at v5.13 2027 lines 56 kB view raw
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/vm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36#include <linux/kernel.h> 37#include <linux/mm.h> 38#include <linux/page-flags.h> 39#include <linux/kernel-page-flags.h> 40#include <linux/sched/signal.h> 41#include <linux/sched/task.h> 42#include <linux/ksm.h> 43#include <linux/rmap.h> 44#include <linux/export.h> 45#include <linux/pagemap.h> 46#include <linux/swap.h> 47#include <linux/backing-dev.h> 48#include <linux/migrate.h> 49#include <linux/suspend.h> 50#include <linux/slab.h> 51#include <linux/swapops.h> 52#include <linux/hugetlb.h> 53#include <linux/memory_hotplug.h> 54#include <linux/mm_inline.h> 55#include <linux/memremap.h> 56#include <linux/kfifo.h> 57#include <linux/ratelimit.h> 58#include <linux/page-isolation.h> 59#include "internal.h" 60#include "ras/ras_event.h" 61 62int sysctl_memory_failure_early_kill __read_mostly = 0; 63 64int sysctl_memory_failure_recovery __read_mostly = 1; 65 66atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 67 68static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 69{ 70 if (hugepage_or_freepage) { 71 /* 72 * Doing this check for free pages is also fine since dissolve_free_huge_page 73 * returns 0 for non-hugetlb pages as well. 74 */ 75 if (dissolve_free_huge_page(page) || !take_page_off_buddy(page)) 76 /* 77 * We could fail to take off the target page from buddy 78 * for example due to racy page allocation, but that's 79 * acceptable because soft-offlined page is not broken 80 * and if someone really want to use it, they should 81 * take it. 82 */ 83 return false; 84 } 85 86 SetPageHWPoison(page); 87 if (release) 88 put_page(page); 89 page_ref_inc(page); 90 num_poisoned_pages_inc(); 91 92 return true; 93} 94 95#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 96 97u32 hwpoison_filter_enable = 0; 98u32 hwpoison_filter_dev_major = ~0U; 99u32 hwpoison_filter_dev_minor = ~0U; 100u64 hwpoison_filter_flags_mask; 101u64 hwpoison_filter_flags_value; 102EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 103EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 104EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 105EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 106EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 107 108static int hwpoison_filter_dev(struct page *p) 109{ 110 struct address_space *mapping; 111 dev_t dev; 112 113 if (hwpoison_filter_dev_major == ~0U && 114 hwpoison_filter_dev_minor == ~0U) 115 return 0; 116 117 /* 118 * page_mapping() does not accept slab pages. 119 */ 120 if (PageSlab(p)) 121 return -EINVAL; 122 123 mapping = page_mapping(p); 124 if (mapping == NULL || mapping->host == NULL) 125 return -EINVAL; 126 127 dev = mapping->host->i_sb->s_dev; 128 if (hwpoison_filter_dev_major != ~0U && 129 hwpoison_filter_dev_major != MAJOR(dev)) 130 return -EINVAL; 131 if (hwpoison_filter_dev_minor != ~0U && 132 hwpoison_filter_dev_minor != MINOR(dev)) 133 return -EINVAL; 134 135 return 0; 136} 137 138static int hwpoison_filter_flags(struct page *p) 139{ 140 if (!hwpoison_filter_flags_mask) 141 return 0; 142 143 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 144 hwpoison_filter_flags_value) 145 return 0; 146 else 147 return -EINVAL; 148} 149 150/* 151 * This allows stress tests to limit test scope to a collection of tasks 152 * by putting them under some memcg. This prevents killing unrelated/important 153 * processes such as /sbin/init. Note that the target task may share clean 154 * pages with init (eg. libc text), which is harmless. If the target task 155 * share _dirty_ pages with another task B, the test scheme must make sure B 156 * is also included in the memcg. At last, due to race conditions this filter 157 * can only guarantee that the page either belongs to the memcg tasks, or is 158 * a freed page. 159 */ 160#ifdef CONFIG_MEMCG 161u64 hwpoison_filter_memcg; 162EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 163static int hwpoison_filter_task(struct page *p) 164{ 165 if (!hwpoison_filter_memcg) 166 return 0; 167 168 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 169 return -EINVAL; 170 171 return 0; 172} 173#else 174static int hwpoison_filter_task(struct page *p) { return 0; } 175#endif 176 177int hwpoison_filter(struct page *p) 178{ 179 if (!hwpoison_filter_enable) 180 return 0; 181 182 if (hwpoison_filter_dev(p)) 183 return -EINVAL; 184 185 if (hwpoison_filter_flags(p)) 186 return -EINVAL; 187 188 if (hwpoison_filter_task(p)) 189 return -EINVAL; 190 191 return 0; 192} 193#else 194int hwpoison_filter(struct page *p) 195{ 196 return 0; 197} 198#endif 199 200EXPORT_SYMBOL_GPL(hwpoison_filter); 201 202/* 203 * Kill all processes that have a poisoned page mapped and then isolate 204 * the page. 205 * 206 * General strategy: 207 * Find all processes having the page mapped and kill them. 208 * But we keep a page reference around so that the page is not 209 * actually freed yet. 210 * Then stash the page away 211 * 212 * There's no convenient way to get back to mapped processes 213 * from the VMAs. So do a brute-force search over all 214 * running processes. 215 * 216 * Remember that machine checks are not common (or rather 217 * if they are common you have other problems), so this shouldn't 218 * be a performance issue. 219 * 220 * Also there are some races possible while we get from the 221 * error detection to actually handle it. 222 */ 223 224struct to_kill { 225 struct list_head nd; 226 struct task_struct *tsk; 227 unsigned long addr; 228 short size_shift; 229}; 230 231/* 232 * Send all the processes who have the page mapped a signal. 233 * ``action optional'' if they are not immediately affected by the error 234 * ``action required'' if error happened in current execution context 235 */ 236static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 237{ 238 struct task_struct *t = tk->tsk; 239 short addr_lsb = tk->size_shift; 240 int ret = 0; 241 242 pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 243 pfn, t->comm, t->pid); 244 245 if (flags & MF_ACTION_REQUIRED) { 246 if (t == current) 247 ret = force_sig_mceerr(BUS_MCEERR_AR, 248 (void __user *)tk->addr, addr_lsb); 249 else 250 /* Signal other processes sharing the page if they have PF_MCE_EARLY set. */ 251 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 252 addr_lsb, t); 253 } else { 254 /* 255 * Don't use force here, it's convenient if the signal 256 * can be temporarily blocked. 257 * This could cause a loop when the user sets SIGBUS 258 * to SIG_IGN, but hopefully no one will do that? 259 */ 260 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 261 addr_lsb, t); /* synchronous? */ 262 } 263 if (ret < 0) 264 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 265 t->comm, t->pid, ret); 266 return ret; 267} 268 269/* 270 * Unknown page type encountered. Try to check whether it can turn PageLRU by 271 * lru_add_drain_all, or a free page by reclaiming slabs when possible. 272 */ 273void shake_page(struct page *p, int access) 274{ 275 if (PageHuge(p)) 276 return; 277 278 if (!PageSlab(p)) { 279 lru_add_drain_all(); 280 if (PageLRU(p) || is_free_buddy_page(p)) 281 return; 282 } 283 284 /* 285 * Only call shrink_node_slabs here (which would also shrink 286 * other caches) if access is not potentially fatal. 