Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_SCHED_H
3#define _LINUX_SCHED_H
4
5/*
6 * Define 'struct task_struct' and provide the main scheduler
7 * APIs (schedule(), wakeup variants, etc.)
8 */
9
10#include <uapi/linux/sched.h>
11
12#include <asm/current.h>
13
14#include <linux/pid.h>
15#include <linux/sem.h>
16#include <linux/shm.h>
17#include <linux/mutex.h>
18#include <linux/plist.h>
19#include <linux/hrtimer.h>
20#include <linux/irqflags.h>
21#include <linux/seccomp.h>
22#include <linux/nodemask.h>
23#include <linux/rcupdate.h>
24#include <linux/refcount.h>
25#include <linux/resource.h>
26#include <linux/latencytop.h>
27#include <linux/sched/prio.h>
28#include <linux/sched/types.h>
29#include <linux/signal_types.h>
30#include <linux/syscall_user_dispatch.h>
31#include <linux/mm_types_task.h>
32#include <linux/task_io_accounting.h>
33#include <linux/posix-timers.h>
34#include <linux/rseq.h>
35#include <linux/seqlock.h>
36#include <linux/kcsan.h>
37#include <asm/kmap_size.h>
38
39/* task_struct member predeclarations (sorted alphabetically): */
40struct audit_context;
41struct backing_dev_info;
42struct bio_list;
43struct blk_plug;
44struct bpf_local_storage;
45struct capture_control;
46struct cfs_rq;
47struct fs_struct;
48struct futex_pi_state;
49struct io_context;
50struct io_uring_task;
51struct mempolicy;
52struct nameidata;
53struct nsproxy;
54struct perf_event_context;
55struct pid_namespace;
56struct pipe_inode_info;
57struct rcu_node;
58struct reclaim_state;
59struct robust_list_head;
60struct root_domain;
61struct rq;
62struct sched_attr;
63struct sched_param;
64struct seq_file;
65struct sighand_struct;
66struct signal_struct;
67struct task_delay_info;
68struct task_group;
69
70/*
71 * Task state bitmask. NOTE! These bits are also
72 * encoded in fs/proc/array.c: get_task_state().
73 *
74 * We have two separate sets of flags: task->state
75 * is about runnability, while task->exit_state are
76 * about the task exiting. Confusing, but this way
77 * modifying one set can't modify the other one by
78 * mistake.
79 */
80
81/* Used in tsk->state: */
82#define TASK_RUNNING 0x0000
83#define TASK_INTERRUPTIBLE 0x0001
84#define TASK_UNINTERRUPTIBLE 0x0002
85#define __TASK_STOPPED 0x0004
86#define __TASK_TRACED 0x0008
87/* Used in tsk->exit_state: */
88#define EXIT_DEAD 0x0010
89#define EXIT_ZOMBIE 0x0020
90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
91/* Used in tsk->state again: */
92#define TASK_PARKED 0x0040
93#define TASK_DEAD 0x0080
94#define TASK_WAKEKILL 0x0100
95#define TASK_WAKING 0x0200
96#define TASK_NOLOAD 0x0400
97#define TASK_NEW 0x0800
98#define TASK_STATE_MAX 0x1000
99
100/* Convenience macros for the sake of set_current_state: */
101#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
102#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED)
103#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED)
104
105#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
106
107/* Convenience macros for the sake of wake_up(): */
108#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
109
110/* get_task_state(): */
111#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \
112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
114 TASK_PARKED)
115
116#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0)
117
118#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0)
119
120#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
121
122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
123
124/*
125 * Special states are those that do not use the normal wait-loop pattern. See
126 * the comment with set_special_state().
127 */
128#define is_special_task_state(state) \
129 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
130
131#define __set_current_state(state_value) \
132 do { \
133 WARN_ON_ONCE(is_special_task_state(state_value));\
134 current->task_state_change = _THIS_IP_; \
135 current->state = (state_value); \
136 } while (0)
137
138#define set_current_state(state_value) \
139 do { \
140 WARN_ON_ONCE(is_special_task_state(state_value));\
141 current->task_state_change = _THIS_IP_; \
142 smp_store_mb(current->state, (state_value)); \
143 } while (0)
144
145#define set_special_state(state_value) \
146 do { \
147 unsigned long flags; /* may shadow */ \
148 WARN_ON_ONCE(!is_special_task_state(state_value)); \
149 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
150 current->task_state_change = _THIS_IP_; \
151 current->state = (state_value); \
152 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
153 } while (0)
154#else
155/*
156 * set_current_state() includes a barrier so that the write of current->state
157 * is correctly serialised wrt the caller's subsequent test of whether to
158 * actually sleep:
159 *
160 * for (;;) {
161 * set_current_state(TASK_UNINTERRUPTIBLE);
162 * if (CONDITION)
163 * break;
164 *
165 * schedule();
166 * }
167 * __set_current_state(TASK_RUNNING);
168 *
169 * If the caller does not need such serialisation (because, for instance, the
170 * CONDITION test and condition change and wakeup are under the same lock) then
171 * use __set_current_state().
172 *
173 * The above is typically ordered against the wakeup, which does:
174 *
175 * CONDITION = 1;
176 * wake_up_state(p, TASK_UNINTERRUPTIBLE);
177 *
178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
179 * accessing p->state.
180 *
181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
184 *
185 * However, with slightly different timing the wakeup TASK_RUNNING store can
186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
187 * a problem either because that will result in one extra go around the loop
188 * and our @cond test will save the day.
189 *
190 * Also see the comments of try_to_wake_up().
191 */
192#define __set_current_state(state_value) \
193 current->state = (state_value)
194
195#define set_current_state(state_value) \
196 smp_store_mb(current->state, (state_value))
197
198/*
199 * set_special_state() should be used for those states when the blocking task
200 * can not use the regular condition based wait-loop. In that case we must
201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
202 * will not collide with our state change.
203 */
204#define set_special_state(state_value) \
205 do { \
206 unsigned long flags; /* may shadow */ \
207 raw_spin_lock_irqsave(¤t->pi_lock, flags); \
208 current->state = (state_value); \
209 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); \
210 } while (0)
211
212#endif
213
214/* Task command name length: */
215#define TASK_COMM_LEN 16
216
217extern void scheduler_tick(void);
218
219#define MAX_SCHEDULE_TIMEOUT LONG_MAX
220
221extern long schedule_timeout(long timeout);
222extern long schedule_timeout_interruptible(long timeout);
223extern long schedule_timeout_killable(long timeout);
224extern long schedule_timeout_uninterruptible(long timeout);
225extern long schedule_timeout_idle(long timeout);
226asmlinkage void schedule(void);
227extern void schedule_preempt_disabled(void);
228asmlinkage void preempt_schedule_irq(void);
229
230extern int __must_check io_schedule_prepare(void);
231extern void io_schedule_finish(int token);
232extern long io_schedule_timeout(long timeout);
233extern void io_schedule(void);
234
235/**
236 * struct prev_cputime - snapshot of system and user cputime
237 * @utime: time spent in user mode
238 * @stime: time spent in system mode
239 * @lock: protects the above two fields
240 *
241 * Stores previous user/system time values such that we can guarantee
242 * monotonicity.
243 */
244struct prev_cputime {
245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
246 u64 utime;
247 u64 stime;
248 raw_spinlock_t lock;
249#endif
250};
251
252enum vtime_state {
253 /* Task is sleeping or running in a CPU with VTIME inactive: */
254 VTIME_INACTIVE = 0,
255 /* Task is idle */
256 VTIME_IDLE,
257 /* Task runs in kernelspace in a CPU with VTIME active: */
258 VTIME_SYS,
259 /* Task runs in userspace in a CPU with VTIME active: */
260 VTIME_USER,
261 /* Task runs as guests in a CPU with VTIME active: */
262 VTIME_GUEST,
263};
264
265struct vtime {
266 seqcount_t seqcount;
267 unsigned long long starttime;
268 enum vtime_state state;
269 unsigned int cpu;
270 u64 utime;
271 u64 stime;
272 u64 gtime;
273};
274
275/*
276 * Utilization clamp constraints.
