;
214}
215
216static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217{
218 page->index = migratetype;
219}
220
221#ifdef CONFIG_PM_SLEEP
222/*
223 * The following functions are used by the suspend/hibernate code to temporarily
224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225 * while devices are suspended. To avoid races with the suspend/hibernate code,
226 * they should always be called with system_transition_mutex held
227 * (gfp_allowed_mask also should only be modified with system_transition_mutex
228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229 * with that modification).
230 */
231
232static gfp_t saved_gfp_mask;
233
234void pm_restore_gfp_mask(void)
235{
236 WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 if (saved_gfp_mask) {
238 gfp_allowed_mask = saved_gfp_mask;
239 saved_gfp_mask = 0;
240 }
241}
242
243void pm_restrict_gfp_mask(void)
244{
245 WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 WARN_ON(saved_gfp_mask);
247 saved_gfp_mask = gfp_allowed_mask;
248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
249}
250
251bool pm_suspended_storage(void)
252{
253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
254 return false;
255 return true;
256}
257#endif /* CONFIG_PM_SLEEP */
258
259#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260unsigned int pageblock_order __read_mostly;
261#endif
262
263static void __free_pages_ok(struct page *page, unsigned int order,
264 fpi_t fpi_flags);
265
266/*
267 * results with 256, 32 in the lowmem_reserve sysctl:
268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269 * 1G machine -> (16M dma, 784M normal, 224M high)
270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
273 *
274 * TBD: should special case ZONE_DMA32 machines here - in those we normally
275 * don't need any ZONE_NORMAL reservation
276 */
277int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278#ifdef CONFIG_ZONE_DMA
279 [ZONE_DMA] = 256,
280#endif
281#ifdef CONFIG_ZONE_DMA32
282 [ZONE_DMA32] = 256,
283#endif
284 [ZONE_NORMAL] = 32,
285#ifdef CONFIG_HIGHMEM
286 [ZONE_HIGHMEM] = 0,
287#endif
288 [ZONE_MOVABLE] = 0,
289};
290
291static char * const zone_names[MAX_NR_ZONES] = {
292#ifdef CONFIG_ZONE_DMA
293 "DMA",
294#endif
295#ifdef CONFIG_ZONE_DMA32
296 "DMA32",
297#endif
298 "Normal",
299#ifdef CONFIG_HIGHMEM
300 "HighMem",
301#endif
302 "Movable",
303#ifdef CONFIG_ZONE_DEVICE
304 "Device",
305#endif
306};
307
308const char * const migratetype_names[MIGRATE_TYPES] = {
309 "Unmovable",
310 "Movable",
311 "Reclaimable",
312 "HighAtomic",
313#ifdef CONFIG_CMA
314 "CMA",
315#endif
316#ifdef CONFIG_MEMORY_ISOLATION
317 "Isolate",
318#endif
319};
320
321compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 [NULL_COMPOUND_DTOR] = NULL,
323 [COMPOUND_PAGE_DTOR] = free_compound_page,
324#ifdef CONFIG_HUGETLB_PAGE
325 [HUGETLB_PAGE_DTOR] = free_huge_page,
326#endif
327#ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
329#endif
330};
331
332int min_free_kbytes = 1024;
333int user_min_free_kbytes = -1;
334#ifdef CONFIG_DISCONTIGMEM
335/*
336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337 * are not on separate NUMA nodes. Functionally this works but with
338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339 * quite small. By default, do not boost watermarks on discontigmem as in
340 * many cases very high-order allocations like THP are likely to be
341 * unsupported and the premature reclaim offsets the advantage of long-term
342 * fragmentation avoidance.
343 */
344int watermark_boost_factor __read_mostly;
345#else
346int watermark_boost_factor __read_mostly = 15000;
347#endif
348int watermark_scale_factor = 10;
349
350static unsigned long nr_kernel_pages __initdata;
351static unsigned long nr_all_pages __initdata;
352static unsigned long dma_reserve __initdata;
353
354static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356static unsigned long required_kernelcore __initdata;
357static unsigned long required_kernelcore_percent __initdata;
358static unsigned long required_movablecore __initdata;
359static unsigned long required_movablecore_percent __initdata;
360static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361static bool mirrored_kernelcore __meminitdata;
362
363/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364int movable_zone;
365EXPORT_SYMBOL(movable_zone);
366
367#if MAX_NUMNODES > 1
368unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369unsigned int nr_online_nodes __read_mostly = 1;
370EXPORT_SYMBOL(nr_node_ids);
371EXPORT_SYMBOL(nr_online_nodes);
372#endif
373
374int page_group_by_mobility_disabled __read_mostly;
375
376#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
377/*
378 * During boot we initialize deferred pages on-demand, as needed, but once
379 * page_alloc_init_late() has finished, the deferred pages are all initialized,
380 * and we can permanently disable that path.
381 */
382static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383
384/*
385 * Calling kasan_free_pages() only after deferred memory initialization
386 * has completed. Poisoning pages during deferred memory init will greatly
387 * lengthen the process and cause problem in large memory systems as the
388 * deferred pages initialization is done with interrupt disabled.
389 *
390 * Assuming that there will be no reference to those newly initialized
391 * pages before they are ever allocated, this should have no effect on
392 * KASAN memory tracking as the poison will be properly inserted at page
393 * allocation time. The only corner case is when pages are allocated by
394 * on-demand allocation and then freed again before the deferred pages
395 * initialization is done, but this is not likely to happen.
396 */
397static inline void kasan_free_nondeferred_pages(struct page *page, int order,
398 bool init, fpi_t fpi_flags)
399{
400 if (static_branch_unlikely(&deferred_pages))
401 return;
402 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
403 (fpi_flags & FPI_SKIP_KASAN_POISON))
404 return;
405 kasan_free_pages(page, order, init);
406}
407
408/* Returns true if the struct page for the pfn is uninitialised */
409static inline bool __meminit early_page_uninitialised(unsigned long pfn)
410{
411 int nid = early_pfn_to_nid(pfn);
412
413 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
414 return true;
415
416 return false;
417}
418
419/*
420 * Returns true when the remaining initialisation should be deferred until
421 * later in the boot cycle when it can be parallelised.
422 */
423static bool __meminit
424defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
425{
426 static unsigned long prev_end_pfn, nr_initialised;
427
428 /*
429 * prev_end_pfn static that contains the end of previous zone
430 * No need to protect because called very early in boot before smp_init.
431 */
432 if (prev_end_pfn != end_pfn) {
433 prev_end_pfn = end_pfn;
434 nr_initialised = 0;
435 }
436
437 /* Always populate low zones for address-constrained allocations */
438 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
439 return false;
440
441 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
442 return true;
443 /*
444 * We start only with one section of pages, more pages are added as
445 * needed until the rest of deferred pages are initialized.
446 */
447 nr_initialised++;
448 if ((nr_initialised > PAGES_PER_SECTION) &&
449 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
450 NODE_DATA(nid)->first_deferred_pfn = pfn;
451 return true;
452 }
453 return false;
454}
455#else
456static inline void kasan_free_nondeferred_pages(struct page *page, int order,
457 bool init, fpi_t fpi_flags)
458{
459 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
460 (fpi_flags & FPI_SKIP_KASAN_POISON))
461 return;
462 kasan_free_pages(page, order, init);
463}
464
465static inline bool early_page_uninitialised(unsigned long pfn)
466{
467 return false;
468}
469
470static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471{
472 return false;
473}
474#endif
475
476/* Return a pointer to the bitmap storing bits affecting a block of pages */
477static inline unsigned long *get_pageblock_bitmap(struct page *page,
478 unsigned long pfn)
479{
480#ifdef CONFIG_SPARSEMEM
481 return section_to_usemap(__pfn_to_section(pfn));
482#else
483 return page_zone(page)->pageblock_flags;
484#endif /* CONFIG_SPARSEMEM */
485}
486
487static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
488{
489#ifdef CONFIG_SPARSEMEM
490 pfn &= (PAGES_PER_SECTION-1);
491#else
492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493#endif /* CONFIG_SPARSEMEM */
494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495}
496
497static __always_inline
498unsigned long __get_pfnblock_flags_mask(struct page *page,
499 unsigned long pfn,
500 unsigned long mask)
501{
502 unsigned long *bitmap;
503 unsigned long bitidx, word_bitidx;
504 unsigned long word;
505
506 bitmap = get_pageblock_bitmap(page, pfn);
507 bitidx = pfn_to_bitidx(page, pfn);
508 word_bitidx = bitidx / BITS_PER_LONG;
509 bitidx &= (BITS_PER_LONG-1);
510
511 word = bitmap[word_bitidx];
512 return (word >> bitidx) & mask;
513}
514
515/**
516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517 * @page: The page within the block of interest
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 *
521 * Return: pageblock_bits flags
522 */
523unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
524 unsigned long mask)
525{
526 return __get_pfnblock_flags_mask(page, pfn, mask);
527}
528
529static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
530{
531 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
532}
533
534/**
535 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
536 * @page: The page within the block of interest
537 * @flags: The flags to set
538 * @pfn: The target page frame number
539 * @mask: mask of bits that the caller is interested in
540 */
541void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
542 unsigned long pfn,
543 unsigned long mask)
544{
545 unsigned long *bitmap;
546 unsigned long bitidx, word_bitidx;
547 unsigned long old_word, word;
548
549 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
550 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
551
552 bitmap = get_pageblock_bitmap(page, pfn);
553 bitidx = pfn_to_bitidx(page, pfn);
554 word_bitidx = bitidx / BITS_PER_LONG;
555 bitidx &= (BITS_PER_LONG-1);
556
557 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
558
559 mask <<= bitidx;
560 flags <<= bitidx;
561
562 word = READ_ONCE(bitmap[word_bitidx]);
563 for (;;) {
564 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
565 if (word == old_word)
566 break;
567 word = old_word;
568 }
569}
570
571void set_pageblock_migratetype(struct page *page, int migratetype)
572{
573 if (unlikely(page_group_by_mobility_disabled &&
574 migratetype < MIGRATE_PCPTYPES))
575 migratetype = MIGRATE_UNMOVABLE;
576
577 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
578 page_to_pfn(page), MIGRATETYPE_MASK);
579}
580
581#ifdef CONFIG_DEBUG_VM
582static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
583{
584 int ret = 0;
585 unsigned seq;
586 unsigned long pfn = page_to_pfn(page);
587 unsigned long sp, start_pfn;
588
589 do {
590 seq = zone_span_seqbegin(zone);
591 start_pfn = zone->zone_start_pfn;
592 sp = zone->spanned_pages;
593 if (!zone_spans_pfn(zone, pfn))
594 ret = 1;
595 } while (zone_span_seqretry(zone, seq));
596
597 if (ret)
598 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
599 pfn, zone_to_nid(zone), zone->name,
600 start_pfn, start_pfn + sp);
601
602 return ret;
603}
604
605static int page_is_consistent(struct zone *zone, struct page *page)
606{
607 if (!pfn_valid_within(page_to_pfn(page)))
608 return 0;
609 if (zone != page_zone(page))
610 return 0;
611
612 return 1;
613}
614/*
615 * Temporary debugging check for pages not lying within a given zone.
616 */
617static int __maybe_unused bad_range(struct zone *zone, struct page *page)
618{
619 if (page_outside_zone_boundaries(zone, page))
620 return 1;
621 if (!page_is_consistent(zone, page))
622 return 1;
623
624 return 0;
625}
626#else
627static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
628{
629 return 0;
630}
631#endif
632
633static void bad_page(struct page *page, const char *reason)
634{
635 static unsigned long resume;
636 static unsigned long nr_shown;
637 static unsigned long nr_unshown;
638
639 /*
640 * Allow a burst of 60 reports, then keep quiet for that minute;
641 * or allow a steady drip of one report per second.
642 */
643 if (nr_shown == 60) {
644 if (time_before(jiffies, resume)) {
645 nr_unshown++;
646 goto out;
647 }
648 if (nr_unshown) {
649 pr_alert(
650 "BUG: Bad page state: %lu messages suppressed\n",
651 nr_unshown);
652 nr_unshown = 0;
653 }
654 nr_shown = 0;
655 }
656 if (nr_shown++ == 0)
657 resume = jiffies + 60 * HZ;
658
659 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
660 current->comm, page_to_pfn(page));
661 __dump_page(page, reason);
662 dump_page_owner(page);
663
664 print_modules();
665 dump_stack();
666out:
667 /* Leave bad fields for debug, except PageBuddy could make trouble */
668 page_mapcount_reset(page); /* remove PageBuddy */
669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670}
671
672/*
673 * Higher-order pages are called "compound pages". They are structured thusly:
674 *
675 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
676 *
677 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
678 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
679 *
680 * The first tail page's ->compound_dtor holds the offset in array of compound
681 * page destructors. See compound_page_dtors.
682 *
683 * The first tail page's ->compound_order holds the order of allocation.
684 * This usage means that zero-order pages may not be compound.
685 */
686
687void free_compound_page(struct page *page)
688{
689 mem_cgroup_uncharge(page);
690 __free_pages_ok(page, compound_order(page), FPI_NONE);
691}
692
693void prep_compound_page(struct page *page, unsigned int order)
694{
695 int i;
696 int nr_pages = 1 << order;
697
698 __SetPageHead(page);
699 for (i = 1; i < nr_pages; i++) {
700 struct page *p = page + i;
701 set_page_count(p, 0);
702 p->mapping = TAIL_MAPPING;
703 set_compound_head(p, page);
704 }
705
706 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
707 set_compound_order(page, order);
708 atomic_set(compound_mapcount_ptr(page), -1);
709 if (hpage_pincount_available(page))
710 atomic_set(compound_pincount_ptr(page), 0);
711}
712
713#ifdef CONFIG_DEBUG_PAGEALLOC
714unsigned int _debug_guardpage_minorder;
715
716bool _debug_pagealloc_enabled_early __read_mostly
717 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
718EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
719DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
720EXPORT_SYMBOL(_debug_pagealloc_enabled);
721
722DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
723
724static int __init early_debug_pagealloc(char *buf)
725{
726 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
727}
728early_param("debug_pagealloc", early_debug_pagealloc);
729
730static int __init debug_guardpage_minorder_setup(char *buf)
731{
732 unsigned long res;
733
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
735 pr_err("Bad debug_guardpage_minorder value\n");
736 return 0;
737 }
738 _debug_guardpage_minorder = res;
739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 return 0;
741}
742early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743
744static inline bool set_page_guard(struct zone *zone, struct page *page,
745 unsigned int order, int migratetype)
746{
747 if (!debug_guardpage_enabled())
748 return false;
749
750 if (order >= debug_guardpage_minorder())
751 return false;
752
753 __SetPageGuard(page);
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
758
759 return true;
760}
761
762static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
764{
765 if (!debug_guardpage_enabled())
766 return;
767
768 __ClearPageGuard(page);
769
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
773}
774#else
775static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
777static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
779#endif
780
781/*
782 * Enable static keys related to various memory debugging and hardening options.
783 * Some override others, and depend on early params that are evaluated in the
784 * order of appearance. So we need to first gather the full picture of what was
785 * enabled, and then make decisions.
786 */
787void init_mem_debugging_and_hardening(void)
788{
789 bool page_poisoning_requested = false;
790
791#ifdef CONFIG_PAGE_POISONING
792 /*
793 * Page poisoning is debug page alloc for some arches. If
794 * either of those options are enabled, enable poisoning.
795 */
796 if (page_poisoning_enabled() ||
797 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
798 debug_pagealloc_enabled())) {
799 static_branch_enable(&_page_poisoning_enabled);
800 page_poisoning_requested = true;
801 }
802#endif
803
804 if (_init_on_alloc_enabled_early) {
805 if (page_poisoning_requested)
806 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
807 "will take precedence over init_on_alloc\n");
808 else
809 static_branch_enable(&init_on_alloc);
810 }
811 if (_init_on_free_enabled_early) {
812 if (page_poisoning_requested)
813 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
814 "will take precedence over init_on_free\n");
815 else
816 static_branch_enable(&init_on_free);
817 }
818
819#ifdef CONFIG_DEBUG_PAGEALLOC
820 if (!debug_pagealloc_enabled())
821 return;
822
823 static_branch_enable(&_debug_pagealloc_enabled);
824
825 if (!debug_guardpage_minorder())
826 return;
827
828 static_branch_enable(&_debug_guardpage_enabled);
829#endif
830}
831
832static inline void set_buddy_order(struct page *page, unsigned int order)
833{
834 set_page_private(page, order);
835 __SetPageBuddy(page);
836}
837
838/*
839 * This function checks whether a page is free && is the buddy
840 * we can coalesce a page and its buddy if
841 * (a) the buddy is not in a hole (check before calling!) &&
842 * (b) the buddy is in the buddy system &&
843 * (c) a page and its buddy have the same order &&
844 * (d) a page and its buddy are in the same zone.
845 *
846 * For recording whether a page is in the buddy system, we set PageBuddy.
847 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
848 *
849 * For recording page's order, we use page_private(page).
850 */
851static inline bool page_is_buddy(struct page *page, struct page *buddy,
852 unsigned int order)
853{
854 if (!page_is_guard(buddy) && !PageBuddy(buddy))
855 return false;
856
857 if (buddy_order(buddy) != order)
858 return false;
859
860 /*
861 * zone check is done late to avoid uselessly calculating
862 * zone/node ids for pages that could never merge.
863 */
864 if (page_zone_id(page) != page_zone_id(buddy))
865 return false;
866
867 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
868
869 return true;
870}
871
872#ifdef CONFIG_COMPACTION
873static inline struct capture_control *task_capc(struct zone *zone)
874{
875 struct capture_control *capc = current->capture_control;
876
877 return unlikely(capc) &&
878 !(current->flags & PF_KTHREAD) &&
879 !capc->page &&
880 capc->cc->zone == zone ? capc : NULL;
881}
882
883static inline bool
884compaction_capture(struct capture_control *capc, struct page *page,
885 int order, int migratetype)
886{
887 if (!capc || order != capc->cc->order)
888 return false;
889
890 /* Do not accidentally pollute CMA or isolated regions*/
891 if (is_migrate_cma(migratetype) ||
892 is_migrate_isolate(migratetype))
893 return false;
894
895 /*
896 * Do not let lower order allocations pollute a movable pageblock.
897 * This might let an unmovable request use a reclaimable pageblock
898 * and vice-versa but no more than normal fallback logic which can
899 * have trouble finding a high-order free page.
900 */
901 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
902 return false;
903
904 capc->page = page;
905 return true;
906}
907
908#else
909static inline struct capture_control *task_capc(struct zone *zone)
910{
911 return NULL;
912}
913
914static inline bool
915compaction_capture(struct capture_control *capc, struct page *page,
916 int order, int migratetype)
917{
918 return false;
919}
920#endif /* CONFIG_COMPACTION */
921
922/* Used for pages not on another list */
923static inline void add_to_free_list(struct page *page, struct zone *zone,
924 unsigned int order, int migratetype)
925{
926 struct free_area *area = &zone->free_area[order];
927
928 list_add(&page->lru, &area->free_list[migratetype]);
929 area->nr_free++;
930}
931
932/* Used for pages not on another list */
933static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
934 unsigned int order, int migratetype)
935{
936 struct free_area *area = &zone->free_area[order];
937
938 list_add_tail(&page->lru, &area->free_list[migratetype]);
939 area->nr_free++;
940}
941
942/*
943 * Used for pages which are on another list. Move the pages to the tail
944 * of the list - so the moved pages won't immediately be considered for
945 * allocation again (e.g., optimization for memory onlining).
946 */
947static inline void move_to_free_list(struct page *page, struct zone *zone,
948 unsigned int order, int migratetype)
949{
950 struct free_area *area = &zone->free_area[order];
951
952 list_move_tail(&page->lru, &area->free_list[migratetype]);
953}
954
955static inline void del_page_from_free_list(struct page *page, struct zone *zone,
956 unsigned int order)
957{
958 /* clear reported state and update reported page count */
959 if (page_reported(page))
960 __ClearPageReported(page);
961
962 list_del(&page->lru);
963 __ClearPageBuddy(page);
964 set_page_private(page, 0);
965 zone->free_area[order].nr_free--;
966}
967
968/*
969 * If this is not the largest possible page, check if the buddy
970 * of the next-highest order is free. If it is, it's possible
971 * that pages are being freed that will coalesce soon. In case,
972 * that is happening, add the free page to the tail of the list
973 * so it's less likely to be used soon and more likely to be merged
974 * as a higher order page
975 */
976static inline bool
977buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
978 struct page *page, unsigned int order)
979{
980 struct page *higher_page, *higher_buddy;
981 unsigned long combined_pfn;
982
983 if (order >= MAX_ORDER - 2)
984 return false;
985
986 if (!pfn_valid_within(buddy_pfn))
987 return false;
988
989 combined_pfn = buddy_pfn & pfn;
990 higher_page = page + (combined_pfn - pfn);
991 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
992 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
993
994 return pfn_valid_within(buddy_pfn) &&
995 page_is_buddy(higher_page, higher_buddy, order + 1);
996}
997
998/*
999 * Freeing function for a buddy system allocator.
1000 *
1001 * The concept of a buddy system is to maintain direct-mapped table
1002 * (containing bit values) for memory blocks of various "orders".
1003 * The bottom level table contains the map for the smallest allocatable
1004 * units of memory (here, pages), and each level above it describes
1005 * pairs of units from the levels below, hence, "buddies".
1006 * At a high level, all that happens here is marking the table entry
1007 * at the bottom level available, and propagating the changes upward
1008 * as necessary, plus some accounting needed to play nicely with other
1009 * parts of the VM system.
1010 * At each level, we keep a list of pages, which are heads of continuous
1011 * free pages of length of (1 << order) and marked with PageBuddy.
1012 * Page's order is recorded in page_private(page) field.
1013 * So when we are allocating or freeing one, we can derive the state of the
1014 * other. That is, if we allocate a small block, and both were
1015 * free, the remainder of the region must be split into blocks.
1016 * If a block is freed, and its buddy is also free, then this
1017 * triggers coalescing into a block of larger size.
1018 *
1019 * -- nyc
1020 */
1021
1022static inline void __free_one_page(struct page *page,
1023 unsigned long pfn,
1024 struct zone *zone, unsigned int order,
1025 int migratetype, fpi_t fpi_flags)
1026{
1027 struct capture_control *capc = task_capc(zone);
1028 unsigned long buddy_pfn;
1029 unsigned long combined_pfn;
1030 unsigned int max_order;
1031 struct page *buddy;
1032 bool to_tail;
1033
1034 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1035
1036 VM_BUG_ON(!zone_is_initialized(zone));
1037 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1038
1039 VM_BUG_ON(migratetype == -1);
1040 if (likely(!is_migrate_isolate(migratetype)))
1041 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1042
1043 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1044 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1045
1046continue_merging:
1047 while (order < max_order) {
1048 if (compaction_capture(capc, page, order, migratetype)) {
1049 __mod_zone_freepage_state(zone, -(1 << order),
1050 migratetype);
1051 return;
1052 }
1053 buddy_pfn = __find_buddy_pfn(pfn, order);
1054 buddy = page + (buddy_pfn - pfn);
1055
1056 if (!pfn_valid_within(buddy_pfn))
1057 goto done_merging;
1058 if (!page_is_buddy(page, buddy, order))
1059 goto done_merging;
1060 /*
1061 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1062 * merge with it and move up one order.
1063 */
1064 if (page_is_guard(buddy))
1065 clear_page_guard(zone, buddy, order, migratetype);
1066 else
1067 del_page_from_free_list(buddy, zone, order);
1068 combined_pfn = buddy_pfn & pfn;
1069 page = page + (combined_pfn - pfn);
1070 pfn = combined_pfn;
1071 order++;
1072 }
1073 if (order < MAX_ORDER - 1) {
1074 /* If we are here, it means order is >= pageblock_order.
1075 * We want to prevent merge between freepages on isolate
1076 * pageblock and normal pageblock. Without this, pageblock
1077 * isolation could cause incorrect freepage or CMA accounting.
1078 *
1079 * We don't want to hit this code for the more frequent
1080 * low-order merging.
1081 */
1082 if (unlikely(has_isolate_pageblock(zone))) {
1083 int buddy_mt;
1084
1085 buddy_pfn = __find_buddy_pfn(pfn, order);
1086 buddy = page + (buddy_pfn - pfn);
1087 buddy_mt = get_pageblock_migratetype(buddy);
1088
1089 if (migratetype != buddy_mt
1090 && (is_migrate_isolate(migratetype) ||
1091 is_migrate_isolate(buddy_mt)))
1092 goto done_merging;
1093 }
1094 max_order = order + 1;
1095 goto continue_merging;
1096 }
1097
1098done_merging:
1099 set_buddy_order(page, order);
1100
1101 if (fpi_flags & FPI_TO_TAIL)
1102 to_tail = true;
1103 else if (is_shuffle_order(order))
1104 to_tail = shuffle_pick_tail();
1105 else
1106 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1107
1108 if (to_tail)
1109 add_to_free_list_tail(page, zone, order, migratetype);
1110 else
1111 add_to_free_list(page, zone, order, migratetype);
1112
1113 /* Notify page reporting subsystem of freed page */
1114 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1115 page_reporting_notify_free(order);
1116}
1117
1118/*
1119 * A bad page could be due to a number of fields. Instead of multiple branches,
1120 * try and check multiple fields with one check. The caller must do a detailed
1121 * check if necessary.
1122 */
1123static inline bool page_expected_state(struct page *page,
1124 unsigned long check_flags)
1125{
1126 if (unlikely(atomic_read(&page->_mapcount) != -1))
1127 return false;
1128
1129 if (unlikely((unsigned long)page->mapping |
1130 page_ref_count(page) |
1131#ifdef CONFIG_MEMCG
1132 page->memcg_data |
1133#endif
1134 (page->flags & check_flags)))
1135 return false;
1136
1137 return true;
1138}
1139
1140static const char *page_bad_reason(struct page *page, unsigned long flags)
1141{
1142 const char *bad_reason = NULL;
1143
1144 if (unlikely(atomic_read(&page->_mapcount) != -1))
1145 bad_reason = "nonzero mapcount";
1146 if (unlikely(page->mapping != NULL))
1147 bad_reason = "non-NULL mapping";
1148 if (unlikely(page_ref_count(page) != 0))
1149 bad_reason = "nonzero _refcount";
1150 if (unlikely(page->flags & flags)) {
1151 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1152 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1153 else
1154 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1155 }
1156#ifdef CONFIG_MEMCG
1157 if (unlikely(page->memcg_data))
1158 bad_reason = "page still charged to cgroup";
1159#endif
1160 return bad_reason;
1161}
1162
1163static void check_free_page_bad(struct page *page)
1164{
1165 bad_page(page,
1166 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1167}
1168
1169static inline int check_free_page(struct page *page)
1170{
1171 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1172 return 0;
1173
1174 /* Something has gone sideways, find it */
1175 check_free_page_bad(page);
1176 return 1;
1177}
1178
1179static int free_tail_pages_check(struct page *head_page, struct page *page)
1180{
1181 int ret = 1;
1182
1183 /*
1184 * We rely page->lru.next never has bit 0 set, unless the page
1185 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1186 */
1187 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1188
1189 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1190 ret = 0;
1191 goto out;
1192 }
1193 switch (page - head_page) {
1194 case 1:
1195 /* the first tail page: ->mapping may be compound_mapcount() */
1196 if (unlikely(compound_mapcount(page))) {
1197 bad_page(page, "nonzero compound_mapcount");
1198 goto out;
1199 }
1200 break;
1201 case 2:
1202 /*
1203 * the second tail page: ->mapping is
1204 * deferred_list.next -- ignore value.
1205 */
1206 break;
1207 default:
1208 if (page->mapping != TAIL_MAPPING) {
1209 bad_page(page, "corrupted mapping in tail page");
1210 goto out;
1211 }
1212 break;
1213 }
1214 if (unlikely(!PageTail(page))) {
1215 bad_page(page, "PageTail not set");
1216 goto out;
1217 }
1218 if (unlikely(compound_head(page) != head_page)) {
1219 bad_page(page, "compound_head not consistent");
1220 goto out;
1221 }
1222 ret = 0;
1223out:
1224 page->mapping = NULL;
1225 clear_compound_head(page);
1226 return ret;
1227}
1228
1229static void kernel_init_free_pages(struct page *page, int numpages)
1230{
1231 int i;
1232
1233 /* s390's use of memset() could override KASAN redzones. */
1234 kasan_disable_current();
1235 for (i = 0; i < numpages; i++) {
1236 u8 tag = page_kasan_tag(page + i);
1237 page_kasan_tag_reset(page + i);
1238 clear_highpage(page + i);
1239 page_kasan_tag_set(page + i, tag);
1240 }
1241 kasan_enable_current();
1242}
1243
1244static __always_inline bool free_pages_prepare(struct page *page,
1245 unsigned int order, bool check_free, fpi_t fpi_flags)
1246{
1247 int bad = 0;
1248 bool init;
1249
1250 VM_BUG_ON_PAGE(PageTail(page), page);
1251
1252 trace_mm_page_free(page, order);
1253
1254 if (unlikely(PageHWPoison(page)) && !order) {
1255 /*
1256 * Do not let hwpoison pages hit pcplists/buddy
1257 * Untie memcg state and reset page's owner
1258 */
1259 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1260 __memcg_kmem_uncharge_page(page, order);
1261 reset_page_owner(page, order);
1262 return false;
1263 }
1264
1265 /*
1266 * Check tail pages before head page information is cleared to
1267 * avoid checking PageCompound for order-0 pages.
1268 */
1269 if (unlikely(order)) {
1270 bool compound = PageCompound(page);
1271 int i;
1272
1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274
1275 if (compound)
1276 ClearPageDoubleMap(page);
1277 for (i = 1; i < (1 << order); i++) {
1278 if (compound)
1279 bad += free_tail_pages_check(page, page + i);
1280 if (unlikely(check_free_page(page + i))) {
1281 bad++;
1282 continue;
1283 }
1284 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1285 }
1286 }
1287 if (PageMappingFlags(page))
1288 page->mapping = NULL;
1289 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1290 __memcg_kmem_uncharge_page(page, order);
1291 if (check_free)
1292 bad += check_free_page(page);
1293 if (bad)
1294 return false;
1295
1296 page_cpupid_reset_last(page);
1297 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1298 reset_page_owner(page, order);
1299
1300 if (!PageHighMem(page)) {
1301 debug_check_no_locks_freed(page_address(page),
1302 PAGE_SIZE << order);
1303 debug_check_no_obj_freed(page_address(page),
1304 PAGE_SIZE << order);
1305 }
1306
1307 kernel_poison_pages(page, 1 << order);
1308
1309 /*
1310 * As memory initialization might be integrated into KASAN,
1311 * kasan_free_pages and kernel_init_free_pages must be
1312 * kept together to avoid discrepancies in behavior.
1313 *
1314 * With hardware tag-based KASAN, memory tags must be set before the
1315 * page becomes unavailable via debug_pagealloc or arch_free_page.
1316 */
1317 init = want_init_on_free();
1318 if (init && !kasan_has_integrated_init())
1319 kernel_init_free_pages(page, 1 << order);
1320 kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1321
1322 /*
1323 * arch_free_page() can make the page's contents inaccessible. s390
1324 * does this. So nothing which can access the page's contents should
1325 * happen after this.
1326 */
1327 arch_free_page(page, order);
1328
1329 debug_pagealloc_unmap_pages(page, 1 << order);
1330
1331 return true;
1332}
1333
1334#ifdef CONFIG_DEBUG_VM
1335/*
1336 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1337 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1338 * moved from pcp lists to free lists.
1339 */
1340static bool free_pcp_prepare(struct page *page)
1341{
1342 return free_pages_prepare(page, 0, true, FPI_NONE);
1343}
1344
1345static bool bulkfree_pcp_prepare(struct page *page)
1346{
1347 if (debug_pagealloc_enabled_static())
1348 return check_free_page(page);
1349 else
1350 return false;
1351}
1352#else
1353/*
1354 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1355 * moving from pcp lists to free list in order to reduce overhead. With
1356 * debug_pagealloc enabled, they are checked also immediately when being freed
1357 * to the pcp lists.
1358 */
1359static bool free_pcp_prepare(struct page *page)
1360{
1361 if (debug_pagealloc_enabled_static())
1362 return free_pages_prepare(page, 0, true, FPI_NONE);
1363 else
1364 return free_pages_prepare(page, 0, false, FPI_NONE);
1365}
1366
1367static bool bulkfree_pcp_prepare(struct page *page)
1368{
1369 return check_free_page(page);
1370}
1371#endif /* CONFIG_DEBUG_VM */
1372
1373static inline void prefetch_buddy(struct page *page)
1374{
1375 unsigned long pfn = page_to_pfn(page);
1376 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1377 struct page *buddy = page + (buddy_pfn - pfn);
1378
1379 prefetch(buddy);
1380}
1381
1382/*
1383 * Frees a number of pages from the PCP lists
1384 * Assumes all pages on list are in same zone, and of same order.
1385 * count is the number of pages to free.
1386 *
1387 * If the zone was previously in an "all pages pinned" state then look to
1388 * see if this freeing clears that state.
1389 *
1390 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1391 * pinned" detection logic.
1392 */
1393static void free_pcppages_bulk(struct zone *zone, int count,
1394 struct per_cpu_pages *pcp)
1395{
1396 int migratetype = 0;
1397 int batch_free = 0;
1398 int prefetch_nr = READ_ONCE(pcp->batch);
1399 bool isolated_pageblocks;
1400 struct page *page, *tmp;
1401 LIST_HEAD(head);
1402
1403 /*
1404 * Ensure proper count is passed which otherwise would stuck in the
1405 * below while (list_empty(list)) loop.