287 */ 288 if (access) 289 drop_slab_node(page_to_nid(p)); 290} 291EXPORT_SYMBOL_GPL(shake_page); 292 293static unsigned long dev_pagemap_mapping_shift(struct page *page, 294 struct vm_area_struct *vma) 295{ 296 unsigned long address = vma_address(page, vma); 297 pgd_t *pgd; 298 p4d_t *p4d; 299 pud_t *pud; 300 pmd_t *pmd; 301 pte_t *pte; 302 303 pgd = pgd_offset(vma->vm_mm, address); 304 if (!pgd_present(*pgd)) 305 return 0; 306 p4d = p4d_offset(pgd, address); 307 if (!p4d_present(*p4d)) 308 return 0; 309 pud = pud_offset(p4d, address); 310 if (!pud_present(*pud)) 311 return 0; 312 if (pud_devmap(*pud)) 313 return PUD_SHIFT; 314 pmd = pmd_offset(pud, address); 315 if (!pmd_present(*pmd)) 316 return 0; 317 if (pmd_devmap(*pmd)) 318 return PMD_SHIFT; 319 pte = pte_offset_map(pmd, address); 320 if (!pte_present(*pte)) 321 return 0; 322 if (pte_devmap(*pte)) 323 return PAGE_SHIFT; 324 return 0; 325} 326 327/* 328 * Failure handling: if we can't find or can't kill a process there's 329 * not much we can do. We just print a message and ignore otherwise. 330 */ 331 332/* 333 * Schedule a process for later kill. 334 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 335 */ 336static void add_to_kill(struct task_struct *tsk, struct page *p, 337 struct vm_area_struct *vma, 338 struct list_head *to_kill) 339{ 340 struct to_kill *tk; 341 342 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 343 if (!tk) { 344 pr_err("Memory failure: Out of memory while machine check handling\n"); 345 return; 346 } 347 348 tk->addr = page_address_in_vma(p, vma); 349 if (is_zone_device_page(p)) 350 tk->size_shift = dev_pagemap_mapping_shift(p, vma); 351 else 352 tk->size_shift = page_shift(compound_head(p)); 353 354 /* 355 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 356 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 357 * so "tk->size_shift == 0" effectively checks no mapping on 358 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 359 * to a process' address space, it's possible not all N VMAs 360 * contain mappings for the page, but at least one VMA does. 361 * Only deliver SIGBUS with payload derived from the VMA that 362 * has a mapping for the page. 363 */ 364 if (tk->addr == -EFAULT) { 365 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 366 page_to_pfn(p), tsk->comm); 367 } else if (tk->size_shift == 0) { 368 kfree(tk); 369 return; 370 } 371 372 get_task_struct(tsk); 373 tk->tsk = tsk; 374 list_add_tail(&tk->nd, to_kill); 375} 376 377/* 378 * Kill the processes that have been collected earlier. 379 * 380 * Only do anything when DOIT is set, otherwise just free the list 381 * (this is used for clean pages which do not need killing) 382 * Also when FAIL is set do a force kill because something went 383 * wrong earlier. 384 */ 385static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 386 unsigned long pfn, int flags) 387{ 388 struct to_kill *tk, *next; 389 390 list_for_each_entry_safe (tk, next, to_kill, nd) { 391 if (forcekill) { 392 /* 393 * In case something went wrong with munmapping 394 * make sure the process doesn't catch the 395 * signal and then access the memory. Just kill it. 396 */ 397 if (fail || tk->addr == -EFAULT) { 398 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 399 pfn, tk->tsk->comm, tk->tsk->pid); 400 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 401 tk->tsk, PIDTYPE_PID); 402 } 403 404 /* 405 * In theory the process could have mapped 406 * something else on the address in-between. We could 407 * check for that, but we need to tell the 408 * process anyways. 409 */ 410 else if (kill_proc(tk, pfn, flags) < 0) 411 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 412 pfn, tk->tsk->comm, tk->tsk->pid); 413 } 414 put_task_struct(tk->tsk); 415 kfree(tk); 416 } 417} 418 419/* 420 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 421 * on behalf of the thread group. Return task_struct of the (first found) 422 * dedicated thread if found, and return NULL otherwise. 423 * 424 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 425 * have to call rcu_read_lock/unlock() in this function. 426 */ 427static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 428{ 429 struct task_struct *t; 430 431 for_each_thread(tsk, t) { 432 if (t->flags & PF_MCE_PROCESS) { 433 if (t->flags & PF_MCE_EARLY) 434 return t; 435 } else { 436 if (sysctl_memory_failure_early_kill) 437 return t; 438 } 439 } 440 return NULL; 441} 442 443/* 444 * Determine whether a given process is "early kill" process which expects 445 * to be signaled when some page under the process is hwpoisoned. 446 * Return task_struct of the dedicated thread (main thread unless explicitly 447 * specified) if the process is "early kill" and otherwise returns NULL. 448 * 449 * Note that the above is true for Action Optional case. For Action Required 450 * case, it's only meaningful to the current thread which need to be signaled 451 * with SIGBUS, this error is Action Optional for other non current 452 * processes sharing the same error page,if the process is "early kill", the 453 * task_struct of the dedicated thread will also be returned. 454 */ 455static struct task_struct *task_early_kill(struct task_struct *tsk, 456 int force_early) 457{ 458 if (!tsk->mm) 459 return NULL; 460 /* 461 * Comparing ->mm here because current task might represent 462 * a subthread, while tsk always points to the main thread. 463 */ 464 if (force_early && tsk->mm == current->mm) 465 return current; 466 467 return find_early_kill_thread(tsk); 468} 469 470/* 471 * Collect processes when the error hit an anonymous page. 472 */ 473static void collect_procs_anon(struct page *page, struct list_head *to_kill, 474 int force_early) 475{ 476 struct vm_area_struct *vma; 477 struct task_struct *tsk; 478 struct anon_vma *av; 479 pgoff_t pgoff; 480 481 av = page_lock_anon_vma_read(page); 482 if (av == NULL) /* Not actually mapped anymore */ 483 return; 484 485 pgoff = page_to_pgoff(page); 486 read_lock(&tasklist_lock); 487 for_each_process (tsk) { 488 struct anon_vma_chain *vmac; 489 struct task_struct *t = task_early_kill(tsk, force_early); 490 491 if (!t) 492 continue; 493 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 494 pgoff, pgoff) { 495 vma = vmac->vma; 496 if (!page_mapped_in_vma(page, vma)) 497 continue; 498 if (vma->vm_mm == t->mm) 499 add_to_kill(t, page, vma, to_kill); 500 } 501 } 502 read_unlock(&tasklist_lock); 503 page_unlock_anon_vma_read(av); 504} 505 506/* 507 * Collect processes when the error hit a file mapped page. 508 */ 509static void collect_procs_file(struct page *page, struct list_head *to_kill, 510 int force_early) 511{ 512 struct vm_area_struct *vma; 513 struct task_struct *tsk; 514 struct address_space *mapping = page->mapping; 515 pgoff_t pgoff; 516 517 i_mmap_lock_read(mapping); 518 read_lock(&tasklist_lock); 519 pgoff = page_to_pgoff(page); 520 for_each_process(tsk) { 521 struct task_struct *t = task_early_kill(tsk, force_early); 522 523 if (!t) 524 continue; 525 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 526 pgoff) { 527 /* 528 * Send early kill signal to tasks where a vma covers 529 * the page but the corrupted page is not necessarily 530 * mapped it in its pte. 531 * Assume applications who requested early kill want 532 * to be informed of all such data corruptions. 