at v5.13 62 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_SCHED_H 3#define _LINUX_SCHED_H 4 5/* 6 * Define 'struct task_struct' and provide the main scheduler 7 * APIs (schedule(), wakeup variants, etc.) 8 */ 9 10#include <uapi/linux/sched.h> 11 12#include <asm/current.h> 13 14#include <linux/pid.h> 15#include <linux/sem.h> 16#include <linux/shm.h> 17#include <linux/mutex.h> 18#include <linux/plist.h> 19#include <linux/hrtimer.h> 20#include <linux/irqflags.h> 21#include <linux/seccomp.h> 22#include <linux/nodemask.h> 23#include <linux/rcupdate.h> 24#include <linux/refcount.h> 25#include <linux/resource.h> 26#include <linux/latencytop.h> 27#include <linux/sched/prio.h> 28#include <linux/sched/types.h> 29#include <linux/signal_types.h> 30#include <linux/syscall_user_dispatch.h> 31#include <linux/mm_types_task.h> 32#include <linux/task_io_accounting.h> 33#include <linux/posix-timers.h> 34#include <linux/rseq.h> 35#include <linux/seqlock.h> 36#include <linux/kcsan.h> 37#include <asm/kmap_size.h> 38 39/* task_struct member predeclarations (sorted alphabetically): */ 40struct audit_context; 41struct backing_dev_info; 42struct bio_list; 43struct blk_plug; 44struct bpf_local_storage; 45struct capture_control; 46struct cfs_rq; 47struct fs_struct; 48struct futex_pi_state; 49struct io_context; 50struct io_uring_task; 51struct mempolicy; 52struct nameidata; 53struct nsproxy; 54struct perf_event_context; 55struct pid_namespace; 56struct pipe_inode_info; 57struct rcu_node; 58struct reclaim_state; 59struct robust_list_head; 60struct root_domain; 61struct rq; 62struct sched_attr; 63struct sched_param; 64struct seq_file; 65struct sighand_struct; 66struct signal_struct; 67struct task_delay_info; 68struct task_group; 69 70/* 71 * Task state bitmask. NOTE! These bits are also 72 * encoded in fs/proc/array.c: get_task_state(). 73 * 74 * We have two separate sets of flags: task->state 75 * is about runnability, while task->exit_state are 76 * about the task exiting. Confusing, but this way 77 * modifying one set can't modify the other one by 78 * mistake. 79 */ 80 81/* Used in tsk->state: */ 82#define TASK_RUNNING 0x0000 83#define TASK_INTERRUPTIBLE 0x0001 84#define TASK_UNINTERRUPTIBLE 0x0002 85#define __TASK_STOPPED 0x0004 86#define __TASK_TRACED 0x0008 87/* Used in tsk->exit_state: */ 88#define EXIT_DEAD 0x0010 89#define EXIT_ZOMBIE 0x0020 90#define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 91/* Used in tsk->state again: */ 92#define TASK_PARKED 0x0040 93#define TASK_DEAD 0x0080 94#define TASK_WAKEKILL 0x0100 95#define TASK_WAKING 0x0200 96#define TASK_NOLOAD 0x0400 97#define TASK_NEW 0x0800 98#define TASK_STATE_MAX 0x1000 99 100/* Convenience macros for the sake of set_current_state: */ 101#define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) 102#define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) 103#define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) 104 105#define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) 106 107/* Convenience macros for the sake of wake_up(): */ 108#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 109 110/* get_task_state(): */ 111#define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ 112 TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ 113 __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \ 114 TASK_PARKED) 115 116#define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) 117 118#define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) 119 120#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) 121 122#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 123 124/* 125 * Special states are those that do not use the normal wait-loop pattern. See 126 * the comment with set_special_state(). 127 */ 128#define is_special_task_state(state) \ 129 ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD)) 130 131#define __set_current_state(state_value) \ 132 do { \ 133 WARN_ON_ONCE(is_special_task_state(state_value));\ 134 current->task_state_change = _THIS_IP_; \ 135 current->state = (state_value); \ 136 } while (0) 137 138#define set_current_state(state_value) \ 139 do { \ 140 WARN_ON_ONCE(is_special_task_state(state_value));\ 141 current->task_state_change = _THIS_IP_; \ 142 smp_store_mb(current->state, (state_value)); \ 143 } while (0) 144 145#define set_special_state(state_value) \ 146 do { \ 147 unsigned long flags; /* may shadow */ \ 148 WARN_ON_ONCE(!is_special_task_state(state_value)); \ 149 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 150 current->task_state_change = _THIS_IP_; \ 151 current->state = (state_value); \ 152 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 153 } while (0) 154#else 155/* 156 * set_current_state() includes a barrier so that the write of current->state 157 * is correctly serialised wrt the caller's subsequent test of whether to 158 * actually sleep: 159 * 160 * for (;;) { 161 * set_current_state(TASK_UNINTERRUPTIBLE); 162 * if (CONDITION) 163 * break; 164 * 165 * schedule(); 166 * } 167 * __set_current_state(TASK_RUNNING); 168 * 169 * If the caller does not need such serialisation (because, for instance, the 170 * CONDITION test and condition change and wakeup are under the same lock) then 171 * use __set_current_state(). 172 * 173 * The above is typically ordered against the wakeup, which does: 174 * 175 * CONDITION = 1; 176 * wake_up_state(p, TASK_UNINTERRUPTIBLE); 177 * 178 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before 179 * accessing p->state. 180 * 181 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, 182 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a 183 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). 184 * 185 * However, with slightly different timing the wakeup TASK_RUNNING store can 186 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not 187 * a problem either because that will result in one extra go around the loop 188 * and our @cond test will save the day. 189 * 190 * Also see the comments of try_to_wake_up(). 191 */ 192#define __set_current_state(state_value) \ 193 current->state = (state_value) 194 195#define set_current_state(state_value) \ 196 smp_store_mb(current->state, (state_value)) 197 198/* 199 * set_special_state() should be used for those states when the blocking task 200 * can not use the regular condition based wait-loop. In that case we must 201 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores 202 * will not collide with our state change. 203 */ 204#define set_special_state(state_value) \ 205 do { \ 206 unsigned long flags; /* may shadow */ \ 207 raw_spin_lock_irqsave(&current->pi_lock, flags); \ 208 current->state = (state_value); \ 209 raw_spin_unlock_irqrestore(&current->pi_lock, flags); \ 210 } while (0) 211 212#endif 213 214/* Task command name length: */ 215#define TASK_COMM_LEN 16 216 217extern void scheduler_tick(void); 218 219#define MAX_SCHEDULE_TIMEOUT LONG_MAX 220 221extern long schedule_timeout(long timeout); 222extern long schedule_timeout_interruptible(long timeout); 223extern long schedule_timeout_killable(long timeout); 224extern long schedule_timeout_uninterruptible(long timeout); 225extern long schedule_timeout_idle(long timeout); 226asmlinkage void schedule(void); 227extern void schedule_preempt_disabled(void); 228asmlinkage void preempt_schedule_irq(void); 229 230extern int __must_check io_schedule_prepare(void); 231extern void io_schedule_finish(int token); 232extern long io_schedule_timeout(long timeout); 233extern void io_schedule(void); 234 235/** 236 * struct prev_cputime - snapshot of system and user cputime 237 * @utime: time spent in user mode 238 * @stime: time spent in system mode 239 * @lock: protects the above two fields 240 * 241 * Stores previous user/system time values such that we can guarantee 242 * monotonicity. 243 */ 244struct prev_cputime { 245#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE 246 u64 utime; 247 u64 stime; 248 raw_spinlock_t lock; 249#endif 250}; 251 252enum vtime_state { 253 /* Task is sleeping or running in a CPU with VTIME inactive: */ 254 VTIME_INACTIVE = 0, 255 /* Task is idle */ 256 VTIME_IDLE, 257 /* Task runs in kernelspace in a CPU with VTIME active: */ 258 VTIME_SYS, 259 /* Task runs in userspace in a CPU with VTIME active: */ 260 VTIME_USER, 261 /* Task runs as guests in a CPU with VTIME active: */ 262 VTIME_GUEST, 263}; 264 265struct vtime { 266 seqcount_t seqcount; 267 unsigned long long starttime; 268 enum vtime_state state; 269 unsigned int cpu; 270 u64 utime; 271 u64 stime; 272 u64 gtime; 273}; 274 275/* 276 * Utilization clamp constraints. 