1406 */
1407 count = min(pcp->count, count);
1408 while (count) {
1409 struct list_head *list;
1410
1411 /*
1412 * Remove pages from lists in a round-robin fashion. A
1413 * batch_free count is maintained that is incremented when an
1414 * empty list is encountered. This is so more pages are freed
1415 * off fuller lists instead of spinning excessively around empty
1416 * lists
1417 */
1418 do {
1419 batch_free++;
1420 if (++migratetype == MIGRATE_PCPTYPES)
1421 migratetype = 0;
1422 list = &pcp->lists[migratetype];
1423 } while (list_empty(list));
1424
1425 /* This is the only non-empty list. Free them all. */
1426 if (batch_free == MIGRATE_PCPTYPES)
1427 batch_free = count;
1428
1429 do {
1430 page = list_last_entry(list, struct page, lru);
1431 /* must delete to avoid corrupting pcp list */
1432 list_del(&page->lru);
1433 pcp->count--;
1434
1435 if (bulkfree_pcp_prepare(page))
1436 continue;
1437
1438 list_add_tail(&page->lru, &head);
1439
1440 /*
1441 * We are going to put the page back to the global
1442 * pool, prefetch its buddy to speed up later access
1443 * under zone->lock. It is believed the overhead of
1444 * an additional test and calculating buddy_pfn here
1445 * can be offset by reduced memory latency later. To
1446 * avoid excessive prefetching due to large count, only
1447 * prefetch buddy for the first pcp->batch nr of pages.
1448 */
1449 if (prefetch_nr) {
1450 prefetch_buddy(page);
1451 prefetch_nr--;
1452 }
1453 } while (--count && --batch_free && !list_empty(list));
1454 }
1455
1456 spin_lock(&zone->lock);
1457 isolated_pageblocks = has_isolate_pageblock(zone);
1458
1459 /*
1460 * Use safe version since after __free_one_page(),
1461 * page->lru.next will not point to original list.
1462 */
1463 list_for_each_entry_safe(page, tmp, &head, lru) {
1464 int mt = get_pcppage_migratetype(page);
1465 /* MIGRATE_ISOLATE page should not go to pcplists */
1466 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1467 /* Pageblock could have been isolated meanwhile */
1468 if (unlikely(isolated_pageblocks))
1469 mt = get_pageblock_migratetype(page);
1470
1471 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1472 trace_mm_page_pcpu_drain(page, 0, mt);
1473 }
1474 spin_unlock(&zone->lock);
1475}
1476
1477static void free_one_page(struct zone *zone,
1478 struct page *page, unsigned long pfn,
1479 unsigned int order,
1480 int migratetype, fpi_t fpi_flags)
1481{
1482 spin_lock(&zone->lock);
1483 if (unlikely(has_isolate_pageblock(zone) ||
1484 is_migrate_isolate(migratetype))) {
1485 migratetype = get_pfnblock_migratetype(page, pfn);
1486 }
1487 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1488 spin_unlock(&zone->lock);
1489}
1490
1491static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1492 unsigned long zone, int nid)
1493{
1494 mm_zero_struct_page(page);
1495 set_page_links(page, zone, nid, pfn);
1496 init_page_count(page);
1497 page_mapcount_reset(page);
1498 page_cpupid_reset_last(page);
1499 page_kasan_tag_reset(page);
1500
1501 INIT_LIST_HEAD(&page->lru);
1502#ifdef WANT_PAGE_VIRTUAL
1503 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1504 if (!is_highmem_idx(zone))
1505 set_page_address(page, __va(pfn << PAGE_SHIFT));
1506#endif
1507}
1508
1509#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510static void __meminit init_reserved_page(unsigned long pfn)
1511{
1512 pg_data_t *pgdat;
1513 int nid, zid;
1514
1515 if (!early_page_uninitialised(pfn))
1516 return;
1517
1518 nid = early_pfn_to_nid(pfn);
1519 pgdat = NODE_DATA(nid);
1520
1521 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1522 struct zone *zone = &pgdat->node_zones[zid];
1523
1524 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1525 break;
1526 }
1527 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1528}
1529#else
1530static inline void init_reserved_page(unsigned long pfn)
1531{
1532}
1533#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1534
1535/*
1536 * Initialised pages do not have PageReserved set. This function is
1537 * called for each range allocated by the bootmem allocator and
1538 * marks the pages PageReserved. The remaining valid pages are later
1539 * sent to the buddy page allocator.
1540 */
1541void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1542{
1543 unsigned long start_pfn = PFN_DOWN(start);
1544 unsigned long end_pfn = PFN_UP(end);
1545
1546 for (; start_pfn < end_pfn; start_pfn++) {
1547 if (pfn_valid(start_pfn)) {
1548 struct page *page = pfn_to_page(start_pfn);
1549
1550 init_reserved_page(start_pfn);
1551
1552 /* Avoid false-positive PageTail() */
1553 INIT_LIST_HEAD(&page->lru);
1554
1555 /*
1556 * no need for atomic set_bit because the struct
1557 * page is not visible yet so nobody should
1558 * access it yet.
1559 */
1560 __SetPageReserved(page);
1561 }
1562 }
1563}
1564
1565static void __free_pages_ok(struct page *page, unsigned int order,
1566 fpi_t fpi_flags)
1567{
1568 unsigned long flags;
1569 int migratetype;
1570 unsigned long pfn = page_to_pfn(page);
1571
1572 if (!free_pages_prepare(page, order, true, fpi_flags))
1573 return;
1574
1575 migratetype = get_pfnblock_migratetype(page, pfn);
1576 local_irq_save(flags);
1577 __count_vm_events(PGFREE, 1 << order);
1578 free_one_page(page_zone(page), page, pfn, order, migratetype,
1579 fpi_flags);
1580 local_irq_restore(flags);
1581}
1582
1583void __free_pages_core(struct page *page, unsigned int order)
1584{
1585 unsigned int nr_pages = 1 << order;
1586 struct page *p = page;
1587 unsigned int loop;
1588
1589 /*
1590 * When initializing the memmap, __init_single_page() sets the refcount
1591 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 * refcount of all involved pages to 0.
1593 */
1594 prefetchw(p);
1595 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 prefetchw(p + 1);
1597 __ClearPageReserved(p);
1598 set_page_count(p, 0);
1599 }
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
1602
1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1604
1605 /*
1606 * Bypass PCP and place fresh pages right to the tail, primarily
1607 * relevant for memory onlining.
1608 */
1609 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1610}
1611
1612#ifdef CONFIG_NEED_MULTIPLE_NODES
1613
1614/*
1615 * During memory init memblocks map pfns to nids. The search is expensive and
1616 * this caches recent lookups. The implementation of __early_pfn_to_nid
1617 * treats start/end as pfns.
1618 */
1619struct mminit_pfnnid_cache {
1620 unsigned long last_start;
1621 unsigned long last_end;
1622 int last_nid;
1623};
1624
1625static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1626
1627/*
1628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629 */
1630static int __meminit __early_pfn_to_nid(unsigned long pfn,
1631 struct mminit_pfnnid_cache *state)
1632{
1633 unsigned long start_pfn, end_pfn;
1634 int nid;
1635
1636 if (state->last_start <= pfn && pfn < state->last_end)
1637 return state->last_nid;
1638
1639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 if (nid != NUMA_NO_NODE) {
1641 state->last_start = start_pfn;
1642 state->last_end = end_pfn;
1643 state->last_nid = nid;
1644 }
1645
1646 return nid;
1647}
1648
1649int __meminit early_pfn_to_nid(unsigned long pfn)
1650{
1651 static DEFINE_SPINLOCK(early_pfn_lock);
1652 int nid;
1653
1654 spin_lock(&early_pfn_lock);
1655 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1656 if (nid < 0)
1657 nid = first_online_node;
1658 spin_unlock(&early_pfn_lock);
1659
1660 return nid;
1661}
1662#endif /* CONFIG_NEED_MULTIPLE_NODES */
1663
1664void __init memblock_free_pages(struct page *page, unsigned long pfn,
1665 unsigned int order)
1666{
1667 if (early_page_uninitialised(pfn))
1668 return;
1669 __free_pages_core(page, order);
1670}
1671
1672/*
1673 * Check that the whole (or subset of) a pageblock given by the interval of
1674 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1675 * with the migration of free compaction scanner. The scanners then need to
1676 * use only pfn_valid_within() check for arches that allow holes within
1677 * pageblocks.
1678 *
1679 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1680 *
1681 * It's possible on some configurations to have a setup like node0 node1 node0
1682 * i.e. it's possible that all pages within a zones range of pages do not
1683 * belong to a single zone. We assume that a border between node0 and node1
1684 * can occur within a single pageblock, but not a node0 node1 node0
1685 * interleaving within a single pageblock. It is therefore sufficient to check
1686 * the first and last page of a pageblock and avoid checking each individual
1687 * page in a pageblock.
1688 */
1689struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1690 unsigned long end_pfn, struct zone *zone)
1691{
1692 struct page *start_page;
1693 struct page *end_page;
1694
1695 /* end_pfn is one past the range we are checking */
1696 end_pfn--;
1697
1698 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1699 return NULL;
1700
1701 start_page = pfn_to_online_page(start_pfn);
1702 if (!start_page)
1703 return NULL;
1704
1705 if (page_zone(start_page) != zone)
1706 return NULL;
1707
1708 end_page = pfn_to_page(end_pfn);
1709
1710 /* This gives a shorter code than deriving page_zone(end_page) */
1711 if (page_zone_id(start_page) != page_zone_id(end_page))
1712 return NULL;
1713
1714 return start_page;
1715}
1716
1717void set_zone_contiguous(struct zone *zone)
1718{
1719 unsigned long block_start_pfn = zone->zone_start_pfn;
1720 unsigned long block_end_pfn;
1721
1722 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1723 for (; block_start_pfn < zone_end_pfn(zone);
1724 block_start_pfn = block_end_pfn,
1725 block_end_pfn += pageblock_nr_pages) {
1726
1727 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1728
1729 if (!__pageblock_pfn_to_page(block_start_pfn,
1730 block_end_pfn, zone))
1731 return;
1732 cond_resched();
1733 }
1734
1735 /* We confirm that there is no hole */
1736 zone->contiguous = true;
1737}
1738
1739void clear_zone_contiguous(struct zone *zone)
1740{
1741 zone->contiguous = false;
1742}
1743
1744#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1745static void __init deferred_free_range(unsigned long pfn,
1746 unsigned long nr_pages)
1747{
1748 struct page *page;
1749 unsigned long i;
1750
1751 if (!nr_pages)
1752 return;
1753
1754 page = pfn_to_page(pfn);
1755
1756 /* Free a large naturally-aligned chunk if possible */
1757 if (nr_pages == pageblock_nr_pages &&
1758 (pfn & (pageblock_nr_pages - 1)) == 0) {
1759 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1760 __free_pages_core(page, pageblock_order);
1761 return;
1762 }
1763
1764 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1765 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1766 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1767 __free_pages_core(page, 0);
1768 }
1769}
1770
1771/* Completion tracking for deferred_init_memmap() threads */
1772static atomic_t pgdat_init_n_undone __initdata;
1773static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1774
1775static inline void __init pgdat_init_report_one_done(void)
1776{
1777 if (atomic_dec_and_test(&pgdat_init_n_undone))
1778 complete(&pgdat_init_all_done_comp);
1779}
1780
1781/*
1782 * Returns true if page needs to be initialized or freed to buddy allocator.
1783 *
1784 * First we check if pfn is valid on architectures where it is possible to have
1785 * holes within pageblock_nr_pages. On systems where it is not possible, this
1786 * function is optimized out.
1787 *
1788 * Then, we check if a current large page is valid by only checking the validity
1789 * of the head pfn.
1790 */
1791static inline bool __init deferred_pfn_valid(unsigned long pfn)
1792{
1793 if (!pfn_valid_within(pfn))
1794 return false;
1795 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1796 return false;
1797 return true;
1798}
1799
1800/*
1801 * Free pages to buddy allocator. Try to free aligned pages in
1802 * pageblock_nr_pages sizes.
1803 */
1804static void __init deferred_free_pages(unsigned long pfn,
1805 unsigned long end_pfn)
1806{
1807 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1808 unsigned long nr_free = 0;
1809
1810 for (; pfn < end_pfn; pfn++) {
1811 if (!deferred_pfn_valid(pfn)) {
1812 deferred_free_range(pfn - nr_free, nr_free);
1813 nr_free = 0;
1814 } else if (!(pfn & nr_pgmask)) {
1815 deferred_free_range(pfn - nr_free, nr_free);
1816 nr_free = 1;
1817 } else {
1818 nr_free++;
1819 }
1820 }
1821 /* Free the last block of pages to allocator */
1822 deferred_free_range(pfn - nr_free, nr_free);
1823}
1824
1825/*
1826 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1827 * by performing it only once every pageblock_nr_pages.
1828 * Return number of pages initialized.
1829 */
1830static unsigned long __init deferred_init_pages(struct zone *zone,
1831 unsigned long pfn,
1832 unsigned long end_pfn)
1833{
1834 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1835 int nid = zone_to_nid(zone);
1836 unsigned long nr_pages = 0;
1837 int zid = zone_idx(zone);
1838 struct page *page = NULL;
1839
1840 for (; pfn < end_pfn; pfn++) {
1841 if (!deferred_pfn_valid(pfn)) {
1842 page = NULL;
1843 continue;
1844 } else if (!page || !(pfn & nr_pgmask)) {
1845 page = pfn_to_page(pfn);
1846 } else {
1847 page++;
1848 }
1849 __init_single_page(page, pfn, zid, nid);
1850 nr_pages++;
1851 }
1852 return (nr_pages);
1853}
1854
1855/*
1856 * This function is meant to pre-load the iterator for the zone init.
1857 * Specifically it walks through the ranges until we are caught up to the
1858 * first_init_pfn value and exits there. If we never encounter the value we
1859 * return false indicating there are no valid ranges left.
1860 */
1861static bool __init
1862deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1863 unsigned long *spfn, unsigned long *epfn,
1864 unsigned long first_init_pfn)
1865{
1866 u64 j;
1867
1868 /*
1869 * Start out by walking through the ranges in this zone that have
1870 * already been initialized. We don't need to do anything with them
1871 * so we just need to flush them out of the system.
1872 */
1873 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1874 if (*epfn <= first_init_pfn)
1875 continue;
1876 if (*spfn < first_init_pfn)
1877 *spfn = first_init_pfn;
1878 *i = j;
1879 return true;
1880 }
1881
1882 return false;
1883}
1884
1885/*
1886 * Initialize and free pages. We do it in two loops: first we initialize
1887 * struct page, then free to buddy allocator, because while we are
1888 * freeing pages we can access pages that are ahead (computing buddy
1889 * page in __free_one_page()).
1890 *
1891 * In order to try and keep some memory in the cache we have the loop
1892 * broken along max page order boundaries. This way we will not cause
1893 * any issues with the buddy page computation.
1894 */
1895static unsigned long __init
1896deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1897 unsigned long *end_pfn)
1898{
1899 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1900 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1901 unsigned long nr_pages = 0;
1902 u64 j = *i;
1903
1904 /* First we loop through and initialize the page values */
1905 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1906 unsigned long t;
1907
1908 if (mo_pfn <= *start_pfn)
1909 break;
1910
1911 t = min(mo_pfn, *end_pfn);
1912 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1913
1914 if (mo_pfn < *end_pfn) {
1915 *start_pfn = mo_pfn;
1916 break;
1917 }
1918 }
1919
1920 /* Reset values and now loop through freeing pages as needed */
1921 swap(j, *i);
1922
1923 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1924 unsigned long t;
1925
1926 if (mo_pfn <= spfn)
1927 break;
1928
1929 t = min(mo_pfn, epfn);
1930 deferred_free_pages(spfn, t);
1931
1932 if (mo_pfn <= epfn)
1933 break;
1934 }
1935
1936 return nr_pages;
1937}
1938
1939static void __init
1940deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1941 void *arg)
1942{
1943 unsigned long spfn, epfn;
1944 struct zone *zone = arg;
1945 u64 i;
1946
1947 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1948
1949 /*
1950 * Initialize and free pages in MAX_ORDER sized increments so that we
1951 * can avoid introducing any issues with the buddy allocator.
1952 */
1953 while (spfn < end_pfn) {
1954 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1955 cond_resched();
1956 }
1957}
1958
1959/* An arch may override for more concurrency. */
1960__weak int __init
1961deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1962{
1963 return 1;
1964}
1965
1966/* Initialise remaining memory on a node */
1967static int __init deferred_init_memmap(void *data)
1968{
1969 pg_data_t *pgdat = data;
1970 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1971 unsigned long spfn = 0, epfn = 0;
1972 unsigned long first_init_pfn, flags;
1973 unsigned long start = jiffies;
1974 struct zone *zone;
1975 int zid, max_threads;
1976 u64 i;
1977
1978 /* Bind memory initialisation thread to a local node if possible */
1979 if (!cpumask_empty(cpumask))
1980 set_cpus_allowed_ptr(current, cpumask);
1981
1982 pgdat_resize_lock(pgdat, &flags);
1983 first_init_pfn = pgdat->first_deferred_pfn;
1984 if (first_init_pfn == ULONG_MAX) {
1985 pgdat_resize_unlock(pgdat, &flags);
1986 pgdat_init_report_one_done();
1987 return 0;
1988 }
1989
1990 /* Sanity check boundaries */
1991 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1992 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1993 pgdat->first_deferred_pfn = ULONG_MAX;
1994
1995 /*
1996 * Once we unlock here, the zone cannot be grown anymore, thus if an
1997 * interrupt thread must allocate this early in boot, zone must be
1998 * pre-grown prior to start of deferred page initialization.
1999 */
2000 pgdat_resize_unlock(pgdat, &flags);
2001
2002 /* Only the highest zone is deferred so find it */
2003 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2004 zone = pgdat->node_zones + zid;
2005 if (first_init_pfn < zone_end_pfn(zone))
2006 break;
2007 }
2008
2009 /* If the zone is empty somebody else may have cleared out the zone */
2010 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2011 first_init_pfn))
2012 goto zone_empty;
2013
2014 max_threads = deferred_page_init_max_threads(cpumask);
2015
2016 while (spfn < epfn) {
2017 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2018 struct padata_mt_job job = {
2019 .thread_fn = deferred_init_memmap_chunk,
2020 .fn_arg = zone,
2021 .start = spfn,
2022 .size = epfn_align - spfn,
2023 .align = PAGES_PER_SECTION,
2024 .min_chunk = PAGES_PER_SECTION,
2025 .max_threads = max_threads,
2026 };
2027
2028 padata_do_multithreaded(&job);
2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2030 epfn_align);
2031 }
2032zone_empty:
2033 /* Sanity check that the next zone really is unpopulated */
2034 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2035
2036 pr_info("node %d deferred pages initialised in %ums\n",
2037 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2038
2039 pgdat_init_report_one_done();
2040 return 0;
2041}
2042
2043/*
2044 * If this zone has deferred pages, try to grow it by initializing enough
2045 * deferred pages to satisfy the allocation specified by order, rounded up to
2046 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2047 * of SECTION_SIZE bytes by initializing struct pages in increments of
2048 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2049 *
2050 * Return true when zone was grown, otherwise return false. We return true even
2051 * when we grow less than requested, to let the caller decide if there are
2052 * enough pages to satisfy the allocation.
2053 *
2054 * Note: We use noinline because this function is needed only during boot, and
2055 * it is called from a __ref function _deferred_grow_zone. This way we are
2056 * making sure that it is not inlined into permanent text section.
2057 */
2058static noinline bool __init
2059deferred_grow_zone(struct zone *zone, unsigned int order)
2060{
2061 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2062 pg_data_t *pgdat = zone->zone_pgdat;
2063 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2064 unsigned long spfn, epfn, flags;
2065 unsigned long nr_pages = 0;
2066 u64 i;
2067
2068 /* Only the last zone may have deferred pages */
2069 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2070 return false;
2071
2072 pgdat_resize_lock(pgdat, &flags);
2073
2074 /*
2075 * If someone grew this zone while we were waiting for spinlock, return
2076 * true, as there might be enough pages already.
2077 */
2078 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2079 pgdat_resize_unlock(pgdat, &flags);
2080 return true;
2081 }
2082
2083 /* If the zone is empty somebody else may have cleared out the zone */
2084 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 first_deferred_pfn)) {
2086 pgdat->first_deferred_pfn = ULONG_MAX;
2087 pgdat_resize_unlock(pgdat, &flags);
2088 /* Retry only once. */
2089 return first_deferred_pfn != ULONG_MAX;
2090 }
2091
2092 /*
2093 * Initialize and free pages in MAX_ORDER sized increments so
2094 * that we can avoid introducing any issues with the buddy
2095 * allocator.
2096 */
2097 while (spfn < epfn) {
2098 /* update our first deferred PFN for this section */
2099 first_deferred_pfn = spfn;
2100
2101 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2102 touch_nmi_watchdog();
2103
2104 /* We should only stop along section boundaries */
2105 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2106 continue;
2107
2108 /* If our quota has been met we can stop here */
2109 if (nr_pages >= nr_pages_needed)
2110 break;
2111 }
2112
2113 pgdat->first_deferred_pfn = spfn;
2114 pgdat_resize_unlock(pgdat, &flags);
2115
2116 return nr_pages > 0;
2117}
2118
2119/*
2120 * deferred_grow_zone() is __init, but it is called from
2121 * get_page_from_freelist() during early boot until deferred_pages permanently
2122 * disables this call. This is why we have refdata wrapper to avoid warning,
2123 * and to ensure that the function body gets unloaded.
2124 */
2125static bool __ref
2126_deferred_grow_zone(struct zone *zone, unsigned int order)
2127{
2128 return deferred_grow_zone(zone, order);
2129}
2130
2131#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2132
2133void __init page_alloc_init_late(void)
2134{
2135 struct zone *zone;
2136 int nid;
2137
2138#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2139
2140 /* There will be num_node_state(N_MEMORY) threads */
2141 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2142 for_each_node_state(nid, N_MEMORY) {
2143 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2144 }
2145
2146 /* Block until all are initialised */
2147 wait_for_completion(&pgdat_init_all_done_comp);
2148
2149 /*
2150 * The number of managed pages has changed due to the initialisation
2151 * so the pcpu batch and high limits needs to be updated or the limits
2152 * will be artificially small.
2153 */
2154 for_each_populated_zone(zone)
2155 zone_pcp_update(zone);
2156
2157 /*
2158 * We initialized the rest of the deferred pages. Permanently disable
2159 * on-demand struct page initialization.
2160 */
2161 static_branch_disable(&deferred_pages);
2162
2163 /* Reinit limits that are based on free pages after the kernel is up */
2164 files_maxfiles_init();
2165#endif
2166
2167 buffer_init();
2168
2169 /* Discard memblock private memory */
2170 memblock_discard();
2171
2172 for_each_node_state(nid, N_MEMORY)
2173 shuffle_free_memory(NODE_DATA(nid));
2174
2175 for_each_populated_zone(zone)
2176 set_zone_contiguous(zone);
2177}
2178
2179#ifdef CONFIG_CMA
2180/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2181void __init init_cma_reserved_pageblock(struct page *page)
2182{
2183 unsigned i = pageblock_nr_pages;
2184 struct page *p = page;
2185
2186 do {
2187 __ClearPageReserved(p);
2188 set_page_count(p, 0);
2189 } while (++p, --i);
2190
2191 set_pageblock_migratetype(page, MIGRATE_CMA);
2192
2193 if (pageblock_order >= MAX_ORDER) {
2194 i = pageblock_nr_pages;
2195 p = page;
2196 do {
2197 set_page_refcounted(p);
2198 __free_pages(p, MAX_ORDER - 1);
2199 p += MAX_ORDER_NR_PAGES;
2200 } while (i -= MAX_ORDER_NR_PAGES);
2201 } else {
2202 set_page_refcounted(page);
2203 __free_pages(page, pageblock_order);
2204 }
2205
2206 adjust_managed_page_count(page, pageblock_nr_pages);
2207 page_zone(page)->cma_pages += pageblock_nr_pages;
2208}
2209#endif
2210
2211/*
2212 * The order of subdivision here is critical for the IO subsystem.
2213 * Please do not alter this order without good reasons and regression
2214 * testing. Specifically, as large blocks of memory are subdivided,
2215 * the order in which smaller blocks are delivered depends on the order
2216 * they're subdivided in this function. This is the primary factor
2217 * influencing the order in which pages are delivered to the IO
2218 * subsystem according to empirical testing, and this is also justified
2219 * by considering the behavior of a buddy system containing a single
2220 * large block of memory acted on by a series of small allocations.
2221 * This behavior is a critical factor in sglist merging's success.
2222 *
2223 * -- nyc
2224 */
2225static inline void expand(struct zone *zone, struct page *page,
2226 int low, int high, int migratetype)
2227{
2228 unsigned long size = 1 << high;
2229
2230 while (high > low) {
2231 high--;
2232 size >>= 1;
2233 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2234
2235 /*
2236 * Mark as guard pages (or page), that will allow to
2237 * merge back to allocator when buddy will be freed.
2238 * Corresponding page table entries will not be touched,
2239 * pages will stay not present in virtual address space
2240 */
2241 if (set_page_guard(zone, &page[size], high, migratetype))
2242 continue;
2243
2244 add_to_free_list(&page[size], zone, high, migratetype);
2245 set_buddy_order(&page[size], high);
2246 }
2247}
2248
2249static void check_new_page_bad(struct page *page)
2250{
2251 if (unlikely(page->flags & __PG_HWPOISON)) {
2252 /* Don't complain about hwpoisoned pages */
2253 page_mapcount_reset(page); /* remove PageBuddy */
2254 return;
2255 }
2256
2257 bad_page(page,
2258 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2259}
2260
2261/*
2262 * This page is about to be returned from the page allocator
2263 */
2264static inline int check_new_page(struct page *page)
2265{
2266 if (likely(page_expected_state(page,
2267 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2268 return 0;
2269
2270 check_new_page_bad(page);
2271 return 1;
2272}
2273
2274#ifdef CONFIG_DEBUG_VM
2275/*
2276 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2277 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2278 * also checked when pcp lists are refilled from the free lists.
2279 */
2280static inline bool check_pcp_refill(struct page *page)
2281{
2282 if (debug_pagealloc_enabled_static())
2283 return check_new_page(page);
2284 else
2285 return false;
2286}
2287
2288static inline bool check_new_pcp(struct page *page)
2289{
2290 return check_new_page(page);
2291}
2292#else
2293/*
2294 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2295 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2296 * enabled, they are also checked when being allocated from the pcp lists.
2297 */
2298static inline bool check_pcp_refill(struct page *page)
2299{
2300 return check_new_page(page);
2301}
2302static inline bool check_new_pcp(struct page *page)
2303{
2304 if (debug_pagealloc_enabled_static())
2305 return check_new_page(page);
2306 else
2307 return false;
2308}
2309#endif /* CONFIG_DEBUG_VM */
2310
2311static bool check_new_pages(struct page *page, unsigned int order)
2312{
2313 int i;
2314 for (i = 0; i < (1 << order); i++) {
2315 struct page *p = page + i;
2316
2317 if (unlikely(check_new_page(p)))
2318 return true;
2319 }
2320
2321 return false;
2322}
2323
2324inline void post_alloc_hook(struct page *page, unsigned int order,
2325 gfp_t gfp_flags)
2326{
2327 bool init;
2328
2329 set_page_private(page, 0);
2330 set_page_refcounted(page);
2331
2332 arch_alloc_page(page, order);
2333 debug_pagealloc_map_pages(page, 1 << order);
2334
2335 /*
2336 * Page unpoisoning must happen before memory initialization.
2337 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2338 * allocations and the page unpoisoning code will complain.
2339 */
2340 kernel_unpoison_pages(page, 1 << order);
2341
2342 /*
2343 * As memory initialization might be integrated into KASAN,
2344 * kasan_alloc_pages and kernel_init_free_pages must be
2345 * kept together to avoid discrepancies in behavior.
2346 */
2347 init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2348 kasan_alloc_pages(page, order, init);
2349 if (init && !kasan_has_integrated_init())
2350 kernel_init_free_pages(page, 1 << order);
2351
2352 set_page_owner(page, order, gfp_flags);
2353}
2354
2355static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2356 unsigned int alloc_flags)
2357{
2358 post_alloc_hook(page, order, gfp_flags);
2359
2360 if (order && (gfp_flags & __GFP_COMP))
2361 prep_compound_page(page, order);
2362
2363 /*
2364 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2365 * allocate the page. The expectation is that the caller is taking
2366 * steps that will free more memory. The caller should avoid the page
2367 * being used for !PFMEMALLOC purposes.
2368 */
2369 if (alloc_flags & ALLOC_NO_WATERMARKS)
2370 set_page_pfmemalloc(page);
2371 else
2372 clear_page_pfmemalloc(page);
2373}
2374
2375/*
2376 * Go through the free lists for the given migratetype and remove
2377 * the smallest available page from the freelists
2378 */
2379static __always_inline
2380struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2381 int migratetype)
2382{
2383 unsigned int current_order;
2384 struct free_area *area;
2385 struct page *page;
2386
2387 /* Find a page of the appropriate size in the preferred list */
2388 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2389 area = &(zone->free_area[current_order]);
2390 page = get_page_from_free_area(area, migratetype);
2391 if (!page)
2392 continue;
2393 del_page_from_free_list(page, zone, current_order);
2394 expand(zone, page, order, current_order, migratetype);
2395 set_pcppage_migratetype(page, migratetype);
2396 return page;
2397 }
2398
2399 return NULL;
2400}
2401
2402
2403/*
2404 * This array describes the order lists are fallen back to when
2405 * the free lists for the desirable migrate type are depleted
2406 */
2407static int fallbacks[MIGRATE_TYPES][3] = {
2408 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2409 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2410 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2411#ifdef CONFIG_CMA
2412 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2413#endif
2414#ifdef CONFIG_MEMORY_ISOLATION
2415 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2416#endif
2417};
2418
2419#ifdef CONFIG_CMA
2420static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2421 unsigned int order)
2422{
2423 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2424}
2425#else
2426static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2427 unsigned int order) { return NULL; }
2428#endif
2429
2430/*
2431 * Move the free pages in a range to the freelist tail of the requested type.
2432 * Note that start_page and end_pages are not aligned on a pageblock
2433 * boundary. If alignment is required, use move_freepages_block()
2434 */
2435static int move_freepages(struct zone *zone,
2436 unsigned long start_pfn, unsigned long end_pfn,
2437 int migratetype, int *num_movable)
2438{
2439 struct page *page;
2440 unsigned long pfn;
2441 unsigned int order;
2442 int pages_moved = 0;
2443
2444 for (pfn = start_pfn; pfn <= end_pfn;) {
2445 if (!pfn_valid_within(pfn)) {
2446 pfn++;
2447 continue;
2448 }
2449
2450 page = pfn_to_page(pfn);
2451 if (!PageBuddy(page)) {
2452 /*
2453 * We assume that pages that could be isolated for
2454 * migration are movable. But we don't actually try
2455 * isolating, as that would be expensive.
2456 */
2457 if (num_movable &&
2458 (PageLRU(page) || __PageMovable(page)))
2459 (*num_movable)++;
2460 pfn++;
2461 continue;
2462 }
2463
2464 /* Make sure we are not inadvertently changing nodes */
2465 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2466 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2467
2468 order = buddy_order(page);
2469 move_to_free_list(page, zone, order, migratetype);
2470 pfn += 1 << order;
2471 pages_moved += 1 << order;
2472 }
2473
2474 return pages_moved;
2475}
2476
2477int move_freepages_block(struct zone *zone, struct page *page,
2478 int migratetype, int *num_movable)
2479{
2480 unsigned long start_pfn, end_pfn, pfn;
2481
2482 if (num_movable)
2483 *num_movable = 0;
2484
2485 pfn = page_to_pfn(page);
2486 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2487 end_pfn = start_pfn + pageblock_nr_pages - 1;
2488
2489 /* Do not cross zone boundaries */
2490 if (!zone_spans_pfn(zone, start_pfn))
2491 start_pfn = pfn;
2492 if (!zone_spans_pfn(zone, end_pfn))
2493 return 0;
2494
2495 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2496 num_movable);
2497}
2498
2499static void change_pageblock_range(struct page *pageblock_page,
2500 int start_order, int migratetype)
2501{
2502 int nr_pageblocks = 1 << (start_order - pageblock_order);
2503
2504 while (nr_pageblocks--) {
2505 set_pageblock_migratetype(pageblock_page, migratetype);
2506 pageblock_page += pageblock_nr_pages;
2507 }
2508}
2509
2510/*
2511 * When we are falling back to another migratetype during allocation, try to
2512 * steal extra free pages from the same pageblocks to satisfy further
2513 * allocations, instead of polluting multiple pageblocks.
2514 *
2515 * If we are stealing a relatively large buddy page, it is likely there will
2516 * be more free pages in the pageblock, so try to steal them all. For
2517 * reclaimable and unmovable allocations, we steal regardless of page size,
2518 * as fragmentation caused by those allocations polluting movable pageblocks
2519 * is worse than movable allocations stealing from unmovable and reclaimable
2520 * pageblocks.
2521 */
2522static bool can_steal_fallback(unsigned int order, int start_mt)
2523{
2524 /*
2525 * Leaving this order check is intended, although there is
2526 * relaxed order check in next check. The reason is that
2527 * we can actually steal whole pageblock if this condition met,
2528 * but, below check doesn't guarantee it and that is just heuristic
2529 * so could be changed anytime.
