Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33
34#include <asm/page.h>
35#include <asm/pgalloc.h>
36#include <asm/tlb.h>
37
38#include <linux/io.h>
39#include <linux/hugetlb.h>
40#include <linux/hugetlb_cgroup.h>
41#include <linux/node.h>
42#include <linux/page_owner.h>
43#include "internal.h"
44
45int hugetlb_max_hstate __read_mostly;
46unsigned int default_hstate_idx;
47struct hstate hstates[HUGE_MAX_HSTATE];
48
49#ifdef CONFIG_CMA
50static struct cma *hugetlb_cma[MAX_NUMNODES];
51#endif
52static unsigned long hugetlb_cma_size __initdata;
53
54/*
55 * Minimum page order among possible hugepage sizes, set to a proper value
56 * at boot time.
57 */
58static unsigned int minimum_order __read_mostly = UINT_MAX;
59
60__initdata LIST_HEAD(huge_boot_pages);
61
62/* for command line parsing */
63static struct hstate * __initdata parsed_hstate;
64static unsigned long __initdata default_hstate_max_huge_pages;
65static bool __initdata parsed_valid_hugepagesz = true;
66static bool __initdata parsed_default_hugepagesz;
67
68/*
69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70 * free_huge_pages, and surplus_huge_pages.
71 */
72DEFINE_SPINLOCK(hugetlb_lock);
73
74/*
75 * Serializes faults on the same logical page. This is used to
76 * prevent spurious OOMs when the hugepage pool is fully utilized.
77 */
78static int num_fault_mutexes;
79struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80
81/* Forward declaration */
82static int hugetlb_acct_memory(struct hstate *h, long delta);
83
84static inline bool subpool_is_free(struct hugepage_subpool *spool)
85{
86 if (spool->count)
87 return false;
88 if (spool->max_hpages != -1)
89 return spool->used_hpages == 0;
90 if (spool->min_hpages != -1)
91 return spool->rsv_hpages == spool->min_hpages;
92
93 return true;
94}
95
96static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
97 unsigned long irq_flags)
98{
99 spin_unlock_irqrestore(&spool->lock, irq_flags);
100
101 /* If no pages are used, and no other handles to the subpool
102 * remain, give up any reservations based on minimum size and
103 * free the subpool */
104 if (subpool_is_free(spool)) {
105 if (spool->min_hpages != -1)
106 hugetlb_acct_memory(spool->hstate,
107 -spool->min_hpages);
108 kfree(spool);
109 }
110}
111
112struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113 long min_hpages)
114{
115 struct hugepage_subpool *spool;
116
117 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118 if (!spool)
119 return NULL;
120
121 spin_lock_init(&spool->lock);
122 spool->count = 1;
123 spool->max_hpages = max_hpages;
124 spool->hstate = h;
125 spool->min_hpages = min_hpages;
126
127 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128 kfree(spool);
129 return NULL;
130 }
131 spool->rsv_hpages = min_hpages;
132
133 return spool;
134}
135
136void hugepage_put_subpool(struct hugepage_subpool *spool)
137{
138 unsigned long flags;
139
140 spin_lock_irqsave(&spool->lock, flags);
141 BUG_ON(!spool->count);
142 spool->count--;
143 unlock_or_release_subpool(spool, flags);
144}
145
146/*
147 * Subpool accounting for allocating and reserving pages.
148 * Return -ENOMEM if there are not enough resources to satisfy the
149 * request. Otherwise, return the number of pages by which the
150 * global pools must be adjusted (upward). The returned value may
151 * only be different than the passed value (delta) in the case where
152 * a subpool minimum size must be maintained.
153 */
154static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
155 long delta)
156{
157 long ret = delta;
158
159 if (!spool)
160 return ret;
161
162 spin_lock_irq(&spool->lock);
163
164 if (spool->max_hpages != -1) { /* maximum size accounting */
165 if ((spool->used_hpages + delta) <= spool->max_hpages)
166 spool->used_hpages += delta;
167 else {
168 ret = -ENOMEM;
169 goto unlock_ret;
170 }
171 }
172
173 /* minimum size accounting */
174 if (spool->min_hpages != -1 && spool->rsv_hpages) {
175 if (delta > spool->rsv_hpages) {
176 /*
177 * Asking for more reserves than those already taken on
178 * behalf of subpool. Return difference.
179 */
180 ret = delta - spool->rsv_hpages;
181 spool->rsv_hpages = 0;
182 } else {
183 ret = 0; /* reserves already accounted for */
184 spool->rsv_hpages -= delta;
185 }
186 }
187
188unlock_ret:
189 spin_unlock_irq(&spool->lock);
190 return ret;
191}
192
193/*
194 * Subpool accounting for freeing and unreserving pages.
195 * Return the number of global page reservations that must be dropped.
196 * The return value may only be different than the passed value (delta)
197 * in the case where a subpool minimum size must be maintained.
198 */
199static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
200 long delta)
201{
202 long ret = delta;
203 unsigned long flags;
204
205 if (!spool)
206 return delta;
207
208 spin_lock_irqsave(&spool->lock, flags);
209
210 if (spool->max_hpages != -1) /* maximum size accounting */
211 spool->used_hpages -= delta;
212
213 /* minimum size accounting */
214 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
215 if (spool->rsv_hpages + delta <= spool->min_hpages)
216 ret = 0;
217 else
218 ret = spool->rsv_hpages + delta - spool->min_hpages;
219
220 spool->rsv_hpages += delta;
221 if (spool->rsv_hpages > spool->min_hpages)
222 spool->rsv_hpages = spool->min_hpages;
223 }
224
225 /*
226 * If hugetlbfs_put_super couldn't free spool due to an outstanding
227 * quota reference, free it now.
228 */
229 unlock_or_release_subpool(spool, flags);
230
231 return ret;
232}
233
234static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
235{
236 return HUGETLBFS_SB(inode->i_sb)->spool;
237}
238
239static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
240{
241 return subpool_inode(file_inode(vma->vm_file));
242}
243
244/* Helper that removes a struct file_region from the resv_map cache and returns
245 * it for use.
246 */
247static struct file_region *
248get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
249{
250 struct file_region *nrg = NULL;
251
252 VM_BUG_ON(resv->region_cache_count <= 0);
253
254 resv->region_cache_count--;
255 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
256 list_del(&nrg->link);
257
258 nrg->from = from;
259 nrg->to = to;
260
261 return nrg;
262}
263
264static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
265 struct file_region *rg)
266{
267#ifdef CONFIG_CGROUP_HUGETLB
268 nrg->reservation_counter = rg->reservation_counter;
269 nrg->css = rg->css;
270 if (rg->css)
271 css_get(rg->css);
272#endif
273}
274
275/* Helper that records hugetlb_cgroup uncharge info. */
276static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
277 struct hstate *h,
278 struct resv_map *resv,
279 struct file_region *nrg)
280{
281#ifdef CONFIG_CGROUP_HUGETLB
282 if (h_cg) {
283 nrg->reservation_counter =
284 &h_cg->rsvd_hugepage[hstate_index(h)];
285 nrg->css = &h_cg->css;
286 /*
287 * The caller will hold exactly one h_cg->css reference for the
288 * whole contiguous reservation region. But this area might be
289 * scattered when there are already some file_regions reside in
290 * it. As a result, many file_regions may share only one css
291 * reference. In order to ensure that one file_region must hold
292 * exactly one h_cg->css reference, we should do css_get for
293 * each file_region and leave the reference held by caller
294 * untouched.
295 */
296 css_get(&h_cg->css);
297 if (!resv->pages_per_hpage)
298 resv->pages_per_hpage = pages_per_huge_page(h);
299 /* pages_per_hpage should be the same for all entries in
300 * a resv_map.
301 */
302 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
303 } else {
304 nrg->reservation_counter = NULL;
305 nrg->css = NULL;
306 }
307#endif
308}
309
310static void put_uncharge_info(struct file_region *rg)
311{
312#ifdef CONFIG_CGROUP_HUGETLB
313 if (rg->css)
314 css_put(rg->css);
315#endif
316}
317
318static bool has_same_uncharge_info(struct file_region *rg,
319 struct file_region *org)
320{
321#ifdef CONFIG_CGROUP_HUGETLB
322 return rg && org &&
323 rg->reservation_counter == org->reservation_counter &&
324 rg->css == org->css;
325
326#else
327 return true;
328#endif
329}
330
331static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
332{
333 struct file_region *nrg = NULL, *prg = NULL;
334
335 prg = list_prev_entry(rg, link);
336 if (&prg->link != &resv->regions && prg->to == rg->from &&
337 has_same_uncharge_info(prg, rg)) {
338 prg->to = rg->to;
339
340 list_del(&rg->link);
341 put_uncharge_info(rg);
342 kfree(rg);
343
344 rg = prg;
345 }
346
347 nrg = list_next_entry(rg, link);
348 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
349 has_same_uncharge_info(nrg, rg)) {
350 nrg->from = rg->from;
351
352 list_del(&rg->link);
353 put_uncharge_info(rg);
354 kfree(rg);
355 }
356}
357
358static inline long
359hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
360 long to, struct hstate *h, struct hugetlb_cgroup *cg,
361 long *regions_needed)
362{
363 struct file_region *nrg;
364
365 if (!regions_needed) {
366 nrg = get_file_region_entry_from_cache(map, from, to);
367 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
368 list_add(&nrg->link, rg->link.prev);
369 coalesce_file_region(map, nrg);
370 } else
371 *regions_needed += 1;
372
373 return to - from;
374}
375
376/*
377 * Must be called with resv->lock held.
378 *
379 * Calling this with regions_needed != NULL will count the number of pages
380 * to be added but will not modify the linked list. And regions_needed will
381 * indicate the number of file_regions needed in the cache to carry out to add
382 * the regions for this range.
383 */
384static long add_reservation_in_range(struct resv_map *resv, long f, long t,
385 struct hugetlb_cgroup *h_cg,
386 struct hstate *h, long *regions_needed)
387{
388 long add = 0;
389 struct list_head *head = &resv->regions;
390 long last_accounted_offset = f;
391 struct file_region *rg = NULL, *trg = NULL;
392
393 if (regions_needed)
394 *regions_needed = 0;
395
396 /* In this loop, we essentially handle an entry for the range
397 * [last_accounted_offset, rg->from), at every iteration, with some
398 * bounds checking.
399 */
400 list_for_each_entry_safe(rg, trg, head, link) {
401 /* Skip irrelevant regions that start before our range. */
402 if (rg->from < f) {
403 /* If this region ends after the last accounted offset,
404 * then we need to update last_accounted_offset.
405 */
406 if (rg->to > last_accounted_offset)
407 last_accounted_offset = rg->to;
408 continue;
409 }
410
411 /* When we find a region that starts beyond our range, we've
412 * finished.
413 */
414 if (rg->from >= t)
415 break;
416
417 /* Add an entry for last_accounted_offset -> rg->from, and
418 * update last_accounted_offset.
419 */
420 if (rg->from > last_accounted_offset)
421 add += hugetlb_resv_map_add(resv, rg,
422 last_accounted_offset,
423 rg->from, h, h_cg,
424 regions_needed);
425
426 last_accounted_offset = rg->to;
427 }
428
429 /* Handle the case where our range extends beyond
430 * last_accounted_offset.
431 */
432 if (last_accounted_offset < t)
433 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
434 t, h, h_cg, regions_needed);
435
436 VM_BUG_ON(add < 0);
437 return add;
438}
439
440/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
441 */
442static int allocate_file_region_entries(struct resv_map *resv,
443 int regions_needed)
444 __must_hold(&resv->lock)
445{
446 struct list_head allocated_regions;
447 int to_allocate = 0, i = 0;
448 struct file_region *trg = NULL, *rg = NULL;
449
450 VM_BUG_ON(regions_needed < 0);
451
452 INIT_LIST_HEAD(&allocated_regions);
453
454 /*
455 * Check for sufficient descriptors in the cache to accommodate
456 * the number of in progress add operations plus regions_needed.
457 *
458 * This is a while loop because when we drop the lock, some other call
459 * to region_add or region_del may have consumed some region_entries,
460 * so we keep looping here until we finally have enough entries for
461 * (adds_in_progress + regions_needed).
462 */
463 while (resv->region_cache_count <
464 (resv->adds_in_progress + regions_needed)) {
465 to_allocate = resv->adds_in_progress + regions_needed -
466 resv->region_cache_count;
467
468 /* At this point, we should have enough entries in the cache
469 * for all the existing adds_in_progress. We should only be
470 * needing to allocate for regions_needed.
471 */
472 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
473
474 spin_unlock(&resv->lock);
475 for (i = 0; i < to_allocate; i++) {
476 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
477 if (!trg)
478 goto out_of_memory;
479 list_add(&trg->link, &allocated_regions);
480 }
481
482 spin_lock(&resv->lock);
483
484 list_splice(&allocated_regions, &resv->region_cache);
485 resv->region_cache_count += to_allocate;
486 }
487
488 return 0;
489
490out_of_memory:
491 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
492 list_del(&rg->link);
493 kfree(rg);
494 }
495 return -ENOMEM;
496}
497
498/*
499 * Add the huge page range represented by [f, t) to the reserve
500 * map. Regions will be taken from the cache to fill in this range.
501 * Sufficient regions should exist in the cache due to the previous
502 * call to region_chg with the same range, but in some cases the cache will not
503 * have sufficient entries due to races with other code doing region_add or
504 * region_del. The extra needed entries will be allocated.
505 *
506 * regions_needed is the out value provided by a previous call to region_chg.
507 *
508 * Return the number of new huge pages added to the map. This number is greater
509 * than or equal to zero. If file_region entries needed to be allocated for
510 * this operation and we were not able to allocate, it returns -ENOMEM.
511 * region_add of regions of length 1 never allocate file_regions and cannot
512 * fail; region_chg will always allocate at least 1 entry and a region_add for
513 * 1 page will only require at most 1 entry.
514 */
515static long region_add(struct resv_map *resv, long f, long t,
516 long in_regions_needed, struct hstate *h,
517 struct hugetlb_cgroup *h_cg)
518{
519 long add = 0, actual_regions_needed = 0;
520
521 spin_lock(&resv->lock);
522retry:
523
524 /* Count how many regions are actually needed to execute this add. */
525 add_reservation_in_range(resv, f, t, NULL, NULL,
526 &actual_regions_needed);
527
528 /*
529 * Check for sufficient descriptors in the cache to accommodate
530 * this add operation. Note that actual_regions_needed may be greater
531 * than in_regions_needed, as the resv_map may have been modified since
532 * the region_chg call. In this case, we need to make sure that we
533 * allocate extra entries, such that we have enough for all the
534 * existing adds_in_progress, plus the excess needed for this
535 * operation.
536 */
537 if (actual_regions_needed > in_regions_needed &&
538 resv->region_cache_count <
539 resv->adds_in_progress +
540 (actual_regions_needed - in_regions_needed)) {
541 /* region_add operation of range 1 should never need to
542 * allocate file_region entries.
543 */
544 VM_BUG_ON(t - f <= 1);
545
546 if (allocate_file_region_entries(
547 resv, actual_regions_needed - in_regions_needed)) {
548 return -ENOMEM;
549 }
550
551 goto retry;
552 }
553
554 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
555
556 resv->adds_in_progress -= in_regions_needed;
557
558 spin_unlock(&resv->lock);
559 return add;
560}
561
562/*
563 * Examine the existing reserve map and determine how many
564 * huge pages in the specified range [f, t) are NOT currently
565 * represented. This routine is called before a subsequent
566 * call to region_add that will actually modify the reserve
567 * map to add the specified range [f, t). region_chg does
568 * not change the number of huge pages represented by the
569 * map. A number of new file_region structures is added to the cache as a
570 * placeholder, for the subsequent region_add call to use. At least 1
571 * file_region structure is added.
572 *
573 * out_regions_needed is the number of regions added to the
574 * resv->adds_in_progress. This value needs to be provided to a follow up call
575 * to region_add or region_abort for proper accounting.
576 *
577 * Returns the number of huge pages that need to be added to the existing
578 * reservation map for the range [f, t). This number is greater or equal to
579 * zero. -ENOMEM is returned if a new file_region structure or cache entry
580 * is needed and can not be allocated.
581 */
582static long region_chg(struct resv_map *resv, long f, long t,
583 long *out_regions_needed)
584{
585 long chg = 0;
586
587 spin_lock(&resv->lock);
588
589 /* Count how many hugepages in this range are NOT represented. */
590 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
591 out_regions_needed);
592
593 if (*out_regions_needed == 0)
594 *out_regions_needed = 1;
595
596 if (allocate_file_region_entries(resv, *out_regions_needed))
597 return -ENOMEM;
598
599 resv->adds_in_progress += *out_regions_needed;
600
601 spin_unlock(&resv->lock);
602 return chg;
603}
604
605/*
606 * Abort the in progress add operation. The adds_in_progress field
607 * of the resv_map keeps track of the operations in progress between
608 * calls to region_chg and region_add. Operations are sometimes
609 * aborted after the call to region_chg. In such cases, region_abort
610 * is called to decrement the adds_in_progress counter. regions_needed
611 * is the value returned by the region_chg call, it is used to decrement
612 * the adds_in_progress counter.
613 *
614 * NOTE: The range arguments [f, t) are not needed or used in this
615 * routine. They are kept to make reading the calling code easier as
616 * arguments will match the associated region_chg call.
617 */
618static void region_abort(struct resv_map *resv, long f, long t,
619 long regions_needed)
620{
621 spin_lock(&resv->lock);
622 VM_BUG_ON(!resv->region_cache_count);
623 resv->adds_in_progress -= regions_needed;
624 spin_unlock(&resv->lock);
625}
626
627/*
628 * Delete the specified range [f, t) from the reserve map. If the
629 * t parameter is LONG_MAX, this indicates that ALL regions after f
630 * should be deleted. Locate the regions which intersect [f, t)
631 * and either trim, delete or split the existing regions.
632 *
633 * Returns the number of huge pages deleted from the reserve map.
634 * In the normal case, the return value is zero or more. In the
635 * case where a region must be split, a new region descriptor must
636 * be allocated. If the allocation fails, -ENOMEM will be returned.
637 * NOTE: If the parameter t == LONG_MAX, then we will never split
638 * a region and possibly return -ENOMEM. Callers specifying
639 * t == LONG_MAX do not need to check for -ENOMEM error.
640 */
641static long region_del(struct resv_map *resv, long f, long t)
642{
643 struct list_head *head = &resv->regions;
644 struct file_region *rg, *trg;
645 struct file_region *nrg = NULL;
646 long del = 0;
647
648retry:
649 spin_lock(&resv->lock);
650 list_for_each_entry_safe(rg, trg, head, link) {
651 /*
652 * Skip regions before the range to be deleted. file_region
653 * ranges are normally of the form [from, to). However, there
654 * may be a "placeholder" entry in the map which is of the form
655 * (from, to) with from == to. Check for placeholder entries
656 * at the beginning of the range to be deleted.
657 */
658 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
659 continue;
660
661 if (rg->from >= t)
662 break;
663
664 if (f > rg->from && t < rg->to) { /* Must split region */
665 /*
666 * Check for an entry in the cache before dropping
667 * lock and attempting allocation.
668 */
669 if (!nrg &&
670 resv->region_cache_count > resv->adds_in_progress) {
671 nrg = list_first_entry(&resv->region_cache,
672 struct file_region,
673 link);
674 list_del(&nrg->link);
675 resv->region_cache_count--;
676 }
677
678 if (!nrg) {
679 spin_unlock(&resv->lock);
680 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
681 if (!nrg)
682 return -ENOMEM;
683 goto retry;
684 }
685
686 del += t - f;
687 hugetlb_cgroup_uncharge_file_region(
688 resv, rg, t - f, false);
689
690 /* New entry for end of split region */
691 nrg->from = t;
692 nrg->to = rg->to;
693
694 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
695
696 INIT_LIST_HEAD(&nrg->link);
697
698 /* Original entry is trimmed */
699 rg->to = f;
700
701 list_add(&nrg->link, &rg->link);
702 nrg = NULL;
703 break;
704 }
705
706 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
707 del += rg->to - rg->from;
708 hugetlb_cgroup_uncharge_file_region(resv, rg,
709 rg->to - rg->from, true);
710 list_del(&rg->link);
711 kfree(rg);
712 continue;
713 }
714
715 if (f <= rg->from) { /* Trim beginning of region */
716 hugetlb_cgroup_uncharge_file_region(resv, rg,
717 t - rg->from, false);
718
719 del += t - rg->from;
720 rg->from = t;
721 } else { /* Trim end of region */
722 hugetlb_cgroup_uncharge_file_region(resv, rg,
723 rg->to - f, false);
724
725 del += rg->to - f;
726 rg->to = f;
727 }
728 }
729
730 spin_unlock(&resv->lock);
731 kfree(nrg);
732 return del;
733}
734
735/*
736 * A rare out of memory error was encountered which prevented removal of
737 * the reserve map region for a page. The huge page itself was free'ed
738 * and removed from the page cache. This routine will adjust the subpool
739 * usage count, and the global reserve count if needed. By incrementing
740 * these counts, the reserve map entry which could not be deleted will
741 * appear as a "reserved" entry instead of simply dangling with incorrect
742 * counts.
743 */
744void hugetlb_fix_reserve_counts(struct inode *inode)
745{
746 struct hugepage_subpool *spool = subpool_inode(inode);
747 long rsv_adjust;
748 bool reserved = false;
749
750 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
751 if (rsv_adjust > 0) {
752 struct hstate *h = hstate_inode(inode);
753
754 if (!hugetlb_acct_memory(h, 1))
755 reserved = true;
756 } else if (!rsv_adjust) {
757 reserved = true;
758 }
759
760 if (!reserved)
761 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
762}
763
764/*
765 * Count and return the number of huge pages in the reserve map
766 * that intersect with the range [f, t).
767 */
768static long region_count(struct resv_map *resv, long f, long t)
769{
770 struct list_head *head = &resv->regions;
771 struct file_region *rg;
772 long chg = 0;
773
774 spin_lock(&resv->lock);
775 /* Locate each segment we overlap with, and count that overlap. */
776 list_for_each_entry(rg, head, link) {
777 long seg_from;
778 long seg_to;
779
780 if (rg->to <= f)
781 continue;
782 if (rg->from >= t)
783 break;
784
785 seg_from = max(rg->from, f);
786 seg_to = min(rg->to, t);
787
788 chg += seg_to - seg_from;
789 }
790 spin_unlock(&resv->lock);
791
792 return chg;
793}
794
795/*
796 * Convert the address within this vma to the page offset within
797 * the mapping, in pagecache page units; huge pages here.
798 */
799static pgoff_t vma_hugecache_offset(struct hstate *h,
800 struct vm_area_struct *vma, unsigned long address)
801{
802 return ((address - vma->vm_start) >> huge_page_shift(h)) +
803 (vma->vm_pgoff >> huge_page_order(h));
804}
805
806pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
807 unsigned long address)
808{
809 return vma_hugecache_offset(hstate_vma(vma), vma, address);
810}
811EXPORT_SYMBOL_GPL(linear_hugepage_index);
812
813/*
814 * Return the size of the pages allocated when backing a VMA. In the majority
815 * cases this will be same size as used by the page table entries.