277 * @UCLAMP_MIN: Minimum utilization
278 * @UCLAMP_MAX: Maximum utilization
279 * @UCLAMP_CNT: Utilization clamp constraints count
280 */
281enum uclamp_id {
282 UCLAMP_MIN = 0,
283 UCLAMP_MAX,
284 UCLAMP_CNT
285};
286
287#ifdef CONFIG_SMP
288extern struct root_domain def_root_domain;
289extern struct mutex sched_domains_mutex;
290#endif
291
292struct sched_info {
293#ifdef CONFIG_SCHED_INFO
294 /* Cumulative counters: */
295
296 /* # of times we have run on this CPU: */
297 unsigned long pcount;
298
299 /* Time spent waiting on a runqueue: */
300 unsigned long long run_delay;
301
302 /* Timestamps: */
303
304 /* When did we last run on a CPU? */
305 unsigned long long last_arrival;
306
307 /* When were we last queued to run? */
308 unsigned long long last_queued;
309
310#endif /* CONFIG_SCHED_INFO */
311};
312
313/*
314 * Integer metrics need fixed point arithmetic, e.g., sched/fair
315 * has a few: load, load_avg, util_avg, freq, and capacity.
316 *
317 * We define a basic fixed point arithmetic range, and then formalize
318 * all these metrics based on that basic range.
319 */
320# define SCHED_FIXEDPOINT_SHIFT 10
321# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT)
322
323/* Increase resolution of cpu_capacity calculations */
324# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT
325# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT)
326
327struct load_weight {
328 unsigned long weight;
329 u32 inv_weight;
330};
331
332/**
333 * struct util_est - Estimation utilization of FAIR tasks
334 * @enqueued: instantaneous estimated utilization of a task/cpu
335 * @ewma: the Exponential Weighted Moving Average (EWMA)
336 * utilization of a task
337 *
338 * Support data structure to track an Exponential Weighted Moving Average
339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
340 * average each time a task completes an activation. Sample's weight is chosen
341 * so that the EWMA will be relatively insensitive to transient changes to the
342 * task's workload.
343 *
344 * The enqueued attribute has a slightly different meaning for tasks and cpus:
345 * - task: the task's util_avg at last task dequeue time
346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
347 * Thus, the util_est.enqueued of a task represents the contribution on the
348 * estimated utilization of the CPU where that task is currently enqueued.
349 *
350 * Only for tasks we track a moving average of the past instantaneous
351 * estimated utilization. This allows to absorb sporadic drops in utilization
352 * of an otherwise almost periodic task.
353 *
354 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg
355 * updates. When a task is dequeued, its util_est should not be updated if its
356 * util_avg has not been updated in the meantime.
357 * This information is mapped into the MSB bit of util_est.enqueued at dequeue
358 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg
359 * for a task) it is safe to use MSB.
360 */
361struct util_est {
362 unsigned int enqueued;
363 unsigned int ewma;
364#define UTIL_EST_WEIGHT_SHIFT 2
365#define UTIL_AVG_UNCHANGED 0x80000000
366} __attribute__((__aligned__(sizeof(u64))));
367
368/*
369 * The load/runnable/util_avg accumulates an infinite geometric series
370 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
371 *
372 * [load_avg definition]
373 *
374 * load_avg = runnable% * scale_load_down(load)
375 *
376 * [runnable_avg definition]
377 *
378 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE
379 *
380 * [util_avg definition]
381 *
382 * util_avg = running% * SCHED_CAPACITY_SCALE
383 *
384 * where runnable% is the time ratio that a sched_entity is runnable and
385 * running% the time ratio that a sched_entity is running.
386 *
387 * For cfs_rq, they are the aggregated values of all runnable and blocked
388 * sched_entities.
389 *
390 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
391 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
392 * for computing those signals (see update_rq_clock_pelt())
393 *
394 * N.B., the above ratios (runnable% and running%) themselves are in the
395 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
396 * to as large a range as necessary. This is for example reflected by
397 * util_avg's SCHED_CAPACITY_SCALE.
398 *
399 * [Overflow issue]
400 *
401 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
402 * with the highest load (=88761), always runnable on a single cfs_rq,
403 * and should not overflow as the number already hits PID_MAX_LIMIT.
404 *
405 * For all other cases (including 32-bit kernels), struct load_weight's
406 * weight will overflow first before we do, because:
407 *
408 * Max(load_avg) <= Max(load.weight)
409 *
410 * Then it is the load_weight's responsibility to consider overflow
411 * issues.
412 */
413struct sched_avg {
414 u64 last_update_time;
415 u64 load_sum;
416 u64 runnable_sum;
417 u32 util_sum;
418 u32 period_contrib;
419 unsigned long load_avg;
420 unsigned long runnable_avg;
421 unsigned long util_avg;
422 struct util_est util_est;
423} ____cacheline_aligned;
424
425struct sched_statistics {
426#ifdef CONFIG_SCHEDSTATS
427 u64 wait_start;
428 u64 wait_max;
429 u64 wait_count;
430 u64 wait_sum;
431 u64 iowait_count;
432 u64 iowait_sum;
433
434 u64 sleep_start;
435 u64 sleep_max;
436 s64 sum_sleep_runtime;
437
438 u64 block_start;
439 u64 block_max;
440 u64 exec_max;
441 u64 slice_max;
442
443 u64 nr_migrations_cold;
444 u64 nr_failed_migrations_affine;
445 u64 nr_failed_migrations_running;
446 u64 nr_failed_migrations_hot;
447 u64 nr_forced_migrations;
448
449 u64 nr_wakeups;
450 u64 nr_wakeups_sync;
451 u64 nr_wakeups_migrate;
452 u64 nr_wakeups_local;
453 u64 nr_wakeups_remote;
454 u64 nr_wakeups_affine;
455 u64 nr_wakeups_affine_attempts;
456 u64 nr_wakeups_passive;
457 u64 nr_wakeups_idle;
458#endif
459};
460
461struct sched_entity {
462 /* For load-balancing: */
463 struct load_weight load;
464 struct rb_node run_node;
465 struct list_head group_node;
466 unsigned int on_rq;
467
468 u64 exec_start;
469 u64 sum_exec_runtime;
470 u64 vruntime;
471 u64 prev_sum_exec_runtime;
472
473 u64 nr_migrations;
474
475 struct sched_statistics statistics;
476
477#ifdef CONFIG_FAIR_GROUP_SCHED
478 int depth;
479 struct sched_entity *parent;
480 /* rq on which this entity is (to be) queued: */
481 struct cfs_rq *cfs_rq;
482 /* rq "owned" by this entity/group: */
483 struct cfs_rq *my_q;
484 /* cached value of my_q->h_nr_running */
485 unsigned long runnable_weight;
486#endif
487
488#ifdef CONFIG_SMP
489 /*
490 * Per entity load average tracking.
491 *
492 * Put into separate cache line so it does not
493 * collide with read-mostly values above.
494 */
495 struct sched_avg avg;
496#endif
497};
498
499struct sched_rt_entity {
500 struct list_head run_list;
501 unsigned long timeout;
502 unsigned long watchdog_stamp;
503 unsigned int time_slice;
504 unsigned short on_rq;
505 unsigned short on_list;
506
507 struct sched_rt_entity *back;
508#ifdef CONFIG_RT_GROUP_SCHED
509 struct sched_rt_entity *parent;
510 /* rq on which this entity is (to be) queued: */
511 struct rt_rq *rt_rq;
512 /* rq "owned" by this entity/group: */
513 struct rt_rq *my_q;
514#endif
515} __randomize_layout;
516
517struct sched_dl_entity {
518 struct rb_node rb_node;
519
520 /*
521 * Original scheduling parameters. Copied here from sched_attr
522 * during sched_setattr(), they will remain the same until
523 * the next sched_setattr().
524 */
525 u64 dl_runtime; /* Maximum runtime for each instance */
526 u64 dl_deadline; /* Relative deadline of each instance */
527 u64 dl_period; /* Separation of two instances (period) */
528 u64 dl_bw; /* dl_runtime / dl_period */
529 u64 dl_density; /* dl_runtime / dl_deadline */
530
531 /*
532 * Actual scheduling parameters. Initialized with the values above,
533 * they are continuously updated during task execution. Note that
534 * the remaining runtime could be < 0 in case we are in overrun.