277 * @UCLAMP_MIN: Minimum utilization 278 * @UCLAMP_MAX: Maximum utilization 279 * @UCLAMP_CNT: Utilization clamp constraints count 280 */ 281enum uclamp_id { 282 UCLAMP_MIN = 0, 283 UCLAMP_MAX, 284 UCLAMP_CNT 285}; 286 287#ifdef CONFIG_SMP 288extern struct root_domain def_root_domain; 289extern struct mutex sched_domains_mutex; 290#endif 291 292struct sched_info { 293#ifdef CONFIG_SCHED_INFO 294 /* Cumulative counters: */ 295 296 /* # of times we have run on this CPU: */ 297 unsigned long pcount; 298 299 /* Time spent waiting on a runqueue: */ 300 unsigned long long run_delay; 301 302 /* Timestamps: */ 303 304 /* When did we last run on a CPU? */ 305 unsigned long long last_arrival; 306 307 /* When were we last queued to run? */ 308 unsigned long long last_queued; 309 310#endif /* CONFIG_SCHED_INFO */ 311}; 312 313/* 314 * Integer metrics need fixed point arithmetic, e.g., sched/fair 315 * has a few: load, load_avg, util_avg, freq, and capacity. 316 * 317 * We define a basic fixed point arithmetic range, and then formalize 318 * all these metrics based on that basic range. 319 */ 320# define SCHED_FIXEDPOINT_SHIFT 10 321# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) 322 323/* Increase resolution of cpu_capacity calculations */ 324# define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT 325# define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) 326 327struct load_weight { 328 unsigned long weight; 329 u32 inv_weight; 330}; 331 332/** 333 * struct util_est - Estimation utilization of FAIR tasks 334 * @enqueued: instantaneous estimated utilization of a task/cpu 335 * @ewma: the Exponential Weighted Moving Average (EWMA) 336 * utilization of a task 337 * 338 * Support data structure to track an Exponential Weighted Moving Average 339 * (EWMA) of a FAIR task's utilization. New samples are added to the moving 340 * average each time a task completes an activation. Sample's weight is chosen 341 * so that the EWMA will be relatively insensitive to transient changes to the 342 * task's workload. 343 * 344 * The enqueued attribute has a slightly different meaning for tasks and cpus: 345 * - task: the task's util_avg at last task dequeue time 346 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU 347 * Thus, the util_est.enqueued of a task represents the contribution on the 348 * estimated utilization of the CPU where that task is currently enqueued. 349 * 350 * Only for tasks we track a moving average of the past instantaneous 351 * estimated utilization. This allows to absorb sporadic drops in utilization 352 * of an otherwise almost periodic task. 353 * 354 * The UTIL_AVG_UNCHANGED flag is used to synchronize util_est with util_avg 355 * updates. When a task is dequeued, its util_est should not be updated if its 356 * util_avg has not been updated in the meantime. 357 * This information is mapped into the MSB bit of util_est.enqueued at dequeue 358 * time. Since max value of util_est.enqueued for a task is 1024 (PELT util_avg 359 * for a task) it is safe to use MSB. 360 */ 361struct util_est { 362 unsigned int enqueued; 363 unsigned int ewma; 364#define UTIL_EST_WEIGHT_SHIFT 2 365#define UTIL_AVG_UNCHANGED 0x80000000 366} __attribute__((__aligned__(sizeof(u64)))); 367 368/* 369 * The load/runnable/util_avg accumulates an infinite geometric series 370 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c). 371 * 372 * [load_avg definition] 373 * 374 * load_avg = runnable% * scale_load_down(load) 375 * 376 * [runnable_avg definition] 377 * 378 * runnable_avg = runnable% * SCHED_CAPACITY_SCALE 379 * 380 * [util_avg definition] 381 * 382 * util_avg = running% * SCHED_CAPACITY_SCALE 383 * 384 * where runnable% is the time ratio that a sched_entity is runnable and 385 * running% the time ratio that a sched_entity is running. 386 * 387 * For cfs_rq, they are the aggregated values of all runnable and blocked 388 * sched_entities. 389 * 390 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU 391 * capacity scaling. The scaling is done through the rq_clock_pelt that is used 392 * for computing those signals (see update_rq_clock_pelt()) 393 * 394 * N.B., the above ratios (runnable% and running%) themselves are in the 395 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them 396 * to as large a range as necessary. This is for example reflected by 397 * util_avg's SCHED_CAPACITY_SCALE. 398 * 399 * [Overflow issue] 400 * 401 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities 402 * with the highest load (=88761), always runnable on a single cfs_rq, 403 * and should not overflow as the number already hits PID_MAX_LIMIT. 404 * 405 * For all other cases (including 32-bit kernels), struct load_weight's 406 * weight will overflow first before we do, because: 407 * 408 * Max(load_avg) <= Max(load.weight) 409 * 410 * Then it is the load_weight's responsibility to consider overflow 411 * issues. 412 */ 413struct sched_avg { 414 u64 last_update_time; 415 u64 load_sum; 416 u64 runnable_sum; 417 u32 util_sum; 418 u32 period_contrib; 419 unsigned long load_avg; 420 unsigned long runnable_avg; 421 unsigned long util_avg; 422 struct util_est util_est; 423} ____cacheline_aligned; 424 425struct sched_statistics { 426#ifdef CONFIG_SCHEDSTATS 427 u64 wait_start; 428 u64 wait_max; 429 u64 wait_count; 430 u64 wait_sum; 431 u64 iowait_count; 432 u64 iowait_sum; 433 434 u64 sleep_start; 435 u64 sleep_max; 436 s64 sum_sleep_runtime; 437 438 u64 block_start; 439 u64 block_max; 440 u64 exec_max; 441 u64 slice_max; 442 443 u64 nr_migrations_cold; 444 u64 nr_failed_migrations_affine; 445 u64 nr_failed_migrations_running; 446 u64 nr_failed_migrations_hot; 447 u64 nr_forced_migrations; 448 449 u64 nr_wakeups; 450 u64 nr_wakeups_sync; 451 u64 nr_wakeups_migrate; 452 u64 nr_wakeups_local; 453 u64 nr_wakeups_remote; 454 u64 nr_wakeups_affine; 455 u64 nr_wakeups_affine_attempts; 456 u64 nr_wakeups_passive; 457 u64 nr_wakeups_idle; 458#endif 459}; 460 461struct sched_entity { 462 /* For load-balancing: */ 463 struct load_weight load; 464 struct rb_node run_node; 465 struct list_head group_node; 466 unsigned int on_rq; 467 468 u64 exec_start; 469 u64 sum_exec_runtime; 470 u64 vruntime; 471 u64 prev_sum_exec_runtime; 472 473 u64 nr_migrations; 474 475 struct sched_statistics statistics; 476 477#ifdef CONFIG_FAIR_GROUP_SCHED 478 int depth; 479 struct sched_entity *parent; 480 /* rq on which this entity is (to be) queued: */ 481 struct cfs_rq *cfs_rq; 482 /* rq "owned" by this entity/group: */ 483 struct cfs_rq *my_q; 484 /* cached value of my_q->h_nr_running */ 485 unsigned long runnable_weight; 486#endif 487 488#ifdef CONFIG_SMP 489 /* 490 * Per entity load average tracking. 491 * 492 * Put into separate cache line so it does not 493 * collide with read-mostly values above. 494 */ 495 struct sched_avg avg; 496#endif 497}; 498 499struct sched_rt_entity { 500 struct list_head run_list; 501 unsigned long timeout; 502 unsigned long watchdog_stamp; 503 unsigned int time_slice; 504 unsigned short on_rq; 505 unsigned short on_list; 506 507 struct sched_rt_entity *back; 508#ifdef CONFIG_RT_GROUP_SCHED 509 struct sched_rt_entity *parent; 510 /* rq on which this entity is (to be) queued: */ 511 struct rt_rq *rt_rq; 512 /* rq "owned" by this entity/group: */ 513 struct rt_rq *my_q; 514#endif 515} __randomize_layout; 516 517struct sched_dl_entity { 518 struct rb_node rb_node; 519 520 /* 521 * Original scheduling parameters. Copied here from sched_attr 522 * during sched_setattr(), they will remain the same until 523 * the next sched_setattr(). 524 */ 525 u64 dl_runtime; /* Maximum runtime for each instance */ 526 u64 dl_deadline; /* Relative deadline of each instance */ 527 u64 dl_period; /* Separation of two instances (period) */ 528 u64 dl_bw; /* dl_runtime / dl_period */ 529 u64 dl_density; /* dl_runtime / dl_deadline */ 530 531 /* 532 * Actual scheduling parameters. Initialized with the values above, 533 * they are continuously updated during task execution. Note that 534 * the remaining runtime could be < 0 in case we are in overrun. 