816 */
817unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
818{
819 if (vma->vm_ops && vma->vm_ops->pagesize)
820 return vma->vm_ops->pagesize(vma);
821 return PAGE_SIZE;
822}
823EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
824
825/*
826 * Return the page size being used by the MMU to back a VMA. In the majority
827 * of cases, the page size used by the kernel matches the MMU size. On
828 * architectures where it differs, an architecture-specific 'strong'
829 * version of this symbol is required.
830 */
831__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
832{
833 return vma_kernel_pagesize(vma);
834}
835
836/*
837 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
838 * bits of the reservation map pointer, which are always clear due to
839 * alignment.
840 */
841#define HPAGE_RESV_OWNER (1UL << 0)
842#define HPAGE_RESV_UNMAPPED (1UL << 1)
843#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
844
845/*
846 * These helpers are used to track how many pages are reserved for
847 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
848 * is guaranteed to have their future faults succeed.
849 *
850 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
851 * the reserve counters are updated with the hugetlb_lock held. It is safe
852 * to reset the VMA at fork() time as it is not in use yet and there is no
853 * chance of the global counters getting corrupted as a result of the values.
854 *
855 * The private mapping reservation is represented in a subtly different
856 * manner to a shared mapping. A shared mapping has a region map associated
857 * with the underlying file, this region map represents the backing file
858 * pages which have ever had a reservation assigned which this persists even
859 * after the page is instantiated. A private mapping has a region map
860 * associated with the original mmap which is attached to all VMAs which
861 * reference it, this region map represents those offsets which have consumed
862 * reservation ie. where pages have been instantiated.
863 */
864static unsigned long get_vma_private_data(struct vm_area_struct *vma)
865{
866 return (unsigned long)vma->vm_private_data;
867}
868
869static void set_vma_private_data(struct vm_area_struct *vma,
870 unsigned long value)
871{
872 vma->vm_private_data = (void *)value;
873}
874
875static void
876resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
877 struct hugetlb_cgroup *h_cg,
878 struct hstate *h)
879{
880#ifdef CONFIG_CGROUP_HUGETLB
881 if (!h_cg || !h) {
882 resv_map->reservation_counter = NULL;
883 resv_map->pages_per_hpage = 0;
884 resv_map->css = NULL;
885 } else {
886 resv_map->reservation_counter =
887 &h_cg->rsvd_hugepage[hstate_index(h)];
888 resv_map->pages_per_hpage = pages_per_huge_page(h);
889 resv_map->css = &h_cg->css;
890 }
891#endif
892}
893
894struct resv_map *resv_map_alloc(void)
895{
896 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
897 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
898
899 if (!resv_map || !rg) {
900 kfree(resv_map);
901 kfree(rg);
902 return NULL;
903 }
904
905 kref_init(&resv_map->refs);
906 spin_lock_init(&resv_map->lock);
907 INIT_LIST_HEAD(&resv_map->regions);
908
909 resv_map->adds_in_progress = 0;
910 /*
911 * Initialize these to 0. On shared mappings, 0's here indicate these
912 * fields don't do cgroup accounting. On private mappings, these will be
913 * re-initialized to the proper values, to indicate that hugetlb cgroup
914 * reservations are to be un-charged from here.
915 */
916 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
917
918 INIT_LIST_HEAD(&resv_map->region_cache);
919 list_add(&rg->link, &resv_map->region_cache);
920 resv_map->region_cache_count = 1;
921
922 return resv_map;
923}
924
925void resv_map_release(struct kref *ref)
926{
927 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
928 struct list_head *head = &resv_map->region_cache;
929 struct file_region *rg, *trg;
930
931 /* Clear out any active regions before we release the map. */
932 region_del(resv_map, 0, LONG_MAX);
933
934 /* ... and any entries left in the cache */
935 list_for_each_entry_safe(rg, trg, head, link) {
936 list_del(&rg->link);
937 kfree(rg);
938 }
939
940 VM_BUG_ON(resv_map->adds_in_progress);
941
942 kfree(resv_map);
943}
944
945static inline struct resv_map *inode_resv_map(struct inode *inode)
946{
947 /*
948 * At inode evict time, i_mapping may not point to the original
949 * address space within the inode. This original address space
950 * contains the pointer to the resv_map. So, always use the
951 * address space embedded within the inode.
952 * The VERY common case is inode->mapping == &inode->i_data but,
953 * this may not be true for device special inodes.
954 */
955 return (struct resv_map *)(&inode->i_data)->private_data;
956}
957
958static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
959{
960 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
961 if (vma->vm_flags & VM_MAYSHARE) {
962 struct address_space *mapping = vma->vm_file->f_mapping;
963 struct inode *inode = mapping->host;
964
965 return inode_resv_map(inode);
966
967 } else {
968 return (struct resv_map *)(get_vma_private_data(vma) &
969 ~HPAGE_RESV_MASK);
970 }
971}
972
973static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
974{
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
977
978 set_vma_private_data(vma, (get_vma_private_data(vma) &
979 HPAGE_RESV_MASK) | (unsigned long)map);
980}
981
982static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
983{
984 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
985 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
986
987 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
988}
989
990static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
991{
992 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
993
994 return (get_vma_private_data(vma) & flag) != 0;
995}
996
997/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
998void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
999{
1000 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1001 if (!(vma->vm_flags & VM_MAYSHARE))
1002 vma->vm_private_data = (void *)0;
1003}
1004
1005/* Returns true if the VMA has associated reserve pages */
1006static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1007{
1008 if (vma->vm_flags & VM_NORESERVE) {
1009 /*
1010 * This address is already reserved by other process(chg == 0),
1011 * so, we should decrement reserved count. Without decrementing,
1012 * reserve count remains after releasing inode, because this
1013 * allocated page will go into page cache and is regarded as
1014 * coming from reserved pool in releasing step. Currently, we
1015 * don't have any other solution to deal with this situation
1016 * properly, so add work-around here.
1017 */
1018 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1019 return true;
1020 else
1021 return false;
1022 }
1023
1024 /* Shared mappings always use reserves */
1025 if (vma->vm_flags & VM_MAYSHARE) {
1026 /*
1027 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1028 * be a region map for all pages. The only situation where
1029 * there is no region map is if a hole was punched via
1030 * fallocate. In this case, there really are no reserves to
1031 * use. This situation is indicated if chg != 0.
1032 */
1033 if (chg)
1034 return false;
1035 else
1036 return true;
1037 }
1038
1039 /*
1040 * Only the process that called mmap() has reserves for
1041 * private mappings.
1042 */
1043 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1044 /*
1045 * Like the shared case above, a hole punch or truncate
1046 * could have been performed on the private mapping.
1047 * Examine the value of chg to determine if reserves
1048 * actually exist or were previously consumed.
1049 * Very Subtle - The value of chg comes from a previous
1050 * call to vma_needs_reserves(). The reserve map for
1051 * private mappings has different (opposite) semantics
1052 * than that of shared mappings. vma_needs_reserves()
1053 * has already taken this difference in semantics into
1054 * account. Therefore, the meaning of chg is the same
1055 * as in the shared case above. Code could easily be
1056 * combined, but keeping it separate draws attention to
1057 * subtle differences.
1058 */
1059 if (chg)
1060 return false;
1061 else
1062 return true;
1063 }
1064
1065 return false;
1066}
1067
1068static void enqueue_huge_page(struct hstate *h, struct page *page)
1069{
1070 int nid = page_to_nid(page);
1071
1072 lockdep_assert_held(&hugetlb_lock);
1073 list_move(&page->lru, &h->hugepage_freelists[nid]);
1074 h->free_huge_pages++;
1075 h->free_huge_pages_node[nid]++;
1076 SetHPageFreed(page);
1077}
1078
1079static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1080{
1081 struct page *page;
1082 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1083
1084 lockdep_assert_held(&hugetlb_lock);
1085 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1086 if (pin && !is_pinnable_page(page))
1087 continue;
1088
1089 if (PageHWPoison(page))
1090 continue;
1091
1092 list_move(&page->lru, &h->hugepage_activelist);
1093 set_page_refcounted(page);
1094 ClearHPageFreed(page);
1095 h->free_huge_pages--;
1096 h->free_huge_pages_node[nid]--;
1097 return page;
1098 }
1099
1100 return NULL;
1101}
1102
1103static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1104 nodemask_t *nmask)
1105{
1106 unsigned int cpuset_mems_cookie;
1107 struct zonelist *zonelist;
1108 struct zone *zone;
1109 struct zoneref *z;
1110 int node = NUMA_NO_NODE;
1111
1112 zonelist = node_zonelist(nid, gfp_mask);
1113
1114retry_cpuset:
1115 cpuset_mems_cookie = read_mems_allowed_begin();
1116 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1117 struct page *page;
1118
1119 if (!cpuset_zone_allowed(zone, gfp_mask))
1120 continue;
1121 /*
1122 * no need to ask again on the same node. Pool is node rather than
1123 * zone aware
1124 */
1125 if (zone_to_nid(zone) == node)
1126 continue;
1127 node = zone_to_nid(zone);
1128
1129 page = dequeue_huge_page_node_exact(h, node);
1130 if (page)
1131 return page;
1132 }
1133 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1134 goto retry_cpuset;
1135
1136 return NULL;
1137}
1138
1139static struct page *dequeue_huge_page_vma(struct hstate *h,
1140 struct vm_area_struct *vma,
1141 unsigned long address, int avoid_reserve,
1142 long chg)
1143{
1144 struct page *page;
1145 struct mempolicy *mpol;
1146 gfp_t gfp_mask;
1147 nodemask_t *nodemask;
1148 int nid;
1149
1150 /*
1151 * A child process with MAP_PRIVATE mappings created by their parent
1152 * have no page reserves. This check ensures that reservations are
1153 * not "stolen". The child may still get SIGKILLed
1154 */
1155 if (!vma_has_reserves(vma, chg) &&
1156 h->free_huge_pages - h->resv_huge_pages == 0)
1157 goto err;
1158
1159 /* If reserves cannot be used, ensure enough pages are in the pool */
1160 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1161 goto err;
1162
1163 gfp_mask = htlb_alloc_mask(h);
1164 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1165 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1166 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1167 SetHPageRestoreReserve(page);
1168 h->resv_huge_pages--;
1169 }
1170
1171 mpol_cond_put(mpol);
1172 return page;
1173
1174err:
1175 return NULL;
1176}
1177
1178/*
1179 * common helper functions for hstate_next_node_to_{alloc|free}.
1180 * We may have allocated or freed a huge page based on a different
1181 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1182 * be outside of *nodes_allowed. Ensure that we use an allowed
1183 * node for alloc or free.
1184 */
1185static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1186{
1187 nid = next_node_in(nid, *nodes_allowed);
1188 VM_BUG_ON(nid >= MAX_NUMNODES);
1189
1190 return nid;
1191}
1192
1193static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1194{
1195 if (!node_isset(nid, *nodes_allowed))
1196 nid = next_node_allowed(nid, nodes_allowed);
1197 return nid;
1198}
1199
1200/*
1201 * returns the previously saved node ["this node"] from which to
1202 * allocate a persistent huge page for the pool and advance the
1203 * next node from which to allocate, handling wrap at end of node
1204 * mask.
1205 */
1206static int hstate_next_node_to_alloc(struct hstate *h,
1207 nodemask_t *nodes_allowed)
1208{
1209 int nid;
1210
1211 VM_BUG_ON(!nodes_allowed);
1212
1213 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1214 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1215
1216 return nid;
1217}
1218
1219/*
1220 * helper for remove_pool_huge_page() - return the previously saved
1221 * node ["this node"] from which to free a huge page. Advance the
1222 * next node id whether or not we find a free huge page to free so
1223 * that the next attempt to free addresses the next node.
1224 */
1225static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1226{
1227 int nid;
1228
1229 VM_BUG_ON(!nodes_allowed);
1230
1231 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1232 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1233
1234 return nid;
1235}
1236
1237#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1238 for (nr_nodes = nodes_weight(*mask); \
1239 nr_nodes > 0 && \
1240 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1241 nr_nodes--)
1242
1243#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1244 for (nr_nodes = nodes_weight(*mask); \
1245 nr_nodes > 0 && \
1246 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1247 nr_nodes--)
1248
1249#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1250static void destroy_compound_gigantic_page(struct page *page,
1251 unsigned int order)
1252{
1253 int i;
1254 int nr_pages = 1 << order;
1255 struct page *p = page + 1;
1256
1257 atomic_set(compound_mapcount_ptr(page), 0);
1258 atomic_set(compound_pincount_ptr(page), 0);
1259
1260 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1261 clear_compound_head(p);
1262 set_page_refcounted(p);
1263 }
1264
1265 set_compound_order(page, 0);
1266 page[1].compound_nr = 0;
1267 __ClearPageHead(page);
1268}
1269
1270static void free_gigantic_page(struct page *page, unsigned int order)
1271{
1272 /*
1273 * If the page isn't allocated using the cma allocator,
1274 * cma_release() returns false.
1275 */
1276#ifdef CONFIG_CMA
1277 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1278 return;
1279#endif
1280
1281 free_contig_range(page_to_pfn(page), 1 << order);
1282}
1283
1284#ifdef CONFIG_CONTIG_ALLOC
1285static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286 int nid, nodemask_t *nodemask)
1287{
1288 unsigned long nr_pages = pages_per_huge_page(h);
1289 if (nid == NUMA_NO_NODE)
1290 nid = numa_mem_id();
1291
1292#ifdef CONFIG_CMA
1293 {
1294 struct page *page;
1295 int node;
1296
1297 if (hugetlb_cma[nid]) {
1298 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1299 huge_page_order(h), true);
1300 if (page)
1301 return page;
1302 }
1303
1304 if (!(gfp_mask & __GFP_THISNODE)) {
1305 for_each_node_mask(node, *nodemask) {
1306 if (node == nid || !hugetlb_cma[node])
1307 continue;
1308
1309 page = cma_alloc(hugetlb_cma[node], nr_pages,
1310 huge_page_order(h), true);
1311 if (page)
1312 return page;
1313 }
1314 }
1315 }
1316#endif
1317
1318 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1319}
1320
1321static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1322static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1323#else /* !CONFIG_CONTIG_ALLOC */
1324static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1325 int nid, nodemask_t *nodemask)
1326{
1327 return NULL;
1328}
1329#endif /* CONFIG_CONTIG_ALLOC */
1330
1331#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1332static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1333 int nid, nodemask_t *nodemask)
1334{
1335 return NULL;
1336}
1337static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1338static inline void destroy_compound_gigantic_page(struct page *page,
1339 unsigned int order) { }
1340#endif
1341
1342/*
1343 * Remove hugetlb page from lists, and update dtor so that page appears
1344 * as just a compound page. A reference is held on the page.
1345 *
1346 * Must be called with hugetlb lock held.
1347 */
1348static void remove_hugetlb_page(struct hstate *h, struct page *page,
1349 bool adjust_surplus)
1350{
1351 int nid = page_to_nid(page);
1352
1353 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1354 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1355
1356 lockdep_assert_held(&hugetlb_lock);
1357 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1358 return;
1359
1360 list_del(&page->lru);
1361
1362 if (HPageFreed(page)) {
1363 h->free_huge_pages--;
1364 h->free_huge_pages_node[nid]--;
1365 }
1366 if (adjust_surplus) {
1367 h->surplus_huge_pages--;
1368 h->surplus_huge_pages_node[nid]--;
1369 }
1370
1371 set_page_refcounted(page);
1372 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1373
1374 h->nr_huge_pages--;
1375 h->nr_huge_pages_node[nid]--;
1376}
1377
1378static void update_and_free_page(struct hstate *h, struct page *page)
1379{
1380 int i;
1381 struct page *subpage = page;
1382
1383 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1384 return;
1385
1386 for (i = 0; i < pages_per_huge_page(h);
1387 i++, subpage = mem_map_next(subpage, page, i)) {
1388 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1389 1 << PG_referenced | 1 << PG_dirty |
1390 1 << PG_active | 1 << PG_private |
1391 1 << PG_writeback);
1392 }
1393 if (hstate_is_gigantic(h)) {
1394 destroy_compound_gigantic_page(page, huge_page_order(h));
1395 free_gigantic_page(page, huge_page_order(h));
1396 } else {
1397 __free_pages(page, huge_page_order(h));
1398 }
1399}
1400
1401static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1402{
1403 struct page *page, *t_page;
1404
1405 list_for_each_entry_safe(page, t_page, list, lru) {
1406 update_and_free_page(h, page);
1407 cond_resched();
1408 }
1409}
1410
1411struct hstate *size_to_hstate(unsigned long size)
1412{
1413 struct hstate *h;
1414
1415 for_each_hstate(h) {
1416 if (huge_page_size(h) == size)
1417 return h;
1418 }
1419 return NULL;
1420}
1421
1422void free_huge_page(struct page *page)
1423{
1424 /*
1425 * Can't pass hstate in here because it is called from the
1426 * compound page destructor.
1427 */
1428 struct hstate *h = page_hstate(page);
1429 int nid = page_to_nid(page);
1430 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1431 bool restore_reserve;
1432 unsigned long flags;
1433
1434 VM_BUG_ON_PAGE(page_count(page), page);
1435 VM_BUG_ON_PAGE(page_mapcount(page), page);
1436
1437 hugetlb_set_page_subpool(page, NULL);
1438 page->mapping = NULL;
1439 restore_reserve = HPageRestoreReserve(page);
1440 ClearHPageRestoreReserve(page);
1441
1442 /*
1443 * If HPageRestoreReserve was set on page, page allocation consumed a
1444 * reservation. If the page was associated with a subpool, there
1445 * would have been a page reserved in the subpool before allocation
1446 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1447 * reservation, do not call hugepage_subpool_put_pages() as this will
1448 * remove the reserved page from the subpool.
1449 */
1450 if (!restore_reserve) {
1451 /*
1452 * A return code of zero implies that the subpool will be
1453 * under its minimum size if the reservation is not restored
1454 * after page is free. Therefore, force restore_reserve
1455 * operation.
1456 */
1457 if (hugepage_subpool_put_pages(spool, 1) == 0)
1458 restore_reserve = true;
1459 }
1460
1461 spin_lock_irqsave(&hugetlb_lock, flags);
1462 ClearHPageMigratable(page);
1463 hugetlb_cgroup_uncharge_page(hstate_index(h),
1464 pages_per_huge_page(h), page);
1465 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1466 pages_per_huge_page(h), page);
1467 if (restore_reserve)
1468 h->resv_huge_pages++;
1469
1470 if (HPageTemporary(page)) {
1471 remove_hugetlb_page(h, page, false);
1472 spin_unlock_irqrestore(&hugetlb_lock, flags);
1473 update_and_free_page(h, page);
1474 } else if (h->surplus_huge_pages_node[nid]) {
1475 /* remove the page from active list */
1476 remove_hugetlb_page(h, page, true);
1477 spin_unlock_irqrestore(&hugetlb_lock, flags);
1478 update_and_free_page(h, page);
1479 } else {
1480 arch_clear_hugepage_flags(page);
1481 enqueue_huge_page(h, page);
1482 spin_unlock_irqrestore(&hugetlb_lock, flags);
1483 }
1484}
1485
1486/*
1487 * Must be called with the hugetlb lock held
1488 */
1489static void __prep_account_new_huge_page(struct hstate *h, int nid)
1490{
1491 lockdep_assert_held(&hugetlb_lock);
1492 h->nr_huge_pages++;
1493 h->nr_huge_pages_node[nid]++;
1494}
1495
1496static void __prep_new_huge_page(struct page *page)
1497{
1498 INIT_LIST_HEAD(&page->lru);
1499 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1500 hugetlb_set_page_subpool(page, NULL);
1501 set_hugetlb_cgroup(page, NULL);
1502 set_hugetlb_cgroup_rsvd(page, NULL);
1503}
1504
1505static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1506{
1507 __prep_new_huge_page(page);
1508 spin_lock_irq(&hugetlb_lock);
1509 __prep_account_new_huge_page(h, nid);
1510 spin_unlock_irq(&hugetlb_lock);
1511}
1512
1513static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1514{
1515 int i;
1516 int nr_pages = 1 << order;
1517 struct page *p = page + 1;
1518
1519 /* we rely on prep_new_huge_page to set the destructor */
1520 set_compound_order(page, order);
1521 __ClearPageReserved(page);
1522 __SetPageHead(page);
1523 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1524 /*
1525 * For gigantic hugepages allocated through bootmem at
1526 * boot, it's safer to be consistent with the not-gigantic
1527 * hugepages and clear the PG_reserved bit from all tail pages
1528 * too. Otherwise drivers using get_user_pages() to access tail
1529 * pages may get the reference counting wrong if they see
1530 * PG_reserved set on a tail page (despite the head page not
1531 * having PG_reserved set). Enforcing this consistency between
1532 * head and tail pages allows drivers to optimize away a check
1533 * on the head page when they need know if put_page() is needed
1534 * after get_user_pages().
1535 */
1536 __ClearPageReserved(p);
1537 set_page_count(p, 0);
1538 set_compound_head(p, page);
1539 }
1540 atomic_set(compound_mapcount_ptr(page), -1);
1541 atomic_set(compound_pincount_ptr(page), 0);
1542}
1543
1544/*
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages. See the PageTransHuge() documentation for more
1547 * details.
1548 */
1549int PageHuge(struct page *page)
1550{
1551 if (!PageCompound(page))
1552 return 0;
1553
1554 page = compound_head(page);
1555 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556}
1557EXPORT_SYMBOL_GPL(PageHuge);
1558
1559/*
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1562 */
1563int PageHeadHuge(struct page *page_head)
1564{
1565 if (!PageHead(page_head))
1566 return 0;
1567
1568 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569}
1570
1571/*
1572 * Find and lock address space (mapping) in write mode.
1573 *
1574 * Upon entry, the page is locked which means that page_mapping() is
1575 * stable. Due to locking order, we can only trylock_write. If we can
1576 * not get the lock, simply return NULL to caller.
1577 */
1578struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579{
1580 struct address_space *mapping = page_mapping(hpage);
1581
1582 if (!mapping)
1583 return mapping;
1584
1585 if (i_mmap_trylock_write(mapping))
1586 return mapping;
1587
1588 return NULL;
1589}
1590
1591pgoff_t hugetlb_basepage_index(struct page *page)
1592{
1593 struct page *page_head = compound_head(page);
1594 pgoff_t index = page_index(page_head);
1595 unsigned long compound_idx;
1596
1597 if (compound_order(page_head) >= MAX_ORDER)
1598 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1599 else
1600 compound_idx = page - page_head;
1601
1602 return (index << compound_order(page_head)) + compound_idx;
1603}
1604
1605static struct page *alloc_buddy_huge_page(struct hstate *h,
1606 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1607 nodemask_t *node_alloc_noretry)
1608{
1609 int order = huge_page_order(h);
1610 struct page *page;
1611 bool alloc_try_hard = true;
1612
1613 /*
1614 * By default we always try hard to allocate the page with
1615 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1616 * a loop (to adjust global huge page counts) and previous allocation
1617 * failed, do not continue to try hard on the same node. Use the
1618 * node_alloc_noretry bitmap to manage this state information.