533 */ 534 if (vma->vm_mm == t->mm) 535 add_to_kill(t, page, vma, to_kill); 536 } 537 } 538 read_unlock(&tasklist_lock); 539 i_mmap_unlock_read(mapping); 540} 541 542/* 543 * Collect the processes who have the corrupted page mapped to kill. 544 */ 545static void collect_procs(struct page *page, struct list_head *tokill, 546 int force_early) 547{ 548 if (!page->mapping) 549 return; 550 551 if (PageAnon(page)) 552 collect_procs_anon(page, tokill, force_early); 553 else 554 collect_procs_file(page, tokill, force_early); 555} 556 557static const char *action_name[] = { 558 [MF_IGNORED] = "Ignored", 559 [MF_FAILED] = "Failed", 560 [MF_DELAYED] = "Delayed", 561 [MF_RECOVERED] = "Recovered", 562}; 563 564static const char * const action_page_types[] = { 565 [MF_MSG_KERNEL] = "reserved kernel page", 566 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 567 [MF_MSG_SLAB] = "kernel slab page", 568 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 569 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 570 [MF_MSG_HUGE] = "huge page", 571 [MF_MSG_FREE_HUGE] = "free huge page", 572 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page", 573 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 574 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 575 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 576 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 577 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 578 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 579 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 580 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 581 [MF_MSG_CLEAN_LRU] = "clean LRU page", 582 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 583 [MF_MSG_BUDDY] = "free buddy page", 584 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 585 [MF_MSG_DAX] = "dax page", 586 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 587 [MF_MSG_UNKNOWN] = "unknown page", 588}; 589 590/* 591 * XXX: It is possible that a page is isolated from LRU cache, 592 * and then kept in swap cache or failed to remove from page cache. 593 * The page count will stop it from being freed by unpoison. 594 * Stress tests should be aware of this memory leak problem. 595 */ 596static int delete_from_lru_cache(struct page *p) 597{ 598 if (!isolate_lru_page(p)) { 599 /* 600 * Clear sensible page flags, so that the buddy system won't 601 * complain when the page is unpoison-and-freed. 602 */ 603 ClearPageActive(p); 604 ClearPageUnevictable(p); 605 606 /* 607 * Poisoned page might never drop its ref count to 0 so we have 608 * to uncharge it manually from its memcg. 609 */ 610 mem_cgroup_uncharge(p); 611 612 /* 613 * drop the page count elevated by isolate_lru_page() 614 */ 615 put_page(p); 616 return 0; 617 } 618 return -EIO; 619} 620 621static int truncate_error_page(struct page *p, unsigned long pfn, 622 struct address_space *mapping) 623{ 624 int ret = MF_FAILED; 625 626 if (mapping->a_ops->error_remove_page) { 627 int err = mapping->a_ops->error_remove_page(mapping, p); 628 629 if (err != 0) { 630 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 631 pfn, err); 632 } else if (page_has_private(p) && 633 !try_to_release_page(p, GFP_NOIO)) { 634 pr_info("Memory failure: %#lx: failed to release buffers\n", 635 pfn); 636 } else { 637 ret = MF_RECOVERED; 638 } 639 } else { 640 /* 641 * If the file system doesn't support it just invalidate 642 * This fails on dirty or anything with private pages 643 */ 644 if (invalidate_inode_page(p)) 645 ret = MF_RECOVERED; 646 else 647 pr_info("Memory failure: %#lx: Failed to invalidate\n", 648 pfn); 649 } 650 651 return ret; 652} 653 654/* 655 * Error hit kernel page. 656 * Do nothing, try to be lucky and not touch this instead. For a few cases we 657 * could be more sophisticated. 658 */ 659static int me_kernel(struct page *p, unsigned long pfn) 660{ 661 unlock_page(p); 662 return MF_IGNORED; 663} 664 665/* 666 * Page in unknown state. Do nothing. 667 */ 668static int me_unknown(struct page *p, unsigned long pfn) 669{ 670 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 671 unlock_page(p); 672 return MF_FAILED; 673} 674 675/* 676 * Clean (or cleaned) page cache page. 677 */ 678static int me_pagecache_clean(struct page *p, unsigned long pfn) 679{ 680 int ret; 681 struct address_space *mapping; 682 683 delete_from_lru_cache(p); 684 685 /* 686 * For anonymous pages we're done the only reference left 687 * should be the one m_f() holds. 688 */ 689 if (PageAnon(p)) { 690 ret = MF_RECOVERED; 691 goto out; 692 } 693 694 /* 695 * Now truncate the page in the page cache. This is really 696 * more like a "temporary hole punch" 697 * Don't do this for block devices when someone else 698 * has a reference, because it could be file system metadata 699 * and that's not safe to truncate. 700 */ 701 mapping = page_mapping(p); 702 if (!mapping) { 703 /* 704 * Page has been teared down in the meanwhile 705 */ 706 ret = MF_FAILED; 707 goto out; 708 } 709 710 /* 711 * Truncation is a bit tricky. Enable it per file system for now. 712 * 713 * Open: to take i_mutex or not for this? Right now we don't. 714 */ 715 ret = truncate_error_page(p, pfn, mapping); 716out: 717 unlock_page(p); 718 return ret; 719} 720 721/* 722 * Dirty pagecache page 723 * Issues: when the error hit a hole page the error is not properly 724 * propagated. 725 */ 726static int me_pagecache_dirty(struct page *p, unsigned long pfn) 727{ 728 struct address_space *mapping = page_mapping(p); 729 730 SetPageError(p); 731 /* TBD: print more information about the file. */ 732 if (mapping) { 733 /* 734 * IO error will be reported by write(), fsync(), etc. 735 * who check the mapping. 736 * This way the application knows that something went 737 * wrong with its dirty file data. 738 * 739 * There's one open issue: 740 * 741 * The EIO will be only reported on the next IO 742 * operation and then cleared through the IO map. 743 * Normally Linux has two mechanisms to pass IO error 744 * first through the AS_EIO flag in the address space 745 * and then through the PageError flag in the page. 746 * Since we drop pages on memory failure handling the 747 * only mechanism open to use is through AS_AIO. 748 * 749 * This has the disadvantage that it gets cleared on 750 * the first operation that returns an error, while 751 * the PageError bit is more sticky and only cleared 752 * when the page is reread or dropped. If an 753 * application assumes it will always get error on 754 * fsync, but does other operations on the fd before 755 * and the page is dropped between then the error 756 * will not be properly reported. 757 * 758 * This can already happen even without hwpoisoned 759 * pages: first on metadata IO errors (which only 760 * report through AS_EIO) or when the page is dropped 761 * at the wrong time. 762 * 763 * So right now we assume that the application DTRT on 764 * the first EIO, but we're not worse than other parts 765 * of the kernel. 766 */ 767 mapping_set_error(mapping, -EIO); 768 } 769 770 return me_pagecache_clean(p, pfn); 771} 772 773/* 774 * Clean and dirty swap cache. 