535 */ 536 s64 runtime; /* Remaining runtime for this instance */ 537 u64 deadline; /* Absolute deadline for this instance */ 538 unsigned int flags; /* Specifying the scheduler behaviour */ 539 540 /* 541 * Some bool flags: 542 * 543 * @dl_throttled tells if we exhausted the runtime. If so, the 544 * task has to wait for a replenishment to be performed at the 545 * next firing of dl_timer. 546 * 547 * @dl_boosted tells if we are boosted due to DI. If so we are 548 * outside bandwidth enforcement mechanism (but only until we 549 * exit the critical section); 550 * 551 * @dl_yielded tells if task gave up the CPU before consuming 552 * all its available runtime during the last job. 553 * 554 * @dl_non_contending tells if the task is inactive while still 555 * contributing to the active utilization. In other words, it 556 * indicates if the inactive timer has been armed and its handler 557 * has not been executed yet. This flag is useful to avoid race 558 * conditions between the inactive timer handler and the wakeup 559 * code. 560 * 561 * @dl_overrun tells if the task asked to be informed about runtime 562 * overruns. 563 */ 564 unsigned int dl_throttled : 1; 565 unsigned int dl_yielded : 1; 566 unsigned int dl_non_contending : 1; 567 unsigned int dl_overrun : 1; 568 569 /* 570 * Bandwidth enforcement timer. Each -deadline task has its 571 * own bandwidth to be enforced, thus we need one timer per task. 572 */ 573 struct hrtimer dl_timer; 574 575 /* 576 * Inactive timer, responsible for decreasing the active utilization 577 * at the "0-lag time". When a -deadline task blocks, it contributes 578 * to GRUB's active utilization until the "0-lag time", hence a 579 * timer is needed to decrease the active utilization at the correct 580 * time. 581 */ 582 struct hrtimer inactive_timer; 583 584#ifdef CONFIG_RT_MUTEXES 585 /* 586 * Priority Inheritance. When a DEADLINE scheduling entity is boosted 587 * pi_se points to the donor, otherwise points to the dl_se it belongs 588 * to (the original one/itself). 589 */ 590 struct sched_dl_entity *pi_se; 591#endif 592}; 593 594#ifdef CONFIG_UCLAMP_TASK 595/* Number of utilization clamp buckets (shorter alias) */ 596#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT 597 598/* 599 * Utilization clamp for a scheduling entity 600 * @value: clamp value "assigned" to a se 601 * @bucket_id: bucket index corresponding to the "assigned" value 602 * @active: the se is currently refcounted in a rq's bucket 603 * @user_defined: the requested clamp value comes from user-space 604 * 605 * The bucket_id is the index of the clamp bucket matching the clamp value 606 * which is pre-computed and stored to avoid expensive integer divisions from 607 * the fast path. 608 * 609 * The active bit is set whenever a task has got an "effective" value assigned, 610 * which can be different from the clamp value "requested" from user-space. 611 * This allows to know a task is refcounted in the rq's bucket corresponding 612 * to the "effective" bucket_id. 613 * 614 * The user_defined bit is set whenever a task has got a task-specific clamp 615 * value requested from userspace, i.e. the system defaults apply to this task 616 * just as a restriction. This allows to relax default clamps when a less 617 * restrictive task-specific value has been requested, thus allowing to 618 * implement a "nice" semantic. For example, a task running with a 20% 619 * default boost can still drop its own boosting to 0%. 620 */ 621struct uclamp_se { 622 unsigned int value : bits_per(SCHED_CAPACITY_SCALE); 623 unsigned int bucket_id : bits_per(UCLAMP_BUCKETS); 624 unsigned int active : 1; 625 unsigned int user_defined : 1; 626}; 627#endif /* CONFIG_UCLAMP_TASK */ 628 629union rcu_special { 630 struct { 631 u8 blocked; 632 u8 need_qs; 633 u8 exp_hint; /* Hint for performance. */ 634 u8 need_mb; /* Readers need smp_mb(). */ 635 } b; /* Bits. */ 636 u32 s; /* Set of bits. */ 637}; 638 639enum perf_event_task_context { 640 perf_invalid_context = -1, 641 perf_hw_context = 0, 642 perf_sw_context, 643 perf_nr_task_contexts, 644}; 645 646struct wake_q_node { 647 struct wake_q_node *next; 648}; 649 650struct kmap_ctrl { 651#ifdef CONFIG_KMAP_LOCAL 652 int idx; 653 pte_t pteval[KM_MAX_IDX]; 654#endif 655}; 656 657struct task_struct { 658#ifdef CONFIG_THREAD_INFO_IN_TASK 659 /* 660 * For reasons of header soup (see current_thread_info()), this 661 * must be the first element of task_struct. 662 */ 663 struct thread_info thread_info; 664#endif 665 /* -1 unrunnable, 0 runnable, >0 stopped: */ 666 volatile long state; 667 668 /* 669 * This begins the randomizable portion of task_struct. Only 670 * scheduling-critical items should be added above here. 671 */ 672 randomized_struct_fields_start 673 674 void *stack; 675 refcount_t usage; 676 /* Per task flags (PF_*), defined further below: */ 677 unsigned int flags; 678 unsigned int ptrace; 679 680#ifdef CONFIG_SMP 681 int on_cpu; 682 struct __call_single_node wake_entry; 683#ifdef CONFIG_THREAD_INFO_IN_TASK 684 /* Current CPU: */ 685 unsigned int cpu; 686#endif 687 unsigned int wakee_flips; 688 unsigned long wakee_flip_decay_ts; 689 struct task_struct *last_wakee; 690 691 /* 692 * recent_used_cpu is initially set as the last CPU used by a task 693 * that wakes affine another task. Waker/wakee relationships can 694 * push tasks around a CPU where each wakeup moves to the next one. 695 * Tracking a recently used CPU allows a quick search for a recently 696 * used CPU that may be idle. 697 */ 698 int recent_used_cpu; 699 int wake_cpu; 700#endif 701 int on_rq; 702 703 int prio; 704 int static_prio; 705 int normal_prio; 706 unsigned int rt_priority; 707 708 const struct sched_class *sched_class; 709 struct sched_entity se; 710 struct sched_rt_entity rt; 711#ifdef CONFIG_CGROUP_SCHED 712 struct task_group *sched_task_group; 713#endif 714 struct sched_dl_entity dl; 715 716#ifdef CONFIG_UCLAMP_TASK 717 /* 718 * Clamp values requested for a scheduling entity. 719 * Must be updated with task_rq_lock() held. 720 */ 721 struct uclamp_se uclamp_req[UCLAMP_CNT]; 722 /* 723 * Effective clamp values used for a scheduling entity. 724 * Must be updated with task_rq_lock() held. 725 */ 726 struct uclamp_se uclamp[UCLAMP_CNT]; 727#endif 728 729#ifdef CONFIG_PREEMPT_NOTIFIERS 730 /* List of struct preempt_notifier: */ 731 struct hlist_head preempt_notifiers; 732#endif 733 734#ifdef CONFIG_BLK_DEV_IO_TRACE 735 unsigned int btrace_seq; 736#endif 737 738 unsigned int policy; 739 int nr_cpus_allowed; 740 const cpumask_t *cpus_ptr; 741 cpumask_t cpus_mask; 742 void *migration_pending; 743#ifdef CONFIG_SMP 744 unsigned short migration_disabled; 745#endif 746 unsigned short migration_flags; 747 748#ifdef CONFIG_PREEMPT_RCU 749 int rcu_read_lock_nesting; 750 union rcu_special rcu_read_unlock_special; 751 struct list_head rcu_node_entry; 752 struct rcu_node *rcu_blocked_node; 753#endif /* #ifdef CONFIG_PREEMPT_RCU */ 754 755#ifdef CONFIG_TASKS_RCU 756 unsigned long rcu_tasks_nvcsw; 757 u8 rcu_tasks_holdout; 758 u8 rcu_tasks_idx; 759 int rcu_tasks_idle_cpu; 760 struct list_head rcu_tasks_holdout_list; 761#endif /* #ifdef CONFIG_TASKS_RCU */ 762 763#ifdef CONFIG_TASKS_TRACE_RCU 764 int trc_reader_nesting; 765 int trc_ipi_to_cpu; 766 union rcu_special trc_reader_special; 767 bool trc_reader_checked; 768 struct list_head trc_holdout_list; 769#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */ 770 771 struct sched_info sched_info; 772 773 struct list_head tasks; 774#ifdef CONFIG_SMP 775 struct plist_node pushable_tasks; 776 struct rb_node pushable_dl_tasks; 777#endif 778 779 struct mm_struct *mm; 780 struct mm_struct *active_mm; 781 782 /* Per-thread vma caching: */ 783 struct vmacache vmacache; 784 785#ifdef SPLIT_RSS_COUNTING 786 struct task_rss_stat rss_stat; 787#endif 788 int exit_state; 789 int exit_code; 790 int exit_signal; 791 /* The signal sent when the parent dies: */ 792 int pdeath_signal; 793 /* JOBCTL_*, siglock protected: */ 794 unsigned long jobctl; 795 796 /* Used for emulating ABI behavior of previous Linux versions: */ 797 unsigned int personality; 798 799 /* Scheduler bits, serialized by scheduler locks: */ 800 unsigned sched_reset_on_fork:1; 801 unsigned sched_contributes_to_load:1; 802 unsigned sched_migrated:1; 803#ifdef CONFIG_PSI 804 unsigned sched_psi_wake_requeue:1; 805#endif 806 807 /* Force alignment to the next boundary: */ 808 unsigned :0; 809 810 /* Unserialized, strictly 'current' */ 811 812 /* 813 * This field must not be in