1619 */
1620 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1621 alloc_try_hard = false;
1622 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1623 if (alloc_try_hard)
1624 gfp_mask |= __GFP_RETRY_MAYFAIL;
1625 if (nid == NUMA_NO_NODE)
1626 nid = numa_mem_id();
1627 page = __alloc_pages(gfp_mask, order, nid, nmask);
1628 if (page)
1629 __count_vm_event(HTLB_BUDDY_PGALLOC);
1630 else
1631 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1632
1633 /*
1634 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1635 * indicates an overall state change. Clear bit so that we resume
1636 * normal 'try hard' allocations.
1637 */
1638 if (node_alloc_noretry && page && !alloc_try_hard)
1639 node_clear(nid, *node_alloc_noretry);
1640
1641 /*
1642 * If we tried hard to get a page but failed, set bit so that
1643 * subsequent attempts will not try as hard until there is an
1644 * overall state change.
1645 */
1646 if (node_alloc_noretry && !page && alloc_try_hard)
1647 node_set(nid, *node_alloc_noretry);
1648
1649 return page;
1650}
1651
1652/*
1653 * Common helper to allocate a fresh hugetlb page. All specific allocators
1654 * should use this function to get new hugetlb pages
1655 */
1656static struct page *alloc_fresh_huge_page(struct hstate *h,
1657 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1658 nodemask_t *node_alloc_noretry)
1659{
1660 struct page *page;
1661
1662 if (hstate_is_gigantic(h))
1663 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1664 else
1665 page = alloc_buddy_huge_page(h, gfp_mask,
1666 nid, nmask, node_alloc_noretry);
1667 if (!page)
1668 return NULL;
1669
1670 if (hstate_is_gigantic(h))
1671 prep_compound_gigantic_page(page, huge_page_order(h));
1672 prep_new_huge_page(h, page, page_to_nid(page));
1673
1674 return page;
1675}
1676
1677/*
1678 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1679 * manner.
1680 */
1681static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1682 nodemask_t *node_alloc_noretry)
1683{
1684 struct page *page;
1685 int nr_nodes, node;
1686 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1687
1688 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1689 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1690 node_alloc_noretry);
1691 if (page)
1692 break;
1693 }
1694
1695 if (!page)
1696 return 0;
1697
1698 put_page(page); /* free it into the hugepage allocator */
1699
1700 return 1;
1701}
1702
1703/*
1704 * Remove huge page from pool from next node to free. Attempt to keep
1705 * persistent huge pages more or less balanced over allowed nodes.
1706 * This routine only 'removes' the hugetlb page. The caller must make
1707 * an additional call to free the page to low level allocators.
1708 * Called with hugetlb_lock locked.
1709 */
1710static struct page *remove_pool_huge_page(struct hstate *h,
1711 nodemask_t *nodes_allowed,
1712 bool acct_surplus)
1713{
1714 int nr_nodes, node;
1715 struct page *page = NULL;
1716
1717 lockdep_assert_held(&hugetlb_lock);
1718 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1719 /*
1720 * If we're returning unused surplus pages, only examine
1721 * nodes with surplus pages.
1722 */
1723 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1724 !list_empty(&h->hugepage_freelists[node])) {
1725 page = list_entry(h->hugepage_freelists[node].next,
1726 struct page, lru);
1727 remove_hugetlb_page(h, page, acct_surplus);
1728 break;
1729 }
1730 }
1731
1732 return page;
1733}
1734
1735/*
1736 * Dissolve a given free hugepage into free buddy pages. This function does
1737 * nothing for in-use hugepages and non-hugepages.
1738 * This function returns values like below:
1739 *
1740 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1741 * (allocated or reserved.)
1742 * 0: successfully dissolved free hugepages or the page is not a
1743 * hugepage (considered as already dissolved)
1744 */
1745int dissolve_free_huge_page(struct page *page)
1746{
1747 int rc = -EBUSY;
1748
1749retry:
1750 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1751 if (!PageHuge(page))
1752 return 0;
1753
1754 spin_lock_irq(&hugetlb_lock);
1755 if (!PageHuge(page)) {
1756 rc = 0;
1757 goto out;
1758 }
1759
1760 if (!page_count(page)) {
1761 struct page *head = compound_head(page);
1762 struct hstate *h = page_hstate(head);
1763 if (h->free_huge_pages - h->resv_huge_pages == 0)
1764 goto out;
1765
1766 /*
1767 * We should make sure that the page is already on the free list
1768 * when it is dissolved.
1769 */
1770 if (unlikely(!HPageFreed(head))) {
1771 spin_unlock_irq(&hugetlb_lock);
1772 cond_resched();
1773
1774 /*
1775 * Theoretically, we should return -EBUSY when we
1776 * encounter this race. In fact, we have a chance
1777 * to successfully dissolve the page if we do a
1778 * retry. Because the race window is quite small.
1779 * If we seize this opportunity, it is an optimization
1780 * for increasing the success rate of dissolving page.
1781 */
1782 goto retry;
1783 }
1784
1785 /*
1786 * Move PageHWPoison flag from head page to the raw error page,
1787 * which makes any subpages rather than the error page reusable.
1788 */
1789 if (PageHWPoison(head) && page != head) {
1790 SetPageHWPoison(page);
1791 ClearPageHWPoison(head);
1792 }
1793 remove_hugetlb_page(h, head, false);
1794 h->max_huge_pages--;
1795 spin_unlock_irq(&hugetlb_lock);
1796 update_and_free_page(h, head);
1797 return 0;
1798 }
1799out:
1800 spin_unlock_irq(&hugetlb_lock);
1801 return rc;
1802}
1803
1804/*
1805 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1806 * make specified memory blocks removable from the system.
1807 * Note that this will dissolve a free gigantic hugepage completely, if any
1808 * part of it lies within the given range.
1809 * Also note that if dissolve_free_huge_page() returns with an error, all
1810 * free hugepages that were dissolved before that error are lost.
1811 */
1812int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1813{
1814 unsigned long pfn;
1815 struct page *page;
1816 int rc = 0;
1817
1818 if (!hugepages_supported())
1819 return rc;
1820
1821 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1822 page = pfn_to_page(pfn);
1823 rc = dissolve_free_huge_page(page);
1824 if (rc)
1825 break;
1826 }
1827
1828 return rc;
1829}
1830
1831/*
1832 * Allocates a fresh surplus page from the page allocator.
1833 */
1834static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1835 int nid, nodemask_t *nmask)
1836{
1837 struct page *page = NULL;
1838
1839 if (hstate_is_gigantic(h))
1840 return NULL;
1841
1842 spin_lock_irq(&hugetlb_lock);
1843 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1844 goto out_unlock;
1845 spin_unlock_irq(&hugetlb_lock);
1846
1847 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1848 if (!page)
1849 return NULL;
1850
1851 spin_lock_irq(&hugetlb_lock);
1852 /*
1853 * We could have raced with the pool size change.
1854 * Double check that and simply deallocate the new page
1855 * if we would end up overcommiting the surpluses. Abuse
1856 * temporary page to workaround the nasty free_huge_page
1857 * codeflow
1858 */
1859 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1860 SetHPageTemporary(page);
1861 spin_unlock_irq(&hugetlb_lock);
1862 put_page(page);
1863 return NULL;
1864 } else {
1865 h->surplus_huge_pages++;
1866 h->surplus_huge_pages_node[page_to_nid(page)]++;
1867 }
1868
1869out_unlock:
1870 spin_unlock_irq(&hugetlb_lock);
1871
1872 return page;
1873}
1874
1875static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1876 int nid, nodemask_t *nmask)
1877{
1878 struct page *page;
1879
1880 if (hstate_is_gigantic(h))
1881 return NULL;
1882
1883 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1884 if (!page)
1885 return NULL;
1886
1887 /*
1888 * We do not account these pages as surplus because they are only
1889 * temporary and will be released properly on the last reference
1890 */
1891 SetHPageTemporary(page);
1892
1893 return page;
1894}
1895
1896/*
1897 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1898 */
1899static
1900struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1901 struct vm_area_struct *vma, unsigned long addr)
1902{
1903 struct page *page;
1904 struct mempolicy *mpol;
1905 gfp_t gfp_mask = htlb_alloc_mask(h);
1906 int nid;
1907 nodemask_t *nodemask;
1908
1909 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1910 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1911 mpol_cond_put(mpol);
1912
1913 return page;
1914}
1915
1916/* page migration callback function */
1917struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1918 nodemask_t *nmask, gfp_t gfp_mask)
1919{
1920 spin_lock_irq(&hugetlb_lock);
1921 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1922 struct page *page;
1923
1924 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1925 if (page) {
1926 spin_unlock_irq(&hugetlb_lock);
1927 return page;
1928 }
1929 }
1930 spin_unlock_irq(&hugetlb_lock);
1931
1932 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1933}
1934
1935/* mempolicy aware migration callback */
1936struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1937 unsigned long address)
1938{
1939 struct mempolicy *mpol;
1940 nodemask_t *nodemask;
1941 struct page *page;
1942 gfp_t gfp_mask;
1943 int node;
1944
1945 gfp_mask = htlb_alloc_mask(h);
1946 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1947 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1948 mpol_cond_put(mpol);
1949
1950 return page;
1951}
1952
1953/*
1954 * Increase the hugetlb pool such that it can accommodate a reservation
1955 * of size 'delta'.
1956 */
1957static int gather_surplus_pages(struct hstate *h, long delta)
1958 __must_hold(&hugetlb_lock)
1959{
1960 struct list_head surplus_list;
1961 struct page *page, *tmp;
1962 int ret;
1963 long i;
1964 long needed, allocated;
1965 bool alloc_ok = true;
1966
1967 lockdep_assert_held(&hugetlb_lock);
1968 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1969 if (needed <= 0) {
1970 h->resv_huge_pages += delta;
1971 return 0;
1972 }
1973
1974 allocated = 0;
1975 INIT_LIST_HEAD(&surplus_list);
1976
1977 ret = -ENOMEM;
1978retry:
1979 spin_unlock_irq(&hugetlb_lock);
1980 for (i = 0; i < needed; i++) {
1981 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1982 NUMA_NO_NODE, NULL);
1983 if (!page) {
1984 alloc_ok = false;
1985 break;
1986 }
1987 list_add(&page->lru, &surplus_list);
1988 cond_resched();
1989 }
1990 allocated += i;
1991
1992 /*
1993 * After retaking hugetlb_lock, we need to recalculate 'needed'
1994 * because either resv_huge_pages or free_huge_pages may have changed.
1995 */
1996 spin_lock_irq(&hugetlb_lock);
1997 needed = (h->resv_huge_pages + delta) -
1998 (h->free_huge_pages + allocated);
1999 if (needed > 0) {
2000 if (alloc_ok)
2001 goto retry;
2002 /*
2003 * We were not able to allocate enough pages to
2004 * satisfy the entire reservation so we free what
2005 * we've allocated so far.
2006 */
2007 goto free;
2008 }
2009 /*
2010 * The surplus_list now contains _at_least_ the number of extra pages
2011 * needed to accommodate the reservation. Add the appropriate number
2012 * of pages to the hugetlb pool and free the extras back to the buddy
2013 * allocator. Commit the entire reservation here to prevent another
2014 * process from stealing the pages as they are added to the pool but
2015 * before they are reserved.
2016 */
2017 needed += allocated;
2018 h->resv_huge_pages += delta;
2019 ret = 0;
2020
2021 /* Free the needed pages to the hugetlb pool */
2022 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2023 int zeroed;
2024
2025 if ((--needed) < 0)
2026 break;
2027 /*
2028 * This page is now managed by the hugetlb allocator and has
2029 * no users -- drop the buddy allocator's reference.
2030 */
2031 zeroed = put_page_testzero(page);
2032 VM_BUG_ON_PAGE(!zeroed, page);
2033 enqueue_huge_page(h, page);
2034 }
2035free:
2036 spin_unlock_irq(&hugetlb_lock);
2037
2038 /* Free unnecessary surplus pages to the buddy allocator */
2039 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2040 put_page(page);
2041 spin_lock_irq(&hugetlb_lock);
2042
2043 return ret;
2044}
2045
2046/*
2047 * This routine has two main purposes:
2048 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2049 * in unused_resv_pages. This corresponds to the prior adjustments made
2050 * to the associated reservation map.
2051 * 2) Free any unused surplus pages that may have been allocated to satisfy
2052 * the reservation. As many as unused_resv_pages may be freed.
2053 */
2054static void return_unused_surplus_pages(struct hstate *h,
2055 unsigned long unused_resv_pages)
2056{
2057 unsigned long nr_pages;
2058 struct page *page;
2059 LIST_HEAD(page_list);
2060
2061 lockdep_assert_held(&hugetlb_lock);
2062 /* Uncommit the reservation */
2063 h->resv_huge_pages -= unused_resv_pages;
2064
2065 /* Cannot return gigantic pages currently */
2066 if (hstate_is_gigantic(h))
2067 goto out;
2068
2069 /*
2070 * Part (or even all) of the reservation could have been backed
2071 * by pre-allocated pages. Only free surplus pages.
2072 */
2073 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2074
2075 /*
2076 * We want to release as many surplus pages as possible, spread
2077 * evenly across all nodes with memory. Iterate across these nodes
2078 * until we can no longer free unreserved surplus pages. This occurs
2079 * when the nodes with surplus pages have no free pages.
2080 * remove_pool_huge_page() will balance the freed pages across the
2081 * on-line nodes with memory and will handle the hstate accounting.
2082 */
2083 while (nr_pages--) {
2084 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2085 if (!page)
2086 goto out;
2087
2088 list_add(&page->lru, &page_list);
2089 }
2090
2091out:
2092 spin_unlock_irq(&hugetlb_lock);
2093 update_and_free_pages_bulk(h, &page_list);
2094 spin_lock_irq(&hugetlb_lock);
2095}
2096
2097
2098/*
2099 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2100 * are used by the huge page allocation routines to manage reservations.
2101 *
2102 * vma_needs_reservation is called to determine if the huge page at addr
2103 * within the vma has an associated reservation. If a reservation is
2104 * needed, the value 1 is returned. The caller is then responsible for
2105 * managing the global reservation and subpool usage counts. After
2106 * the huge page has been allocated, vma_commit_reservation is called
2107 * to add the page to the reservation map. If the page allocation fails,
2108 * the reservation must be ended instead of committed. vma_end_reservation
2109 * is called in such cases.
2110 *
2111 * In the normal case, vma_commit_reservation returns the same value
2112 * as the preceding vma_needs_reservation call. The only time this
2113 * is not the case is if a reserve map was changed between calls. It
2114 * is the responsibility of the caller to notice the difference and
2115 * take appropriate action.
2116 *
2117 * vma_add_reservation is used in error paths where a reservation must
2118 * be restored when a newly allocated huge page must be freed. It is
2119 * to be called after calling vma_needs_reservation to determine if a
2120 * reservation exists.
2121 *
2122 * vma_del_reservation is used in error paths where an entry in the reserve
2123 * map was created during huge page allocation and must be removed. It is to
2124 * be called after calling vma_needs_reservation to determine if a reservation
2125 * exists.
2126 */
2127enum vma_resv_mode {
2128 VMA_NEEDS_RESV,
2129 VMA_COMMIT_RESV,
2130 VMA_END_RESV,
2131 VMA_ADD_RESV,
2132 VMA_DEL_RESV,
2133};
2134static long __vma_reservation_common(struct hstate *h,
2135 struct vm_area_struct *vma, unsigned long addr,
2136 enum vma_resv_mode mode)
2137{
2138 struct resv_map *resv;
2139 pgoff_t idx;
2140 long ret;
2141 long dummy_out_regions_needed;
2142
2143 resv = vma_resv_map(vma);
2144 if (!resv)
2145 return 1;
2146
2147 idx = vma_hugecache_offset(h, vma, addr);
2148 switch (mode) {
2149 case VMA_NEEDS_RESV:
2150 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2151 /* We assume that vma_reservation_* routines always operate on
2152 * 1 page, and that adding to resv map a 1 page entry can only
2153 * ever require 1 region.
2154 */
2155 VM_BUG_ON(dummy_out_regions_needed != 1);
2156 break;
2157 case VMA_COMMIT_RESV:
2158 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2159 /* region_add calls of range 1 should never fail. */
2160 VM_BUG_ON(ret < 0);
2161 break;
2162 case VMA_END_RESV:
2163 region_abort(resv, idx, idx + 1, 1);
2164 ret = 0;
2165 break;
2166 case VMA_ADD_RESV:
2167 if (vma->vm_flags & VM_MAYSHARE) {
2168 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2169 /* region_add calls of range 1 should never fail. */
2170 VM_BUG_ON(ret < 0);
2171 } else {
2172 region_abort(resv, idx, idx + 1, 1);
2173 ret = region_del(resv, idx, idx + 1);
2174 }
2175 break;
2176 case VMA_DEL_RESV:
2177 if (vma->vm_flags & VM_MAYSHARE) {
2178 region_abort(resv, idx, idx + 1, 1);
2179 ret = region_del(resv, idx, idx + 1);
2180 } else {
2181 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2182 /* region_add calls of range 1 should never fail. */
2183 VM_BUG_ON(ret < 0);
2184 }
2185 break;
2186 default:
2187 BUG();
2188 }
2189
2190 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2191 return ret;
2192 /*
2193 * We know private mapping must have HPAGE_RESV_OWNER set.
2194 *
2195 * In most cases, reserves always exist for private mappings.
2196 * However, a file associated with mapping could have been
2197 * hole punched or truncated after reserves were consumed.
2198 * As subsequent fault on such a range will not use reserves.
2199 * Subtle - The reserve map for private mappings has the
2200 * opposite meaning than that of shared mappings. If NO
2201 * entry is in the reserve map, it means a reservation exists.
2202 * If an entry exists in the reserve map, it means the
2203 * reservation has already been consumed. As a result, the
2204 * return value of this routine is the opposite of the
2205 * value returned from reserve map manipulation routines above.
2206 */
2207 if (ret > 0)
2208 return 0;
2209 if (ret == 0)
2210 return 1;
2211 return ret;
2212}
2213
2214static long vma_needs_reservation(struct hstate *h,
2215 struct vm_area_struct *vma, unsigned long addr)
2216{
2217 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2218}
2219
2220static long vma_commit_reservation(struct hstate *h,
2221 struct vm_area_struct *vma, unsigned long addr)
2222{
2223 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2224}
2225
2226static void vma_end_reservation(struct hstate *h,
2227 struct vm_area_struct *vma, unsigned long addr)
2228{
2229 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2230}
2231
2232static long vma_add_reservation(struct hstate *h,
2233 struct vm_area_struct *vma, unsigned long addr)
2234{
2235 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2236}
2237
2238static long vma_del_reservation(struct hstate *h,
2239 struct vm_area_struct *vma, unsigned long addr)
2240{
2241 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2242}
2243
2244/*
2245 * This routine is called to restore reservation information on error paths.
2246 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2247 * the hugetlb mutex should remain held when calling this routine.
2248 *
2249 * It handles two specific cases:
2250 * 1) A reservation was in place and the page consumed the reservation.
2251 * HPageRestoreReserve is set in the page.
2252 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2253 * not set. However, alloc_huge_page always updates the reserve map.
2254 *
2255 * In case 1, free_huge_page later in the error path will increment the
2256 * global reserve count. But, free_huge_page does not have enough context
2257 * to adjust the reservation map. This case deals primarily with private
2258 * mappings. Adjust the reserve map here to be consistent with global
2259 * reserve count adjustments to be made by free_huge_page. Make sure the
2260 * reserve map indicates there is a reservation present.
2261 *
2262 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2263 */
2264void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2265 unsigned long address, struct page *page)
2266{
2267 long rc = vma_needs_reservation(h, vma, address);
2268
2269 if (HPageRestoreReserve(page)) {
2270 if (unlikely(rc < 0))
2271 /*
2272 * Rare out of memory condition in reserve map
2273 * manipulation. Clear HPageRestoreReserve so that
2274 * global reserve count will not be incremented
2275 * by free_huge_page. This will make it appear
2276 * as though the reservation for this page was
2277 * consumed. This may prevent the task from
2278 * faulting in the page at a later time. This
2279 * is better than inconsistent global huge page
2280 * accounting of reserve counts.
2281 */
2282 ClearHPageRestoreReserve(page);
2283 else if (rc)
2284 (void)vma_add_reservation(h, vma, address);
2285 else
2286 vma_end_reservation(h, vma, address);
2287 } else {
2288 if (!rc) {
2289 /*
2290 * This indicates there is an entry in the reserve map
2291 * added by alloc_huge_page. We know it was added
2292 * before the alloc_huge_page call, otherwise
2293 * HPageRestoreReserve would be set on the page.
2294 * Remove the entry so that a subsequent allocation
2295 * does not consume a reservation.
2296 */
2297 rc = vma_del_reservation(h, vma, address);
2298 if (rc < 0)
2299 /*
2300 * VERY rare out of memory condition. Since
2301 * we can not delete the entry, set
2302 * HPageRestoreReserve so that the reserve
2303 * count will be incremented when the page
2304 * is freed. This reserve will be consumed
2305 * on a subsequent allocation.
2306 */
2307 SetHPageRestoreReserve(page);
2308 } else if (rc < 0) {
2309 /*
2310 * Rare out of memory condition from
2311 * vma_needs_reservation call. Memory allocation is
2312 * only attempted if a new entry is needed. Therefore,
2313 * this implies there is not an entry in the
2314 * reserve map.
2315 *
2316 * For shared mappings, no entry in the map indicates
2317 * no reservation. We are done.
2318 */
2319 if (!(vma->vm_flags & VM_MAYSHARE))
2320 /*
2321 * For private mappings, no entry indicates
2322 * a reservation is present. Since we can
2323 * not add an entry, set SetHPageRestoreReserve
2324 * on the page so reserve count will be
2325 * incremented when freed. This reserve will
2326 * be consumed on a subsequent allocation.
2327 */
2328 SetHPageRestoreReserve(page);
2329 } else
2330 /*
2331 * No reservation present, do nothing
2332 */
2333 vma_end_reservation(h, vma, address);
2334 }
2335}
2336
2337/*
2338 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2339 * @h: struct hstate old page belongs to
2340 * @old_page: Old page to dissolve
2341 * @list: List to isolate the page in case we need to
2342 * Returns 0 on success, otherwise negated error.
2343 */
2344static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2345 struct list_head *list)
2346{
2347 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2348 int nid = page_to_nid(old_page);
2349 struct page *new_page;
2350 int ret = 0;
2351
2352 /*
2353 * Before dissolving the page, we need to allocate a new one for the
2354 * pool to remain stable. Using alloc_buddy_huge_page() allows us to
2355 * not having to deal with prep_new_huge_page() and avoids dealing of any
2356 * counters. This simplifies and let us do the whole thing under the
2357 * lock.