775 * 776 * Dirty swap cache page is tricky to handle. The page could live both in page 777 * cache and swap cache(ie. page is freshly swapped in). So it could be 778 * referenced concurrently by 2 types of PTEs: 779 * normal PTEs and swap PTEs. We try to handle them consistently by calling 780 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 781 * and then 782 * - clear dirty bit to prevent IO 783 * - remove from LRU 784 * - but keep in the swap cache, so that when we return to it on 785 * a later page fault, we know the application is accessing 786 * corrupted data and shall be killed (we installed simple 787 * interception code in do_swap_page to catch it). 788 * 789 * Clean swap cache pages can be directly isolated. A later page fault will 790 * bring in the known good data from disk. 791 */ 792static int me_swapcache_dirty(struct page *p, unsigned long pfn) 793{ 794 int ret; 795 796 ClearPageDirty(p); 797 /* Trigger EIO in shmem: */ 798 ClearPageUptodate(p); 799 800 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 801 unlock_page(p); 802 return ret; 803} 804 805static int me_swapcache_clean(struct page *p, unsigned long pfn) 806{ 807 int ret; 808 809 delete_from_swap_cache(p); 810 811 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 812 unlock_page(p); 813 return ret; 814} 815 816/* 817 * Huge pages. Needs work. 818 * Issues: 819 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 820 * To narrow down kill region to one page, we need to break up pmd. 821 */ 822static int me_huge_page(struct page *p, unsigned long pfn) 823{ 824 int res; 825 struct page *hpage = compound_head(p); 826 struct address_space *mapping; 827 828 if (!PageHuge(hpage)) 829 return MF_DELAYED; 830 831 mapping = page_mapping(hpage); 832 if (mapping) { 833 res = truncate_error_page(hpage, pfn, mapping); 834 unlock_page(hpage); 835 } else { 836 res = MF_FAILED; 837 unlock_page(hpage); 838 /* 839 * migration entry prevents later access on error anonymous 840 * hugepage, so we can free and dissolve it into buddy to 841 * save healthy subpages. 842 */ 843 if (PageAnon(hpage)) 844 put_page(hpage); 845 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 846 page_ref_inc(p); 847 res = MF_RECOVERED; 848 } 849 } 850 851 return res; 852} 853 854/* 855 * Various page states we can handle. 856 * 857 * A page state is defined by its current page->flags bits. 858 * The table matches them in order and calls the right handler. 859 * 860 * This is quite tricky because we can access page at any time 861 * in its live cycle, so all accesses have to be extremely careful. 862 * 863 * This is not complete. More states could be added. 864 * For any missing state don't attempt recovery. 865 */ 866 867#define dirty (1UL << PG_dirty) 868#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 869#define unevict (1UL << PG_unevictable) 870#define mlock (1UL << PG_mlocked) 871#define lru (1UL << PG_lru) 872#define head (1UL << PG_head) 873#define slab (1UL << PG_slab) 874#define reserved (1UL << PG_reserved) 875 876static struct page_state { 877 unsigned long mask; 878 unsigned long res; 879 enum mf_action_page_type type; 880 881 /* Callback ->action() has to unlock the relevant page inside it. */ 882 int (*action)(struct page *p, unsigned long pfn); 883} error_states[] = { 884 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 885 /* 886 * free pages are specially detected outside this table: 887 * PG_buddy pages only make a small fraction of all free pages. 888 */ 889 890 /* 891 * Could in theory check if slab page is free or if we can drop 892 * currently unused objects without touching them. But just 893 * treat it as standard kernel for now. 894 */ 895 { slab, slab, MF_MSG_SLAB, me_kernel }, 896 897 { head, head, MF_MSG_HUGE, me_huge_page }, 898 899 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 900 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 901 902 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 903 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 904 905 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 906 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 907 908 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 909 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 910 911 /* 912 * Catchall entry: must be at end. 913 */ 914 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 915}; 916 917#undef dirty 918#undef sc 919#undef unevict 920#undef mlock 921#undef lru 922#undef head 923#undef slab 924#undef reserved 925 926/* 927 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 928 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 929 */ 930static void action_result(unsigned long pfn, enum mf_action_page_type type, 931 enum mf_result result) 932{ 933 trace_memory_failure_event(pfn, type, result); 934 935 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 936 pfn, action_page_types[type], action_name[result]); 937} 938 939static int page_action(struct page_state *ps, struct page *p, 940 unsigned long pfn) 941{ 942 int result; 943 int count; 944 945 /* page p should be unlocked after returning from ps->action(). */ 946 result = ps->action(p, pfn); 947 948 count = page_count(p) - 1; 949 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 950 count--; 951 if (count > 0) { 952 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 953 pfn, action_page_types[ps->type], count); 954 result = MF_FAILED; 955 } 956 action_result(pfn, ps->type, result); 957 958 /* Could do more checks here if page looks ok */ 959 /* 960 * Could adjust zone counters here to correct for the missing page. 961 */ 962 963 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 964} 965 966/* 967 * Return true if a page type of a given page is supported by hwpoison 968 * mechanism (while handling could fail), otherwise false. This function 969 * does not return true for hugetlb or device memory pages, so it's assumed 970 * to be called only in the context where we never have such pages. 971 */ 972static inline bool HWPoisonHandlable(struct page *page) 973{ 974 return PageLRU(page) || __PageMovable(page); 975} 976 977/** 978 * __get_hwpoison_page() - Get refcount for memory error handling: 979 * @page: raw error page (hit by memory error) 980 * 981 * Return: return 0 if failed to grab the refcount, otherwise true (some 982 * non-zero value.) 983 */ 984static int __get_hwpoison_page(struct page *page) 985{ 986 struct page *head = compound_head(page); 987 int ret = 0; 988 bool hugetlb = false; 989 990 ret = get_hwpoison_huge_page(head, &hugetlb); 991 if (hugetlb) 992 return ret; 993 994 /* 995 * This check prevents from calling get_hwpoison_unless_zero() 996 * for any unsupported type of page in order to reduce the risk of 997 * unexpected races caused by taking a page refcount. 998 */ 999 if (!HWPoisonHandlable(head)) 1000 return 0; 1001 1002 if (PageTransHuge(head)) { 1003 /* 1004 * Non anonymous thp exists only in allocation/free time. We 1005 * can't handle such a case correctly, so let's give it up. 1006 * This should be better than triggering BUG_ON when kernel 1007 * tries to touch the "partially handled" page. 1008 */ 1009 if (!PageAnon(head)) { 1010 pr_err("Memory failure: %#lx: non anonymous thp\n", 1011 page_to_pfn(page)); 1012 return 0; 1013 } 1014 } 1015 1016 if (get_page_unless_zero(head)) { 1017 if (head == compound_head(page)) 1018 return 1; 1019 1020 pr_info("Memory failure: %#lx cannot catch tail\n", 1021 page_to_pfn(page)); 1022 put_page(head); 1023 } 1024 1025 return 0; 1026} 1027 1028/* 1029 * Safely get reference count of an arbitrary page. 1030 * 1031 * Returns 0 for a free page, 1 for an in-use page, 1032 * -EIO for a page-type we cannot handle and -EBUSY if we raced with an 1033 * allocation. 