at v5.13 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0+ */ 2/* 3 * Read-Copy Update mechanism for mutual exclusion 4 * 5 * Copyright IBM Corporation, 2001 6 * 7 * Author: Dipankar Sarma <dipankar@in.ibm.com> 8 * 9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com> 10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. 11 * Papers: 12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf 13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) 14 * 15 * For detailed explanation of Read-Copy Update mechanism see - 16 * http://lse.sourceforge.net/locking/rcupdate.html 17 * 18 */ 19 20#ifndef __LINUX_RCUPDATE_H 21#define __LINUX_RCUPDATE_H 22 23#include <linux/types.h> 24#include <linux/compiler.h> 25#include <linux/atomic.h> 26#include <linux/irqflags.h> 27#include <linux/preempt.h> 28#include <linux/bottom_half.h> 29#include <linux/lockdep.h> 30#include <asm/processor.h> 31#include <linux/cpumask.h> 32 33#define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b)) 34#define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b)) 35#define ulong2long(a) (*(long *)(&(a))) 36#define USHORT_CMP_GE(a, b) (USHRT_MAX / 2 >= (unsigned short)((a) - (b))) 37#define USHORT_CMP_LT(a, b) (USHRT_MAX / 2 < (unsigned short)((a) - (b))) 38 39/* Exported common interfaces */ 40void call_rcu(struct rcu_head *head, rcu_callback_t func); 41void rcu_barrier_tasks(void); 42void rcu_barrier_tasks_rude(void); 43void synchronize_rcu(void); 44 45#ifdef CONFIG_PREEMPT_RCU 46 47void __rcu_read_lock(void); 48void __rcu_read_unlock(void); 49 50/* 51 * Defined as a macro as it is a very low level header included from 52 * areas that don't even know about current. This gives the rcu_read_lock() 53 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other 54 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable. 55 */ 56#define rcu_preempt_depth() (current->rcu_read_lock_nesting) 57 58#else /* #ifdef CONFIG_PREEMPT_RCU */ 59 60#ifdef CONFIG_TINY_RCU 61#define rcu_read_unlock_strict() do { } while (0) 62#else 63void rcu_read_unlock_strict(void); 64#endif 65 66static inline void __rcu_read_lock(void) 67{ 68 preempt_disable(); 69} 70 71static inline void __rcu_read_unlock(void) 72{ 73 preempt_enable(); 74 rcu_read_unlock_strict(); 75} 76 77static inline int rcu_preempt_depth(void) 78{ 79 return 0; 80} 81 82#endif /* #else #ifdef CONFIG_PREEMPT_RCU */ 83 84/* Internal to kernel */ 85void rcu_init(void); 86extern int rcu_scheduler_active __read_mostly; 87void rcu_sched_clock_irq(int user); 88void rcu_report_dead(unsigned int cpu); 89void rcutree_migrate_callbacks(int cpu); 90 91#ifdef CONFIG_TASKS_RCU_GENERIC 92void rcu_init_tasks_generic(void); 93#else 94static inline void rcu_init_tasks_generic(void) { } 95#endif 96 97#ifdef CONFIG_RCU_STALL_COMMON 98void rcu_sysrq_start(void); 99void rcu_sysrq_end(void); 100#else /* #ifdef CONFIG_RCU_STALL_COMMON */ 101static inline void rcu_sysrq_start(void) { } 102static inline void rcu_sysrq_end(void) { } 103#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */ 104 105#ifdef CONFIG_NO_HZ_FULL 106void rcu_user_enter(void); 107void rcu_user_exit(void); 108#else 109static inline void rcu_user_enter(void) { } 110static inline void rcu_user_exit(void) { } 111#endif /* CONFIG_NO_HZ_FULL */ 112 113#ifdef CONFIG_RCU_NOCB_CPU 114void rcu_init_nohz(void); 115int rcu_nocb_cpu_offload(int cpu); 116int rcu_nocb_cpu_deoffload(int cpu); 117void rcu_nocb_flush_deferred_wakeup(void); 118#else /* #ifdef CONFIG_RCU_NOCB_CPU */ 119static inline void rcu_init_nohz(void) { } 120static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; } 121static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; } 122static inline void rcu_nocb_flush_deferred_wakeup(void) { } 123#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */ 124 125/** 126 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers 127 * @a: Code that RCU needs to pay attention to. 128 * 129 * RCU read-side critical sections are forbidden in the inner idle loop, 130 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU 131 * will happily ignore any such read-side critical sections. However, 132 * things like powertop need tracepoints in the inner idle loop. 133 * 134 * This macro provides the way out: RCU_NONIDLE(do_something_with_RCU()) 135 * will tell RCU that it needs to pay attention, invoke its argument 136 * (in this example, calling the do_something_with_RCU() function), 137 * and then tell RCU to go back to ignoring this CPU. It is permissible 138 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is 139 * on the order of a million or so, even on 32-bit systems). It is 140 * not legal to block within RCU_NONIDLE(), nor is it permissible to 141 * transfer control either into or out of RCU_NONIDLE()'s statement. 142 */ 143#define RCU_NONIDLE(a) \ 144 do { \ 145 rcu_irq_enter_irqson(); \ 146 do { a; } while (0); \ 147 rcu_irq_exit_irqson(); \ 148 } while (0) 149 150/* 151 * Note a quasi-voluntary context switch for RCU-tasks's benefit. 