2358 */
2359 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2360 if (!new_page)
2361 return -ENOMEM;
2362
2363retry:
2364 spin_lock_irq(&hugetlb_lock);
2365 if (!PageHuge(old_page)) {
2366 /*
2367 * Freed from under us. Drop new_page too.
2368 */
2369 goto free_new;
2370 } else if (page_count(old_page)) {
2371 /*
2372 * Someone has grabbed the page, try to isolate it here.
2373 * Fail with -EBUSY if not possible.
2374 */
2375 spin_unlock_irq(&hugetlb_lock);
2376 if (!isolate_huge_page(old_page, list))
2377 ret = -EBUSY;
2378 spin_lock_irq(&hugetlb_lock);
2379 goto free_new;
2380 } else if (!HPageFreed(old_page)) {
2381 /*
2382 * Page's refcount is 0 but it has not been enqueued in the
2383 * freelist yet. Race window is small, so we can succeed here if
2384 * we retry.
2385 */
2386 spin_unlock_irq(&hugetlb_lock);
2387 cond_resched();
2388 goto retry;
2389 } else {
2390 /*
2391 * Ok, old_page is still a genuine free hugepage. Remove it from
2392 * the freelist and decrease the counters. These will be
2393 * incremented again when calling __prep_account_new_huge_page()
2394 * and enqueue_huge_page() for new_page. The counters will remain
2395 * stable since this happens under the lock.
2396 */
2397 remove_hugetlb_page(h, old_page, false);
2398
2399 /*
2400 * new_page needs to be initialized with the standard hugetlb
2401 * state. This is normally done by prep_new_huge_page() but
2402 * that takes hugetlb_lock which is already held so we need to
2403 * open code it here.
2404 * Reference count trick is needed because allocator gives us
2405 * referenced page but the pool requires pages with 0 refcount.
2406 */
2407 __prep_new_huge_page(new_page);
2408 __prep_account_new_huge_page(h, nid);
2409 page_ref_dec(new_page);
2410 enqueue_huge_page(h, new_page);
2411
2412 /*
2413 * Pages have been replaced, we can safely free the old one.
2414 */
2415 spin_unlock_irq(&hugetlb_lock);
2416 update_and_free_page(h, old_page);
2417 }
2418
2419 return ret;
2420
2421free_new:
2422 spin_unlock_irq(&hugetlb_lock);
2423 __free_pages(new_page, huge_page_order(h));
2424
2425 return ret;
2426}
2427
2428int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2429{
2430 struct hstate *h;
2431 struct page *head;
2432 int ret = -EBUSY;
2433
2434 /*
2435 * The page might have been dissolved from under our feet, so make sure
2436 * to carefully check the state under the lock.
2437 * Return success when racing as if we dissolved the page ourselves.
2438 */
2439 spin_lock_irq(&hugetlb_lock);
2440 if (PageHuge(page)) {
2441 head = compound_head(page);
2442 h = page_hstate(head);
2443 } else {
2444 spin_unlock_irq(&hugetlb_lock);
2445 return 0;
2446 }
2447 spin_unlock_irq(&hugetlb_lock);
2448
2449 /*
2450 * Fence off gigantic pages as there is a cyclic dependency between
2451 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2452 * of bailing out right away without further retrying.
2453 */
2454 if (hstate_is_gigantic(h))
2455 return -ENOMEM;
2456
2457 if (page_count(head) && isolate_huge_page(head, list))
2458 ret = 0;
2459 else if (!page_count(head))
2460 ret = alloc_and_dissolve_huge_page(h, head, list);
2461
2462 return ret;
2463}
2464
2465struct page *alloc_huge_page(struct vm_area_struct *vma,
2466 unsigned long addr, int avoid_reserve)
2467{
2468 struct hugepage_subpool *spool = subpool_vma(vma);
2469 struct hstate *h = hstate_vma(vma);
2470 struct page *page;
2471 long map_chg, map_commit;
2472 long gbl_chg;
2473 int ret, idx;
2474 struct hugetlb_cgroup *h_cg;
2475 bool deferred_reserve;
2476
2477 idx = hstate_index(h);
2478 /*
2479 * Examine the region/reserve map to determine if the process
2480 * has a reservation for the page to be allocated. A return
2481 * code of zero indicates a reservation exists (no change).
2482 */
2483 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2484 if (map_chg < 0)
2485 return ERR_PTR(-ENOMEM);
2486
2487 /*
2488 * Processes that did not create the mapping will have no
2489 * reserves as indicated by the region/reserve map. Check
2490 * that the allocation will not exceed the subpool limit.
2491 * Allocations for MAP_NORESERVE mappings also need to be
2492 * checked against any subpool limit.
2493 */
2494 if (map_chg || avoid_reserve) {
2495 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2496 if (gbl_chg < 0) {
2497 vma_end_reservation(h, vma, addr);
2498 return ERR_PTR(-ENOSPC);
2499 }
2500
2501 /*
2502 * Even though there was no reservation in the region/reserve
2503 * map, there could be reservations associated with the
2504 * subpool that can be used. This would be indicated if the
2505 * return value of hugepage_subpool_get_pages() is zero.
2506 * However, if avoid_reserve is specified we still avoid even
2507 * the subpool reservations.
2508 */
2509 if (avoid_reserve)
2510 gbl_chg = 1;
2511 }
2512
2513 /* If this allocation is not consuming a reservation, charge it now.
2514 */
2515 deferred_reserve = map_chg || avoid_reserve;
2516 if (deferred_reserve) {
2517 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2518 idx, pages_per_huge_page(h), &h_cg);
2519 if (ret)
2520 goto out_subpool_put;
2521 }
2522
2523 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2524 if (ret)
2525 goto out_uncharge_cgroup_reservation;
2526
2527 spin_lock_irq(&hugetlb_lock);
2528 /*
2529 * glb_chg is passed to indicate whether or not a page must be taken
2530 * from the global free pool (global change). gbl_chg == 0 indicates
2531 * a reservation exists for the allocation.
2532 */
2533 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2534 if (!page) {
2535 spin_unlock_irq(&hugetlb_lock);
2536 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2537 if (!page)
2538 goto out_uncharge_cgroup;
2539 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2540 SetHPageRestoreReserve(page);
2541 h->resv_huge_pages--;
2542 }
2543 spin_lock_irq(&hugetlb_lock);
2544 list_add(&page->lru, &h->hugepage_activelist);
2545 /* Fall through */
2546 }
2547 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2548 /* If allocation is not consuming a reservation, also store the
2549 * hugetlb_cgroup pointer on the page.
2550 */
2551 if (deferred_reserve) {
2552 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2553 h_cg, page);
2554 }
2555
2556 spin_unlock_irq(&hugetlb_lock);
2557
2558 hugetlb_set_page_subpool(page, spool);
2559
2560 map_commit = vma_commit_reservation(h, vma, addr);
2561 if (unlikely(map_chg > map_commit)) {
2562 /*
2563 * The page was added to the reservation map between
2564 * vma_needs_reservation and vma_commit_reservation.
2565 * This indicates a race with hugetlb_reserve_pages.
2566 * Adjust for the subpool count incremented above AND
2567 * in hugetlb_reserve_pages for the same page. Also,
2568 * the reservation count added in hugetlb_reserve_pages
2569 * no longer applies.
2570 */
2571 long rsv_adjust;
2572
2573 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2574 hugetlb_acct_memory(h, -rsv_adjust);
2575 if (deferred_reserve)
2576 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2577 pages_per_huge_page(h), page);
2578 }
2579 return page;
2580
2581out_uncharge_cgroup:
2582 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2583out_uncharge_cgroup_reservation:
2584 if (deferred_reserve)
2585 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2586 h_cg);
2587out_subpool_put:
2588 if (map_chg || avoid_reserve)
2589 hugepage_subpool_put_pages(spool, 1);
2590 vma_end_reservation(h, vma, addr);
2591 return ERR_PTR(-ENOSPC);
2592}
2593
2594int alloc_bootmem_huge_page(struct hstate *h)
2595 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2596int __alloc_bootmem_huge_page(struct hstate *h)
2597{
2598 struct huge_bootmem_page *m;
2599 int nr_nodes, node;
2600
2601 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2602 void *addr;
2603
2604 addr = memblock_alloc_try_nid_raw(
2605 huge_page_size(h), huge_page_size(h),
2606 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2607 if (addr) {
2608 /*
2609 * Use the beginning of the huge page to store the
2610 * huge_bootmem_page struct (until gather_bootmem
2611 * puts them into the mem_map).
2612 */
2613 m = addr;
2614 goto found;
2615 }
2616 }
2617 return 0;
2618
2619found:
2620 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2621 /* Put them into a private list first because mem_map is not up yet */
2622 INIT_LIST_HEAD(&m->list);
2623 list_add(&m->list, &huge_boot_pages);
2624 m->hstate = h;
2625 return 1;
2626}
2627
2628static void __init prep_compound_huge_page(struct page *page,
2629 unsigned int order)
2630{
2631 if (unlikely(order > (MAX_ORDER - 1)))
2632 prep_compound_gigantic_page(page, order);
2633 else
2634 prep_compound_page(page, order);
2635}
2636
2637/* Put bootmem huge pages into the standard lists after mem_map is up */
2638static void __init gather_bootmem_prealloc(void)
2639{
2640 struct huge_bootmem_page *m;
2641
2642 list_for_each_entry(m, &huge_boot_pages, list) {
2643 struct page *page = virt_to_page(m);
2644 struct hstate *h = m->hstate;
2645
2646 WARN_ON(page_count(page) != 1);
2647 prep_compound_huge_page(page, huge_page_order(h));
2648 WARN_ON(PageReserved(page));
2649 prep_new_huge_page(h, page, page_to_nid(page));
2650 put_page(page); /* free it into the hugepage allocator */
2651
2652 /*
2653 * If we had gigantic hugepages allocated at boot time, we need
2654 * to restore the 'stolen' pages to totalram_pages in order to
2655 * fix confusing memory reports from free(1) and another
2656 * side-effects, like CommitLimit going negative.
2657 */
2658 if (hstate_is_gigantic(h))
2659 adjust_managed_page_count(page, pages_per_huge_page(h));
2660 cond_resched();
2661 }
2662}
2663
2664static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2665{
2666 unsigned long i;
2667 nodemask_t *node_alloc_noretry;
2668
2669 if (!hstate_is_gigantic(h)) {
2670 /*
2671 * Bit mask controlling how hard we retry per-node allocations.
2672 * Ignore errors as lower level routines can deal with
2673 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2674 * time, we are likely in bigger trouble.
2675 */
2676 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2677 GFP_KERNEL);
2678 } else {
2679 /* allocations done at boot time */
2680 node_alloc_noretry = NULL;
2681 }
2682
2683 /* bit mask controlling how hard we retry per-node allocations */
2684 if (node_alloc_noretry)
2685 nodes_clear(*node_alloc_noretry);
2686
2687 for (i = 0; i < h->max_huge_pages; ++i) {
2688 if (hstate_is_gigantic(h)) {
2689 if (hugetlb_cma_size) {
2690 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2691 goto free;
2692 }
2693 if (!alloc_bootmem_huge_page(h))
2694 break;
2695 } else if (!alloc_pool_huge_page(h,
2696 &node_states[N_MEMORY],
2697 node_alloc_noretry))
2698 break;
2699 cond_resched();
2700 }
2701 if (i < h->max_huge_pages) {
2702 char buf[32];
2703
2704 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2705 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2706 h->max_huge_pages, buf, i);
2707 h->max_huge_pages = i;
2708 }
2709free:
2710 kfree(node_alloc_noretry);
2711}
2712
2713static void __init hugetlb_init_hstates(void)
2714{
2715 struct hstate *h;
2716
2717 for_each_hstate(h) {
2718 if (minimum_order > huge_page_order(h))
2719 minimum_order = huge_page_order(h);
2720
2721 /* oversize hugepages were init'ed in early boot */
2722 if (!hstate_is_gigantic(h))
2723 hugetlb_hstate_alloc_pages(h);
2724 }
2725 VM_BUG_ON(minimum_order == UINT_MAX);
2726}
2727
2728static void __init report_hugepages(void)
2729{
2730 struct hstate *h;
2731
2732 for_each_hstate(h) {
2733 char buf[32];
2734
2735 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2736 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2737 buf, h->free_huge_pages);
2738 }
2739}
2740
2741#ifdef CONFIG_HIGHMEM
2742static void try_to_free_low(struct hstate *h, unsigned long count,
2743 nodemask_t *nodes_allowed)
2744{
2745 int i;
2746 LIST_HEAD(page_list);
2747
2748 lockdep_assert_held(&hugetlb_lock);
2749 if (hstate_is_gigantic(h))
2750 return;
2751
2752 /*
2753 * Collect pages to be freed on a list, and free after dropping lock
2754 */
2755 for_each_node_mask(i, *nodes_allowed) {
2756 struct page *page, *next;
2757 struct list_head *freel = &h->hugepage_freelists[i];
2758 list_for_each_entry_safe(page, next, freel, lru) {
2759 if (count >= h->nr_huge_pages)
2760 goto out;
2761 if (PageHighMem(page))
2762 continue;
2763 remove_hugetlb_page(h, page, false);
2764 list_add(&page->lru, &page_list);
2765 }
2766 }
2767
2768out:
2769 spin_unlock_irq(&hugetlb_lock);
2770 update_and_free_pages_bulk(h, &page_list);
2771 spin_lock_irq(&hugetlb_lock);
2772}
2773#else
2774static inline void try_to_free_low(struct hstate *h, unsigned long count,
2775 nodemask_t *nodes_allowed)
2776{
2777}
2778#endif
2779
2780/*
2781 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2782 * balanced by operating on them in a round-robin fashion.
2783 * Returns 1 if an adjustment was made.
2784 */
2785static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2786 int delta)
2787{
2788 int nr_nodes, node;
2789
2790 lockdep_assert_held(&hugetlb_lock);
2791 VM_BUG_ON(delta != -1 && delta != 1);
2792
2793 if (delta < 0) {
2794 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2795 if (h->surplus_huge_pages_node[node])
2796 goto found;
2797 }
2798 } else {
2799 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2800 if (h->surplus_huge_pages_node[node] <
2801 h->nr_huge_pages_node[node])
2802 goto found;
2803 }
2804 }
2805 return 0;
2806
2807found:
2808 h->surplus_huge_pages += delta;
2809 h->surplus_huge_pages_node[node] += delta;
2810 return 1;
2811}
2812
2813#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2814static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2815 nodemask_t *nodes_allowed)
2816{
2817 unsigned long min_count, ret;
2818 struct page *page;
2819 LIST_HEAD(page_list);
2820 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2821
2822 /*
2823 * Bit mask controlling how hard we retry per-node allocations.
2824 * If we can not allocate the bit mask, do not attempt to allocate
2825 * the requested huge pages.
2826 */
2827 if (node_alloc_noretry)
2828 nodes_clear(*node_alloc_noretry);
2829 else
2830 return -ENOMEM;
2831
2832 /*
2833 * resize_lock mutex prevents concurrent adjustments to number of
2834 * pages in hstate via the proc/sysfs interfaces.
2835 */
2836 mutex_lock(&h->resize_lock);
2837 spin_lock_irq(&hugetlb_lock);
2838
2839 /*
2840 * Check for a node specific request.
2841 * Changing node specific huge page count may require a corresponding
2842 * change to the global count. In any case, the passed node mask
2843 * (nodes_allowed) will restrict alloc/free to the specified node.
2844 */
2845 if (nid != NUMA_NO_NODE) {
2846 unsigned long old_count = count;
2847
2848 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2849 /*
2850 * User may have specified a large count value which caused the
2851 * above calculation to overflow. In this case, they wanted
2852 * to allocate as many huge pages as possible. Set count to
2853 * largest possible value to align with their intention.
2854 */
2855 if (count < old_count)
2856 count = ULONG_MAX;
2857 }
2858
2859 /*
2860 * Gigantic pages runtime allocation depend on the capability for large
2861 * page range allocation.
2862 * If the system does not provide this feature, return an error when
2863 * the user tries to allocate gigantic pages but let the user free the
2864 * boottime allocated gigantic pages.
2865 */
2866 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2867 if (count > persistent_huge_pages(h)) {
2868 spin_unlock_irq(&hugetlb_lock);
2869 mutex_unlock(&h->resize_lock);
2870 NODEMASK_FREE(node_alloc_noretry);
2871 return -EINVAL;
2872 }
2873 /* Fall through to decrease pool */
2874 }
2875
2876 /*
2877 * Increase the pool size
2878 * First take pages out of surplus state. Then make up the
2879 * remaining difference by allocating fresh huge pages.
2880 *
2881 * We might race with alloc_surplus_huge_page() here and be unable
2882 * to convert a surplus huge page to a normal huge page. That is
2883 * not critical, though, it just means the overall size of the
2884 * pool might be one hugepage larger than it needs to be, but
2885 * within all the constraints specified by the sysctls.
2886 */
2887 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2888 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2889 break;
2890 }
2891
2892 while (count > persistent_huge_pages(h)) {
2893 /*
2894 * If this allocation races such that we no longer need the
2895 * page, free_huge_page will handle it by freeing the page
2896 * and reducing the surplus.
2897 */
2898 spin_unlock_irq(&hugetlb_lock);
2899
2900 /* yield cpu to avoid soft lockup */
2901 cond_resched();
2902
2903 ret = alloc_pool_huge_page(h, nodes_allowed,
2904 node_alloc_noretry);
2905 spin_lock_irq(&hugetlb_lock);
2906 if (!ret)
2907 goto out;
2908
2909 /* Bail for signals. Probably ctrl-c from user */
2910 if (signal_pending(current))
2911 goto out;
2912 }
2913
2914 /*
2915 * Decrease the pool size
2916 * First return free pages to the buddy allocator (being careful
2917 * to keep enough around to satisfy reservations). Then place
2918 * pages into surplus state as needed so the pool will shrink
2919 * to the desired size as pages become free.
2920 *
2921 * By placing pages into the surplus state independent of the
2922 * overcommit value, we are allowing the surplus pool size to
2923 * exceed overcommit. There are few sane options here. Since
2924 * alloc_surplus_huge_page() is checking the global counter,
2925 * though, we'll note that we're not allowed to exceed surplus
2926 * and won't grow the pool anywhere else. Not until one of the
2927 * sysctls are changed, or the surplus pages go out of use.
2928 */
2929 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2930 min_count = max(count, min_count);
2931 try_to_free_low(h, min_count, nodes_allowed);
2932
2933 /*
2934 * Collect pages to be removed on list without dropping lock
2935 */
2936 while (min_count < persistent_huge_pages(h)) {
2937 page = remove_pool_huge_page(h, nodes_allowed, 0);
2938 if (!page)
2939 break;
2940
2941 list_add(&page->lru, &page_list);
2942 }
2943 /* free the pages after dropping lock */
2944 spin_unlock_irq(&hugetlb_lock);
2945 update_and_free_pages_bulk(h, &page_list);
2946 spin_lock_irq(&hugetlb_lock);
2947
2948 while (count < persistent_huge_pages(h)) {
2949 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2950 break;
2951 }
2952out:
2953 h->max_huge_pages = persistent_huge_pages(h);
2954 spin_unlock_irq(&hugetlb_lock);
2955 mutex_unlock(&h->resize_lock);
2956
2957 NODEMASK_FREE(node_alloc_noretry);
2958
2959 return 0;
2960}
2961
2962#define HSTATE_ATTR_RO(_name) \
2963 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2964
2965#define HSTATE_ATTR(_name) \
2966 static struct kobj_attribute _name##_attr = \
2967 __ATTR(_name, 0644, _name##_show, _name##_store)
2968
2969static struct kobject *hugepages_kobj;
2970static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2971
2972static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2973
2974static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2975{
2976 int i;
2977
2978 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2979 if (hstate_kobjs[i] == kobj) {
2980 if (nidp)
2981 *nidp = NUMA_NO_NODE;
2982 return &hstates[i];
2983 }
2984
2985 return kobj_to_node_hstate(kobj, nidp);
2986}
2987
2988static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2989 struct kobj_attribute *attr, char *buf)
2990{
2991 struct hstate *h;
2992 unsigned long nr_huge_pages;
2993 int nid;
2994
2995 h = kobj_to_hstate(kobj, &nid);
2996 if (nid == NUMA_NO_NODE)
2997 nr_huge_pages = h->nr_huge_pages;
2998 else
2999 nr_huge_pages = h->nr_huge_pages_node[nid];
3000
3001 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3002}
3003
3004static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3005 struct hstate *h, int nid,
3006 unsigned long count, size_t len)
3007{
3008 int err;
3009 nodemask_t nodes_allowed, *n_mask;
3010
3011 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3012 return -EINVAL;
3013
3014 if (nid == NUMA_NO_NODE) {
3015 /*
3016 * global hstate attribute
3017 */
3018 if (!(obey_mempolicy &&
3019 init_nodemask_of_mempolicy(&nodes_allowed)))
3020 n_mask = &node_states[N_MEMORY];
3021 else
3022 n_mask = &nodes_allowed;
3023 } else {
3024 /*
3025 * Node specific request. count adjustment happens in
3026 * set_max_huge_pages() after acquiring hugetlb_lock.
3027 */
3028 init_nodemask_of_node(&nodes_allowed, nid);
3029 n_mask = &nodes_allowed;
3030 }
3031
3032 err = set_max_huge_pages(h, count, nid, n_mask);
3033
3034 return err ? err : len;
3035}
3036
3037static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3038 struct kobject *kobj, const char *buf,
3039 size_t len)
3040{
3041 struct hstate *h;
3042 unsigned long count;
3043 int nid;
3044 int err;
3045
3046 err = kstrtoul(buf, 10, &count);
3047 if (err)
3048 return err;
3049
3050 h = kobj_to_hstate(kobj, &nid);
3051 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3052}
3053
3054static ssize_t nr_hugepages_show(struct kobject *kobj,
3055 struct kobj_attribute *attr, char *buf)
3056{
3057 return nr_hugepages_show_common(kobj, attr, buf);
3058}
3059
3060static ssize_t nr_hugepages_store(struct kobject *kobj,
3061 struct kobj_attribute *attr, const char *buf, size_t len)
3062{
3063 return nr_hugepages_store_common(false, kobj, buf, len);
3064}
3065HSTATE_ATTR(nr_hugepages);
3066
3067#ifdef CONFIG_NUMA
3068
3069/*
3070 * hstate attribute for optionally mempolicy-based constraint on persistent
3071 * huge page alloc/free.