the scheduler word above due to wakelist 814 * queueing no longer being serialized by p->on_cpu. However: 815 * 816 * p->XXX = X; ttwu() 817 * schedule() if (p->on_rq && ..) // false 818 * smp_mb__after_spinlock(); if (smp_load_acquire(&p->on_cpu) && //true 819 * deactivate_task() ttwu_queue_wakelist()) 820 * p->on_rq = 0; p->sched_remote_wakeup = Y; 821 * 822 * guarantees all stores of 'current' are visible before 823 * ->sched_remote_wakeup gets used, so it can be in this word. 824 */ 825 unsigned sched_remote_wakeup:1; 826 827 /* Bit to tell LSMs we're in execve(): */ 828 unsigned in_execve:1; 829 unsigned in_iowait:1; 830#ifndef TIF_RESTORE_SIGMASK 831 unsigned restore_sigmask:1; 832#endif 833#ifdef CONFIG_MEMCG 834 unsigned in_user_fault:1; 835#endif 836#ifdef CONFIG_COMPAT_BRK 837 unsigned brk_randomized:1; 838#endif 839#ifdef CONFIG_CGROUPS 840 /* disallow userland-initiated cgroup migration */ 841 unsigned no_cgroup_migration:1; 842 /* task is frozen/stopped (used by the cgroup freezer) */ 843 unsigned frozen:1; 844#endif 845#ifdef CONFIG_BLK_CGROUP 846 unsigned use_memdelay:1; 847#endif 848#ifdef CONFIG_PSI 849 /* Stalled due to lack of memory */ 850 unsigned in_memstall:1; 851#endif 852#ifdef CONFIG_PAGE_OWNER 853 /* Used by page_owner=on to detect recursion in page tracking. */ 854 unsigned in_page_owner:1; 855#endif 856 857 unsigned long atomic_flags; /* Flags requiring atomic access. */ 858 859 struct restart_block restart_block; 860 861 pid_t pid; 862 pid_t tgid; 863 864#ifdef CONFIG_STACKPROTECTOR 865 /* Canary value for the -fstack-protector GCC feature: */ 866 unsigned long stack_canary; 867#endif 868 /* 869 * Pointers to the (original) parent process, youngest child, younger sibling, 870 * older sibling, respectively. (p->father can be replaced with 871 * p->real_parent->pid) 872 */ 873 874 /* Real parent process: */ 875 struct task_struct __rcu *real_parent; 876 877 /* Recipient of SIGCHLD, wait4() reports: */ 878 struct task_struct __rcu *parent; 879 880 /* 881 * Children/sibling form the list of natural children: 882 */ 883 struct list_head children; 884 struct list_head sibling; 885 struct task_struct *group_leader; 886 887 /* 888 * 'ptraced' is the list of tasks this task is using ptrace() on. 889 * 890 * This includes both natural children and PTRACE_ATTACH targets. 891 * 'ptrace_entry' is this task's link on the p->parent->ptraced list. 892 */ 893 struct list_head ptraced; 894 struct list_head ptrace_entry; 895 896 /* PID/PID hash table linkage. */ 897 struct pid *thread_pid; 898 struct hlist_node pid_links[PIDTYPE_MAX]; 899 struct list_head thread_group; 900 struct list_head thread_node; 901 902 struct completion *vfork_done; 903 904 /* CLONE_CHILD_SETTID: */ 905 int __user *set_child_tid; 906 907 /* CLONE_CHILD_CLEARTID: */ 908 int __user *clear_child_tid; 909 910 /* PF_IO_WORKER */ 911 void *pf_io_worker; 912 913 u64 utime; 914 u64 stime; 915#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME 916 u64 utimescaled; 917 u64 stimescaled; 918#endif 919 u64 gtime; 920 struct prev_cputime prev_cputime; 921#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN 922 struct vtime vtime; 923#endif 924 925#ifdef CONFIG_NO_HZ_FULL 926 atomic_t tick_dep_mask; 927#endif 928 /* Context switch counts: */ 929 unsigned long nvcsw; 930 unsigned long nivcsw; 931 932 /* Monotonic time in nsecs: */ 933 u64 start_time; 934 935 /* Boot based time in nsecs: */ 936 u64 start_boottime; 937 938 /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */ 939 unsigned long min_flt; 940 unsigned long maj_flt; 941 942 /* Empty if CONFIG_POSIX_CPUTIMERS=n */ 943 struct posix_cputimers posix_cputimers; 944 945#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK 946 struct posix_cputimers_work posix_cputimers_work; 947#endif 948 949 /* Process credentials: */ 950 951 /* Tracer's credentials at attach: */ 952 const struct cred __rcu *ptracer_cred; 953 954 /* Objective and real subjective task credentials (COW): */ 955 const struct cred __rcu *real_cred; 956 957 /* Effective (overridable) subjective task credentials (COW): */ 958 const struct cred __rcu *cred; 959 960#ifdef CONFIG_KEYS 961 /* Cached requested key. */ 962 struct key *cached_requested_key; 963#endif 964 965 /* 966 * executable name, excluding path. 967 * 968 * - normally initialized setup_new_exec() 969 * - access it with [gs]et_task_comm() 970 * - lock it with task_lock() 971 */ 972 char comm[TASK_COMM_LEN]; 973 974 struct nameidata *nameidata; 975 976#ifdef CONFIG_SYSVIPC 977 struct sysv_sem sysvsem; 978 struct sysv_shm sysvshm; 979#endif 980#ifdef CONFIG_DETECT_HUNG_TASK 981 unsigned long last_switch_count; 982 unsigned long last_switch_time; 983#endif 984 /* Filesystem information: */ 985 struct fs_struct *fs; 986 987 /* Open file information: */ 988 struct files_struct *files; 989 990#ifdef CONFIG_IO_URING 991 struct io_uring_task *io_uring; 992#endif 993 994 /* Namespaces: */ 995 struct nsproxy *nsproxy; 996 997 /* Signal handlers: */ 998 struct signal_struct *signal; 999 struct sighand_struct __rcu *sighand; 1000 sigset_t blocked; 1001 sigset_t real_blocked; 1002 /* Restored if set_restore_sigmask() was used: */ 1003 sigset_t saved_sigmask; 1004 struct sigpending pending; 1005 unsigned long sas_ss_sp; 1006 size_t sas_ss_size; 1007 unsigned int sas_ss_flags; 1008 1009 struct callback_head *task_works; 1010 1011#ifdef CONFIG_AUDIT 1012#ifdef CONFIG_AUDITSYSCALL 1013 struct audit_context *audit_context; 1014#endif 1015 kuid_t loginuid; 1016 unsigned int sessionid; 1017#endif 1018 struct seccomp seccomp; 1019 struct syscall_user_dispatch syscall_dispatch; 1020 1021 /* Thread group tracking: */ 1022 u64 parent_exec_id; 1023 u64 self_exec_id; 1024 1025 /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */ 1026 spinlock_t alloc_lock; 1027 1028 /* Protection of the PI data structures: */ 1029 raw_spinlock_t pi_lock; 1030 1031 struct wake_q_node wake_q; 1032 1033#ifdef CONFIG_RT_MUTEXES 1034 /* PI waiters blocked on a rt_mutex held by this task: */ 1035 struct rb_root_cached pi_waiters; 1036 /* Updated under owner's pi_lock and rq lock */ 1037 struct task_struct *pi_top_task; 1038 /* Deadlock detection and priority inheritance handling: */ 1039 struct rt_mutex_waiter *pi_blocked_on; 1040#endif 1041 1042#ifdef CONFIG_DEBUG_MUTEXES 1043 /* Mutex deadlock detection: */ 1044 struct mutex_waiter *blocked_on; 1045#endif 1046 1047#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1048 int non_block_count; 1049#endif 1050 1051#ifdef CONFIG_TRACE_IRQFLAGS 1052 struct irqtrace_events irqtrace; 1053 unsigned int hardirq_threaded; 1054 u64 hardirq_chain_key; 1055 int softirqs_enabled; 1056 int softirq_context; 1057 int irq_config; 1058#endif 1059#ifdef CONFIG_PREEMPT_RT 1060 int softirq_disable_cnt; 1061#endif 1062 1063#ifdef CONFIG_LOCKDEP 1064# define MAX_LOCK_DEPTH 48UL 1065 u64 curr_chain_key; 1066 int lockdep_depth; 1067 unsigned int lockdep_recursion; 1068 struct held_lock held_locks[MAX_LOCK_DEPTH]; 1069#endif 1070 1071#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP) 1072 unsigned int in_ubsan; 1073#endif 1074 1075 /* Journalling filesystem info: */ 1076 void *journal_info; 1077 1078 /* Stacked block device info: */ 1079 struct bio_list *bio_list; 1080 1081#ifdef CONFIG_BLOCK 1082 /* Stack plugging: */ 1083 struct blk_plug *plug; 1084#endif 1085 1086 /* VM state: */ 1087 struct reclaim_state *reclaim_state; 1088 1089 struct backing_dev_info *backing_dev_info; 1090 1091 struct io_context *io_context; 1092 1093#ifdef CONFIG_COMPACTION 1094 struct capture_control *capture_control; 1095#endif 1096 /* Ptrace state: */ 1097 unsigned long ptrace_message; 1098 kernel_siginfo_t *last_siginfo; 1099 1100 struct task_io_accounting ioac; 1101#ifdef CONFIG_PSI 1102 /* Pressure stall state */ 1103 unsigned int psi_flags; 1104#endif 1105#ifdef CONFIG_TASK_XACCT 1106 /* Accumulated RSS usage: */ 1107 u64 acct_rss_mem1; 1108 /* Accumulated virtual memory usage: */ 1109 u64 acct_vm_mem1; 1110 /* stime + utime since last update: */ 1111 u64 acct_timexpd; 1112#endif 1113#ifdef CONFIG_CPUSETS 1114 /* Protected by ->alloc_lock: */ 1115 nodemask_t mems_allowed; 1116 /* Sequence number to catch updates: */ 1117 seqcount_spinlock_t mems_allowed_seq; 1118 int cpuset_mem_spread_rotor; 1119 int cpuset_slab_spread_rotor; 1120#endif 1121#ifdef CONFIG_CGROUPS 1122 /* Control Group info protected