2530 */
2531 if (order >= pageblock_order)
2532 return true;
2533
2534 if (order >= pageblock_order / 2 ||
2535 start_mt == MIGRATE_RECLAIMABLE ||
2536 start_mt == MIGRATE_UNMOVABLE ||
2537 page_group_by_mobility_disabled)
2538 return true;
2539
2540 return false;
2541}
2542
2543static inline bool boost_watermark(struct zone *zone)
2544{
2545 unsigned long max_boost;
2546
2547 if (!watermark_boost_factor)
2548 return false;
2549 /*
2550 * Don't bother in zones that are unlikely to produce results.
2551 * On small machines, including kdump capture kernels running
2552 * in a small area, boosting the watermark can cause an out of
2553 * memory situation immediately.
2554 */
2555 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2556 return false;
2557
2558 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2559 watermark_boost_factor, 10000);
2560
2561 /*
2562 * high watermark may be uninitialised if fragmentation occurs
2563 * very early in boot so do not boost. We do not fall
2564 * through and boost by pageblock_nr_pages as failing
2565 * allocations that early means that reclaim is not going
2566 * to help and it may even be impossible to reclaim the
2567 * boosted watermark resulting in a hang.
2568 */
2569 if (!max_boost)
2570 return false;
2571
2572 max_boost = max(pageblock_nr_pages, max_boost);
2573
2574 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2575 max_boost);
2576
2577 return true;
2578}
2579
2580/*
2581 * This function implements actual steal behaviour. If order is large enough,
2582 * we can steal whole pageblock. If not, we first move freepages in this
2583 * pageblock to our migratetype and determine how many already-allocated pages
2584 * are there in the pageblock with a compatible migratetype. If at least half
2585 * of pages are free or compatible, we can change migratetype of the pageblock
2586 * itself, so pages freed in the future will be put on the correct free list.
2587 */
2588static void steal_suitable_fallback(struct zone *zone, struct page *page,
2589 unsigned int alloc_flags, int start_type, bool whole_block)
2590{
2591 unsigned int current_order = buddy_order(page);
2592 int free_pages, movable_pages, alike_pages;
2593 int old_block_type;
2594
2595 old_block_type = get_pageblock_migratetype(page);
2596
2597 /*
2598 * This can happen due to races and we want to prevent broken
2599 * highatomic accounting.
2600 */
2601 if (is_migrate_highatomic(old_block_type))
2602 goto single_page;
2603
2604 /* Take ownership for orders >= pageblock_order */
2605 if (current_order >= pageblock_order) {
2606 change_pageblock_range(page, current_order, start_type);
2607 goto single_page;
2608 }
2609
2610 /*
2611 * Boost watermarks to increase reclaim pressure to reduce the
2612 * likelihood of future fallbacks. Wake kswapd now as the node
2613 * may be balanced overall and kswapd will not wake naturally.
2614 */
2615 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2616 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2617
2618 /* We are not allowed to try stealing from the whole block */
2619 if (!whole_block)
2620 goto single_page;
2621
2622 free_pages = move_freepages_block(zone, page, start_type,
2623 &movable_pages);
2624 /*
2625 * Determine how many pages are compatible with our allocation.
2626 * For movable allocation, it's the number of movable pages which
2627 * we just obtained. For other types it's a bit more tricky.
2628 */
2629 if (start_type == MIGRATE_MOVABLE) {
2630 alike_pages = movable_pages;
2631 } else {
2632 /*
2633 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2634 * to MOVABLE pageblock, consider all non-movable pages as
2635 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2636 * vice versa, be conservative since we can't distinguish the
2637 * exact migratetype of non-movable pages.
2638 */
2639 if (old_block_type == MIGRATE_MOVABLE)
2640 alike_pages = pageblock_nr_pages
2641 - (free_pages + movable_pages);
2642 else
2643 alike_pages = 0;
2644 }
2645
2646 /* moving whole block can fail due to zone boundary conditions */
2647 if (!free_pages)
2648 goto single_page;
2649
2650 /*
2651 * If a sufficient number of pages in the block are either free or of
2652 * comparable migratability as our allocation, claim the whole block.
2653 */
2654 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2655 page_group_by_mobility_disabled)
2656 set_pageblock_migratetype(page, start_type);
2657
2658 return;
2659
2660single_page:
2661 move_to_free_list(page, zone, current_order, start_type);
2662}
2663
2664/*
2665 * Check whether there is a suitable fallback freepage with requested order.
2666 * If only_stealable is true, this function returns fallback_mt only if
2667 * we can steal other freepages all together. This would help to reduce
2668 * fragmentation due to mixed migratetype pages in one pageblock.
2669 */
2670int find_suitable_fallback(struct free_area *area, unsigned int order,
2671 int migratetype, bool only_stealable, bool *can_steal)
2672{
2673 int i;
2674 int fallback_mt;
2675
2676 if (area->nr_free == 0)
2677 return -1;
2678
2679 *can_steal = false;
2680 for (i = 0;; i++) {
2681 fallback_mt = fallbacks[migratetype][i];
2682 if (fallback_mt == MIGRATE_TYPES)
2683 break;
2684
2685 if (free_area_empty(area, fallback_mt))
2686 continue;
2687
2688 if (can_steal_fallback(order, migratetype))
2689 *can_steal = true;
2690
2691 if (!only_stealable)
2692 return fallback_mt;
2693
2694 if (*can_steal)
2695 return fallback_mt;
2696 }
2697
2698 return -1;
2699}
2700
2701/*
2702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2703 * there are no empty page blocks that contain a page with a suitable order
2704 */
2705static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2706 unsigned int alloc_order)
2707{
2708 int mt;
2709 unsigned long max_managed, flags;
2710
2711 /*
2712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2713 * Check is race-prone but harmless.
2714 */
2715 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2716 if (zone->nr_reserved_highatomic >= max_managed)
2717 return;
2718
2719 spin_lock_irqsave(&zone->lock, flags);
2720
2721 /* Recheck the nr_reserved_highatomic limit under the lock */
2722 if (zone->nr_reserved_highatomic >= max_managed)
2723 goto out_unlock;
2724
2725 /* Yoink! */
2726 mt = get_pageblock_migratetype(page);
2727 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2728 && !is_migrate_cma(mt)) {
2729 zone->nr_reserved_highatomic += pageblock_nr_pages;
2730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2732 }
2733
2734out_unlock:
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736}
2737
2738/*
2739 * Used when an allocation is about to fail under memory pressure. This
2740 * potentially hurts the reliability of high-order allocations when under
2741 * intense memory pressure but failed atomic allocations should be easier
2742 * to recover from than an OOM.
2743 *
2744 * If @force is true, try to unreserve a pageblock even though highatomic
2745 * pageblock is exhausted.
2746 */
2747static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2748 bool force)
2749{
2750 struct zonelist *zonelist = ac->zonelist;
2751 unsigned long flags;
2752 struct zoneref *z;
2753 struct zone *zone;
2754 struct page *page;
2755 int order;
2756 bool ret;
2757
2758 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2759 ac->nodemask) {
2760 /*
2761 * Preserve at least one pageblock unless memory pressure
2762 * is really high.
2763 */
2764 if (!force && zone->nr_reserved_highatomic <=
2765 pageblock_nr_pages)
2766 continue;
2767
2768 spin_lock_irqsave(&zone->lock, flags);
2769 for (order = 0; order < MAX_ORDER; order++) {
2770 struct free_area *area = &(zone->free_area[order]);
2771
2772 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2773 if (!page)
2774 continue;
2775
2776 /*
2777 * In page freeing path, migratetype change is racy so
2778 * we can counter several free pages in a pageblock
2779 * in this loop although we changed the pageblock type
2780 * from highatomic to ac->migratetype. So we should
2781 * adjust the count once.
2782 */
2783 if (is_migrate_highatomic_page(page)) {
2784 /*
2785 * It should never happen but changes to
2786 * locking could inadvertently allow a per-cpu
2787 * drain to add pages to MIGRATE_HIGHATOMIC
2788 * while unreserving so be safe and watch for
2789 * underflows.
2790 */
2791 zone->nr_reserved_highatomic -= min(
2792 pageblock_nr_pages,
2793 zone->nr_reserved_highatomic);
2794 }
2795
2796 /*
2797 * Convert to ac->migratetype and avoid the normal
2798 * pageblock stealing heuristics. Minimally, the caller
2799 * is doing the work and needs the pages. More
2800 * importantly, if the block was always converted to
2801 * MIGRATE_UNMOVABLE or another type then the number
2802 * of pageblocks that cannot be completely freed
2803 * may increase.
2804 */
2805 set_pageblock_migratetype(page, ac->migratetype);
2806 ret = move_freepages_block(zone, page, ac->migratetype,
2807 NULL);
2808 if (ret) {
2809 spin_unlock_irqrestore(&zone->lock, flags);
2810 return ret;
2811 }
2812 }
2813 spin_unlock_irqrestore(&zone->lock, flags);
2814 }
2815
2816 return false;
2817}
2818
2819/*
2820 * Try finding a free buddy page on the fallback list and put it on the free
2821 * list of requested migratetype, possibly along with other pages from the same
2822 * block, depending on fragmentation avoidance heuristics. Returns true if
2823 * fallback was found so that __rmqueue_smallest() can grab it.
2824 *
2825 * The use of signed ints for order and current_order is a deliberate
2826 * deviation from the rest of this file, to make the for loop
2827 * condition simpler.
2828 */
2829static __always_inline bool
2830__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2831 unsigned int alloc_flags)
2832{
2833 struct free_area *area;
2834 int current_order;
2835 int min_order = order;
2836 struct page *page;
2837 int fallback_mt;
2838 bool can_steal;
2839
2840 /*
2841 * Do not steal pages from freelists belonging to other pageblocks
2842 * i.e. orders < pageblock_order. If there are no local zones free,
2843 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2844 */
2845 if (alloc_flags & ALLOC_NOFRAGMENT)
2846 min_order = pageblock_order;
2847
2848 /*
2849 * Find the largest available free page in the other list. This roughly
2850 * approximates finding the pageblock with the most free pages, which
2851 * would be too costly to do exactly.
2852 */
2853 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2854 --current_order) {
2855 area = &(zone->free_area[current_order]);
2856 fallback_mt = find_suitable_fallback(area, current_order,
2857 start_migratetype, false, &can_steal);
2858 if (fallback_mt == -1)
2859 continue;
2860
2861 /*
2862 * We cannot steal all free pages from the pageblock and the
2863 * requested migratetype is movable. In that case it's better to
2864 * steal and split the smallest available page instead of the
2865 * largest available page, because even if the next movable
2866 * allocation falls back into a different pageblock than this
2867 * one, it won't cause permanent fragmentation.
2868 */
2869 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2870 && current_order > order)
2871 goto find_smallest;
2872
2873 goto do_steal;
2874 }
2875
2876 return false;
2877
2878find_smallest:
2879 for (current_order = order; current_order < MAX_ORDER;
2880 current_order++) {
2881 area = &(zone->free_area[current_order]);
2882 fallback_mt = find_suitable_fallback(area, current_order,
2883 start_migratetype, false, &can_steal);
2884 if (fallback_mt != -1)
2885 break;
2886 }
2887
2888 /*
2889 * This should not happen - we already found a suitable fallback
2890 * when looking for the largest page.
2891 */
2892 VM_BUG_ON(current_order == MAX_ORDER);
2893
2894do_steal:
2895 page = get_page_from_free_area(area, fallback_mt);
2896
2897 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2898 can_steal);
2899
2900 trace_mm_page_alloc_extfrag(page, order, current_order,
2901 start_migratetype, fallback_mt);
2902
2903 return true;
2904
2905}
2906
2907/*
2908 * Do the hard work of removing an element from the buddy allocator.
2909 * Call me with the zone->lock already held.
2910 */
2911static __always_inline struct page *
2912__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2913 unsigned int alloc_flags)
2914{
2915 struct page *page;
2916
2917 if (IS_ENABLED(CONFIG_CMA)) {
2918 /*
2919 * Balance movable allocations between regular and CMA areas by
2920 * allocating from CMA when over half of the zone's free memory
2921 * is in the CMA area.
2922 */
2923 if (alloc_flags & ALLOC_CMA &&
2924 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2925 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2926 page = __rmqueue_cma_fallback(zone, order);
2927 if (page)
2928 goto out;
2929 }
2930 }
2931retry:
2932 page = __rmqueue_smallest(zone, order, migratetype);
2933 if (unlikely(!page)) {
2934 if (alloc_flags & ALLOC_CMA)
2935 page = __rmqueue_cma_fallback(zone, order);
2936
2937 if (!page && __rmqueue_fallback(zone, order, migratetype,
2938 alloc_flags))
2939 goto retry;
2940 }
2941out:
2942 if (page)
2943 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2944 return page;
2945}
2946
2947/*
2948 * Obtain a specified number of elements from the buddy allocator, all under
2949 * a single hold of the lock, for efficiency. Add them to the supplied list.
2950 * Returns the number of new pages which were placed at *list.
2951 */
2952static int rmqueue_bulk(struct zone *zone, unsigned int order,
2953 unsigned long count, struct list_head *list,
2954 int migratetype, unsigned int alloc_flags)
2955{
2956 int i, allocated = 0;
2957
2958 spin_lock(&zone->lock);
2959 for (i = 0; i < count; ++i) {
2960 struct page *page = __rmqueue(zone, order, migratetype,
2961 alloc_flags);
2962 if (unlikely(page == NULL))
2963 break;
2964
2965 if (unlikely(check_pcp_refill(page)))
2966 continue;
2967
2968 /*
2969 * Split buddy pages returned by expand() are received here in
2970 * physical page order. The page is added to the tail of
2971 * caller's list. From the callers perspective, the linked list
2972 * is ordered by page number under some conditions. This is
2973 * useful for IO devices that can forward direction from the
2974 * head, thus also in the physical page order. This is useful
2975 * for IO devices that can merge IO requests if the physical
2976 * pages are ordered properly.
2977 */
2978 list_add_tail(&page->lru, list);
2979 allocated++;
2980 if (is_migrate_cma(get_pcppage_migratetype(page)))
2981 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2982 -(1 << order));
2983 }
2984
2985 /*
2986 * i pages were removed from the buddy list even if some leak due
2987 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2988 * on i. Do not confuse with 'allocated' which is the number of
2989 * pages added to the pcp list.
2990 */
2991 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2992 spin_unlock(&zone->lock);
2993 return allocated;
2994}
2995
2996#ifdef CONFIG_NUMA
2997/*
2998 * Called from the vmstat counter updater to drain pagesets of this
2999 * currently executing processor on remote nodes after they have
3000 * expired.
3001 *
3002 * Note that this function must be called with the thread pinned to
3003 * a single processor.
3004 */
3005void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3006{
3007 unsigned long flags;
3008 int to_drain, batch;
3009
3010 local_irq_save(flags);
3011 batch = READ_ONCE(pcp->batch);
3012 to_drain = min(pcp->count, batch);
3013 if (to_drain > 0)
3014 free_pcppages_bulk(zone, to_drain, pcp);
3015 local_irq_restore(flags);
3016}
3017#endif
3018
3019/*
3020 * Drain pcplists of the indicated processor and zone.
3021 *
3022 * The processor must either be the current processor and the
3023 * thread pinned to the current processor or a processor that
3024 * is not online.
3025 */
3026static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3027{
3028 unsigned long flags;
3029 struct per_cpu_pageset *pset;
3030 struct per_cpu_pages *pcp;
3031
3032 local_irq_save(flags);
3033 pset = per_cpu_ptr(zone->pageset, cpu);
3034
3035 pcp = &pset->pcp;
3036 if (pcp->count)
3037 free_pcppages_bulk(zone, pcp->count, pcp);
3038 local_irq_restore(flags);
3039}
3040
3041/*
3042 * Drain pcplists of all zones on the indicated processor.
3043 *
3044 * The processor must either be the current processor and the
3045 * thread pinned to the current processor or a processor that
3046 * is not online.
3047 */
3048static void drain_pages(unsigned int cpu)
3049{
3050 struct zone *zone;
3051
3052 for_each_populated_zone(zone) {
3053 drain_pages_zone(cpu, zone);
3054 }
3055}
3056
3057/*
3058 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3059 *
3060 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3061 * the single zone's pages.
3062 */
3063void drain_local_pages(struct zone *zone)
3064{
3065 int cpu = smp_processor_id();
3066
3067 if (zone)
3068 drain_pages_zone(cpu, zone);
3069 else
3070 drain_pages(cpu);
3071}
3072
3073static void drain_local_pages_wq(struct work_struct *work)
3074{
3075 struct pcpu_drain *drain;
3076
3077 drain = container_of(work, struct pcpu_drain, work);
3078
3079 /*
3080 * drain_all_pages doesn't use proper cpu hotplug protection so
3081 * we can race with cpu offline when the WQ can move this from
3082 * a cpu pinned worker to an unbound one. We can operate on a different
3083 * cpu which is alright but we also have to make sure to not move to
3084 * a different one.
3085 */
3086 preempt_disable();
3087 drain_local_pages(drain->zone);
3088 preempt_enable();
3089}
3090
3091/*
3092 * The implementation of drain_all_pages(), exposing an extra parameter to
3093 * drain on all cpus.
3094 *
3095 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3096 * not empty. The check for non-emptiness can however race with a free to
3097 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3098 * that need the guarantee that every CPU has drained can disable the
3099 * optimizing racy check.
3100 */
3101static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3102{
3103 int cpu;
3104
3105 /*
3106 * Allocate in the BSS so we wont require allocation in
3107 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3108 */
3109 static cpumask_t cpus_with_pcps;
3110
3111 /*
3112 * Make sure nobody triggers this path before mm_percpu_wq is fully
3113 * initialized.
3114 */
3115 if (WARN_ON_ONCE(!mm_percpu_wq))
3116 return;
3117
3118 /*
3119 * Do not drain if one is already in progress unless it's specific to
3120 * a zone. Such callers are primarily CMA and memory hotplug and need
3121 * the drain to be complete when the call returns.
3122 */
3123 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3124 if (!zone)
3125 return;
3126 mutex_lock(&pcpu_drain_mutex);
3127 }
3128
3129 /*
3130 * We don't care about racing with CPU hotplug event
3131 * as offline notification will cause the notified
3132 * cpu to drain that CPU pcps and on_each_cpu_mask
3133 * disables preemption as part of its processing
3134 */
3135 for_each_online_cpu(cpu) {
3136 struct per_cpu_pageset *pcp;
3137 struct zone *z;
3138 bool has_pcps = false;
3139
3140 if (force_all_cpus) {
3141 /*
3142 * The pcp.count check is racy, some callers need a
3143 * guarantee that no cpu is missed.
3144 */
3145 has_pcps = true;
3146 } else if (zone) {
3147 pcp = per_cpu_ptr(zone->pageset, cpu);
3148 if (pcp->pcp.count)
3149 has_pcps = true;
3150 } else {
3151 for_each_populated_zone(z) {
3152 pcp = per_cpu_ptr(z->pageset, cpu);
3153 if (pcp->pcp.count) {
3154 has_pcps = true;
3155 break;
3156 }
3157 }
3158 }
3159
3160 if (has_pcps)
3161 cpumask_set_cpu(cpu, &cpus_with_pcps);
3162 else
3163 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3164 }
3165
3166 for_each_cpu(cpu, &cpus_with_pcps) {
3167 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3168
3169 drain->zone = zone;
3170 INIT_WORK(&drain->work, drain_local_pages_wq);
3171 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3172 }
3173 for_each_cpu(cpu, &cpus_with_pcps)
3174 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3175
3176 mutex_unlock(&pcpu_drain_mutex);
3177}
3178
3179/*
3180 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3181 *
3182 * When zone parameter is non-NULL, spill just the single zone's pages.
3183 *
3184 * Note that this can be extremely slow as the draining happens in a workqueue.
3185 */
3186void drain_all_pages(struct zone *zone)
3187{
3188 __drain_all_pages(zone, false);
3189}
3190
3191#ifdef CONFIG_HIBERNATION
3192
3193/*
3194 * Touch the watchdog for every WD_PAGE_COUNT pages.
3195 */
3196#define WD_PAGE_COUNT (128*1024)
3197
3198void mark_free_pages(struct zone *zone)
3199{
3200 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3201 unsigned long flags;
3202 unsigned int order, t;
3203 struct page *page;
3204
3205 if (zone_is_empty(zone))
3206 return;
3207
3208 spin_lock_irqsave(&zone->lock, flags);
3209
3210 max_zone_pfn = zone_end_pfn(zone);
3211 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3212 if (pfn_valid(pfn)) {
3213 page = pfn_to_page(pfn);
3214
3215 if (!--page_count) {
3216 touch_nmi_watchdog();
3217 page_count = WD_PAGE_COUNT;
3218 }
3219
3220 if (page_zone(page) != zone)
3221 continue;
3222
3223 if (!swsusp_page_is_forbidden(page))
3224 swsusp_unset_page_free(page);
3225 }
3226
3227 for_each_migratetype_order(order, t) {
3228 list_for_each_entry(page,
3229 &zone->free_area[order].free_list[t], lru) {
3230 unsigned long i;
3231
3232 pfn = page_to_pfn(page);
3233 for (i = 0; i < (1UL << order); i++) {
3234 if (!--page_count) {
3235 touch_nmi_watchdog();
3236 page_count = WD_PAGE_COUNT;
3237 }
3238 swsusp_set_page_free(pfn_to_page(pfn + i));
3239 }
3240 }
3241 }
3242 spin_unlock_irqrestore(&zone->lock, flags);
3243}
3244#endif /* CONFIG_PM */
3245
3246static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3247{
3248 int migratetype;
3249
3250 if (!free_pcp_prepare(page))
3251 return false;
3252
3253 migratetype = get_pfnblock_migratetype(page, pfn);
3254 set_pcppage_migratetype(page, migratetype);
3255 return true;
3256}
3257
3258static void free_unref_page_commit(struct page *page, unsigned long pfn)
3259{
3260 struct zone *zone = page_zone(page);
3261 struct per_cpu_pages *pcp;
3262 int migratetype;
3263
3264 migratetype = get_pcppage_migratetype(page);
3265 __count_vm_event(PGFREE);
3266
3267 /*
3268 * We only track unmovable, reclaimable and movable on pcp lists.
3269 * Free ISOLATE pages back to the allocator because they are being
3270 * offlined but treat HIGHATOMIC as movable pages so we can get those
3271 * areas back if necessary. Otherwise, we may have to free
3272 * excessively into the page allocator
3273 */
3274 if (migratetype >= MIGRATE_PCPTYPES) {
3275 if (unlikely(is_migrate_isolate(migratetype))) {
3276 free_one_page(zone, page, pfn, 0, migratetype,
3277 FPI_NONE);
3278 return;
3279 }
3280 migratetype = MIGRATE_MOVABLE;
3281 }
3282
3283 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3284 list_add(&page->lru, &pcp->lists[migratetype]);
3285 pcp->count++;
3286 if (pcp->count >= READ_ONCE(pcp->high))
3287 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3288}
3289
3290/*
3291 * Free a 0-order page
3292 */
3293void free_unref_page(struct page *page)
3294{
3295 unsigned long flags;
3296 unsigned long pfn = page_to_pfn(page);
3297
3298 if (!free_unref_page_prepare(page, pfn))
3299 return;
3300
3301 local_irq_save(flags);
3302 free_unref_page_commit(page, pfn);
3303 local_irq_restore(flags);
3304}
3305
3306/*
3307 * Free a list of 0-order pages
3308 */
3309void free_unref_page_list(struct list_head *list)
3310{
3311 struct page *page, *next;
3312 unsigned long flags, pfn;
3313 int batch_count = 0;
3314
3315 /* Prepare pages for freeing */
3316 list_for_each_entry_safe(page, next, list, lru) {
3317 pfn = page_to_pfn(page);
3318 if (!free_unref_page_prepare(page, pfn))
3319 list_del(&page->lru);
3320 set_page_private(page, pfn);
3321 }
3322
3323 local_irq_save(flags);
3324 list_for_each_entry_safe(page, next, list, lru) {
3325 unsigned long pfn = page_private(page);
3326
3327 set_page_private(page, 0);
3328 trace_mm_page_free_batched(page);
3329 free_unref_page_commit(page, pfn);
3330
3331 /*
3332 * Guard against excessive IRQ disabled times when we get
3333 * a large list of pages to free.
3334 */
3335 if (++batch_count == SWAP_CLUSTER_MAX) {
3336 local_irq_restore(flags);
3337 batch_count = 0;
3338 local_irq_save(flags);
3339 }
3340 }
3341 local_irq_restore(flags);
3342}
3343
3344/*
3345 * split_page takes a non-compound higher-order page, and splits it into
3346 * n (1<<order) sub-pages: page[0..n]
3347 * Each sub-page must be freed individually.
3348 *
3349 * Note: this is probably too low level an operation for use in drivers.
3350 * Please consult with lkml before using this in your driver.
3351 */
3352void split_page(struct page *page, unsigned int order)
3353{
3354 int i;
3355
3356 VM_BUG_ON_PAGE(PageCompound(page), page);
3357 VM_BUG_ON_PAGE(!page_count(page), page);
3358
3359 for (i = 1; i < (1 << order); i++)
3360 set_page_refcounted(page + i);
3361 split_page_owner(page, 1 << order);
3362 split_page_memcg(page, 1 << order);
3363}
3364EXPORT_SYMBOL_GPL(split_page);
3365
3366int __isolate_free_page(struct page *page, unsigned int order)
3367{
3368 unsigned long watermark;
3369 struct zone *zone;
3370 int mt;
3371
3372 BUG_ON(!PageBuddy(page));
3373
3374 zone = page_zone(page);
3375 mt = get_pageblock_migratetype(page);
3376
3377 if (!is_migrate_isolate(mt)) {
3378 /*
3379 * Obey watermarks as if the page was being allocated. We can
3380 * emulate a high-order watermark check with a raised order-0
3381 * watermark, because we already know our high-order page
3382 * exists.
3383 */
3384 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3385 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3386 return 0;
3387
3388 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3389 }
3390
3391 /* Remove page from free list */
3392
3393 del_page_from_free_list(page, zone, order);
3394
3395 /*
3396 * Set the pageblock if the isolated page is at least half of a
3397 * pageblock
3398 */
3399 if (order >= pageblock_order - 1) {
3400 struct page *endpage = page + (1 << order) - 1;
3401 for (; page < endpage; page += pageblock_nr_pages) {
3402 int mt = get_pageblock_migratetype(page);
3403 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3404 && !is_migrate_highatomic(mt))
3405 set_pageblock_migratetype(page,
3406 MIGRATE_MOVABLE);
3407 }
3408 }
3409
3410
3411 return 1UL << order;
3412}
3413
3414/**
3415 * __putback_isolated_page - Return a now-isolated page back where we got it
3416 * @page: Page that was isolated
3417 * @order: Order of the isolated page
3418 * @mt: The page's pageblock's migratetype
3419 *
3420 * This function is meant to return a page pulled from the free lists via
3421 * __isolate_free_page back to the free lists they were pulled from.
3422 */
3423void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3424{
3425 struct zone *zone = page_zone(page);
3426
3427 /* zone lock should be held when this function is called */
3428 lockdep_assert_held(&zone->lock);
3429
3430 /* Return isolated page to tail of freelist. */
3431 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3432 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3433}
3434
3435/*
3436 * Update NUMA hit/miss statistics
3437 *
3438 * Must be called with interrupts disabled.
3439 */
3440static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3441{
3442#ifdef CONFIG_NUMA
3443 enum numa_stat_item local_stat = NUMA_LOCAL;
3444
3445 /* skip numa counters update if numa stats is disabled */
3446 if (!static_branch_likely(&vm_numa_stat_key))
3447 return;
3448
3449 if (zone_to_nid(z) != numa_node_id())
3450 local_stat = NUMA_OTHER;
3451
3452 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3453 __inc_numa_state(z, NUMA_HIT);
3454 else {
3455 __inc_numa_state(z, NUMA_MISS);
3456 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3457 }
3458 __inc_numa_state(z, local_stat);
3459#endif
3460}
3461
3462/* Remove page from the per-cpu list, caller must protect the list */
3463static inline
3464struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3465 unsigned int alloc_flags,
3466 struct per_cpu_pages *pcp,
3467 struct list_head *list)
3468{
3469 struct page *page;
3470
3471 do {
3472 if (list_empty(list)) {
3473 pcp->count += rmqueue_bulk(zone, 0,
3474 READ_ONCE(pcp->batch), list,
3475 migratetype, alloc_flags);
3476 if (unlikely(list_empty(list)))
3477 return NULL;
3478 }
3479
3480 page = list_first_entry(list, struct page, lru);
3481 list_del(&page->lru);
3482 pcp->count--;
3483 } while (check_new_pcp(page));
3484
3485 return page;
3486}
3487
3488/* Lock and remove page from the per-cpu list */
3489static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3490 struct zone *zone, gfp_t gfp_flags,
3491 int migratetype, unsigned int alloc_flags)
3492{
3493 struct per_cpu_pages *pcp;
3494 struct list_head *list;
3495 struct page *page;
3496 unsigned long flags;
3497
3498 local_irq_save(flags);
3499 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3500 list = &pcp->lists[migratetype];
3501 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3502 if (page) {
3503 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3504 zone_statistics(preferred_zone, zone);
3505 }
3506 local_irq_restore(flags);
3507 return page;
3508}
3509
3510/*
3511 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3512 */
3513static inline
3514struct page *rmqueue(struct zone *preferred_zone,
3515 struct zone *zone, unsigned int order,
3516 gfp_t gfp_flags, unsigned int alloc_flags,
3517 int migratetype)
3518{
3519 unsigned long flags;
3520 struct page *page;
3521
3522 if (likely(order == 0)) {
3523 /*
3524 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3525 * we need to skip it when CMA area isn't allowed.
3526 */
3527 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3528 migratetype != MIGRATE_MOVABLE) {
3529 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3530 migratetype, alloc_flags);
3531 goto out;
3532 }
3533 }
3534
3535 /*
3536 * We most definitely don't want callers attempting to
3537 * allocate greater than order-1 page units with __GFP_NOFAIL.
3538 */
3539 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3540 spin_lock_irqsave(&zone->lock, flags);
3541
3542 do {
3543 page = NULL;
3544 /*
3545 * order-0 request can reach here when the pcplist is skipped
3546 * due to non-CMA allocation context. HIGHATOMIC area is
3547 * reserved for high-order atomic allocation, so order-0
3548 * request should skip it.
3549 */
3550 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3551 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3552 if (page)
3553 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3554 }
3555 if (!page)
3556 page = __rmqueue(zone, order, migratetype, alloc_flags);
3557 } while (page && check_new_pages(page, order));
3558 spin_unlock(&zone->lock);
3559 if (!page)
3560 goto failed;
3561 __mod_zone_freepage_state(zone, -(1 << order),
3562 get_pcppage_migratetype(page));
3563
3564 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3565 zone_statistics(preferred_zone, zone);
3566 local_irq_restore(flags);
3567
3568out:
3569 /* Separate test+clear to avoid unnecessary atomics */
3570 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3571 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3572 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3573 }
3574
3575 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3576 return page;
3577
3578failed:
3579 local_irq_restore(flags);
3580 return NULL;
3581}
3582
3583#ifdef CONFIG_FAIL_PAGE_ALLOC
3584
3585static struct {
3586 struct fault_attr attr;
3587
3588 bool ignore_gfp_highmem;
3589 bool ignore_gfp_reclaim;
3590 u32 min_order;
3591} fail_page_alloc = {
3592 .attr = FAULT_ATTR_INITIALIZER,
3593 .ignore_gfp_reclaim = true,
3594 .ignore_gfp_highmem = true,
3595 .min_order = 1,
3596};
3597
3598static int __init setup_fail_page_alloc(char *str)
3599{
3600 return setup_fault_attr(&fail_page_alloc.attr, str);
3601}
3602__setup("fail_page_alloc=", setup_fail_page_alloc);
3603
3604static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3605{
3606 if (order < fail_page_alloc.min_order)
3607 return false;
3608 if (gfp_mask & __GFP_NOFAIL)
3609 return false;
3610 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3611 return false;
3612 if (fail_page_alloc.ignore_gfp_reclaim &&
3613 (gfp_mask & __GFP_DIRECT_RECLAIM))
3614 return false;
3615
3616 return should_fail(&fail_page_alloc.attr, 1 << order);
3617}
3618
3619#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3620
3621static int __init fail_page_alloc_debugfs(void)
3622{
3623 umode_t mode = S_IFREG | 0600;
3624 struct dentry *dir;
3625
3626 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3627 &fail_page_alloc.attr);
3628
3629 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3630 &fail_page_alloc.ignore_gfp_reclaim);
3631 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3632 &fail_page_alloc.ignore_gfp_highmem);
3633 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3634
3635 return 0;
3636}
3637
3638late_initcall(fail_page_alloc_debugfs);
3639
3640#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3641
3642#else /* CONFIG_FAIL_PAGE_ALLOC */
3643
3644static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3645{
3646 return false;
3647}
3648
3649#endif /* CONFIG_FAIL_PAGE_ALLOC */
3650
3651noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3652{
3653 return __should_fail_alloc_page(gfp_mask, order);
3654}
3655ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3656
3657static inline long __zone_watermark_unusable_free(struct zone *z,
3658 unsigned int order, unsigned int alloc_flags)
3659{
3660 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3661 long unusable_free = (1 << order) - 1;
3662
3663 /*
3664 * If the caller does not have rights to ALLOC_HARDER then subtract
3665 * the high-atomic reserves. This will over-estimate the size of the
3666 * atomic reserve but it avoids a search.