1034 * We only incremented refcount in case the page was already in-use and it 1035 * is a known type we can handle. 1036 */ 1037static int get_any_page(struct page *p, unsigned long flags) 1038{ 1039 int ret = 0, pass = 0; 1040 bool count_increased = false; 1041 1042 if (flags & MF_COUNT_INCREASED) 1043 count_increased = true; 1044 1045try_again: 1046 if (!count_increased && !__get_hwpoison_page(p)) { 1047 if (page_count(p)) { 1048 /* We raced with an allocation, retry. */ 1049 if (pass++ < 3) 1050 goto try_again; 1051 ret = -EBUSY; 1052 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1053 /* We raced with put_page, retry. */ 1054 if (pass++ < 3) 1055 goto try_again; 1056 ret = -EIO; 1057 } 1058 } else { 1059 if (PageHuge(p) || HWPoisonHandlable(p)) { 1060 ret = 1; 1061 } else { 1062 /* 1063 * A page we cannot handle. Check whether we can turn 1064 * it into something we can handle. 1065 */ 1066 if (pass++ < 3) { 1067 put_page(p); 1068 shake_page(p, 1); 1069 count_increased = false; 1070 goto try_again; 1071 } 1072 put_page(p); 1073 ret = -EIO; 1074 } 1075 } 1076 1077 return ret; 1078} 1079 1080static int get_hwpoison_page(struct page *p, unsigned long flags, 1081 enum mf_flags ctxt) 1082{ 1083 int ret; 1084 1085 zone_pcp_disable(page_zone(p)); 1086 if (ctxt == MF_SOFT_OFFLINE) 1087 ret = get_any_page(p, flags); 1088 else 1089 ret = __get_hwpoison_page(p); 1090 zone_pcp_enable(page_zone(p)); 1091 1092 return ret; 1093} 1094 1095/* 1096 * Do all that is necessary to remove user space mappings. Unmap 1097 * the pages and send SIGBUS to the processes if the data was dirty. 1098 */ 1099static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1100 int flags, struct page **hpagep) 1101{ 1102 enum ttu_flags ttu = TTU_IGNORE_MLOCK; 1103 struct address_space *mapping; 1104 LIST_HEAD(tokill); 1105 bool unmap_success = true; 1106 int kill = 1, forcekill; 1107 struct page *hpage = *hpagep; 1108 bool mlocked = PageMlocked(hpage); 1109 1110 /* 1111 * Here we are interested only in user-mapped pages, so skip any 1112 * other types of pages. 1113 */ 1114 if (PageReserved(p) || PageSlab(p)) 1115 return true; 1116 if (!(PageLRU(hpage) || PageHuge(p))) 1117 return true; 1118 1119 /* 1120 * This check implies we don't kill processes if their pages 1121 * are in the swap cache early. Those are always late kills. 1122 */ 1123 if (!page_mapped(hpage)) 1124 return true; 1125 1126 if (PageKsm(p)) { 1127 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 1128 return false; 1129 } 1130 1131 if (PageSwapCache(p)) { 1132 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 1133 pfn); 1134 ttu |= TTU_IGNORE_HWPOISON; 1135 } 1136 1137 /* 1138 * Propagate the dirty bit from PTEs to struct page first, because we 1139 * need this to decide if we should kill or just drop the page. 1140 * XXX: the dirty test could be racy: set_page_dirty() may not always 1141 * be called inside page lock (it's recommended but not enforced). 1142 */ 1143 mapping = page_mapping(hpage); 1144 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1145 mapping_can_writeback(mapping)) { 1146 if (page_mkclean(hpage)) { 1147 SetPageDirty(hpage); 1148 } else { 1149 kill = 0; 1150 ttu |= TTU_IGNORE_HWPOISON; 1151 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 1152 pfn); 1153 } 1154 } 1155 1156 /* 1157 * First collect all the processes that have the page 1158 * mapped in dirty form. This has to be done before try_to_unmap, 1159 * because ttu takes the rmap data structures down. 1160 * 1161 * Error handling: We ignore errors here because 1162 * there's nothing that can be done. 1163 */ 1164 if (kill) 1165 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1166 1167 if (!PageHuge(hpage)) { 1168 unmap_success = try_to_unmap(hpage, ttu); 1169 } else { 1170 if (!PageAnon(hpage)) { 1171 /* 1172 * For hugetlb pages in shared mappings, try_to_unmap 1173 * could potentially call huge_pmd_unshare. Because of 1174 * this, take semaphore in write mode here and set 1175 * TTU_RMAP_LOCKED to indicate we have taken the lock 1176 * at this higer level. 1177 */ 1178 mapping = hugetlb_page_mapping_lock_write(hpage); 1179 if (mapping) { 1180 unmap_success = try_to_unmap(hpage, 1181 ttu|TTU_RMAP_LOCKED); 1182 i_mmap_unlock_write(mapping); 1183 } else { 1184 pr_info("Memory failure: %#lx: could not lock mapping for mapped huge page\n", pfn); 1185 unmap_success = false; 1186 } 1187 } else { 1188 unmap_success = try_to_unmap(hpage, ttu); 1189 } 1190 } 1191 if (!unmap_success) 1192 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 1193 pfn, page_mapcount(hpage)); 1194 1195 /* 1196 * try_to_unmap() might put mlocked page in lru cache, so call 1197 * shake_page() again to ensure that it's flushed. 1198 */ 1199 if (mlocked) 1200 shake_page(hpage, 0); 1201 1202 /* 1203 * Now that the dirty bit has been propagated to the 1204 * struct page and all unmaps done we can decide if 1205 * killing is needed or not. Only kill when the page 1206 * was dirty or the process is not restartable, 1207 * otherwise the tokill list is merely 1208 * freed. When there was a problem unmapping earlier 1209 * use a more force-full uncatchable kill to prevent 1210 * any accesses to the poisoned memory. 1211 */ 1212 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1213 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1214 1215 return unmap_success; 1216} 1217 1218static int identify_page_state(unsigned long pfn, struct page *p, 1219 unsigned long page_flags) 1220{ 1221 struct page_state *ps; 1222 1223 /* 1224 * The first check uses the current page flags which may not have any 1225 * relevant information. The second check with the saved page flags is 1226 * carried out only if the first check can't determine the page status. 1227 */ 1228 for (ps = error_states;; ps++) 1229 if ((p->flags & ps->mask) == ps->res) 1230 break; 1231 1232 page_flags |= (p->flags & (1UL << PG_dirty)); 1233 1234 if (!ps->mask) 1235 for (ps = error_states;; ps++) 1236 if ((page_flags & ps->mask) == ps->res) 1237 break; 1238 return page_action(ps, p, pfn); 1239} 1240 1241static int try_to_split_thp_page(struct page *page, const char *msg) 1242{ 1243 lock_page(page); 1244 if (!PageAnon(page) || unlikely(split_huge_page(page))) { 1245 unsigned long pfn = page_to_pfn(page); 1246 1247 unlock_page(page); 1248 if (!PageAnon(page)) 1249 pr_info("%s: %#lx: non anonymous thp\n", msg, pfn); 1250 else 1251 pr_info("%s: %#lx: thp split failed\n", msg, pfn); 1252 put_page(page); 1253 return -EBUSY; 1254 } 1255 unlock_page(page); 1256 1257 return 0; 1258} 1259 1260static int memory_failure_hugetlb(unsigned long pfn, int flags) 1261{ 1262 struct page *p = pfn_to_page(pfn); 1263 struct page *head = compound_head(p); 1264 int res; 1265 unsigned long page_flags; 1266 1267 if (TestSetPageHWPoison(head)) { 1268 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1269 pfn); 1270 return -EHWPOISON; 1271 } 1272 1273 num_poisoned_pages_inc(); 1274 1275 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) { 1276 /* 1277 * Check "filter hit" and "race with other subpage." 