at v5.13 26 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */ 2#ifndef _BTRFS_CTREE_H_ 3#define _BTRFS_CTREE_H_ 4 5#include <linux/btrfs.h> 6#include <linux/types.h> 7#ifdef __KERNEL__ 8#include <linux/stddef.h> 9#else 10#include <stddef.h> 11#endif 12 13/* 14 * This header contains the structure definitions and constants used 15 * by file system objects that can be retrieved using 16 * the BTRFS_IOC_SEARCH_TREE ioctl. That means basically anything that 17 * is needed to describe a leaf node's key or item contents. 18 */ 19 20/* holds pointers to all of the tree roots */ 21#define BTRFS_ROOT_TREE_OBJECTID 1ULL 22 23/* stores information about which extents are in use, and reference counts */ 24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL 25 26/* 27 * chunk tree stores translations from logical -> physical block numbering 28 * the super block points to the chunk tree 29 */ 30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL 31 32/* 33 * stores information about which areas of a given device are in use. 34 * one per device. The tree of tree roots points to the device tree 35 */ 36#define BTRFS_DEV_TREE_OBJECTID 4ULL 37 38/* one per subvolume, storing files and directories */ 39#define BTRFS_FS_TREE_OBJECTID 5ULL 40 41/* directory objectid inside the root tree */ 42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL 43 44/* holds checksums of all the data extents */ 45#define BTRFS_CSUM_TREE_OBJECTID 7ULL 46 47/* holds quota configuration and tracking */ 48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL 49 50/* for storing items that use the BTRFS_UUID_KEY* types */ 51#define BTRFS_UUID_TREE_OBJECTID 9ULL 52 53/* tracks free space in block groups. */ 54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL 55 56/* device stats in the device tree */ 57#define BTRFS_DEV_STATS_OBJECTID 0ULL 58 59/* for storing balance parameters in the root tree */ 60#define BTRFS_BALANCE_OBJECTID -4ULL 61 62/* orhpan objectid for tracking unlinked/truncated files */ 63#define BTRFS_ORPHAN_OBJECTID -5ULL 64 65/* does write ahead logging to speed up fsyncs */ 66#define BTRFS_TREE_LOG_OBJECTID -6ULL 67#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL 68 69/* for space balancing */ 70#define BTRFS_TREE_RELOC_OBJECTID -8ULL 71#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL 72 73/* 74 * extent checksums all have this objectid 75 * this allows them to share the logging tree 76 * for fsyncs 77 */ 78#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL 79 80/* For storing free space cache */ 81#define BTRFS_FREE_SPACE_OBJECTID -11ULL 82 83/* 84 * The inode number assigned to the special inode for storing 85 * free ino cache 86 */ 87#define BTRFS_FREE_INO_OBJECTID -12ULL 88 89/* dummy objectid represents multiple objectids */ 90#define BTRFS_MULTIPLE_OBJECTIDS -255ULL 91 92/* 93 * All files have objectids in this range. 94 */ 95#define BTRFS_FIRST_FREE_OBJECTID 256ULL 96#define BTRFS_LAST_FREE_OBJECTID -256ULL 97#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL 98 99 100/* 101 * the device items go into the chunk tree. The key is in the form 102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ] 103 */ 104#define BTRFS_DEV_ITEMS_OBJECTID 1ULL 105 106#define BTRFS_BTREE_INODE_OBJECTID 1 107 108#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2 109 110#define BTRFS_DEV_REPLACE_DEVID 0ULL 111 112/* 113 * inode items have the data typically returned from stat and store other 114 * info about object characteristics. There is one for every file and dir in 115 * the FS 116 */ 117#define BTRFS_INODE_ITEM_KEY 1 118#define BTRFS_INODE_REF_KEY 12 119#define BTRFS_INODE_EXTREF_KEY 13 120#define BTRFS_XATTR_ITEM_KEY 24 121#define BTRFS_ORPHAN_ITEM_KEY 48 122/* reserve 2-15 close to the inode for later flexibility */ 123 124/* 125 * dir items are the name -> inode pointers in a directory. There is one 126 * for every name in a directory. 