3667 */
3668 if (likely(!alloc_harder))
3669 unusable_free += z->nr_reserved_highatomic;
3670
3671#ifdef CONFIG_CMA
3672 /* If allocation can't use CMA areas don't use free CMA pages */
3673 if (!(alloc_flags & ALLOC_CMA))
3674 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3675#endif
3676
3677 return unusable_free;
3678}
3679
3680/*
3681 * Return true if free base pages are above 'mark'. For high-order checks it
3682 * will return true of the order-0 watermark is reached and there is at least
3683 * one free page of a suitable size. Checking now avoids taking the zone lock
3684 * to check in the allocation paths if no pages are free.
3685 */
3686bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3687 int highest_zoneidx, unsigned int alloc_flags,
3688 long free_pages)
3689{
3690 long min = mark;
3691 int o;
3692 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3693
3694 /* free_pages may go negative - that's OK */
3695 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3696
3697 if (alloc_flags & ALLOC_HIGH)
3698 min -= min / 2;
3699
3700 if (unlikely(alloc_harder)) {
3701 /*
3702 * OOM victims can try even harder than normal ALLOC_HARDER
3703 * users on the grounds that it's definitely going to be in
3704 * the exit path shortly and free memory. Any allocation it
3705 * makes during the free path will be small and short-lived.
3706 */
3707 if (alloc_flags & ALLOC_OOM)
3708 min -= min / 2;
3709 else
3710 min -= min / 4;
3711 }
3712
3713 /*
3714 * Check watermarks for an order-0 allocation request. If these
3715 * are not met, then a high-order request also cannot go ahead
3716 * even if a suitable page happened to be free.
3717 */
3718 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3719 return false;
3720
3721 /* If this is an order-0 request then the watermark is fine */
3722 if (!order)
3723 return true;
3724
3725 /* For a high-order request, check at least one suitable page is free */
3726 for (o = order; o < MAX_ORDER; o++) {
3727 struct free_area *area = &z->free_area[o];
3728 int mt;
3729
3730 if (!area->nr_free)
3731 continue;
3732
3733 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3734 if (!free_area_empty(area, mt))
3735 return true;
3736 }
3737
3738#ifdef CONFIG_CMA
3739 if ((alloc_flags & ALLOC_CMA) &&
3740 !free_area_empty(area, MIGRATE_CMA)) {
3741 return true;
3742 }
3743#endif
3744 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3745 return true;
3746 }
3747 return false;
3748}
3749
3750bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3751 int highest_zoneidx, unsigned int alloc_flags)
3752{
3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3754 zone_page_state(z, NR_FREE_PAGES));
3755}
3756
3757static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3758 unsigned long mark, int highest_zoneidx,
3759 unsigned int alloc_flags, gfp_t gfp_mask)
3760{
3761 long free_pages;
3762
3763 free_pages = zone_page_state(z, NR_FREE_PAGES);
3764
3765 /*
3766 * Fast check for order-0 only. If this fails then the reserves
3767 * need to be calculated.
3768 */
3769 if (!order) {
3770 long fast_free;
3771
3772 fast_free = free_pages;
3773 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3774 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3775 return true;
3776 }
3777
3778 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3779 free_pages))
3780 return true;
3781 /*
3782 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3783 * when checking the min watermark. The min watermark is the
3784 * point where boosting is ignored so that kswapd is woken up
3785 * when below the low watermark.
3786 */
3787 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3788 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3789 mark = z->_watermark[WMARK_MIN];
3790 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3791 alloc_flags, free_pages);
3792 }
3793
3794 return false;
3795}
3796
3797bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3798 unsigned long mark, int highest_zoneidx)
3799{
3800 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3801
3802 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3803 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3804
3805 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3806 free_pages);
3807}
3808
3809#ifdef CONFIG_NUMA
3810static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3811{
3812 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3813 node_reclaim_distance;
3814}
3815#else /* CONFIG_NUMA */
3816static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3817{
3818 return true;
3819}
3820#endif /* CONFIG_NUMA */
3821
3822/*
3823 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3824 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3825 * premature use of a lower zone may cause lowmem pressure problems that
3826 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3827 * probably too small. It only makes sense to spread allocations to avoid
3828 * fragmentation between the Normal and DMA32 zones.
3829 */
3830static inline unsigned int
3831alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3832{
3833 unsigned int alloc_flags;
3834
3835 /*
3836 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3837 * to save a branch.
3838 */
3839 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3840
3841#ifdef CONFIG_ZONE_DMA32
3842 if (!zone)
3843 return alloc_flags;
3844
3845 if (zone_idx(zone) != ZONE_NORMAL)
3846 return alloc_flags;
3847
3848 /*
3849 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3850 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3851 * on UMA that if Normal is populated then so is DMA32.
3852 */
3853 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3854 if (nr_online_nodes > 1 && !populated_zone(--zone))
3855 return alloc_flags;
3856
3857 alloc_flags |= ALLOC_NOFRAGMENT;
3858#endif /* CONFIG_ZONE_DMA32 */
3859 return alloc_flags;
3860}
3861
3862/* Must be called after current_gfp_context() which can change gfp_mask */
3863static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3864 unsigned int alloc_flags)
3865{
3866#ifdef CONFIG_CMA
3867 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3868 alloc_flags |= ALLOC_CMA;
3869#endif
3870 return alloc_flags;
3871}
3872
3873/*
3874 * get_page_from_freelist goes through the zonelist trying to allocate
3875 * a page.
3876 */
3877static struct page *
3878get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3879 const struct alloc_context *ac)
3880{
3881 struct zoneref *z;
3882 struct zone *zone;
3883 struct pglist_data *last_pgdat_dirty_limit = NULL;
3884 bool no_fallback;
3885
3886retry:
3887 /*
3888 * Scan zonelist, looking for a zone with enough free.
3889 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3890 */
3891 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3892 z = ac->preferred_zoneref;
3893 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3894 ac->nodemask) {
3895 struct page *page;
3896 unsigned long mark;
3897
3898 if (cpusets_enabled() &&
3899 (alloc_flags & ALLOC_CPUSET) &&
3900 !__cpuset_zone_allowed(zone, gfp_mask))
3901 continue;
3902 /*
3903 * When allocating a page cache page for writing, we
3904 * want to get it from a node that is within its dirty
3905 * limit, such that no single node holds more than its
3906 * proportional share of globally allowed dirty pages.
3907 * The dirty limits take into account the node's
3908 * lowmem reserves and high watermark so that kswapd
3909 * should be able to balance it without having to
3910 * write pages from its LRU list.
3911 *
3912 * XXX: For now, allow allocations to potentially
3913 * exceed the per-node dirty limit in the slowpath
3914 * (spread_dirty_pages unset) before going into reclaim,
3915 * which is important when on a NUMA setup the allowed
3916 * nodes are together not big enough to reach the
3917 * global limit. The proper fix for these situations
3918 * will require awareness of nodes in the
3919 * dirty-throttling and the flusher threads.
3920 */
3921 if (ac->spread_dirty_pages) {
3922 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3923 continue;
3924
3925 if (!node_dirty_ok(zone->zone_pgdat)) {
3926 last_pgdat_dirty_limit = zone->zone_pgdat;
3927 continue;
3928 }
3929 }
3930
3931 if (no_fallback && nr_online_nodes > 1 &&
3932 zone != ac->preferred_zoneref->zone) {
3933 int local_nid;
3934
3935 /*
3936 * If moving to a remote node, retry but allow
3937 * fragmenting fallbacks. Locality is more important
3938 * than fragmentation avoidance.
3939 */
3940 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3941 if (zone_to_nid(zone) != local_nid) {
3942 alloc_flags &= ~ALLOC_NOFRAGMENT;
3943 goto retry;
3944 }
3945 }
3946
3947 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3948 if (!zone_watermark_fast(zone, order, mark,
3949 ac->highest_zoneidx, alloc_flags,
3950 gfp_mask)) {
3951 int ret;
3952
3953#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3954 /*
3955 * Watermark failed for this zone, but see if we can
3956 * grow this zone if it contains deferred pages.
3957 */
3958 if (static_branch_unlikely(&deferred_pages)) {
3959 if (_deferred_grow_zone(zone, order))
3960 goto try_this_zone;
3961 }
3962#endif
3963 /* Checked here to keep the fast path fast */
3964 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3965 if (alloc_flags & ALLOC_NO_WATERMARKS)
3966 goto try_this_zone;
3967
3968 if (!node_reclaim_enabled() ||
3969 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3970 continue;
3971
3972 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3973 switch (ret) {
3974 case NODE_RECLAIM_NOSCAN:
3975 /* did not scan */
3976 continue;
3977 case NODE_RECLAIM_FULL:
3978 /* scanned but unreclaimable */
3979 continue;
3980 default:
3981 /* did we reclaim enough */
3982 if (zone_watermark_ok(zone, order, mark,
3983 ac->highest_zoneidx, alloc_flags))
3984 goto try_this_zone;
3985
3986 continue;
3987 }
3988 }
3989
3990try_this_zone:
3991 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3992 gfp_mask, alloc_flags, ac->migratetype);
3993 if (page) {
3994 prep_new_page(page, order, gfp_mask, alloc_flags);
3995
3996 /*
3997 * If this is a high-order atomic allocation then check
3998 * if the pageblock should be reserved for the future
3999 */
4000 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4001 reserve_highatomic_pageblock(page, zone, order);
4002
4003 return page;
4004 } else {
4005#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4006 /* Try again if zone has deferred pages */
4007 if (static_branch_unlikely(&deferred_pages)) {
4008 if (_deferred_grow_zone(zone, order))
4009 goto try_this_zone;
4010 }
4011#endif
4012 }
4013 }
4014
4015 /*
4016 * It's possible on a UMA machine to get through all zones that are
4017 * fragmented. If avoiding fragmentation, reset and try again.
4018 */
4019 if (no_fallback) {
4020 alloc_flags &= ~ALLOC_NOFRAGMENT;
4021 goto retry;
4022 }
4023
4024 return NULL;
4025}
4026
4027static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4028{
4029 unsigned int filter = SHOW_MEM_FILTER_NODES;
4030
4031 /*
4032 * This documents exceptions given to allocations in certain
4033 * contexts that are allowed to allocate outside current's set
4034 * of allowed nodes.
4035 */
4036 if (!(gfp_mask & __GFP_NOMEMALLOC))
4037 if (tsk_is_oom_victim(current) ||
4038 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4039 filter &= ~SHOW_MEM_FILTER_NODES;
4040 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4041 filter &= ~SHOW_MEM_FILTER_NODES;
4042
4043 show_mem(filter, nodemask);
4044}
4045
4046void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4047{
4048 struct va_format vaf;
4049 va_list args;
4050 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4051
4052 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4053 return;
4054
4055 va_start(args, fmt);
4056 vaf.fmt = fmt;
4057 vaf.va = &args;
4058 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4059 current->comm, &vaf, gfp_mask, &gfp_mask,
4060 nodemask_pr_args(nodemask));
4061 va_end(args);
4062
4063 cpuset_print_current_mems_allowed();
4064 pr_cont("\n");
4065 dump_stack();
4066 warn_alloc_show_mem(gfp_mask, nodemask);
4067}
4068
4069static inline struct page *
4070__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4071 unsigned int alloc_flags,
4072 const struct alloc_context *ac)
4073{
4074 struct page *page;
4075
4076 page = get_page_from_freelist(gfp_mask, order,
4077 alloc_flags|ALLOC_CPUSET, ac);
4078 /*
4079 * fallback to ignore cpuset restriction if our nodes
4080 * are depleted
4081 */
4082 if (!page)
4083 page = get_page_from_freelist(gfp_mask, order,
4084 alloc_flags, ac);
4085
4086 return page;
4087}
4088
4089static inline struct page *
4090__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4091 const struct alloc_context *ac, unsigned long *did_some_progress)
4092{
4093 struct oom_control oc = {
4094 .zonelist = ac->zonelist,
4095 .nodemask = ac->nodemask,
4096 .memcg = NULL,
4097 .gfp_mask = gfp_mask,
4098 .order = order,
4099 };
4100 struct page *page;
4101
4102 *did_some_progress = 0;
4103
4104 /*
4105 * Acquire the oom lock. If that fails, somebody else is
4106 * making progress for us.
4107 */
4108 if (!mutex_trylock(&oom_lock)) {
4109 *did_some_progress = 1;
4110 schedule_timeout_uninterruptible(1);
4111 return NULL;
4112 }
4113
4114 /*
4115 * Go through the zonelist yet one more time, keep very high watermark
4116 * here, this is only to catch a parallel oom killing, we must fail if
4117 * we're still under heavy pressure. But make sure that this reclaim
4118 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4119 * allocation which will never fail due to oom_lock already held.
4120 */
4121 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4122 ~__GFP_DIRECT_RECLAIM, order,
4123 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4124 if (page)
4125 goto out;
4126
4127 /* Coredumps can quickly deplete all memory reserves */
4128 if (current->flags & PF_DUMPCORE)
4129 goto out;
4130 /* The OOM killer will not help higher order allocs */
4131 if (order > PAGE_ALLOC_COSTLY_ORDER)
4132 goto out;
4133 /*
4134 * We have already exhausted all our reclaim opportunities without any
4135 * success so it is time to admit defeat. We will skip the OOM killer
4136 * because it is very likely that the caller has a more reasonable
4137 * fallback than shooting a random task.
4138 *
4139 * The OOM killer may not free memory on a specific node.
4140 */
4141 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4142 goto out;
4143 /* The OOM killer does not needlessly kill tasks for lowmem */
4144 if (ac->highest_zoneidx < ZONE_NORMAL)
4145 goto out;
4146 if (pm_suspended_storage())
4147 goto out;
4148 /*
4149 * XXX: GFP_NOFS allocations should rather fail than rely on
4150 * other request to make a forward progress.
4151 * We are in an unfortunate situation where out_of_memory cannot
4152 * do much for this context but let's try it to at least get
4153 * access to memory reserved if the current task is killed (see
4154 * out_of_memory). Once filesystems are ready to handle allocation
4155 * failures more gracefully we should just bail out here.
4156 */
4157
4158 /* Exhausted what can be done so it's blame time */
4159 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4160 *did_some_progress = 1;
4161
4162 /*
4163 * Help non-failing allocations by giving them access to memory
4164 * reserves
4165 */
4166 if (gfp_mask & __GFP_NOFAIL)
4167 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4168 ALLOC_NO_WATERMARKS, ac);
4169 }
4170out:
4171 mutex_unlock(&oom_lock);
4172 return page;
4173}
4174
4175/*
4176 * Maximum number of compaction retries with a progress before OOM
4177 * killer is consider as the only way to move forward.
4178 */
4179#define MAX_COMPACT_RETRIES 16
4180
4181#ifdef CONFIG_COMPACTION
4182/* Try memory compaction for high-order allocations before reclaim */
4183static struct page *
4184__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4185 unsigned int alloc_flags, const struct alloc_context *ac,
4186 enum compact_priority prio, enum compact_result *compact_result)
4187{
4188 struct page *page = NULL;
4189 unsigned long pflags;
4190 unsigned int noreclaim_flag;
4191
4192 if (!order)
4193 return NULL;
4194
4195 psi_memstall_enter(&pflags);
4196 noreclaim_flag = memalloc_noreclaim_save();
4197
4198 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4199 prio, &page);
4200
4201 memalloc_noreclaim_restore(noreclaim_flag);
4202 psi_memstall_leave(&pflags);
4203
4204 if (*compact_result == COMPACT_SKIPPED)
4205 return NULL;
4206 /*
4207 * At least in one zone compaction wasn't deferred or skipped, so let's
4208 * count a compaction stall
4209 */
4210 count_vm_event(COMPACTSTALL);
4211
4212 /* Prep a captured page if available */
4213 if (page)
4214 prep_new_page(page, order, gfp_mask, alloc_flags);
4215
4216 /* Try get a page from the freelist if available */
4217 if (!page)
4218 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4219
4220 if (page) {
4221 struct zone *zone = page_zone(page);
4222
4223 zone->compact_blockskip_flush = false;
4224 compaction_defer_reset(zone, order, true);
4225 count_vm_event(COMPACTSUCCESS);
4226 return page;
4227 }
4228
4229 /*
4230 * It's bad if compaction run occurs and fails. The most likely reason
4231 * is that pages exist, but not enough to satisfy watermarks.
4232 */
4233 count_vm_event(COMPACTFAIL);
4234
4235 cond_resched();
4236
4237 return NULL;
4238}
4239
4240static inline bool
4241should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4242 enum compact_result compact_result,
4243 enum compact_priority *compact_priority,
4244 int *compaction_retries)
4245{
4246 int max_retries = MAX_COMPACT_RETRIES;
4247 int min_priority;
4248 bool ret = false;
4249 int retries = *compaction_retries;
4250 enum compact_priority priority = *compact_priority;
4251
4252 if (!order)
4253 return false;
4254
4255 if (compaction_made_progress(compact_result))
4256 (*compaction_retries)++;
4257
4258 /*
4259 * compaction considers all the zone as desperately out of memory
4260 * so it doesn't really make much sense to retry except when the
4261 * failure could be caused by insufficient priority
4262 */
4263 if (compaction_failed(compact_result))
4264 goto check_priority;
4265
4266 /*
4267 * compaction was skipped because there are not enough order-0 pages
4268 * to work with, so we retry only if it looks like reclaim can help.
4269 */
4270 if (compaction_needs_reclaim(compact_result)) {
4271 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4272 goto out;
4273 }
4274
4275 /*
4276 * make sure the compaction wasn't deferred or didn't bail out early
4277 * due to locks contention before we declare that we should give up.
4278 * But the next retry should use a higher priority if allowed, so
4279 * we don't just keep bailing out endlessly.
4280 */
4281 if (compaction_withdrawn(compact_result)) {
4282 goto check_priority;
4283 }
4284
4285 /*
4286 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4287 * costly ones because they are de facto nofail and invoke OOM
4288 * killer to move on while costly can fail and users are ready
4289 * to cope with that. 1/4 retries is rather arbitrary but we
4290 * would need much more detailed feedback from compaction to
4291 * make a better decision.
4292 */
4293 if (order > PAGE_ALLOC_COSTLY_ORDER)
4294 max_retries /= 4;
4295 if (*compaction_retries <= max_retries) {
4296 ret = true;
4297 goto out;
4298 }
4299
4300 /*
4301 * Make sure there are attempts at the highest priority if we exhausted
4302 * all retries or failed at the lower priorities.
4303 */
4304check_priority:
4305 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4306 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4307
4308 if (*compact_priority > min_priority) {
4309 (*compact_priority)--;
4310 *compaction_retries = 0;
4311 ret = true;
4312 }
4313out:
4314 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4315 return ret;
4316}
4317#else
4318static inline struct page *
4319__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4320 unsigned int alloc_flags, const struct alloc_context *ac,
4321 enum compact_priority prio, enum compact_result *compact_result)
4322{
4323 *compact_result = COMPACT_SKIPPED;
4324 return NULL;
4325}
4326
4327static inline bool
4328should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4329 enum compact_result compact_result,
4330 enum compact_priority *compact_priority,
4331 int *compaction_retries)
4332{
4333 struct zone *zone;
4334 struct zoneref *z;
4335
4336 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4337 return false;
4338
4339 /*
4340 * There are setups with compaction disabled which would prefer to loop
4341 * inside the allocator rather than hit the oom killer prematurely.
4342 * Let's give them a good hope and keep retrying while the order-0
4343 * watermarks are OK.
4344 */
4345 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4346 ac->highest_zoneidx, ac->nodemask) {
4347 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4348 ac->highest_zoneidx, alloc_flags))
4349 return true;
4350 }
4351 return false;
4352}
4353#endif /* CONFIG_COMPACTION */
4354
4355#ifdef CONFIG_LOCKDEP
4356static struct lockdep_map __fs_reclaim_map =
4357 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4358
4359static bool __need_reclaim(gfp_t gfp_mask)
4360{
4361 /* no reclaim without waiting on it */
4362 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4363 return false;
4364
4365 /* this guy won't enter reclaim */
4366 if (current->flags & PF_MEMALLOC)
4367 return false;
4368
4369 if (gfp_mask & __GFP_NOLOCKDEP)
4370 return false;
4371
4372 return true;
4373}
4374
4375void __fs_reclaim_acquire(void)
4376{
4377 lock_map_acquire(&__fs_reclaim_map);
4378}
4379
4380void __fs_reclaim_release(void)
4381{
4382 lock_map_release(&__fs_reclaim_map);
4383}
4384
4385void fs_reclaim_acquire(gfp_t gfp_mask)
4386{
4387 gfp_mask = current_gfp_context(gfp_mask);
4388
4389 if (__need_reclaim(gfp_mask)) {
4390 if (gfp_mask & __GFP_FS)
4391 __fs_reclaim_acquire();
4392
4393#ifdef CONFIG_MMU_NOTIFIER
4394 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4395 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4396#endif
4397
4398 }
4399}
4400EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4401
4402void fs_reclaim_release(gfp_t gfp_mask)
4403{
4404 gfp_mask = current_gfp_context(gfp_mask);
4405
4406 if (__need_reclaim(gfp_mask)) {
4407 if (gfp_mask & __GFP_FS)
4408 __fs_reclaim_release();
4409 }
4410}
4411EXPORT_SYMBOL_GPL(fs_reclaim_release);
4412#endif
4413
4414/* Perform direct synchronous page reclaim */
4415static unsigned long
4416__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4417 const struct alloc_context *ac)
4418{
4419 unsigned int noreclaim_flag;
4420 unsigned long pflags, progress;
4421
4422 cond_resched();
4423
4424 /* We now go into synchronous reclaim */
4425 cpuset_memory_pressure_bump();
4426 psi_memstall_enter(&pflags);
4427 fs_reclaim_acquire(gfp_mask);
4428 noreclaim_flag = memalloc_noreclaim_save();
4429
4430 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4431 ac->nodemask);
4432
4433 memalloc_noreclaim_restore(noreclaim_flag);
4434 fs_reclaim_release(gfp_mask);
4435 psi_memstall_leave(&pflags);
4436
4437 cond_resched();
4438
4439 return progress;
4440}
4441
4442/* The really slow allocator path where we enter direct reclaim */
4443static inline struct page *
4444__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4445 unsigned int alloc_flags, const struct alloc_context *ac,
4446 unsigned long *did_some_progress)
4447{
4448 struct page *page = NULL;
4449 bool drained = false;
4450
4451 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4452 if (unlikely(!(*did_some_progress)))
4453 return NULL;
4454
4455retry:
4456 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4457
4458 /*
4459 * If an allocation failed after direct reclaim, it could be because
4460 * pages are pinned on the per-cpu lists or in high alloc reserves.
4461 * Shrink them and try again
4462 */
4463 if (!page && !drained) {
4464 unreserve_highatomic_pageblock(ac, false);
4465 drain_all_pages(NULL);
4466 drained = true;
4467 goto retry;
4468 }
4469
4470 return page;
4471}
4472
4473static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4474 const struct alloc_context *ac)
4475{
4476 struct zoneref *z;
4477 struct zone *zone;
4478 pg_data_t *last_pgdat = NULL;
4479 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4480
4481 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4482 ac->nodemask) {
4483 if (last_pgdat != zone->zone_pgdat)
4484 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4485 last_pgdat = zone->zone_pgdat;
4486 }
4487}
4488
4489static inline unsigned int
4490gfp_to_alloc_flags(gfp_t gfp_mask)
4491{
4492 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4493
4494 /*
4495 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4496 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4497 * to save two branches.
4498 */
4499 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4500 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4501
4502 /*
4503 * The caller may dip into page reserves a bit more if the caller
4504 * cannot run direct reclaim, or if the caller has realtime scheduling
4505 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4506 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4507 */
4508 alloc_flags |= (__force int)
4509 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4510
4511 if (gfp_mask & __GFP_ATOMIC) {
4512 /*
4513 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4514 * if it can't schedule.
4515 */
4516 if (!(gfp_mask & __GFP_NOMEMALLOC))
4517 alloc_flags |= ALLOC_HARDER;
4518 /*
4519 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4520 * comment for __cpuset_node_allowed().
4521 */
4522 alloc_flags &= ~ALLOC_CPUSET;
4523 } else if (unlikely(rt_task(current)) && !in_interrupt())
4524 alloc_flags |= ALLOC_HARDER;
4525
4526 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4527
4528 return alloc_flags;
4529}
4530
4531static bool oom_reserves_allowed(struct task_struct *tsk)
4532{
4533 if (!tsk_is_oom_victim(tsk))
4534 return false;
4535
4536 /*
4537 * !MMU doesn't have oom reaper so give access to memory reserves
4538 * only to the thread with TIF_MEMDIE set
4539 */
4540 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4541 return false;
4542
4543 return true;
4544}
4545
4546/*
4547 * Distinguish requests which really need access to full memory
4548 * reserves from oom victims which can live with a portion of it
4549 */
4550static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4551{
4552 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4553 return 0;
4554 if (gfp_mask & __GFP_MEMALLOC)
4555 return ALLOC_NO_WATERMARKS;
4556 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4557 return ALLOC_NO_WATERMARKS;
4558 if (!in_interrupt()) {
4559 if (current->flags & PF_MEMALLOC)
4560 return ALLOC_NO_WATERMARKS;
4561 else if (oom_reserves_allowed(current))
4562 return ALLOC_OOM;
4563 }
4564
4565 return 0;
4566}
4567
4568bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4569{
4570 return !!__gfp_pfmemalloc_flags(gfp_mask);
4571}
4572
4573/*
4574 * Checks whether it makes sense to retry the reclaim to make a forward progress
4575 * for the given allocation request.
4576 *
4577 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4578 * without success, or when we couldn't even meet the watermark if we
4579 * reclaimed all remaining pages on the LRU lists.
4580 *
4581 * Returns true if a retry is viable or false to enter the oom path.
4582 */
4583static inline bool
4584should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4585 struct alloc_context *ac, int alloc_flags,
4586 bool did_some_progress, int *no_progress_loops)
4587{
4588 struct zone *zone;
4589 struct zoneref *z;
4590 bool ret = false;
4591
4592 /*
4593 * Costly allocations might have made a progress but this doesn't mean
4594 * their order will become available due to high fragmentation so
4595 * always increment the no progress counter for them
4596 */
4597 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4598 *no_progress_loops = 0;
4599 else
4600 (*no_progress_loops)++;
4601
4602 /*
4603 * Make sure we converge to OOM if we cannot make any progress
4604 * several times in the row.
4605 */
4606 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4607 /* Before OOM, exhaust highatomic_reserve */
4608 return unreserve_highatomic_pageblock(ac, true);
4609 }
4610
4611 /*
4612 * Keep reclaiming pages while there is a chance this will lead
4613 * somewhere. If none of the target zones can satisfy our allocation
4614 * request even if all reclaimable pages are considered then we are
4615 * screwed and have to go OOM.
4616 */
4617 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4618 ac->highest_zoneidx, ac->nodemask) {
4619 unsigned long available;
4620 unsigned long reclaimable;
4621 unsigned long min_wmark = min_wmark_pages(zone);
4622 bool wmark;
4623
4624 available = reclaimable = zone_reclaimable_pages(zone);
4625 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4626
4627 /*
4628 * Would the allocation succeed if we reclaimed all
4629 * reclaimable pages?
4630 */
4631 wmark = __zone_watermark_ok(zone, order, min_wmark,
4632 ac->highest_zoneidx, alloc_flags, available);
4633 trace_reclaim_retry_zone(z, order, reclaimable,
4634 available, min_wmark, *no_progress_loops, wmark);
4635 if (wmark) {
4636 /*
4637 * If we didn't make any progress and have a lot of
4638 * dirty + writeback pages then we should wait for
4639 * an IO to complete to slow down the reclaim and
4640 * prevent from pre mature OOM
4641 */
4642 if (!did_some_progress) {
4643 unsigned long write_pending;
4644
4645 write_pending = zone_page_state_snapshot(zone,
4646 NR_ZONE_WRITE_PENDING);
4647
4648 if (2 * write_pending > reclaimable) {
4649 congestion_wait(BLK_RW_ASYNC, HZ/10);
4650 return true;
4651 }
4652 }
4653
4654 ret = true;
4655 goto out;
4656 }
4657 }
4658
4659out:
4660 /*
4661 * Memory allocation/reclaim might be called from a WQ context and the
4662 * current implementation of the WQ concurrency control doesn't
4663 * recognize that a particular WQ is congested if the worker thread is
4664 * looping without ever sleeping. Therefore we have to do a short sleep
4665 * here rather than calling cond_resched().
4666 */
4667 if (current->flags & PF_WQ_WORKER)
4668 schedule_timeout_uninterruptible(1);
4669 else
4670 cond_resched();
4671 return ret;
4672}
4673
4674static inline bool
4675check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4676{
4677 /*
4678 * It's possible that cpuset's mems_allowed and the nodemask from
4679 * mempolicy don't intersect. This should be normally dealt with by
4680 * policy_nodemask(), but it's possible to race with cpuset update in
4681 * such a way the check therein was true, and then it became false
4682 * before we got our cpuset_mems_cookie here.
4683 * This assumes that for all allocations, ac->nodemask can come only
4684 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4685 * when it does not intersect with the cpuset restrictions) or the
4686 * caller can deal with a violated nodemask.
4687 */
4688 if (cpusets_enabled() && ac->nodemask &&
4689 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4690 ac->nodemask = NULL;
4691 return true;
4692 }
4693
4694 /*
4695 * When updating a task's mems_allowed or mempolicy nodemask, it is
4696 * possible to race with parallel threads in such a way that our
4697 * allocation can fail while the mask is being updated. If we are about
4698 * to fail, check if the cpuset changed during allocation and if so,
4699 * retry.
4700 */
4701 if (read_mems_allowed_retry(cpuset_mems_cookie))
4702 return true;
4703
4704 return false;
4705}
4706
4707static inline struct page *
4708__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4709 struct alloc_context *ac)
4710{
4711 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4712 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4713 struct page *page = NULL;
4714 unsigned int alloc_flags;
4715 unsigned long did_some_progress;
4716 enum compact_priority compact_priority;
4717 enum compact_result compact_result;
4718 int compaction_retries;
4719 int no_progress_loops;
4720 unsigned int cpuset_mems_cookie;
4721 int reserve_flags;
4722
4723 /*
4724 * We also sanity check to catch abuse of atomic reserves being used by
4725 * callers that are not in atomic context.
4726 */
4727 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4728 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4729 gfp_mask &= ~__GFP_ATOMIC;
4730
4731retry_cpuset:
4732 compaction_retries = 0;
4733 no_progress_loops = 0;
4734 compact_priority = DEF_COMPACT_PRIORITY;
4735 cpuset_mems_cookie = read_mems_allowed_begin();
4736
4737 /*
4738 * The fast path uses conservative alloc_flags to succeed only until
4739 * kswapd needs to be woken up, and to avoid the cost of setting up
4740 * alloc_flags precisely. So we do that now.
4741 */
4742 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4743
4744 /*
4745 * We need to recalculate the starting point for the zonelist iterator
4746 * because we might have used different nodemask in the fast path, or
4747 * there was a cpuset modification and we are retrying - otherwise we
4748 * could end up iterating over non-eligible zones endlessly.
4749 */
4750 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4751 ac->highest_zoneidx, ac->nodemask);
4752 if (!ac->preferred_zoneref->zone)
4753 goto nopage;
4754
4755 if (alloc_flags & ALLOC_KSWAPD)
4756 wake_all_kswapds(order, gfp_mask, ac);
4757
4758 /*
4759 * The adjusted alloc_flags might result in immediate success, so try
4760 * that first
4761 */
4762 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4763 if (page)
4764 goto got_pg;
4765
4766 /*
4767 * For costly allocations, try direct compaction first, as it's likely
4768 * that we have enough base pages and don't need to reclaim. For non-
4769 * movable high-order allocations, do that as well, as compaction will
4770 * try prevent permanent fragmentation by migrating from blocks of the
4771 * same migratetype.
4772 * Don't try this for allocations that are allowed to ignore
4773 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4774 */
4775 if (can_direct_reclaim &&
4776 (costly_order ||
4777 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4778 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4779 page = __alloc_pages_direct_compact(gfp_mask, order,
4780 alloc_flags, ac,
4781 INIT_COMPACT_PRIORITY,
4782 &compact_result);
4783 if (page)
4784 goto got_pg;
4785
4786 /*
4787 * Checks for costly allocations with __GFP_NORETRY, which
4788 * includes some THP page fault allocations
4789 */
4790 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4791 /*
4792 * If allocating entire pageblock(s) and compaction
4793 * failed because all zones are below low watermarks
4794 * or is prohibited because it recently failed at this
4795 * order, fail immediately unless the allocator has
4796 * requested compaction and reclaim retry.
4797 *
4798 * Reclaim is
4799 * - potentially very expensive because zones are far
4800 * below their low watermarks or this is part of very
4801 * bursty high order allocations,
4802 * - not guaranteed to help because isolate_freepages()
4803 * may not iterate over freed pages as part of its
4804 * linear scan, and
4805 * - unlikely to make entire pageblocks free on its
4806 * own.
4807 */
4808 if (compact_result == COMPACT_SKIPPED ||
4809 compact_result == COMPACT_DEFERRED)
4810 goto nopage;
4811
4812 /*
4813 * Looks like reclaim/compaction is worth trying, but
4814 * sync compaction could be very expensive, so keep
4815 * using async compaction.