535 */
536 s64 runtime; /* Remaining runtime for this instance */
537 u64 deadline; /* Absolute deadline for this instance */
538 unsigned int flags; /* Specifying the scheduler behaviour */
539
540 /*
541 * Some bool flags:
542 *
543 * @dl_throttled tells if we exhausted the runtime. If so, the
544 * task has to wait for a replenishment to be performed at the
545 * next firing of dl_timer.
546 *
547 * @dl_boosted tells if we are boosted due to DI. If so we are
548 * outside bandwidth enforcement mechanism (but only until we
549 * exit the critical section);
550 *
551 * @dl_yielded tells if task gave up the CPU before consuming
552 * all its available runtime during the last job.
553 *
554 * @dl_non_contending tells if the task is inactive while still
555 * contributing to the active utilization. In other words, it
556 * indicates if the inactive timer has been armed and its handler
557 * has not been executed yet. This flag is useful to avoid race
558 * conditions between the inactive timer handler and the wakeup
559 * code.
560 *
561 * @dl_overrun tells if the task asked to be informed about runtime
562 * overruns.
563 */
564 unsigned int dl_throttled : 1;
565 unsigned int dl_yielded : 1;
566 unsigned int dl_non_contending : 1;
567 unsigned int dl_overrun : 1;
568
569 /*
570 * Bandwidth enforcement timer. Each -deadline task has its
571 * own bandwidth to be enforced, thus we need one timer per task.
572 */
573 struct hrtimer dl_timer;
574
575 /*
576 * Inactive timer, responsible for decreasing the active utilization
577 * at the "0-lag time". When a -deadline task blocks, it contributes
578 * to GRUB's active utilization until the "0-lag time", hence a
579 * timer is needed to decrease the active utilization at the correct
580 * time.
581 */
582 struct hrtimer inactive_timer;
583
584#ifdef CONFIG_RT_MUTEXES
585 /*
586 * Priority Inheritance. When a DEADLINE scheduling entity is boosted
587 * pi_se points to the donor, otherwise points to the dl_se it belongs
588 * to (the original one/itself).
589 */
590 struct sched_dl_entity *pi_se;
591#endif
592};
593
594#ifdef CONFIG_UCLAMP_TASK
595/* Number of utilization clamp buckets (shorter alias) */
596#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
597
598/*
599 * Utilization clamp for a scheduling entity
600 * @value: clamp value "assigned" to a se
601 * @bucket_id: bucket index corresponding to the "assigned" value
602 * @active: the se is currently refcounted in a rq's bucket
603 * @user_defined: the requested clamp value comes from user-space
604 *
605 * The bucket_id is the index of the clamp bucket matching the clamp value
606 * which is pre-computed and stored to avoid expensive integer divisions from
607 * the fast path.
608 *
609 * The active bit is set whenever a task has got an "effective" value assigned,
610 * which can be different from the clamp value "requested" from user-space.
611 * This allows to know a task is refcounted in the rq's bucket corresponding
612 * to the "effective" bucket_id.
613 *
614 * The user_defined bit is set whenever a task has got a task-specific clamp
615 * value requested from userspace, i.e. the system defaults apply to this task
616 * just as a restriction. This allows to relax default clamps when a less
617 * restrictive task-specific value has been requested, thus allowing to
618 * implement a "nice" semantic. For example, a task running with a 20%
619 * default boost can still drop its own boosting to 0%.
620 */
621struct uclamp_se {
622 unsigned int value : bits_per(SCHED_CAPACITY_SCALE);
623 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS);
624 unsigned int active : 1;
625 unsigned int user_defined : 1;
626};
627#endif /* CONFIG_UCLAMP_TASK */
628
629union rcu_special {
630 struct {
631 u8 blocked;
632 u8 need_qs;
633 u8 exp_hint; /* Hint for performance. */
634 u8 need_mb; /* Readers need smp_mb(). */
635 } b; /* Bits. */
636 u32 s; /* Set of bits. */
637};
638
639enum perf_event_task_context {
640 perf_invalid_context = -1,
641 perf_hw_context = 0,
642 perf_sw_context,
643 perf_nr_task_contexts,
644};
645
646struct wake_q_node {
647 struct wake_q_node *next;
648};
649
650struct kmap_ctrl {
651#ifdef CONFIG_KMAP_LOCAL
652 int idx;
653 pte_t pteval[KM_MAX_IDX];
654#endif
655};
656
657struct task_struct {
658#ifdef CONFIG_THREAD_INFO_IN_TASK
659 /*
660 * For reasons of header soup (see current_thread_info()), this
661 * must be the first element of task_struct.
662 */
663 struct thread_info thread_info;
664#endif
665 /* -1 unrunnable, 0 runnable, >0 stopped: */
666 volatile long state;
667
668 /*
669 * This begins the randomizable portion of task_struct. Only
670 * scheduling-critical items should be added above here.
671 */
672 randomized_struct_fields_start
673
674 void *stack;
675 refcount_t usage;
676 /* Per task flags (PF_*), defined further below: */
677 unsigned int flags;
678 unsigned int ptrace;
679
680#ifdef CONFIG_SMP
681 int on_cpu;
682 struct __call_single_node wake_entry;
683#ifdef CONFIG_THREAD_INFO_IN_TASK
684 /* Current CPU: */
685 unsigned int cpu;
686#endif
687 unsigned int wakee_flips;
688 unsigned long wakee_flip_decay_ts;
689 struct task_struct *last_wakee;
690
691 /*
692 * recent_used_cpu is initially set as the last CPU used by a task
693 * that wakes affine another task. Waker/wakee relationships can
694 * push tasks around a CPU where each wakeup moves to the next one.
695 * Tracking a recently used CPU allows a quick search for a recently
696 * used CPU that may be idle.
697 */
698 int recent_used_cpu;
699 int wake_cpu;
700#endif
701 int on_rq;
702
703 int prio;
704 int static_prio;
705 int normal_prio;
706 unsigned int rt_priority;
707
708 const struct sched_class *sched_class;
709 struct sched_entity se;
710 struct sched_rt_entity rt;
711#ifdef CONFIG_CGROUP_SCHED
712 struct task_group *sched_task_group;
713#endif
714 struct sched_dl_entity dl;
715
716#ifdef CONFIG_UCLAMP_TASK
717 /*
718 * Clamp values requested for a scheduling entity.
719 * Must be updated with task_rq_lock() held.
720 */
721 struct uclamp_se uclamp_req[UCLAMP_CNT];
722 /*
723 * Effective clamp values used for a scheduling entity.
724 * Must be updated with task_rq_lock() held.
725 */
726 struct uclamp_se uclamp[UCLAMP_CNT];
727#endif
728
729#ifdef CONFIG_PREEMPT_NOTIFIERS
730 /* List of struct preempt_notifier: */
731 struct hlist_head preempt_notifiers;
732#endif
733
734#ifdef CONFIG_BLK_DEV_IO_TRACE
735 unsigned int btrace_seq;
736#endif
737
738 unsigned int policy;
739 int nr_cpus_allowed;
740 const cpumask_t *cpus_ptr;
741 cpumask_t cpus_mask;
742 void *migration_pending;
743#ifdef CONFIG_SMP
744 unsigned short migration_disabled;
745#endif
746 unsigned short migration_flags;
747
748#ifdef CONFIG_PREEMPT_RCU
749 int rcu_read_lock_nesting;
750 union rcu_special rcu_read_unlock_special;
751 struct list_head rcu_node_entry;
752 struct rcu_node *rcu_blocked_node;
753#endif /* #ifdef CONFIG_PREEMPT_RCU */
754
755#ifdef CONFIG_TASKS_RCU
756 unsigned long rcu_tasks_nvcsw;
757 u8 rcu_tasks_holdout;
758 u8 rcu_tasks_idx;
759 int rcu_tasks_idle_cpu;
760 struct list_head rcu_tasks_holdout_list;
761#endif /* #ifdef CONFIG_TASKS_RCU */
762
763#ifdef CONFIG_TASKS_TRACE_RCU
764 int trc_reader_nesting;
765 int trc_ipi_to_cpu;
766 union rcu_special trc_reader_special;
767 bool trc_reader_checked;
768 struct list_head trc_holdout_list;
769#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
770
771 struct sched_info sched_info;
772
773 struct list_head tasks;
774#ifdef CONFIG_SMP
775 struct plist_node pushable_tasks;
776 struct rb_node pushable_dl_tasks;
777#endif
778
779 struct mm_struct *mm;
780 struct mm_struct *active_mm;
781
782 /* Per-thread vma caching: */
783 struct vmacache vmacache;
784
785#ifdef SPLIT_RSS_COUNTING
786 struct task_rss_stat rss_stat;
787#endif
788 int exit_state;
789 int exit_code;
790 int exit_signal;
791 /* The signal sent when the parent dies: */
792 int pdeath_signal;
793 /* JOBCTL_*, siglock protected: */
794 unsigned long jobctl;
795
796 /* Used for emulating ABI behavior of previous Linux versions: */
797 unsigned int personality;
798
799 /* Scheduler bits, serialized by scheduler locks: */
800 unsigned sched_reset_on_fork:1;
801 unsigned sched_contributes_to_load:1;
802 unsigned sched_migrated:1;
803#ifdef CONFIG_PSI
804 unsigned sched_psi_wake_requeue:1;
805#endif
806
807 /* Force alignment to the next boundary: */
808 unsigned :0;
809
810 /* Unserialized, strictly 'current' */
811
812 /*
813 * This field must not be in the scheduler word above due to wakelist
814 * queueing no longer being serialized by p->on_cpu. However:
815 *
816 * p->XXX = X; ttwu()
817 * schedule() if (p->on_rq && ..) // false
818 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true
819 * deactivate_task() ttwu_queue_wakelist())
820 * p->on_rq = 0; p->sched_remote_wakeup = Y;
821 *
822 * guarantees all stores of 'current' are visible before
823 * ->sched_remote_wakeup gets used, so it can be in this word.
