Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h> /* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/filter.h>
60#include <linux/rculist_nulls.h>
61#include <linux/poll.h>
62#include <linux/sockptr.h>
63#include <linux/indirect_call_wrapper.h>
64#include <linux/atomic.h>
65#include <linux/refcount.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71
72/*
73 * This structure really needs to be cleaned up.
74 * Most of it is for TCP, and not used by any of
75 * the other protocols.
76 */
77
78/* Define this to get the SOCK_DBG debugging facility. */
79#define SOCK_DEBUGGING
80#ifdef SOCK_DEBUGGING
81#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 printk(KERN_DEBUG msg); } while (0)
83#else
84/* Validate arguments and do nothing */
85static inline __printf(2, 3)
86void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87{
88}
89#endif
90
91/* This is the per-socket lock. The spinlock provides a synchronization
92 * between user contexts and software interrupt processing, whereas the
93 * mini-semaphore synchronizes multiple users amongst themselves.
94 */
95typedef struct {
96 spinlock_t slock;
97 int owned;
98 wait_queue_head_t wq;
99 /*
100 * We express the mutex-alike socket_lock semantics
101 * to the lock validator by explicitly managing
102 * the slock as a lock variant (in addition to
103 * the slock itself):
104 */
105#ifdef CONFIG_DEBUG_LOCK_ALLOC
106 struct lockdep_map dep_map;
107#endif
108} socket_lock_t;
109
110struct sock;
111struct proto;
112struct net;
113
114typedef __u32 __bitwise __portpair;
115typedef __u64 __bitwise __addrpair;
116
117/**
118 * struct sock_common - minimal network layer representation of sockets
119 * @skc_daddr: Foreign IPv4 addr
120 * @skc_rcv_saddr: Bound local IPv4 addr
121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
122 * @skc_hash: hash value used with various protocol lookup tables
123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
124 * @skc_dport: placeholder for inet_dport/tw_dport
125 * @skc_num: placeholder for inet_num/tw_num
126 * @skc_portpair: __u32 union of @skc_dport & @skc_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_ipv6only: socket is IPV6 only
132 * @skc_net_refcnt: socket is using net ref counting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_v6_daddr: IPV6 destination address
139 * @skc_v6_rcv_saddr: IPV6 source address
140 * @skc_cookie: socket's cookie value
141 * @skc_node: main hash linkage for various protocol lookup tables
142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143 * @skc_tx_queue_mapping: tx queue number for this connection
144 * @skc_rx_queue_mapping: rx queue number for this connection
145 * @skc_flags: place holder for sk_flags
146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
148 * @skc_listener: connection request listener socket (aka rsk_listener)
149 * [union with @skc_flags]
150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151 * [union with @skc_flags]
152 * @skc_incoming_cpu: record/match cpu processing incoming packets
153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154 * [union with @skc_incoming_cpu]
155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156 * [union with @skc_incoming_cpu]
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200#if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203#endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 unsigned short skc_tx_queue_mapping;
229#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
230 unsigned short skc_rx_queue_mapping;
231#endif
232 union {
233 int skc_incoming_cpu;
234 u32 skc_rcv_wnd;
235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 };
237
238 refcount_t skc_refcnt;
239 /* private: */
240 int skc_dontcopy_end[0];
241 union {
242 u32 skc_rxhash;
243 u32 skc_window_clamp;
244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 };
246 /* public: */
247};
248
249struct bpf_local_storage;
250
251/**
252 * struct sock - network layer representation of sockets
253 * @__sk_common: shared layout with inet_timewait_sock
254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256 * @sk_lock: synchronizer
257 * @sk_kern_sock: True if sock is using kernel lock classes
258 * @sk_rcvbuf: size of receive buffer in bytes
259 * @sk_wq: sock wait queue and async head
260 * @sk_rx_dst: receive input route used by early demux
261 * @sk_dst_cache: destination cache
262 * @sk_dst_pending_confirm: need to confirm neighbour
263 * @sk_policy: flow policy
264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_napi_id: id of the last napi context to receive data for sk
273 * @sk_ll_usec: usecs to busypoll when there is no data
274 * @sk_allocation: allocation mode
275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278 * @sk_sndbuf: size of send buffer in bytes
279 * @__sk_flags_offset: empty field used to determine location of bitfield
280 * @sk_padding: unused element for alignment
281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282 * @sk_no_check_rx: allow zero checksum in RX packets
283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
285 * @sk_route_forced_caps: static, forced route capabilities
286 * (set in tcp_init_sock())
287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288 * @sk_gso_max_size: Maximum GSO segment size to build
289 * @sk_gso_max_segs: Maximum number of GSO segments
290 * @sk_pacing_shift: scaling factor for TCP Small Queues
291 * @sk_lingertime: %SO_LINGER l_linger setting
292 * @sk_backlog: always used with the per-socket spinlock held
293 * @sk_callback_lock: used with the callbacks in the end of this struct
294 * @sk_error_queue: rarely used
295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296 * IPV6_ADDRFORM for instance)
297 * @sk_err: last error
298 * @sk_err_soft: errors that don't cause failure but are the cause of a
299 * persistent failure not just 'timed out'
300 * @sk_drops: raw/udp drops counter
301 * @sk_ack_backlog: current listen backlog
302 * @sk_max_ack_backlog: listen backlog set in listen()
303 * @sk_uid: user id of owner
304 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
305 * @sk_busy_poll_budget: napi processing budget when busypolling
306 * @sk_priority: %SO_PRIORITY setting
307 * @sk_type: socket type (%SOCK_STREAM, etc)
308 * @sk_protocol: which protocol this socket belongs in this network family
309 * @sk_peer_pid: &struct pid for this socket's peer
310 * @sk_peer_cred: %SO_PEERCRED setting
311 * @sk_rcvlowat: %SO_RCVLOWAT setting
312 * @sk_rcvtimeo: %SO_RCVTIMEO setting
313 * @sk_sndtimeo: %SO_SNDTIMEO setting
314 * @sk_txhash: computed flow hash for use on transmit
315 * @sk_filter: socket filtering instructions
316 * @sk_timer: sock cleanup timer
317 * @sk_stamp: time stamp of last packet received
318 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
319 * @sk_tsflags: SO_TIMESTAMPING socket options
320 * @sk_tskey: counter to disambiguate concurrent tstamp requests
321 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
322 * @sk_socket: Identd and reporting IO signals
323 * @sk_user_data: RPC layer private data
324 * @sk_frag: cached page frag
325 * @sk_peek_off: current peek_offset value
326 * @sk_send_head: front of stuff to transmit
327 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
328 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
329 * @sk_security: used by security modules
330 * @sk_mark: generic packet mark
331 * @sk_cgrp_data: cgroup data for this cgroup
332 * @sk_memcg: this socket's memory cgroup association
333 * @sk_write_pending: a write to stream socket waits to start
334 * @sk_state_change: callback to indicate change in the state of the sock
335 * @sk_data_ready: callback to indicate there is data to be processed
336 * @sk_write_space: callback to indicate there is bf sending space available
337 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
338 * @sk_backlog_rcv: callback to process the backlog
339 * @sk_validate_xmit_skb: ptr to an optional validate function
340 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
341 * @sk_reuseport_cb: reuseport group container
342 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
343 * @sk_rcu: used during RCU grace period
344 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
345 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
346 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
347 * @sk_txtime_unused: unused txtime flags
348 */
349struct sock {
350 /*
351 * Now struct inet_timewait_sock also uses sock_common, so please just
352 * don't add nothing before this first member (__sk_common) --acme
353 */
354 struct sock_common __sk_common;
355#define sk_node __sk_common.skc_node
356#define sk_nulls_node __sk_common.skc_nulls_node
357#define sk_refcnt __sk_common.skc_refcnt
358#define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
359#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
360#define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
361#endif
362
363#define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
364#define sk_dontcopy_end __sk_common.skc_dontcopy_end
365#define sk_hash __sk_common.skc_hash
366#define sk_portpair __sk_common.skc_portpair
367#define sk_num __sk_common.skc_num
368#define sk_dport __sk_common.skc_dport
369#define sk_addrpair __sk_common.skc_addrpair
370#define sk_daddr __sk_common.skc_daddr
371#define sk_rcv_saddr __sk_common.skc_rcv_saddr
372#define sk_family __sk_common.skc_family
373#define sk_state __sk_common.skc_state
374#define sk_reuse __sk_common.skc_reuse
375#define sk_reuseport __sk_common.skc_reuseport
376#define sk_ipv6only __sk_common.skc_ipv6only
377#define sk_net_refcnt __sk_common.skc_net_refcnt
378#define sk_bound_dev_if __sk_common.skc_bound_dev_if
379#define sk_bind_node __sk_common.skc_bind_node
380#define sk_prot __sk_common.skc_prot
381#define sk_net __sk_common.skc_net
382#define sk_v6_daddr __sk_common.skc_v6_daddr
383#define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
384#define sk_cookie __sk_common.skc_cookie
385#define sk_incoming_cpu __sk_common.skc_incoming_cpu
386#define sk_flags __sk_common.skc_flags
387#define sk_rxhash __sk_common.skc_rxhash
388
389 socket_lock_t sk_lock;
390 atomic_t sk_drops;
391 int sk_rcvlowat;
392 struct sk_buff_head sk_error_queue;
393 struct sk_buff *sk_rx_skb_cache;
394 struct sk_buff_head sk_receive_queue;
395 /*
396 * The backlog queue is special, it is always used with
397 * the per-socket spinlock held and requires low latency
398 * access. Therefore we special case it's implementation.