1278 */ 1279 lock_page(head); 1280 if (PageHWPoison(head)) { 1281 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1282 || (p != head && TestSetPageHWPoison(head))) { 1283 num_poisoned_pages_dec(); 1284 unlock_page(head); 1285 return 0; 1286 } 1287 } 1288 unlock_page(head); 1289 res = MF_FAILED; 1290 if (!dissolve_free_huge_page(p) && take_page_off_buddy(p)) { 1291 page_ref_inc(p); 1292 res = MF_RECOVERED; 1293 } 1294 action_result(pfn, MF_MSG_FREE_HUGE, res); 1295 return res == MF_RECOVERED ? 0 : -EBUSY; 1296 } 1297 1298 lock_page(head); 1299 page_flags = head->flags; 1300 1301 if (!PageHWPoison(head)) { 1302 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1303 num_poisoned_pages_dec(); 1304 unlock_page(head); 1305 put_page(head); 1306 return 0; 1307 } 1308 1309 /* 1310 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so 1311 * simply disable it. In order to make it work properly, we need 1312 * make sure that: 1313 * - conversion of a pud that maps an error hugetlb into hwpoison 1314 * entry properly works, and 1315 * - other mm code walking over page table is aware of pud-aligned 1316 * hwpoison entries. 1317 */ 1318 if (huge_page_size(page_hstate(head)) > PMD_SIZE) { 1319 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED); 1320 res = -EBUSY; 1321 goto out; 1322 } 1323 1324 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1325 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1326 res = -EBUSY; 1327 goto out; 1328 } 1329 1330 return identify_page_state(pfn, p, page_flags); 1331out: 1332 unlock_page(head); 1333 return res; 1334} 1335 1336static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 1337 struct dev_pagemap *pgmap) 1338{ 1339 struct page *page = pfn_to_page(pfn); 1340 const bool unmap_success = true; 1341 unsigned long size = 0; 1342 struct to_kill *tk; 1343 LIST_HEAD(tokill); 1344 int rc = -EBUSY; 1345 loff_t start; 1346 dax_entry_t cookie; 1347 1348 if (flags & MF_COUNT_INCREASED) 1349 /* 1350 * Drop the extra refcount in case we come from madvise(). 1351 */ 1352 put_page(page); 1353 1354 /* device metadata space is not recoverable */ 1355 if (!pgmap_pfn_valid(pgmap, pfn)) { 1356 rc = -ENXIO; 1357 goto out; 1358 } 1359 1360 /* 1361 * Prevent the inode from being freed while we are interrogating 1362 * the address_space, typically this would be handled by 1363 * lock_page(), but dax pages do not use the page lock. This 1364 * also prevents changes to the mapping of this pfn until 1365 * poison signaling is complete. 1366 */ 1367 cookie = dax_lock_page(page); 1368 if (!cookie) 1369 goto out; 1370 1371 if (hwpoison_filter(page)) { 1372 rc = 0; 1373 goto unlock; 1374 } 1375 1376 if (pgmap->type == MEMORY_DEVICE_PRIVATE) { 1377 /* 1378 * TODO: Handle HMM pages which may need coordination 1379 * with device-side memory. 1380 */ 1381 goto unlock; 1382 } 1383 1384 /* 1385 * Use this flag as an indication that the dax page has been 1386 * remapped UC to prevent speculative consumption of poison. 1387 */ 1388 SetPageHWPoison(page); 1389 1390 /* 1391 * Unlike System-RAM there is no possibility to swap in a 1392 * different physical page at a given virtual address, so all 1393 * userspace consumption of ZONE_DEVICE memory necessitates 1394 * SIGBUS (i.e. MF_MUST_KILL) 1395 */ 1396 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1397 collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED); 1398 1399 list_for_each_entry(tk, &tokill, nd) 1400 if (tk->size_shift) 1401 size = max(size, 1UL << tk->size_shift); 1402 if (size) { 1403 /* 1404 * Unmap the largest mapping to avoid breaking up 1405 * device-dax mappings which are constant size. The 1406 * actual size of the mapping being torn down is 1407 * communicated in siginfo, see kill_proc() 1408 */ 1409 start = (page->index << PAGE_SHIFT) & ~(size - 1); 1410 unmap_mapping_range(page->mapping, start, size, 0); 1411 } 1412 kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags); 1413 rc = 0; 1414unlock: 1415 dax_unlock_page(page, cookie); 1416out: 1417 /* drop pgmap ref acquired in caller */ 1418 put_dev_pagemap(pgmap); 1419 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 1420 return rc; 1421} 1422 1423/** 1424 * memory_failure - Handle memory failure of a page. 1425 * @pfn: Page Number of the corrupted page 1426 * @flags: fine tune action taken 1427 * 1428 * This function is called by the low level machine check code 1429 * of an architecture when it detects hardware memory corruption 1430 * of a page. It tries its best to recover, which includes 1431 * dropping pages, killing processes etc. 1432 * 1433 * The function is primarily of use for corruptions that 1434 * happen outside the current execution context (e.g. when 1435 * detected by a background scrubber) 1436 * 1437 * Must run in process context (e.g. a work queue) with interrupts 1438 * enabled and no spinlocks hold. 1439 */ 1440int memory_failure(unsigned long pfn, int flags) 1441{ 1442 struct page *p; 1443 struct page *hpage; 1444 struct page *orig_head; 1445 struct dev_pagemap *pgmap; 1446 int res = 0; 1447 unsigned long page_flags; 1448 bool retry = true; 1449 static DEFINE_MUTEX(mf_mutex); 1450 1451 if (!sysctl_memory_failure_recovery) 1452 panic("Memory failure on page %lx", pfn); 1453 1454 p = pfn_to_online_page(pfn); 1455 if (!p) { 1456 if (pfn_valid(pfn)) { 1457 pgmap = get_dev_pagemap(pfn, NULL); 1458 if (pgmap) 1459 return memory_failure_dev_pagemap(pfn, flags, 1460 pgmap); 1461 } 1462 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1463 pfn); 1464 return -ENXIO; 1465 } 1466 1467 mutex_lock(&mf_mutex); 1468 1469try_again: 1470 if (PageHuge(p)) { 1471 res = memory_failure_hugetlb(pfn, flags); 1472 goto unlock_mutex; 1473 } 1474 1475 if (TestSetPageHWPoison(p)) { 1476 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1477 pfn); 1478 res = -EHWPOISON; 1479 goto unlock_mutex; 1480 } 1481 1482 orig_head = hpage = compound_head(p); 1483 num_poisoned_pages_inc(); 1484 1485 /* 1486 * We need/can do nothing about count=0 pages. 1487 * 1) it's a free page, and therefore in safe hand: 1488 * prep_new_page() will be the gate keeper. 1489 * 2) it's part of a non-compound high order page. 1490 * Implies some kernel user: cannot stop them from 1491 * R/W the page; let's pray that the page has been 1492 * used and will be freed some time later. 1493 * In fact it's dangerous to directly bump up page count from 0, 1494 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 1495 */ 1496 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p, flags, 0)) { 1497 if (is_free_buddy_page(p)) { 1498 if (take_page_off_buddy(p)) { 1499 page_ref_inc(p); 1500 res = MF_RECOVERED; 1501 } else { 1502 /* We lost the race, try again */ 1503 if (retry) { 1504 ClearPageHWPoison(p); 1505 num_poisoned_pages_dec(); 1506 retry = false; 1507 goto try_again; 1508 } 1509 res = MF_FAILED; 1510 } 1511 action_result(pfn, MF_MSG_BUDDY, res); 1512 res = res == MF_RECOVERED ? 0 : -EBUSY; 1513 } else { 1514 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1515 res = -EBUSY; 1516 } 1517 goto unlock_mutex; 1518 } 1519 1520 if (PageTransHuge(hpage)) { 1521 if (try_to_split_thp_page(p, "Memory Failure") < 0) { 1522 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 1523 res = -EBUSY; 1524 goto unlock_mutex; 1525 } 1526 VM_BUG_ON_PAGE(!page_count(p), p); 1527 } 1528 1529 /* 1530 * We ignore non-LRU pages for good reasons. 