824 */
825 unsigned sched_remote_wakeup:1;
826
827 /* Bit to tell LSMs we're in execve(): */
828 unsigned in_execve:1;
829 unsigned in_iowait:1;
830#ifndef TIF_RESTORE_SIGMASK
831 unsigned restore_sigmask:1;
832#endif
833#ifdef CONFIG_MEMCG
834 unsigned in_user_fault:1;
835#endif
836#ifdef CONFIG_COMPAT_BRK
837 unsigned brk_randomized:1;
838#endif
839#ifdef CONFIG_CGROUPS
840 /* disallow userland-initiated cgroup migration */
841 unsigned no_cgroup_migration:1;
842 /* task is frozen/stopped (used by the cgroup freezer) */
843 unsigned frozen:1;
844#endif
845#ifdef CONFIG_BLK_CGROUP
846 unsigned use_memdelay:1;
847#endif
848#ifdef CONFIG_PSI
849 /* Stalled due to lack of memory */
850 unsigned in_memstall:1;
851#endif
852#ifdef CONFIG_PAGE_OWNER
853 /* Used by page_owner=on to detect recursion in page tracking. */
854 unsigned in_page_owner:1;
855#endif
856
857 unsigned long atomic_flags; /* Flags requiring atomic access. */
858
859 struct restart_block restart_block;
860
861 pid_t pid;
862 pid_t tgid;
863
864#ifdef CONFIG_STACKPROTECTOR
865 /* Canary value for the -fstack-protector GCC feature: */
866 unsigned long stack_canary;
867#endif
868 /*
869 * Pointers to the (original) parent process, youngest child, younger sibling,
870 * older sibling, respectively. (p->father can be replaced with
871 * p->real_parent->pid)
872 */
873
874 /* Real parent process: */
875 struct task_struct __rcu *real_parent;
876
877 /* Recipient of SIGCHLD, wait4() reports: */
878 struct task_struct __rcu *parent;
879
880 /*
881 * Children/sibling form the list of natural children:
882 */
883 struct list_head children;
884 struct list_head sibling;
885 struct task_struct *group_leader;
886
887 /*
888 * 'ptraced' is the list of tasks this task is using ptrace() on.
889 *
890 * This includes both natural children and PTRACE_ATTACH targets.
891 * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
892 */
893 struct list_head ptraced;
894 struct list_head ptrace_entry;
895
896 /* PID/PID hash table linkage. */
897 struct pid *thread_pid;
898 struct hlist_node pid_links[PIDTYPE_MAX];
899 struct list_head thread_group;
900 struct list_head thread_node;
901
902 struct completion *vfork_done;
903
904 /* CLONE_CHILD_SETTID: */
905 int __user *set_child_tid;
906
907 /* CLONE_CHILD_CLEARTID: */
908 int __user *clear_child_tid;
909
910 /* PF_IO_WORKER */
911 void *pf_io_worker;
912
913 u64 utime;
914 u64 stime;
915#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
916 u64 utimescaled;
917 u64 stimescaled;
918#endif
919 u64 gtime;
920 struct prev_cputime prev_cputime;
921#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
922 struct vtime vtime;
923#endif
924
925#ifdef CONFIG_NO_HZ_FULL
926 atomic_t tick_dep_mask;
927#endif
928 /* Context switch counts: */
929 unsigned long nvcsw;
930 unsigned long nivcsw;
931
932 /* Monotonic time in nsecs: */
933 u64 start_time;
934
935 /* Boot based time in nsecs: */
936 u64 start_boottime;
937
938 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
939 unsigned long min_flt;
940 unsigned long maj_flt;
941
942 /* Empty if CONFIG_POSIX_CPUTIMERS=n */
943 struct posix_cputimers posix_cputimers;
944
945#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
946 struct posix_cputimers_work posix_cputimers_work;
947#endif
948
949 /* Process credentials: */
950
951 /* Tracer's credentials at attach: */
952 const struct cred __rcu *ptracer_cred;
953
954 /* Objective and real subjective task credentials (COW): */
955 const struct cred __rcu *real_cred;
956
957 /* Effective (overridable) subjective task credentials (COW): */
958 const struct cred __rcu *cred;
959
960#ifdef CONFIG_KEYS
961 /* Cached requested key. */
962 struct key *cached_requested_key;
963#endif
964
965 /*
966 * executable name, excluding path.