127 */ 128#define BTRFS_DIR_LOG_ITEM_KEY 60 129#define BTRFS_DIR_LOG_INDEX_KEY 72 130#define BTRFS_DIR_ITEM_KEY 84 131#define BTRFS_DIR_INDEX_KEY 96 132/* 133 * extent data is for file data 134 */ 135#define BTRFS_EXTENT_DATA_KEY 108 136 137/* 138 * extent csums are stored in a separate tree and hold csums for 139 * an entire extent on disk. 140 */ 141#define BTRFS_EXTENT_CSUM_KEY 128 142 143/* 144 * root items point to tree roots. They are typically in the root 145 * tree used by the super block to find all the other trees 146 */ 147#define BTRFS_ROOT_ITEM_KEY 132 148 149/* 150 * root backrefs tie subvols and snapshots to the directory entries that 151 * reference them 152 */ 153#define BTRFS_ROOT_BACKREF_KEY 144 154 155/* 156 * root refs make a fast index for listing all of the snapshots and 157 * subvolumes referenced by a given root. They point directly to the 158 * directory item in the root that references the subvol 159 */ 160#define BTRFS_ROOT_REF_KEY 156 161 162/* 163 * extent items are in the extent map tree. These record which blocks 164 * are used, and how many references there are to each block 165 */ 166#define BTRFS_EXTENT_ITEM_KEY 168 167 168/* 169 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know 170 * the length, so we save the level in key->offset instead of the length. 171 */ 172#define BTRFS_METADATA_ITEM_KEY 169 173 174#define BTRFS_TREE_BLOCK_REF_KEY 176 175 176#define BTRFS_EXTENT_DATA_REF_KEY 178 177 178#define BTRFS_EXTENT_REF_V0_KEY 180 179 180#define BTRFS_SHARED_BLOCK_REF_KEY 182 181 182#define BTRFS_SHARED_DATA_REF_KEY 184 183 184/* 185 * block groups give us hints into the extent allocation trees. Which 186 * blocks are free etc etc 187 */ 188#define BTRFS_BLOCK_GROUP_ITEM_KEY 192 189 190/* 191 * Every block group is represented in the free space tree by a free space info 192 * item, which stores some accounting information. It is keyed on 193 * (block_group_start, FREE_SPACE_INFO, block_group_length). 194 */ 195#define BTRFS_FREE_SPACE_INFO_KEY 198 196 197/* 198 * A free space extent tracks an extent of space that is free in a block group. 199 * It is keyed on (start, FREE_SPACE_EXTENT, length). 200 */ 201#define BTRFS_FREE_SPACE_EXTENT_KEY 199 202 203/* 204 * When a block group becomes very fragmented, we convert it to use bitmaps 205 * instead of extents. A free space bitmap is keyed on 206 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with 207 * (length / sectorsize) bits. 208 */ 209#define BTRFS_FREE_SPACE_BITMAP_KEY 200 210 211#define BTRFS_DEV_EXTENT_KEY 204 212#define BTRFS_DEV_ITEM_KEY 216 213#define BTRFS_CHUNK_ITEM_KEY 228 214 215/* 216 * Records the overall state of the qgroups. 217 * There's only one instance of this key present, 218 * (0, BTRFS_QGROUP_STATUS_KEY, 0) 219 */ 220#define BTRFS_QGROUP_STATUS_KEY 240 221/* 222 * Records the currently used space of the qgroup. 223 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid). 224 */ 225#define BTRFS_QGROUP_INFO_KEY 242 226/* 227 * Contains the user configured limits for the qgroup. 228 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid). 