3072 */
3073static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3074 struct kobj_attribute *attr,
3075 char *buf)
3076{
3077 return nr_hugepages_show_common(kobj, attr, buf);
3078}
3079
3080static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3081 struct kobj_attribute *attr, const char *buf, size_t len)
3082{
3083 return nr_hugepages_store_common(true, kobj, buf, len);
3084}
3085HSTATE_ATTR(nr_hugepages_mempolicy);
3086#endif
3087
3088
3089static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3090 struct kobj_attribute *attr, char *buf)
3091{
3092 struct hstate *h = kobj_to_hstate(kobj, NULL);
3093 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3094}
3095
3096static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3097 struct kobj_attribute *attr, const char *buf, size_t count)
3098{
3099 int err;
3100 unsigned long input;
3101 struct hstate *h = kobj_to_hstate(kobj, NULL);
3102
3103 if (hstate_is_gigantic(h))
3104 return -EINVAL;
3105
3106 err = kstrtoul(buf, 10, &input);
3107 if (err)
3108 return err;
3109
3110 spin_lock_irq(&hugetlb_lock);
3111 h->nr_overcommit_huge_pages = input;
3112 spin_unlock_irq(&hugetlb_lock);
3113
3114 return count;
3115}
3116HSTATE_ATTR(nr_overcommit_hugepages);
3117
3118static ssize_t free_hugepages_show(struct kobject *kobj,
3119 struct kobj_attribute *attr, char *buf)
3120{
3121 struct hstate *h;
3122 unsigned long free_huge_pages;
3123 int nid;
3124
3125 h = kobj_to_hstate(kobj, &nid);
3126 if (nid == NUMA_NO_NODE)
3127 free_huge_pages = h->free_huge_pages;
3128 else
3129 free_huge_pages = h->free_huge_pages_node[nid];
3130
3131 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3132}
3133HSTATE_ATTR_RO(free_hugepages);
3134
3135static ssize_t resv_hugepages_show(struct kobject *kobj,
3136 struct kobj_attribute *attr, char *buf)
3137{
3138 struct hstate *h = kobj_to_hstate(kobj, NULL);
3139 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3140}
3141HSTATE_ATTR_RO(resv_hugepages);
3142
3143static ssize_t surplus_hugepages_show(struct kobject *kobj,
3144 struct kobj_attribute *attr, char *buf)
3145{
3146 struct hstate *h;
3147 unsigned long surplus_huge_pages;
3148 int nid;
3149
3150 h = kobj_to_hstate(kobj, &nid);
3151 if (nid == NUMA_NO_NODE)
3152 surplus_huge_pages = h->surplus_huge_pages;
3153 else
3154 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3155
3156 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3157}
3158HSTATE_ATTR_RO(surplus_hugepages);
3159
3160static struct attribute *hstate_attrs[] = {
3161 &nr_hugepages_attr.attr,
3162 &nr_overcommit_hugepages_attr.attr,
3163 &free_hugepages_attr.attr,
3164 &resv_hugepages_attr.attr,
3165 &surplus_hugepages_attr.attr,
3166#ifdef CONFIG_NUMA
3167 &nr_hugepages_mempolicy_attr.attr,
3168#endif
3169 NULL,
3170};
3171
3172static const struct attribute_group hstate_attr_group = {
3173 .attrs = hstate_attrs,
3174};
3175
3176static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3177 struct kobject **hstate_kobjs,
3178 const struct attribute_group *hstate_attr_group)
3179{
3180 int retval;
3181 int hi = hstate_index(h);
3182
3183 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3184 if (!hstate_kobjs[hi])
3185 return -ENOMEM;
3186
3187 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3188 if (retval) {
3189 kobject_put(hstate_kobjs[hi]);
3190 hstate_kobjs[hi] = NULL;
3191 }
3192
3193 return retval;
3194}
3195
3196static void __init hugetlb_sysfs_init(void)
3197{
3198 struct hstate *h;
3199 int err;
3200
3201 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3202 if (!hugepages_kobj)
3203 return;
3204
3205 for_each_hstate(h) {
3206 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3207 hstate_kobjs, &hstate_attr_group);
3208 if (err)
3209 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3210 }
3211}
3212
3213#ifdef CONFIG_NUMA
3214
3215/*
3216 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3217 * with node devices in node_devices[] using a parallel array. The array
3218 * index of a node device or _hstate == node id.
3219 * This is here to avoid any static dependency of the node device driver, in
3220 * the base kernel, on the hugetlb module.
3221 */
3222struct node_hstate {
3223 struct kobject *hugepages_kobj;
3224 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3225};
3226static struct node_hstate node_hstates[MAX_NUMNODES];
3227
3228/*
3229 * A subset of global hstate attributes for node devices
3230 */
3231static struct attribute *per_node_hstate_attrs[] = {
3232 &nr_hugepages_attr.attr,
3233 &free_hugepages_attr.attr,
3234 &surplus_hugepages_attr.attr,
3235 NULL,
3236};
3237
3238static const struct attribute_group per_node_hstate_attr_group = {
3239 .attrs = per_node_hstate_attrs,
3240};
3241
3242/*
3243 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3244 * Returns node id via non-NULL nidp.
3245 */
3246static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3247{
3248 int nid;
3249
3250 for (nid = 0; nid < nr_node_ids; nid++) {
3251 struct node_hstate *nhs = &node_hstates[nid];
3252 int i;
3253 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3254 if (nhs->hstate_kobjs[i] == kobj) {
3255 if (nidp)
3256 *nidp = nid;
3257 return &hstates[i];
3258 }
3259 }
3260
3261 BUG();
3262 return NULL;
3263}
3264
3265/*
3266 * Unregister hstate attributes from a single node device.
3267 * No-op if no hstate attributes attached.
3268 */
3269static void hugetlb_unregister_node(struct node *node)
3270{
3271 struct hstate *h;
3272 struct node_hstate *nhs = &node_hstates[node->dev.id];
3273
3274 if (!nhs->hugepages_kobj)
3275 return; /* no hstate attributes */
3276
3277 for_each_hstate(h) {
3278 int idx = hstate_index(h);
3279 if (nhs->hstate_kobjs[idx]) {
3280 kobject_put(nhs->hstate_kobjs[idx]);
3281 nhs->hstate_kobjs[idx] = NULL;
3282 }
3283 }
3284
3285 kobject_put(nhs->hugepages_kobj);
3286 nhs->hugepages_kobj = NULL;
3287}
3288
3289
3290/*
3291 * Register hstate attributes for a single node device.
3292 * No-op if attributes already registered.
3293 */
3294static void hugetlb_register_node(struct node *node)
3295{
3296 struct hstate *h;
3297 struct node_hstate *nhs = &node_hstates[node->dev.id];
3298 int err;
3299
3300 if (nhs->hugepages_kobj)
3301 return; /* already allocated */
3302
3303 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3304 &node->dev.kobj);
3305 if (!nhs->hugepages_kobj)
3306 return;
3307
3308 for_each_hstate(h) {
3309 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3310 nhs->hstate_kobjs,
3311 &per_node_hstate_attr_group);
3312 if (err) {
3313 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3314 h->name, node->dev.id);
3315 hugetlb_unregister_node(node);
3316 break;
3317 }
3318 }
3319}
3320
3321/*
3322 * hugetlb init time: register hstate attributes for all registered node
3323 * devices of nodes that have memory. All on-line nodes should have
3324 * registered their associated device by this time.
3325 */
3326static void __init hugetlb_register_all_nodes(void)
3327{
3328 int nid;
3329
3330 for_each_node_state(nid, N_MEMORY) {
3331 struct node *node = node_devices[nid];
3332 if (node->dev.id == nid)
3333 hugetlb_register_node(node);
3334 }
3335
3336 /*
3337 * Let the node device driver know we're here so it can
3338 * [un]register hstate attributes on node hotplug.
3339 */
3340 register_hugetlbfs_with_node(hugetlb_register_node,
3341 hugetlb_unregister_node);
3342}
3343#else /* !CONFIG_NUMA */
3344
3345static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3346{
3347 BUG();
3348 if (nidp)
3349 *nidp = -1;
3350 return NULL;
3351}
3352
3353static void hugetlb_register_all_nodes(void) { }
3354
3355#endif
3356
3357static int __init hugetlb_init(void)
3358{
3359 int i;
3360
3361 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3362 __NR_HPAGEFLAGS);
3363
3364 if (!hugepages_supported()) {
3365 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3366 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3367 return 0;
3368 }
3369
3370 /*
3371 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3372 * architectures depend on setup being done here.
3373 */
3374 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3375 if (!parsed_default_hugepagesz) {
3376 /*
3377 * If we did not parse a default huge page size, set
3378 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3379 * number of huge pages for this default size was implicitly
3380 * specified, set that here as well.
3381 * Note that the implicit setting will overwrite an explicit
3382 * setting. A warning will be printed in this case.
3383 */
3384 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3385 if (default_hstate_max_huge_pages) {
3386 if (default_hstate.max_huge_pages) {
3387 char buf[32];
3388
3389 string_get_size(huge_page_size(&default_hstate),
3390 1, STRING_UNITS_2, buf, 32);
3391 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3392 default_hstate.max_huge_pages, buf);
3393 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3394 default_hstate_max_huge_pages);
3395 }
3396 default_hstate.max_huge_pages =
3397 default_hstate_max_huge_pages;
3398 }
3399 }
3400
3401 hugetlb_cma_check();
3402 hugetlb_init_hstates();
3403 gather_bootmem_prealloc();
3404 report_hugepages();
3405
3406 hugetlb_sysfs_init();
3407 hugetlb_register_all_nodes();
3408 hugetlb_cgroup_file_init();
3409
3410#ifdef CONFIG_SMP
3411 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3412#else
3413 num_fault_mutexes = 1;
3414#endif
3415 hugetlb_fault_mutex_table =
3416 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3417 GFP_KERNEL);
3418 BUG_ON(!hugetlb_fault_mutex_table);
3419
3420 for (i = 0; i < num_fault_mutexes; i++)
3421 mutex_init(&hugetlb_fault_mutex_table[i]);
3422 return 0;
3423}
3424subsys_initcall(hugetlb_init);
3425
3426/* Overwritten by architectures with more huge page sizes */
3427bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3428{
3429 return size == HPAGE_SIZE;
3430}
3431
3432void __init hugetlb_add_hstate(unsigned int order)
3433{
3434 struct hstate *h;
3435 unsigned long i;
3436
3437 if (size_to_hstate(PAGE_SIZE << order)) {
3438 return;
3439 }
3440 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3441 BUG_ON(order == 0);
3442 h = &hstates[hugetlb_max_hstate++];
3443 mutex_init(&h->resize_lock);
3444 h->order = order;
3445 h->mask = ~(huge_page_size(h) - 1);
3446 for (i = 0; i < MAX_NUMNODES; ++i)
3447 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3448 INIT_LIST_HEAD(&h->hugepage_activelist);
3449 h->next_nid_to_alloc = first_memory_node;
3450 h->next_nid_to_free = first_memory_node;
3451 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3452 huge_page_size(h)/1024);
3453
3454 parsed_hstate = h;
3455}
3456
3457/*
3458 * hugepages command line processing
3459 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3460 * specification. If not, ignore the hugepages value. hugepages can also
3461 * be the first huge page command line option in which case it implicitly
3462 * specifies the number of huge pages for the default size.
3463 */
3464static int __init hugepages_setup(char *s)
3465{
3466 unsigned long *mhp;
3467 static unsigned long *last_mhp;
3468
3469 if (!parsed_valid_hugepagesz) {
3470 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3471 parsed_valid_hugepagesz = true;
3472 return 0;
3473 }
3474
3475 /*
3476 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3477 * yet, so this hugepages= parameter goes to the "default hstate".
3478 * Otherwise, it goes with the previously parsed hugepagesz or
3479 * default_hugepagesz.
3480 */
3481 else if (!hugetlb_max_hstate)
3482 mhp = &default_hstate_max_huge_pages;
3483 else
3484 mhp = &parsed_hstate->max_huge_pages;
3485
3486 if (mhp == last_mhp) {
3487 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3488 return 0;
3489 }
3490
3491 if (sscanf(s, "%lu", mhp) <= 0)
3492 *mhp = 0;
3493
3494 /*
3495 * Global state is always initialized later in hugetlb_init.
3496 * But we need to allocate gigantic hstates here early to still
3497 * use the bootmem allocator.
3498 */
3499 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3500 hugetlb_hstate_alloc_pages(parsed_hstate);
3501
3502 last_mhp = mhp;
3503
3504 return 1;
3505}
3506__setup("hugepages=", hugepages_setup);
3507
3508/*
3509 * hugepagesz command line processing
3510 * A specific huge page size can only be specified once with hugepagesz.
3511 * hugepagesz is followed by hugepages on the command line. The global
3512 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3513 * hugepagesz argument was valid.
3514 */
3515static int __init hugepagesz_setup(char *s)
3516{
3517 unsigned long size;
3518 struct hstate *h;
3519
3520 parsed_valid_hugepagesz = false;
3521 size = (unsigned long)memparse(s, NULL);
3522
3523 if (!arch_hugetlb_valid_size(size)) {
3524 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3525 return 0;
3526 }
3527
3528 h = size_to_hstate(size);
3529 if (h) {
3530 /*
3531 * hstate for this size already exists. This is normally
3532 * an error, but is allowed if the existing hstate is the
3533 * default hstate. More specifically, it is only allowed if
3534 * the number of huge pages for the default hstate was not
3535 * previously specified.
3536 */
3537 if (!parsed_default_hugepagesz || h != &default_hstate ||
3538 default_hstate.max_huge_pages) {
3539 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3540 return 0;
3541 }
3542
3543 /*
3544 * No need to call hugetlb_add_hstate() as hstate already
3545 * exists. But, do set parsed_hstate so that a following
3546 * hugepages= parameter will be applied to this hstate.
3547 */
3548 parsed_hstate = h;
3549 parsed_valid_hugepagesz = true;
3550 return 1;
3551 }
3552
3553 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3554 parsed_valid_hugepagesz = true;
3555 return 1;
3556}
3557__setup("hugepagesz=", hugepagesz_setup);
3558
3559/*
3560 * default_hugepagesz command line input
3561 * Only one instance of default_hugepagesz allowed on command line.
3562 */
3563static int __init default_hugepagesz_setup(char *s)
3564{
3565 unsigned long size;
3566
3567 parsed_valid_hugepagesz = false;
3568 if (parsed_default_hugepagesz) {
3569 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3570 return 0;
3571 }
3572
3573 size = (unsigned long)memparse(s, NULL);
3574
3575 if (!arch_hugetlb_valid_size(size)) {
3576 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3577 return 0;
3578 }
3579
3580 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3581 parsed_valid_hugepagesz = true;
3582 parsed_default_hugepagesz = true;
3583 default_hstate_idx = hstate_index(size_to_hstate(size));
3584
3585 /*
3586 * The number of default huge pages (for this size) could have been
3587 * specified as the first hugetlb parameter: hugepages=X. If so,
3588 * then default_hstate_max_huge_pages is set. If the default huge
3589 * page size is gigantic (>= MAX_ORDER), then the pages must be
3590 * allocated here from bootmem allocator.
3591 */
3592 if (default_hstate_max_huge_pages) {
3593 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3594 if (hstate_is_gigantic(&default_hstate))
3595 hugetlb_hstate_alloc_pages(&default_hstate);
3596 default_hstate_max_huge_pages = 0;
3597 }
3598
3599 return 1;
3600}
3601__setup("default_hugepagesz=", default_hugepagesz_setup);
3602
3603static unsigned int allowed_mems_nr(struct hstate *h)
3604{
3605 int node;
3606 unsigned int nr = 0;
3607 nodemask_t *mpol_allowed;
3608 unsigned int *array = h->free_huge_pages_node;
3609 gfp_t gfp_mask = htlb_alloc_mask(h);
3610
3611 mpol_allowed = policy_nodemask_current(gfp_mask);
3612
3613 for_each_node_mask(node, cpuset_current_mems_allowed) {
3614 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3615 nr += array[node];
3616 }
3617
3618 return nr;
3619}
3620
3621#ifdef CONFIG_SYSCTL
3622static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3623 void *buffer, size_t *length,
3624 loff_t *ppos, unsigned long *out)
3625{
3626 struct ctl_table dup_table;
3627
3628 /*
3629 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3630 * can duplicate the @table and alter the duplicate of it.
3631 */
3632 dup_table = *table;
3633 dup_table.data = out;
3634
3635 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3636}
3637
3638static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3639 struct ctl_table *table, int write,
3640 void *buffer, size_t *length, loff_t *ppos)
3641{
3642 struct hstate *h = &default_hstate;
3643 unsigned long tmp = h->max_huge_pages;
3644 int ret;
3645
3646 if (!hugepages_supported())
3647 return -EOPNOTSUPP;
3648
3649 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3650 &tmp);
3651 if (ret)
3652 goto out;
3653
3654 if (write)
3655 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3656 NUMA_NO_NODE, tmp, *length);
3657out:
3658 return ret;
3659}
3660
3661int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3662 void *buffer, size_t *length, loff_t *ppos)
3663{
3664
3665 return hugetlb_sysctl_handler_common(false, table, write,
3666 buffer, length, ppos);
3667}
3668
3669#ifdef CONFIG_NUMA
3670int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3671 void *buffer, size_t *length, loff_t *ppos)
3672{
3673 return hugetlb_sysctl_handler_common(true, table, write,
3674 buffer, length, ppos);
3675}
3676#endif /* CONFIG_NUMA */
3677
3678int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3679 void *buffer, size_t *length, loff_t *ppos)
3680{
3681 struct hstate *h = &default_hstate;
3682 unsigned long tmp;
3683 int ret;
3684
3685 if (!hugepages_supported())
3686 return -EOPNOTSUPP;
3687
3688 tmp = h->nr_overcommit_huge_pages;
3689
3690 if (write && hstate_is_gigantic(h))
3691 return -EINVAL;
3692
3693 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3694 &tmp);
3695 if (ret)
3696 goto out;
3697
3698 if (write) {
3699 spin_lock_irq(&hugetlb_lock);
3700 h->nr_overcommit_huge_pages = tmp;
3701 spin_unlock_irq(&hugetlb_lock);
3702 }
3703out:
3704 return ret;
3705}
3706
3707#endif /* CONFIG_SYSCTL */
3708
3709void hugetlb_report_meminfo(struct seq_file *m)
3710{
3711 struct hstate *h;
3712 unsigned long total = 0;
3713
3714 if (!hugepages_supported())
3715 return;
3716
3717 for_each_hstate(h) {
3718 unsigned long count = h->nr_huge_pages;
3719
3720 total += huge_page_size(h) * count;
3721
3722 if (h == &default_hstate)
3723 seq_printf(m,
3724 "HugePages_Total: %5lu\n"
3725 "HugePages_Free: %5lu\n"
3726 "HugePages_Rsvd: %5lu\n"
3727 "HugePages_Surp: %5lu\n"
3728 "Hugepagesize: %8lu kB\n",
3729 count,
3730 h->free_huge_pages,
3731 h->resv_huge_pages,
3732 h->surplus_huge_pages,
3733 huge_page_size(h) / SZ_1K);
3734 }
3735
3736 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
3737}
3738
3739int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3740{
3741 struct hstate *h = &default_hstate;
3742
3743 if (!hugepages_supported())
3744 return 0;
3745
3746 return sysfs_emit_at(buf, len,
3747 "Node %d HugePages_Total: %5u\n"
3748 "Node %d HugePages_Free: %5u\n"
3749 "Node %d HugePages_Surp: %5u\n",
3750 nid, h->nr_huge_pages_node[nid],
3751 nid, h->free_huge_pages_node[nid],
3752 nid, h->surplus_huge_pages_node[nid]);
3753}
3754
3755void hugetlb_show_meminfo(void)
3756{
3757 struct hstate *h;
3758 int nid;
3759
3760 if (!hugepages_supported())
3761 return;
3762
3763 for_each_node_state(nid, N_MEMORY)
3764 for_each_hstate(h)
3765 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3766 nid,
3767 h->nr_huge_pages_node[nid],
3768 h->free_huge_pages_node[nid],
3769 h->surplus_huge_pages_node[nid],
3770 huge_page_size(h) / SZ_1K);
3771}
3772
3773void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3774{
3775 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3776 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3777}
3778
3779/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3780unsigned long hugetlb_total_pages(void)
3781{
3782 struct hstate *h;
3783 unsigned long nr_total_pages = 0;
3784
3785 for_each_hstate(h)
3786 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3787 return nr_total_pages;
3788}
3789
3790static int hugetlb_acct_memory(struct hstate *h, long delta)
3791{
3792 int ret = -ENOMEM;
3793
3794 if (!delta)
3795 return 0;
3796
3797 spin_lock_irq(&hugetlb_lock);
3798 /*
3799 * When cpuset is configured, it breaks the strict hugetlb page
3800 * reservation as the accounting is done on a global variable. Such
3801 * reservation is completely rubbish in the presence of cpuset because
3802 * the reservation is not checked against page availability for the
3803 * current cpuset. Application can still potentially OOM'ed by kernel
3804 * with lack of free htlb page in cpuset that the task is in.
3805 * Attempt to enforce strict accounting with cpuset is almost
3806 * impossible (or too ugly) because cpuset is too fluid that
3807 * task or memory node can be dynamically moved between cpusets.
3808 *
3809 * The change of semantics for shared hugetlb mapping with cpuset is
3810 * undesirable. However, in order to preserve some of the semantics,
3811 * we fall back to check against current free page availability as
3812 * a best attempt and hopefully to minimize the impact of changing
3813 * semantics that cpuset has.
3814 *
3815 * Apart from cpuset, we also have memory policy mechanism that
3816 * also determines from which node the kernel will allocate memory
3817 * in a NUMA system. So similar to cpuset, we also should consider
3818 * the memory policy of the current task. Similar to the description
3819 * above.
3820 */
3821 if (delta > 0) {
3822 if (gather_surplus_pages(h, delta) < 0)
3823 goto out;
3824
3825 if (delta > allowed_mems_nr(h)) {
3826 return_unused_surplus_pages(h, delta);
3827 goto out;
3828 }
3829 }
3830
3831 ret = 0;
3832 if (delta < 0)
3833 return_unused_surplus_pages(h, (unsigned long) -delta);
3834
3835out:
3836 spin_unlock_irq(&hugetlb_lock);
3837 return ret;
3838}
3839
3840static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3841{
3842 struct resv_map *resv = vma_resv_map(vma);
3843
3844 /*
3845 * This new VMA should share its siblings reservation map if present.
3846 * The VMA will only ever have a valid reservation map pointer where
3847 * it is being copied for another still existing VMA. As that VMA
3848 * has a reference to the reservation map it cannot disappear until
3849 * after this open call completes. It is therefore safe to take a
3850 * new reference here without additional locking.
3851 */
3852 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3853 kref_get(&resv->refs);
3854}
3855
3856static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3857{
3858 struct hstate *h = hstate_vma(vma);
3859 struct resv_map *resv = vma_resv_map(vma);
3860 struct hugepage_subpool *spool = subpool_vma(vma);
3861 unsigned long reserve, start, end;
3862 long gbl_reserve;
3863
3864 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3865 return;
3866
3867 start = vma_hugecache_offset(h, vma, vma->vm_start);
3868 end = vma_hugecache_offset(h, vma, vma->vm_end);
3869
3870 reserve = (end - start) - region_count(resv, start, end);
3871 hugetlb_cgroup_uncharge_counter(resv, start, end);
3872 if (reserve) {
3873 /*
3874 * Decrement reserve counts. The global reserve count may be
3875 * adjusted if the subpool has a minimum size.