399 * Note : rmem_alloc is in this structure to fill a hole
400 * on 64bit arches, not because its logically part of
401 * backlog.
402 */
403 struct {
404 atomic_t rmem_alloc;
405 int len;
406 struct sk_buff *head;
407 struct sk_buff *tail;
408 } sk_backlog;
409#define sk_rmem_alloc sk_backlog.rmem_alloc
410
411 int sk_forward_alloc;
412#ifdef CONFIG_NET_RX_BUSY_POLL
413 unsigned int sk_ll_usec;
414 /* ===== mostly read cache line ===== */
415 unsigned int sk_napi_id;
416#endif
417 int sk_rcvbuf;
418
419 struct sk_filter __rcu *sk_filter;
420 union {
421 struct socket_wq __rcu *sk_wq;
422 /* private: */
423 struct socket_wq *sk_wq_raw;
424 /* public: */
425 };
426#ifdef CONFIG_XFRM
427 struct xfrm_policy __rcu *sk_policy[2];
428#endif
429 struct dst_entry *sk_rx_dst;
430 struct dst_entry __rcu *sk_dst_cache;
431 atomic_t sk_omem_alloc;
432 int sk_sndbuf;
433
434 /* ===== cache line for TX ===== */
435 int sk_wmem_queued;
436 refcount_t sk_wmem_alloc;
437 unsigned long sk_tsq_flags;
438 union {
439 struct sk_buff *sk_send_head;
440 struct rb_root tcp_rtx_queue;
441 };
442 struct sk_buff *sk_tx_skb_cache;
443 struct sk_buff_head sk_write_queue;
444 __s32 sk_peek_off;
445 int sk_write_pending;
446 __u32 sk_dst_pending_confirm;
447 u32 sk_pacing_status; /* see enum sk_pacing */
448 long sk_sndtimeo;
449 struct timer_list sk_timer;
450 __u32 sk_priority;
451 __u32 sk_mark;
452 unsigned long sk_pacing_rate; /* bytes per second */
453 unsigned long sk_max_pacing_rate;
454 struct page_frag sk_frag;
455 netdev_features_t sk_route_caps;
456 netdev_features_t sk_route_nocaps;
457 netdev_features_t sk_route_forced_caps;
458 int sk_gso_type;
459 unsigned int sk_gso_max_size;
460 gfp_t sk_allocation;
461 __u32 sk_txhash;
462
463 /*
464 * Because of non atomicity rules, all
465 * changes are protected by socket lock.
466 */
467 u8 sk_padding : 1,
468 sk_kern_sock : 1,
469 sk_no_check_tx : 1,
470 sk_no_check_rx : 1,
471 sk_userlocks : 4;
472 u8 sk_pacing_shift;
473 u16 sk_type;
474 u16 sk_protocol;
475 u16 sk_gso_max_segs;
476 unsigned long sk_lingertime;
477 struct proto *sk_prot_creator;
478 rwlock_t sk_callback_lock;
479 int sk_err,
480 sk_err_soft;
481 u32 sk_ack_backlog;
482 u32 sk_max_ack_backlog;
483 kuid_t sk_uid;
484#ifdef CONFIG_NET_RX_BUSY_POLL
485 u8 sk_prefer_busy_poll;
486 u16 sk_busy_poll_budget;
487#endif
488 struct pid *sk_peer_pid;
489 const struct cred *sk_peer_cred;
490 long sk_rcvtimeo;
491 ktime_t sk_stamp;
492#if BITS_PER_LONG==32
493 seqlock_t sk_stamp_seq;
494#endif
495 u16 sk_tsflags;
496 u8 sk_shutdown;
497 u32 sk_tskey;
498 atomic_t sk_zckey;
499
500 u8 sk_clockid;
501 u8 sk_txtime_deadline_mode : 1,
502 sk_txtime_report_errors : 1,
503 sk_txtime_unused : 6;
504
505 struct socket *sk_socket;
506 void *sk_user_data;
507#ifdef CONFIG_SECURITY
508 void *sk_security;
509#endif
510 struct sock_cgroup_data sk_cgrp_data;
511 struct mem_cgroup *sk_memcg;
512 void (*sk_state_change)(struct sock *sk);
513 void (*sk_data_ready)(struct sock *sk);
514 void (*sk_write_space)(struct sock *sk);
515 void (*sk_error_report)(struct sock *sk);
516 int (*sk_backlog_rcv)(struct sock *sk,
517 struct sk_buff *skb);
518#ifdef CONFIG_SOCK_VALIDATE_XMIT
519 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
520 struct net_device *dev,
521 struct sk_buff *skb);
522#endif
523 void (*sk_destruct)(struct sock *sk);
524 struct sock_reuseport __rcu *sk_reuseport_cb;
525#ifdef CONFIG_BPF_SYSCALL
526 struct bpf_local_storage __rcu *sk_bpf_storage;
527#endif
528 struct rcu_head sk_rcu;
529};
530
531enum sk_pacing {
532 SK_PACING_NONE = 0,
533 SK_PACING_NEEDED = 1,
534 SK_PACING_FQ = 2,
535};
536
537/* Pointer stored in sk_user_data might not be suitable for copying
538 * when cloning the socket. For instance, it can point to a reference
539 * counted object. sk_user_data bottom bit is set if pointer must not
540 * be copied.
541 */
542#define SK_USER_DATA_NOCOPY 1UL
543#define SK_USER_DATA_BPF 2UL /* Managed by BPF */
544#define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
545
546/**
547 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
548 * @sk: socket
549 */
550static inline bool sk_user_data_is_nocopy(const struct sock *sk)
551{
552 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
553}
554
555#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
556
557#define rcu_dereference_sk_user_data(sk) \
558({ \
559 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
560 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
561})
562#define rcu_assign_sk_user_data(sk, ptr) \
563({ \
564 uintptr_t __tmp = (uintptr_t)(ptr); \
565 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
566 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
567})
568#define rcu_assign_sk_user_data_nocopy(sk, ptr) \
569({ \
570 uintptr_t __tmp = (uintptr_t)(ptr); \
571 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
572 rcu_assign_pointer(__sk_user_data((sk)), \
573 __tmp | SK_USER_DATA_NOCOPY); \
574})
575
576/*
577 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
578 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
579 * on a socket means that the socket will reuse everybody else's port
580 * without looking at the other's sk_reuse value.
581 */
582
583#define SK_NO_REUSE 0
584#define SK_CAN_REUSE 1
585#define SK_FORCE_REUSE 2
586
587int sk_set_peek_off(struct sock *sk, int val);
588
589static inline int sk_peek_offset(struct sock *sk, int flags)
590{
591 if (unlikely(flags & MSG_PEEK)) {
592 return READ_ONCE(sk->sk_peek_off);
593 }
594
595 return 0;
596}
597
598static inline void sk_peek_offset_bwd(struct sock *sk, int val)
599{
600 s32 off = READ_ONCE(sk->sk_peek_off);
601
602 if (unlikely(off >= 0)) {
603 off = max_t(s32, off - val, 0);
604 WRITE_ONCE(sk->sk_peek_off, off);
605 }
606}
607
608static inline void sk_peek_offset_fwd(struct sock *sk, int val)
609{
610 sk_peek_offset_bwd(sk, -val);
611}
612
613/*
614 * Hashed lists helper routines
615 */
616static inline struct sock *sk_entry(const struct hlist_node *node)
617{
618 return hlist_entry(node, struct sock, sk_node);
619}
620
621static inline struct sock *__sk_head(const struct hlist_head *head)
622{
623 return hlist_entry(head->first, struct sock, sk_node);
624}
625
626static inline struct sock *sk_head(const struct hlist_head *head)
627{
628 return hlist_empty(head) ? NULL : __sk_head(head);
629}
630
631static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
632{
633 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
634}
635
636static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
637{
638 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
639}
640
641static inline struct sock *sk_next(const struct sock *sk)
642{
643 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
644}
645
646static inline struct sock *sk_nulls_next(const struct sock *sk)
647{
648 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
649 hlist_nulls_entry(sk->sk_nulls_node.next,
650 struct sock, sk_nulls_node) :
651 NULL;
652}
653
654static inline bool sk_unhashed(const struct sock *sk)
655{
656 return hlist_unhashed(&sk->sk_node);
657}
658
659static inline bool sk_hashed(const struct sock *sk)
660{
661 return !sk_unhashed(sk);
662}
663
664static inline void sk_node_init(struct hlist_node *node)
665{
666 node->pprev = NULL;
667}
668
669static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
670{
671 node->pprev = NULL;
672}
673
674static inline void __sk_del_node(struct sock *sk)
675{
676 __hlist_del(&sk->sk_node);
677}
678
679/* NB: equivalent to hlist_del_init_rcu */
680static inline bool __sk_del_node_init(struct sock *sk)
681{
682 if (sk_hashed(sk)) {
683 __sk_del_node(sk);
684 sk_node_init(&sk->sk_node);
685 return true;
686 }
687 return false;
688}
689
690/* Grab socket reference count. This operation is valid only
691 when sk is ALREADY grabbed f.e. it is found in hash table
692 or a list and the lookup is made under lock preventing hash table
693 modifications.
694 */
695
696static __always_inline void sock_hold(struct sock *sk)
697{
698 refcount_inc(&sk->sk_refcnt);
699}
700
701/* Ungrab socket in the context, which assumes that socket refcnt
702 cannot hit zero, f.e. it is true in context of any socketcall.