229 */ 230#define BTRFS_QGROUP_LIMIT_KEY 244 231/* 232 * Records the child-parent relationship of qgroups. For 233 * each relation, 2 keys are present: 234 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid) 235 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid) 236 */ 237#define BTRFS_QGROUP_RELATION_KEY 246 238 239/* 240 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY. 241 */ 242#define BTRFS_BALANCE_ITEM_KEY 248 243 244/* 245 * The key type for tree items that are stored persistently, but do not need to 246 * exist for extended period of time. The items can exist in any tree. 247 * 248 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data] 249 * 250 * Existing items: 251 * 252 * - balance status item 253 * (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0) 254 */ 255#define BTRFS_TEMPORARY_ITEM_KEY 248 256 257/* 258 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY 259 */ 260#define BTRFS_DEV_STATS_KEY 249 261 262/* 263 * The key type for tree items that are stored persistently and usually exist 264 * for a long period, eg. filesystem lifetime. The item kinds can be status 265 * information, stats or preference values. The item can exist in any tree. 266 * 267 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data] 268 * 269 * Existing items: 270 * 271 * - device statistics, store IO stats in the device tree, one key for all 272 * stats 273 * (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0) 274 */ 275#define BTRFS_PERSISTENT_ITEM_KEY 249 276 277/* 278 * Persistantly stores the device replace state in the device tree. 279 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0). 280 */ 281#define BTRFS_DEV_REPLACE_KEY 250 282 283/* 284 * Stores items that allow to quickly map UUIDs to something else. 285 * These items are part of the filesystem UUID tree. 286 * The key is built like this: 287 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits). 288 */ 289#if BTRFS_UUID_SIZE != 16 290#error "UUID items require BTRFS_UUID_SIZE == 16!" 291#endif 292#define BTRFS_UUID_KEY_SUBVOL 251 /* for UUIDs assigned to subvols */ 293#define BTRFS_UUID_KEY_RECEIVED_SUBVOL 252 /* for UUIDs assigned to 294 * received subvols */ 295 296/* 297 * string items are for debugging. They just store a short string of 298 * data in the FS 299 */ 300#define BTRFS_STRING_ITEM_KEY 253 301 302/* Maximum metadata block size (nodesize) */ 303#define BTRFS_MAX_METADATA_BLOCKSIZE 65536 304 305/* 32 bytes in various csum fields */ 306#define BTRFS_CSUM_SIZE 32 307 308/* csum types */ 309enum btrfs_csum_type { 310 BTRFS_CSUM_TYPE_CRC32 = 0, 311 BTRFS_CSUM_TYPE_XXHASH = 1, 312 BTRFS_CSUM_TYPE_SHA256 = 2, 313 BTRFS_CSUM_TYPE_BLAKE2 = 3, 314}; 315 316/* 317 * flags definitions for directory entry item type 318 * 319 * Used by: 320 * struct btrfs_dir_item.type 321 * 322 * Values 0..7 must match common file type values in fs_types.h. 323 */ 324#define BTRFS_FT_UNKNOWN 0 325#define BTRFS_FT_REG_FILE 1 326#define BTRFS_FT_DIR 2 327#define BTRFS_FT_CHRDEV 3 328#define BTRFS_FT_BLKDEV 4 329#define BTRFS_FT_FIFO 5 330#define BTRFS_FT_SOCK 6 331#define BTRFS_FT_SYMLINK 7 332#define BTRFS_FT_XATTR 8 333#define BTRFS_FT_MAX 9 334 335/* 336 * The key defines the order in the tree, and so it also defines (optimal) 337 * block layout. 338 * 339 * objectid corresponds to the inode number. 340 * 341 * type tells us things about the object, and is a kind of stream selector. 342 * so for a given inode, keys with type of 1 might refer to the inode data, 343 * type of 2 may point to file data in the btree and type == 3 may point to 344 * extents. 345 * 346 * offset is the starting byte offset for this key in the stream. 