by css_set_lock: */ 1123 struct css_set __rcu *cgroups; 1124 /* cg_list protected by css_set_lock and tsk->alloc_lock: */ 1125 struct list_head cg_list; 1126#endif 1127#ifdef CONFIG_X86_CPU_RESCTRL 1128 u32 closid; 1129 u32 rmid; 1130#endif 1131#ifdef CONFIG_FUTEX 1132 struct robust_list_head __user *robust_list; 1133#ifdef CONFIG_COMPAT 1134 struct compat_robust_list_head __user *compat_robust_list; 1135#endif 1136 struct list_head pi_state_list; 1137 struct futex_pi_state *pi_state_cache; 1138 struct mutex futex_exit_mutex; 1139 unsigned int futex_state; 1140#endif 1141#ifdef CONFIG_PERF_EVENTS 1142 struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; 1143 struct mutex perf_event_mutex; 1144 struct list_head perf_event_list; 1145#endif 1146#ifdef CONFIG_DEBUG_PREEMPT 1147 unsigned long preempt_disable_ip; 1148#endif 1149#ifdef CONFIG_NUMA 1150 /* Protected by alloc_lock: */ 1151 struct mempolicy *mempolicy; 1152 short il_prev; 1153 short pref_node_fork; 1154#endif 1155#ifdef CONFIG_NUMA_BALANCING 1156 int numa_scan_seq; 1157 unsigned int numa_scan_period; 1158 unsigned int numa_scan_period_max; 1159 int numa_preferred_nid; 1160 unsigned long numa_migrate_retry; 1161 /* Migration stamp: */ 1162 u64 node_stamp; 1163 u64 last_task_numa_placement; 1164 u64 last_sum_exec_runtime; 1165 struct callback_head numa_work; 1166 1167 /* 1168 * This pointer is only modified for current in syscall and 1169 * pagefault context (and for tasks being destroyed), so it can be read 1170 * from any of the following contexts: 1171 * - RCU read-side critical section 1172 * - current->numa_group from everywhere 1173 * - task's runqueue locked, task not running 1174 */ 1175 struct numa_group __rcu *numa_group; 1176 1177 /* 1178 * numa_faults is an array split into four regions: 1179 * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer 1180 * in this precise order. 1181 * 1182 * faults_memory: Exponential decaying average of faults on a per-node 1183 * basis. Scheduling placement decisions are made based on these 1184 * counts. The values remain static for the duration of a PTE scan. 1185 * faults_cpu: Track the nodes the process was running on when a NUMA 1186 * hinting fault was incurred. 1187 * faults_memory_buffer and faults_cpu_buffer: Record faults per node 1188 * during the current scan window. When the scan completes, the counts 1189 * in faults_memory and faults_cpu decay and these values are copied. 1190 */ 1191 unsigned long *numa_faults; 1192 unsigned long total_numa_faults; 1193 1194 /* 1195 * numa_faults_locality tracks if faults recorded during the last 1196 * scan window were remote/local or failed to migrate. The task scan 1197 * period is adapted based on the locality of the faults with different 1198 * weights depending on whether they were shared or private faults 1199 */ 1200 unsigned long numa_faults_locality[3]; 1201 1202 unsigned long numa_pages_migrated; 1203#endif /* CONFIG_NUMA_BALANCING */ 1204 1205#ifdef CONFIG_RSEQ 1206 struct rseq __user *rseq; 1207 u32 rseq_sig; 1208 /* 1209 * RmW on rseq_event_mask must be performed atomically 1210 * with respect to preemption. 1211 */ 1212 unsigned long rseq_event_mask; 1213#endif 1214 1215 struct tlbflush_unmap_batch tlb_ubc; 1216 1217 union { 1218 refcount_t rcu_users; 1219 struct rcu_head rcu; 1220 }; 1221 1222 /* Cache last used pipe for splice(): */ 1223 struct pipe_inode_info *splice_pipe; 1224 1225 struct page_frag task_frag; 1226 1227#ifdef CONFIG_TASK_DELAY_ACCT 1228 struct task_delay_info *delays; 1229#endif 1230 1231#ifdef CONFIG_FAULT_INJECTION 1232 int make_it_fail; 1233 unsigned int fail_nth; 1234#endif 1235 /* 1236 * When (nr_dirtied >= nr_dirtied_pause), it's time to call 1237 * balance_dirty_pages() for a dirty throttling pause: 1238 */ 1239 int nr_dirtied; 1240 int nr_dirtied_pause; 1241 /* Start of a write-and-pause period: */ 1242 unsigned long dirty_paused_when; 1243 1244#ifdef CONFIG_LATENCYTOP 1245 int latency_record_count; 1246 struct latency_record latency_record[LT_SAVECOUNT]; 1247#endif 1248 /* 1249 * Time slack values; these are used to round up poll() and 1250 * select() etc timeout values. These are in nanoseconds. 1251 */ 1252 u64 timer_slack_ns; 1253 u64 default_timer_slack_ns; 1254 1255#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 1256 unsigned int kasan_depth; 1257#endif 1258 1259#ifdef CONFIG_KCSAN 1260 struct kcsan_ctx kcsan_ctx; 1261#ifdef CONFIG_TRACE_IRQFLAGS 1262 struct irqtrace_events kcsan_save_irqtrace; 1263#endif 1264#endif 1265 1266#if IS_ENABLED(CONFIG_KUNIT) 1267 struct kunit *kunit_test; 1268#endif 1269 1270#ifdef CONFIG_FUNCTION_GRAPH_TRACER 1271 /* Index of current stored address in ret_stack: */ 1272 int curr_ret_stack; 1273 int curr_ret_depth; 1274 1275 /* Stack of return addresses for return function tracing: */ 1276 struct ftrace_ret_stack *ret_stack; 1277 1278 /* Timestamp for last schedule: */ 1279 unsigned long long ftrace_timestamp; 1280 1281 /* 1282 * Number of functions that haven't been traced 1283 * because of depth overrun: 1284 */ 1285 atomic_t trace_overrun; 1286 1287 /* Pause tracing: */ 1288 atomic_t tracing_graph_pause; 1289#endif 1290 1291#ifdef CONFIG_TRACING 1292 /* State flags for use by tracers: */ 1293 unsigned long trace; 1294 1295 /* Bitmask and counter of trace recursion: */ 1296 unsigned long trace_recursion; 1297#endif /* CONFIG_TRACING */ 1298 1299#ifdef CONFIG_KCOV 1300 /* See kernel/kcov.c for more details. */ 1301 1302 /* Coverage collection mode enabled for this task (0 if disabled): */ 1303 unsigned int kcov_mode; 1304 1305 /* Size of the kcov_area: */ 1306 unsigned int kcov_size; 1307 1308 /* Buffer for coverage collection: */ 1309 void *kcov_area; 1310 1311 /* KCOV descriptor wired with this task or NULL: */ 1312 struct kcov *kcov; 1313 1314 /* KCOV common handle for remote coverage collection: */ 1315 u64 kcov_handle; 1316 1317 /* KCOV sequence number: */ 1318 int kcov_sequence; 1319 1320 /* Collect coverage from softirq context: */ 1321 unsigned int kcov_softirq; 1322#endif 1323 1324#ifdef CONFIG_MEMCG 1325 struct mem_cgroup *memcg_in_oom; 1326 gfp_t memcg_oom_gfp_mask; 1327 int memcg_oom_order; 1328 1329 /* Number of pages to reclaim on returning to userland: */ 1330 unsigned int memcg_nr_pages_over_high; 1331 1332 /* Used by memcontrol for targeted memcg charge: */ 1333 struct mem_cgroup *active_memcg; 1334#endif 1335 1336#ifdef CONFIG_BLK_CGROUP 1337 struct request_queue *throttle_queue; 1338#endif 1339 1340#ifdef CONFIG_UPROBES 1341 struct uprobe_task *utask; 1342#endif 1343#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) 1344 unsigned int sequential_io; 1345 unsigned int sequential_io_avg; 1346#endif 1347 struct kmap_ctrl kmap_ctrl; 1348#ifdef CONFIG_DEBUG_ATOMIC_SLEEP 1349 unsigned long task_state_change; 1350#endif 1351 int pagefault_disabled; 1352#ifdef CONFIG_MMU 1353 struct task_struct *oom_reaper_list; 1354#endif 1355#ifdef CONFIG_VMAP_STACK 1356 struct vm_struct *stack_vm_area; 1357#endif 1358#ifdef CONFIG_THREAD_INFO_IN_TASK 1359 /* A live task holds one reference: */ 1360 refcount_t stack_refcount; 1361#endif 1362#ifdef CONFIG_LIVEPATCH 1363 int patch_state; 1364#endif 1365#ifdef CONFIG_SECURITY 1366 /* Used by LSM modules for access restriction: */ 1367 void *security; 1368#endif 1369#ifdef CONFIG_BPF_SYSCALL 1370 /* Used by BPF task local storage */ 1371 struct bpf_local_storage __rcu *bpf_storage; 1372#endif 1373 1374#ifdef CONFIG_GCC_PLUGIN_STACKLEAK 1375 unsigned long lowest_stack; 1376 unsigned long prev_lowest_stack; 1377#endif 1378 1379#ifdef CONFIG_X86_MCE 1380 void __user *mce_vaddr; 1381 __u64 mce_kflags; 1382 u64 mce_addr; 1383 __u64 mce_ripv : 1, 1384 mce_whole_page : 1, 1385 __mce_reserved : 62; 1386 struct callback_head mce_kill_me; 1387#endif 1388 1389#ifdef CONFIG_KRETPROBES 1390 struct llist_head kretprobe_instances; 1391#endif 1392 1393 /* 1394 * New fields for task_struct should be added above here, so that 1395 * they are included in the randomized portion of task_struct. 1396 */ 1397 randomized_struct_fields_end 1398 1399 /* CPU-specific state of this task: */ 1400 struct thread_struct thread; 1401 1402 /* 1403 * WARNING: on x86, 'thread_struct' contains a variable-sized 1404 * structure. It *MUST* be at the end of 'task_struct'. 