703 */
704static __always_inline void __sock_put(struct sock *sk)
705{
706 refcount_dec(&sk->sk_refcnt);
707}
708
709static inline bool sk_del_node_init(struct sock *sk)
710{
711 bool rc = __sk_del_node_init(sk);
712
713 if (rc) {
714 /* paranoid for a while -acme */
715 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
716 __sock_put(sk);
717 }
718 return rc;
719}
720#define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
721
722static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
723{
724 if (sk_hashed(sk)) {
725 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
726 return true;
727 }
728 return false;
729}
730
731static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
732{
733 bool rc = __sk_nulls_del_node_init_rcu(sk);
734
735 if (rc) {
736 /* paranoid for a while -acme */
737 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
738 __sock_put(sk);
739 }
740 return rc;
741}
742
743static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
744{
745 hlist_add_head(&sk->sk_node, list);
746}
747
748static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
749{
750 sock_hold(sk);
751 __sk_add_node(sk, list);
752}
753
754static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
755{
756 sock_hold(sk);
757 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
758 sk->sk_family == AF_INET6)
759 hlist_add_tail_rcu(&sk->sk_node, list);
760 else
761 hlist_add_head_rcu(&sk->sk_node, list);
762}
763
764static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
765{
766 sock_hold(sk);
767 hlist_add_tail_rcu(&sk->sk_node, list);
768}
769
770static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
771{
772 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
773}
774
775static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
776{
777 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
778}
779
780static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
781{
782 sock_hold(sk);
783 __sk_nulls_add_node_rcu(sk, list);
784}
785
786static inline void __sk_del_bind_node(struct sock *sk)
787{
788 __hlist_del(&sk->sk_bind_node);
789}
790
791static inline void sk_add_bind_node(struct sock *sk,
792 struct hlist_head *list)
793{
794 hlist_add_head(&sk->sk_bind_node, list);
795}
796
797#define sk_for_each(__sk, list) \
798 hlist_for_each_entry(__sk, list, sk_node)
799#define sk_for_each_rcu(__sk, list) \
800 hlist_for_each_entry_rcu(__sk, list, sk_node)
801#define sk_nulls_for_each(__sk, node, list) \
802 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
803#define sk_nulls_for_each_rcu(__sk, node, list) \
804 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
805#define sk_for_each_from(__sk) \
806 hlist_for_each_entry_from(__sk, sk_node)
807#define sk_nulls_for_each_from(__sk, node) \
808 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
809 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
810#define sk_for_each_safe(__sk, tmp, list) \
811 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
812#define sk_for_each_bound(__sk, list) \
813 hlist_for_each_entry(__sk, list, sk_bind_node)
814
815/**
816 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
817 * @tpos: the type * to use as a loop cursor.
818 * @pos: the &struct hlist_node to use as a loop cursor.
819 * @head: the head for your list.
820 * @offset: offset of hlist_node within the struct.
821 *
822 */
823#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
824 for (pos = rcu_dereference(hlist_first_rcu(head)); \
825 pos != NULL && \
826 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
827 pos = rcu_dereference(hlist_next_rcu(pos)))
828
829static inline struct user_namespace *sk_user_ns(struct sock *sk)
830{
831 /* Careful only use this in a context where these parameters
832 * can not change and must all be valid, such as recvmsg from
833 * userspace.
834 */
835 return sk->sk_socket->file->f_cred->user_ns;
836}
837
838/* Sock flags */
839enum sock_flags {
840 SOCK_DEAD,
841 SOCK_DONE,
842 SOCK_URGINLINE,
843 SOCK_KEEPOPEN,
844 SOCK_LINGER,
845 SOCK_DESTROY,
846 SOCK_BROADCAST,
847 SOCK_TIMESTAMP,
848 SOCK_ZAPPED,
849 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
850 SOCK_DBG, /* %SO_DEBUG setting */
851 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
852 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
853 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
854 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
855 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
856 SOCK_FASYNC, /* fasync() active */
857 SOCK_RXQ_OVFL,
858 SOCK_ZEROCOPY, /* buffers from userspace */
859 SOCK_WIFI_STATUS, /* push wifi status to userspace */
860 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
861 * Will use last 4 bytes of packet sent from
862 * user-space instead.
863 */
864 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
865 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
866 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
867 SOCK_TXTIME,
868 SOCK_XDP, /* XDP is attached */
869 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
870};
871
872#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
873
874static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
875{
876 nsk->sk_flags = osk->sk_flags;
877}
878
879static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
880{
881 __set_bit(flag, &sk->sk_flags);
882}
883
884static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
885{
886 __clear_bit(flag, &sk->sk_flags);
887}
888
889static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
890 int valbool)
891{
892 if (valbool)
893 sock_set_flag(sk, bit);
894 else
895 sock_reset_flag(sk, bit);
896}
897
898static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
899{
900 return test_bit(flag, &sk->sk_flags);
901}
902
903#ifdef CONFIG_NET
904DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
905static inline int sk_memalloc_socks(void)
906{
907 return static_branch_unlikely(&memalloc_socks_key);
908}
909
910void __receive_sock(struct file *file);
911#else
912
913static inline int sk_memalloc_socks(void)
914{
915 return 0;
916}
917
918static inline void __receive_sock(struct file *file)
919{ }
920#endif
921
922static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
923{
924 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
925}
926
927static inline void sk_acceptq_removed(struct sock *sk)
928{
929 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
930}
931
932static inline void sk_acceptq_added(struct sock *sk)
933{
934 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
935}
936
937/* Note: If you think the test should be:
938 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
939 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
940 */
941static inline bool sk_acceptq_is_full(const struct sock *sk)
942{
943 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
944}
945
946/*
947 * Compute minimal free write space needed to queue new packets.
948 */
949static inline int sk_stream_min_wspace(const struct sock *sk)
950{
951 return READ_ONCE(sk->sk_wmem_queued) >> 1;
952}
953
954static inline int sk_stream_wspace(const struct sock *sk)
955{
956 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
957}
958
959static inline void sk_wmem_queued_add(struct sock *sk, int val)
960{
961 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
962}
963
964void sk_stream_write_space(struct sock *sk);
965
966/* OOB backlog add */
967static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
968{
969 /* dont let skb dst not refcounted, we are going to leave rcu lock */
970 skb_dst_force(skb);
971
972 if (!sk->sk_backlog.tail)
973 WRITE_ONCE(sk->sk_backlog.head, skb);
974 else
975 sk->sk_backlog.tail->next = skb;
976
977 WRITE_ONCE(sk->sk_backlog.tail, skb);
978 skb->next = NULL;
979}
980
981/*
982 * Take into account size of receive queue and backlog queue
983 * Do not take into account this skb truesize,
984 * to allow even a single big packet to come.
985 */
986static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
987{
988 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
989
990 return qsize > limit;
991}
992
993/* The per-socket spinlock must be held here. */
994static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
995 unsigned int limit)
996{
997 if (sk_rcvqueues_full(sk, limit))
998 return -ENOBUFS;
999
1000 /*
1001 * If the skb was allocated from pfmemalloc reserves, only
1002 * allow SOCK_MEMALLOC sockets to use it as this socket is
1003 * helping free memory
1004 */
1005 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1006 return -ENOMEM;
1007
1008 __sk_add_backlog(sk, skb);
1009 sk->sk_backlog.len += skb->truesize;
1010 return 0;
1011}
1012
1013int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1014
1015static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1016{
1017 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1018 return __sk_backlog_rcv(sk, skb);
1019
1020 return sk->sk_backlog_rcv(sk, skb);
1021}
1022
1023static inline void sk_incoming_cpu_update(struct sock *sk)
1024{
1025 int cpu = raw_smp_processor_id();
1026
1027 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1028 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1029}
1030
1031static inline void sock_rps_record_flow_hash(__u32 hash)
1032{
1033#ifdef CONFIG_RPS
1034 struct rps_sock_flow_table *sock_flow_table;
1035
1036 rcu_read_lock();
1037 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1038 rps_record_sock_flow(sock_flow_table, hash);
1039 rcu_read_unlock();
1040#endif
1041}
1042
1043static inline void sock_rps_record_flow(const struct sock *sk)
1044{
1045#ifdef CONFIG_RPS
1046 if (static_branch_unlikely(&rfs_needed)) {
1047 /* Reading sk->sk_rxhash might incur an expensive cache line
1048 * miss.
1049 *
1050 * TCP_ESTABLISHED does cover almost all states where RFS
1051 * might be useful, and is cheaper [1] than testing :
1052 * IPv4: inet_sk(sk)->inet_daddr
1053 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1054 * OR an additional socket flag
1055 * [1] : sk_state and sk_prot are in the same cache line.