347 * 348 * btrfs_disk_key is in disk byte order. struct btrfs_key is always 349 * in cpu native order. Otherwise they are identical and their sizes 350 * should be the same (ie both packed) 351 */ 352struct btrfs_disk_key { 353 __le64 objectid; 354 __u8 type; 355 __le64 offset; 356} __attribute__ ((__packed__)); 357 358struct btrfs_key { 359 __u64 objectid; 360 __u8 type; 361 __u64 offset; 362} __attribute__ ((__packed__)); 363 364struct btrfs_dev_item { 365 /* the internal btrfs device id */ 366 __le64 devid; 367 368 /* size of the device */ 369 __le64 total_bytes; 370 371 /* bytes used */ 372 __le64 bytes_used; 373 374 /* optimal io alignment for this device */ 375 __le32 io_align; 376 377 /* optimal io width for this device */ 378 __le32 io_width; 379 380 /* minimal io size for this device */ 381 __le32 sector_size; 382 383 /* type and info about this device */ 384 __le64 type; 385 386 /* expected generation for this device */ 387 __le64 generation; 388 389 /* 390 * starting byte of this partition on the device, 391 * to allow for stripe alignment in the future 392 */ 393 __le64 start_offset; 394 395 /* grouping information for allocation decisions */ 396 __le32 dev_group; 397 398 /* seek speed 0-100 where 100 is fastest */ 399 __u8 seek_speed; 400 401 /* bandwidth 0-100 where 100 is fastest */ 402 __u8 bandwidth; 403 404 /* btrfs generated uuid for this device */ 405 __u8 uuid[BTRFS_UUID_SIZE]; 406 407 /* uuid of FS who owns this device */ 408 __u8 fsid[BTRFS_UUID_SIZE]; 409} __attribute__ ((__packed__)); 410 411struct btrfs_stripe { 412 __le64 devid; 413 __le64 offset; 414 __u8 dev_uuid[BTRFS_UUID_SIZE]; 415} __attribute__ ((__packed__)); 416 417struct btrfs_chunk { 418 /* size of this chunk in bytes */ 419 __le64 length; 420 421 /* objectid of the root referencing this chunk */ 422 __le64 owner; 423 424 __le64 stripe_len; 425 __le64 type; 426 427 /* optimal io alignment for this chunk */ 428 __le32 io_align; 429 430 /* optimal io width for this chunk */ 431 __le32 io_width; 432 433 /* minimal io size for this chunk */ 434 __le32 sector_size; 435 436 /* 2^16 stripes is quite a lot, a second limit is the size of a single 437 * item in the btree 438 */ 439 __le16 num_stripes; 440 441 /* sub stripes only matter for raid10 */ 442 __le16 sub_stripes; 443 struct btrfs_stripe stripe; 444 /* additional stripes go here */ 445} __attribute__ ((__packed__)); 446 447#define BTRFS_FREE_SPACE_EXTENT 1 448#define BTRFS_FREE_SPACE_BITMAP 2 449 450struct btrfs_free_space_entry { 451 __le64 offset; 452 __le64 bytes; 453 __u8 type; 454} __attribute__ ((__packed__)); 455 456struct btrfs_free_space_header { 457 struct btrfs_disk_key location; 458 __le64 generation; 459 __le64 num_entries; 460 __le64 num_bitmaps; 461} __attribute__ ((__packed__)); 462 463#define BTRFS_HEADER_FLAG_WRITTEN (1ULL << 0) 464#define BTRFS_HEADER_FLAG_RELOC (1ULL << 1) 465 466/* Super block flags */ 467/* Errors detected */ 468#define BTRFS_SUPER_FLAG_ERROR (1ULL << 2) 469 470#define BTRFS_SUPER_FLAG_SEEDING (1ULL << 32) 471#define BTRFS_SUPER_FLAG_METADUMP (1ULL << 33) 472#define BTRFS_SUPER_FLAG_METADUMP_V2 (1ULL << 34) 473#define BTRFS_SUPER_FLAG_CHANGING_FSID (1ULL << 35) 474#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36) 475 476 477/* 478 * items in the extent btree are used to record the objectid of the 479 * owner of the block and the number of references 480 */ 481 482struct btrfs_extent_item { 483 __le64 refs; 484 __le64 generation; 485 __le64 flags; 486} __attribute__ ((__packed__)); 487 488struct btrfs_extent_item_v0 { 489 __le32 refs; 490} __attribute__ ((__packed__)); 491 