4816 */
4817 compact_priority = INIT_COMPACT_PRIORITY;
4818 }
4819 }
4820
4821retry:
4822 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4823 if (alloc_flags & ALLOC_KSWAPD)
4824 wake_all_kswapds(order, gfp_mask, ac);
4825
4826 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4827 if (reserve_flags)
4828 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4829
4830 /*
4831 * Reset the nodemask and zonelist iterators if memory policies can be
4832 * ignored. These allocations are high priority and system rather than
4833 * user oriented.
4834 */
4835 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4836 ac->nodemask = NULL;
4837 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4838 ac->highest_zoneidx, ac->nodemask);
4839 }
4840
4841 /* Attempt with potentially adjusted zonelist and alloc_flags */
4842 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4843 if (page)
4844 goto got_pg;
4845
4846 /* Caller is not willing to reclaim, we can't balance anything */
4847 if (!can_direct_reclaim)
4848 goto nopage;
4849
4850 /* Avoid recursion of direct reclaim */
4851 if (current->flags & PF_MEMALLOC)
4852 goto nopage;
4853
4854 /* Try direct reclaim and then allocating */
4855 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4856 &did_some_progress);
4857 if (page)
4858 goto got_pg;
4859
4860 /* Try direct compaction and then allocating */
4861 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4862 compact_priority, &compact_result);
4863 if (page)
4864 goto got_pg;
4865
4866 /* Do not loop if specifically requested */
4867 if (gfp_mask & __GFP_NORETRY)
4868 goto nopage;
4869
4870 /*
4871 * Do not retry costly high order allocations unless they are
4872 * __GFP_RETRY_MAYFAIL
4873 */
4874 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4875 goto nopage;
4876
4877 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4878 did_some_progress > 0, &no_progress_loops))
4879 goto retry;
4880
4881 /*
4882 * It doesn't make any sense to retry for the compaction if the order-0
4883 * reclaim is not able to make any progress because the current
4884 * implementation of the compaction depends on the sufficient amount
4885 * of free memory (see __compaction_suitable)
4886 */
4887 if (did_some_progress > 0 &&
4888 should_compact_retry(ac, order, alloc_flags,
4889 compact_result, &compact_priority,
4890 &compaction_retries))
4891 goto retry;
4892
4893
4894 /* Deal with possible cpuset update races before we start OOM killing */
4895 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4896 goto retry_cpuset;
4897
4898 /* Reclaim has failed us, start killing things */
4899 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4900 if (page)
4901 goto got_pg;
4902
4903 /* Avoid allocations with no watermarks from looping endlessly */
4904 if (tsk_is_oom_victim(current) &&
4905 (alloc_flags & ALLOC_OOM ||
4906 (gfp_mask & __GFP_NOMEMALLOC)))
4907 goto nopage;
4908
4909 /* Retry as long as the OOM killer is making progress */
4910 if (did_some_progress) {
4911 no_progress_loops = 0;
4912 goto retry;
4913 }
4914
4915nopage:
4916 /* Deal with possible cpuset update races before we fail */
4917 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4918 goto retry_cpuset;
4919
4920 /*
4921 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4922 * we always retry
4923 */
4924 if (gfp_mask & __GFP_NOFAIL) {
4925 /*
4926 * All existing users of the __GFP_NOFAIL are blockable, so warn
4927 * of any new users that actually require GFP_NOWAIT
4928 */
4929 if (WARN_ON_ONCE(!can_direct_reclaim))
4930 goto fail;
4931
4932 /*
4933 * PF_MEMALLOC request from this context is rather bizarre
4934 * because we cannot reclaim anything and only can loop waiting
4935 * for somebody to do a work for us
4936 */
4937 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4938
4939 /*
4940 * non failing costly orders are a hard requirement which we
4941 * are not prepared for much so let's warn about these users
4942 * so that we can identify them and convert them to something
4943 * else.
4944 */
4945 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4946
4947 /*
4948 * Help non-failing allocations by giving them access to memory
4949 * reserves but do not use ALLOC_NO_WATERMARKS because this
4950 * could deplete whole memory reserves which would just make
4951 * the situation worse
4952 */
4953 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4954 if (page)
4955 goto got_pg;
4956
4957 cond_resched();
4958 goto retry;
4959 }
4960fail:
4961 warn_alloc(gfp_mask, ac->nodemask,
4962 "page allocation failure: order:%u", order);
4963got_pg:
4964 return page;
4965}
4966
4967static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4968 int preferred_nid, nodemask_t *nodemask,
4969 struct alloc_context *ac, gfp_t *alloc_gfp,
4970 unsigned int *alloc_flags)
4971{
4972 ac->highest_zoneidx = gfp_zone(gfp_mask);
4973 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4974 ac->nodemask = nodemask;
4975 ac->migratetype = gfp_migratetype(gfp_mask);
4976
4977 if (cpusets_enabled()) {
4978 *alloc_gfp |= __GFP_HARDWALL;
4979 /*
4980 * When we are in the interrupt context, it is irrelevant
4981 * to the current task context. It means that any node ok.
4982 */
4983 if (!in_interrupt() && !ac->nodemask)
4984 ac->nodemask = &cpuset_current_mems_allowed;
4985 else
4986 *alloc_flags |= ALLOC_CPUSET;
4987 }
4988
4989 fs_reclaim_acquire(gfp_mask);
4990 fs_reclaim_release(gfp_mask);
4991
4992 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4993
4994 if (should_fail_alloc_page(gfp_mask, order))
4995 return false;
4996
4997 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4998
4999 /* Dirty zone balancing only done in the fast path */
5000 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5001
5002 /*
5003 * The preferred zone is used for statistics but crucially it is
5004 * also used as the starting point for the zonelist iterator. It
5005 * may get reset for allocations that ignore memory policies.
5006 */
5007 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5008 ac->highest_zoneidx, ac->nodemask);
5009
5010 return true;
5011}
5012
5013/*
5014 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5015 * @gfp: GFP flags for the allocation
5016 * @preferred_nid: The preferred NUMA node ID to allocate from
5017 * @nodemask: Set of nodes to allocate from, may be NULL
5018 * @nr_pages: The number of pages desired on the list or array
5019 * @page_list: Optional list to store the allocated pages
5020 * @page_array: Optional array to store the pages
5021 *
5022 * This is a batched version of the page allocator that attempts to
5023 * allocate nr_pages quickly. Pages are added to page_list if page_list
5024 * is not NULL, otherwise it is assumed that the page_array is valid.
5025 *
5026 * For lists, nr_pages is the number of pages that should be allocated.
5027 *
5028 * For arrays, only NULL elements are populated with pages and nr_pages
5029 * is the maximum number of pages that will be stored in the array.
5030 *
5031 * Returns the number of pages on the list or array.
5032 */
5033unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5034 nodemask_t *nodemask, int nr_pages,
5035 struct list_head *page_list,
5036 struct page **page_array)
5037{
5038 struct page *page;
5039 unsigned long flags;
5040 struct zone *zone;
5041 struct zoneref *z;
5042 struct per_cpu_pages *pcp;
5043 struct list_head *pcp_list;
5044 struct alloc_context ac;
5045 gfp_t alloc_gfp;
5046 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5047 int nr_populated = 0;
5048
5049 if (unlikely(nr_pages <= 0))
5050 return 0;
5051
5052 /*
5053 * Skip populated array elements to determine if any pages need
5054 * to be allocated before disabling IRQs.
5055 */
5056 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5057 nr_populated++;
5058
5059 /* Already populated array? */
5060 if (unlikely(page_array && nr_pages - nr_populated == 0))
5061 return 0;
5062
5063 /* Use the single page allocator for one page. */
5064 if (nr_pages - nr_populated == 1)
5065 goto failed;
5066
5067 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5068 gfp &= gfp_allowed_mask;
5069 alloc_gfp = gfp;
5070 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5071 return 0;
5072 gfp = alloc_gfp;
5073
5074 /* Find an allowed local zone that meets the low watermark. */
5075 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5076 unsigned long mark;
5077
5078 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5079 !__cpuset_zone_allowed(zone, gfp)) {
5080 continue;
5081 }
5082
5083 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5084 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5085 goto failed;
5086 }
5087
5088 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5089 if (zone_watermark_fast(zone, 0, mark,
5090 zonelist_zone_idx(ac.preferred_zoneref),
5091 alloc_flags, gfp)) {
5092 break;
5093 }
5094 }
5095
5096 /*
5097 * If there are no allowed local zones that meets the watermarks then
5098 * try to allocate a single page and reclaim if necessary.
5099 */
5100 if (unlikely(!zone))
5101 goto failed;
5102
5103 /* Attempt the batch allocation */
5104 local_irq_save(flags);
5105 pcp = &this_cpu_ptr(zone->pageset)->pcp;
5106 pcp_list = &pcp->lists[ac.migratetype];
5107
5108 while (nr_populated < nr_pages) {
5109
5110 /* Skip existing pages */
5111 if (page_array && page_array[nr_populated]) {
5112 nr_populated++;
5113 continue;
5114 }
5115
5116 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5117 pcp, pcp_list);
5118 if (unlikely(!page)) {
5119 /* Try and get at least one page */
5120 if (!nr_populated)
5121 goto failed_irq;
5122 break;
5123 }
5124
5125 /*
5126 * Ideally this would be batched but the best way to do
5127 * that cheaply is to first convert zone_statistics to
5128 * be inaccurate per-cpu counter like vm_events to avoid
5129 * a RMW cycle then do the accounting with IRQs enabled.
5130 */
5131 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5132 zone_statistics(ac.preferred_zoneref->zone, zone);
5133
5134 prep_new_page(page, 0, gfp, 0);
5135 if (page_list)
5136 list_add(&page->lru, page_list);
5137 else
5138 page_array[nr_populated] = page;
5139 nr_populated++;
5140 }
5141
5142 local_irq_restore(flags);
5143
5144 return nr_populated;
5145
5146failed_irq:
5147 local_irq_restore(flags);
5148
5149failed:
5150 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5151 if (page) {
5152 if (page_list)
5153 list_add(&page->lru, page_list);
5154 else
5155 page_array[nr_populated] = page;
5156 nr_populated++;
5157 }
5158
5159 return nr_populated;
5160}
5161EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5162
5163/*
5164 * This is the 'heart' of the zoned buddy allocator.
5165 */
5166struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5167 nodemask_t *nodemask)
5168{
5169 struct page *page;
5170 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5171 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5172 struct alloc_context ac = { };
5173
5174 /*
5175 * There are several places where we assume that the order value is sane
5176 * so bail out early if the request is out of bound.
5177 */
5178 if (unlikely(order >= MAX_ORDER)) {
5179 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5180 return NULL;
5181 }
5182
5183 gfp &= gfp_allowed_mask;
5184 /*
5185 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5186 * resp. GFP_NOIO which has to be inherited for all allocation requests
5187 * from a particular context which has been marked by
5188 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5189 * movable zones are not used during allocation.
5190 */
5191 gfp = current_gfp_context(gfp);
5192 alloc_gfp = gfp;
5193 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5194 &alloc_gfp, &alloc_flags))
5195 return NULL;
5196
5197 /*
5198 * Forbid the first pass from falling back to types that fragment
5199 * memory until all local zones are considered.
5200 */
5201 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5202
5203 /* First allocation attempt */
5204 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5205 if (likely(page))
5206 goto out;
5207
5208 alloc_gfp = gfp;
5209 ac.spread_dirty_pages = false;
5210
5211 /*
5212 * Restore the original nodemask if it was potentially replaced with
5213 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5214 */
5215 ac.nodemask = nodemask;
5216
5217 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5218
5219out:
5220 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5221 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5222 __free_pages(page, order);
5223 page = NULL;
5224 }
5225
5226 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5227
5228 return page;
5229}
5230EXPORT_SYMBOL(__alloc_pages);
5231
5232/*
5233 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5234 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5235 * you need to access high mem.
5236 */
5237unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5238{
5239 struct page *page;
5240
5241 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5242 if (!page)
5243 return 0;
5244 return (unsigned long) page_address(page);
5245}
5246EXPORT_SYMBOL(__get_free_pages);
5247
5248unsigned long get_zeroed_page(gfp_t gfp_mask)
5249{
5250 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5251}
5252EXPORT_SYMBOL(get_zeroed_page);
5253
5254static inline void free_the_page(struct page *page, unsigned int order)
5255{
5256 if (order == 0) /* Via pcp? */
5257 free_unref_page(page);
5258 else
5259 __free_pages_ok(page, order, FPI_NONE);
5260}
5261
5262/**
5263 * __free_pages - Free pages allocated with alloc_pages().
5264 * @page: The page pointer returned from alloc_pages().
5265 * @order: The order of the allocation.
5266 *
5267 * This function can free multi-page allocations that are not compound
5268 * pages. It does not check that the @order passed in matches that of
5269 * the allocation, so it is easy to leak memory. Freeing more memory
5270 * than was allocated will probably emit a warning.
5271 *
5272 * If the last reference to this page is speculative, it will be released
5273 * by put_page() which only frees the first page of a non-compound
5274 * allocation. To prevent the remaining pages from being leaked, we free
5275 * the subsequent pages here. If you want to use the page's reference
5276 * count to decide when to free the allocation, you should allocate a
5277 * compound page, and use put_page() instead of __free_pages().
5278 *
5279 * Context: May be called in interrupt context or while holding a normal
5280 * spinlock, but not in NMI context or while holding a raw spinlock.
5281 */
5282void __free_pages(struct page *page, unsigned int order)
5283{
5284 if (put_page_testzero(page))
5285 free_the_page(page, order);
5286 else if (!PageHead(page))
5287 while (order-- > 0)
5288 free_the_page(page + (1 << order), order);
5289}
5290EXPORT_SYMBOL(__free_pages);
5291
5292void free_pages(unsigned long addr, unsigned int order)
5293{
5294 if (addr != 0) {
5295 VM_BUG_ON(!virt_addr_valid((void *)addr));
5296 __free_pages(virt_to_page((void *)addr), order);
5297 }
5298}
5299
5300EXPORT_SYMBOL(free_pages);
5301
5302/*
5303 * Page Fragment:
5304 * An arbitrary-length arbitrary-offset area of memory which resides
5305 * within a 0 or higher order page. Multiple fragments within that page
5306 * are individually refcounted, in the page's reference counter.
5307 *
5308 * The page_frag functions below provide a simple allocation framework for
5309 * page fragments. This is used by the network stack and network device
5310 * drivers to provide a backing region of memory for use as either an
5311 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5312 */
5313static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5314 gfp_t gfp_mask)
5315{
5316 struct page *page = NULL;
5317 gfp_t gfp = gfp_mask;
5318
5319#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5320 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5321 __GFP_NOMEMALLOC;
5322 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5323 PAGE_FRAG_CACHE_MAX_ORDER);
5324 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5325#endif
5326 if (unlikely(!page))
5327 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5328
5329 nc->va = page ? page_address(page) : NULL;
5330
5331 return page;
5332}
5333
5334void __page_frag_cache_drain(struct page *page, unsigned int count)
5335{
5336 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5337
5338 if (page_ref_sub_and_test(page, count))
5339 free_the_page(page, compound_order(page));
5340}
5341EXPORT_SYMBOL(__page_frag_cache_drain);
5342
5343void *page_frag_alloc_align(struct page_frag_cache *nc,
5344 unsigned int fragsz, gfp_t gfp_mask,
5345 unsigned int align_mask)
5346{
5347 unsigned int size = PAGE_SIZE;
5348 struct page *page;
5349 int offset;
5350
5351 if (unlikely(!nc->va)) {
5352refill:
5353 page = __page_frag_cache_refill(nc, gfp_mask);
5354 if (!page)
5355 return NULL;
5356
5357#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5358 /* if size can vary use size else just use PAGE_SIZE */
5359 size = nc->size;
5360#endif
5361 /* Even if we own the page, we do not use atomic_set().
5362 * This would break get_page_unless_zero() users.
5363 */
5364 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5365
5366 /* reset page count bias and offset to start of new frag */
5367 nc->pfmemalloc = page_is_pfmemalloc(page);
5368 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5369 nc->offset = size;
5370 }
5371
5372 offset = nc->offset - fragsz;
5373 if (unlikely(offset < 0)) {
5374 page = virt_to_page(nc->va);
5375
5376 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5377 goto refill;
5378
5379 if (unlikely(nc->pfmemalloc)) {
5380 free_the_page(page, compound_order(page));
5381 goto refill;
5382 }
5383
5384#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5385 /* if size can vary use size else just use PAGE_SIZE */
5386 size = nc->size;
5387#endif
5388 /* OK, page count is 0, we can safely set it */
5389 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5390
5391 /* reset page count bias and offset to start of new frag */
5392 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5393 offset = size - fragsz;
5394 }
5395
5396 nc->pagecnt_bias--;
5397 offset &= align_mask;
5398 nc->offset = offset;
5399
5400 return nc->va + offset;
5401}
5402EXPORT_SYMBOL(page_frag_alloc_align);
5403
5404/*
5405 * Frees a page fragment allocated out of either a compound or order 0 page.
5406 */
5407void page_frag_free(void *addr)
5408{
5409 struct page *page = virt_to_head_page(addr);
5410
5411 if (unlikely(put_page_testzero(page)))
5412 free_the_page(page, compound_order(page));
5413}
5414EXPORT_SYMBOL(page_frag_free);
5415
5416static void *make_alloc_exact(unsigned long addr, unsigned int order,
5417 size_t size)
5418{
5419 if (addr) {
5420 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5421 unsigned long used = addr + PAGE_ALIGN(size);
5422
5423 split_page(virt_to_page((void *)addr), order);
5424 while (used < alloc_end) {
5425 free_page(used);
5426 used += PAGE_SIZE;
5427 }
5428 }
5429 return (void *)addr;
5430}
5431
5432/**
5433 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5434 * @size: the number of bytes to allocate
5435 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5436 *
5437 * This function is similar to alloc_pages(), except that it allocates the
5438 * minimum number of pages to satisfy the request. alloc_pages() can only
5439 * allocate memory in power-of-two pages.
5440 *
5441 * This function is also limited by MAX_ORDER.
5442 *
5443 * Memory allocated by this function must be released by free_pages_exact().
5444 *
5445 * Return: pointer to the allocated area or %NULL in case of error.
5446 */
5447void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5448{
5449 unsigned int order = get_order(size);
5450 unsigned long addr;
5451
5452 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5453 gfp_mask &= ~__GFP_COMP;
5454
5455 addr = __get_free_pages(gfp_mask, order);
5456 return make_alloc_exact(addr, order, size);
5457}
5458EXPORT_SYMBOL(alloc_pages_exact);
5459
5460/**
5461 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5462 * pages on a node.
5463 * @nid: the preferred node ID where memory should be allocated
5464 * @size: the number of bytes to allocate
5465 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5466 *
5467 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5468 * back.
5469 *
5470 * Return: pointer to the allocated area or %NULL in case of error.
5471 */
5472void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5473{
5474 unsigned int order = get_order(size);
5475 struct page *p;
5476
5477 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5478 gfp_mask &= ~__GFP_COMP;
5479
5480 p = alloc_pages_node(nid, gfp_mask, order);
5481 if (!p)
5482 return NULL;
5483 return make_alloc_exact((unsigned long)page_address(p), order, size);
5484}
5485
5486/**
5487 * free_pages_exact - release memory allocated via alloc_pages_exact()
5488 * @virt: the value returned by alloc_pages_exact.
5489 * @size: size of allocation, same value as passed to alloc_pages_exact().
5490 *
5491 * Release the memory allocated by a previous call to alloc_pages_exact.
5492 */
5493void free_pages_exact(void *virt, size_t size)
5494{
5495 unsigned long addr = (unsigned long)virt;
5496 unsigned long end = addr + PAGE_ALIGN(size);
5497
5498 while (addr < end) {
5499 free_page(addr);
5500 addr += PAGE_SIZE;
5501 }
5502}
5503EXPORT_SYMBOL(free_pages_exact);
5504
5505/**
5506 * nr_free_zone_pages - count number of pages beyond high watermark
5507 * @offset: The zone index of the highest zone
5508 *
5509 * nr_free_zone_pages() counts the number of pages which are beyond the
5510 * high watermark within all zones at or below a given zone index. For each
5511 * zone, the number of pages is calculated as:
5512 *
5513 * nr_free_zone_pages = managed_pages - high_pages
5514 *
5515 * Return: number of pages beyond high watermark.
5516 */
5517static unsigned long nr_free_zone_pages(int offset)
5518{
5519 struct zoneref *z;
5520 struct zone *zone;
5521
5522 /* Just pick one node, since fallback list is circular */
5523 unsigned long sum = 0;
5524
5525 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5526
5527 for_each_zone_zonelist(zone, z, zonelist, offset) {
5528 unsigned long size = zone_managed_pages(zone);
5529 unsigned long high = high_wmark_pages(zone);
5530 if (size > high)
5531 sum += size - high;
5532 }
5533
5534 return sum;
5535}
5536
5537/**
5538 * nr_free_buffer_pages - count number of pages beyond high watermark
5539 *
5540 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5541 * watermark within ZONE_DMA and ZONE_NORMAL.
5542 *
5543 * Return: number of pages beyond high watermark within ZONE_DMA and
5544 * ZONE_NORMAL.
5545 */
5546unsigned long nr_free_buffer_pages(void)
5547{
5548 return nr_free_zone_pages(gfp_zone(GFP_USER));
5549}
5550EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5551
5552static inline void show_node(struct zone *zone)
5553{
5554 if (IS_ENABLED(CONFIG_NUMA))
5555 printk("Node %d ", zone_to_nid(zone));
5556}
5557
5558long si_mem_available(void)
5559{
5560 long available;
5561 unsigned long pagecache;
5562 unsigned long wmark_low = 0;
5563 unsigned long pages[NR_LRU_LISTS];
5564 unsigned long reclaimable;
5565 struct zone *zone;
5566 int lru;
5567
5568 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5569 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5570
5571 for_each_zone(zone)
5572 wmark_low += low_wmark_pages(zone);
5573
5574 /*
5575 * Estimate the amount of memory available for userspace allocations,
5576 * without causing swapping.
5577 */
5578 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5579
5580 /*
5581 * Not all the page cache can be freed, otherwise the system will
5582 * start swapping. Assume at least half of the page cache, or the
5583 * low watermark worth of cache, needs to stay.
5584 */
5585 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5586 pagecache -= min(pagecache / 2, wmark_low);
5587 available += pagecache;
5588
5589 /*
5590 * Part of the reclaimable slab and other kernel memory consists of
5591 * items that are in use, and cannot be freed. Cap this estimate at the
5592 * low watermark.
5593 */
5594 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5595 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5596 available += reclaimable - min(reclaimable / 2, wmark_low);
5597
5598 if (available < 0)
5599 available = 0;
5600 return available;
5601}
5602EXPORT_SYMBOL_GPL(si_mem_available);
5603
5604void si_meminfo(struct sysinfo *val)
5605{
5606 val->totalram = totalram_pages();
5607 val->sharedram = global_node_page_state(NR_SHMEM);
5608 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5609 val->bufferram = nr_blockdev_pages();
5610 val->totalhigh = totalhigh_pages();
5611 val->freehigh = nr_free_highpages();
5612 val->mem_unit = PAGE_SIZE;
5613}
5614
5615EXPORT_SYMBOL(si_meminfo);
5616
5617#ifdef CONFIG_NUMA
5618void si_meminfo_node(struct sysinfo *val, int nid)
5619{
5620 int zone_type; /* needs to be signed */
5621 unsigned long managed_pages = 0;
5622 unsigned long managed_highpages = 0;
5623 unsigned long free_highpages = 0;
5624 pg_data_t *pgdat = NODE_DATA(nid);
5625
5626 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5627 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5628 val->totalram = managed_pages;
5629 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5630 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5631#ifdef CONFIG_HIGHMEM
5632 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5633 struct zone *zone = &pgdat->node_zones[zone_type];
5634
5635 if (is_highmem(zone)) {
5636 managed_highpages += zone_managed_pages(zone);
5637 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5638 }
5639 }
5640 val->totalhigh = managed_highpages;
5641 val->freehigh = free_highpages;
5642#else
5643 val->totalhigh = managed_highpages;
5644 val->freehigh = free_highpages;
5645#endif
5646 val->mem_unit = PAGE_SIZE;
5647}
5648#endif
5649
5650/*
5651 * Determine whether the node should be displayed or not, depending on whether
5652 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5653 */
5654static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5655{
5656 if (!(flags & SHOW_MEM_FILTER_NODES))
5657 return false;
5658
5659 /*
5660 * no node mask - aka implicit memory numa policy. Do not bother with
5661 * the synchronization - read_mems_allowed_begin - because we do not
5662 * have to be precise here.
5663 */
5664 if (!nodemask)
5665 nodemask = &cpuset_current_mems_allowed;
5666
5667 return !node_isset(nid, *nodemask);
5668}
5669
5670#define K(x) ((x) << (PAGE_SHIFT-10))
5671
5672static void show_migration_types(unsigned char type)
5673{
5674 static const char types[MIGRATE_TYPES] = {
5675 [MIGRATE_UNMOVABLE] = 'U',
5676 [MIGRATE_MOVABLE] = 'M',
5677 [MIGRATE_RECLAIMABLE] = 'E',
5678 [MIGRATE_HIGHATOMIC] = 'H',
5679#ifdef CONFIG_CMA
5680 [MIGRATE_CMA] = 'C',
5681#endif
5682#ifdef CONFIG_MEMORY_ISOLATION
5683 [MIGRATE_ISOLATE] = 'I',
5684#endif
5685 };
5686 char tmp[MIGRATE_TYPES + 1];
5687 char *p = tmp;
5688 int i;
5689
5690 for (i = 0; i < MIGRATE_TYPES; i++) {
5691 if (type & (1 << i))
5692 *p++ = types[i];
5693 }
5694
5695 *p = '\0';
5696 printk(KERN_CONT "(%s) ", tmp);
5697}
5698
5699/*
5700 * Show free area list (used inside shift_scroll-lock stuff)
5701 * We also calculate the percentage fragmentation. We do this by counting the
5702 * memory on each free list with the exception of the first item on the list.
5703 *
5704 * Bits in @filter:
5705 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5706 * cpuset.
5707 */
5708void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5709{
5710 unsigned long free_pcp = 0;
5711 int cpu;
5712 struct zone *zone;
5713 pg_data_t *pgdat;
5714
5715 for_each_populated_zone(zone) {
5716 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5717 continue;
5718
5719 for_each_online_cpu(cpu)
5720 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5721 }
5722
5723 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5724 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5725 " unevictable:%lu dirty:%lu writeback:%lu\n"
5726 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5727 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5728 " free:%lu free_pcp:%lu free_cma:%lu\n",
5729 global_node_page_state(NR_ACTIVE_ANON),
5730 global_node_page_state(NR_INACTIVE_ANON),
5731 global_node_page_state(NR_ISOLATED_ANON),
5732 global_node_page_state(NR_ACTIVE_FILE),
5733 global_node_page_state(NR_INACTIVE_FILE),
5734 global_node_page_state(NR_ISOLATED_FILE),
5735 global_node_page_state(NR_UNEVICTABLE),
5736 global_node_page_state(NR_FILE_DIRTY),
5737 global_node_page_state(NR_WRITEBACK),
5738 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5739 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5740 global_node_page_state(NR_FILE_MAPPED),
5741 global_node_page_state(NR_SHMEM),
5742 global_node_page_state(NR_PAGETABLE),
5743 global_zone_page_state(NR_BOUNCE),
5744 global_zone_page_state(NR_FREE_PAGES),
5745 free_pcp,
5746 global_zone_page_state(NR_FREE_CMA_PAGES));
5747
5748 for_each_online_pgdat(pgdat) {
5749 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5750 continue;
5751
5752 printk("Node %d"
5753 " active_anon:%lukB"
5754 " inactive_anon:%lukB"
5755 " active_file:%lukB"
5756 " inactive_file:%lukB"
5757 " unevictable:%lukB"
5758 " isolated(anon):%lukB"
5759 " isolated(file):%lukB"
5760 " mapped:%lukB"
5761 " dirty:%lukB"
5762 " writeback:%lukB"
5763 " shmem:%lukB"
5764#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5765 " shmem_thp: %lukB"
5766 " shmem_pmdmapped: %lukB"
5767 " anon_thp: %lukB"
5768#endif
5769 " writeback_tmp:%lukB"
5770 " kernel_stack:%lukB"
5771#ifdef CONFIG_SHADOW_CALL_STACK
5772 " shadow_call_stack:%lukB"
5773#endif
5774 " pagetables:%lukB"
5775 " all_unreclaimable? %s"
5776 "\n",
5777 pgdat->node_id,
5778 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5779 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5780 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5781 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5782 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5783 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5784 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5785 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5786 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5787 K(node_page_state(pgdat, NR_WRITEBACK)),
5788 K(node_page_state(pgdat, NR_SHMEM)),
5789#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5790 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5791 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5792 K(node_page_state(pgdat, NR_ANON_THPS)),
5793#endif
5794 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5795 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5796#ifdef CONFIG_SHADOW_CALL_STACK
5797 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5798#endif
5799 K(node_page_state(pgdat, NR_PAGETABLE)),
5800 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5801 "yes" : "no");
5802 }
5803
5804 for_each_populated_zone(zone) {
5805 int i;
5806
5807 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5808 continue;
5809
5810 free_pcp = 0;
5811 for_each_online_cpu(cpu)
5812 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5813
5814 show_node(zone);
5815 printk(KERN_CONT
5816 "%s"
5817 " free:%lukB"
5818 " min:%lukB"
5819 " low:%lukB"
5820 " high:%lukB"
5821 " reserved_highatomic:%luKB"
5822 " active_anon:%lukB"
5823 " inactive_anon:%lukB"
5824 " active_file:%lukB"
5825 " inactive_file:%lukB"
5826 " unevictable:%lukB"
5827 " writepending:%lukB"
5828 " present:%lukB"
5829 " managed:%lukB"
5830 " mlocked:%lukB"
5831 " bounce:%lukB"
5832 " free_pcp:%lukB"
5833 " local_pcp:%ukB"
5834 " free_cma:%lukB"
5835 "\n",
5836 zone->name,
5837 K(zone_page_state(zone, NR_FREE_PAGES)),
5838 K(min_wmark_pages(zone)),
5839 K(low_wmark_pages(zone)),
5840 K(high_wmark_pages(zone)),
5841 K(zone->nr_reserved_highatomic),
5842 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5843 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5844 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5845 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5846 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5847 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5848 K(zone->present_pages),
5849 K(zone_managed_pages(zone)),
5850 K(zone_page_state(zone, NR_MLOCK)),
5851 K(zone_page_state(zone, NR_BOUNCE)),
5852 K(free_pcp),
5853 K(this_cpu_read(zone->pageset->pcp.count)),
5854 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5855 printk("lowmem_reserve[]:");
5856 for (i = 0; i < MAX_NR_ZONES; i++)
5857 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5858 printk(KERN_CONT "\n");
5859 }
5860
5861 for_each_populated_zone(zone) {
5862 unsigned int order;
5863 unsigned long nr[MAX_ORDER], flags, total = 0;
5864 unsigned char types[MAX_ORDER];
5865
5866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5867 continue;
5868 show_node(zone);
5869 printk(KERN_CONT "%s: ", zone->name);
5870
5871 spin_lock_irqsave(&zone->lock, flags);
5872 for (order = 0; order < MAX_ORDER; order++) {
5873 struct free_area *area = &zone->free_area[order];
5874 int type;
5875
5876 nr[order] = area->nr_free;
5877 total += nr[order] << order;
5878
5879 types[order] = 0;
5880 for (type = 0; type < MIGRATE_TYPES; type++) {
5881 if (!free_area_empty(area, type))
5882 types[order] |= 1 << type;
5883 }
5884 }
5885 spin_unlock_irqrestore(&zone->lock, flags);
5886 for (order = 0; order < MAX_ORDER; order++) {
5887 printk(KERN_CONT "%lu*%lukB ",
5888 nr[order], K(1UL) << order);
5889 if (nr[order])
5890 show_migration_types(types[order]);
5891 }
5892 printk(KERN_CONT "= %lukB\n", K(total));
5893 }
5894
5895 hugetlb_show_meminfo();
5896
5897 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5898
5899 show_swap_cache_info();
5900}
5901
5902static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5903{
5904 zoneref->zone = zone;
5905 zoneref->zone_idx = zone_idx(zone);
5906}
5907
5908/*
5909 * Builds allocation fallback zone lists.
5910 *
5911 * Add all populated zones of a node to the zonelist.