1056 */
1057 if (sk->sk_state == TCP_ESTABLISHED)
1058 sock_rps_record_flow_hash(sk->sk_rxhash);
1059 }
1060#endif
1061}
1062
1063static inline void sock_rps_save_rxhash(struct sock *sk,
1064 const struct sk_buff *skb)
1065{
1066#ifdef CONFIG_RPS
1067 if (unlikely(sk->sk_rxhash != skb->hash))
1068 sk->sk_rxhash = skb->hash;
1069#endif
1070}
1071
1072static inline void sock_rps_reset_rxhash(struct sock *sk)
1073{
1074#ifdef CONFIG_RPS
1075 sk->sk_rxhash = 0;
1076#endif
1077}
1078
1079#define sk_wait_event(__sk, __timeo, __condition, __wait) \
1080 ({ int __rc; \
1081 release_sock(__sk); \
1082 __rc = __condition; \
1083 if (!__rc) { \
1084 *(__timeo) = wait_woken(__wait, \
1085 TASK_INTERRUPTIBLE, \
1086 *(__timeo)); \
1087 } \
1088 sched_annotate_sleep(); \
1089 lock_sock(__sk); \
1090 __rc = __condition; \
1091 __rc; \
1092 })
1093
1094int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1095int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1096void sk_stream_wait_close(struct sock *sk, long timeo_p);
1097int sk_stream_error(struct sock *sk, int flags, int err);
1098void sk_stream_kill_queues(struct sock *sk);
1099void sk_set_memalloc(struct sock *sk);
1100void sk_clear_memalloc(struct sock *sk);
1101
1102void __sk_flush_backlog(struct sock *sk);
1103
1104static inline bool sk_flush_backlog(struct sock *sk)
1105{
1106 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1107 __sk_flush_backlog(sk);
1108 return true;
1109 }
1110 return false;
1111}
1112
1113int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1114
1115struct request_sock_ops;
1116struct timewait_sock_ops;
1117struct inet_hashinfo;
1118struct raw_hashinfo;
1119struct smc_hashinfo;
1120struct module;
1121struct sk_psock;
1122
1123/*
1124 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1125 * un-modified. Special care is taken when initializing object to zero.
1126 */
1127static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1128{
1129 if (offsetof(struct sock, sk_node.next) != 0)
1130 memset(sk, 0, offsetof(struct sock, sk_node.next));
1131 memset(&sk->sk_node.pprev, 0,
1132 size - offsetof(struct sock, sk_node.pprev));
1133}
1134
1135/* Networking protocol blocks we attach to sockets.
1136 * socket layer -> transport layer interface
1137 */
1138struct proto {
1139 void (*close)(struct sock *sk,
1140 long timeout);
1141 int (*pre_connect)(struct sock *sk,
1142 struct sockaddr *uaddr,
1143 int addr_len);
1144 int (*connect)(struct sock *sk,
1145 struct sockaddr *uaddr,
1146 int addr_len);
1147 int (*disconnect)(struct sock *sk, int flags);
1148
1149 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1150 bool kern);
1151
1152 int (*ioctl)(struct sock *sk, int cmd,
1153 unsigned long arg);
1154 int (*init)(struct sock *sk);
1155 void (*destroy)(struct sock *sk);
1156 void (*shutdown)(struct sock *sk, int how);
1157 int (*setsockopt)(struct sock *sk, int level,
1158 int optname, sockptr_t optval,
1159 unsigned int optlen);
1160 int (*getsockopt)(struct sock *sk, int level,
1161 int optname, char __user *optval,
1162 int __user *option);
1163 void (*keepalive)(struct sock *sk, int valbool);
1164#ifdef CONFIG_COMPAT
1165 int (*compat_ioctl)(struct sock *sk,
1166 unsigned int cmd, unsigned long arg);
1167#endif
1168 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1169 size_t len);
1170 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1171 size_t len, int noblock, int flags,
1172 int *addr_len);
1173 int (*sendpage)(struct sock *sk, struct page *page,
1174 int offset, size_t size, int flags);
1175 int (*bind)(struct sock *sk,
1176 struct sockaddr *addr, int addr_len);
1177 int (*bind_add)(struct sock *sk,
1178 struct sockaddr *addr, int addr_len);
1179
1180 int (*backlog_rcv) (struct sock *sk,
1181 struct sk_buff *skb);
1182 bool (*bpf_bypass_getsockopt)(int level,
1183 int optname);
1184
1185 void (*release_cb)(struct sock *sk);
1186
1187 /* Keeping track of sk's, looking them up, and port selection methods. */
1188 int (*hash)(struct sock *sk);
1189 void (*unhash)(struct sock *sk);
1190 void (*rehash)(struct sock *sk);
1191 int (*get_port)(struct sock *sk, unsigned short snum);
1192#ifdef CONFIG_BPF_SYSCALL
1193 int (*psock_update_sk_prot)(struct sock *sk,
1194 struct sk_psock *psock,
1195 bool restore);
1196#endif
1197
1198 /* Keeping track of sockets in use */
1199#ifdef CONFIG_PROC_FS
1200 unsigned int inuse_idx;
1201#endif
1202
1203 bool (*stream_memory_free)(const struct sock *sk, int wake);
1204 bool (*stream_memory_read)(const struct sock *sk);
1205 /* Memory pressure */
1206 void (*enter_memory_pressure)(struct sock *sk);
1207 void (*leave_memory_pressure)(struct sock *sk);
1208 atomic_long_t *memory_allocated; /* Current allocated memory. */
1209 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1210 /*
1211 * Pressure flag: try to collapse.
1212 * Technical note: it is used by multiple contexts non atomically.
1213 * All the __sk_mem_schedule() is of this nature: accounting
1214 * is strict, actions are advisory and have some latency.
1215 */
1216 unsigned long *memory_pressure;
1217 long *sysctl_mem;
1218
1219 int *sysctl_wmem;
1220 int *sysctl_rmem;
1221 u32 sysctl_wmem_offset;
1222 u32 sysctl_rmem_offset;
1223
1224 int max_header;
1225 bool no_autobind;
1226
1227 struct kmem_cache *slab;
1228 unsigned int obj_size;
1229 slab_flags_t slab_flags;
1230 unsigned int useroffset; /* Usercopy region offset */
1231 unsigned int usersize; /* Usercopy region size */
1232
1233 struct percpu_counter *orphan_count;
1234
1235 struct request_sock_ops *rsk_prot;
1236 struct timewait_sock_ops *twsk_prot;
1237
1238 union {
1239 struct inet_hashinfo *hashinfo;
1240 struct udp_table *udp_table;
1241 struct raw_hashinfo *raw_hash;
1242 struct smc_hashinfo *smc_hash;
1243 } h;
1244
1245 struct module *owner;
1246
1247 char name[32];
1248
1249 struct list_head node;
1250#ifdef SOCK_REFCNT_DEBUG
1251 atomic_t socks;
1252#endif
1253 int (*diag_destroy)(struct sock *sk, int err);
1254} __randomize_layout;
1255
1256int proto_register(struct proto *prot, int alloc_slab);
1257void proto_unregister(struct proto *prot);
1258int sock_load_diag_module(int family, int protocol);
1259
1260#ifdef SOCK_REFCNT_DEBUG
1261static inline void sk_refcnt_debug_inc(struct sock *sk)
1262{
1263 atomic_inc(&sk->sk_prot->socks);
1264}
1265
1266static inline void sk_refcnt_debug_dec(struct sock *sk)
1267{
1268 atomic_dec(&sk->sk_prot->socks);
1269 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1270 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1271}
1272
1273static inline void sk_refcnt_debug_release(const struct sock *sk)
1274{
1275 if (refcount_read(&sk->sk_refcnt) != 1)
1276 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1277 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1278}
1279#else /* SOCK_REFCNT_DEBUG */
1280#define sk_refcnt_debug_inc(sk) do { } while (0)
1281#define sk_refcnt_debug_dec(sk) do { } while (0)
1282#define sk_refcnt_debug_release(sk) do { } while (0)
1283#endif /* SOCK_REFCNT_DEBUG */
1284
1285INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1286
1287static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1288{
1289 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1290 return false;
1291
1292#ifdef CONFIG_INET
1293 return sk->sk_prot->stream_memory_free ?
1294 INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1295 tcp_stream_memory_free,
1296 sk, wake) : true;
1297#else
1298 return sk->sk_prot->stream_memory_free ?
1299 sk->sk_prot->stream_memory_free(sk, wake) : true;
1300#endif
1301}
1302
1303static inline bool sk_stream_memory_free(const struct sock *sk)
1304{
1305 return __sk_stream_memory_free(sk, 0);
1306}
1307
1308static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1309{
1310 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1311 __sk_stream_memory_free(sk, wake);
1312}
1313
1314static inline bool sk_stream_is_writeable(const struct sock *sk)
1315{
1316 return __sk_stream_is_writeable(sk, 0);
1317}
1318
1319static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1320 struct cgroup *ancestor)
1321{
1322#ifdef CONFIG_SOCK_CGROUP_DATA
1323 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1324 ancestor);
1325#else
1326 return -ENOTSUPP;
1327#endif
1328}
1329
1330static inline bool sk_has_memory_pressure(const struct sock *sk)
1331{
1332 return sk->sk_prot->memory_pressure != NULL;
1333}
1334
1335static inline bool sk_under_memory_pressure(const struct sock *sk)
1336{
1337 if (!sk->sk_prot->memory_pressure)
1338 return false;
1339
1340 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1341 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1342 return true;
1343
1344 return !!*sk->sk_prot->memory_pressure;
1345}
1346
1347static inline long
1348sk_memory_allocated(const struct sock *sk)
1349{
1350 return atomic_long_read(sk->sk_prot->memory_allocated);
1351}
1352
1353static inline long
1354sk_memory_allocated_add(struct sock *sk, int amt)
1355{
1356 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1357}
1358
1359static inline void
1360sk_memory_allocated_sub(struct sock *sk, int amt)
1361{
1362 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1363}
1364
1365#define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1366
1367static inline void sk_sockets_allocated_dec(struct sock *sk)
1368{
1369 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1370 SK_ALLOC_PERCPU_COUNTER_BATCH);
1371}
1372
1373static inline void sk_sockets_allocated_inc(struct sock *sk)
1374{
1375 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1376 SK_ALLOC_PERCPU_COUNTER_BATCH);
1377}
1378
1379static inline u64
1380sk_sockets_allocated_read_positive(struct sock *sk)
1381{
1382 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1383}
1384
1385static inline int
1386proto_sockets_allocated_sum_positive(struct proto *prot)
1387{
1388 return percpu_counter_sum_positive(prot->sockets_allocated);
1389}
1390
1391static inline long
1392proto_memory_allocated(struct proto *prot)
1393{
1394 return atomic_long_read(prot->memory_allocated);
1395}
1396
1397static inline bool
1398proto_memory_pressure(struct proto *prot)
1399{
1400 if (!prot->memory_pressure)
1401 return false;
1402 return !!*prot->memory_pressure;
1403}
1404
1405
1406#ifdef CONFIG_PROC_FS
1407/* Called with local bh disabled */
1408void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1409int sock_prot_inuse_get(struct net *net, struct proto *proto);
1410int sock_inuse_get(struct net *net);
1411#else
1412static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1413 int inc)
1414{
1415}
1416#endif
1417
1418
1419/* With per-bucket locks this operation is not-atomic, so that
1420 * this version is not worse.