492 493#define BTRFS_EXTENT_FLAG_DATA (1ULL << 0) 494#define BTRFS_EXTENT_FLAG_TREE_BLOCK (1ULL << 1) 495 496/* following flags only apply to tree blocks */ 497 498/* use full backrefs for extent pointers in the block */ 499#define BTRFS_BLOCK_FLAG_FULL_BACKREF (1ULL << 8) 500 501/* 502 * this flag is only used internally by scrub and may be changed at any time 503 * it is only declared here to avoid collisions 504 */ 505#define BTRFS_EXTENT_FLAG_SUPER (1ULL << 48) 506 507struct btrfs_tree_block_info { 508 struct btrfs_disk_key key; 509 __u8 level; 510} __attribute__ ((__packed__)); 511 512struct btrfs_extent_data_ref { 513 __le64 root; 514 __le64 objectid; 515 __le64 offset; 516 __le32 count; 517} __attribute__ ((__packed__)); 518 519struct btrfs_shared_data_ref { 520 __le32 count; 521} __attribute__ ((__packed__)); 522 523struct btrfs_extent_inline_ref { 524 __u8 type; 525 __le64 offset; 526} __attribute__ ((__packed__)); 527 528/* dev extents record free space on individual devices. The owner 529 * field points back to the chunk allocation mapping tree that allocated 530 * the extent. The chunk tree uuid field is a way to double check the owner 531 */ 532struct btrfs_dev_extent { 533 __le64 chunk_tree; 534 __le64 chunk_objectid; 535 __le64 chunk_offset; 536 __le64 length; 537 __u8 chunk_tree_uuid[BTRFS_UUID_SIZE]; 538} __attribute__ ((__packed__)); 539 540struct btrfs_inode_ref { 541 __le64 index; 542 __le16 name_len; 543 /* name goes here */ 544} __attribute__ ((__packed__)); 545 546struct btrfs_inode_extref { 547 __le64 parent_objectid; 548 __le64 index; 549 __le16 name_len; 550 __u8 name[0]; 551 /* name goes here */ 552} __attribute__ ((__packed__)); 553 554struct btrfs_timespec { 555 __le64 sec; 556 __le32 nsec; 557} __attribute__ ((__packed__)); 558 559struct btrfs_inode_item { 560 /* nfs style generation number */ 561 __le64 generation; 562 /* transid that last touched this inode */ 563 __le64 transid; 564 __le64 size; 565 __le64 nbytes; 566 __le64 block_group; 567 __le32 nlink; 568 __le32 uid; 569 __le32 gid; 570 __le32 mode; 571 __le64 rdev; 572 __le64 flags; 573 574 /* modification sequence number for NFS */ 575 __le64 sequence; 576 577 /* 578 * a little future expansion, for more than this we can 579 * just grow the inode item and version it 580 */ 581 __le64 reserved[4]; 582 struct btrfs_timespec atime; 583 struct btrfs_timespec ctime; 584 struct btrfs_timespec mtime; 585 struct btrfs_timespec otime; 586} __attribute__ ((__packed__)); 587 588struct btrfs_dir_log_item { 589 __le64 end; 590} __attribute__ ((__packed__)); 591 592struct btrfs_dir_item { 593 struct btrfs_disk_key location; 594 __le64 transid; 595 __le16 data_len; 596 __le16 name_len; 597 __u8 type; 598} __attribute__ ((__packed__)); 599 600#define BTRFS_ROOT_SUBVOL_RDONLY (1ULL << 0) 601 602/* 603 * Internal in-memory flag that a subvolume has been marked for deletion but 604 * still visible as a directory 605 */ 606#define BTRFS_ROOT_SUBVOL_DEAD (1ULL << 48) 607 608struct btrfs_root_item { 609 struct btrfs_inode_item inode; 610 __le64 generation; 611 __le64 root_dirid; 612 __le64 bytenr; 613 __le64 byte_limit; 614 __le64 bytes_used; 615 __le64 last_snapshot; 616 __le64 flags; 617 __le32 refs; 618 struct btrfs_disk_key drop_progress; 619 __u8 drop_level; 620 __u8 level; 621 622 /* 623 * The following fields appear after subvol_uuids+subvol_times 624 * were introduced. 