967 *
968 * - normally initialized setup_new_exec()
969 * - access it with [gs]et_task_comm()
970 * - lock it with task_lock()
971 */
972 char comm[TASK_COMM_LEN];
973
974 struct nameidata *nameidata;
975
976#ifdef CONFIG_SYSVIPC
977 struct sysv_sem sysvsem;
978 struct sysv_shm sysvshm;
979#endif
980#ifdef CONFIG_DETECT_HUNG_TASK
981 unsigned long last_switch_count;
982 unsigned long last_switch_time;
983#endif
984 /* Filesystem information: */
985 struct fs_struct *fs;
986
987 /* Open file information: */
988 struct files_struct *files;
989
990#ifdef CONFIG_IO_URING
991 struct io_uring_task *io_uring;
992#endif
993
994 /* Namespaces: */
995 struct nsproxy *nsproxy;
996
997 /* Signal handlers: */
998 struct signal_struct *signal;
999 struct sighand_struct __rcu *sighand;
1000 sigset_t blocked;
1001 sigset_t real_blocked;
1002 /* Restored if set_restore_sigmask() was used: */
1003 sigset_t saved_sigmask;
1004 struct sigpending pending;
1005 unsigned long sas_ss_sp;
1006 size_t sas_ss_size;
1007 unsigned int sas_ss_flags;
1008
1009 struct callback_head *task_works;
1010
1011#ifdef CONFIG_AUDIT
1012#ifdef CONFIG_AUDITSYSCALL
1013 struct audit_context *audit_context;
1014#endif
1015 kuid_t loginuid;
1016 unsigned int sessionid;
1017#endif
1018 struct seccomp seccomp;
1019 struct syscall_user_dispatch syscall_dispatch;
1020
1021 /* Thread group tracking: */
1022 u64 parent_exec_id;
1023 u64 self_exec_id;
1024
1025 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
1026 spinlock_t alloc_lock;
1027
1028 /* Protection of the PI data structures: */
1029 raw_spinlock_t pi_lock;
1030
1031 struct wake_q_node wake_q;
1032
1033#ifdef CONFIG_RT_MUTEXES
1034 /* PI waiters blocked on a rt_mutex held by this task: */
1035 struct rb_root_cached pi_waiters;
1036 /* Updated under owner's pi_lock and rq lock */
1037 struct task_struct *pi_top_task;
1038 /* Deadlock detection and priority inheritance handling: */
1039 struct rt_mutex_waiter *pi_blocked_on;
1040#endif
1041
1042#ifdef CONFIG_DEBUG_MUTEXES
1043 /* Mutex deadlock detection: */
1044 struct mutex_waiter *blocked_on;
1045#endif
1046
1047#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1048 int non_block_count;
1049#endif
1050
1051#ifdef CONFIG_TRACE_IRQFLAGS
1052 struct irqtrace_events irqtrace;
1053 unsigned int hardirq_threaded;
1054 u64 hardirq_chain_key;
1055 int softirqs_enabled;
1056 int softirq_context;
1057 int irq_config;
1058#endif
1059#ifdef CONFIG_PREEMPT_RT
1060 int softirq_disable_cnt;
1061#endif
1062
1063#ifdef CONFIG_LOCKDEP
1064# define MAX_LOCK_DEPTH 48UL
1065 u64 curr_chain_key;
1066 int lockdep_depth;
1067 unsigned int lockdep_recursion;
1068 struct held_lock held_locks[MAX_LOCK_DEPTH];
1069#endif
1070
1071#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1072 unsigned int in_ubsan;
1073#endif
1074
1075 /* Journalling filesystem info: */
1076 void *journal_info;
1077
1078 /* Stacked block device info: */
1079 struct bio_list *bio_list;
1080
1081#ifdef CONFIG_BLOCK
1082 /* Stack plugging: */
1083 struct blk_plug *plug;
1084#endif
1085
1086 /* VM state: */
1087 struct reclaim_state *reclaim_state;
1088
1089 struct backing_dev_info *backing_dev_info;
1090
1091 struct io_context *io_context;
1092
1093#ifdef CONFIG_COMPACTION
1094 struct capture_control *capture_control;
1095#endif
1096 /* Ptrace state: */
1097 unsigned long ptrace_message;
1098 kernel_siginfo_t *last_siginfo;
1099
1100 struct task_io_accounting ioac;
1101#ifdef CONFIG_PSI
1102 /* Pressure stall state */
1103 unsigned int psi_flags;
1104#endif
1105#ifdef CONFIG_TASK_XACCT
1106 /* Accumulated RSS usage: */
1107 u64 acct_rss_mem1;
1108 /* Accumulated virtual memory usage: */
1109 u64 acct_vm_mem1;
1110 /* stime + utime since last update: */
1111 u64 acct_timexpd;
1112#endif
1113#ifdef CONFIG_CPUSETS
1114 /* Protected by ->alloc_lock: */
1115 nodemask_t mems_allowed;
1116 /* Sequence number to catch updates: */
1117 seqcount_spinlock_t mems_allowed_seq;
1118 int cpuset_mem_spread_rotor;
1119 int cpuset_slab_spread_rotor;
1120#endif
1121#ifdef CONFIG_CGROUPS
1122 /* Control Group info protected by css_set_lock: */
1123 struct css_set __rcu *cgroups;
1124 /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1125 struct list_head cg_list;
1126#endif
1127#ifdef CONFIG_X86_CPU_RESCTRL
1128 u32 closid;
1129 u32 rmid;
1130#endif
1131#ifdef CONFIG_FUTEX
1132 struct robust_list_head __user *robust_list;
1133#ifdef CONFIG_COMPAT
1134 struct compat_robust_list_head __user *compat_robust_list;
1135#endif
1136 struct list_head pi_state_list;
1137 struct futex_pi_state *pi_state_cache;
1138 struct mutex futex_exit_mutex;
1139 unsigned int futex_state;
1140#endif
1141#ifdef CONFIG_PERF_EVENTS
1142 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts];
1143 struct mutex perf_event_mutex;
1144 struct list_head perf_event_list;
1145#endif
1146#ifdef CONFIG_DEBUG_PREEMPT
1147 unsigned long preempt_disable_ip;
1148#endif
1149#ifdef CONFIG_NUMA
1150 /* Protected by alloc_lock: */
1151 struct mempolicy *mempolicy;
1152 short il_prev;
1153 short pref_node_fork;
1154#endif
1155#ifdef CONFIG_NUMA_BALANCING
1156 int numa_scan_seq;
1157 unsigned int numa_scan_period;
1158 unsigned int numa_scan_period_max;
1159 int numa_preferred_nid;
1160 unsigned long numa_migrate_retry;
1161 /* Migration stamp: */
1162 u64 node_stamp;
1163 u64 last_task_numa_placement;
1164 u64 last_sum_exec_runtime;
1165 struct callback_head numa_work;
1166
1167 /*
1168 * This pointer is only modified for current in syscall and
1169 * pagefault context (and for tasks being destroyed), so it can be read
1170 * from any of the following contexts:
1171 * - RCU read-side critical section
1172 * - current->numa_group from everywhere
1173 * - task's runqueue locked, task not running
1174 */
1175 struct numa_group __rcu *numa_group;
1176
1177 /*
1178 * numa_faults is an array split into four regions:
1179 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1180 * in this precise order.
1181 *
1182 * faults_memory: Exponential decaying average of faults on a per-node
1183 * basis. Scheduling placement decisions are made based on these
1184 * counts. The values remain static for the duration of a PTE scan.
1185 * faults_cpu: Track the nodes the process was running on when a NUMA
1186 * hinting fault was incurred.
1187 * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1188 * during the current scan window. When the scan completes, the counts
1189 * in faults_memory and faults_cpu decay and these values are copied.
1190 */
1191 unsigned long *numa_faults;
1192 unsigned long total_numa_faults;
1193
1194 /*
1195 * numa_faults_locality tracks if faults recorded during the last
1196 * scan window were remote/local or failed to migrate. The task scan
1197 * period is adapted based on the locality of the faults with different
1198 * weights depending on whether they were shared or private faults
1199 */
1200 unsigned long numa_faults_locality[3];
1201
1202 unsigned long numa_pages_migrated;
1203#endif /* CONFIG_NUMA_BALANCING */
1204
1205#ifdef CONFIG_RSEQ
1206 struct rseq __user *rseq;
1207 u32 rseq_sig;
1208 /*
1209 * RmW on rseq_event_mask must be performed atomically
1210 * with respect to preemption.
1211 */
1212 unsigned long rseq_event_mask;
1213#endif
1214
1215 struct tlbflush_unmap_batch tlb_ubc;
1216
1217 union {
1218 refcount_t rcu_users;
1219 struct rcu_head rcu;
1220 };
1221
1222 /* Cache last used pipe for splice(): */
1223 struct pipe_inode_info *splice_pipe;
1224
1225 struct page_frag task_frag;
1226
1227#ifdef CONFIG_TASK_DELAY_ACCT
1228 struct task_delay_info *delays;
1229#endif
1230
1231#ifdef CONFIG_FAULT_INJECTION
1232 int make_it_fail;
1233 unsigned int fail_nth;
1234#endif
1235 /*
1236 * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1237 * balance_dirty_pages() for a dirty throttling pause:
1238 */
1239 int nr_dirtied;
1240 int nr_dirtied_pause;
1241 /* Start of a write-and-pause period: */
1242 unsigned long dirty_paused_when;
1243
1244#ifdef CONFIG_LATENCYTOP
1245 int latency_record_count;
1246 struct latency_record latency_record[LT_SAVECOUNT];
1247#endif
1248 /*
1249 * Time slack values; these are used to round up poll() and
1250 * select() etc timeout values. These are in nanoseconds.