1531 * - PG_locked is only well defined for LRU pages and a few others 1532 * - to avoid races with __SetPageLocked() 1533 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1534 * The check (unnecessarily) ignores LRU pages being isolated and 1535 * walked by the page reclaim code, however that's not a big loss. 1536 */ 1537 shake_page(p, 0); 1538 1539 lock_page(p); 1540 1541 /* 1542 * The page could have changed compound pages during the locking. 1543 * If this happens just bail out. 1544 */ 1545 if (PageCompound(p) && compound_head(p) != orig_head) { 1546 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1547 res = -EBUSY; 1548 goto unlock_page; 1549 } 1550 1551 /* 1552 * We use page flags to determine what action should be taken, but 1553 * the flags can be modified by the error containment action. One 1554 * example is an mlocked page, where PG_mlocked is cleared by 1555 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1556 * correctly, we save a copy of the page flags at this time. 1557 */ 1558 page_flags = p->flags; 1559 1560 /* 1561 * unpoison always clear PG_hwpoison inside page lock 1562 */ 1563 if (!PageHWPoison(p)) { 1564 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1565 num_poisoned_pages_dec(); 1566 unlock_page(p); 1567 put_page(p); 1568 goto unlock_mutex; 1569 } 1570 if (hwpoison_filter(p)) { 1571 if (TestClearPageHWPoison(p)) 1572 num_poisoned_pages_dec(); 1573 unlock_page(p); 1574 put_page(p); 1575 goto unlock_mutex; 1576 } 1577 1578 /* 1579 * __munlock_pagevec may clear a writeback page's LRU flag without 1580 * page_lock. We need wait writeback completion for this page or it 1581 * may trigger vfs BUG while evict inode. 1582 */ 1583 if (!PageTransTail(p) && !PageLRU(p) && !PageWriteback(p)) 1584 goto identify_page_state; 1585 1586 /* 1587 * It's very difficult to mess with pages currently under IO 1588 * and in many cases impossible, so we just avoid it here. 1589 */ 1590 wait_on_page_writeback(p); 1591 1592 /* 1593 * Now take care of user space mappings. 1594 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1595 */ 1596 if (!hwpoison_user_mappings(p, pfn, flags, &p)) { 1597 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1598 res = -EBUSY; 1599 goto unlock_page; 1600 } 1601 1602 /* 1603 * Torn down by someone else? 1604 */ 1605 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1606 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1607 res = -EBUSY; 1608 goto unlock_page; 1609 } 1610 1611identify_page_state: 1612 res = identify_page_state(pfn, p, page_flags); 1613 mutex_unlock(&mf_mutex); 1614 return res; 1615unlock_page: 1616 unlock_page(p); 1617unlock_mutex: 1618 mutex_unlock(&mf_mutex); 1619 return res; 1620} 1621EXPORT_SYMBOL_GPL(memory_failure); 1622 1623#define MEMORY_FAILURE_FIFO_ORDER 4 1624#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1625 1626struct memory_failure_entry { 1627 unsigned long pfn; 1628 int flags; 1629}; 1630 1631struct memory_failure_cpu { 1632 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1633 MEMORY_FAILURE_FIFO_SIZE); 1634 spinlock_t lock; 1635 struct work_struct work; 1636}; 1637 1638static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1639 1640/** 1641 * memory_failure_queue - Schedule handling memory failure of a page. 1642 * @pfn: Page Number of the corrupted page 1643 * @flags: Flags for memory failure handling 1644 * 1645 * This function is called by the low level hardware error handler 1646 * when it detects hardware memory corruption of a page. It schedules 1647 * the recovering of error page, including dropping pages, killing 1648 * processes etc. 1649 * 1650 * The function is primarily of use for corruptions that 1651 * happen outside the current execution context (e.g. when 1652 * detected by a background scrubber) 1653 * 1654 * Can run in IRQ context. 1655 */ 1656void memory_failure_queue(unsigned long pfn, int flags) 1657{ 1658 struct memory_failure_cpu *mf_cpu; 1659 unsigned long proc_flags; 1660 struct memory_failure_entry entry = { 1661 .pfn = pfn, 1662 .flags = flags, 1663 }; 1664 1665 mf_cpu = &get_cpu_var(memory_failure_cpu); 1666 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1667 if (kfifo_put(&mf_cpu->fifo, entry)) 1668 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1669 else 1670 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1671 pfn); 1672 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1673 put_cpu_var(memory_failure_cpu); 1674} 1675EXPORT_SYMBOL_GPL(memory_failure_queue); 1676 1677static void memory_failure_work_func(struct work_struct *work) 1678{ 1679 struct memory_failure_cpu *mf_cpu; 1680 struct memory_failure_entry entry = { 0, }; 1681 unsigned long proc_flags; 1682 int gotten; 1683 1684 mf_cpu = container_of(work, struct memory_failure_cpu, work); 1685 for (;;) { 1686 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1687 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1688 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1689 if (!gotten) 1690 break; 1691 if (entry.flags & MF_SOFT_OFFLINE) 1692 soft_offline_page(entry.pfn, entry.flags); 1693 else 1694 memory_failure(entry.pfn, entry.flags); 1695 } 1696} 1697 1698/* 1699 * Process memory_failure work queued on the specified CPU. 1700 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 1701 */ 1702void memory_failure_queue_kick(int cpu) 1703{ 1704 struct memory_failure_cpu *mf_cpu; 1705 1706 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1707 cancel_work_sync(&mf_cpu->work); 1708 memory_failure_work_func(&mf_cpu->work); 1709} 1710 1711static int __init memory_failure_init(void) 1712{ 1713 struct memory_failure_cpu *mf_cpu; 1714 int cpu; 1715 1716 for_each_possible_cpu(cpu) { 1717 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1718 spin_lock_init(&mf_cpu->lock); 1719 INIT_KFIFO(mf_cpu->fifo); 1720 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1721 } 1722 1723 return 0; 1724} 1725core_initcall(memory_failure_init); 1726 1727#define unpoison_pr_info(fmt, pfn, rs) \ 1728({ \ 1729 if (__ratelimit(rs)) \ 1730 pr_info(fmt, pfn); \ 1731}) 1732 1733/** 1734 * unpoison_memory - Unpoison a previously poisoned page 1735 * @pfn: Page number of the to be unpoisoned page 1736 * 1737 * Software-unpoison a page that has been poisoned by 1738 * memory_failure() earlier. 1739 * 1740 * This is only done on the software-level, so it only works 1741 * for linux injected failures, not real hardware failures 1742 * 1743 * Returns 0 for success, otherwise -errno. 