1421 */
1422static inline int __sk_prot_rehash(struct sock *sk)
1423{
1424 sk->sk_prot->unhash(sk);
1425 return sk->sk_prot->hash(sk);
1426}
1427
1428/* About 10 seconds */
1429#define SOCK_DESTROY_TIME (10*HZ)
1430
1431/* Sockets 0-1023 can't be bound to unless you are superuser */
1432#define PROT_SOCK 1024
1433
1434#define SHUTDOWN_MASK 3
1435#define RCV_SHUTDOWN 1
1436#define SEND_SHUTDOWN 2
1437
1438#define SOCK_SNDBUF_LOCK 1
1439#define SOCK_RCVBUF_LOCK 2
1440#define SOCK_BINDADDR_LOCK 4
1441#define SOCK_BINDPORT_LOCK 8
1442
1443struct socket_alloc {
1444 struct socket socket;
1445 struct inode vfs_inode;
1446};
1447
1448static inline struct socket *SOCKET_I(struct inode *inode)
1449{
1450 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1451}
1452
1453static inline struct inode *SOCK_INODE(struct socket *socket)
1454{
1455 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1456}
1457
1458/*
1459 * Functions for memory accounting
1460 */
1461int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1462int __sk_mem_schedule(struct sock *sk, int size, int kind);
1463void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1464void __sk_mem_reclaim(struct sock *sk, int amount);
1465
1466/* We used to have PAGE_SIZE here, but systems with 64KB pages
1467 * do not necessarily have 16x time more memory than 4KB ones.
1468 */
1469#define SK_MEM_QUANTUM 4096
1470#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1471#define SK_MEM_SEND 0
1472#define SK_MEM_RECV 1
1473
1474/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1475static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1476{
1477 long val = sk->sk_prot->sysctl_mem[index];
1478
1479#if PAGE_SIZE > SK_MEM_QUANTUM
1480 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1481#elif PAGE_SIZE < SK_MEM_QUANTUM
1482 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1483#endif
1484 return val;
1485}
1486
1487static inline int sk_mem_pages(int amt)
1488{
1489 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1490}
1491
1492static inline bool sk_has_account(struct sock *sk)
1493{
1494 /* return true if protocol supports memory accounting */
1495 return !!sk->sk_prot->memory_allocated;
1496}
1497
1498static inline bool sk_wmem_schedule(struct sock *sk, int size)
1499{
1500 if (!sk_has_account(sk))
1501 return true;
1502 return size <= sk->sk_forward_alloc ||
1503 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1504}
1505
1506static inline bool
1507sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1508{
1509 if (!sk_has_account(sk))
1510 return true;
1511 return size <= sk->sk_forward_alloc ||
1512 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1513 skb_pfmemalloc(skb);
1514}
1515
1516static inline void sk_mem_reclaim(struct sock *sk)
1517{
1518 if (!sk_has_account(sk))
1519 return;
1520 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1521 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1522}
1523
1524static inline void sk_mem_reclaim_partial(struct sock *sk)
1525{
1526 if (!sk_has_account(sk))
1527 return;
1528 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1529 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1530}
1531
1532static inline void sk_mem_charge(struct sock *sk, int size)
1533{
1534 if (!sk_has_account(sk))
1535 return;
1536 sk->sk_forward_alloc -= size;
1537}
1538
1539static inline void sk_mem_uncharge(struct sock *sk, int size)
1540{
1541 if (!sk_has_account(sk))
1542 return;
1543 sk->sk_forward_alloc += size;
1544
1545 /* Avoid a possible overflow.
1546 * TCP send queues can make this happen, if sk_mem_reclaim()
1547 * is not called and more than 2 GBytes are released at once.
1548 *
1549 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1550 * no need to hold that much forward allocation anyway.
1551 */
1552 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1553 __sk_mem_reclaim(sk, 1 << 20);
1554}
1555
1556DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1557static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1558{
1559 sk_wmem_queued_add(sk, -skb->truesize);
1560 sk_mem_uncharge(sk, skb->truesize);
1561 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1562 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1563 skb_ext_reset(skb);
1564 skb_zcopy_clear(skb, true);
1565 sk->sk_tx_skb_cache = skb;
1566 return;
1567 }
1568 __kfree_skb(skb);
1569}
1570
1571static inline void sock_release_ownership(struct sock *sk)
1572{
1573 if (sk->sk_lock.owned) {
1574 sk->sk_lock.owned = 0;
1575
1576 /* The sk_lock has mutex_unlock() semantics: */
1577 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1578 }
1579}
1580
1581/*
1582 * Macro so as to not evaluate some arguments when
1583 * lockdep is not enabled.
1584 *
1585 * Mark both the sk_lock and the sk_lock.slock as a
1586 * per-address-family lock class.
1587 */
1588#define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1589do { \
1590 sk->sk_lock.owned = 0; \
1591 init_waitqueue_head(&sk->sk_lock.wq); \
1592 spin_lock_init(&(sk)->sk_lock.slock); \
1593 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1594 sizeof((sk)->sk_lock)); \
1595 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1596 (skey), (sname)); \
1597 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1598} while (0)
1599
1600static inline bool lockdep_sock_is_held(const struct sock *sk)
1601{
1602 return lockdep_is_held(&sk->sk_lock) ||
1603 lockdep_is_held(&sk->sk_lock.slock);
1604}
1605
1606void lock_sock_nested(struct sock *sk, int subclass);
1607
1608static inline void lock_sock(struct sock *sk)
1609{
1610 lock_sock_nested(sk, 0);
1611}
1612
1613void __lock_sock(struct sock *sk);
1614void __release_sock(struct sock *sk);
1615void release_sock(struct sock *sk);
1616
1617/* BH context may only use the following locking interface. */
1618#define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1619#define bh_lock_sock_nested(__sk) \
1620 spin_lock_nested(&((__sk)->sk_lock.slock), \
1621 SINGLE_DEPTH_NESTING)
1622#define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1623
1624bool lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1625
1626/**
1627 * unlock_sock_fast - complement of lock_sock_fast
1628 * @sk: socket
1629 * @slow: slow mode
1630 *
1631 * fast unlock socket for user context.
1632 * If slow mode is on, we call regular release_sock()
1633 */
1634static inline void unlock_sock_fast(struct sock *sk, bool slow)
1635 __releases(&sk->sk_lock.slock)
1636{
1637 if (slow) {
1638 release_sock(sk);
1639 __release(&sk->sk_lock.slock);
1640 } else {
1641 spin_unlock_bh(&sk->sk_lock.slock);
1642 }
1643}
1644
1645/* Used by processes to "lock" a socket state, so that
1646 * interrupts and bottom half handlers won't change it
1647 * from under us. It essentially blocks any incoming
1648 * packets, so that we won't get any new data or any
1649 * packets that change the state of the socket.
1650 *
1651 * While locked, BH processing will add new packets to
1652 * the backlog queue. This queue is processed by the
1653 * owner of the socket lock right before it is released.
1654 *
1655 * Since ~2.3.5 it is also exclusive sleep lock serializing
1656 * accesses from user process context.