1251 */
1252 u64 timer_slack_ns;
1253 u64 default_timer_slack_ns;
1254
1255#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
1256 unsigned int kasan_depth;
1257#endif
1258
1259#ifdef CONFIG_KCSAN
1260 struct kcsan_ctx kcsan_ctx;
1261#ifdef CONFIG_TRACE_IRQFLAGS
1262 struct irqtrace_events kcsan_save_irqtrace;
1263#endif
1264#endif
1265
1266#if IS_ENABLED(CONFIG_KUNIT)
1267 struct kunit *kunit_test;
1268#endif
1269
1270#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1271 /* Index of current stored address in ret_stack: */
1272 int curr_ret_stack;
1273 int curr_ret_depth;
1274
1275 /* Stack of return addresses for return function tracing: */
1276 struct ftrace_ret_stack *ret_stack;
1277
1278 /* Timestamp for last schedule: */
1279 unsigned long long ftrace_timestamp;
1280
1281 /*
1282 * Number of functions that haven't been traced
1283 * because of depth overrun:
1284 */
1285 atomic_t trace_overrun;
1286
1287 /* Pause tracing: */
1288 atomic_t tracing_graph_pause;
1289#endif
1290
1291#ifdef CONFIG_TRACING
1292 /* State flags for use by tracers: */
1293 unsigned long trace;
1294
1295 /* Bitmask and counter of trace recursion: */
1296 unsigned long trace_recursion;
1297#endif /* CONFIG_TRACING */
1298
1299#ifdef CONFIG_KCOV
1300 /* See kernel/kcov.c for more details. */
1301
1302 /* Coverage collection mode enabled for this task (0 if disabled): */
1303 unsigned int kcov_mode;
1304
1305 /* Size of the kcov_area: */
1306 unsigned int kcov_size;
1307
1308 /* Buffer for coverage collection: */
1309 void *kcov_area;
1310
1311 /* KCOV descriptor wired with this task or NULL: */
1312 struct kcov *kcov;
1313
1314 /* KCOV common handle for remote coverage collection: */
1315 u64 kcov_handle;
1316
1317 /* KCOV sequence number: */
1318 int kcov_sequence;
1319
1320 /* Collect coverage from softirq context: */
1321 unsigned int kcov_softirq;
1322#endif
1323
1324#ifdef CONFIG_MEMCG
1325 struct mem_cgroup *memcg_in_oom;
1326 gfp_t memcg_oom_gfp_mask;
1327 int memcg_oom_order;
1328
1329 /* Number of pages to reclaim on returning to userland: */
1330 unsigned int memcg_nr_pages_over_high;
1331
1332 /* Used by memcontrol for targeted memcg charge: */
1333 struct mem_cgroup *active_memcg;
1334#endif
1335
1336#ifdef CONFIG_BLK_CGROUP
1337 struct request_queue *throttle_queue;
1338#endif
1339
1340#ifdef CONFIG_UPROBES
1341 struct uprobe_task *utask;
1342#endif
1343#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1344 unsigned int sequential_io;
1345 unsigned int sequential_io_avg;
1346#endif
1347 struct kmap_ctrl kmap_ctrl;
1348#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1349 unsigned long task_state_change;
1350#endif
1351 int pagefault_disabled;
1352#ifdef CONFIG_MMU
1353 struct task_struct *oom_reaper_list;
1354#endif
1355#ifdef CONFIG_VMAP_STACK
1356 struct vm_struct *stack_vm_area;
1357#endif
1358#ifdef CONFIG_THREAD_INFO_IN_TASK
1359 /* A live task holds one reference: */
1360 refcount_t stack_refcount;
1361#endif
1362#ifdef CONFIG_LIVEPATCH
1363 int patch_state;
1364#endif
1365#ifdef CONFIG_SECURITY
1366 /* Used by LSM modules for access restriction: */
1367 void *security;
1368#endif
1369#ifdef CONFIG_BPF_SYSCALL
1370 /* Used by BPF task local storage */
1371 struct bpf_local_storage __rcu *bpf_storage;
1372#endif
1373
1374#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1375 unsigned long lowest_stack;
1376 unsigned long prev_lowest_stack;
1377#endif
1378
1379#ifdef CONFIG_X86_MCE
1380 void __user *mce_vaddr;
1381 __u64 mce_kflags;
1382 u64 mce_addr;
1383 __u64 mce_ripv : 1,
1384 mce_whole_page : 1,
1385 __mce_reserved : 62;
1386 struct callback_head mce_kill_me;
1387#endif
1388
1389#ifdef CONFIG_KRETPROBES
1390 struct llist_head kretprobe_instances;
1391#endif
1392
1393 /*
1394 * New fields for task_struct should be added above here, so that
1395 * they are included in the randomized portion of task_struct.
1396 */
1397 randomized_struct_fields_end
1398
1399 /* CPU-specific state of this task: */
1400 struct thread_struct thread;
1401
1402 /*
1403 * WARNING: on x86, 'thread_struct' contains a variable-sized
1404 * structure. It *MUST* be at the end of 'task_struct'.
1405 *
1406 * Do not put anything below here!
1407 */
1408};
1409
1410static inline struct pid *task_pid(struct task_struct *task)
1411{
1412 return task->thread_pid;
1413}
1414
1415/*
1416 * the helpers to get the task's different pids as they are seen
1417 * from various namespaces
1418 *
1419 * task_xid_nr() : global id, i.e. the id seen from the init namespace;
1420 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of
1421 * current.
1422 * task_xid_nr_ns() : id seen from the ns specified;
1423 *
1424 * see also pid_nr() etc in include/linux/pid.h
1425 */
1426pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1427
1428static inline pid_t task_pid_nr(struct task_struct *tsk)
1429{
1430 return tsk->pid;
1431}
1432
1433static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1434{
1435 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1436}
1437
1438static inline pid_t task_pid_vnr(struct task_struct *tsk)
1439{
1440 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1441}
1442
1443
1444static inline pid_t task_tgid_nr(struct task_struct *tsk)
1445{
1446 return tsk->tgid;
1447}
1448
1449/**
1450 * pid_alive - check that a task structure is not stale
1451 * @p: Task structure to be checked.
1452 *
1453 * Test if a process is not yet dead (at most zombie state)
1454 * If pid_alive fails, then pointers within the task structure
1455 * can be stale and must not be dereferenced.
1456 *
1457 * Return: 1 if the process is alive. 0 otherwise.
1458 */
1459static inline int pid_alive(const struct task_struct *p)
1460{
1461 return p->thread_pid != NULL;
1462}
1463
1464static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1465{
1466 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1467}
1468
1469static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1470{
1471 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1472}
1473
1474
1475static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1476{
1477 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1478}
1479
1480static inline pid_t task_session_vnr(struct task_struct *tsk)
1481{
1482 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1483}
1484
1485static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1486{
1487 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1488}
1489
1490static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1491{
1492 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1493}
1494
1495static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1496{
1497 pid_t pid = 0;
1498
1499 rcu_read_lock();
1500 if (pid_alive(tsk))
1501 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1502 rcu_read_unlock();
1503
1504 return pid;
1505}
1506
1507static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1508{
1509 return task_ppid_nr_ns(tsk, &init_pid_ns);
1510}
1511
1512/* Obsolete, do not use: */
1513static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1514{
1515 return task_pgrp_nr_ns(tsk, &init_pid_ns);
1516}
1517
1518#define TASK_REPORT_IDLE (TASK_REPORT + 1)
1519#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1)
1520
1521static inline unsigned int task_state_index(struct task_struct *tsk)
1522{
1523 unsigned int tsk_state = READ_ONCE(tsk->state);
1524 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1525
1526 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1527
1528 if (tsk_state == TASK_IDLE)
1529 state = TASK_REPORT_IDLE;
1530
1531 return fls(state);
1532}
1533
1534static inline char task_index_to_char(unsigned int state)
1535{
1536 static const char state_char[] = "RSDTtXZPI";
1537
1538 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1539
1540 return state_char[state];
1541}
1542
1543static inline char task_state_to_char(struct task_struct *tsk)
1544{
1545 return task_index_to_char(task_state_index(tsk));
1546}
1547
1548/**
1549 * is_global_init - check if a task structure is init. Since init
1550 * is free to have sub-threads we need to check tgid.
1551 * @tsk: Task structure to be checked.
1552 *
1553 * Check if a task structure is the first user space task the kernel created.
1554 *
1555 * Return: 1 if the task structure is init. 0 otherwise.