1405 * 1406 * Do not put anything below here! 1407 */ 1408}; 1409 1410static inline struct pid *task_pid(struct task_struct *task) 1411{ 1412 return task->thread_pid; 1413} 1414 1415/* 1416 * the helpers to get the task's different pids as they are seen 1417 * from various namespaces 1418 * 1419 * task_xid_nr() : global id, i.e. the id seen from the init namespace; 1420 * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of 1421 * current. 1422 * task_xid_nr_ns() : id seen from the ns specified; 1423 * 1424 * see also pid_nr() etc in include/linux/pid.h 1425 */ 1426pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); 1427 1428static inline pid_t task_pid_nr(struct task_struct *tsk) 1429{ 1430 return tsk->pid; 1431} 1432 1433static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1434{ 1435 return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); 1436} 1437 1438static inline pid_t task_pid_vnr(struct task_struct *tsk) 1439{ 1440 return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); 1441} 1442 1443 1444static inline pid_t task_tgid_nr(struct task_struct *tsk) 1445{ 1446 return tsk->tgid; 1447} 1448 1449/** 1450 * pid_alive - check that a task structure is not stale 1451 * @p: Task structure to be checked. 1452 * 1453 * Test if a process is not yet dead (at most zombie state) 1454 * If pid_alive fails, then pointers within the task structure 1455 * can be stale and must not be dereferenced. 1456 * 1457 * Return: 1 if the process is alive. 0 otherwise. 1458 */ 1459static inline int pid_alive(const struct task_struct *p) 1460{ 1461 return p->thread_pid != NULL; 1462} 1463 1464static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1465{ 1466 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); 1467} 1468 1469static inline pid_t task_pgrp_vnr(struct task_struct *tsk) 1470{ 1471 return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); 1472} 1473 1474 1475static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1476{ 1477 return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); 1478} 1479 1480static inline pid_t task_session_vnr(struct task_struct *tsk) 1481{ 1482 return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); 1483} 1484 1485static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 1486{ 1487 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns); 1488} 1489 1490static inline pid_t task_tgid_vnr(struct task_struct *tsk) 1491{ 1492 return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL); 1493} 1494 1495static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) 1496{ 1497 pid_t pid = 0; 1498 1499 rcu_read_lock(); 1500 if (pid_alive(tsk)) 1501 pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); 1502 rcu_read_unlock(); 1503 1504 return pid; 1505} 1506 1507static inline pid_t task_ppid_nr(const struct task_struct *tsk) 1508{ 1509 return task_ppid_nr_ns(tsk, &init_pid_ns); 1510} 1511 1512/* Obsolete, do not use: */ 1513static inline pid_t task_pgrp_nr(struct task_struct *tsk) 1514{ 1515 return task_pgrp_nr_ns(tsk, &init_pid_ns); 1516} 1517 1518#define TASK_REPORT_IDLE (TASK_REPORT + 1) 1519#define TASK_REPORT_MAX (TASK_REPORT_IDLE << 1) 1520 1521static inline unsigned int task_state_index(struct task_struct *tsk) 1522{ 1523 unsigned int tsk_state = READ_ONCE(tsk->state); 1524 unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT; 1525 1526 BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX); 1527 1528 if (tsk_state == TASK_IDLE) 1529 state = TASK_REPORT_IDLE; 1530 1531 return fls(state); 1532} 1533 1534static inline char task_index_to_char(unsigned int state) 1535{ 1536 static const char state_char[] = "RSDTtXZPI"; 1537 1538 BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1); 1539 1540 return state_char[state]; 1541} 1542 1543static inline char task_state_to_char(struct task_struct *tsk) 1544{ 1545 return task_index_to_char(task_state_index(tsk)); 1546} 1547 1548/** 1549 * is_global_init - check if a task structure is init. Since init 1550 * is free to have sub-threads we need to check tgid. 1551 * @tsk: Task structure to be checked. 1552 * 1553 * Check if a task structure is the first user space task the kernel created. 1554 * 1555 * Return: 1 if the task structure is init. 0 otherwise. 1556 */ 1557static inline int is_global_init(struct task_struct *tsk) 1558{ 1559 return task_tgid_nr(tsk) == 1; 1560} 1561 1562extern struct pid *cad_pid; 1563 1564/* 1565 * Per process flags 1566 */ 1567#define PF_VCPU 0x00000001 /* I'm a virtual CPU */ 1568#define PF_IDLE 0x00000002 /* I am an IDLE thread */ 1569#define PF_EXITING 0x00000004 /* Getting shut down */ 1570#define PF_IO_WORKER 0x00000010 /* Task is an IO worker */ 1571#define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ 1572#define PF_FORKNOEXEC 0x00000040 /* Forked but didn't exec */ 1573#define PF_MCE_PROCESS 0x00000080 /* Process policy on mce errors */ 1574#define PF_SUPERPRIV 0x00000100 /* Used super-user privileges */ 1575#define PF_DUMPCORE 0x00000200 /* Dumped core */ 1576#define PF_SIGNALED 0x00000400 /* Killed by a signal */ 1577#define PF_MEMALLOC 0x00000800 /* Allocating memory */ 1578#define PF_NPROC_EXCEEDED 0x00001000 /* set_user() noticed that RLIMIT_NPROC was exceeded */ 1579#define PF_USED_MATH 0x00002000 /* If unset the fpu must be initialized before use */ 1580#define PF_USED_ASYNC 0x00004000 /* Used async_schedule*(), used by module init */ 1581#define PF_NOFREEZE 0x00008000 /* This thread should not be frozen */ 1582#define PF_FROZEN 0x00010000 /* Frozen for system suspend */ 1583#define PF_KSWAPD 0x00020000 /* I am kswapd */ 1584#define PF_MEMALLOC_NOFS 0x00040000 /* All allocation requests will inherit GFP_NOFS */ 1585#define PF_MEMALLOC_NOIO 0x00080000 /* All allocation requests will inherit GFP_NOIO */ 1586#define PF_LOCAL_THROTTLE 0x00100000 /* Throttle writes only against the bdi I write to, 1587 * I am cleaning dirty pages from some other bdi. */ 1588#define PF_KTHREAD 0x00200000 /* I am a kernel thread */ 1589#define PF_RANDOMIZE 0x00400000 /* Randomize virtual address space */ 1590#define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ 1591#define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_mask */ 1592#define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ 1593#define PF_MEMALLOC_PIN 0x10000000 /* Allocation context constrained to zones which allow long term pinning. */ 1594#define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ 1595#define PF_SUSPEND_TASK 0x80000000 /* This thread called freeze_processes() and should not be frozen */ 1596 1597/* 1598 * Only the _current_ task can read/write to tsk->flags, but other 1599 * tasks can access tsk->flags in readonly mode for example 1600 * with tsk_used_math (like during threaded core dumping). 1601 * There is however an exception to this rule during ptrace 1602 * or during fork: the ptracer task is allowed to write to the 1603 * child->flags of its traced child (same goes for fork, the parent 1604 * can write to the child->flags), because we're guaranteed the 1605 * child is not running and in turn not changing child->flags 1606 * at the same time the parent does it. 1607 */ 1608#define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) 1609#define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) 1610#define clear_used_math() clear_stopped_child_used_math(current) 1611#define set_used_math() set_stopped_child_used_math(current) 1612 1613#define conditional_stopped_child_used_math(condition, child) \ 1614 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) 1615 1616#define conditional_used_math(condition) conditional_stopped_child_used_math(condition, current) 1617 1618#define copy_to_stopped_child_used_math(child) \ 1619 do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) 1620 1621/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ 1622#define tsk_used_math(p) ((p)->flags & PF_USED_MATH) 1623#define used_math() tsk_used_math(current) 1624 1625static inline bool is_percpu_thread(void) 1626{ 1627#ifdef CONFIG_SMP 1628 return (current->flags & PF_NO_SETAFFINITY) && 1629 (current->nr_cpus_allowed == 1); 1630#else 1631 return true; 1632#endif 1633} 1634 1635/* Per-process atomic flags. */ 1636#define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ 1637#define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ 1638#define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ 1639#define PFA_SPEC_SSB_DISABLE 3 /* Speculative Store Bypass disabled */ 1640#define PFA_SPEC_SSB_FORCE_DISABLE 