1657 */
1658
1659static inline void sock_owned_by_me(const struct sock *sk)
1660{
1661#ifdef CONFIG_LOCKDEP
1662 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1663#endif
1664}
1665
1666static inline bool sock_owned_by_user(const struct sock *sk)
1667{
1668 sock_owned_by_me(sk);
1669 return sk->sk_lock.owned;
1670}
1671
1672static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1673{
1674 return sk->sk_lock.owned;
1675}
1676
1677/* no reclassification while locks are held */
1678static inline bool sock_allow_reclassification(const struct sock *csk)
1679{
1680 struct sock *sk = (struct sock *)csk;
1681
1682 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1683}
1684
1685struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1686 struct proto *prot, int kern);
1687void sk_free(struct sock *sk);
1688void sk_destruct(struct sock *sk);
1689struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1690void sk_free_unlock_clone(struct sock *sk);
1691
1692struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1693 gfp_t priority);
1694void __sock_wfree(struct sk_buff *skb);
1695void sock_wfree(struct sk_buff *skb);
1696struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1697 gfp_t priority);
1698void skb_orphan_partial(struct sk_buff *skb);
1699void sock_rfree(struct sk_buff *skb);
1700void sock_efree(struct sk_buff *skb);
1701#ifdef CONFIG_INET
1702void sock_edemux(struct sk_buff *skb);
1703void sock_pfree(struct sk_buff *skb);
1704#else
1705#define sock_edemux sock_efree
1706#endif
1707
1708int sock_setsockopt(struct socket *sock, int level, int op,
1709 sockptr_t optval, unsigned int optlen);
1710
1711int sock_getsockopt(struct socket *sock, int level, int op,
1712 char __user *optval, int __user *optlen);
1713int sock_gettstamp(struct socket *sock, void __user *userstamp,
1714 bool timeval, bool time32);
1715struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1716 int noblock, int *errcode);
1717struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1718 unsigned long data_len, int noblock,
1719 int *errcode, int max_page_order);
1720void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1721void sock_kfree_s(struct sock *sk, void *mem, int size);
1722void sock_kzfree_s(struct sock *sk, void *mem, int size);
1723void sk_send_sigurg(struct sock *sk);
1724
1725struct sockcm_cookie {
1726 u64 transmit_time;
1727 u32 mark;
1728 u16 tsflags;
1729};
1730
1731static inline void sockcm_init(struct sockcm_cookie *sockc,
1732 const struct sock *sk)
1733{
1734 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1735}
1736
1737int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1738 struct sockcm_cookie *sockc);
1739int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1740 struct sockcm_cookie *sockc);
1741
1742/*
1743 * Functions to fill in entries in struct proto_ops when a protocol
1744 * does not implement a particular function.
1745 */
1746int sock_no_bind(struct socket *, struct sockaddr *, int);
1747int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1748int sock_no_socketpair(struct socket *, struct socket *);
1749int sock_no_accept(struct socket *, struct socket *, int, bool);
1750int sock_no_getname(struct socket *, struct sockaddr *, int);
1751int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1752int sock_no_listen(struct socket *, int);
1753int sock_no_shutdown(struct socket *, int);
1754int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1755int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1756int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1757int sock_no_mmap(struct file *file, struct socket *sock,
1758 struct vm_area_struct *vma);
1759ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1760 size_t size, int flags);
1761ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1762 int offset, size_t size, int flags);
1763
1764/*
1765 * Functions to fill in entries in struct proto_ops when a protocol
1766 * uses the inet style.
1767 */
1768int sock_common_getsockopt(struct socket *sock, int level, int optname,
1769 char __user *optval, int __user *optlen);
1770int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1771 int flags);
1772int sock_common_setsockopt(struct socket *sock, int level, int optname,
1773 sockptr_t optval, unsigned int optlen);
1774
1775void sk_common_release(struct sock *sk);
1776
1777/*
1778 * Default socket callbacks and setup code
1779 */
1780
1781/* Initialise core socket variables */
1782void sock_init_data(struct socket *sock, struct sock *sk);
1783
1784/*
1785 * Socket reference counting postulates.
1786 *
1787 * * Each user of socket SHOULD hold a reference count.
1788 * * Each access point to socket (an hash table bucket, reference from a list,
1789 * running timer, skb in flight MUST hold a reference count.
1790 * * When reference count hits 0, it means it will never increase back.
1791 * * When reference count hits 0, it means that no references from
1792 * outside exist to this socket and current process on current CPU
1793 * is last user and may/should destroy this socket.
1794 * * sk_free is called from any context: process, BH, IRQ. When
1795 * it is called, socket has no references from outside -> sk_free
1796 * may release descendant resources allocated by the socket, but
1797 * to the time when it is called, socket is NOT referenced by any
1798 * hash tables, lists etc.
1799 * * Packets, delivered from outside (from network or from another process)
1800 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1801 * when they sit in queue. Otherwise, packets will leak to hole, when
1802 * socket is looked up by one cpu and unhasing is made by another CPU.
1803 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1804 * (leak to backlog). Packet socket does all the processing inside
1805 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1806 * use separate SMP lock, so that they are prone too.
1807 */
1808
1809/* Ungrab socket and destroy it, if it was the last reference. */
1810static inline void sock_put(struct sock *sk)
1811{
1812 if (refcount_dec_and_test(&sk->sk_refcnt))
1813 sk_free(sk);
1814}
1815/* Generic version of sock_put(), dealing with all sockets
1816 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1817 */
1818void sock_gen_put(struct sock *sk);
1819
1820int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1821 unsigned int trim_cap, bool refcounted);
1822static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1823 const int nested)
1824{
1825 return __sk_receive_skb(sk, skb, nested, 1, true);
1826}
1827
1828static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1829{
1830 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1831 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1832 return;
1833 sk->sk_tx_queue_mapping = tx_queue;
1834}
1835
1836#define NO_QUEUE_MAPPING USHRT_MAX
1837
1838static inline void sk_tx_queue_clear(struct sock *sk)
1839{
1840 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1841}
1842
1843static inline int sk_tx_queue_get(const struct sock *sk)
1844{
1845 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1846 return sk->sk_tx_queue_mapping;
1847
1848 return -1;
1849}
1850
1851static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1852{
1853#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1854 if (skb_rx_queue_recorded(skb)) {
1855 u16 rx_queue = skb_get_rx_queue(skb);
1856
1857 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1858 return;
1859
1860 sk->sk_rx_queue_mapping = rx_queue;
1861 }
1862#endif
1863}
1864
1865static inline void sk_rx_queue_clear(struct sock *sk)
1866{
1867#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1868 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1869#endif
1870}
1871
1872static inline int sk_rx_queue_get(const struct sock *sk)
1873{
1874#ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1875 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1876 return sk->sk_rx_queue_mapping;
1877#endif
1878
1879 return -1;
1880}
1881
1882static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1883{
1884 sk->sk_socket = sock;
1885}
1886
1887static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1888{
1889 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1890 return &rcu_dereference_raw(sk->sk_wq)->wait;
1891}
1892/* Detach socket from process context.
1893 * Announce socket dead, detach it from wait queue and inode.
1894 * Note that parent inode held reference count on this struct sock,
1895 * we do not release it in this function, because protocol
1896 * probably wants some additional cleanups or even continuing
1897 * to work with this socket (TCP).
1898 */
1899static inline void sock_orphan(struct sock *sk)
1900{
1901 write_lock_bh(&sk->sk_callback_lock);
1902 sock_set_flag(sk, SOCK_DEAD);
1903 sk_set_socket(sk, NULL);
1904 sk->sk_wq = NULL;
1905 write_unlock_bh(&sk->sk_callback_lock);
1906}
1907
1908static inline void sock_graft(struct sock *sk, struct socket *parent)
1909{
1910 WARN_ON(parent->sk);
1911 write_lock_bh(&sk->sk_callback_lock);
1912 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1913 parent->sk = sk;
1914 sk_set_socket(sk, parent);
1915 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1916 security_sock_graft(sk, parent);
1917 write_unlock_bh(&sk->sk_callback_lock);
1918}
1919
1920kuid_t sock_i_uid(struct sock *sk);
1921unsigned long sock_i_ino(struct sock *sk);
1922
1923static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1924{
1925 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1926}
1927
1928static inline u32 net_tx_rndhash(void)
1929{
1930 u32 v = prandom_u32();
1931
1932 return v ?: 1;
1933}
1934
1935static inline void sk_set_txhash(struct sock *sk)
1936{
1937 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1938 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1939}
1940
1941static inline bool sk_rethink_txhash(struct sock *sk)
1942{
1943 if (sk->sk_txhash) {
1944 sk_set_txhash(sk);
1945 return true;
1946 }
1947 return false;
1948}
1949
1950static inline struct dst_entry *
1951__sk_dst_get(struct sock *sk)
1952{
1953 return rcu_dereference_check(sk->sk_dst_cache,
1954 lockdep_sock_is_held(sk));
1955}
1956
1957static inline struct dst_entry *
1958sk_dst_get(struct sock *sk)
1959{
1960 struct dst_entry *dst;
1961
1962 rcu_read_lock();
1963 dst = rcu_dereference(sk->sk_dst_cache);
1964 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1965 dst = NULL;
1966 rcu_read_unlock();
1967 return dst;
1968}
1969
1970static inline void __dst_negative_advice(struct sock *sk)
1971{
1972 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1973
1974 if (dst && dst->ops->negative_advice) {
1975 ndst = dst->ops->negative_advice(dst);
1976
1977 if (ndst != dst) {
1978 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1979 sk_tx_queue_clear(sk);
1980 sk->sk_dst_pending_confirm = 0;
1981 }
1982 }
1983}
1984
1985static inline void dst_negative_advice(struct sock *sk)
1986{
1987 sk_rethink_txhash(sk);
1988 __dst_negative_advice(sk);
1989}
1990
1991static inline void
1992__sk_dst_set(struct sock *sk, struct dst_entry *dst)
1993{
1994 struct dst_entry *old_dst;
1995
1996 sk_tx_queue_clear(sk);
1997 sk->sk_dst_pending_confirm = 0;
1998 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1999 lockdep_sock_is_held(sk));