1556 */
1557static inline int is_global_init(struct task_struct *tsk)
1558{
1559 return task_tgid_nr(tsk) == 1;
1560}
1561
1562extern struct pid *cad_pid;
1563
1564/*
1565 * Per process flags
1566 */
1567#define PF_VCPU 0x00000001 /* I'm a virtual CPU */
1568#define PF_IDLE 0x00000002 /* I am an IDLE thread */
1569#define PF_EXITING 0x00000004 /* Getting shut down */
1570#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */
1571#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */
1572#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */
1573#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */
1574#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */
1575#define PF_DUMPCORE 0x00000200 /* Dumped core */
1576#define PF_SIGNALED 0x00000400 /* Killed by a signal */
1577#define PF_MEMALLOC 0x00000800 /* Allocating memory */
1578#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */
1579#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */
1580#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */
1581#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */
1582#define PF_FROZEN 0x00010000 /* Frozen for system suspend */
1583#define PF_KSWAPD 0x00020000 /* I am kswapd */
1584#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */
1585#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */
1586#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to,
1587 * I am cleaning dirty pages from some other bdi. */
1588#define PF_KTHREAD 0x00200000 /* I am a kernel thread */
1589#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */
1590#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */
1591#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */
1592#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */
1593#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */
1594#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */
1595#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */
1596
1597/*
1598 * Only the _current_ task can read/write to tsk->flags, but other
1599 * tasks can access tsk->flags in readonly mode for example
1600 * with tsk_used_math (like during threaded core dumping).
1601 * There is however an exception to this rule during ptrace
1602 * or during fork: the ptracer task is allowed to write to the
1603 * child->flags of its traced child (same goes for fork, the parent
1604 * can write to the child->flags), because we're guaranteed the
1605 * child is not running and in turn not changing child->flags
1606 * at the same time the parent does it.
1607 */
1608#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0)
1609#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0)
1610#define clear_used_math() clear_stopped_child_used_math(current)
1611#define set_used_math() set_stopped_child_used_math(current)
1612
1613#define conditional_stopped_child_used_math(condition, child) \
1614 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1615
1616#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current)
1617
1618#define copy_to_stopped_child_used_math(child) \
1619 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1620
1621/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1622#define tsk_used_math(p) ((p)->flags & PF_USED_MATH)
1623#define used_math() tsk_used_math(current)
1624
1625static inline bool is_percpu_thread(void)
1626{
1627#ifdef CONFIG_SMP
1628 return (current->flags & PF_NO_SETAFFINITY) &&
1629 (current->nr_cpus_allowed == 1);
1630#else
1631 return true;
1632#endif
1633}
1634
1635/* Per-process atomic flags. */
1636#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */
1637#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */
1638#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */
1639#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */
1640#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/
1641#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */
1642#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */
1643#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */
1644
1645#define TASK_PFA_TEST(name, func) \
1646 static inline bool task_##func(struct task_struct *p) \
1647 { return test_bit(PFA_##name, &p->atomic_flags); }
1648
1649#define TASK_PFA_SET(name, func) \
1650 static inline void task_set_##func(struct task_struct *p) \
1651 { set_bit(PFA_##name, &p->atomic_flags); }
1652
1653#define TASK_PFA_CLEAR(name, func) \
1654 static inline void task_clear_##func(struct task_struct *p) \
1655 { clear_bit(PFA_##name, &p->atomic_flags); }
1656
1657TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1658TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1659
1660TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1661TASK_PFA_SET(SPREAD_PAGE, spread_page)
1662TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1663
1664TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1665TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1666TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1667
1668TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1669TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1670TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1671
1672TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1673TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1674TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1675
1676TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1677TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1678
1679TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1680TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1681TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1682
1683TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1684TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1685
1686static inline void
1687current_restore_flags(unsigned long orig_flags, unsigned long flags)
1688{
1689 current->flags &= ~flags;
1690 current->flags |= orig_flags & flags;
1691}
1692
1693extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1694extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1695#ifdef CONFIG_SMP
1696extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1697extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1698#else
1699static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1700{
1701}
1702static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1703{
1704 if (!cpumask_test_cpu(0, new_mask))
1705 return -EINVAL;
1706 return 0;
1707}
1708#endif
1709
1710extern int yield_to(struct task_struct *p, bool preempt);
1711extern void set_user_nice(struct task_struct *p, long nice);
1712extern int task_prio(const struct task_struct *p);
1713
1714/**
1715 * task_nice - return the nice value of a given task.
1716 * @p: the task in question.
1717 *
1718 * Return: The nice value [ -20 ... 0 ... 19 ].
1719 */
1720static inline int task_nice(const struct task_struct *p)
1721{
1722 return PRIO_TO_NICE((p)->static_prio);
1723}
1724
1725extern int can_nice(const struct task_struct *p, const int nice);
1726extern int task_curr(const struct task_struct *p);
1727extern int idle_cpu(int cpu);
1728extern int available_idle_cpu(int cpu);
1729extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1730extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1731extern void sched_set_fifo(struct task_struct *p);
1732extern void sched_set_fifo_low(struct task_struct *p);
1733extern void sched_set_normal(struct task_struct *p, int nice);
1734extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1735extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1736extern struct task_struct *idle_task(int cpu);
1737
1738/**
1739 * is_idle_task - is the specified task an idle task?
1740 * @p: the task in question.
1741 *
1742 * Return: 1 if @p is an idle task. 0 otherwise.
1743 */
1744static __always_inline bool is_idle_task(const struct task_struct *p)
1745{
1746 return !!(p->flags & PF_IDLE);
1747}
1748
1749extern struct task_struct *curr_task(int cpu);
1750extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1751
1752void yield(void);
1753
1754union thread_union {
1755#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1756 struct task_struct task;
1757#endif
1758#ifndef CONFIG_THREAD_INFO_IN_TASK
1759 struct thread_info thread_info;
1760#endif
1761 unsigned long stack[THREAD_SIZE/sizeof(long)];
1762};
1763
1764#ifndef CONFIG_THREAD_INFO_IN_TASK
1765extern struct thread_info init_thread_info;
1766#endif
1767
1768extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1769
1770#ifdef CONFIG_THREAD_INFO_IN_TASK
1771static inline struct thread_info *task_thread_info(struct task_struct *task)
1772{
1773 return &task->thread_info;
1774}
1775#elif !defined(__HAVE_THREAD_FUNCTIONS)
1776# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1777#endif
1778
1779/*
1780 * find a task by one of its numerical ids
1781 *
1782 * find_task_by_pid_ns():
1783 * finds a task by its pid in the specified namespace
1784 * find_task_by_vpid():
1785 * finds a task by its virtual pid
1786 *
1787 * see also find_vpid() etc in include/linux/pid.h
1788 */
1789
1790extern struct task_struct *find_task_by_vpid(pid_t nr);
1791extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1792
1793/*
1794 * find a task by its virtual pid and get the task struct
1795 */
1796extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1797
1798extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1799extern int wake_up_process(struct task_struct *tsk);
1800extern void wake_up_new_task(struct task_struct *tsk);
1801
1802#ifdef CONFIG_SMP
1803extern void kick_process(struct task_struct *tsk);
1804#else
1805static inline void kick_process(struct task_struct *tsk) { }
1806#endif
1807
1808extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1809
1810static inline void set_task_comm(struct task_struct *tsk, const char *from)
1811{
1812 __set_task_comm(tsk, from, false);
1813}
1814
1815extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1816#define get_task_comm(buf, tsk) ({ \
1817 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \
1818 __get_task_comm(buf, sizeof(buf), tsk); \
1819})
1820
1821#ifdef CONFIG_SMP
1822static __always_inline void scheduler_ipi(void)
1823{
1824 /*
1825 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1826 * TIF_NEED_RESCHED remotely (for the first time) will also send
1827 * this IPI.
1828 */
1829 preempt_fold_need_resched();
1830}
1831extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1832#else
1833static inline void scheduler_ipi(void) { }
1834static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1835{
1836 return 1;
1837}
1838#endif
1839
1840/*
1841 * Set thread flags in other task's structures.
1842 * See asm/thread_info.h for TIF_xxxx flags available:
1843 */
1844static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1845{
1846 set_ti_thread_flag(task_thread_info(tsk), flag);
1847}
1848
1849static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1850{
1851 clear_ti_thread_flag(task_thread_info(tsk), flag);
1852}
1853
1854static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1855 bool value)
1856{
1857 update_ti_thread_flag(task_thread_info(tsk), flag, value);
1858}
1859
1860static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1861{
1862 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1863}
1864
1865static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1866{
1867 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1868}
1869
1870static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1871{
1872 return test_ti_thread_flag(task_thread_info(tsk), flag);
1873}
1874
1875static inline void set_tsk_need_resched(struct task_struct *tsk)
1876{
1877 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1878}
1879
1880static inline void clear_tsk_need_resched(struct task_struct *tsk)
1881{
1882 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1883}
1884
1885static inline int test_tsk_need_resched(struct task_struct *tsk)
1886{
1887 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1888}
1889
1890/*
1891 * cond_resched() and cond_resched_lock(): latency reduction via
1892 * explicit rescheduling in places that are safe. The return
1893 * value indicates whether a reschedule was done in fact.