4 /* Speculative Store Bypass force disabled*/ 1641#define PFA_SPEC_IB_DISABLE 5 /* Indirect branch speculation restricted */ 1642#define PFA_SPEC_IB_FORCE_DISABLE 6 /* Indirect branch speculation permanently restricted */ 1643#define PFA_SPEC_SSB_NOEXEC 7 /* Speculative Store Bypass clear on execve() */ 1644 1645#define TASK_PFA_TEST(name, func) \ 1646 static inline bool task_##func(struct task_struct *p) \ 1647 { return test_bit(PFA_##name, &p->atomic_flags); } 1648 1649#define TASK_PFA_SET(name, func) \ 1650 static inline void task_set_##func(struct task_struct *p) \ 1651 { set_bit(PFA_##name, &p->atomic_flags); } 1652 1653#define TASK_PFA_CLEAR(name, func) \ 1654 static inline void task_clear_##func(struct task_struct *p) \ 1655 { clear_bit(PFA_##name, &p->atomic_flags); } 1656 1657TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) 1658TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) 1659 1660TASK_PFA_TEST(SPREAD_PAGE, spread_page) 1661TASK_PFA_SET(SPREAD_PAGE, spread_page) 1662TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) 1663 1664TASK_PFA_TEST(SPREAD_SLAB, spread_slab) 1665TASK_PFA_SET(SPREAD_SLAB, spread_slab) 1666TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) 1667 1668TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable) 1669TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable) 1670TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable) 1671 1672TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1673TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1674TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec) 1675 1676TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1677TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable) 1678 1679TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable) 1680TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable) 1681TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable) 1682 1683TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1684TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable) 1685 1686static inline void 1687current_restore_flags(unsigned long orig_flags, unsigned long flags) 1688{ 1689 current->flags &= ~flags; 1690 current->flags |= orig_flags & flags; 1691} 1692 1693extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 1694extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); 1695#ifdef CONFIG_SMP 1696extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); 1697extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); 1698#else 1699static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 1700{ 1701} 1702static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 1703{ 1704 if (!cpumask_test_cpu(0, new_mask)) 1705 return -EINVAL; 1706 return 0; 1707} 1708#endif 1709 1710extern int yield_to(struct task_struct *p, bool preempt); 1711extern void set_user_nice(struct task_struct *p, long nice); 1712extern int task_prio(const struct task_struct *p); 1713 1714/** 1715 * task_nice - return the nice value of a given task. 1716 * @p: the task in question. 1717 * 1718 * Return: The nice value [ -20 ... 0 ... 19 ]. 1719 */ 1720static inline int task_nice(const struct task_struct *p) 1721{ 1722 return PRIO_TO_NICE((p)->static_prio); 1723} 1724 1725extern int can_nice(const struct task_struct *p, const int nice); 1726extern int task_curr(const struct task_struct *p); 1727extern int idle_cpu(int cpu); 1728extern int available_idle_cpu(int cpu); 1729extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); 1730extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); 1731extern void sched_set_fifo(struct task_struct *p); 1732extern void sched_set_fifo_low(struct task_struct *p); 1733extern void sched_set_normal(struct task_struct *p, int nice); 1734extern int sched_setattr(struct task_struct *, const struct sched_attr *); 1735extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *); 1736extern struct task_struct *idle_task(int cpu); 1737 1738/** 1739 * is_idle_task - is the specified task an idle task? 1740 * @p: the task in question. 1741 * 1742 * Return: 1 if @p is an idle task. 0 otherwise. 1743 */ 1744static __always_inline bool is_idle_task(const struct task_struct *p) 1745{ 1746 return !!(p->flags & PF_IDLE); 1747} 1748 1749extern struct task_struct *curr_task(int cpu); 1750extern void ia64_set_curr_task(int cpu, struct task_struct *p); 1751 1752void yield(void); 1753 1754union thread_union { 1755#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK 1756 struct task_struct task; 1757#endif 1758#ifndef CONFIG_THREAD_INFO_IN_TASK 1759 struct thread_info thread_info; 1760#endif 1761 unsigned long stack[THREAD_SIZE/sizeof(long)]; 1762}; 1763 1764#ifndef CONFIG_THREAD_INFO_IN_TASK 1765extern struct thread_info init_thread_info; 1766#endif 1767 1768extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)]; 1769 1770#ifdef CONFIG_THREAD_INFO_IN_TASK 1771static inline struct thread_info *task_thread_info(struct task_struct *task) 1772{ 1773 return &task->thread_info; 1774} 1775#elif !defined(__HAVE_THREAD_FUNCTIONS) 1776# define task_thread_info(task) ((struct thread_info *)(task)->stack) 1777#endif 1778 1779/* 1780 * find a task by one of its numerical ids 1781 * 1782 * find_task_by_pid_ns(): 1783 * finds a task by its pid in the specified namespace 1784 * find_task_by_vpid(): 1785 * finds a task by its virtual pid 1786 * 1787 * see also find_vpid() etc in include/linux/pid.h 1788 */ 1789 1790extern struct task_struct *find_task_by_vpid(pid_t nr); 1791extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); 1792 1793/* 1794 * find a task by its virtual pid and get the task struct 1795 */ 1796extern struct task_struct *find_get_task_by_vpid(pid_t nr); 1797 1798extern int wake_up_state(struct task_struct *tsk, unsigned int state); 1799extern int wake_up_process(struct task_struct *tsk); 1800extern void wake_up_new_task(struct task_struct *tsk); 1801 1802#ifdef CONFIG_SMP 1803extern void kick_process(struct task_struct *tsk); 1804#else 1805static inline void kick_process(struct task_struct *tsk) { } 1806#endif 1807 1808extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); 1809 1810static inline void set_task_comm(struct task_struct *tsk, const char *from) 1811{ 1812 __set_task_comm(tsk, from, false); 1813} 1814 1815extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk); 1816#define get_task_comm(buf, tsk) ({ \ 1817 BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN); \ 1818 __get_task_comm(buf, sizeof(buf), tsk); \ 1819}) 1820 1821#ifdef CONFIG_SMP 1822static __always_inline void scheduler_ipi(void) 1823{ 1824 /* 1825 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting 1826 * TIF_NEED_RESCHED remotely (for the first time) will also send 1827 * this IPI. 1828 */ 1829 preempt_fold_need_resched(); 1830} 1831extern unsigned long wait_task_inactive(struct task_struct *, long match_state); 1832#else 1833static inline void scheduler_ipi(void) { } 1834static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) 1835{ 1836 return 1; 1837} 1838#endif 1839 1840/* 1841 * Set thread flags in other task's structures. 1842 * See asm/thread_info.h for TIF_xxxx flags available: 1843 */ 1844static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) 1845{ 1846 set_ti_thread_flag(task_thread_info(tsk), flag); 1847} 1848 1849static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1850{ 1851 clear_ti_thread_flag(task_thread_info(tsk), flag); 1852} 1853 1854static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag, 1855 bool value) 1856{ 1857 update_ti_thread_flag(task_thread_info(tsk), flag, value); 1858} 1859 1860static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) 1861{ 1862 return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); 1863} 1864 1865static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) 1866{ 1867 return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); 1868} 1869 1870static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) 1871{ 1872 return test_ti_thread_flag(task_thread_info(tsk), flag); 1873} 1874 1875static inline void set_tsk_need_resched(struct task_struct *tsk) 1876{ 1877 set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1878} 1879 1880static inline void clear_tsk_need_resched(struct task_struct *tsk) 1881{ 1882 clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); 1883} 1884 1885static inline int test_tsk_need_resched(struct task_struct *tsk) 1886{ 1887 return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); 1888} 1889 1890/* 1891 * cond_resched() and cond_resched_lock(): latency reduction via 1892 * explicit rescheduling in places that are safe. The return 1893 * value indicates whether a reschedule was done in fact. 1894 * cond_resched_lock() will drop the spinlock before scheduling, 1895 */ 1896#if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 1897extern int __cond_resched(void); 1898 1899#ifdef CONFIG_PREEMPT_DYNAMIC 1900 1901DECLARE_STATIC_CALL(cond_resched, __cond_resched); 1902 1903static __always_inline int _cond_resched(void) 1904{ 1905 return static_call_mod(cond_resched)(); 1906} 1907 1908#else 1909 1910static inline int _cond_resched(void) 1911{ 1912 return __cond_resched(); 1913} 1914 1915#endif /* CONFIG_PREEMPT_DYNAMIC */ 1916 1917#else 1918 1919static inline int _cond_resched(void) { return 0; } 1920 1921#endif /* !