3876 */
3877 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3878 hugetlb_acct_memory(h, -gbl_reserve);
3879 }
3880
3881 kref_put(&resv->refs, resv_map_release);
3882}
3883
3884static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3885{
3886 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3887 return -EINVAL;
3888 return 0;
3889}
3890
3891static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3892{
3893 return huge_page_size(hstate_vma(vma));
3894}
3895
3896/*
3897 * We cannot handle pagefaults against hugetlb pages at all. They cause
3898 * handle_mm_fault() to try to instantiate regular-sized pages in the
3899 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3900 * this far.
3901 */
3902static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3903{
3904 BUG();
3905 return 0;
3906}
3907
3908/*
3909 * When a new function is introduced to vm_operations_struct and added
3910 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3911 * This is because under System V memory model, mappings created via
3912 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3913 * their original vm_ops are overwritten with shm_vm_ops.
3914 */
3915const struct vm_operations_struct hugetlb_vm_ops = {
3916 .fault = hugetlb_vm_op_fault,
3917 .open = hugetlb_vm_op_open,
3918 .close = hugetlb_vm_op_close,
3919 .may_split = hugetlb_vm_op_split,
3920 .pagesize = hugetlb_vm_op_pagesize,
3921};
3922
3923static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3924 int writable)
3925{
3926 pte_t entry;
3927
3928 if (writable) {
3929 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3930 vma->vm_page_prot)));
3931 } else {
3932 entry = huge_pte_wrprotect(mk_huge_pte(page,
3933 vma->vm_page_prot));
3934 }
3935 entry = pte_mkyoung(entry);
3936 entry = pte_mkhuge(entry);
3937 entry = arch_make_huge_pte(entry, vma, page, writable);
3938
3939 return entry;
3940}
3941
3942static void set_huge_ptep_writable(struct vm_area_struct *vma,
3943 unsigned long address, pte_t *ptep)
3944{
3945 pte_t entry;
3946
3947 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3948 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3949 update_mmu_cache(vma, address, ptep);
3950}
3951
3952bool is_hugetlb_entry_migration(pte_t pte)
3953{
3954 swp_entry_t swp;
3955
3956 if (huge_pte_none(pte) || pte_present(pte))
3957 return false;
3958 swp = pte_to_swp_entry(pte);
3959 if (is_migration_entry(swp))
3960 return true;
3961 else
3962 return false;
3963}
3964
3965static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3966{
3967 swp_entry_t swp;
3968
3969 if (huge_pte_none(pte) || pte_present(pte))
3970 return false;
3971 swp = pte_to_swp_entry(pte);
3972 if (is_hwpoison_entry(swp))
3973 return true;
3974 else
3975 return false;
3976}
3977
3978static void
3979hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
3980 struct page *new_page)
3981{
3982 __SetPageUptodate(new_page);
3983 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
3984 hugepage_add_new_anon_rmap(new_page, vma, addr);
3985 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
3986 ClearHPageRestoreReserve(new_page);
3987 SetHPageMigratable(new_page);
3988}
3989
3990int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3991 struct vm_area_struct *vma)
3992{
3993 pte_t *src_pte, *dst_pte, entry, dst_entry;
3994 struct page *ptepage;
3995 unsigned long addr;
3996 bool cow = is_cow_mapping(vma->vm_flags);
3997 struct hstate *h = hstate_vma(vma);
3998 unsigned long sz = huge_page_size(h);
3999 unsigned long npages = pages_per_huge_page(h);
4000 struct address_space *mapping = vma->vm_file->f_mapping;
4001 struct mmu_notifier_range range;
4002 int ret = 0;
4003
4004 if (cow) {
4005 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4006 vma->vm_start,
4007 vma->vm_end);
4008 mmu_notifier_invalidate_range_start(&range);
4009 } else {
4010 /*
4011 * For shared mappings i_mmap_rwsem must be held to call
4012 * huge_pte_alloc, otherwise the returned ptep could go
4013 * away if part of a shared pmd and another thread calls
4014 * huge_pmd_unshare.
4015 */
4016 i_mmap_lock_read(mapping);
4017 }
4018
4019 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4020 spinlock_t *src_ptl, *dst_ptl;
4021 src_pte = huge_pte_offset(src, addr, sz);
4022 if (!src_pte)
4023 continue;
4024 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4025 if (!dst_pte) {
4026 ret = -ENOMEM;
4027 break;
4028 }
4029
4030 /*
4031 * If the pagetables are shared don't copy or take references.
4032 * dst_pte == src_pte is the common case of src/dest sharing.
4033 *
4034 * However, src could have 'unshared' and dst shares with
4035 * another vma. If dst_pte !none, this implies sharing.
4036 * Check here before taking page table lock, and once again
4037 * after taking the lock below.
4038 */
4039 dst_entry = huge_ptep_get(dst_pte);
4040 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4041 continue;
4042
4043 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4044 src_ptl = huge_pte_lockptr(h, src, src_pte);
4045 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4046 entry = huge_ptep_get(src_pte);
4047 dst_entry = huge_ptep_get(dst_pte);
4048again:
4049 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4050 /*
4051 * Skip if src entry none. Also, skip in the
4052 * unlikely case dst entry !none as this implies
4053 * sharing with another vma.
4054 */
4055 ;
4056 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4057 is_hugetlb_entry_hwpoisoned(entry))) {
4058 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4059
4060 if (is_write_migration_entry(swp_entry) && cow) {
4061 /*
4062 * COW mappings require pages in both
4063 * parent and child to be set to read.
4064 */
4065 make_migration_entry_read(&swp_entry);
4066 entry = swp_entry_to_pte(swp_entry);
4067 set_huge_swap_pte_at(src, addr, src_pte,
4068 entry, sz);
4069 }
4070 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4071 } else {
4072 entry = huge_ptep_get(src_pte);
4073 ptepage = pte_page(entry);
4074 get_page(ptepage);
4075
4076 /*
4077 * This is a rare case where we see pinned hugetlb
4078 * pages while they're prone to COW. We need to do the
4079 * COW earlier during fork.
4080 *
4081 * When pre-allocating the page or copying data, we
4082 * need to be without the pgtable locks since we could
4083 * sleep during the process.
4084 */
4085 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4086 pte_t src_pte_old = entry;
4087 struct page *new;
4088
4089 spin_unlock(src_ptl);
4090 spin_unlock(dst_ptl);
4091 /* Do not use reserve as it's private owned */
4092 new = alloc_huge_page(vma, addr, 1);
4093 if (IS_ERR(new)) {
4094 put_page(ptepage);
4095 ret = PTR_ERR(new);
4096 break;
4097 }
4098 copy_user_huge_page(new, ptepage, addr, vma,
4099 npages);
4100 put_page(ptepage);
4101
4102 /* Install the new huge page if src pte stable */
4103 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4104 src_ptl = huge_pte_lockptr(h, src, src_pte);
4105 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4106 entry = huge_ptep_get(src_pte);
4107 if (!pte_same(src_pte_old, entry)) {
4108 restore_reserve_on_error(h, vma, addr,
4109 new);
4110 put_page(new);
4111 /* dst_entry won't change as in child */
4112 goto again;
4113 }
4114 hugetlb_install_page(vma, dst_pte, addr, new);
4115 spin_unlock(src_ptl);
4116 spin_unlock(dst_ptl);
4117 continue;
4118 }
4119
4120 if (cow) {
4121 /*
4122 * No need to notify as we are downgrading page
4123 * table protection not changing it to point
4124 * to a new page.
4125 *
4126 * See Documentation/vm/mmu_notifier.rst
4127 */
4128 huge_ptep_set_wrprotect(src, addr, src_pte);
4129 entry = huge_pte_wrprotect(entry);
4130 }
4131
4132 page_dup_rmap(ptepage, true);
4133 set_huge_pte_at(dst, addr, dst_pte, entry);
4134 hugetlb_count_add(npages, dst);
4135 }
4136 spin_unlock(src_ptl);
4137 spin_unlock(dst_ptl);
4138 }
4139
4140 if (cow)
4141 mmu_notifier_invalidate_range_end(&range);
4142 else
4143 i_mmap_unlock_read(mapping);
4144
4145 return ret;
4146}
4147
4148void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4149 unsigned long start, unsigned long end,
4150 struct page *ref_page)
4151{
4152 struct mm_struct *mm = vma->vm_mm;
4153 unsigned long address;
4154 pte_t *ptep;
4155 pte_t pte;
4156 spinlock_t *ptl;
4157 struct page *page;
4158 struct hstate *h = hstate_vma(vma);
4159 unsigned long sz = huge_page_size(h);
4160 struct mmu_notifier_range range;
4161
4162 WARN_ON(!is_vm_hugetlb_page(vma));
4163 BUG_ON(start & ~huge_page_mask(h));
4164 BUG_ON(end & ~huge_page_mask(h));
4165
4166 /*
4167 * This is a hugetlb vma, all the pte entries should point
4168 * to huge page.
4169 */
4170 tlb_change_page_size(tlb, sz);
4171 tlb_start_vma(tlb, vma);
4172
4173 /*
4174 * If sharing possible, alert mmu notifiers of worst case.
4175 */
4176 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4177 end);
4178 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4179 mmu_notifier_invalidate_range_start(&range);
4180 address = start;
4181 for (; address < end; address += sz) {
4182 ptep = huge_pte_offset(mm, address, sz);
4183 if (!ptep)
4184 continue;
4185
4186 ptl = huge_pte_lock(h, mm, ptep);
4187 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4188 spin_unlock(ptl);
4189 /*
4190 * We just unmapped a page of PMDs by clearing a PUD.
4191 * The caller's TLB flush range should cover this area.
4192 */
4193 continue;
4194 }
4195
4196 pte = huge_ptep_get(ptep);
4197 if (huge_pte_none(pte)) {
4198 spin_unlock(ptl);
4199 continue;
4200 }
4201
4202 /*
4203 * Migrating hugepage or HWPoisoned hugepage is already
4204 * unmapped and its refcount is dropped, so just clear pte here.
4205 */
4206 if (unlikely(!pte_present(pte))) {
4207 huge_pte_clear(mm, address, ptep, sz);
4208 spin_unlock(ptl);
4209 continue;
4210 }
4211
4212 page = pte_page(pte);
4213 /*
4214 * If a reference page is supplied, it is because a specific
4215 * page is being unmapped, not a range. Ensure the page we
4216 * are about to unmap is the actual page of interest.
4217 */
4218 if (ref_page) {
4219 if (page != ref_page) {
4220 spin_unlock(ptl);
4221 continue;
4222 }
4223 /*
4224 * Mark the VMA as having unmapped its page so that
4225 * future faults in this VMA will fail rather than
4226 * looking like data was lost
4227 */
4228 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4229 }
4230
4231 pte = huge_ptep_get_and_clear(mm, address, ptep);
4232 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4233 if (huge_pte_dirty(pte))
4234 set_page_dirty(page);
4235
4236 hugetlb_count_sub(pages_per_huge_page(h), mm);
4237 page_remove_rmap(page, true);
4238
4239 spin_unlock(ptl);
4240 tlb_remove_page_size(tlb, page, huge_page_size(h));
4241 /*
4242 * Bail out after unmapping reference page if supplied
4243 */
4244 if (ref_page)
4245 break;
4246 }
4247 mmu_notifier_invalidate_range_end(&range);
4248 tlb_end_vma(tlb, vma);
4249}
4250
4251void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4252 struct vm_area_struct *vma, unsigned long start,
4253 unsigned long end, struct page *ref_page)
4254{
4255 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4256
4257 /*
4258 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4259 * test will fail on a vma being torn down, and not grab a page table
4260 * on its way out. We're lucky that the flag has such an appropriate
4261 * name, and can in fact be safely cleared here. We could clear it
4262 * before the __unmap_hugepage_range above, but all that's necessary
4263 * is to clear it before releasing the i_mmap_rwsem. This works
4264 * because in the context this is called, the VMA is about to be
4265 * destroyed and the i_mmap_rwsem is held.
4266 */
4267 vma->vm_flags &= ~VM_MAYSHARE;
4268}
4269
4270void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4271 unsigned long end, struct page *ref_page)
4272{
4273 struct mmu_gather tlb;
4274
4275 tlb_gather_mmu(&tlb, vma->vm_mm);
4276 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4277 tlb_finish_mmu(&tlb);
4278}
4279
4280/*
4281 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4282 * mapping it owns the reserve page for. The intention is to unmap the page
4283 * from other VMAs and let the children be SIGKILLed if they are faulting the
4284 * same region.
4285 */
4286static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4287 struct page *page, unsigned long address)
4288{
4289 struct hstate *h = hstate_vma(vma);
4290 struct vm_area_struct *iter_vma;
4291 struct address_space *mapping;
4292 pgoff_t pgoff;
4293
4294 /*
4295 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4296 * from page cache lookup which is in HPAGE_SIZE units.
4297 */
4298 address = address & huge_page_mask(h);
4299 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4300 vma->vm_pgoff;
4301 mapping = vma->vm_file->f_mapping;
4302
4303 /*
4304 * Take the mapping lock for the duration of the table walk. As
4305 * this mapping should be shared between all the VMAs,
4306 * __unmap_hugepage_range() is called as the lock is already held
4307 */
4308 i_mmap_lock_write(mapping);
4309 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4310 /* Do not unmap the current VMA */
4311 if (iter_vma == vma)
4312 continue;
4313
4314 /*
4315 * Shared VMAs have their own reserves and do not affect
4316 * MAP_PRIVATE accounting but it is possible that a shared
4317 * VMA is using the same page so check and skip such VMAs.
4318 */
4319 if (iter_vma->vm_flags & VM_MAYSHARE)
4320 continue;
4321
4322 /*
4323 * Unmap the page from other VMAs without their own reserves.
4324 * They get marked to be SIGKILLed if they fault in these
4325 * areas. This is because a future no-page fault on this VMA
4326 * could insert a zeroed page instead of the data existing
4327 * from the time of fork. This would look like data corruption
4328 */
4329 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4330 unmap_hugepage_range(iter_vma, address,
4331 address + huge_page_size(h), page);
4332 }
4333 i_mmap_unlock_write(mapping);
4334}
4335
4336/*
4337 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4338 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4339 * cannot race with other handlers or page migration.
4340 * Keep the pte_same checks anyway to make transition from the mutex easier.
4341 */
4342static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4343 unsigned long address, pte_t *ptep,
4344 struct page *pagecache_page, spinlock_t *ptl)
4345{
4346 pte_t pte;
4347 struct hstate *h = hstate_vma(vma);
4348 struct page *old_page, *new_page;
4349 int outside_reserve = 0;
4350 vm_fault_t ret = 0;
4351 unsigned long haddr = address & huge_page_mask(h);
4352 struct mmu_notifier_range range;
4353
4354 pte = huge_ptep_get(ptep);
4355 old_page = pte_page(pte);
4356
4357retry_avoidcopy:
4358 /* If no-one else is actually using this page, avoid the copy
4359 * and just make the page writable */
4360 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4361 page_move_anon_rmap(old_page, vma);
4362 set_huge_ptep_writable(vma, haddr, ptep);
4363 return 0;
4364 }
4365
4366 /*
4367 * If the process that created a MAP_PRIVATE mapping is about to
4368 * perform a COW due to a shared page count, attempt to satisfy
4369 * the allocation without using the existing reserves. The pagecache
4370 * page is used to determine if the reserve at this address was
4371 * consumed or not. If reserves were used, a partial faulted mapping
4372 * at the time of fork() could consume its reserves on COW instead
4373 * of the full address range.
4374 */
4375 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4376 old_page != pagecache_page)
4377 outside_reserve = 1;
4378
4379 get_page(old_page);
4380
4381 /*
4382 * Drop page table lock as buddy allocator may be called. It will
4383 * be acquired again before returning to the caller, as expected.
4384 */
4385 spin_unlock(ptl);
4386 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4387
4388 if (IS_ERR(new_page)) {
4389 /*
4390 * If a process owning a MAP_PRIVATE mapping fails to COW,
4391 * it is due to references held by a child and an insufficient
4392 * huge page pool. To guarantee the original mappers
4393 * reliability, unmap the page from child processes. The child
4394 * may get SIGKILLed if it later faults.
4395 */
4396 if (outside_reserve) {
4397 struct address_space *mapping = vma->vm_file->f_mapping;
4398 pgoff_t idx;
4399 u32 hash;
4400
4401 put_page(old_page);
4402 BUG_ON(huge_pte_none(pte));
4403 /*
4404 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4405 * unmapping. unmapping needs to hold i_mmap_rwsem
4406 * in write mode. Dropping i_mmap_rwsem in read mode
4407 * here is OK as COW mappings do not interact with
4408 * PMD sharing.
4409 *
4410 * Reacquire both after unmap operation.
4411 */
4412 idx = vma_hugecache_offset(h, vma, haddr);
4413 hash = hugetlb_fault_mutex_hash(mapping, idx);
4414 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4415 i_mmap_unlock_read(mapping);
4416
4417 unmap_ref_private(mm, vma, old_page, haddr);
4418
4419 i_mmap_lock_read(mapping);
4420 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4421 spin_lock(ptl);
4422 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4423 if (likely(ptep &&
4424 pte_same(huge_ptep_get(ptep), pte)))
4425 goto retry_avoidcopy;
4426 /*
4427 * race occurs while re-acquiring page table
4428 * lock, and our job is done.
4429 */
4430 return 0;
4431 }
4432
4433 ret = vmf_error(PTR_ERR(new_page));
4434 goto out_release_old;
4435 }
4436
4437 /*
4438 * When the original hugepage is shared one, it does not have
4439 * anon_vma prepared.
4440 */
4441 if (unlikely(anon_vma_prepare(vma))) {
4442 ret = VM_FAULT_OOM;
4443 goto out_release_all;
4444 }
4445
4446 copy_user_huge_page(new_page, old_page, address, vma,
4447 pages_per_huge_page(h));
4448 __SetPageUptodate(new_page);
4449
4450 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4451 haddr + huge_page_size(h));
4452 mmu_notifier_invalidate_range_start(&range);
4453
4454 /*
4455 * Retake the page table lock to check for racing updates
4456 * before the page tables are altered
4457 */
4458 spin_lock(ptl);
4459 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4460 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4461 ClearHPageRestoreReserve(new_page);
4462
4463 /* Break COW */
4464 huge_ptep_clear_flush(vma, haddr, ptep);
4465 mmu_notifier_invalidate_range(mm, range.start, range.end);
4466 set_huge_pte_at(mm, haddr, ptep,
4467 make_huge_pte(vma, new_page, 1));
4468 page_remove_rmap(old_page, true);
4469 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4470 SetHPageMigratable(new_page);
4471 /* Make the old page be freed below */
4472 new_page = old_page;
4473 }
4474 spin_unlock(ptl);
4475 mmu_notifier_invalidate_range_end(&range);
4476out_release_all:
4477 restore_reserve_on_error(h, vma, haddr, new_page);
4478 put_page(new_page);
4479out_release_old:
4480 put_page(old_page);
4481
4482 spin_lock(ptl); /* Caller expects lock to be held */
4483 return ret;
4484}
4485
4486/* Return the pagecache page at a given address within a VMA */
4487static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4488 struct vm_area_struct *vma, unsigned long address)
4489{
4490 struct address_space *mapping;
4491 pgoff_t idx;
4492
4493 mapping = vma->vm_file->f_mapping;
4494 idx = vma_hugecache_offset(h, vma, address);
4495
4496 return find_lock_page(mapping, idx);
4497}
4498
4499/*
4500 * Return whether there is a pagecache page to back given address within VMA.
4501 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4502 */
4503static bool hugetlbfs_pagecache_present(struct hstate *h,
4504 struct vm_area_struct *vma, unsigned long address)
4505{
4506 struct address_space *mapping;
4507 pgoff_t idx;
4508 struct page *page;
4509
4510 mapping = vma->vm_file->f_mapping;
4511 idx = vma_hugecache_offset(h, vma, address);
4512
4513 page = find_get_page(mapping, idx);
4514 if (page)
4515 put_page(page);
4516 return page != NULL;
4517}
4518
4519int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4520 pgoff_t idx)
4521{
4522 struct inode *inode = mapping->host;
4523 struct hstate *h = hstate_inode(inode);
4524 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4525
4526 if (err)
4527 return err;
4528 ClearHPageRestoreReserve(page);
4529
4530 /*
4531 * set page dirty so that it will not be removed from cache/file
4532 * by non-hugetlbfs specific code paths.
4533 */
4534 set_page_dirty(page);
4535
4536 spin_lock(&inode->i_lock);
4537 inode->i_blocks += blocks_per_huge_page(h);
4538 spin_unlock(&inode->i_lock);
4539 return 0;
4540}
4541
4542static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4543 struct address_space *mapping,
4544 pgoff_t idx,
4545 unsigned int flags,
4546 unsigned long haddr,
4547 unsigned long reason)
4548{
4549 vm_fault_t ret;
4550 u32 hash;
4551 struct vm_fault vmf = {
4552 .vma = vma,
4553 .address = haddr,
4554 .flags = flags,
4555
4556 /*
4557 * Hard to debug if it ends up being
4558 * used by a callee that assumes
4559 * something about the other
4560 * uninitialized fields... same as in
4561 * memory.c
4562 */
4563 };
4564
4565 /*
4566 * hugetlb_fault_mutex and i_mmap_rwsem must be
4567 * dropped before handling userfault. Reacquire
4568 * after handling fault to make calling code simpler.
4569 */
4570 hash = hugetlb_fault_mutex_hash(mapping, idx);
4571 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4572 i_mmap_unlock_read(mapping);
4573 ret = handle_userfault(&vmf, reason);
4574 i_mmap_lock_read(mapping);
4575 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4576
4577 return ret;
4578}
4579
4580static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4581 struct vm_area_struct *vma,
4582 struct address_space *mapping, pgoff_t idx,
4583 unsigned long address, pte_t *ptep, unsigned int flags)
4584{
4585 struct hstate *h = hstate_vma(vma);
4586 vm_fault_t ret = VM_FAULT_SIGBUS;
4587 int anon_rmap = 0;
4588 unsigned long size;
4589 struct page *page;
4590 pte_t new_pte;
4591 spinlock_t *ptl;
4592 unsigned long haddr = address & huge_page_mask(h);
4593 bool new_page = false;
4594
4595 /*
4596 * Currently, we are forced to kill the process in the event the
4597 * original mapper has unmapped pages from the child due to a failed
4598 * COW. Warn that such a situation has occurred as it may not be obvious
4599 */
4600 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4601 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4602 current->pid);
4603 return ret;
4604 }
4605
4606 /*
4607 * We can not race with truncation due to holding i_mmap_rwsem.
4608 * i_size is modified when holding i_mmap_rwsem, so check here
4609 * once for faults beyond end of file.