1894 * cond_resched_lock() will drop the spinlock before scheduling,
1895 */
1896#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
1897extern int __cond_resched(void);
1898
1899#ifdef CONFIG_PREEMPT_DYNAMIC
1900
1901DECLARE_STATIC_CALL(cond_resched, __cond_resched);
1902
1903static __always_inline int _cond_resched(void)
1904{
1905 return static_call_mod(cond_resched)();
1906}
1907
1908#else
1909
1910static inline int _cond_resched(void)
1911{
1912 return __cond_resched();
1913}
1914
1915#endif /* CONFIG_PREEMPT_DYNAMIC */
1916
1917#else
1918
1919static inline int _cond_resched(void) { return 0; }
1920
1921#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */
1922
1923#define cond_resched() ({ \
1924 ___might_sleep(__FILE__, __LINE__, 0); \
1925 _cond_resched(); \
1926})
1927
1928extern int __cond_resched_lock(spinlock_t *lock);
1929extern int __cond_resched_rwlock_read(rwlock_t *lock);
1930extern int __cond_resched_rwlock_write(rwlock_t *lock);
1931
1932#define cond_resched_lock(lock) ({ \
1933 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1934 __cond_resched_lock(lock); \
1935})
1936
1937#define cond_resched_rwlock_read(lock) ({ \
1938 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1939 __cond_resched_rwlock_read(lock); \
1940})
1941
1942#define cond_resched_rwlock_write(lock) ({ \
1943 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \
1944 __cond_resched_rwlock_write(lock); \
1945})
1946
1947static inline void cond_resched_rcu(void)
1948{
1949#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1950 rcu_read_unlock();
1951 cond_resched();
1952 rcu_read_lock();
1953#endif
1954}
1955
1956/*
1957 * Does a critical section need to be broken due to another
1958 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1959 * but a general need for low latency)
1960 */
1961static inline int spin_needbreak(spinlock_t *lock)
1962{
1963#ifdef CONFIG_PREEMPTION
1964 return spin_is_contended(lock);
1965#else
1966 return 0;
1967#endif
1968}
1969
1970/*
1971 * Check if a rwlock is contended.
1972 * Returns non-zero if there is another task waiting on the rwlock.
1973 * Returns zero if the lock is not contended or the system / underlying
1974 * rwlock implementation does not support contention detection.
1975 * Technically does not depend on CONFIG_PREEMPTION, but a general need
1976 * for low latency.
1977 */
1978static inline int rwlock_needbreak(rwlock_t *lock)
1979{
1980#ifdef CONFIG_PREEMPTION
1981 return rwlock_is_contended(lock);
1982#else
1983 return 0;
1984#endif
1985}
1986
1987static __always_inline bool need_resched(void)
1988{
1989 return unlikely(tif_need_resched());
1990}
1991
1992/*
1993 * Wrappers for p->thread_info->cpu access. No-op on UP.
1994 */
1995#ifdef CONFIG_SMP
1996
1997static inline unsigned int task_cpu(const struct task_struct *p)
1998{
1999#ifdef CONFIG_THREAD_INFO_IN_TASK
2000 return READ_ONCE(p->cpu);
2001#else
2002 return READ_ONCE(task_thread_info(p)->cpu);
2003#endif
2004}
2005
2006extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
2007
2008#else
2009
2010static inline unsigned int task_cpu(const struct task_struct *p)
2011{
2012 return 0;
2013}
2014
2015static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
2016{
2017}
2018
2019#endif /* CONFIG_SMP */
2020
2021/*
2022 * In order to reduce various lock holder preemption latencies provide an
2023 * interface to see if a vCPU is currently running or not.
2024 *
2025 * This allows us to terminate optimistic spin loops and block, analogous to
2026 * the native optimistic spin heuristic of testing if the lock owner task is
2027 * running or not.
2028 */
2029#ifndef vcpu_is_preempted
2030static inline bool vcpu_is_preempted(int cpu)
2031{
2032 return false;
2033}
2034#endif
2035
2036extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
2037extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
2038
2039#ifndef TASK_SIZE_OF
2040#define TASK_SIZE_OF(tsk) TASK_SIZE
2041#endif
2042
2043#ifdef CONFIG_SMP
2044/* Returns effective CPU energy utilization, as seen by the scheduler */
2045unsigned long sched_cpu_util(int cpu, unsigned long max);
2046#endif /* CONFIG_SMP */
2047
2048#ifdef CONFIG_RSEQ
2049
2050/*
2051 * Map the event mask on the user-space ABI enum rseq_cs_flags
2052 * for direct mask checks.
2053 */
2054enum rseq_event_mask_bits {
2055 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
2056 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
2057 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
2058};
2059
2060enum rseq_event_mask {
2061 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT),
2062 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT),
2063 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT),
2064};
2065
2066static inline void rseq_set_notify_resume(struct task_struct *t)
2067{
2068 if (t->rseq)
2069 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
2070}
2071
2072void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
2073
2074static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2075 struct pt_regs *regs)
2076{
2077 if (current->rseq)
2078 __rseq_handle_notify_resume(ksig, regs);
2079}
2080
2081static inline void rseq_signal_deliver(struct ksignal *ksig,
2082 struct pt_regs *regs)
2083{
2084 preempt_disable();
2085 __set_bit(RSEQ_EVENT_SIGNAL_BIT, ¤t->rseq_event_mask);
2086 preempt_enable();
2087 rseq_handle_notify_resume(ksig, regs);
2088}
2089
2090/* rseq_preempt() requires preemption to be disabled. */
2091static inline void rseq_preempt(struct task_struct *t)
2092{
2093 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
2094 rseq_set_notify_resume(t);
2095}
2096
2097/* rseq_migrate() requires preemption to be disabled. */
2098static inline void rseq_migrate(struct task_struct *t)
2099{
2100 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2101 rseq_set_notify_resume(t);
2102}
2103
2104/*
2105 * If parent process has a registered restartable sequences area, the
2106 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2107 */
2108static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2109{
2110 if (clone_flags & CLONE_VM) {
2111 t->rseq = NULL;
2112 t->rseq_sig = 0;
2113 t->rseq_event_mask = 0;
2114 } else {
2115 t->rseq = current->rseq;
2116 t->rseq_sig = current->rseq_sig;
2117 t->rseq_event_mask = current->rseq_event_mask;
2118 }
2119}
2120
2121static inline void rseq_execve(struct task_struct *t)
2122{
2123 t->rseq = NULL;
2124 t->rseq_sig = 0;
2125 t->rseq_event_mask = 0;
2126}
2127
2128#else
2129
2130static inline void rseq_set_notify_resume(struct task_struct *t)
2131{
2132}
2133static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2134 struct pt_regs *regs)
2135{
2136}
2137static inline void rseq_signal_deliver(struct ksignal *ksig,
2138 struct pt_regs *regs)
2139{
2140}
2141static inline void rseq_preempt(struct task_struct *t)
2142{
2143}
2144static inline void rseq_migrate(struct task_struct *t)
2145{
2146}
2147static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2148{
2149}
2150static inline void rseq_execve(struct task_struct *t)
2151{
2152}
2153
2154#endif
2155
2156#ifdef CONFIG_DEBUG_RSEQ
2157
2158void rseq_syscall(struct pt_regs *regs);
2159
2160#else
2161
2162static inline void rseq_syscall(struct pt_regs *regs)
2163{
2164}
2165
2166#endif
2167
2168const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2169char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2170int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2171
2172const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2173const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2174const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2175
2176int sched_trace_rq_cpu(struct rq *rq);
2177int sched_trace_rq_cpu_capacity(struct rq *rq);
2178int sched_trace_rq_nr_running(struct rq *rq);
2179
2180const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2181
2182#endif