2000 rcu_assign_pointer(sk->sk_dst_cache, dst);
2001 dst_release(old_dst);
2002}
2003
2004static inline void
2005sk_dst_set(struct sock *sk, struct dst_entry *dst)
2006{
2007 struct dst_entry *old_dst;
2008
2009 sk_tx_queue_clear(sk);
2010 sk->sk_dst_pending_confirm = 0;
2011 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2012 dst_release(old_dst);
2013}
2014
2015static inline void
2016__sk_dst_reset(struct sock *sk)
2017{
2018 __sk_dst_set(sk, NULL);
2019}
2020
2021static inline void
2022sk_dst_reset(struct sock *sk)
2023{
2024 sk_dst_set(sk, NULL);
2025}
2026
2027struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2028
2029struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2030
2031static inline void sk_dst_confirm(struct sock *sk)
2032{
2033 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2034 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2035}
2036
2037static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2038{
2039 if (skb_get_dst_pending_confirm(skb)) {
2040 struct sock *sk = skb->sk;
2041 unsigned long now = jiffies;
2042
2043 /* avoid dirtying neighbour */
2044 if (READ_ONCE(n->confirmed) != now)
2045 WRITE_ONCE(n->confirmed, now);
2046 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2047 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2048 }
2049}
2050
2051bool sk_mc_loop(struct sock *sk);
2052
2053static inline bool sk_can_gso(const struct sock *sk)
2054{
2055 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2056}
2057
2058void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2059
2060static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2061{
2062 sk->sk_route_nocaps |= flags;
2063 sk->sk_route_caps &= ~flags;
2064}
2065
2066static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2067 struct iov_iter *from, char *to,
2068 int copy, int offset)
2069{
2070 if (skb->ip_summed == CHECKSUM_NONE) {
2071 __wsum csum = 0;
2072 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2073 return -EFAULT;
2074 skb->csum = csum_block_add(skb->csum, csum, offset);
2075 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2076 if (!copy_from_iter_full_nocache(to, copy, from))
2077 return -EFAULT;
2078 } else if (!copy_from_iter_full(to, copy, from))
2079 return -EFAULT;
2080
2081 return 0;
2082}
2083
2084static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2085 struct iov_iter *from, int copy)
2086{
2087 int err, offset = skb->len;
2088
2089 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2090 copy, offset);
2091 if (err)
2092 __skb_trim(skb, offset);
2093
2094 return err;
2095}
2096
2097static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2098 struct sk_buff *skb,
2099 struct page *page,
2100 int off, int copy)
2101{
2102 int err;
2103
2104 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2105 copy, skb->len);
2106 if (err)
2107 return err;
2108
2109 skb->len += copy;
2110 skb->data_len += copy;
2111 skb->truesize += copy;
2112 sk_wmem_queued_add(sk, copy);
2113 sk_mem_charge(sk, copy);
2114 return 0;
2115}
2116
2117/**
2118 * sk_wmem_alloc_get - returns write allocations
2119 * @sk: socket
2120 *
2121 * Return: sk_wmem_alloc minus initial offset of one
2122 */
2123static inline int sk_wmem_alloc_get(const struct sock *sk)
2124{
2125 return refcount_read(&sk->sk_wmem_alloc) - 1;
2126}
2127
2128/**
2129 * sk_rmem_alloc_get - returns read allocations
2130 * @sk: socket
2131 *
2132 * Return: sk_rmem_alloc
2133 */
2134static inline int sk_rmem_alloc_get(const struct sock *sk)
2135{
2136 return atomic_read(&sk->sk_rmem_alloc);
2137}
2138
2139/**
2140 * sk_has_allocations - check if allocations are outstanding
2141 * @sk: socket
2142 *
2143 * Return: true if socket has write or read allocations
2144 */
2145static inline bool sk_has_allocations(const struct sock *sk)
2146{
2147 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2148}
2149
2150/**
2151 * skwq_has_sleeper - check if there are any waiting processes
2152 * @wq: struct socket_wq
2153 *
2154 * Return: true if socket_wq has waiting processes
2155 *
2156 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2157 * barrier call. They were added due to the race found within the tcp code.
2158 *
2159 * Consider following tcp code paths::
2160 *
2161 * CPU1 CPU2
2162 * sys_select receive packet
2163 * ... ...
2164 * __add_wait_queue update tp->rcv_nxt
2165 * ... ...
2166 * tp->rcv_nxt check sock_def_readable
2167 * ... {
2168 * schedule rcu_read_lock();
2169 * wq = rcu_dereference(sk->sk_wq);
2170 * if (wq && waitqueue_active(&wq->wait))
2171 * wake_up_interruptible(&wq->wait)
2172 * ...
2173 * }
2174 *
2175 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2176 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2177 * could then endup calling schedule and sleep forever if there are no more
2178 * data on the socket.
2179 *
2180 */
2181static inline bool skwq_has_sleeper(struct socket_wq *wq)
2182{
2183 return wq && wq_has_sleeper(&wq->wait);
2184}
2185
2186/**
2187 * sock_poll_wait - place memory barrier behind the poll_wait call.
2188 * @filp: file
2189 * @sock: socket to wait on
2190 * @p: poll_table
2191 *
2192 * See the comments in the wq_has_sleeper function.
2193 */
2194static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2195 poll_table *p)
2196{
2197 if (!poll_does_not_wait(p)) {
2198 poll_wait(filp, &sock->wq.wait, p);
2199 /* We need to be sure we are in sync with the
2200 * socket flags modification.
2201 *
2202 * This memory barrier is paired in the wq_has_sleeper.
2203 */
2204 smp_mb();
2205 }
2206}
2207
2208static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2209{
2210 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2211 u32 txhash = READ_ONCE(sk->sk_txhash);
2212
2213 if (txhash) {
2214 skb->l4_hash = 1;
2215 skb->hash = txhash;
2216 }
2217}
2218
2219void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2220
2221/*
2222 * Queue a received datagram if it will fit. Stream and sequenced
2223 * protocols can't normally use this as they need to fit buffers in
2224 * and play with them.
2225 *
2226 * Inlined as it's very short and called for pretty much every
2227 * packet ever received.
2228 */
2229static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2230{
2231 skb_orphan(skb);
2232 skb->sk = sk;
2233 skb->destructor = sock_rfree;
2234 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2235 sk_mem_charge(sk, skb->truesize);
2236}
2237
2238static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2239{
2240 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2241 skb_orphan(skb);
2242 skb->destructor = sock_efree;
2243 skb->sk = sk;
2244 return true;
2245 }
2246 return false;
2247}
2248
2249void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2250 unsigned long expires);
2251
2252void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2253
2254void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2255
2256int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2257 struct sk_buff *skb, unsigned int flags,
2258 void (*destructor)(struct sock *sk,
2259 struct sk_buff *skb));
2260int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2261int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2262
2263int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2264struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2265
2266/*
2267 * Recover an error report and clear atomically
2268 */
2269
2270static inline int sock_error(struct sock *sk)
2271{
2272 int err;
2273
2274 /* Avoid an atomic operation for the common case.
2275 * This is racy since another cpu/thread can change sk_err under us.
2276 */
2277 if (likely(data_race(!sk->sk_err)))
2278 return 0;
2279
2280 err = xchg(&sk->sk_err, 0);
2281 return -err;
2282}
2283
2284static inline unsigned long sock_wspace(struct sock *sk)
2285{
2286 int amt = 0;
2287
2288 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2289 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2290 if (amt < 0)
2291 amt = 0;
2292 }
2293 return amt;
2294}
2295
2296/* Note:
2297 * We use sk->sk_wq_raw, from contexts knowing this
2298 * pointer is not NULL and cannot disappear/change.
2299 */
2300static inline void sk_set_bit(int nr, struct sock *sk)
2301{
2302 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2303 !sock_flag(sk, SOCK_FASYNC))
2304 return;
2305
2306 set_bit(nr, &sk->sk_wq_raw->flags);
2307}
2308
2309static inline void sk_clear_bit(int nr, struct sock *sk)
2310{
2311 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2312 !sock_flag(sk, SOCK_FASYNC))
2313 return;
2314
2315 clear_bit(nr, &sk->sk_wq_raw->flags);
2316}
2317
2318static inline void sk_wake_async(const struct sock *sk, int how, int band)
2319{
2320 if (sock_flag(sk, SOCK_FASYNC)) {
2321 rcu_read_lock();
2322 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2323 rcu_read_unlock();
2324 }
2325}
2326
2327/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2328 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2329 * Note: for send buffers, TCP works better if we can build two skbs at
2330 * minimum.
2331 */
2332#define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2333
2334#define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2335#define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2336
2337static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2338{
2339 u32 val;
2340
2341 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2342 return;
2343
2344 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2345
2346 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2347}
2348
2349struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2350 bool force_schedule);
2351
2352/**
2353 * sk_page_frag - return an appropriate page_frag
2354 * @sk: socket
2355 *
2356 * Use the per task page_frag instead of the per socket one for
2357 * optimization when we know that we're in the normal context and owns
2358 * everything that's associated with %current.
2359 *
2360 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2361 * inside other socket operations and end up recursing into sk_page_frag()
2362 * while it's already in use.
2363 *
2364 * Return: a per task page_frag if context allows that,
2365 * otherwise a per socket one.
2366 */
2367static inline struct page_frag *sk_page_frag(struct sock *sk)
2368{
2369 if (gfpflags_normal_context(sk->sk_allocation))
2370 return ¤t->task_frag;
2371
2372 return &sk->sk_frag;
2373}
2374
2375bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2376
2377/*
2378 * Default write policy as shown to user space via poll/select/SIGIO
2379 */
2380static inline bool sock_writeable(const struct sock *sk)
2381{
2382 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2383}
2384
2385static inline gfp_t gfp_any(void)
2386{
2387 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2388}
2389
2390static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2391{
2392 return noblock ? 0 : sk->sk_rcvtimeo;
2393}
2394
2395static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2396{
2397 return noblock ? 0 : sk->sk_sndtimeo;
2398}
2399
2400static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2401{
2402 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2403
2404 return v ?: 1;
2405}
2406
2407/* Alas, with timeout socket operations are not restartable.