625 */ 626 627 /* 628 * This generation number is used to test if the new fields are valid 629 * and up to date while reading the root item. Every time the root item 630 * is written out, the "generation" field is copied into this field. If 631 * anyone ever mounted the fs with an older kernel, we will have 632 * mismatching generation values here and thus must invalidate the 633 * new fields. See btrfs_update_root and btrfs_find_last_root for 634 * details. 635 * the offset of generation_v2 is also used as the start for the memset 636 * when invalidating the fields. 637 */ 638 __le64 generation_v2; 639 __u8 uuid[BTRFS_UUID_SIZE]; 640 __u8 parent_uuid[BTRFS_UUID_SIZE]; 641 __u8 received_uuid[BTRFS_UUID_SIZE]; 642 __le64 ctransid; /* updated when an inode changes */ 643 __le64 otransid; /* trans when created */ 644 __le64 stransid; /* trans when sent. non-zero for received subvol */ 645 __le64 rtransid; /* trans when received. non-zero for received subvol */ 646 struct btrfs_timespec ctime; 647 struct btrfs_timespec otime; 648 struct btrfs_timespec stime; 649 struct btrfs_timespec rtime; 650 __le64 reserved[8]; /* for future */ 651} __attribute__ ((__packed__)); 652 653/* 654 * Btrfs root item used to be smaller than current size. The old format ends 655 * at where member generation_v2 is. 656 */ 657static inline __u32 btrfs_legacy_root_item_size(void) 658{ 659 return offsetof(struct btrfs_root_item, generation_v2); 660} 661 662/* 663 * this is used for both forward and backward root refs 664 */ 665struct btrfs_root_ref { 666 __le64 dirid; 667 __le64 sequence; 668 __le16 name_len; 669} __attribute__ ((__packed__)); 670 671struct btrfs_disk_balance_args { 672 /* 673 * profiles to operate on, single is denoted by 674 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 675 */ 676 __le64 profiles; 677 678 /* 679 * usage filter 680 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N' 681 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max 682 */ 683 union { 684 __le64 usage; 685 struct { 686 __le32 usage_min; 687 __le32 usage_max; 688 }; 689 }; 690 691 /* devid filter */ 692 __le64 devid; 693 694 /* devid subset filter [pstart..pend) */ 695 __le64 pstart; 696 __le64 pend; 697 698 /* btrfs virtual address space subset filter [vstart..vend) */ 699 __le64 vstart; 700 __le64 vend; 701 702 /* 703 * profile to convert to, single is denoted by 704 * BTRFS_AVAIL_ALLOC_BIT_SINGLE 705 */ 706 __le64 target; 707 708 /* BTRFS_BALANCE_ARGS_* */ 709 __le64 flags; 710 711 /* 712 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit' 713 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum 714 * and maximum 715 */ 716 union { 717 __le64 limit; 718 struct { 719 __le32 limit_min; 720 __le32 limit_max; 721 }; 722 }; 723 724 /* 725 * Process chunks that cross stripes_min..stripes_max devices, 726 * BTRFS_BALANCE_ARGS_STRIPES_RANGE 727 */ 728 __le32 stripes_min; 729 __le32 stripes_max; 730 731 __le64 unused[6]; 732} __attribute__ ((__packed__)); 733 734/* 735 * store balance parameters to disk so that balance can be properly 736 * resumed after crash or unmount 737 */ 738struct btrfs_balance_item { 739 /* BTRFS_BALANCE_* */ 740 __le64 flags; 741 742 struct btrfs_disk_balance_args data; 743 struct btrfs_disk_balance_args meta; 744 struct btrfs_disk_balance_args sys; 745 746 __le64 unused[4]; 747} __attribute__ ((__packed__)); 748 749enum { 750 BTRFS_FILE_EXTENT_INLINE = 0, 751 BTRFS_FILE_EXTENT_REG = 1, 752 BTRFS_FILE_EXTENT_PREALLOC = 2, 753 BTRFS_NR_FILE_EXTENT_TYPES = 3, 754}; 755 756struct btrfs_file_extent_item { 757 /* 758 * transaction id that created this extent 759 */ 760 __le64 generation; 761 /* 762 * max number of bytes to hold this extent in ram 763 * when we split a compressed extent we can't know how big 764 * each of the resulting pieces will be. So, this is 765 * an upper limit on the size of the extent in ram instead of 766 * an exact limit. 