5912 */
5913static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5914{
5915 struct zone *zone;
5916 enum zone_type zone_type = MAX_NR_ZONES;
5917 int nr_zones = 0;
5918
5919 do {
5920 zone_type--;
5921 zone = pgdat->node_zones + zone_type;
5922 if (managed_zone(zone)) {
5923 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5924 check_highest_zone(zone_type);
5925 }
5926 } while (zone_type);
5927
5928 return nr_zones;
5929}
5930
5931#ifdef CONFIG_NUMA
5932
5933static int __parse_numa_zonelist_order(char *s)
5934{
5935 /*
5936 * We used to support different zonelists modes but they turned
5937 * out to be just not useful. Let's keep the warning in place
5938 * if somebody still use the cmd line parameter so that we do
5939 * not fail it silently
5940 */
5941 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5942 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5943 return -EINVAL;
5944 }
5945 return 0;
5946}
5947
5948char numa_zonelist_order[] = "Node";
5949
5950/*
5951 * sysctl handler for numa_zonelist_order
5952 */
5953int numa_zonelist_order_handler(struct ctl_table *table, int write,
5954 void *buffer, size_t *length, loff_t *ppos)
5955{
5956 if (write)
5957 return __parse_numa_zonelist_order(buffer);
5958 return proc_dostring(table, write, buffer, length, ppos);
5959}
5960
5961
5962#define MAX_NODE_LOAD (nr_online_nodes)
5963static int node_load[MAX_NUMNODES];
5964
5965/**
5966 * find_next_best_node - find the next node that should appear in a given node's fallback list
5967 * @node: node whose fallback list we're appending
5968 * @used_node_mask: nodemask_t of already used nodes
5969 *
5970 * We use a number of factors to determine which is the next node that should
5971 * appear on a given node's fallback list. The node should not have appeared
5972 * already in @node's fallback list, and it should be the next closest node
5973 * according to the distance array (which contains arbitrary distance values
5974 * from each node to each node in the system), and should also prefer nodes
5975 * with no CPUs, since presumably they'll have very little allocation pressure
5976 * on them otherwise.
5977 *
5978 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5979 */
5980static int find_next_best_node(int node, nodemask_t *used_node_mask)
5981{
5982 int n, val;
5983 int min_val = INT_MAX;
5984 int best_node = NUMA_NO_NODE;
5985
5986 /* Use the local node if we haven't already */
5987 if (!node_isset(node, *used_node_mask)) {
5988 node_set(node, *used_node_mask);
5989 return node;
5990 }
5991
5992 for_each_node_state(n, N_MEMORY) {
5993
5994 /* Don't want a node to appear more than once */
5995 if (node_isset(n, *used_node_mask))
5996 continue;
5997
5998 /* Use the distance array to find the distance */
5999 val = node_distance(node, n);
6000
6001 /* Penalize nodes under us ("prefer the next node") */
6002 val += (n < node);
6003
6004 /* Give preference to headless and unused nodes */
6005 if (!cpumask_empty(cpumask_of_node(n)))
6006 val += PENALTY_FOR_NODE_WITH_CPUS;
6007
6008 /* Slight preference for less loaded node */
6009 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6010 val += node_load[n];
6011
6012 if (val < min_val) {
6013 min_val = val;
6014 best_node = n;
6015 }
6016 }
6017
6018 if (best_node >= 0)
6019 node_set(best_node, *used_node_mask);
6020
6021 return best_node;
6022}
6023
6024
6025/*
6026 * Build zonelists ordered by node and zones within node.
6027 * This results in maximum locality--normal zone overflows into local
6028 * DMA zone, if any--but risks exhausting DMA zone.
6029 */
6030static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6031 unsigned nr_nodes)
6032{
6033 struct zoneref *zonerefs;
6034 int i;
6035
6036 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6037
6038 for (i = 0; i < nr_nodes; i++) {
6039 int nr_zones;
6040
6041 pg_data_t *node = NODE_DATA(node_order[i]);
6042
6043 nr_zones = build_zonerefs_node(node, zonerefs);
6044 zonerefs += nr_zones;
6045 }
6046 zonerefs->zone = NULL;
6047 zonerefs->zone_idx = 0;
6048}
6049
6050/*
6051 * Build gfp_thisnode zonelists
6052 */
6053static void build_thisnode_zonelists(pg_data_t *pgdat)
6054{
6055 struct zoneref *zonerefs;
6056 int nr_zones;
6057
6058 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6059 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6060 zonerefs += nr_zones;
6061 zonerefs->zone = NULL;
6062 zonerefs->zone_idx = 0;
6063}
6064
6065/*
6066 * Build zonelists ordered by zone and nodes within zones.
6067 * This results in conserving DMA zone[s] until all Normal memory is
6068 * exhausted, but results in overflowing to remote node while memory
6069 * may still exist in local DMA zone.
6070 */
6071
6072static void build_zonelists(pg_data_t *pgdat)
6073{
6074 static int node_order[MAX_NUMNODES];
6075 int node, load, nr_nodes = 0;
6076 nodemask_t used_mask = NODE_MASK_NONE;
6077 int local_node, prev_node;
6078
6079 /* NUMA-aware ordering of nodes */
6080 local_node = pgdat->node_id;
6081 load = nr_online_nodes;
6082 prev_node = local_node;
6083
6084 memset(node_order, 0, sizeof(node_order));
6085 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6086 /*
6087 * We don't want to pressure a particular node.
6088 * So adding penalty to the first node in same
6089 * distance group to make it round-robin.
6090 */
6091 if (node_distance(local_node, node) !=
6092 node_distance(local_node, prev_node))
6093 node_load[node] = load;
6094
6095 node_order[nr_nodes++] = node;
6096 prev_node = node;
6097 load--;
6098 }
6099
6100 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6101 build_thisnode_zonelists(pgdat);
6102}
6103
6104#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6105/*
6106 * Return node id of node used for "local" allocations.
6107 * I.e., first node id of first zone in arg node's generic zonelist.
6108 * Used for initializing percpu 'numa_mem', which is used primarily
6109 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6110 */
6111int local_memory_node(int node)
6112{
6113 struct zoneref *z;
6114
6115 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6116 gfp_zone(GFP_KERNEL),
6117 NULL);
6118 return zone_to_nid(z->zone);
6119}
6120#endif
6121
6122static void setup_min_unmapped_ratio(void);
6123static void setup_min_slab_ratio(void);
6124#else /* CONFIG_NUMA */
6125
6126static void build_zonelists(pg_data_t *pgdat)
6127{
6128 int node, local_node;
6129 struct zoneref *zonerefs;
6130 int nr_zones;
6131
6132 local_node = pgdat->node_id;
6133
6134 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6135 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6136 zonerefs += nr_zones;
6137
6138 /*
6139 * Now we build the zonelist so that it contains the zones
6140 * of all the other nodes.
6141 * We don't want to pressure a particular node, so when
6142 * building the zones for node N, we make sure that the
6143 * zones coming right after the local ones are those from
6144 * node N+1 (modulo N)
6145 */
6146 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6147 if (!node_online(node))
6148 continue;
6149 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6150 zonerefs += nr_zones;
6151 }
6152 for (node = 0; node < local_node; node++) {
6153 if (!node_online(node))
6154 continue;
6155 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6156 zonerefs += nr_zones;
6157 }
6158
6159 zonerefs->zone = NULL;
6160 zonerefs->zone_idx = 0;
6161}
6162
6163#endif /* CONFIG_NUMA */
6164
6165/*
6166 * Boot pageset table. One per cpu which is going to be used for all
6167 * zones and all nodes. The parameters will be set in such a way
6168 * that an item put on a list will immediately be handed over to
6169 * the buddy list. This is safe since pageset manipulation is done
6170 * with interrupts disabled.
6171 *
6172 * The boot_pagesets must be kept even after bootup is complete for
6173 * unused processors and/or zones. They do play a role for bootstrapping
6174 * hotplugged processors.
6175 *
6176 * zoneinfo_show() and maybe other functions do
6177 * not check if the processor is online before following the pageset pointer.
6178 * Other parts of the kernel may not check if the zone is available.
6179 */
6180static void pageset_init(struct per_cpu_pageset *p);
6181/* These effectively disable the pcplists in the boot pageset completely */
6182#define BOOT_PAGESET_HIGH 0
6183#define BOOT_PAGESET_BATCH 1
6184static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6185static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6186
6187static void __build_all_zonelists(void *data)
6188{
6189 int nid;
6190 int __maybe_unused cpu;
6191 pg_data_t *self = data;
6192 static DEFINE_SPINLOCK(lock);
6193
6194 spin_lock(&lock);
6195
6196#ifdef CONFIG_NUMA
6197 memset(node_load, 0, sizeof(node_load));
6198#endif
6199
6200 /*
6201 * This node is hotadded and no memory is yet present. So just
6202 * building zonelists is fine - no need to touch other nodes.
6203 */
6204 if (self && !node_online(self->node_id)) {
6205 build_zonelists(self);
6206 } else {
6207 for_each_online_node(nid) {
6208 pg_data_t *pgdat = NODE_DATA(nid);
6209
6210 build_zonelists(pgdat);
6211 }
6212
6213#ifdef CONFIG_HAVE_MEMORYLESS_NODES
6214 /*
6215 * We now know the "local memory node" for each node--
6216 * i.e., the node of the first zone in the generic zonelist.
6217 * Set up numa_mem percpu variable for on-line cpus. During
6218 * boot, only the boot cpu should be on-line; we'll init the
6219 * secondary cpus' numa_mem as they come on-line. During
6220 * node/memory hotplug, we'll fixup all on-line cpus.
6221 */
6222 for_each_online_cpu(cpu)
6223 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6224#endif
6225 }
6226
6227 spin_unlock(&lock);
6228}
6229
6230static noinline void __init
6231build_all_zonelists_init(void)
6232{
6233 int cpu;
6234
6235 __build_all_zonelists(NULL);
6236
6237 /*
6238 * Initialize the boot_pagesets that are going to be used
6239 * for bootstrapping processors. The real pagesets for
6240 * each zone will be allocated later when the per cpu
6241 * allocator is available.
6242 *
6243 * boot_pagesets are used also for bootstrapping offline
6244 * cpus if the system is already booted because the pagesets
6245 * are needed to initialize allocators on a specific cpu too.
6246 * F.e. the percpu allocator needs the page allocator which
6247 * needs the percpu allocator in order to allocate its pagesets
6248 * (a chicken-egg dilemma).
6249 */
6250 for_each_possible_cpu(cpu)
6251 pageset_init(&per_cpu(boot_pageset, cpu));
6252
6253 mminit_verify_zonelist();
6254 cpuset_init_current_mems_allowed();
6255}
6256
6257/*
6258 * unless system_state == SYSTEM_BOOTING.
6259 *
6260 * __ref due to call of __init annotated helper build_all_zonelists_init
6261 * [protected by SYSTEM_BOOTING].
6262 */
6263void __ref build_all_zonelists(pg_data_t *pgdat)
6264{
6265 unsigned long vm_total_pages;
6266
6267 if (system_state == SYSTEM_BOOTING) {
6268 build_all_zonelists_init();
6269 } else {
6270 __build_all_zonelists(pgdat);
6271 /* cpuset refresh routine should be here */
6272 }
6273 /* Get the number of free pages beyond high watermark in all zones. */
6274 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6275 /*
6276 * Disable grouping by mobility if the number of pages in the
6277 * system is too low to allow the mechanism to work. It would be
6278 * more accurate, but expensive to check per-zone. This check is
6279 * made on memory-hotadd so a system can start with mobility
6280 * disabled and enable it later
6281 */
6282 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6283 page_group_by_mobility_disabled = 1;
6284 else
6285 page_group_by_mobility_disabled = 0;
6286
6287 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6288 nr_online_nodes,
6289 page_group_by_mobility_disabled ? "off" : "on",
6290 vm_total_pages);
6291#ifdef CONFIG_NUMA
6292 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6293#endif
6294}
6295
6296/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6297static bool __meminit
6298overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6299{
6300 static struct memblock_region *r;
6301
6302 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6303 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6304 for_each_mem_region(r) {
6305 if (*pfn < memblock_region_memory_end_pfn(r))
6306 break;
6307 }
6308 }
6309 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6310 memblock_is_mirror(r)) {
6311 *pfn = memblock_region_memory_end_pfn(r);
6312 return true;
6313 }
6314 }
6315 return false;
6316}
6317
6318/*
6319 * Initially all pages are reserved - free ones are freed
6320 * up by memblock_free_all() once the early boot process is
6321 * done. Non-atomic initialization, single-pass.
6322 *
6323 * All aligned pageblocks are initialized to the specified migratetype
6324 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6325 * zone stats (e.g., nr_isolate_pageblock) are touched.
6326 */
6327void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6328 unsigned long start_pfn, unsigned long zone_end_pfn,
6329 enum meminit_context context,
6330 struct vmem_altmap *altmap, int migratetype)
6331{
6332 unsigned long pfn, end_pfn = start_pfn + size;
6333 struct page *page;
6334
6335 if (highest_memmap_pfn < end_pfn - 1)
6336 highest_memmap_pfn = end_pfn - 1;
6337
6338#ifdef CONFIG_ZONE_DEVICE
6339 /*
6340 * Honor reservation requested by the driver for this ZONE_DEVICE
6341 * memory. We limit the total number of pages to initialize to just
6342 * those that might contain the memory mapping. We will defer the
6343 * ZONE_DEVICE page initialization until after we have released
6344 * the hotplug lock.
6345 */
6346 if (zone == ZONE_DEVICE) {
6347 if (!altmap)
6348 return;
6349
6350 if (start_pfn == altmap->base_pfn)
6351 start_pfn += altmap->reserve;
6352 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6353 }
6354#endif
6355
6356 for (pfn = start_pfn; pfn < end_pfn; ) {
6357 /*
6358 * There can be holes in boot-time mem_map[]s handed to this
6359 * function. They do not exist on hotplugged memory.
6360 */
6361 if (context == MEMINIT_EARLY) {
6362 if (overlap_memmap_init(zone, &pfn))
6363 continue;
6364 if (defer_init(nid, pfn, zone_end_pfn))
6365 break;
6366 }
6367
6368 page = pfn_to_page(pfn);
6369 __init_single_page(page, pfn, zone, nid);
6370 if (context == MEMINIT_HOTPLUG)
6371 __SetPageReserved(page);
6372
6373 /*
6374 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6375 * such that unmovable allocations won't be scattered all
6376 * over the place during system boot.
6377 */
6378 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6379 set_pageblock_migratetype(page, migratetype);
6380 cond_resched();
6381 }
6382 pfn++;
6383 }
6384}
6385
6386#ifdef CONFIG_ZONE_DEVICE
6387void __ref memmap_init_zone_device(struct zone *zone,
6388 unsigned long start_pfn,
6389 unsigned long nr_pages,
6390 struct dev_pagemap *pgmap)
6391{
6392 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6393 struct pglist_data *pgdat = zone->zone_pgdat;
6394 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6395 unsigned long zone_idx = zone_idx(zone);
6396 unsigned long start = jiffies;
6397 int nid = pgdat->node_id;
6398
6399 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6400 return;
6401
6402 /*
6403 * The call to memmap_init_zone should have already taken care
6404 * of the pages reserved for the memmap, so we can just jump to
6405 * the end of that region and start processing the device pages.
6406 */
6407 if (altmap) {
6408 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6409 nr_pages = end_pfn - start_pfn;
6410 }
6411
6412 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6413 struct page *page = pfn_to_page(pfn);
6414
6415 __init_single_page(page, pfn, zone_idx, nid);
6416
6417 /*
6418 * Mark page reserved as it will need to wait for onlining
6419 * phase for it to be fully associated with a zone.
6420 *
6421 * We can use the non-atomic __set_bit operation for setting
6422 * the flag as we are still initializing the pages.
6423 */
6424 __SetPageReserved(page);
6425
6426 /*
6427 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6428 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6429 * ever freed or placed on a driver-private list.
6430 */
6431 page->pgmap = pgmap;
6432 page->zone_device_data = NULL;
6433
6434 /*
6435 * Mark the block movable so that blocks are reserved for
6436 * movable at startup. This will force kernel allocations
6437 * to reserve their blocks rather than leaking throughout
6438 * the address space during boot when many long-lived
6439 * kernel allocations are made.
6440 *
6441 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6442 * because this is done early in section_activate()
6443 */
6444 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6445 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6446 cond_resched();
6447 }
6448 }
6449
6450 pr_info("%s initialised %lu pages in %ums\n", __func__,
6451 nr_pages, jiffies_to_msecs(jiffies - start));
6452}
6453
6454#endif
6455static void __meminit zone_init_free_lists(struct zone *zone)
6456{
6457 unsigned int order, t;
6458 for_each_migratetype_order(order, t) {
6459 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6460 zone->free_area[order].nr_free = 0;
6461 }
6462}
6463
6464#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6465/*
6466 * Only struct pages that correspond to ranges defined by memblock.memory
6467 * are zeroed and initialized by going through __init_single_page() during
6468 * memmap_init_zone().
6469 *
6470 * But, there could be struct pages that correspond to holes in
6471 * memblock.memory. This can happen because of the following reasons:
6472 * - physical memory bank size is not necessarily the exact multiple of the
6473 * arbitrary section size
6474 * - early reserved memory may not be listed in memblock.memory
6475 * - memory layouts defined with memmap= kernel parameter may not align
6476 * nicely with memmap sections
6477 *
6478 * Explicitly initialize those struct pages so that:
6479 * - PG_Reserved is set
6480 * - zone and node links point to zone and node that span the page if the
6481 * hole is in the middle of a zone
6482 * - zone and node links point to adjacent zone/node if the hole falls on
6483 * the zone boundary; the pages in such holes will be prepended to the
6484 * zone/node above the hole except for the trailing pages in the last
6485 * section that will be appended to the zone/node below.
6486 */
6487static u64 __meminit init_unavailable_range(unsigned long spfn,
6488 unsigned long epfn,
6489 int zone, int node)
6490{
6491 unsigned long pfn;
6492 u64 pgcnt = 0;
6493
6494 for (pfn = spfn; pfn < epfn; pfn++) {
6495 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6496 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6497 + pageblock_nr_pages - 1;
6498 continue;
6499 }
6500 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6501 __SetPageReserved(pfn_to_page(pfn));
6502 pgcnt++;
6503 }
6504
6505 return pgcnt;
6506}
6507#else
6508static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6509 int zone, int node)
6510{
6511 return 0;
6512}
6513#endif
6514
6515void __meminit __weak memmap_init_zone(struct zone *zone)
6516{
6517 unsigned long zone_start_pfn = zone->zone_start_pfn;
6518 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6519 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6520 static unsigned long hole_pfn;
6521 unsigned long start_pfn, end_pfn;
6522 u64 pgcnt = 0;
6523
6524 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6525 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6526 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6527
6528 if (end_pfn > start_pfn)
6529 memmap_init_range(end_pfn - start_pfn, nid,
6530 zone_id, start_pfn, zone_end_pfn,
6531 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6532
6533 if (hole_pfn < start_pfn)
6534 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6535 zone_id, nid);
6536 hole_pfn = end_pfn;
6537 }
6538
6539#ifdef CONFIG_SPARSEMEM
6540 /*
6541 * Initialize the hole in the range [zone_end_pfn, section_end].
6542 * If zone boundary falls in the middle of a section, this hole
6543 * will be re-initialized during the call to this function for the
6544 * higher zone.
6545 */
6546 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6547 if (hole_pfn < end_pfn)
6548 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6549 zone_id, nid);
6550#endif
6551
6552 if (pgcnt)
6553 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6554 zone->name, pgcnt);
6555}
6556
6557static int zone_batchsize(struct zone *zone)
6558{
6559#ifdef CONFIG_MMU
6560 int batch;
6561
6562 /*
6563 * The per-cpu-pages pools are set to around 1000th of the
6564 * size of the zone.
6565 */
6566 batch = zone_managed_pages(zone) / 1024;
6567 /* But no more than a meg. */
6568 if (batch * PAGE_SIZE > 1024 * 1024)
6569 batch = (1024 * 1024) / PAGE_SIZE;
6570 batch /= 4; /* We effectively *= 4 below */
6571 if (batch < 1)
6572 batch = 1;
6573
6574 /*
6575 * Clamp the batch to a 2^n - 1 value. Having a power
6576 * of 2 value was found to be more likely to have
6577 * suboptimal cache aliasing properties in some cases.
6578 *
6579 * For example if 2 tasks are alternately allocating
6580 * batches of pages, one task can end up with a lot
6581 * of pages of one half of the possible page colors
6582 * and the other with pages of the other colors.
6583 */
6584 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6585
6586 return batch;
6587
6588#else
6589 /* The deferral and batching of frees should be suppressed under NOMMU
6590 * conditions.
6591 *
6592 * The problem is that NOMMU needs to be able to allocate large chunks
6593 * of contiguous memory as there's no hardware page translation to
6594 * assemble apparent contiguous memory from discontiguous pages.
6595 *
6596 * Queueing large contiguous runs of pages for batching, however,
6597 * causes the pages to actually be freed in smaller chunks. As there
6598 * can be a significant delay between the individual batches being
6599 * recycled, this leads to the once large chunks of space being
6600 * fragmented and becoming unavailable for high-order allocations.
6601 */
6602 return 0;
6603#endif
6604}
6605
6606/*
6607 * pcp->high and pcp->batch values are related and generally batch is lower
6608 * than high. They are also related to pcp->count such that count is lower
6609 * than high, and as soon as it reaches high, the pcplist is flushed.
6610 *
6611 * However, guaranteeing these relations at all times would require e.g. write
6612 * barriers here but also careful usage of read barriers at the read side, and
6613 * thus be prone to error and bad for performance. Thus the update only prevents
6614 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6615 * can cope with those fields changing asynchronously, and fully trust only the
6616 * pcp->count field on the local CPU with interrupts disabled.
6617 *
6618 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6619 * outside of boot time (or some other assurance that no concurrent updaters
6620 * exist).
6621 */
6622static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6623 unsigned long batch)
6624{
6625 WRITE_ONCE(pcp->batch, batch);
6626 WRITE_ONCE(pcp->high, high);
6627}
6628
6629static void pageset_init(struct per_cpu_pageset *p)
6630{
6631 struct per_cpu_pages *pcp;
6632 int migratetype;
6633
6634 memset(p, 0, sizeof(*p));
6635
6636 pcp = &p->pcp;
6637 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6638 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6639
6640 /*
6641 * Set batch and high values safe for a boot pageset. A true percpu
6642 * pageset's initialization will update them subsequently. Here we don't
6643 * need to be as careful as pageset_update() as nobody can access the
6644 * pageset yet.
6645 */
6646 pcp->high = BOOT_PAGESET_HIGH;
6647 pcp->batch = BOOT_PAGESET_BATCH;
6648}
6649
6650static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6651 unsigned long batch)
6652{
6653 struct per_cpu_pageset *p;
6654 int cpu;
6655
6656 for_each_possible_cpu(cpu) {
6657 p = per_cpu_ptr(zone->pageset, cpu);
6658 pageset_update(&p->pcp, high, batch);
6659 }
6660}
6661
6662/*
6663 * Calculate and set new high and batch values for all per-cpu pagesets of a
6664 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6665 */
6666static void zone_set_pageset_high_and_batch(struct zone *zone)
6667{
6668 unsigned long new_high, new_batch;
6669
6670 if (percpu_pagelist_fraction) {
6671 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6672 new_batch = max(1UL, new_high / 4);
6673 if ((new_high / 4) > (PAGE_SHIFT * 8))
6674 new_batch = PAGE_SHIFT * 8;
6675 } else {
6676 new_batch = zone_batchsize(zone);
6677 new_high = 6 * new_batch;
6678 new_batch = max(1UL, 1 * new_batch);
6679 }
6680
6681 if (zone->pageset_high == new_high &&
6682 zone->pageset_batch == new_batch)
6683 return;
6684
6685 zone->pageset_high = new_high;
6686 zone->pageset_batch = new_batch;
6687
6688 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6689}
6690
6691void __meminit setup_zone_pageset(struct zone *zone)
6692{
6693 struct per_cpu_pageset *p;
6694 int cpu;
6695
6696 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6697 for_each_possible_cpu(cpu) {
6698 p = per_cpu_ptr(zone->pageset, cpu);
6699 pageset_init(p);
6700 }
6701
6702 zone_set_pageset_high_and_batch(zone);
6703}
6704
6705/*
6706 * Allocate per cpu pagesets and initialize them.
6707 * Before this call only boot pagesets were available.
6708 */
6709void __init setup_per_cpu_pageset(void)
6710{
6711 struct pglist_data *pgdat;
6712 struct zone *zone;
6713 int __maybe_unused cpu;
6714
6715 for_each_populated_zone(zone)
6716 setup_zone_pageset(zone);
6717
6718#ifdef CONFIG_NUMA
6719 /*
6720 * Unpopulated zones continue using the boot pagesets.
6721 * The numa stats for these pagesets need to be reset.
6722 * Otherwise, they will end up skewing the stats of
6723 * the nodes these zones are associated with.
6724 */
6725 for_each_possible_cpu(cpu) {
6726 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6727 memset(pcp->vm_numa_stat_diff, 0,
6728 sizeof(pcp->vm_numa_stat_diff));
6729 }
6730#endif
6731
6732 for_each_online_pgdat(pgdat)
6733 pgdat->per_cpu_nodestats =
6734 alloc_percpu(struct per_cpu_nodestat);
6735}
6736
6737static __meminit void zone_pcp_init(struct zone *zone)
6738{
6739 /*
6740 * per cpu subsystem is not up at this point. The following code
6741 * relies on the ability of the linker to provide the
6742 * offset of a (static) per cpu variable into the per cpu area.
6743 */
6744 zone->pageset = &boot_pageset;
6745 zone->pageset_high = BOOT_PAGESET_HIGH;
6746 zone->pageset_batch = BOOT_PAGESET_BATCH;
6747
6748 if (populated_zone(zone))
6749 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6750 zone->name, zone->present_pages,
6751 zone_batchsize(zone));
6752}
6753
6754void __meminit init_currently_empty_zone(struct zone *zone,
6755 unsigned long zone_start_pfn,
6756 unsigned long size)
6757{
6758 struct pglist_data *pgdat = zone->zone_pgdat;
6759 int zone_idx = zone_idx(zone) + 1;
6760
6761 if (zone_idx > pgdat->nr_zones)
6762 pgdat->nr_zones = zone_idx;
6763
6764 zone->zone_start_pfn = zone_start_pfn;
6765
6766 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6767 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6768 pgdat->node_id,
6769 (unsigned long)zone_idx(zone),
6770 zone_start_pfn, (zone_start_pfn + size));
6771
6772 zone_init_free_lists(zone);
6773 zone->initialized = 1;
6774}
6775
6776/**
6777 * get_pfn_range_for_nid - Return the start and end page frames for a node
6778 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6779 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6780 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6781 *
6782 * It returns the start and end page frame of a node based on information
6783 * provided by memblock_set_node(). If called for a node
6784 * with no available memory, a warning is printed and the start and end
6785 * PFNs will be 0.
6786 */
6787void __init get_pfn_range_for_nid(unsigned int nid,
6788 unsigned long *start_pfn, unsigned long *end_pfn)
6789{
6790 unsigned long this_start_pfn, this_end_pfn;
6791 int i;
6792
6793 *start_pfn = -1UL;
6794 *end_pfn = 0;
6795
6796 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6797 *start_pfn = min(*start_pfn, this_start_pfn);
6798 *end_pfn = max(*end_pfn, this_end_pfn);
6799 }
6800
6801 if (*start_pfn == -1UL)
6802 *start_pfn = 0;
6803}
6804
6805/*
6806 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6807 * assumption is made that zones within a node are ordered in monotonic
6808 * increasing memory addresses so that the "highest" populated zone is used
6809 */
6810static void __init find_usable_zone_for_movable(void)
6811{
6812 int zone_index;
6813 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6814 if (zone_index == ZONE_MOVABLE)
6815 continue;
6816
6817 if (arch_zone_highest_possible_pfn[zone_index] >
6818 arch_zone_lowest_possible_pfn[zone_index])
6819 break;
6820 }
6821
6822 VM_BUG_ON(zone_index == -1);
6823 movable_zone = zone_index;
6824}
6825
6826/*
6827 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6828 * because it is sized independent of architecture. Unlike the other zones,
6829 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6830 * in each node depending on the size of each node and how evenly kernelcore
6831 * is distributed. This helper function adjusts the zone ranges
6832 * provided by the architecture for a given node by using the end of the
6833 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6834 * zones within a node are in order of monotonic increases memory addresses
6835 */
6836static void __init adjust_zone_range_for_zone_movable(int nid,
6837 unsigned long zone_type,
6838 unsigned long node_start_pfn,
6839 unsigned long node_end_pfn,
6840 unsigned long *zone_start_pfn,
6841 unsigned long *zone_end_pfn)
6842{
6843 /* Only adjust if ZONE_MOVABLE is on this node */
6844 if (zone_movable_pfn[nid]) {
6845 /* Size ZONE_MOVABLE */
6846 if (zone_type == ZONE_MOVABLE) {
6847 *zone_start_pfn = zone_movable_pfn[nid];
6848 *zone_end_pfn = min(node_end_pfn,
6849 arch_zone_highest_possible_pfn[movable_zone]);
6850
6851 /* Adjust for ZONE_MOVABLE starting within this range */
6852 } else if (!mirrored_kernelcore &&
6853 *zone_start_pfn < zone_movable_pfn[nid] &&
6854 *zone_end_pfn > zone_movable_pfn[nid]) {
6855 *zone_end_pfn = zone_movable_pfn[nid];
6856
6857 /* Check if this whole range is within ZONE_MOVABLE */
6858 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6859 *zone_start_pfn = *zone_end_pfn;
6860 }
6861}
6862
6863/*
6864 * Return the number of pages a zone spans in a node, including holes
6865 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6866 */
6867static unsigned long __init zone_spanned_pages_in_node(int nid,
6868 unsigned long zone_type,
6869 unsigned long node_start_pfn,
6870 unsigned long node_end_pfn,
6871 unsigned long *zone_start_pfn,
6872 unsigned long *zone_end_pfn)
6873{
6874 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6875 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6876 /* When hotadd a new node from cpu_up(), the node should be empty */
6877 if (!node_start_pfn && !node_end_pfn)
6878 return 0;
6879
6880 /* Get the start and end of the zone */
6881 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6882 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6883 adjust_zone_range_for_zone_movable(nid, zone_type,
6884 node_start_pfn, node_end_pfn,
6885 zone_start_pfn, zone_end_pfn);
6886
6887 /* Check that this node has pages within the zone's required range */
6888 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6889 return 0;
6890
6891 /* Move the zone boundaries inside the node if necessary */
6892 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6893 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6894
6895 /* Return the spanned pages */
6896 return *zone_end_pfn - *zone_start_pfn;
6897}
6898
6899/*
6900 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6901 * then all holes in the requested range will be accounted for.
6902 */
6903unsigned long __init __absent_pages_in_range(int nid,
6904 unsigned long range_start_pfn,
6905 unsigned long range_end_pfn)
6906{
6907 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6908 unsigned long start_pfn, end_pfn;
6909 int i;
6910
6911 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6912 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6913 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6914 nr_absent -= end_pfn - start_pfn;
6915 }
6916 return nr_absent;
6917}
6918
6919/**
6920 * absent_pages_in_range - Return number of page frames in holes within a range
6921 * @start_pfn: The start PFN to start searching for holes
6922 * @end_pfn: The end PFN to stop searching for holes
6923 *
6924 * Return: the number of pages frames in memory holes within a range.
6925 */
6926unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6927 unsigned long end_pfn)
6928{
6929 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6930}
6931
6932/* Return the number of page frames in holes in a zone on a node */
6933static unsigned long __init zone_absent_pages_in_node(int nid,
6934 unsigned long zone_type,
6935 unsigned long node_start_pfn,
6936 unsigned long node_end_pfn)
6937{
6938 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6939 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6940 unsigned long zone_start_pfn, zone_end_pfn;
6941 unsigned long nr_absent;
6942
6943 /* When hotadd a new node from cpu_up(), the node should be empty */
6944 if (!node_start_pfn && !node_end_pfn)
6945 return 0;
6946
6947 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6948 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6949
6950 adjust_zone_range_for_zone_movable(nid, zone_type,
6951 node_start_pfn, node_end_pfn,
6952 &zone_start_pfn, &zone_end_pfn);
6953 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6954
6955 /*
6956 * ZONE_MOVABLE handling.
6957 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6958 * and vice versa.
6959 */
6960 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6961 unsigned long start_pfn, end_pfn;
6962 struct memblock_region *r;
6963
6964 for_each_mem_region(r) {
6965 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6966 zone_start_pfn, zone_end_pfn);
6967 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6968 zone_start_pfn, zone_end_pfn);
6969
6970 if (zone_type == ZONE_MOVABLE &&
6971 memblock_is_mirror(r))
6972 nr_absent += end_pfn - start_pfn;
6973
6974 if (zone_type == ZONE_NORMAL &&
6975 !memblock_is_mirror(r))
6976 nr_absent += end_pfn - start_pfn;
6977 }
6978 }
6979
6980 return nr_absent;
6981}
6982
6983static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6984 unsigned long node_start_pfn,
6985 unsigned long node_end_pfn)
6986{
6987 unsigned long realtotalpages = 0, totalpages = 0;
6988 enum zone_type i;
6989
6990 for (i = 0; i < MAX_NR_ZONES; i++) {
6991 struct zone *zone = pgdat->node_zones + i;
6992 unsigned long zone_start_pfn, zone_end_pfn;
6993 unsigned long spanned, absent;
6994 unsigned long size, real_size;
6995
6996 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6997 node_start_pfn,
6998 node_end_pfn,
6999 &zone_start_pfn,
7000 &zone_end_pfn);
7001 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7002 node_start_pfn,
7003 node_end_pfn);
7004
7005 size = spanned;
7006 real_size = size - absent;
7007
7008 if (size)
7009 zone->zone_start_pfn = zone_start_pfn;
7010 else
7011 zone->zone_start_pfn = 0;
7012 zone->spanned_pages = size;
7013 zone->present_pages = real_size;
7014
7015 totalpages += size;
7016 realtotalpages += real_size;
7017 }
7018
7019 pgdat->node_spanned_pages = totalpages;
7020 pgdat->node_present_pages = realtotalpages;
7021 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7022 realtotalpages);
7023}
7024
7025#ifndef CONFIG_SPARSEMEM
7026/*
7027 * Calculate the size of the zone->blockflags rounded to an unsigned long
7028 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7029 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7030 * round what is now in bits to nearest long in bits, then return it in
7031 * bytes.