4610 */
4611 size = i_size_read(mapping->host) >> huge_page_shift(h);
4612 if (idx >= size)
4613 goto out;
4614
4615retry:
4616 page = find_lock_page(mapping, idx);
4617 if (!page) {
4618 /* Check for page in userfault range */
4619 if (userfaultfd_missing(vma)) {
4620 ret = hugetlb_handle_userfault(vma, mapping, idx,
4621 flags, haddr,
4622 VM_UFFD_MISSING);
4623 goto out;
4624 }
4625
4626 page = alloc_huge_page(vma, haddr, 0);
4627 if (IS_ERR(page)) {
4628 /*
4629 * Returning error will result in faulting task being
4630 * sent SIGBUS. The hugetlb fault mutex prevents two
4631 * tasks from racing to fault in the same page which
4632 * could result in false unable to allocate errors.
4633 * Page migration does not take the fault mutex, but
4634 * does a clear then write of pte's under page table
4635 * lock. Page fault code could race with migration,
4636 * notice the clear pte and try to allocate a page
4637 * here. Before returning error, get ptl and make
4638 * sure there really is no pte entry.
4639 */
4640 ptl = huge_pte_lock(h, mm, ptep);
4641 ret = 0;
4642 if (huge_pte_none(huge_ptep_get(ptep)))
4643 ret = vmf_error(PTR_ERR(page));
4644 spin_unlock(ptl);
4645 goto out;
4646 }
4647 clear_huge_page(page, address, pages_per_huge_page(h));
4648 __SetPageUptodate(page);
4649 new_page = true;
4650
4651 if (vma->vm_flags & VM_MAYSHARE) {
4652 int err = huge_add_to_page_cache(page, mapping, idx);
4653 if (err) {
4654 put_page(page);
4655 if (err == -EEXIST)
4656 goto retry;
4657 goto out;
4658 }
4659 } else {
4660 lock_page(page);
4661 if (unlikely(anon_vma_prepare(vma))) {
4662 ret = VM_FAULT_OOM;
4663 goto backout_unlocked;
4664 }
4665 anon_rmap = 1;
4666 }
4667 } else {
4668 /*
4669 * If memory error occurs between mmap() and fault, some process
4670 * don't have hwpoisoned swap entry for errored virtual address.
4671 * So we need to block hugepage fault by PG_hwpoison bit check.
4672 */
4673 if (unlikely(PageHWPoison(page))) {
4674 ret = VM_FAULT_HWPOISON_LARGE |
4675 VM_FAULT_SET_HINDEX(hstate_index(h));
4676 goto backout_unlocked;
4677 }
4678
4679 /* Check for page in userfault range. */
4680 if (userfaultfd_minor(vma)) {
4681 unlock_page(page);
4682 put_page(page);
4683 ret = hugetlb_handle_userfault(vma, mapping, idx,
4684 flags, haddr,
4685 VM_UFFD_MINOR);
4686 goto out;
4687 }
4688 }
4689
4690 /*
4691 * If we are going to COW a private mapping later, we examine the
4692 * pending reservations for this page now. This will ensure that
4693 * any allocations necessary to record that reservation occur outside
4694 * the spinlock.
4695 */
4696 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4697 if (vma_needs_reservation(h, vma, haddr) < 0) {
4698 ret = VM_FAULT_OOM;
4699 goto backout_unlocked;
4700 }
4701 /* Just decrements count, does not deallocate */
4702 vma_end_reservation(h, vma, haddr);
4703 }
4704
4705 ptl = huge_pte_lock(h, mm, ptep);
4706 ret = 0;
4707 if (!huge_pte_none(huge_ptep_get(ptep)))
4708 goto backout;
4709
4710 if (anon_rmap) {
4711 ClearHPageRestoreReserve(page);
4712 hugepage_add_new_anon_rmap(page, vma, haddr);
4713 } else
4714 page_dup_rmap(page, true);
4715 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4716 && (vma->vm_flags & VM_SHARED)));
4717 set_huge_pte_at(mm, haddr, ptep, new_pte);
4718
4719 hugetlb_count_add(pages_per_huge_page(h), mm);
4720 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4721 /* Optimization, do the COW without a second fault */
4722 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4723 }
4724
4725 spin_unlock(ptl);
4726
4727 /*
4728 * Only set HPageMigratable in newly allocated pages. Existing pages
4729 * found in the pagecache may not have HPageMigratableset if they have
4730 * been isolated for migration.
4731 */
4732 if (new_page)
4733 SetHPageMigratable(page);
4734
4735 unlock_page(page);
4736out:
4737 return ret;
4738
4739backout:
4740 spin_unlock(ptl);
4741backout_unlocked:
4742 unlock_page(page);
4743 restore_reserve_on_error(h, vma, haddr, page);
4744 put_page(page);
4745 goto out;
4746}
4747
4748#ifdef CONFIG_SMP
4749u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4750{
4751 unsigned long key[2];
4752 u32 hash;
4753
4754 key[0] = (unsigned long) mapping;
4755 key[1] = idx;
4756
4757 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4758
4759 return hash & (num_fault_mutexes - 1);
4760}
4761#else
4762/*
4763 * For uniprocessor systems we always use a single mutex, so just
4764 * return 0 and avoid the hashing overhead.
4765 */
4766u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4767{
4768 return 0;
4769}
4770#endif
4771
4772vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4773 unsigned long address, unsigned int flags)
4774{
4775 pte_t *ptep, entry;
4776 spinlock_t *ptl;
4777 vm_fault_t ret;
4778 u32 hash;
4779 pgoff_t idx;
4780 struct page *page = NULL;
4781 struct page *pagecache_page = NULL;
4782 struct hstate *h = hstate_vma(vma);
4783 struct address_space *mapping;
4784 int need_wait_lock = 0;
4785 unsigned long haddr = address & huge_page_mask(h);
4786
4787 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4788 if (ptep) {
4789 /*
4790 * Since we hold no locks, ptep could be stale. That is
4791 * OK as we are only making decisions based on content and
4792 * not actually modifying content here.
4793 */
4794 entry = huge_ptep_get(ptep);
4795 if (unlikely(is_hugetlb_entry_migration(entry))) {
4796 migration_entry_wait_huge(vma, mm, ptep);
4797 return 0;
4798 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4799 return VM_FAULT_HWPOISON_LARGE |
4800 VM_FAULT_SET_HINDEX(hstate_index(h));
4801 }
4802
4803 /*
4804 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4805 * until finished with ptep. This serves two purposes:
4806 * 1) It prevents huge_pmd_unshare from being called elsewhere
4807 * and making the ptep no longer valid.
4808 * 2) It synchronizes us with i_size modifications during truncation.
4809 *
4810 * ptep could have already be assigned via huge_pte_offset. That
4811 * is OK, as huge_pte_alloc will return the same value unless
4812 * something has changed.
4813 */
4814 mapping = vma->vm_file->f_mapping;
4815 i_mmap_lock_read(mapping);
4816 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4817 if (!ptep) {
4818 i_mmap_unlock_read(mapping);
4819 return VM_FAULT_OOM;
4820 }
4821
4822 /*
4823 * Serialize hugepage allocation and instantiation, so that we don't
4824 * get spurious allocation failures if two CPUs race to instantiate
4825 * the same page in the page cache.
4826 */
4827 idx = vma_hugecache_offset(h, vma, haddr);
4828 hash = hugetlb_fault_mutex_hash(mapping, idx);
4829 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4830
4831 entry = huge_ptep_get(ptep);
4832 if (huge_pte_none(entry)) {
4833 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4834 goto out_mutex;
4835 }
4836
4837 ret = 0;
4838
4839 /*
4840 * entry could be a migration/hwpoison entry at this point, so this
4841 * check prevents the kernel from going below assuming that we have
4842 * an active hugepage in pagecache. This goto expects the 2nd page
4843 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4844 * properly handle it.
4845 */
4846 if (!pte_present(entry))
4847 goto out_mutex;
4848
4849 /*
4850 * If we are going to COW the mapping later, we examine the pending
4851 * reservations for this page now. This will ensure that any
4852 * allocations necessary to record that reservation occur outside the
4853 * spinlock. For private mappings, we also lookup the pagecache
4854 * page now as it is used to determine if a reservation has been
4855 * consumed.
4856 */
4857 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4858 if (vma_needs_reservation(h, vma, haddr) < 0) {
4859 ret = VM_FAULT_OOM;
4860 goto out_mutex;
4861 }
4862 /* Just decrements count, does not deallocate */
4863 vma_end_reservation(h, vma, haddr);
4864
4865 if (!(vma->vm_flags & VM_MAYSHARE))
4866 pagecache_page = hugetlbfs_pagecache_page(h,
4867 vma, haddr);
4868 }
4869
4870 ptl = huge_pte_lock(h, mm, ptep);
4871
4872 /* Check for a racing update before calling hugetlb_cow */
4873 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4874 goto out_ptl;
4875
4876 /*
4877 * hugetlb_cow() requires page locks of pte_page(entry) and
4878 * pagecache_page, so here we need take the former one
4879 * when page != pagecache_page or !pagecache_page.
4880 */
4881 page = pte_page(entry);
4882 if (page != pagecache_page)
4883 if (!trylock_page(page)) {
4884 need_wait_lock = 1;
4885 goto out_ptl;
4886 }
4887
4888 get_page(page);
4889
4890 if (flags & FAULT_FLAG_WRITE) {
4891 if (!huge_pte_write(entry)) {
4892 ret = hugetlb_cow(mm, vma, address, ptep,
4893 pagecache_page, ptl);
4894 goto out_put_page;
4895 }
4896 entry = huge_pte_mkdirty(entry);
4897 }
4898 entry = pte_mkyoung(entry);
4899 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4900 flags & FAULT_FLAG_WRITE))
4901 update_mmu_cache(vma, haddr, ptep);
4902out_put_page:
4903 if (page != pagecache_page)
4904 unlock_page(page);
4905 put_page(page);
4906out_ptl:
4907 spin_unlock(ptl);
4908
4909 if (pagecache_page) {
4910 unlock_page(pagecache_page);
4911 put_page(pagecache_page);
4912 }
4913out_mutex:
4914 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4915 i_mmap_unlock_read(mapping);
4916 /*
4917 * Generally it's safe to hold refcount during waiting page lock. But
4918 * here we just wait to defer the next page fault to avoid busy loop and
4919 * the page is not used after unlocked before returning from the current
4920 * page fault. So we are safe from accessing freed page, even if we wait
4921 * here without taking refcount.
4922 */
4923 if (need_wait_lock)
4924 wait_on_page_locked(page);
4925 return ret;
4926}
4927
4928#ifdef CONFIG_USERFAULTFD
4929/*
4930 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4931 * modifications for huge pages.
4932 */
4933int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4934 pte_t *dst_pte,
4935 struct vm_area_struct *dst_vma,
4936 unsigned long dst_addr,
4937 unsigned long src_addr,
4938 enum mcopy_atomic_mode mode,
4939 struct page **pagep)
4940{
4941 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4942 struct address_space *mapping;
4943 pgoff_t idx;
4944 unsigned long size;
4945 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4946 struct hstate *h = hstate_vma(dst_vma);
4947 pte_t _dst_pte;
4948 spinlock_t *ptl;
4949 int ret;
4950 struct page *page;
4951 int writable;
4952
4953 mapping = dst_vma->vm_file->f_mapping;
4954 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4955
4956 if (is_continue) {
4957 ret = -EFAULT;
4958 page = find_lock_page(mapping, idx);
4959 if (!page)
4960 goto out;
4961 } else if (!*pagep) {
4962 /* If a page already exists, then it's UFFDIO_COPY for
4963 * a non-missing case. Return -EEXIST.
4964 */
4965 if (vm_shared &&
4966 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4967 ret = -EEXIST;
4968 goto out;
4969 }
4970
4971 page = alloc_huge_page(dst_vma, dst_addr, 0);
4972 if (IS_ERR(page)) {
4973 ret = -ENOMEM;
4974 goto out;
4975 }
4976
4977 ret = copy_huge_page_from_user(page,
4978 (const void __user *) src_addr,
4979 pages_per_huge_page(h), false);
4980
4981 /* fallback to copy_from_user outside mmap_lock */
4982 if (unlikely(ret)) {
4983 ret = -ENOENT;
4984 *pagep = page;
4985 /* don't free the page */
4986 goto out;
4987 }
4988 } else {
4989 page = *pagep;
4990 *pagep = NULL;
4991 }
4992
4993 /*
4994 * The memory barrier inside __SetPageUptodate makes sure that
4995 * preceding stores to the page contents become visible before
4996 * the set_pte_at() write.
4997 */
4998 __SetPageUptodate(page);
4999
5000 /* Add shared, newly allocated pages to the page cache. */
5001 if (vm_shared && !is_continue) {
5002 size = i_size_read(mapping->host) >> huge_page_shift(h);
5003 ret = -EFAULT;
5004 if (idx >= size)
5005 goto out_release_nounlock;
5006
5007 /*
5008 * Serialization between remove_inode_hugepages() and
5009 * huge_add_to_page_cache() below happens through the
5010 * hugetlb_fault_mutex_table that here must be hold by
5011 * the caller.
5012 */
5013 ret = huge_add_to_page_cache(page, mapping, idx);
5014 if (ret)
5015 goto out_release_nounlock;
5016 }
5017
5018 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5019 spin_lock(ptl);
5020
5021 /*
5022 * Recheck the i_size after holding PT lock to make sure not
5023 * to leave any page mapped (as page_mapped()) beyond the end
5024 * of the i_size (remove_inode_hugepages() is strict about
5025 * enforcing that). If we bail out here, we'll also leave a
5026 * page in the radix tree in the vm_shared case beyond the end
5027 * of the i_size, but remove_inode_hugepages() will take care
5028 * of it as soon as we drop the hugetlb_fault_mutex_table.
5029 */
5030 size = i_size_read(mapping->host) >> huge_page_shift(h);
5031 ret = -EFAULT;
5032 if (idx >= size)
5033 goto out_release_unlock;
5034
5035 ret = -EEXIST;
5036 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5037 goto out_release_unlock;
5038
5039 if (vm_shared) {
5040 page_dup_rmap(page, true);
5041 } else {
5042 ClearHPageRestoreReserve(page);
5043 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5044 }
5045
5046 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5047 if (is_continue && !vm_shared)
5048 writable = 0;
5049 else
5050 writable = dst_vma->vm_flags & VM_WRITE;
5051
5052 _dst_pte = make_huge_pte(dst_vma, page, writable);
5053 if (writable)
5054 _dst_pte = huge_pte_mkdirty(_dst_pte);
5055 _dst_pte = pte_mkyoung(_dst_pte);
5056
5057 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5058
5059 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5060 dst_vma->vm_flags & VM_WRITE);
5061 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5062
5063 /* No need to invalidate - it was non-present before */
5064 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5065
5066 spin_unlock(ptl);
5067 if (!is_continue)
5068 SetHPageMigratable(page);
5069 if (vm_shared || is_continue)
5070 unlock_page(page);
5071 ret = 0;
5072out:
5073 return ret;
5074out_release_unlock:
5075 spin_unlock(ptl);
5076 if (vm_shared || is_continue)
5077 unlock_page(page);
5078out_release_nounlock:
5079 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5080 put_page(page);
5081 goto out;
5082}
5083#endif /* CONFIG_USERFAULTFD */
5084
5085static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5086 int refs, struct page **pages,
5087 struct vm_area_struct **vmas)
5088{
5089 int nr;
5090
5091 for (nr = 0; nr < refs; nr++) {
5092 if (likely(pages))
5093 pages[nr] = mem_map_offset(page, nr);
5094 if (vmas)
5095 vmas[nr] = vma;
5096 }
5097}
5098
5099long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5100 struct page **pages, struct vm_area_struct **vmas,
5101 unsigned long *position, unsigned long *nr_pages,
5102 long i, unsigned int flags, int *locked)
5103{
5104 unsigned long pfn_offset;
5105 unsigned long vaddr = *position;
5106 unsigned long remainder = *nr_pages;
5107 struct hstate *h = hstate_vma(vma);
5108 int err = -EFAULT, refs;
5109
5110 while (vaddr < vma->vm_end && remainder) {
5111 pte_t *pte;
5112 spinlock_t *ptl = NULL;
5113 int absent;
5114 struct page *page;
5115
5116 /*
5117 * If we have a pending SIGKILL, don't keep faulting pages and
5118 * potentially allocating memory.
5119 */
5120 if (fatal_signal_pending(current)) {
5121 remainder = 0;
5122 break;
5123 }
5124
5125 /*
5126 * Some archs (sparc64, sh*) have multiple pte_ts to
5127 * each hugepage. We have to make sure we get the
5128 * first, for the page indexing below to work.
5129 *
5130 * Note that page table lock is not held when pte is null.
5131 */
5132 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5133 huge_page_size(h));
5134 if (pte)
5135 ptl = huge_pte_lock(h, mm, pte);
5136 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5137
5138 /*
5139 * When coredumping, it suits get_dump_page if we just return
5140 * an error where there's an empty slot with no huge pagecache
5141 * to back it. This way, we avoid allocating a hugepage, and
5142 * the sparse dumpfile avoids allocating disk blocks, but its
5143 * huge holes still show up with zeroes where they need to be.
5144 */
5145 if (absent && (flags & FOLL_DUMP) &&
5146 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5147 if (pte)
5148 spin_unlock(ptl);
5149 remainder = 0;
5150 break;
5151 }
5152
5153 /*
5154 * We need call hugetlb_fault for both hugepages under migration
5155 * (in which case hugetlb_fault waits for the migration,) and
5156 * hwpoisoned hugepages (in which case we need to prevent the
5157 * caller from accessing to them.) In order to do this, we use
5158 * here is_swap_pte instead of is_hugetlb_entry_migration and
5159 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5160 * both cases, and because we can't follow correct pages
5161 * directly from any kind of swap entries.
5162 */
5163 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5164 ((flags & FOLL_WRITE) &&
5165 !huge_pte_write(huge_ptep_get(pte)))) {
5166 vm_fault_t ret;
5167 unsigned int fault_flags = 0;
5168
5169 if (pte)
5170 spin_unlock(ptl);
5171 if (flags & FOLL_WRITE)
5172 fault_flags |= FAULT_FLAG_WRITE;
5173 if (locked)
5174 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5175 FAULT_FLAG_KILLABLE;
5176 if (flags & FOLL_NOWAIT)
5177 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5178 FAULT_FLAG_RETRY_NOWAIT;
5179 if (flags & FOLL_TRIED) {
5180 /*
5181 * Note: FAULT_FLAG_ALLOW_RETRY and
5182 * FAULT_FLAG_TRIED can co-exist
5183 */
5184 fault_flags |= FAULT_FLAG_TRIED;
5185 }
5186 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5187 if (ret & VM_FAULT_ERROR) {
5188 err = vm_fault_to_errno(ret, flags);
5189 remainder = 0;
5190 break;
5191 }
5192 if (ret & VM_FAULT_RETRY) {
5193 if (locked &&
5194 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5195 *locked = 0;
5196 *nr_pages = 0;
5197 /*
5198 * VM_FAULT_RETRY must not return an
5199 * error, it will return zero
5200 * instead.
5201 *
5202 * No need to update "position" as the
5203 * caller will not check it after
5204 * *nr_pages is set to 0.
5205 */
5206 return i;
5207 }
5208 continue;
5209 }
5210
5211 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5212 page = pte_page(huge_ptep_get(pte));
5213
5214 /*
5215 * If subpage information not requested, update counters
5216 * and skip the same_page loop below.
5217 */
5218 if (!pages && !vmas && !pfn_offset &&
5219 (vaddr + huge_page_size(h) < vma->vm_end) &&
5220 (remainder >= pages_per_huge_page(h))) {
5221 vaddr += huge_page_size(h);
5222 remainder -= pages_per_huge_page(h);
5223 i += pages_per_huge_page(h);
5224 spin_unlock(ptl);
5225 continue;
5226 }
5227
5228 refs = min3(pages_per_huge_page(h) - pfn_offset,
5229 (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
5230
5231 if (pages || vmas)
5232 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5233 vma, refs,
5234 likely(pages) ? pages + i : NULL,
5235 vmas ? vmas + i : NULL);
5236
5237 if (pages) {
5238 /*
5239 * try_grab_compound_head() should always succeed here,
5240 * because: a) we hold the ptl lock, and b) we've just
5241 * checked that the huge page is present in the page
5242 * tables. If the huge page is present, then the tail
5243 * pages must also be present. The ptl prevents the
5244 * head page and tail pages from being rearranged in
5245 * any way. So this page must be available at this
5246 * point, unless the page refcount overflowed:
5247 */
5248 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5249 refs,
5250 flags))) {
5251 spin_unlock(ptl);
5252 remainder = 0;
5253 err = -ENOMEM;
5254 break;
5255 }
5256 }
5257
5258 vaddr += (refs << PAGE_SHIFT);
5259 remainder -= refs;
5260 i += refs;
5261
5262 spin_unlock(ptl);
5263 }
5264 *nr_pages = remainder;
5265 /*
5266 * setting position is actually required only if remainder is
5267 * not zero but it's faster not to add a "if (remainder)"
5268 * branch.
5269 */
5270 *position = vaddr;
5271
5272 return i ? i : err;
5273}
5274
5275unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5276 unsigned long address, unsigned long end, pgprot_t newprot)
5277{
5278 struct mm_struct *mm = vma->vm_mm;
5279 unsigned long start = address;
5280 pte_t *ptep;
5281 pte_t pte;
5282 struct hstate *h = hstate_vma(vma);
5283 unsigned long pages = 0;
5284 bool shared_pmd = false;
5285 struct mmu_notifier_range range;
5286
5287 /*
5288 * In the case of shared PMDs, the area to flush could be beyond
5289 * start/end. Set range.start/range.end to cover the maximum possible
5290 * range if PMD sharing is possible.
5291 */
5292 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5293 0, vma, mm, start, end);
5294 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5295
5296 BUG_ON(address >= end);
5297 flush_cache_range(vma, range.start, range.end);
5298
5299 mmu_notifier_invalidate_range_start(&range);
5300 i_mmap_lock_write(vma->vm_file->f_mapping);
5301 for (; address < end; address += huge_page_size(h)) {
5302 spinlock_t *ptl;
5303 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5304 if (!ptep)
5305 continue;
5306 ptl = huge_pte_lock(h, mm, ptep);
5307 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5308 pages++;
5309 spin_unlock(ptl);
5310 shared_pmd = true;
5311 continue;
5312 }
5313 pte = huge_ptep_get(ptep);
5314 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5315 spin_unlock(ptl);
5316 continue;
5317 }
5318 if (unlikely(is_hugetlb_entry_migration(pte))) {
5319 swp_entry_t entry = pte_to_swp_entry(pte);
5320
5321 if (is_write_migration_entry(entry)) {
5322 pte_t newpte;
5323
5324 make_migration_entry_read(&entry);
5325 newpte = swp_entry_to_pte(entry);
5326 set_huge_swap_pte_at(mm, address, ptep,
5327 newpte, huge_page_size(h));
5328 pages++;
5329 }
5330 spin_unlock(ptl);
5331 continue;
5332 }
5333 if (!huge_pte_none(pte)) {
5334 pte_t old_pte;
5335
5336 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5337 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5338 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5339 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5340 pages++;
5341 }
5342 spin_unlock(ptl);
5343 }
5344 /*
5345 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5346 * may have cleared our pud entry and done put_page on the page table:
5347 * once we release i_mmap_rwsem, another task can do the final put_page
5348 * and that page table be reused and filled with junk. If we actually
5349 * did unshare a page of pmds, flush the range corresponding to the pud.