767 */ 768 __le64 ram_bytes; 769 770 /* 771 * 32 bits for the various ways we might encode the data, 772 * including compression and encryption. If any of these 773 * are set to something a given disk format doesn't understand 774 * it is treated like an incompat flag for reading and writing, 775 * but not for stat. 776 */ 777 __u8 compression; 778 __u8 encryption; 779 __le16 other_encoding; /* spare for later use */ 780 781 /* are we inline data or a real extent? */ 782 __u8 type; 783 784 /* 785 * disk space consumed by the extent, checksum blocks are included 786 * in these numbers 787 * 788 * At this offset in the structure, the inline extent data start. 789 */ 790 __le64 disk_bytenr; 791 __le64 disk_num_bytes; 792 /* 793 * the logical offset in file blocks (no csums) 794 * this extent record is for. This allows a file extent to point 795 * into the middle of an existing extent on disk, sharing it 796 * between two snapshots (useful if some bytes in the middle of the 797 * extent have changed 798 */ 799 __le64 offset; 800 /* 801 * the logical number of file blocks (no csums included). This 802 * always reflects the size uncompressed and without encoding. 803 */ 804 __le64 num_bytes; 805 806} __attribute__ ((__packed__)); 807 808struct btrfs_csum_item { 809 __u8 csum; 810} __attribute__ ((__packed__)); 811 812struct btrfs_dev_stats_item { 813 /* 814 * grow this item struct at the end for future enhancements and keep 815 * the existing values unchanged 816 */ 817 __le64 values[BTRFS_DEV_STAT_VALUES_MAX]; 818} __attribute__ ((__packed__)); 819 820#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS 0 821#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID 1 822 823struct btrfs_dev_replace_item { 824 /* 825 * grow this item struct at the end for future enhancements and keep 826 * the existing values unchanged 827 */ 828 __le64 src_devid; 829 __le64 cursor_left; 830 __le64 cursor_right; 831 __le64 cont_reading_from_srcdev_mode; 832 833 __le64 replace_state; 834 __le64 time_started; 835 __le64 time_stopped; 836 __le64 num_write_errors; 837 __le64 num_uncorrectable_read_errors; 838} __attribute__ ((__packed__)); 839 840/* different types of block groups (and chunks) */ 841#define BTRFS_BLOCK_GROUP_DATA (1ULL << 0) 842#define BTRFS_BLOCK_GROUP_SYSTEM (1ULL << 1) 843#define BTRFS_BLOCK_GROUP_METADATA (1ULL << 2) 844#define BTRFS_BLOCK_GROUP_RAID0 (1ULL << 3) 845#define BTRFS_BLOCK_GROUP_RAID1 (1ULL << 4) 846#define BTRFS_BLOCK_GROUP_DUP (1ULL << 5) 847#define BTRFS_BLOCK_GROUP_RAID10 (1ULL << 6) 848#define BTRFS_BLOCK_GROUP_RAID5 (1ULL << 7) 849#define BTRFS_BLOCK_GROUP_RAID6 (1ULL << 8) 850#define BTRFS_BLOCK_GROUP_RAID1C3 (1ULL << 9) 851#define BTRFS_BLOCK_GROUP_RAID1C4 (1ULL << 10) 852#define BTRFS_BLOCK_GROUP_RESERVED (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \ 853 BTRFS_SPACE_INFO_GLOBAL_RSV) 854 855enum btrfs_raid_types { 856 BTRFS_RAID_RAID10, 857 BTRFS_RAID_RAID1, 858 BTRFS_RAID_DUP, 859 BTRFS_RAID_RAID0, 860 BTRFS_RAID_SINGLE, 861 BTRFS_RAID_RAID5, 862 BTRFS_RAID_RAID6, 863 BTRFS_RAID_RAID1C3, 864 BTRFS_RAID_RAID1C4, 865 BTRFS_NR_RAID_TYPES 866}; 867 868#define BTRFS_BLOCK_GROUP_TYPE_MASK (BTRFS_BLOCK_GROUP_DATA | \ 869 BTRFS_BLOCK_GROUP_SYSTEM | \ 870 BTRFS_BLOCK_GROUP_METADATA) 871 872#define BTRFS_BLOCK_GROUP_PROFILE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 873 BTRFS_BLOCK_GROUP_RAID1 | \ 874 BTRFS_BLOCK_GROUP_RAID1C3 | \ 875 