7032 */
7033static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7034{
7035 unsigned long usemapsize;
7036
7037 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7038 usemapsize = roundup(zonesize, pageblock_nr_pages);
7039 usemapsize = usemapsize >> pageblock_order;
7040 usemapsize *= NR_PAGEBLOCK_BITS;
7041 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7042
7043 return usemapsize / 8;
7044}
7045
7046static void __ref setup_usemap(struct zone *zone)
7047{
7048 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7049 zone->spanned_pages);
7050 zone->pageblock_flags = NULL;
7051 if (usemapsize) {
7052 zone->pageblock_flags =
7053 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7054 zone_to_nid(zone));
7055 if (!zone->pageblock_flags)
7056 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7057 usemapsize, zone->name, zone_to_nid(zone));
7058 }
7059}
7060#else
7061static inline void setup_usemap(struct zone *zone) {}
7062#endif /* CONFIG_SPARSEMEM */
7063
7064#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7065
7066/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7067void __init set_pageblock_order(void)
7068{
7069 unsigned int order;
7070
7071 /* Check that pageblock_nr_pages has not already been setup */
7072 if (pageblock_order)
7073 return;
7074
7075 if (HPAGE_SHIFT > PAGE_SHIFT)
7076 order = HUGETLB_PAGE_ORDER;
7077 else
7078 order = MAX_ORDER - 1;
7079
7080 /*
7081 * Assume the largest contiguous order of interest is a huge page.
7082 * This value may be variable depending on boot parameters on IA64 and
7083 * powerpc.
7084 */
7085 pageblock_order = order;
7086}
7087#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7088
7089/*
7090 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7091 * is unused as pageblock_order is set at compile-time. See
7092 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7093 * the kernel config
7094 */
7095void __init set_pageblock_order(void)
7096{
7097}
7098
7099#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7100
7101static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7102 unsigned long present_pages)
7103{
7104 unsigned long pages = spanned_pages;
7105
7106 /*
7107 * Provide a more accurate estimation if there are holes within
7108 * the zone and SPARSEMEM is in use. If there are holes within the
7109 * zone, each populated memory region may cost us one or two extra
7110 * memmap pages due to alignment because memmap pages for each
7111 * populated regions may not be naturally aligned on page boundary.
7112 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7113 */
7114 if (spanned_pages > present_pages + (present_pages >> 4) &&
7115 IS_ENABLED(CONFIG_SPARSEMEM))
7116 pages = present_pages;
7117
7118 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7119}
7120
7121#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7122static void pgdat_init_split_queue(struct pglist_data *pgdat)
7123{
7124 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7125
7126 spin_lock_init(&ds_queue->split_queue_lock);
7127 INIT_LIST_HEAD(&ds_queue->split_queue);
7128 ds_queue->split_queue_len = 0;
7129}
7130#else
7131static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7132#endif
7133
7134#ifdef CONFIG_COMPACTION
7135static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7136{
7137 init_waitqueue_head(&pgdat->kcompactd_wait);
7138}
7139#else
7140static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7141#endif
7142
7143static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7144{
7145 pgdat_resize_init(pgdat);
7146
7147 pgdat_init_split_queue(pgdat);
7148 pgdat_init_kcompactd(pgdat);
7149
7150 init_waitqueue_head(&pgdat->kswapd_wait);
7151 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7152
7153 pgdat_page_ext_init(pgdat);
7154 lruvec_init(&pgdat->__lruvec);
7155}
7156
7157static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7158 unsigned long remaining_pages)
7159{
7160 atomic_long_set(&zone->managed_pages, remaining_pages);
7161 zone_set_nid(zone, nid);
7162 zone->name = zone_names[idx];
7163 zone->zone_pgdat = NODE_DATA(nid);
7164 spin_lock_init(&zone->lock);
7165 zone_seqlock_init(zone);
7166 zone_pcp_init(zone);
7167}
7168
7169/*
7170 * Set up the zone data structures
7171 * - init pgdat internals
7172 * - init all zones belonging to this node
7173 *
7174 * NOTE: this function is only called during memory hotplug
7175 */
7176#ifdef CONFIG_MEMORY_HOTPLUG
7177void __ref free_area_init_core_hotplug(int nid)
7178{
7179 enum zone_type z;
7180 pg_data_t *pgdat = NODE_DATA(nid);
7181
7182 pgdat_init_internals(pgdat);
7183 for (z = 0; z < MAX_NR_ZONES; z++)
7184 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7185}
7186#endif
7187
7188/*
7189 * Set up the zone data structures:
7190 * - mark all pages reserved
7191 * - mark all memory queues empty
7192 * - clear the memory bitmaps
7193 *
7194 * NOTE: pgdat should get zeroed by caller.
7195 * NOTE: this function is only called during early init.
7196 */
7197static void __init free_area_init_core(struct pglist_data *pgdat)
7198{
7199 enum zone_type j;
7200 int nid = pgdat->node_id;
7201
7202 pgdat_init_internals(pgdat);
7203 pgdat->per_cpu_nodestats = &boot_nodestats;
7204
7205 for (j = 0; j < MAX_NR_ZONES; j++) {
7206 struct zone *zone = pgdat->node_zones + j;
7207 unsigned long size, freesize, memmap_pages;
7208
7209 size = zone->spanned_pages;
7210 freesize = zone->present_pages;
7211
7212 /*
7213 * Adjust freesize so that it accounts for how much memory
7214 * is used by this zone for memmap. This affects the watermark
7215 * and per-cpu initialisations
7216 */
7217 memmap_pages = calc_memmap_size(size, freesize);
7218 if (!is_highmem_idx(j)) {
7219 if (freesize >= memmap_pages) {
7220 freesize -= memmap_pages;
7221 if (memmap_pages)
7222 printk(KERN_DEBUG
7223 " %s zone: %lu pages used for memmap\n",
7224 zone_names[j], memmap_pages);
7225 } else
7226 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7227 zone_names[j], memmap_pages, freesize);
7228 }
7229
7230 /* Account for reserved pages */
7231 if (j == 0 && freesize > dma_reserve) {
7232 freesize -= dma_reserve;
7233 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7234 zone_names[0], dma_reserve);
7235 }
7236
7237 if (!is_highmem_idx(j))
7238 nr_kernel_pages += freesize;
7239 /* Charge for highmem memmap if there are enough kernel pages */
7240 else if (nr_kernel_pages > memmap_pages * 2)
7241 nr_kernel_pages -= memmap_pages;
7242 nr_all_pages += freesize;
7243
7244 /*
7245 * Set an approximate value for lowmem here, it will be adjusted
7246 * when the bootmem allocator frees pages into the buddy system.
7247 * And all highmem pages will be managed by the buddy system.
7248 */
7249 zone_init_internals(zone, j, nid, freesize);
7250
7251 if (!size)
7252 continue;
7253
7254 set_pageblock_order();
7255 setup_usemap(zone);
7256 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7257 memmap_init_zone(zone);
7258 }
7259}
7260
7261#ifdef CONFIG_FLAT_NODE_MEM_MAP
7262static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7263{
7264 unsigned long __maybe_unused start = 0;
7265 unsigned long __maybe_unused offset = 0;
7266
7267 /* Skip empty nodes */
7268 if (!pgdat->node_spanned_pages)
7269 return;
7270
7271 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7272 offset = pgdat->node_start_pfn - start;
7273 /* ia64 gets its own node_mem_map, before this, without bootmem */
7274 if (!pgdat->node_mem_map) {
7275 unsigned long size, end;
7276 struct page *map;
7277
7278 /*
7279 * The zone's endpoints aren't required to be MAX_ORDER
7280 * aligned but the node_mem_map endpoints must be in order
7281 * for the buddy allocator to function correctly.
7282 */
7283 end = pgdat_end_pfn(pgdat);
7284 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7285 size = (end - start) * sizeof(struct page);
7286 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7287 pgdat->node_id);
7288 if (!map)
7289 panic("Failed to allocate %ld bytes for node %d memory map\n",
7290 size, pgdat->node_id);
7291 pgdat->node_mem_map = map + offset;
7292 }
7293 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7294 __func__, pgdat->node_id, (unsigned long)pgdat,
7295 (unsigned long)pgdat->node_mem_map);
7296#ifndef CONFIG_NEED_MULTIPLE_NODES
7297 /*
7298 * With no DISCONTIG, the global mem_map is just set as node 0's
7299 */
7300 if (pgdat == NODE_DATA(0)) {
7301 mem_map = NODE_DATA(0)->node_mem_map;
7302 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7303 mem_map -= offset;
7304 }
7305#endif
7306}
7307#else
7308static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7309#endif /* CONFIG_FLAT_NODE_MEM_MAP */
7310
7311#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7312static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7313{
7314 pgdat->first_deferred_pfn = ULONG_MAX;
7315}
7316#else
7317static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7318#endif
7319
7320static void __init free_area_init_node(int nid)
7321{
7322 pg_data_t *pgdat = NODE_DATA(nid);
7323 unsigned long start_pfn = 0;
7324 unsigned long end_pfn = 0;
7325
7326 /* pg_data_t should be reset to zero when it's allocated */
7327 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7328
7329 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7330
7331 pgdat->node_id = nid;
7332 pgdat->node_start_pfn = start_pfn;
7333 pgdat->per_cpu_nodestats = NULL;
7334
7335 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7336 (u64)start_pfn << PAGE_SHIFT,
7337 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7338 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7339
7340 alloc_node_mem_map(pgdat);
7341 pgdat_set_deferred_range(pgdat);
7342
7343 free_area_init_core(pgdat);
7344}
7345
7346void __init free_area_init_memoryless_node(int nid)
7347{
7348 free_area_init_node(nid);
7349}
7350
7351#if MAX_NUMNODES > 1
7352/*
7353 * Figure out the number of possible node ids.
7354 */
7355void __init setup_nr_node_ids(void)
7356{
7357 unsigned int highest;
7358
7359 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7360 nr_node_ids = highest + 1;
7361}
7362#endif
7363
7364/**
7365 * node_map_pfn_alignment - determine the maximum internode alignment
7366 *
7367 * This function should be called after node map is populated and sorted.
7368 * It calculates the maximum power of two alignment which can distinguish
7369 * all the nodes.
7370 *
7371 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7372 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7373 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7374 * shifted, 1GiB is enough and this function will indicate so.
7375 *
7376 * This is used to test whether pfn -> nid mapping of the chosen memory
7377 * model has fine enough granularity to avoid incorrect mapping for the
7378 * populated node map.
7379 *
7380 * Return: the determined alignment in pfn's. 0 if there is no alignment
7381 * requirement (single node).
7382 */
7383unsigned long __init node_map_pfn_alignment(void)
7384{
7385 unsigned long accl_mask = 0, last_end = 0;
7386 unsigned long start, end, mask;
7387 int last_nid = NUMA_NO_NODE;
7388 int i, nid;
7389
7390 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7391 if (!start || last_nid < 0 || last_nid == nid) {
7392 last_nid = nid;
7393 last_end = end;
7394 continue;
7395 }
7396
7397 /*
7398 * Start with a mask granular enough to pin-point to the
7399 * start pfn and tick off bits one-by-one until it becomes
7400 * too coarse to separate the current node from the last.
7401 */
7402 mask = ~((1 << __ffs(start)) - 1);
7403 while (mask && last_end <= (start & (mask << 1)))
7404 mask <<= 1;
7405
7406 /* accumulate all internode masks */
7407 accl_mask |= mask;
7408 }
7409
7410 /* convert mask to number of pages */
7411 return ~accl_mask + 1;
7412}
7413
7414/**
7415 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7416 *
7417 * Return: the minimum PFN based on information provided via
7418 * memblock_set_node().
7419 */
7420unsigned long __init find_min_pfn_with_active_regions(void)
7421{
7422 return PHYS_PFN(memblock_start_of_DRAM());
7423}
7424
7425/*
7426 * early_calculate_totalpages()
7427 * Sum pages in active regions for movable zone.
7428 * Populate N_MEMORY for calculating usable_nodes.
7429 */
7430static unsigned long __init early_calculate_totalpages(void)
7431{
7432 unsigned long totalpages = 0;
7433 unsigned long start_pfn, end_pfn;
7434 int i, nid;
7435
7436 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7437 unsigned long pages = end_pfn - start_pfn;
7438
7439 totalpages += pages;
7440 if (pages)
7441 node_set_state(nid, N_MEMORY);
7442 }
7443 return totalpages;
7444}
7445
7446/*
7447 * Find the PFN the Movable zone begins in each node. Kernel memory
7448 * is spread evenly between nodes as long as the nodes have enough
7449 * memory. When they don't, some nodes will have more kernelcore than
7450 * others
7451 */
7452static void __init find_zone_movable_pfns_for_nodes(void)
7453{
7454 int i, nid;
7455 unsigned long usable_startpfn;
7456 unsigned long kernelcore_node, kernelcore_remaining;
7457 /* save the state before borrow the nodemask */
7458 nodemask_t saved_node_state = node_states[N_MEMORY];
7459 unsigned long totalpages = early_calculate_totalpages();
7460 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7461 struct memblock_region *r;
7462
7463 /* Need to find movable_zone earlier when movable_node is specified. */
7464 find_usable_zone_for_movable();
7465
7466 /*
7467 * If movable_node is specified, ignore kernelcore and movablecore
7468 * options.
7469 */
7470 if (movable_node_is_enabled()) {
7471 for_each_mem_region(r) {
7472 if (!memblock_is_hotpluggable(r))
7473 continue;
7474
7475 nid = memblock_get_region_node(r);
7476
7477 usable_startpfn = PFN_DOWN(r->base);
7478 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7479 min(usable_startpfn, zone_movable_pfn[nid]) :
7480 usable_startpfn;
7481 }
7482
7483 goto out2;
7484 }
7485
7486 /*
7487 * If kernelcore=mirror is specified, ignore movablecore option
7488 */
7489 if (mirrored_kernelcore) {
7490 bool mem_below_4gb_not_mirrored = false;
7491
7492 for_each_mem_region(r) {
7493 if (memblock_is_mirror(r))
7494 continue;
7495
7496 nid = memblock_get_region_node(r);
7497
7498 usable_startpfn = memblock_region_memory_base_pfn(r);
7499
7500 if (usable_startpfn < 0x100000) {
7501 mem_below_4gb_not_mirrored = true;
7502 continue;
7503 }
7504
7505 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7506 min(usable_startpfn, zone_movable_pfn[nid]) :
7507 usable_startpfn;
7508 }
7509
7510 if (mem_below_4gb_not_mirrored)
7511 pr_warn("This configuration results in unmirrored kernel memory.\n");
7512
7513 goto out2;
7514 }
7515
7516 /*
7517 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7518 * amount of necessary memory.
7519 */
7520 if (required_kernelcore_percent)
7521 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7522 10000UL;
7523 if (required_movablecore_percent)
7524 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7525 10000UL;
7526
7527 /*
7528 * If movablecore= was specified, calculate what size of
7529 * kernelcore that corresponds so that memory usable for
7530 * any allocation type is evenly spread. If both kernelcore
7531 * and movablecore are specified, then the value of kernelcore
7532 * will be used for required_kernelcore if it's greater than
7533 * what movablecore would have allowed.
7534 */
7535 if (required_movablecore) {
7536 unsigned long corepages;
7537
7538 /*
7539 * Round-up so that ZONE_MOVABLE is at least as large as what
7540 * was requested by the user
7541 */
7542 required_movablecore =
7543 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7544 required_movablecore = min(totalpages, required_movablecore);
7545 corepages = totalpages - required_movablecore;
7546
7547 required_kernelcore = max(required_kernelcore, corepages);
7548 }
7549
7550 /*
7551 * If kernelcore was not specified or kernelcore size is larger
7552 * than totalpages, there is no ZONE_MOVABLE.
7553 */
7554 if (!required_kernelcore || required_kernelcore >= totalpages)
7555 goto out;
7556
7557 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7558 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7559
7560restart:
7561 /* Spread kernelcore memory as evenly as possible throughout nodes */
7562 kernelcore_node = required_kernelcore / usable_nodes;
7563 for_each_node_state(nid, N_MEMORY) {
7564 unsigned long start_pfn, end_pfn;
7565
7566 /*
7567 * Recalculate kernelcore_node if the division per node
7568 * now exceeds what is necessary to satisfy the requested
7569 * amount of memory for the kernel
7570 */
7571 if (required_kernelcore < kernelcore_node)
7572 kernelcore_node = required_kernelcore / usable_nodes;
7573
7574 /*
7575 * As the map is walked, we track how much memory is usable
7576 * by the kernel using kernelcore_remaining. When it is
7577 * 0, the rest of the node is usable by ZONE_MOVABLE
7578 */
7579 kernelcore_remaining = kernelcore_node;
7580
7581 /* Go through each range of PFNs within this node */
7582 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7583 unsigned long size_pages;
7584
7585 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7586 if (start_pfn >= end_pfn)
7587 continue;
7588
7589 /* Account for what is only usable for kernelcore */
7590 if (start_pfn < usable_startpfn) {
7591 unsigned long kernel_pages;
7592 kernel_pages = min(end_pfn, usable_startpfn)
7593 - start_pfn;
7594
7595 kernelcore_remaining -= min(kernel_pages,
7596 kernelcore_remaining);
7597 required_kernelcore -= min(kernel_pages,
7598 required_kernelcore);
7599
7600 /* Continue if range is now fully accounted */
7601 if (end_pfn <= usable_startpfn) {
7602
7603 /*
7604 * Push zone_movable_pfn to the end so
7605 * that if we have to rebalance
7606 * kernelcore across nodes, we will
7607 * not double account here
7608 */
7609 zone_movable_pfn[nid] = end_pfn;
7610 continue;
7611 }
7612 start_pfn = usable_startpfn;
7613 }
7614
7615 /*
7616 * The usable PFN range for ZONE_MOVABLE is from
7617 * start_pfn->end_pfn. Calculate size_pages as the
7618 * number of pages used as kernelcore
7619 */
7620 size_pages = end_pfn - start_pfn;
7621 if (size_pages > kernelcore_remaining)
7622 size_pages = kernelcore_remaining;
7623 zone_movable_pfn[nid] = start_pfn + size_pages;
7624
7625 /*
7626 * Some kernelcore has been met, update counts and
7627 * break if the kernelcore for this node has been
7628 * satisfied
7629 */
7630 required_kernelcore -= min(required_kernelcore,
7631 size_pages);
7632 kernelcore_remaining -= size_pages;
7633 if (!kernelcore_remaining)
7634 break;
7635 }
7636 }
7637
7638 /*
7639 * If there is still required_kernelcore, we do another pass with one
7640 * less node in the count. This will push zone_movable_pfn[nid] further
7641 * along on the nodes that still have memory until kernelcore is
7642 * satisfied
7643 */
7644 usable_nodes--;
7645 if (usable_nodes && required_kernelcore > usable_nodes)
7646 goto restart;
7647
7648out2:
7649 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7650 for (nid = 0; nid < MAX_NUMNODES; nid++)
7651 zone_movable_pfn[nid] =
7652 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7653
7654out:
7655 /* restore the node_state */
7656 node_states[N_MEMORY] = saved_node_state;
7657}
7658
7659/* Any regular or high memory on that node ? */
7660static void check_for_memory(pg_data_t *pgdat, int nid)
7661{
7662 enum zone_type zone_type;
7663
7664 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7665 struct zone *zone = &pgdat->node_zones[zone_type];
7666 if (populated_zone(zone)) {
7667 if (IS_ENABLED(CONFIG_HIGHMEM))
7668 node_set_state(nid, N_HIGH_MEMORY);
7669 if (zone_type <= ZONE_NORMAL)
7670 node_set_state(nid, N_NORMAL_MEMORY);
7671 break;
7672 }
7673 }
7674}
7675
7676/*
7677 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7678 * such cases we allow max_zone_pfn sorted in the descending order
7679 */
7680bool __weak arch_has_descending_max_zone_pfns(void)
7681{
7682 return false;
7683}
7684
7685/**
7686 * free_area_init - Initialise all pg_data_t and zone data
7687 * @max_zone_pfn: an array of max PFNs for each zone
7688 *
7689 * This will call free_area_init_node() for each active node in the system.
7690 * Using the page ranges provided by memblock_set_node(), the size of each
7691 * zone in each node and their holes is calculated. If the maximum PFN
7692 * between two adjacent zones match, it is assumed that the zone is empty.
7693 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7694 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7695 * starts where the previous one ended. For example, ZONE_DMA32 starts
7696 * at arch_max_dma_pfn.
7697 */
7698void __init free_area_init(unsigned long *max_zone_pfn)
7699{
7700 unsigned long start_pfn, end_pfn;
7701 int i, nid, zone;
7702 bool descending;
7703
7704 /* Record where the zone boundaries are */
7705 memset(arch_zone_lowest_possible_pfn, 0,
7706 sizeof(arch_zone_lowest_possible_pfn));
7707 memset(arch_zone_highest_possible_pfn, 0,
7708 sizeof(arch_zone_highest_possible_pfn));
7709
7710 start_pfn = find_min_pfn_with_active_regions();
7711 descending = arch_has_descending_max_zone_pfns();
7712
7713 for (i = 0; i < MAX_NR_ZONES; i++) {
7714 if (descending)
7715 zone = MAX_NR_ZONES - i - 1;
7716 else
7717 zone = i;
7718
7719 if (zone == ZONE_MOVABLE)
7720 continue;
7721
7722 end_pfn = max(max_zone_pfn[zone], start_pfn);
7723 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7724 arch_zone_highest_possible_pfn[zone] = end_pfn;
7725
7726 start_pfn = end_pfn;
7727 }
7728
7729 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7730 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7731 find_zone_movable_pfns_for_nodes();
7732
7733 /* Print out the zone ranges */
7734 pr_info("Zone ranges:\n");
7735 for (i = 0; i < MAX_NR_ZONES; i++) {
7736 if (i == ZONE_MOVABLE)
7737 continue;
7738 pr_info(" %-8s ", zone_names[i]);
7739 if (arch_zone_lowest_possible_pfn[i] ==
7740 arch_zone_highest_possible_pfn[i])
7741 pr_cont("empty\n");
7742 else
7743 pr_cont("[mem %#018Lx-%#018Lx]\n",
7744 (u64)arch_zone_lowest_possible_pfn[i]
7745 << PAGE_SHIFT,
7746 ((u64)arch_zone_highest_possible_pfn[i]
7747 << PAGE_SHIFT) - 1);
7748 }
7749
7750 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7751 pr_info("Movable zone start for each node\n");
7752 for (i = 0; i < MAX_NUMNODES; i++) {
7753 if (zone_movable_pfn[i])
7754 pr_info(" Node %d: %#018Lx\n", i,
7755 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7756 }
7757
7758 /*
7759 * Print out the early node map, and initialize the
7760 * subsection-map relative to active online memory ranges to
7761 * enable future "sub-section" extensions of the memory map.
7762 */
7763 pr_info("Early memory node ranges\n");
7764 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7765 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7766 (u64)start_pfn << PAGE_SHIFT,
7767 ((u64)end_pfn << PAGE_SHIFT) - 1);
7768 subsection_map_init(start_pfn, end_pfn - start_pfn);
7769 }
7770
7771 /* Initialise every node */
7772 mminit_verify_pageflags_layout();
7773 setup_nr_node_ids();
7774 for_each_online_node(nid) {
7775 pg_data_t *pgdat = NODE_DATA(nid);
7776 free_area_init_node(nid);
7777
7778 /* Any memory on that node */
7779 if (pgdat->node_present_pages)
7780 node_set_state(nid, N_MEMORY);
7781 check_for_memory(pgdat, nid);
7782 }
7783}
7784
7785static int __init cmdline_parse_core(char *p, unsigned long *core,
7786 unsigned long *percent)
7787{
7788 unsigned long long coremem;
7789 char *endptr;
7790
7791 if (!p)
7792 return -EINVAL;
7793
7794 /* Value may be a percentage of total memory, otherwise bytes */
7795 coremem = simple_strtoull(p, &endptr, 0);
7796 if (*endptr == '%') {
7797 /* Paranoid check for percent values greater than 100 */
7798 WARN_ON(coremem > 100);
7799
7800 *percent = coremem;
7801 } else {
7802 coremem = memparse(p, &p);
7803 /* Paranoid check that UL is enough for the coremem value */
7804 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7805
7806 *core = coremem >> PAGE_SHIFT;
7807 *percent = 0UL;
7808 }
7809 return 0;
7810}
7811
7812/*
7813 * kernelcore=size sets the amount of memory for use for allocations that
7814 * cannot be reclaimed or migrated.
7815 */
7816static int __init cmdline_parse_kernelcore(char *p)
7817{
7818 /* parse kernelcore=mirror */
7819 if (parse_option_str(p, "mirror")) {
7820 mirrored_kernelcore = true;
7821 return 0;
7822 }
7823
7824 return cmdline_parse_core(p, &required_kernelcore,
7825 &required_kernelcore_percent);
7826}
7827
7828/*
7829 * movablecore=size sets the amount of memory for use for allocations that
7830 * can be reclaimed or migrated.
7831 */
7832static int __init cmdline_parse_movablecore(char *p)
7833{
7834 return cmdline_parse_core(p, &required_movablecore,
7835 &required_movablecore_percent);
7836}
7837
7838early_param("kernelcore", cmdline_parse_kernelcore);
7839early_param("movablecore", cmdline_parse_movablecore);
7840
7841void adjust_managed_page_count(struct page *page, long count)
7842{
7843 atomic_long_add(count, &page_zone(page)->managed_pages);
7844 totalram_pages_add(count);
7845#ifdef CONFIG_HIGHMEM
7846 if (PageHighMem(page))
7847 totalhigh_pages_add(count);
7848#endif
7849}
7850EXPORT_SYMBOL(adjust_managed_page_count);
7851
7852unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7853{
7854 void *pos;
7855 unsigned long pages = 0;
7856
7857 start = (void *)PAGE_ALIGN((unsigned long)start);
7858 end = (void *)((unsigned long)end & PAGE_MASK);
7859 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7860 struct page *page = virt_to_page(pos);
7861 void *direct_map_addr;
7862
7863 /*
7864 * 'direct_map_addr' might be different from 'pos'
7865 * because some architectures' virt_to_page()
7866 * work with aliases. Getting the direct map
7867 * address ensures that we get a _writeable_
7868 * alias for the memset().
7869 */
7870 direct_map_addr = page_address(page);
7871 /*
7872 * Perform a kasan-unchecked memset() since this memory
7873 * has not been initialized.
7874 */
7875 direct_map_addr = kasan_reset_tag(direct_map_addr);
7876 if ((unsigned int)poison <= 0xFF)
7877 memset(direct_map_addr, poison, PAGE_SIZE);
7878
7879 free_reserved_page(page);
7880 }
7881
7882 if (pages && s)
7883 pr_info("Freeing %s memory: %ldK\n",
7884 s, pages << (PAGE_SHIFT - 10));
7885
7886 return pages;
7887}
7888
7889void __init mem_init_print_info(void)
7890{
7891 unsigned long physpages, codesize, datasize, rosize, bss_size;
7892 unsigned long init_code_size, init_data_size;
7893
7894 physpages = get_num_physpages();
7895 codesize = _etext - _stext;
7896 datasize = _edata - _sdata;
7897 rosize = __end_rodata - __start_rodata;
7898 bss_size = __bss_stop - __bss_start;
7899 init_data_size = __init_end - __init_begin;
7900 init_code_size = _einittext - _sinittext;
7901
7902 /*
7903 * Detect special cases and adjust section sizes accordingly:
7904 * 1) .init.* may be embedded into .data sections
7905 * 2) .init.text.* may be out of [__init_begin, __init_end],
7906 * please refer to arch/tile/kernel/vmlinux.lds.S.
7907 * 3) .rodata.* may be embedded into .text or .data sections.
7908 */
7909#define adj_init_size(start, end, size, pos, adj) \
7910 do { \
7911 if (start <= pos && pos < end && size > adj) \
7912 size -= adj; \
7913 } while (0)
7914
7915 adj_init_size(__init_begin, __init_end, init_data_size,
7916 _sinittext, init_code_size);
7917 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7918 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7919 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7920 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7921
7922#undef adj_init_size
7923
7924 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7925#ifdef CONFIG_HIGHMEM
7926 ", %luK highmem"
7927#endif
7928 ")\n",
7929 nr_free_pages() << (PAGE_SHIFT - 10),
7930 physpages << (PAGE_SHIFT - 10),
7931 codesize >> 10, datasize >> 10, rosize >> 10,
7932 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7933 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7934 totalcma_pages << (PAGE_SHIFT - 10)
7935#ifdef CONFIG_HIGHMEM
7936 , totalhigh_pages() << (PAGE_SHIFT - 10)
7937#endif
7938 );
7939}
7940
7941/**
7942 * set_dma_reserve - set the specified number of pages reserved in the first zone
7943 * @new_dma_reserve: The number of pages to mark reserved
7944 *
7945 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7946 * In the DMA zone, a significant percentage may be consumed by kernel image
7947 * and other unfreeable allocations which can skew the watermarks badly. This
7948 * function may optionally be used to account for unfreeable pages in the
7949 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7950 * smaller per-cpu batchsize.
7951 */
7952void __init set_dma_reserve(unsigned long new_dma_reserve)
7953{
7954 dma_reserve = new_dma_reserve;
7955}
7956
7957static int page_alloc_cpu_dead(unsigned int cpu)
7958{
7959
7960 lru_add_drain_cpu(cpu);
7961 drain_pages(cpu);
7962
7963 /*
7964 * Spill the event counters of the dead processor
7965 * into the current processors event counters.
7966 * This artificially elevates the count of the current
7967 * processor.
7968 */
7969 vm_events_fold_cpu(cpu);
7970
7971 /*
7972 * Zero the differential counters of the dead processor
7973 * so that the vm statistics are consistent.
7974 *
7975 * This is only okay since the processor is dead and cannot
7976 * race with what we are doing.
7977 */
7978 cpu_vm_stats_fold(cpu);
7979 return 0;
7980}
7981
7982#ifdef CONFIG_NUMA
7983int hashdist = HASHDIST_DEFAULT;
7984
7985static int __init set_hashdist(char *str)
7986{
7987 if (!str)
7988 return 0;
7989 hashdist = simple_strtoul(str, &str, 0);
7990 return 1;
7991}
7992__setup("hashdist=", set_hashdist);
7993#endif
7994
7995void __init page_alloc_init(void)
7996{
7997 int ret;
7998
7999#ifdef CONFIG_NUMA
8000 if (num_node_state(N_MEMORY) == 1)
8001 hashdist = 0;
8002#endif
8003
8004 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8005 "mm/page_alloc:dead", NULL,
8006 page_alloc_cpu_dead);
8007 WARN_ON(ret < 0);
8008}
8009
8010/*
8011 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8012 * or min_free_kbytes changes.
8013 */
8014static void calculate_totalreserve_pages(void)
8015{
8016 struct pglist_data *pgdat;
8017 unsigned long reserve_pages = 0;
8018 enum zone_type i, j;
8019
8020 for_each_online_pgdat(pgdat) {
8021
8022 pgdat->totalreserve_pages = 0;
8023
8024 for (i = 0; i < MAX_NR_ZONES; i++) {
8025 struct zone *zone = pgdat->node_zones + i;
8026 long max = 0;
8027 unsigned long managed_pages = zone_managed_pages(zone);
8028
8029 /* Find valid and maximum lowmem_reserve in the zone */
8030 for (j = i; j < MAX_NR_ZONES; j++) {
8031 if (zone->lowmem_reserve[j] > max)
8032 max = zone->lowmem_reserve[j];
8033 }
8034
8035 /* we treat the high watermark as reserved pages. */
8036 max += high_wmark_pages(zone);
8037
8038 if (max > managed_pages)
8039 max = managed_pages;
8040
8041 pgdat->totalreserve_pages += max;
8042
8043 reserve_pages += max;
8044 }
8045 }
8046 totalreserve_pages = reserve_pages;
8047}
8048
8049/*
8050 * setup_per_zone_lowmem_reserve - called whenever
8051 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8052 * has a correct pages reserved value, so an adequate number of
8053 * pages are left in the zone after a successful __alloc_pages().
8054 */
8055static void setup_per_zone_lowmem_reserve(void)
8056{
8057 struct pglist_data *pgdat;
8058 enum zone_type i, j;
8059
8060 for_each_online_pgdat(pgdat) {
8061 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8062 struct zone *zone = &pgdat->node_zones[i];
8063 int ratio = sysctl_lowmem_reserve_ratio[i];
8064 bool clear = !ratio || !zone_managed_pages(zone);
8065 unsigned long managed_pages = 0;
8066
8067 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8068 if (clear) {
8069 zone->lowmem_reserve[j] = 0;
8070 } else {
8071 struct zone *upper_zone = &pgdat->node_zones[j];
8072
8073 managed_pages += zone_managed_pages(upper_zone);
8074 zone->lowmem_reserve[j] = managed_pages / ratio;
8075 }
8076 }
8077 }
8078 }
8079
8080 /* update totalreserve_pages */
8081 calculate_totalreserve_pages();
8082}
8083
8084static void __setup_per_zone_wmarks(void)
8085{
8086 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8087 unsigned long lowmem_pages = 0;
8088 struct zone *zone;
8089 unsigned long flags;
8090
8091 /* Calculate total number of !ZONE_HIGHMEM pages */
8092 for_each_zone(zone) {
8093 if (!is_highmem(zone))
8094 lowmem_pages += zone_managed_pages(zone);
8095 }
8096
8097 for_each_zone(zone) {
8098 u64 tmp;
8099
8100 spin_lock_irqsave(&zone->lock, flags);
8101 tmp = (u64)pages_min * zone_managed_pages(zone);
8102 do_div(tmp, lowmem_pages);
8103 if (is_highmem(zone)) {
8104 /*
8105 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8106 * need highmem pages, so cap pages_min to a small
8107 * value here.