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) */ 1922 1923#define cond_resched() ({ \ 1924 ___might_sleep(__FILE__, __LINE__, 0); \ 1925 _cond_resched(); \ 1926}) 1927 1928extern int __cond_resched_lock(spinlock_t *lock); 1929extern int __cond_resched_rwlock_read(rwlock_t *lock); 1930extern int __cond_resched_rwlock_write(rwlock_t *lock); 1931 1932#define cond_resched_lock(lock) ({ \ 1933 ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ 1934 __cond_resched_lock(lock); \ 1935}) 1936 1937#define cond_resched_rwlock_read(lock) ({ \ 1938 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 1939 __cond_resched_rwlock_read(lock); \ 1940}) 1941 1942#define cond_resched_rwlock_write(lock) ({ \ 1943 __might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET); \ 1944 __cond_resched_rwlock_write(lock); \ 1945}) 1946 1947static inline void cond_resched_rcu(void) 1948{ 1949#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) 1950 rcu_read_unlock(); 1951 cond_resched(); 1952 rcu_read_lock(); 1953#endif 1954} 1955 1956/* 1957 * Does a critical section need to be broken due to another 1958 * task waiting?: (technically does not depend on CONFIG_PREEMPTION, 1959 * but a general need for low latency) 1960 */ 1961static inline int spin_needbreak(spinlock_t *lock) 1962{ 1963#ifdef CONFIG_PREEMPTION 1964 return spin_is_contended(lock); 1965#else 1966 return 0; 1967#endif 1968} 1969 1970/* 1971 * Check if a rwlock is contended. 1972 * Returns non-zero if there is another task waiting on the rwlock. 1973 * Returns zero if the lock is not contended or the system / underlying 1974 * rwlock implementation does not support contention detection. 1975 * Technically does not depend on CONFIG_PREEMPTION, but a general need 1976 * for low latency. 1977 */ 1978static inline int rwlock_needbreak(rwlock_t *lock) 1979{ 1980#ifdef CONFIG_PREEMPTION 1981 return rwlock_is_contended(lock); 1982#else 1983 return 0; 1984#endif 1985} 1986 1987static __always_inline bool need_resched(void) 1988{ 1989 return unlikely(tif_need_resched()); 1990} 1991 1992/* 1993 * Wrappers for p->thread_info->cpu access. No-op on UP. 1994 */ 1995#ifdef CONFIG_SMP 1996 1997static inline unsigned int task_cpu(const struct task_struct *p) 1998{ 1999#ifdef CONFIG_THREAD_INFO_IN_TASK 2000 return READ_ONCE(p->cpu); 2001#else 2002 return READ_ONCE(task_thread_info(p)->cpu); 2003#endif 2004} 2005 2006extern void set_task_cpu(struct task_struct *p, unsigned int cpu); 2007 2008#else 2009 2010static inline unsigned int task_cpu(const struct task_struct *p) 2011{ 2012 return 0; 2013} 2014 2015static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) 2016{ 2017} 2018 2019#endif /* CONFIG_SMP */ 2020 2021/* 2022 * In order to reduce various lock holder preemption latencies provide an 2023 * interface to see if a vCPU is currently running or not. 2024 * 2025 * This allows us to terminate optimistic spin loops and block, analogous to 2026 * the native optimistic spin heuristic of testing if the lock owner task is 2027 * running or not. 2028 */ 2029#ifndef vcpu_is_preempted 2030static inline bool vcpu_is_preempted(int cpu) 2031{ 2032 return false; 2033} 2034#endif 2035 2036extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); 2037extern long sched_getaffinity(pid_t pid, struct cpumask *mask); 2038 2039#ifndef TASK_SIZE_OF 2040#define TASK_SIZE_OF(tsk) TASK_SIZE 2041#endif 2042 2043#ifdef CONFIG_SMP 2044/* Returns effective CPU energy utilization, as seen by the scheduler */ 2045unsigned long sched_cpu_util(int cpu, unsigned long max); 2046#endif /* CONFIG_SMP */ 2047 2048#ifdef CONFIG_RSEQ 2049 2050/* 2051 * Map the event mask on the user-space ABI enum rseq_cs_flags 2052 * for direct mask checks. 2053 */ 2054enum rseq_event_mask_bits { 2055 RSEQ_EVENT_PREEMPT_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT, 2056 RSEQ_EVENT_SIGNAL_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT, 2057 RSEQ_EVENT_MIGRATE_BIT = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT, 2058}; 2059 2060enum rseq_event_mask { 2061 RSEQ_EVENT_PREEMPT = (1U << RSEQ_EVENT_PREEMPT_BIT), 2062 RSEQ_EVENT_SIGNAL = (1U << RSEQ_EVENT_SIGNAL_BIT), 2063 RSEQ_EVENT_MIGRATE = (1U << RSEQ_EVENT_MIGRATE_BIT), 2064}; 2065 2066static inline void rseq_set_notify_resume(struct task_struct *t) 2067{ 2068 if (t->rseq) 2069 set_tsk_thread_flag(t, TIF_NOTIFY_RESUME); 2070} 2071 2072void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs); 2073 2074static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2075 struct pt_regs *regs) 2076{ 2077 if (current->rseq) 2078 __rseq_handle_notify_resume(ksig, regs); 2079} 2080 2081static inline void rseq_signal_deliver(struct ksignal *ksig, 2082 struct pt_regs *regs) 2083{ 2084 preempt_disable(); 2085 __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask); 2086 preempt_enable(); 2087 rseq_handle_notify_resume(ksig, regs); 2088} 2089 2090/* rseq_preempt() requires preemption to be disabled. */ 2091static inline void rseq_preempt(struct task_struct *t) 2092{ 2093 __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask); 2094 rseq_set_notify_resume(t); 2095} 2096 2097/* rseq_migrate() requires preemption to be disabled. */ 2098static inline void rseq_migrate(struct task_struct *t) 2099{ 2100 __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask); 2101 rseq_set_notify_resume(t); 2102} 2103 2104/* 2105 * If parent process has a registered restartable sequences area, the 2106 * child inherits. Unregister rseq for a clone with CLONE_VM set. 2107 */ 2108static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2109{ 2110 if (clone_flags & CLONE_VM) { 2111 t->rseq = NULL; 2112 t->rseq_sig = 0; 2113 t->rseq_event_mask = 0; 2114 } else { 2115 t->rseq = current->rseq; 2116 t->rseq_sig = current->rseq_sig; 2117 t->rseq_event_mask = current->rseq_event_mask; 2118 } 2119} 2120 2121static inline void rseq_execve(struct task_struct *t) 2122{ 2123 t->rseq = NULL; 2124 t->rseq_sig = 0; 2125 t->rseq_event_mask = 0; 2126} 2127 2128#else 2129 2130static inline void rseq_set_notify_resume(struct task_struct *t) 2131{ 2132} 2133static inline void rseq_handle_notify_resume(struct ksignal *ksig, 2134 struct pt_regs *regs) 2135{ 2136} 2137static inline void rseq_signal_deliver(struct ksignal *ksig, 2138 struct pt_regs *regs) 2139{ 2140} 2141static inline void rseq_preempt(struct task_struct *t) 2142{ 2143} 2144static inline void rseq_migrate(struct task_struct *t) 2145{ 2146} 2147static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags) 2148{ 2149} 2150static inline void rseq_execve(struct task_struct *t) 2151{ 2152} 2153 2154#endif 2155 2156#ifdef CONFIG_DEBUG_RSEQ 2157 2158void rseq_syscall(struct pt_regs *regs); 2159 2160#else 2161 2162static inline void rseq_syscall(struct pt_regs *regs) 2163{ 2164} 2165 2166#endif 2167 2168const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq); 2169char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len); 2170int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq); 2171 2172const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq); 2173const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq); 2174const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq); 2175 2176int sched_trace_rq_cpu(struct rq *rq); 2177int sched_trace_rq_cpu_capacity(struct rq *rq); 2178int sched_trace_rq_nr_running(struct rq *rq); 2179 2180const struct cpumask *sched_trace_rd_span(struct root_domain *rd); 2181 2182#endif