1744 */ 1745int unpoison_memory(unsigned long pfn) 1746{ 1747 struct page *page; 1748 struct page *p; 1749 int freeit = 0; 1750 unsigned long flags = 0; 1751 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1752 DEFAULT_RATELIMIT_BURST); 1753 1754 if (!pfn_valid(pfn)) 1755 return -ENXIO; 1756 1757 p = pfn_to_page(pfn); 1758 page = compound_head(p); 1759 1760 if (!PageHWPoison(p)) { 1761 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1762 pfn, &unpoison_rs); 1763 return 0; 1764 } 1765 1766 if (page_count(page) > 1) { 1767 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1768 pfn, &unpoison_rs); 1769 return 0; 1770 } 1771 1772 if (page_mapped(page)) { 1773 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1774 pfn, &unpoison_rs); 1775 return 0; 1776 } 1777 1778 if (page_mapping(page)) { 1779 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1780 pfn, &unpoison_rs); 1781 return 0; 1782 } 1783 1784 /* 1785 * unpoison_memory() can encounter thp only when the thp is being 1786 * worked by memory_failure() and the page lock is not held yet. 1787 * In such case, we yield to memory_failure() and make unpoison fail. 1788 */ 1789 if (!PageHuge(page) && PageTransHuge(page)) { 1790 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1791 pfn, &unpoison_rs); 1792 return 0; 1793 } 1794 1795 if (!get_hwpoison_page(p, flags, 0)) { 1796 if (TestClearPageHWPoison(p)) 1797 num_poisoned_pages_dec(); 1798 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1799 pfn, &unpoison_rs); 1800 return 0; 1801 } 1802 1803 lock_page(page); 1804 /* 1805 * This test is racy because PG_hwpoison is set outside of page lock. 1806 * That's acceptable because that won't trigger kernel panic. Instead, 1807 * the PG_hwpoison page will be caught and isolated on the entrance to 1808 * the free buddy page pool. 1809 */ 1810 if (TestClearPageHWPoison(page)) { 1811 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1812 pfn, &unpoison_rs); 1813 num_poisoned_pages_dec(); 1814 freeit = 1; 1815 } 1816 unlock_page(page); 1817 1818 put_page(page); 1819 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1820 put_page(page); 1821 1822 return 0; 1823} 1824EXPORT_SYMBOL(unpoison_memory); 1825 1826static bool isolate_page(struct page *page, struct list_head *pagelist) 1827{ 1828 bool isolated = false; 1829 bool lru = PageLRU(page); 1830 1831 if (PageHuge(page)) { 1832 isolated = isolate_huge_page(page, pagelist); 1833 } else { 1834 if (lru) 1835 isolated = !isolate_lru_page(page); 1836 else 1837 isolated = !isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1838 1839 if (isolated) 1840 list_add(&page->lru, pagelist); 1841 } 1842 1843 if (isolated && lru) 1844 inc_node_page_state(page, NR_ISOLATED_ANON + 1845 page_is_file_lru(page)); 1846 1847 /* 1848 * If we succeed to isolate the page, we grabbed another refcount on 1849 * the page, so we can safely drop the one we got from get_any_pages(). 1850 * If we failed to isolate the page, it means that we cannot go further 1851 * and we will return an error, so drop the reference we got from 1852 * get_any_pages() as well. 1853 */ 1854 put_page(page); 1855 return isolated; 1856} 1857 1858/* 1859 * __soft_offline_page handles hugetlb-pages and non-hugetlb pages. 1860 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 1861 * If the page is mapped, it migrates the contents over. 1862 */ 1863static int __soft_offline_page(struct page *page) 1864{ 1865 int ret = 0; 1866 unsigned long pfn = page_to_pfn(page); 1867 struct page *hpage = compound_head(page); 1868 char const *msg_page[] = {"page", "hugepage"}; 1869 bool huge = PageHuge(page); 1870 LIST_HEAD(pagelist); 1871 struct migration_target_control mtc = { 1872 .nid = NUMA_NO_NODE, 1873 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 1874 }; 1875 1876 /* 1877 * Check PageHWPoison again inside page lock because PageHWPoison 1878 * is set by memory_failure() outside page lock. Note that 1879 * memory_failure() also double-checks PageHWPoison inside page lock, 1880 * so there's no race between soft_offline_page() and memory_failure(). 1881 */ 1882 lock_page(page); 1883 if (!PageHuge(page)) 1884 wait_on_page_writeback(page); 1885 if (PageHWPoison(page)) { 1886 unlock_page(page); 1887 put_page(page); 1888 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1889 return 0; 1890 } 1891 1892 if (!PageHuge(page)) 1893 /* 1894 * Try to invalidate first. This should work for 1895 * non dirty unmapped page cache pages. 1896 */ 1897 ret = invalidate_inode_page(page); 1898 unlock_page(page); 1899 1900 /* 1901 * RED-PEN would be better to keep it isolated here, but we 1902 * would need to fix isolation locking first. 1903 */ 1904 if (ret) { 1905 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1906 page_handle_poison(page, false, true); 1907 return 0; 1908 } 1909 1910 if (isolate_page(hpage, &pagelist)) { 1911 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 1912 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE); 1913 if (!ret) { 1914 bool release = !huge; 1915 1916 if (!page_handle_poison(page, huge, release)) 1917 ret = -EBUSY; 1918 } else { 1919 if (!list_empty(&pagelist)) 1920 putback_movable_pages(&pagelist); 1921 1922 pr_info("soft offline: %#lx: %s migration failed %d, type %lx (%pGp)\n", 1923 pfn, msg_page[huge], ret, page->flags, &page->flags); 1924 if (ret > 0) 1925 ret = -EBUSY; 1926 } 1927 } else { 1928 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %lx (%pGp)\n", 1929 pfn, msg_page[huge], page_count(page), page->flags, &page->flags); 1930 ret = -EBUSY; 1931 } 1932 return ret; 1933} 1934 1935static int soft_offline_in_use_page(struct page *page) 1936{ 1937 struct page *hpage = compound_head(page); 1938 1939 if (!PageHuge(page) && PageTransHuge(hpage)) 1940 if (try_to_split_thp_page(page, "soft offline") < 0) 1941 return -EBUSY; 1942 return __soft_offline_page(page); 1943} 1944 1945static int soft_offline_free_page(struct page *page) 1946{ 1947 int rc = 0; 1948 1949 if (!page_handle_poison(page, true, false)) 1950 rc = -EBUSY; 1951 1952 return rc; 1953} 1954 1955static void put_ref_page(struct page *page) 1956{ 1957 if (page) 1958 put_page(page); 1959} 1960 1961/** 1962 * soft_offline_page - Soft offline a page. 1963 * @pfn: pfn to soft-offline 1964 * @flags: flags. Same as memory_failure(). 1965 * 1966 * Returns 0 on success, otherwise negated errno. 1967 * 1968 * Soft offline a page, by migration or invalidation, 1969 * without killing anything. This is for the case when 1970 * a page is not corrupted yet (so it's still valid to access), 1971 * but has had a number of corrected errors and is better taken 1972 * out. 1973 * 1974 * The actual policy on when to do that is maintained by 1975 * user space. 1976 * 1977 * This should never impact any application or cause data loss, 1978 * however it might take some time. 1979 * 1980 * This is not a 100% solution for all memory, but tries to be 1981 * ``good enough'' for the majority of memory. 1982 */ 1983int soft_offline_page(unsigned long pfn, int flags) 1984{ 1985 int ret; 1986 bool try_again = true; 1987 struct page *page, *ref_page = NULL; 1988 1989 WARN_ON_ONCE(!pfn_valid(pfn) && (flags & MF_COUNT_INCREASED)); 1990 1991 if (!pfn_valid(pfn)) 1992 return -ENXIO; 1993 if (flags & MF_COUNT_INCREASED) 1994 ref_page = pfn_to_page(pfn); 1995 1996 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 1997 page = pfn_to_online_page(pfn); 1998 if (!page) { 1999 put_ref_page(ref_page); 2000 return -EIO; 2001 } 2002 2003 if (PageHWPoison(page)) { 2004 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2005 put_ref_page(ref_page); 2006 return 0; 2007 } 2008 2009retry: 2010 get_online_mems(); 2011 ret = get_hwpoison_page(page, flags, MF_SOFT_OFFLINE); 2012 put_online_mems(); 2013 2014 if (ret > 0) { 2015 ret = soft_offline_in_use_page(page); 2016 } else if (ret == 0) { 2017 if (soft_offline_free_page(page) && try_again) { 2018 try_again = false; 2019 goto retry; 2020 } 2021 } else if (ret == -EIO) { 2022 pr_info("%s: %#lx: unknown page type: %lx (%pGp)\n", 2023 __func__, pfn, page->flags, &page->flags); 2024 } 2025 2026 return ret; 2027}