8108 *
8109 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8110 * deltas control async page reclaim, and so should
8111 * not be capped for highmem.
8112 */
8113 unsigned long min_pages;
8114
8115 min_pages = zone_managed_pages(zone) / 1024;
8116 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8117 zone->_watermark[WMARK_MIN] = min_pages;
8118 } else {
8119 /*
8120 * If it's a lowmem zone, reserve a number of pages
8121 * proportionate to the zone's size.
8122 */
8123 zone->_watermark[WMARK_MIN] = tmp;
8124 }
8125
8126 /*
8127 * Set the kswapd watermarks distance according to the
8128 * scale factor in proportion to available memory, but
8129 * ensure a minimum size on small systems.
8130 */
8131 tmp = max_t(u64, tmp >> 2,
8132 mult_frac(zone_managed_pages(zone),
8133 watermark_scale_factor, 10000));
8134
8135 zone->watermark_boost = 0;
8136 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8137 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8138
8139 spin_unlock_irqrestore(&zone->lock, flags);
8140 }
8141
8142 /* update totalreserve_pages */
8143 calculate_totalreserve_pages();
8144}
8145
8146/**
8147 * setup_per_zone_wmarks - called when min_free_kbytes changes
8148 * or when memory is hot-{added|removed}
8149 *
8150 * Ensures that the watermark[min,low,high] values for each zone are set
8151 * correctly with respect to min_free_kbytes.
8152 */
8153void setup_per_zone_wmarks(void)
8154{
8155 static DEFINE_SPINLOCK(lock);
8156
8157 spin_lock(&lock);
8158 __setup_per_zone_wmarks();
8159 spin_unlock(&lock);
8160}
8161
8162/*
8163 * Initialise min_free_kbytes.
8164 *
8165 * For small machines we want it small (128k min). For large machines
8166 * we want it large (256MB max). But it is not linear, because network
8167 * bandwidth does not increase linearly with machine size. We use
8168 *
8169 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8170 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8171 *
8172 * which yields
8173 *
8174 * 16MB: 512k
8175 * 32MB: 724k
8176 * 64MB: 1024k
8177 * 128MB: 1448k
8178 * 256MB: 2048k
8179 * 512MB: 2896k
8180 * 1024MB: 4096k
8181 * 2048MB: 5792k
8182 * 4096MB: 8192k
8183 * 8192MB: 11584k
8184 * 16384MB: 16384k
8185 */
8186int __meminit init_per_zone_wmark_min(void)
8187{
8188 unsigned long lowmem_kbytes;
8189 int new_min_free_kbytes;
8190
8191 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8192 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8193
8194 if (new_min_free_kbytes > user_min_free_kbytes) {
8195 min_free_kbytes = new_min_free_kbytes;
8196 if (min_free_kbytes < 128)
8197 min_free_kbytes = 128;
8198 if (min_free_kbytes > 262144)
8199 min_free_kbytes = 262144;
8200 } else {
8201 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8202 new_min_free_kbytes, user_min_free_kbytes);
8203 }
8204 setup_per_zone_wmarks();
8205 refresh_zone_stat_thresholds();
8206 setup_per_zone_lowmem_reserve();
8207
8208#ifdef CONFIG_NUMA
8209 setup_min_unmapped_ratio();
8210 setup_min_slab_ratio();
8211#endif
8212
8213 khugepaged_min_free_kbytes_update();
8214
8215 return 0;
8216}
8217postcore_initcall(init_per_zone_wmark_min)
8218
8219/*
8220 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8221 * that we can call two helper functions whenever min_free_kbytes
8222 * changes.
8223 */
8224int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8225 void *buffer, size_t *length, loff_t *ppos)
8226{
8227 int rc;
8228
8229 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8230 if (rc)
8231 return rc;
8232
8233 if (write) {
8234 user_min_free_kbytes = min_free_kbytes;
8235 setup_per_zone_wmarks();
8236 }
8237 return 0;
8238}
8239
8240int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8241 void *buffer, size_t *length, loff_t *ppos)
8242{
8243 int rc;
8244
8245 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8246 if (rc)
8247 return rc;
8248
8249 if (write)
8250 setup_per_zone_wmarks();
8251
8252 return 0;
8253}
8254
8255#ifdef CONFIG_NUMA
8256static void setup_min_unmapped_ratio(void)
8257{
8258 pg_data_t *pgdat;
8259 struct zone *zone;
8260
8261 for_each_online_pgdat(pgdat)
8262 pgdat->min_unmapped_pages = 0;
8263
8264 for_each_zone(zone)
8265 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8266 sysctl_min_unmapped_ratio) / 100;
8267}
8268
8269
8270int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8271 void *buffer, size_t *length, loff_t *ppos)
8272{
8273 int rc;
8274
8275 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8276 if (rc)
8277 return rc;
8278
8279 setup_min_unmapped_ratio();
8280
8281 return 0;
8282}
8283
8284static void setup_min_slab_ratio(void)
8285{
8286 pg_data_t *pgdat;
8287 struct zone *zone;
8288
8289 for_each_online_pgdat(pgdat)
8290 pgdat->min_slab_pages = 0;
8291
8292 for_each_zone(zone)
8293 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8294 sysctl_min_slab_ratio) / 100;
8295}
8296
8297int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8298 void *buffer, size_t *length, loff_t *ppos)
8299{
8300 int rc;
8301
8302 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8303 if (rc)
8304 return rc;
8305
8306 setup_min_slab_ratio();
8307
8308 return 0;
8309}
8310#endif
8311
8312/*
8313 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8314 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8315 * whenever sysctl_lowmem_reserve_ratio changes.
8316 *
8317 * The reserve ratio obviously has absolutely no relation with the
8318 * minimum watermarks. The lowmem reserve ratio can only make sense
8319 * if in function of the boot time zone sizes.
8320 */
8321int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8322 void *buffer, size_t *length, loff_t *ppos)
8323{
8324 int i;
8325
8326 proc_dointvec_minmax(table, write, buffer, length, ppos);
8327
8328 for (i = 0; i < MAX_NR_ZONES; i++) {
8329 if (sysctl_lowmem_reserve_ratio[i] < 1)
8330 sysctl_lowmem_reserve_ratio[i] = 0;
8331 }
8332
8333 setup_per_zone_lowmem_reserve();
8334 return 0;
8335}
8336
8337/*
8338 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8339 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8340 * pagelist can have before it gets flushed back to buddy allocator.
8341 */
8342int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8343 void *buffer, size_t *length, loff_t *ppos)
8344{
8345 struct zone *zone;
8346 int old_percpu_pagelist_fraction;
8347 int ret;
8348
8349 mutex_lock(&pcp_batch_high_lock);
8350 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8351
8352 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8353 if (!write || ret < 0)
8354 goto out;
8355
8356 /* Sanity checking to avoid pcp imbalance */
8357 if (percpu_pagelist_fraction &&
8358 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8359 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8360 ret = -EINVAL;
8361 goto out;
8362 }
8363
8364 /* No change? */
8365 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8366 goto out;
8367
8368 for_each_populated_zone(zone)
8369 zone_set_pageset_high_and_batch(zone);
8370out:
8371 mutex_unlock(&pcp_batch_high_lock);
8372 return ret;
8373}
8374
8375#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8376/*
8377 * Returns the number of pages that arch has reserved but
8378 * is not known to alloc_large_system_hash().
8379 */
8380static unsigned long __init arch_reserved_kernel_pages(void)
8381{
8382 return 0;
8383}
8384#endif
8385
8386/*
8387 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8388 * machines. As memory size is increased the scale is also increased but at
8389 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8390 * quadruples the scale is increased by one, which means the size of hash table
8391 * only doubles, instead of quadrupling as well.
8392 * Because 32-bit systems cannot have large physical memory, where this scaling
8393 * makes sense, it is disabled on such platforms.
8394 */
8395#if __BITS_PER_LONG > 32
8396#define ADAPT_SCALE_BASE (64ul << 30)
8397#define ADAPT_SCALE_SHIFT 2
8398#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8399#endif
8400
8401/*
8402 * allocate a large system hash table from bootmem
8403 * - it is assumed that the hash table must contain an exact power-of-2
8404 * quantity of entries
8405 * - limit is the number of hash buckets, not the total allocation size
8406 */
8407void *__init alloc_large_system_hash(const char *tablename,
8408 unsigned long bucketsize,
8409 unsigned long numentries,
8410 int scale,
8411 int flags,
8412 unsigned int *_hash_shift,
8413 unsigned int *_hash_mask,
8414 unsigned long low_limit,
8415 unsigned long high_limit)
8416{
8417 unsigned long long max = high_limit;
8418 unsigned long log2qty, size;
8419 void *table = NULL;
8420 gfp_t gfp_flags;
8421 bool virt;
8422 bool huge;
8423
8424 /* allow the kernel cmdline to have a say */
8425 if (!numentries) {
8426 /* round applicable memory size up to nearest megabyte */
8427 numentries = nr_kernel_pages;
8428 numentries -= arch_reserved_kernel_pages();
8429
8430 /* It isn't necessary when PAGE_SIZE >= 1MB */
8431 if (PAGE_SHIFT < 20)
8432 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8433
8434#if __BITS_PER_LONG > 32
8435 if (!high_limit) {
8436 unsigned long adapt;
8437
8438 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8439 adapt <<= ADAPT_SCALE_SHIFT)
8440 scale++;
8441 }
8442#endif
8443
8444 /* limit to 1 bucket per 2^scale bytes of low memory */
8445 if (scale > PAGE_SHIFT)
8446 numentries >>= (scale - PAGE_SHIFT);
8447 else
8448 numentries <<= (PAGE_SHIFT - scale);
8449
8450 /* Make sure we've got at least a 0-order allocation.. */
8451 if (unlikely(flags & HASH_SMALL)) {
8452 /* Makes no sense without HASH_EARLY */
8453 WARN_ON(!(flags & HASH_EARLY));
8454 if (!(numentries >> *_hash_shift)) {
8455 numentries = 1UL << *_hash_shift;
8456 BUG_ON(!numentries);
8457 }
8458 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8459 numentries = PAGE_SIZE / bucketsize;
8460 }
8461 numentries = roundup_pow_of_two(numentries);
8462
8463 /* limit allocation size to 1/16 total memory by default */
8464 if (max == 0) {
8465 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8466 do_div(max, bucketsize);
8467 }
8468 max = min(max, 0x80000000ULL);
8469
8470 if (numentries < low_limit)
8471 numentries = low_limit;
8472 if (numentries > max)
8473 numentries = max;
8474
8475 log2qty = ilog2(numentries);
8476
8477 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8478 do {
8479 virt = false;
8480 size = bucketsize << log2qty;
8481 if (flags & HASH_EARLY) {
8482 if (flags & HASH_ZERO)
8483 table = memblock_alloc(size, SMP_CACHE_BYTES);
8484 else
8485 table = memblock_alloc_raw(size,
8486 SMP_CACHE_BYTES);
8487 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8488 table = __vmalloc(size, gfp_flags);
8489 virt = true;
8490 huge = is_vm_area_hugepages(table);
8491 } else {
8492 /*
8493 * If bucketsize is not a power-of-two, we may free
8494 * some pages at the end of hash table which
8495 * alloc_pages_exact() automatically does
8496 */
8497 table = alloc_pages_exact(size, gfp_flags);
8498 kmemleak_alloc(table, size, 1, gfp_flags);
8499 }
8500 } while (!table && size > PAGE_SIZE && --log2qty);
8501
8502 if (!table)
8503 panic("Failed to allocate %s hash table\n", tablename);
8504
8505 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8506 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8507 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8508
8509 if (_hash_shift)
8510 *_hash_shift = log2qty;
8511 if (_hash_mask)
8512 *_hash_mask = (1 << log2qty) - 1;
8513
8514 return table;
8515}
8516
8517/*
8518 * This function checks whether pageblock includes unmovable pages or not.
8519 *
8520 * PageLRU check without isolation or lru_lock could race so that
8521 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8522 * check without lock_page also may miss some movable non-lru pages at
8523 * race condition. So you can't expect this function should be exact.
8524 *
8525 * Returns a page without holding a reference. If the caller wants to
8526 * dereference that page (e.g., dumping), it has to make sure that it
8527 * cannot get removed (e.g., via memory unplug) concurrently.
8528 *
8529 */
8530struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8531 int migratetype, int flags)
8532{
8533 unsigned long iter = 0;
8534 unsigned long pfn = page_to_pfn(page);
8535 unsigned long offset = pfn % pageblock_nr_pages;
8536
8537 if (is_migrate_cma_page(page)) {
8538 /*
8539 * CMA allocations (alloc_contig_range) really need to mark
8540 * isolate CMA pageblocks even when they are not movable in fact
8541 * so consider them movable here.
8542 */
8543 if (is_migrate_cma(migratetype))
8544 return NULL;
8545
8546 return page;
8547 }
8548
8549 for (; iter < pageblock_nr_pages - offset; iter++) {
8550 if (!pfn_valid_within(pfn + iter))
8551 continue;
8552
8553 page = pfn_to_page(pfn + iter);
8554
8555 /*
8556 * Both, bootmem allocations and memory holes are marked
8557 * PG_reserved and are unmovable. We can even have unmovable
8558 * allocations inside ZONE_MOVABLE, for example when
8559 * specifying "movablecore".
8560 */
8561 if (PageReserved(page))
8562 return page;
8563
8564 /*
8565 * If the zone is movable and we have ruled out all reserved
8566 * pages then it should be reasonably safe to assume the rest
8567 * is movable.
8568 */
8569 if (zone_idx(zone) == ZONE_MOVABLE)
8570 continue;
8571
8572 /*
8573 * Hugepages are not in LRU lists, but they're movable.
8574 * THPs are on the LRU, but need to be counted as #small pages.
8575 * We need not scan over tail pages because we don't
8576 * handle each tail page individually in migration.
8577 */
8578 if (PageHuge(page) || PageTransCompound(page)) {
8579 struct page *head = compound_head(page);
8580 unsigned int skip_pages;
8581
8582 if (PageHuge(page)) {
8583 if (!hugepage_migration_supported(page_hstate(head)))
8584 return page;
8585 } else if (!PageLRU(head) && !__PageMovable(head)) {
8586 return page;
8587 }
8588
8589 skip_pages = compound_nr(head) - (page - head);
8590 iter += skip_pages - 1;
8591 continue;
8592 }
8593
8594 /*
8595 * We can't use page_count without pin a page
8596 * because another CPU can free compound page.
8597 * This check already skips compound tails of THP
8598 * because their page->_refcount is zero at all time.
8599 */
8600 if (!page_ref_count(page)) {
8601 if (PageBuddy(page))
8602 iter += (1 << buddy_order(page)) - 1;
8603 continue;
8604 }
8605
8606 /*
8607 * The HWPoisoned page may be not in buddy system, and
8608 * page_count() is not 0.
8609 */
8610 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8611 continue;
8612
8613 /*
8614 * We treat all PageOffline() pages as movable when offlining
8615 * to give drivers a chance to decrement their reference count
8616 * in MEM_GOING_OFFLINE in order to indicate that these pages
8617 * can be offlined as there are no direct references anymore.
8618 * For actually unmovable PageOffline() where the driver does
8619 * not support this, we will fail later when trying to actually
8620 * move these pages that still have a reference count > 0.
8621 * (false negatives in this function only)
8622 */
8623 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8624 continue;
8625
8626 if (__PageMovable(page) || PageLRU(page))
8627 continue;
8628
8629 /*
8630 * If there are RECLAIMABLE pages, we need to check
8631 * it. But now, memory offline itself doesn't call
8632 * shrink_node_slabs() and it still to be fixed.
8633 */
8634 return page;
8635 }
8636 return NULL;
8637}
8638
8639#ifdef CONFIG_CONTIG_ALLOC
8640static unsigned long pfn_max_align_down(unsigned long pfn)
8641{
8642 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8643 pageblock_nr_pages) - 1);
8644}
8645
8646static unsigned long pfn_max_align_up(unsigned long pfn)
8647{
8648 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8649 pageblock_nr_pages));
8650}
8651
8652#if defined(CONFIG_DYNAMIC_DEBUG) || \
8653 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8654/* Usage: See admin-guide/dynamic-debug-howto.rst */
8655static void alloc_contig_dump_pages(struct list_head *page_list)
8656{
8657 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8658
8659 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8660 struct page *page;
8661
8662 dump_stack();
8663 list_for_each_entry(page, page_list, lru)
8664 dump_page(page, "migration failure");
8665 }
8666}
8667#else
8668static inline void alloc_contig_dump_pages(struct list_head *page_list)
8669{
8670}
8671#endif
8672
8673/* [start, end) must belong to a single zone. */
8674static int __alloc_contig_migrate_range(struct compact_control *cc,
8675 unsigned long start, unsigned long end)
8676{
8677 /* This function is based on compact_zone() from compaction.c. */
8678 unsigned int nr_reclaimed;
8679 unsigned long pfn = start;
8680 unsigned int tries = 0;
8681 int ret = 0;
8682 struct migration_target_control mtc = {
8683 .nid = zone_to_nid(cc->zone),
8684 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8685 };
8686
8687 lru_cache_disable();
8688
8689 while (pfn < end || !list_empty(&cc->migratepages)) {
8690 if (fatal_signal_pending(current)) {
8691 ret = -EINTR;
8692 break;
8693 }
8694
8695 if (list_empty(&cc->migratepages)) {
8696 cc->nr_migratepages = 0;
8697 ret = isolate_migratepages_range(cc, pfn, end);
8698 if (ret && ret != -EAGAIN)
8699 break;
8700 pfn = cc->migrate_pfn;
8701 tries = 0;
8702 } else if (++tries == 5) {
8703 ret = -EBUSY;
8704 break;
8705 }
8706
8707 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8708 &cc->migratepages);
8709 cc->nr_migratepages -= nr_reclaimed;
8710
8711 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8712 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8713
8714 /*
8715 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8716 * to retry again over this error, so do the same here.
8717 */
8718 if (ret == -ENOMEM)
8719 break;
8720 }
8721
8722 lru_cache_enable();
8723 if (ret < 0) {
8724 alloc_contig_dump_pages(&cc->migratepages);
8725 putback_movable_pages(&cc->migratepages);
8726 return ret;
8727 }
8728 return 0;
8729}
8730
8731/**
8732 * alloc_contig_range() -- tries to allocate given range of pages
8733 * @start: start PFN to allocate
8734 * @end: one-past-the-last PFN to allocate
8735 * @migratetype: migratetype of the underlying pageblocks (either
8736 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8737 * in range must have the same migratetype and it must
8738 * be either of the two.
8739 * @gfp_mask: GFP mask to use during compaction
8740 *
8741 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8742 * aligned. The PFN range must belong to a single zone.
8743 *
8744 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8745 * pageblocks in the range. Once isolated, the pageblocks should not
8746 * be modified by others.
8747 *
8748 * Return: zero on success or negative error code. On success all
8749 * pages which PFN is in [start, end) are allocated for the caller and
8750 * need to be freed with free_contig_range().
8751 */
8752int alloc_contig_range(unsigned long start, unsigned long end,
8753 unsigned migratetype, gfp_t gfp_mask)
8754{
8755 unsigned long outer_start, outer_end;
8756 unsigned int order;
8757 int ret = 0;
8758
8759 struct compact_control cc = {
8760 .nr_migratepages = 0,
8761 .order = -1,
8762 .zone = page_zone(pfn_to_page(start)),
8763 .mode = MIGRATE_SYNC,
8764 .ignore_skip_hint = true,
8765 .no_set_skip_hint = true,
8766 .gfp_mask = current_gfp_context(gfp_mask),
8767 .alloc_contig = true,
8768 };
8769 INIT_LIST_HEAD(&cc.migratepages);
8770
8771 /*
8772 * What we do here is we mark all pageblocks in range as
8773 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8774 * have different sizes, and due to the way page allocator
8775 * work, we align the range to biggest of the two pages so
8776 * that page allocator won't try to merge buddies from
8777 * different pageblocks and change MIGRATE_ISOLATE to some
8778 * other migration type.
8779 *
8780 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8781 * migrate the pages from an unaligned range (ie. pages that
8782 * we are interested in). This will put all the pages in
8783 * range back to page allocator as MIGRATE_ISOLATE.
8784 *
8785 * When this is done, we take the pages in range from page
8786 * allocator removing them from the buddy system. This way
8787 * page allocator will never consider using them.
8788 *
8789 * This lets us mark the pageblocks back as
8790 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8791 * aligned range but not in the unaligned, original range are
8792 * put back to page allocator so that buddy can use them.
8793 */
8794
8795 ret = start_isolate_page_range(pfn_max_align_down(start),
8796 pfn_max_align_up(end), migratetype, 0);
8797 if (ret)
8798 return ret;
8799
8800 drain_all_pages(cc.zone);
8801
8802 /*
8803 * In case of -EBUSY, we'd like to know which page causes problem.
8804 * So, just fall through. test_pages_isolated() has a tracepoint
8805 * which will report the busy page.
8806 *
8807 * It is possible that busy pages could become available before
8808 * the call to test_pages_isolated, and the range will actually be
8809 * allocated. So, if we fall through be sure to clear ret so that
8810 * -EBUSY is not accidentally used or returned to caller.
8811 */
8812 ret = __alloc_contig_migrate_range(&cc, start, end);
8813 if (ret && ret != -EBUSY)
8814 goto done;
8815 ret = 0;
8816
8817 /*
8818 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8819 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8820 * more, all pages in [start, end) are free in page allocator.
8821 * What we are going to do is to allocate all pages from
8822 * [start, end) (that is remove them from page allocator).
8823 *
8824 * The only problem is that pages at the beginning and at the
8825 * end of interesting range may be not aligned with pages that
8826 * page allocator holds, ie. they can be part of higher order
8827 * pages. Because of this, we reserve the bigger range and
8828 * once this is done free the pages we are not interested in.
8829 *
8830 * We don't have to hold zone->lock here because the pages are
8831 * isolated thus they won't get removed from buddy.
8832 */
8833
8834 order = 0;
8835 outer_start = start;
8836 while (!PageBuddy(pfn_to_page(outer_start))) {
8837 if (++order >= MAX_ORDER) {
8838 outer_start = start;
8839 break;
8840 }
8841 outer_start &= ~0UL << order;
8842 }
8843
8844 if (outer_start != start) {
8845 order = buddy_order(pfn_to_page(outer_start));
8846
8847 /*
8848 * outer_start page could be small order buddy page and
8849 * it doesn't include start page. Adjust outer_start
8850 * in this case to report failed page properly
8851 * on tracepoint in test_pages_isolated()
8852 */
8853 if (outer_start + (1UL << order) <= start)
8854 outer_start = start;
8855 }
8856
8857 /* Make sure the range is really isolated. */
8858 if (test_pages_isolated(outer_start, end, 0)) {
8859 ret = -EBUSY;
8860 goto done;
8861 }
8862
8863 /* Grab isolated pages from freelists. */
8864 outer_end = isolate_freepages_range(&cc, outer_start, end);
8865 if (!outer_end) {
8866 ret = -EBUSY;
8867 goto done;
8868 }
8869
8870 /* Free head and tail (if any) */
8871 if (start != outer_start)
8872 free_contig_range(outer_start, start - outer_start);
8873 if (end != outer_end)
8874 free_contig_range(end, outer_end - end);
8875
8876done:
8877 undo_isolate_page_range(pfn_max_align_down(start),
8878 pfn_max_align_up(end), migratetype);
8879 return ret;
8880}
8881EXPORT_SYMBOL(alloc_contig_range);
8882
8883static int __alloc_contig_pages(unsigned long start_pfn,
8884 unsigned long nr_pages, gfp_t gfp_mask)
8885{
8886 unsigned long end_pfn = start_pfn + nr_pages;
8887
8888 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8889 gfp_mask);
8890}
8891
8892static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8893 unsigned long nr_pages)
8894{
8895 unsigned long i, end_pfn = start_pfn + nr_pages;
8896 struct page *page;
8897
8898 for (i = start_pfn; i < end_pfn; i++) {
8899 page = pfn_to_online_page(i);
8900 if (!page)
8901 return false;
8902
8903 if (page_zone(page) != z)
8904 return false;
8905
8906 if (PageReserved(page))
8907 return false;
8908 }
8909 return true;
8910}
8911
8912static bool zone_spans_last_pfn(const struct zone *zone,
8913 unsigned long start_pfn, unsigned long nr_pages)
8914{
8915 unsigned long last_pfn = start_pfn + nr_pages - 1;
8916
8917 return zone_spans_pfn(zone, last_pfn);
8918}
8919
8920/**
8921 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8922 * @nr_pages: Number of contiguous pages to allocate
8923 * @gfp_mask: GFP mask to limit search and used during compaction
8924 * @nid: Target node
8925 * @nodemask: Mask for other possible nodes
8926 *
8927 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8928 * on an applicable zonelist to find a contiguous pfn range which can then be
8929 * tried for allocation with alloc_contig_range(). This routine is intended
8930 * for allocation requests which can not be fulfilled with the buddy allocator.
8931 *
8932 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8933 * power of two then the alignment is guaranteed to be to the given nr_pages
8934 * (e.g. 1GB request would be aligned to 1GB).
8935 *
8936 * Allocated pages can be freed with free_contig_range() or by manually calling
8937 * __free_page() on each allocated page.
8938 *
8939 * Return: pointer to contiguous pages on success, or NULL if not successful.
8940 */
8941struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8942 int nid, nodemask_t *nodemask)
8943{
8944 unsigned long ret, pfn, flags;
8945 struct zonelist *zonelist;
8946 struct zone *zone;
8947 struct zoneref *z;
8948
8949 zonelist = node_zonelist(nid, gfp_mask);
8950 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8951 gfp_zone(gfp_mask), nodemask) {
8952 spin_lock_irqsave(&zone->lock, flags);
8953
8954 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8955 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8956 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8957 /*
8958 * We release the zone lock here because
8959 * alloc_contig_range() will also lock the zone
8960 * at some point. If there's an allocation
8961 * spinning on this lock, it may win the race
8962 * and cause alloc_contig_range() to fail...
8963 */
8964 spin_unlock_irqrestore(&zone->lock, flags);
8965 ret = __alloc_contig_pages(pfn, nr_pages,
8966 gfp_mask);
8967 if (!ret)
8968 return pfn_to_page(pfn);
8969 spin_lock_irqsave(&zone->lock, flags);
8970 }
8971 pfn += nr_pages;
8972 }
8973 spin_unlock_irqrestore(&zone->lock, flags);
8974 }
8975 return NULL;
8976}
8977#endif /* CONFIG_CONTIG_ALLOC */
8978
8979void free_contig_range(unsigned long pfn, unsigned long nr_pages)
8980{
8981 unsigned long count = 0;
8982
8983 for (; nr_pages--; pfn++) {
8984 struct page *page = pfn_to_page(pfn);
8985
8986 count += page_count(page) != 1;
8987 __free_page(page);
8988 }
8989 WARN(count != 0, "%lu pages are still in use!\n", count);
8990}
8991EXPORT_SYMBOL(free_contig_range);
8992
8993/*
8994 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8995 * page high values need to be recalculated.
8996 */
8997void __meminit zone_pcp_update(struct zone *zone)
8998{
8999 mutex_lock(&pcp_batch_high_lock);
9000 zone_set_pageset_high_and_batch(zone);
9001 mutex_unlock(&pcp_batch_high_lock);
9002}
9003
9004/*
9005 * Effectively disable pcplists for the zone by setting the high limit to 0
9006 * and draining all cpus. A concurrent page freeing on another CPU that's about
9007 * to put the page on pcplist will either finish before the drain and the page
9008 * will be drained, or observe the new high limit and skip the pcplist.
9009 *
9010 * Must be paired with a call to zone_pcp_enable().
9011 */
9012void zone_pcp_disable(struct zone *zone)
9013{
9014 mutex_lock(&pcp_batch_high_lock);
9015 __zone_set_pageset_high_and_batch(zone, 0, 1);
9016 __drain_all_pages(zone, true);
9017}
9018
9019void zone_pcp_enable(struct zone *zone)
9020{
9021 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9022 mutex_unlock(&pcp_batch_high_lock);
9023}
9024
9025void zone_pcp_reset(struct zone *zone)
9026{
9027 int cpu;
9028 struct per_cpu_pageset *pset;
9029
9030 if (zone->pageset != &boot_pageset) {
9031 for_each_online_cpu(cpu) {
9032 pset = per_cpu_ptr(zone->pageset, cpu);
9033 drain_zonestat(zone, pset);
9034 }
9035 free_percpu(zone->pageset);
9036 zone->pageset = &boot_pageset;
9037 }
9038}
9039
9040#ifdef CONFIG_MEMORY_HOTREMOVE
9041/*
9042 * All pages in the range must be in a single zone, must not contain holes,
9043 * must span full sections, and must be isolated before calling this function.
9044 */
9045void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9046{
9047 unsigned long pfn = start_pfn;
9048 struct page *page;
9049 struct zone *zone;
9050 unsigned int order;
9051 unsigned long flags;
9052
9053 offline_mem_sections(pfn, end_pfn);
9054 zone = page_zone(pfn_to_page(pfn));
9055 spin_lock_irqsave(&zone->lock, flags);
9056 while (pfn < end_pfn) {
9057 page = pfn_to_page(pfn);
9058 /*
9059 * The HWPoisoned page may be not in buddy system, and
9060 * page_count() is not 0.
9061 */
9062 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9063 pfn++;
9064 continue;
9065 }
9066 /*
9067 * At this point all remaining PageOffline() pages have a
9068 * reference count of 0 and can simply be skipped.
9069 */
9070 if (PageOffline(page)) {
9071 BUG_ON(page_count(page));
9072 BUG_ON(PageBuddy(page));
9073 pfn++;
9074 continue;
9075 }
9076
9077 BUG_ON(page_count(page));
9078 BUG_ON(!PageBuddy(page));
9079 order = buddy_order(page);
9080 del_page_from_free_list(page, zone, order);
9081 pfn += (1 << order);
9082 }
9083 spin_unlock_irqrestore(&zone->lock, flags);
9084}
9085#endif
9086
9087bool is_free_buddy_page(struct page *page)
9088{
9089 struct zone *zone = page_zone(page);
9090 unsigned long pfn = page_to_pfn(page);
9091 unsigned long flags;
9092 unsigned int order;
9093
9094 spin_lock_irqsave(&zone->lock, flags);
9095 for (order = 0; order < MAX_ORDER; order++) {
9096 struct page *page_head = page - (pfn & ((1 << order) - 1));
9097
9098 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9099 break;
9100 }
9101 spin_unlock_irqrestore(&zone->lock, flags);
9102
9103 return order < MAX_ORDER;
9104}
9105
9106#ifdef CONFIG_MEMORY_FAILURE
9107/*
9108 * Break down a higher-order page in sub-pages, and keep our target out of
9109 * buddy allocator.
9110 */
9111static void break_down_buddy_pages(struct zone *zone, struct page *page,
9112 struct page *target, int low, int high,
9113 int migratetype)
9114{
9115 unsigned long size = 1 << high;
9116 struct page *current_buddy, *next_page;
9117
9118 while (high > low) {
9119 high--;
9120 size >>= 1;
9121
9122 if (target >= &page[size]) {
9123 next_page = page + size;
9124 current_buddy = page;
9125 } else {
9126 next_page = page;
9127 current_buddy = page + size;
9128 }
9129
9130 if (set_page_guard(zone, current_buddy, high, migratetype))
9131 continue;
9132
9133 if (current_buddy != target) {
9134 add_to_free_list(current_buddy, zone, high, migratetype);
9135 set_buddy_order(current_buddy, high);
9136 page = next_page;
9137 }
9138 }
9139}
9140
9141/*
9142 * Take a page that will be marked as poisoned off the buddy allocator.
9143 */
9144bool take_page_off_buddy(struct page *page)
9145{
9146 struct zone *zone = page_zone(page);
9147 unsigned long pfn = page_to_pfn(page);
9148 unsigned long flags;
9149 unsigned int order;
9150 bool ret = false;
9151
9152 spin_lock_irqsave(&zone->lock, flags);
9153 for (order = 0; order < MAX_ORDER; order++) {
9154 struct page *page_head = page - (pfn & ((1 << order) - 1));
9155 int page_order = buddy_order(page_head);
9156
9157 if (PageBuddy(page_head) && page_order >= order) {
9158 unsigned long pfn_head = page_to_pfn(page_head);
9159 int migratetype = get_pfnblock_migratetype(page_head,
9160 pfn_head);
9161
9162 del_page_from_free_list(page_head, zone, page_order);
9163 break_down_buddy_pages(zone, page_head, page, 0,
9164 page_order, migratetype);
9165 if (!is_migrate_isolate(migratetype))
9166 __mod_zone_freepage_state(zone, -1, migratetype);
9167 ret = true;
9168 break;
9169 }
9170 if (page_count(page_head) > 0)
9171 break;
9172 }
9173 spin_unlock_irqrestore(&zone->lock, flags);
9174 return ret;
9175}
9176#endif