5350 */
5351 if (shared_pmd)
5352 flush_hugetlb_tlb_range(vma, range.start, range.end);
5353 else
5354 flush_hugetlb_tlb_range(vma, start, end);
5355 /*
5356 * No need to call mmu_notifier_invalidate_range() we are downgrading
5357 * page table protection not changing it to point to a new page.
5358 *
5359 * See Documentation/vm/mmu_notifier.rst
5360 */
5361 i_mmap_unlock_write(vma->vm_file->f_mapping);
5362 mmu_notifier_invalidate_range_end(&range);
5363
5364 return pages << h->order;
5365}
5366
5367/* Return true if reservation was successful, false otherwise. */
5368bool hugetlb_reserve_pages(struct inode *inode,
5369 long from, long to,
5370 struct vm_area_struct *vma,
5371 vm_flags_t vm_flags)
5372{
5373 long chg, add = -1;
5374 struct hstate *h = hstate_inode(inode);
5375 struct hugepage_subpool *spool = subpool_inode(inode);
5376 struct resv_map *resv_map;
5377 struct hugetlb_cgroup *h_cg = NULL;
5378 long gbl_reserve, regions_needed = 0;
5379
5380 /* This should never happen */
5381 if (from > to) {
5382 VM_WARN(1, "%s called with a negative range\n", __func__);
5383 return false;
5384 }
5385
5386 /*
5387 * Only apply hugepage reservation if asked. At fault time, an
5388 * attempt will be made for VM_NORESERVE to allocate a page
5389 * without using reserves
5390 */
5391 if (vm_flags & VM_NORESERVE)
5392 return true;
5393
5394 /*
5395 * Shared mappings base their reservation on the number of pages that
5396 * are already allocated on behalf of the file. Private mappings need
5397 * to reserve the full area even if read-only as mprotect() may be
5398 * called to make the mapping read-write. Assume !vma is a shm mapping
5399 */
5400 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5401 /*
5402 * resv_map can not be NULL as hugetlb_reserve_pages is only
5403 * called for inodes for which resv_maps were created (see
5404 * hugetlbfs_get_inode).
5405 */
5406 resv_map = inode_resv_map(inode);
5407
5408 chg = region_chg(resv_map, from, to, ®ions_needed);
5409
5410 } else {
5411 /* Private mapping. */
5412 resv_map = resv_map_alloc();
5413 if (!resv_map)
5414 return false;
5415
5416 chg = to - from;
5417
5418 set_vma_resv_map(vma, resv_map);
5419 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5420 }
5421
5422 if (chg < 0)
5423 goto out_err;
5424
5425 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5426 chg * pages_per_huge_page(h), &h_cg) < 0)
5427 goto out_err;
5428
5429 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5430 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5431 * of the resv_map.
5432 */
5433 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5434 }
5435
5436 /*
5437 * There must be enough pages in the subpool for the mapping. If
5438 * the subpool has a minimum size, there may be some global
5439 * reservations already in place (gbl_reserve).
5440 */
5441 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5442 if (gbl_reserve < 0)
5443 goto out_uncharge_cgroup;
5444
5445 /*
5446 * Check enough hugepages are available for the reservation.
5447 * Hand the pages back to the subpool if there are not
5448 */
5449 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5450 goto out_put_pages;
5451
5452 /*
5453 * Account for the reservations made. Shared mappings record regions
5454 * that have reservations as they are shared by multiple VMAs.
5455 * When the last VMA disappears, the region map says how much
5456 * the reservation was and the page cache tells how much of
5457 * the reservation was consumed. Private mappings are per-VMA and
5458 * only the consumed reservations are tracked. When the VMA
5459 * disappears, the original reservation is the VMA size and the
5460 * consumed reservations are stored in the map. Hence, nothing
5461 * else has to be done for private mappings here
5462 */
5463 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5464 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5465
5466 if (unlikely(add < 0)) {
5467 hugetlb_acct_memory(h, -gbl_reserve);
5468 goto out_put_pages;
5469 } else if (unlikely(chg > add)) {
5470 /*
5471 * pages in this range were added to the reserve
5472 * map between region_chg and region_add. This
5473 * indicates a race with alloc_huge_page. Adjust
5474 * the subpool and reserve counts modified above
5475 * based on the difference.
5476 */
5477 long rsv_adjust;
5478
5479 /*
5480 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5481 * reference to h_cg->css. See comment below for detail.
5482 */
5483 hugetlb_cgroup_uncharge_cgroup_rsvd(
5484 hstate_index(h),
5485 (chg - add) * pages_per_huge_page(h), h_cg);
5486
5487 rsv_adjust = hugepage_subpool_put_pages(spool,
5488 chg - add);
5489 hugetlb_acct_memory(h, -rsv_adjust);
5490 } else if (h_cg) {
5491 /*
5492 * The file_regions will hold their own reference to
5493 * h_cg->css. So we should release the reference held
5494 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5495 * done.
5496 */
5497 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5498 }
5499 }
5500 return true;
5501
5502out_put_pages:
5503 /* put back original number of pages, chg */
5504 (void)hugepage_subpool_put_pages(spool, chg);
5505out_uncharge_cgroup:
5506 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5507 chg * pages_per_huge_page(h), h_cg);
5508out_err:
5509 if (!vma || vma->vm_flags & VM_MAYSHARE)
5510 /* Only call region_abort if the region_chg succeeded but the
5511 * region_add failed or didn't run.
5512 */
5513 if (chg >= 0 && add < 0)
5514 region_abort(resv_map, from, to, regions_needed);
5515 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5516 kref_put(&resv_map->refs, resv_map_release);
5517 return false;
5518}
5519
5520long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5521 long freed)
5522{
5523 struct hstate *h = hstate_inode(inode);
5524 struct resv_map *resv_map = inode_resv_map(inode);
5525 long chg = 0;
5526 struct hugepage_subpool *spool = subpool_inode(inode);
5527 long gbl_reserve;
5528
5529 /*
5530 * Since this routine can be called in the evict inode path for all
5531 * hugetlbfs inodes, resv_map could be NULL.
5532 */
5533 if (resv_map) {
5534 chg = region_del(resv_map, start, end);
5535 /*
5536 * region_del() can fail in the rare case where a region
5537 * must be split and another region descriptor can not be
5538 * allocated. If end == LONG_MAX, it will not fail.
5539 */
5540 if (chg < 0)
5541 return chg;
5542 }
5543
5544 spin_lock(&inode->i_lock);
5545 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5546 spin_unlock(&inode->i_lock);
5547
5548 /*
5549 * If the subpool has a minimum size, the number of global
5550 * reservations to be released may be adjusted.
5551 *
5552 * Note that !resv_map implies freed == 0. So (chg - freed)
5553 * won't go negative.
5554 */
5555 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5556 hugetlb_acct_memory(h, -gbl_reserve);
5557
5558 return 0;
5559}
5560
5561#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5562static unsigned long page_table_shareable(struct vm_area_struct *svma,
5563 struct vm_area_struct *vma,
5564 unsigned long addr, pgoff_t idx)
5565{
5566 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5567 svma->vm_start;
5568 unsigned long sbase = saddr & PUD_MASK;
5569 unsigned long s_end = sbase + PUD_SIZE;
5570
5571 /* Allow segments to share if only one is marked locked */
5572 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5573 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5574
5575 /*
5576 * match the virtual addresses, permission and the alignment of the
5577 * page table page.
5578 */
5579 if (pmd_index(addr) != pmd_index(saddr) ||
5580 vm_flags != svm_flags ||
5581 !range_in_vma(svma, sbase, s_end))
5582 return 0;
5583
5584 return saddr;
5585}
5586
5587static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5588{
5589 unsigned long base = addr & PUD_MASK;
5590 unsigned long end = base + PUD_SIZE;
5591
5592 /*
5593 * check on proper vm_flags and page table alignment
5594 */
5595 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5596 return true;
5597 return false;
5598}
5599
5600bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5601{
5602#ifdef CONFIG_USERFAULTFD
5603 if (uffd_disable_huge_pmd_share(vma))
5604 return false;
5605#endif
5606 return vma_shareable(vma, addr);
5607}
5608
5609/*
5610 * Determine if start,end range within vma could be mapped by shared pmd.
5611 * If yes, adjust start and end to cover range associated with possible
5612 * shared pmd mappings.
5613 */
5614void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5615 unsigned long *start, unsigned long *end)
5616{
5617 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5618 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5619
5620 /*
5621 * vma needs to span at least one aligned PUD size, and the range
5622 * must be at least partially within in.
5623 */
5624 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5625 (*end <= v_start) || (*start >= v_end))
5626 return;
5627
5628 /* Extend the range to be PUD aligned for a worst case scenario */
5629 if (*start > v_start)
5630 *start = ALIGN_DOWN(*start, PUD_SIZE);
5631
5632 if (*end < v_end)
5633 *end = ALIGN(*end, PUD_SIZE);
5634}
5635
5636/*
5637 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5638 * and returns the corresponding pte. While this is not necessary for the
5639 * !shared pmd case because we can allocate the pmd later as well, it makes the
5640 * code much cleaner.
5641 *
5642 * This routine must be called with i_mmap_rwsem held in at least read mode if
5643 * sharing is possible. For hugetlbfs, this prevents removal of any page
5644 * table entries associated with the address space. This is important as we
5645 * are setting up sharing based on existing page table entries (mappings).
5646 *
5647 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5648 * huge_pte_alloc know that sharing is not possible and do not take
5649 * i_mmap_rwsem as a performance optimization. This is handled by the
5650 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5651 * only required for subsequent processing.
5652 */
5653pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5654 unsigned long addr, pud_t *pud)
5655{
5656 struct address_space *mapping = vma->vm_file->f_mapping;
5657 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5658 vma->vm_pgoff;
5659 struct vm_area_struct *svma;
5660 unsigned long saddr;
5661 pte_t *spte = NULL;
5662 pte_t *pte;
5663 spinlock_t *ptl;
5664
5665 i_mmap_assert_locked(mapping);
5666 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5667 if (svma == vma)
5668 continue;
5669
5670 saddr = page_table_shareable(svma, vma, addr, idx);
5671 if (saddr) {
5672 spte = huge_pte_offset(svma->vm_mm, saddr,
5673 vma_mmu_pagesize(svma));
5674 if (spte) {
5675 get_page(virt_to_page(spte));
5676 break;
5677 }
5678 }
5679 }
5680
5681 if (!spte)
5682 goto out;
5683
5684 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5685 if (pud_none(*pud)) {
5686 pud_populate(mm, pud,
5687 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5688 mm_inc_nr_pmds(mm);
5689 } else {
5690 put_page(virt_to_page(spte));
5691 }
5692 spin_unlock(ptl);
5693out:
5694 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5695 return pte;
5696}
5697
5698/*
5699 * unmap huge page backed by shared pte.
5700 *
5701 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5702 * indicated by page_count > 1, unmap is achieved by clearing pud and
5703 * decrementing the ref count. If count == 1, the pte page is not shared.
5704 *
5705 * Called with page table lock held and i_mmap_rwsem held in write mode.
5706 *
5707 * returns: 1 successfully unmapped a shared pte page
5708 * 0 the underlying pte page is not shared, or it is the last user
5709 */
5710int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5711 unsigned long *addr, pte_t *ptep)
5712{
5713 pgd_t *pgd = pgd_offset(mm, *addr);
5714 p4d_t *p4d = p4d_offset(pgd, *addr);
5715 pud_t *pud = pud_offset(p4d, *addr);
5716
5717 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5718 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5719 if (page_count(virt_to_page(ptep)) == 1)
5720 return 0;
5721
5722 pud_clear(pud);
5723 put_page(virt_to_page(ptep));
5724 mm_dec_nr_pmds(mm);
5725 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5726 return 1;
5727}
5728
5729#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5730pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5731 unsigned long addr, pud_t *pud)
5732{
5733 return NULL;
5734}
5735
5736int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5737 unsigned long *addr, pte_t *ptep)
5738{
5739 return 0;
5740}
5741
5742void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5743 unsigned long *start, unsigned long *end)
5744{
5745}
5746
5747bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5748{
5749 return false;
5750}
5751#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5752
5753#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5754pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5755 unsigned long addr, unsigned long sz)
5756{
5757 pgd_t *pgd;
5758 p4d_t *p4d;
5759 pud_t *pud;
5760 pte_t *pte = NULL;
5761
5762 pgd = pgd_offset(mm, addr);
5763 p4d = p4d_alloc(mm, pgd, addr);
5764 if (!p4d)
5765 return NULL;
5766 pud = pud_alloc(mm, p4d, addr);
5767 if (pud) {
5768 if (sz == PUD_SIZE) {
5769 pte = (pte_t *)pud;
5770 } else {
5771 BUG_ON(sz != PMD_SIZE);
5772 if (want_pmd_share(vma, addr) && pud_none(*pud))
5773 pte = huge_pmd_share(mm, vma, addr, pud);
5774 else
5775 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5776 }
5777 }
5778 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5779
5780 return pte;
5781}
5782
5783/*
5784 * huge_pte_offset() - Walk the page table to resolve the hugepage
5785 * entry at address @addr
5786 *
5787 * Return: Pointer to page table entry (PUD or PMD) for
5788 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5789 * size @sz doesn't match the hugepage size at this level of the page
5790 * table.
5791 */
5792pte_t *huge_pte_offset(struct mm_struct *mm,
5793 unsigned long addr, unsigned long sz)
5794{
5795 pgd_t *pgd;
5796 p4d_t *p4d;
5797 pud_t *pud;
5798 pmd_t *pmd;
5799
5800 pgd = pgd_offset(mm, addr);
5801 if (!pgd_present(*pgd))
5802 return NULL;
5803 p4d = p4d_offset(pgd, addr);
5804 if (!p4d_present(*p4d))
5805 return NULL;
5806
5807 pud = pud_offset(p4d, addr);
5808 if (sz == PUD_SIZE)
5809 /* must be pud huge, non-present or none */
5810 return (pte_t *)pud;
5811 if (!pud_present(*pud))
5812 return NULL;
5813 /* must have a valid entry and size to go further */
5814
5815 pmd = pmd_offset(pud, addr);
5816 /* must be pmd huge, non-present or none */
5817 return (pte_t *)pmd;
5818}
5819
5820#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5821
5822/*
5823 * These functions are overwritable if your architecture needs its own
5824 * behavior.
5825 */
5826struct page * __weak
5827follow_huge_addr(struct mm_struct *mm, unsigned long address,
5828 int write)
5829{
5830 return ERR_PTR(-EINVAL);
5831}
5832
5833struct page * __weak
5834follow_huge_pd(struct vm_area_struct *vma,
5835 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5836{
5837 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5838 return NULL;
5839}
5840
5841struct page * __weak
5842follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5843 pmd_t *pmd, int flags)
5844{
5845 struct page *page = NULL;
5846 spinlock_t *ptl;
5847 pte_t pte;
5848
5849 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5850 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5851 (FOLL_PIN | FOLL_GET)))
5852 return NULL;
5853
5854retry:
5855 ptl = pmd_lockptr(mm, pmd);
5856 spin_lock(ptl);
5857 /*
5858 * make sure that the address range covered by this pmd is not
5859 * unmapped from other threads.
5860 */
5861 if (!pmd_huge(*pmd))
5862 goto out;
5863 pte = huge_ptep_get((pte_t *)pmd);
5864 if (pte_present(pte)) {
5865 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5866 /*
5867 * try_grab_page() should always succeed here, because: a) we
5868 * hold the pmd (ptl) lock, and b) we've just checked that the
5869 * huge pmd (head) page is present in the page tables. The ptl
5870 * prevents the head page and tail pages from being rearranged
5871 * in any way. So this page must be available at this point,
5872 * unless the page refcount overflowed:
5873 */
5874 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5875 page = NULL;
5876 goto out;
5877 }
5878 } else {
5879 if (is_hugetlb_entry_migration(pte)) {
5880 spin_unlock(ptl);
5881 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5882 goto retry;
5883 }
5884 /*
5885 * hwpoisoned entry is treated as no_page_table in
5886 * follow_page_mask().
5887 */
5888 }
5889out:
5890 spin_unlock(ptl);
5891 return page;
5892}
5893
5894struct page * __weak
5895follow_huge_pud(struct mm_struct *mm, unsigned long address,
5896 pud_t *pud, int flags)
5897{
5898 if (flags & (FOLL_GET | FOLL_PIN))
5899 return NULL;
5900
5901 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5902}
5903
5904struct page * __weak
5905follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5906{
5907 if (flags & (FOLL_GET | FOLL_PIN))
5908 return NULL;
5909
5910 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5911}
5912
5913bool isolate_huge_page(struct page *page, struct list_head *list)
5914{
5915 bool ret = true;
5916
5917 spin_lock_irq(&hugetlb_lock);
5918 if (!PageHeadHuge(page) ||
5919 !HPageMigratable(page) ||
5920 !get_page_unless_zero(page)) {
5921 ret = false;
5922 goto unlock;
5923 }
5924 ClearHPageMigratable(page);
5925 list_move_tail(&page->lru, list);
5926unlock:
5927 spin_unlock_irq(&hugetlb_lock);
5928 return ret;
5929}
5930
5931int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
5932{
5933 int ret = 0;
5934
5935 *hugetlb = false;
5936 spin_lock_irq(&hugetlb_lock);
5937 if (PageHeadHuge(page)) {
5938 *hugetlb = true;
5939 if (HPageFreed(page) || HPageMigratable(page))
5940 ret = get_page_unless_zero(page);
5941 }
5942 spin_unlock_irq(&hugetlb_lock);
5943 return ret;
5944}
5945
5946void putback_active_hugepage(struct page *page)
5947{
5948 spin_lock_irq(&hugetlb_lock);
5949 SetHPageMigratable(page);
5950 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5951 spin_unlock_irq(&hugetlb_lock);
5952 put_page(page);
5953}
5954
5955void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5956{
5957 struct hstate *h = page_hstate(oldpage);
5958
5959 hugetlb_cgroup_migrate(oldpage, newpage);
5960 set_page_owner_migrate_reason(newpage, reason);
5961
5962 /*
5963 * transfer temporary state of the new huge page. This is
5964 * reverse to other transitions because the newpage is going to
5965 * be final while the old one will be freed so it takes over
5966 * the temporary status.
5967 *
5968 * Also note that we have to transfer the per-node surplus state
5969 * here as well otherwise the global surplus count will not match
5970 * the per-node's.
5971 */
5972 if (HPageTemporary(newpage)) {
5973 int old_nid = page_to_nid(oldpage);
5974 int new_nid = page_to_nid(newpage);
5975
5976 SetHPageTemporary(oldpage);
5977 ClearHPageTemporary(newpage);
5978
5979 /*
5980 * There is no need to transfer the per-node surplus state
5981 * when we do not cross the node.
5982 */
5983 if (new_nid == old_nid)
5984 return;
5985 spin_lock_irq(&hugetlb_lock);
5986 if (h->surplus_huge_pages_node[old_nid]) {
5987 h->surplus_huge_pages_node[old_nid]--;
5988 h->surplus_huge_pages_node[new_nid]++;
5989 }
5990 spin_unlock_irq(&hugetlb_lock);
5991 }
5992}
5993
5994/*
5995 * This function will unconditionally remove all the shared pmd pgtable entries
5996 * within the specific vma for a hugetlbfs memory range.
5997 */
5998void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5999{
6000 struct hstate *h = hstate_vma(vma);
6001 unsigned long sz = huge_page_size(h);
6002 struct mm_struct *mm = vma->vm_mm;
6003 struct mmu_notifier_range range;
6004 unsigned long address, start, end;
6005 spinlock_t *ptl;
6006 pte_t *ptep;
6007
6008 if (!(vma->vm_flags & VM_MAYSHARE))
6009 return;
6010
6011 start = ALIGN(vma->vm_start, PUD_SIZE);
6012 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6013
6014 if (start >= end)
6015 return;
6016
6017 /*
6018 * No need to call adjust_range_if_pmd_sharing_possible(), because
6019 * we have already done the PUD_SIZE alignment.
6020 */
6021 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6022 start, end);
6023 mmu_notifier_invalidate_range_start(&range);
6024 i_mmap_lock_write(vma->vm_file->f_mapping);
6025 for (address = start; address < end; address += PUD_SIZE) {
6026 unsigned long tmp = address;
6027
6028 ptep = huge_pte_offset(mm, address, sz);
6029 if (!ptep)
6030 continue;
6031 ptl = huge_pte_lock(h, mm, ptep);
6032 /* We don't want 'address' to be changed */
6033 huge_pmd_unshare(mm, vma, &tmp, ptep);
6034 spin_unlock(ptl);
6035 }
6036 flush_hugetlb_tlb_range(vma, start, end);
6037 i_mmap_unlock_write(vma->vm_file->f_mapping);
6038 /*
6039 * No need to call mmu_notifier_invalidate_range(), see
6040 * Documentation/vm/mmu_notifier.rst.
6041 */
6042 mmu_notifier_invalidate_range_end(&range);
6043}
6044
6045#ifdef CONFIG_CMA
6046static bool cma_reserve_called __initdata;
6047
6048static int __init cmdline_parse_hugetlb_cma(char *p)
6049{
6050 hugetlb_cma_size = memparse(p, &p);
6051 return 0;
6052}
6053
6054early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6055
6056void __init hugetlb_cma_reserve(int order)
6057{
6058 unsigned long size, reserved, per_node;
6059 int nid;
6060
6061 cma_reserve_called = true;
6062
6063 if (!hugetlb_cma_size)
6064 return;
6065
6066 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6067 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6068 (PAGE_SIZE << order) / SZ_1M);
6069 return;
6070 }
6071
6072 /*
6073 * If 3 GB area is requested on a machine with 4 numa nodes,
6074 * let's allocate 1 GB on first three nodes and ignore the last one.
6075 */
6076 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6077 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6078 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6079
6080 reserved = 0;
6081 for_each_node_state(nid, N_ONLINE) {
6082 int res;
6083 char name[CMA_MAX_NAME];
6084
6085 size = min(per_node, hugetlb_cma_size - reserved);
6086 size = round_up(size, PAGE_SIZE << order);
6087
6088 snprintf(name, sizeof(name), "hugetlb%d", nid);
6089 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6090 0, false, name,
6091 &hugetlb_cma[nid], nid);
6092 if (res) {
6093 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6094 res, nid);
6095 continue;
6096 }
6097
6098 reserved += size;
6099 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6100 size / SZ_1M, nid);
6101
6102 if (reserved >= hugetlb_cma_size)
6103 break;
6104 }
6105}
6106
6107void __init hugetlb_cma_check(void)
6108{
6109 if (!hugetlb_cma_size || cma_reserve_called)
6110 return;
6111
6112 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6113}
6114
6115#endif /* CONFIG_CMA */