BTRFS_BLOCK_GROUP_RAID1C4 | \ 876 BTRFS_BLOCK_GROUP_RAID5 | \ 877 BTRFS_BLOCK_GROUP_RAID6 | \ 878 BTRFS_BLOCK_GROUP_DUP | \ 879 BTRFS_BLOCK_GROUP_RAID10) 880#define BTRFS_BLOCK_GROUP_RAID56_MASK (BTRFS_BLOCK_GROUP_RAID5 | \ 881 BTRFS_BLOCK_GROUP_RAID6) 882 883#define BTRFS_BLOCK_GROUP_RAID1_MASK (BTRFS_BLOCK_GROUP_RAID1 | \ 884 BTRFS_BLOCK_GROUP_RAID1C3 | \ 885 BTRFS_BLOCK_GROUP_RAID1C4) 886 887/* 888 * We need a bit for restriper to be able to tell when chunks of type 889 * SINGLE are available. This "extended" profile format is used in 890 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields 891 * (on-disk). The corresponding on-disk bit in chunk.type is reserved 892 * to avoid remappings between two formats in future. 893 */ 894#define BTRFS_AVAIL_ALLOC_BIT_SINGLE (1ULL << 48) 895 896/* 897 * A fake block group type that is used to communicate global block reserve 898 * size to userspace via the SPACE_INFO ioctl. 899 */ 900#define BTRFS_SPACE_INFO_GLOBAL_RSV (1ULL << 49) 901 902#define BTRFS_EXTENDED_PROFILE_MASK (BTRFS_BLOCK_GROUP_PROFILE_MASK | \ 903 BTRFS_AVAIL_ALLOC_BIT_SINGLE) 904 905static inline __u64 chunk_to_extended(__u64 flags) 906{ 907 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0) 908 flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE; 909 910 return flags; 911} 912static inline __u64 extended_to_chunk(__u64 flags) 913{ 914 return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE; 915} 916 917struct btrfs_block_group_item { 918 __le64 used; 919 __le64 chunk_objectid; 920 __le64 flags; 921} __attribute__ ((__packed__)); 922 923struct btrfs_free_space_info { 924 __le32 extent_count; 925 __le32 flags; 926} __attribute__ ((__packed__)); 927 928#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0) 929 930#define BTRFS_QGROUP_LEVEL_SHIFT 48 931static inline __u16 btrfs_qgroup_level(__u64 qgroupid) 932{ 933 return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT); 934} 935 936/* 937 * is subvolume quota turned on? 938 */ 939#define BTRFS_QGROUP_STATUS_FLAG_ON (1ULL << 0) 940/* 941 * RESCAN is set during the initialization phase 942 */ 943#define BTRFS_QGROUP_STATUS_FLAG_RESCAN (1ULL << 1) 944/* 945 * Some qgroup entries are known to be out of date, 946 * either because the configuration has changed in a way that 947 * makes a rescan necessary, or because the fs has been mounted 948 * with a non-qgroup-aware version. 949 * Turning qouta off and on again makes it inconsistent, too. 950 */ 951#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT (1ULL << 2) 952 953#define BTRFS_QGROUP_STATUS_VERSION 1 954 955struct btrfs_qgroup_status_item { 956 __le64 version; 957 /* 958 * the generation is updated during every commit. As older 959 * versions of btrfs are not aware of qgroups, it will be 960 * possible to detect inconsistencies by checking the 961 * generation on mount time 962 */ 963 __le64 generation; 964 965 /* flag definitions see above */ 966 __le64 flags; 967 968 /* 969 * only used during scanning to record the progress 970 * of the scan. It contains a logical address 971 */ 972 __le64 rescan; 973} __attribute__ ((__packed__)); 974 975struct btrfs_qgroup_info_item { 976 __le64 generation; 977 __le64 rfer; 978 __le64 rfer_cmpr; 979 __le64 excl; 980 __le64 excl_cmpr; 981} __attribute__ ((__packed__)); 982 983struct btrfs_qgroup_limit_item { 984 /* 985 * only updated when any of the other values change 986 */ 987 __le64 flags; 988 __le64 max_rfer; 989 __le64 max_excl; 990 __le64 rsv_rfer; 991 __le64 rsv_excl; 992} __attribute__ ((__packed__)); 993 994#endif /* _BTRFS_CTREE_H_ */