2408 * Compare this to poll().
2409 */
2410static inline int sock_intr_errno(long timeo)
2411{
2412 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2413}
2414
2415struct sock_skb_cb {
2416 u32 dropcount;
2417};
2418
2419/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2420 * using skb->cb[] would keep using it directly and utilize its
2421 * alignement guarantee.
2422 */
2423#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2424 sizeof(struct sock_skb_cb)))
2425
2426#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2427 SOCK_SKB_CB_OFFSET))
2428
2429#define sock_skb_cb_check_size(size) \
2430 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2431
2432static inline void
2433sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2434{
2435 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2436 atomic_read(&sk->sk_drops) : 0;
2437}
2438
2439static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2440{
2441 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2442
2443 atomic_add(segs, &sk->sk_drops);
2444}
2445
2446static inline ktime_t sock_read_timestamp(struct sock *sk)
2447{
2448#if BITS_PER_LONG==32
2449 unsigned int seq;
2450 ktime_t kt;
2451
2452 do {
2453 seq = read_seqbegin(&sk->sk_stamp_seq);
2454 kt = sk->sk_stamp;
2455 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2456
2457 return kt;
2458#else
2459 return READ_ONCE(sk->sk_stamp);
2460#endif
2461}
2462
2463static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2464{
2465#if BITS_PER_LONG==32
2466 write_seqlock(&sk->sk_stamp_seq);
2467 sk->sk_stamp = kt;
2468 write_sequnlock(&sk->sk_stamp_seq);
2469#else
2470 WRITE_ONCE(sk->sk_stamp, kt);
2471#endif
2472}
2473
2474void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2475 struct sk_buff *skb);
2476void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2477 struct sk_buff *skb);
2478
2479static inline void
2480sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2481{
2482 ktime_t kt = skb->tstamp;
2483 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2484
2485 /*
2486 * generate control messages if
2487 * - receive time stamping in software requested
2488 * - software time stamp available and wanted
2489 * - hardware time stamps available and wanted
2490 */
2491 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2492 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2493 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2494 (hwtstamps->hwtstamp &&
2495 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2496 __sock_recv_timestamp(msg, sk, skb);
2497 else
2498 sock_write_timestamp(sk, kt);
2499
2500 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2501 __sock_recv_wifi_status(msg, sk, skb);
2502}
2503
2504void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2505 struct sk_buff *skb);
2506
2507#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2508static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2509 struct sk_buff *skb)
2510{
2511#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2512 (1UL << SOCK_RCVTSTAMP))
2513#define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2514 SOF_TIMESTAMPING_RAW_HARDWARE)
2515
2516 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2517 __sock_recv_ts_and_drops(msg, sk, skb);
2518 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2519 sock_write_timestamp(sk, skb->tstamp);
2520 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2521 sock_write_timestamp(sk, 0);
2522}
2523
2524void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2525
2526/**
2527 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2528 * @sk: socket sending this packet
2529 * @tsflags: timestamping flags to use
2530 * @tx_flags: completed with instructions for time stamping
2531 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2532 *
2533 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2534 */
2535static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2536 __u8 *tx_flags, __u32 *tskey)
2537{
2538 if (unlikely(tsflags)) {
2539 __sock_tx_timestamp(tsflags, tx_flags);
2540 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2541 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2542 *tskey = sk->sk_tskey++;
2543 }
2544 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2545 *tx_flags |= SKBTX_WIFI_STATUS;
2546}
2547
2548static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2549 __u8 *tx_flags)
2550{
2551 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2552}
2553
2554static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2555{
2556 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2557 &skb_shinfo(skb)->tskey);
2558}
2559
2560DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2561/**
2562 * sk_eat_skb - Release a skb if it is no longer needed
2563 * @sk: socket to eat this skb from
2564 * @skb: socket buffer to eat
2565 *
2566 * This routine must be called with interrupts disabled or with the socket
2567 * locked so that the sk_buff queue operation is ok.
2568*/
2569static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2570{
2571 __skb_unlink(skb, &sk->sk_receive_queue);
2572 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2573 !sk->sk_rx_skb_cache) {
2574 sk->sk_rx_skb_cache = skb;
2575 skb_orphan(skb);
2576 return;
2577 }
2578 __kfree_skb(skb);
2579}
2580
2581static inline
2582struct net *sock_net(const struct sock *sk)
2583{
2584 return read_pnet(&sk->sk_net);
2585}
2586
2587static inline
2588void sock_net_set(struct sock *sk, struct net *net)
2589{
2590 write_pnet(&sk->sk_net, net);
2591}
2592
2593static inline bool
2594skb_sk_is_prefetched(struct sk_buff *skb)
2595{
2596#ifdef CONFIG_INET
2597 return skb->destructor == sock_pfree;
2598#else
2599 return false;
2600#endif /* CONFIG_INET */
2601}
2602
2603/* This helper checks if a socket is a full socket,
2604 * ie _not_ a timewait or request socket.
2605 */
2606static inline bool sk_fullsock(const struct sock *sk)
2607{
2608 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2609}
2610
2611static inline bool
2612sk_is_refcounted(struct sock *sk)
2613{
2614 /* Only full sockets have sk->sk_flags. */
2615 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2616}
2617
2618/**
2619 * skb_steal_sock - steal a socket from an sk_buff
2620 * @skb: sk_buff to steal the socket from
2621 * @refcounted: is set to true if the socket is reference-counted
2622 */
2623static inline struct sock *
2624skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2625{
2626 if (skb->sk) {
2627 struct sock *sk = skb->sk;
2628
2629 *refcounted = true;
2630 if (skb_sk_is_prefetched(skb))
2631 *refcounted = sk_is_refcounted(sk);
2632 skb->destructor = NULL;
2633 skb->sk = NULL;
2634 return sk;
2635 }
2636 *refcounted = false;
2637 return NULL;
2638}
2639
2640/* Checks if this SKB belongs to an HW offloaded socket
2641 * and whether any SW fallbacks are required based on dev.
2642 * Check decrypted mark in case skb_orphan() cleared socket.
2643 */
2644static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2645 struct net_device *dev)
2646{
2647#ifdef CONFIG_SOCK_VALIDATE_XMIT
2648 struct sock *sk = skb->sk;
2649
2650 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2651 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2652#ifdef CONFIG_TLS_DEVICE
2653 } else if (unlikely(skb->decrypted)) {
2654 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2655 kfree_skb(skb);
2656 skb = NULL;
2657#endif
2658 }
2659#endif
2660
2661 return skb;
2662}
2663
2664/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2665 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2666 */
2667static inline bool sk_listener(const struct sock *sk)
2668{
2669 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2670}
2671
2672void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2673int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2674 int type);
2675
2676bool sk_ns_capable(const struct sock *sk,
2677 struct user_namespace *user_ns, int cap);
2678bool sk_capable(const struct sock *sk, int cap);
2679bool sk_net_capable(const struct sock *sk, int cap);
2680
2681void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2682
2683/* Take into consideration the size of the struct sk_buff overhead in the
2684 * determination of these values, since that is non-constant across
2685 * platforms. This makes socket queueing behavior and performance
2686 * not depend upon such differences.
2687 */
2688#define _SK_MEM_PACKETS 256
2689#define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2690#define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2691#define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2692
2693extern __u32 sysctl_wmem_max;
2694extern __u32 sysctl_rmem_max;
2695
2696extern int sysctl_tstamp_allow_data;
2697extern int sysctl_optmem_max;
2698
2699extern __u32 sysctl_wmem_default;
2700extern __u32 sysctl_rmem_default;
2701
2702DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2703
2704static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2705{
2706 /* Does this proto have per netns sysctl_wmem ? */
2707 if (proto->sysctl_wmem_offset)
2708 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2709
2710 return *proto->sysctl_wmem;
2711}
2712
2713static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2714{
2715 /* Does this proto have per netns sysctl_rmem ? */
2716 if (proto->sysctl_rmem_offset)
2717 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2718
2719 return *proto->sysctl_rmem;
2720}
2721
2722/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2723 * Some wifi drivers need to tweak it to get more chunks.
2724 * They can use this helper from their ndo_start_xmit()
2725 */
2726static inline void sk_pacing_shift_update(struct sock *sk, int val)
2727{
2728 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2729 return;
2730 WRITE_ONCE(sk->sk_pacing_shift, val);
2731}
2732
2733/* if a socket is bound to a device, check that the given device
2734 * index is either the same or that the socket is bound to an L3
2735 * master device and the given device index is also enslaved to
2736 * that L3 master
2737 */
2738static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2739{
2740 int mdif;
2741
2742 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2743 return true;
2744
2745 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2746 if (mdif && mdif == sk->sk_bound_dev_if)
2747 return true;
2748
2749 return false;
2750}
2751
2752void sock_def_readable(struct sock *sk);
2753
2754int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2755void sock_enable_timestamps(struct sock *sk);
2756void sock_no_linger(struct sock *sk);
2757void sock_set_keepalive(struct sock *sk);
2758void sock_set_priority(struct sock *sk, u32 priority);
2759void sock_set_rcvbuf(struct sock *sk, int val);
2760void sock_set_mark(struct sock *sk, u32 val);
2761void sock_set_reuseaddr(struct sock *sk);
2762void sock_set_reuseport(struct sock *sk);
2763void sock_set_sndtimeo(struct sock *sk, s64 secs);
2764
2765int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2766
2767#endif /* _SOCK_H */