152 * This is a macro rather than an inline function to avoid #include hell. 153 */ 154#ifdef CONFIG_TASKS_RCU_GENERIC 155 156# ifdef CONFIG_TASKS_RCU 157# define rcu_tasks_classic_qs(t, preempt) \ 158 do { \ 159 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \ 160 WRITE_ONCE((t)->rcu_tasks_holdout, false); \ 161 } while (0) 162void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func); 163void synchronize_rcu_tasks(void); 164# else 165# define rcu_tasks_classic_qs(t, preempt) do { } while (0) 166# define call_rcu_tasks call_rcu 167# define synchronize_rcu_tasks synchronize_rcu 168# endif 169 170# ifdef CONFIG_TASKS_RCU_TRACE 171# define rcu_tasks_trace_qs(t) \ 172 do { \ 173 if (!likely(READ_ONCE((t)->trc_reader_checked)) && \ 174 !unlikely(READ_ONCE((t)->trc_reader_nesting))) { \ 175 smp_store_release(&(t)->trc_reader_checked, true); \ 176 smp_mb(); /* Readers partitioned by store. */ \ 177 } \ 178 } while (0) 179# else 180# define rcu_tasks_trace_qs(t) do { } while (0) 181# endif 182 183#define rcu_tasks_qs(t, preempt) \ 184do { \ 185 rcu_tasks_classic_qs((t), (preempt)); \ 186 rcu_tasks_trace_qs((t)); \ 187} while (0) 188 189# ifdef CONFIG_TASKS_RUDE_RCU 190void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func); 191void synchronize_rcu_tasks_rude(void); 192# endif 193 194#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false) 195void exit_tasks_rcu_start(void); 196void exit_tasks_rcu_finish(void); 197#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */ 198#define rcu_tasks_qs(t, preempt) do { } while (0) 199#define rcu_note_voluntary_context_switch(t) do { } while (0) 200#define call_rcu_tasks call_rcu 201#define synchronize_rcu_tasks synchronize_rcu 202static inline void exit_tasks_rcu_start(void) { } 203static inline void exit_tasks_rcu_finish(void) { } 204#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */ 205 206/** 207 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU 208 * 209 * This macro resembles cond_resched(), except that it is defined to 210 * report potential quiescent states to RCU-tasks even if the cond_resched() 211 * machinery were to be shut off, as some advocate for PREEMPTION kernels. 212 */ 213#define cond_resched_tasks_rcu_qs() \ 214do { \ 215 rcu_tasks_qs(current, false); \ 216 cond_resched(); \ 217} while (0) 218 219/* 220 * Infrastructure to implement the synchronize_() primitives in 221 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU. 222 */ 223 224#if defined(CONFIG_TREE_RCU) 225#include <linux/rcutree.h> 226#elif defined(CONFIG_TINY_RCU) 227#include <linux/rcutiny.h> 228#else 229#error "Unknown RCU implementation specified to kernel configuration" 230#endif 231 232/* 233 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls 234 * are needed for dynamic initialization and destruction of rcu_head 235 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for 236 * dynamic initialization and destruction of statically allocated rcu_head 237 * structures. However, rcu_head structures allocated dynamically in the 238 * heap don't need any initialization. 239 */ 240#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD 241void init_rcu_head(struct rcu_head *head); 242void destroy_rcu_head(struct rcu_head *head); 243void init_rcu_head_on_stack(struct rcu_head *head); 244void destroy_rcu_head_on_stack(struct rcu_head *head); 245#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 246static inline void init_rcu_head(struct rcu_head *head) { } 247static inline void destroy_rcu_head(struct rcu_head *head) { } 248static inline void init_rcu_head_on_stack(struct rcu_head *head) { } 249static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { } 250#endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */ 251 252#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) 253bool rcu_lockdep_current_cpu_online(void); 254#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 255static inline bool rcu_lockdep_current_cpu_online(void) { return true; } 256#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */ 257 258extern struct lockdep_map rcu_lock_map; 259extern struct lockdep_map rcu_bh_lock_map; 260extern struct lockdep_map rcu_sched_lock_map; 261extern struct lockdep_map rcu_callback_map; 262 263#ifdef CONFIG_DEBUG_LOCK_ALLOC 264 265static inline void rcu_lock_acquire(struct lockdep_map *map) 266{ 267 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_); 268} 269 270static inline void rcu_lock_release(struct lockdep_map *map) 271{ 272 lock_release(map, _THIS_IP_); 273} 274 275int debug_lockdep_rcu_enabled(void); 276int rcu_read_lock_held(void); 277int rcu_read_lock_bh_held(void); 278int rcu_read_lock_sched_held(void); 279int rcu_read_lock_any_held(void); 280 281#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 282 283# define rcu_lock_acquire(a) do { } while (0) 284# define rcu_lock_release(a) do { } while (0) 285 286static inline int rcu_read_lock_held(void) 287{ 288 return 1; 289} 290 291static inline int rcu_read_lock_bh_held(void) 292{ 293 return 1; 294} 295 296static inline int rcu_read_lock_sched_held(void) 297{ 298 return !preemptible(); 299} 300 301static inline int rcu_read_lock_any_held(void) 302{ 303 return !preemptible(); 304} 305 306#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */ 307 308#ifdef CONFIG_PROVE_RCU 309 310/** 311 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met 312 * @c: condition to check 313 * @s: informative message 314 */ 315#define RCU_LOCKDEP_WARN(c, s) \ 316 do { \ 317 static bool __section(".data.unlikely") __warned; \ 318 if (debug_lockdep_rcu_enabled() && !__warned && (c)) { \ 319 __warned = true; \ 320 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \ 321 } \ 322 } while (0) 323 324#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU) 325static inline void rcu_preempt_sleep_check(void) 326{ 327 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map), 328 "Illegal context switch in RCU read-side critical section"); 329} 330#else /* #ifdef CONFIG_PROVE_RCU */ 331static inline void rcu_preempt_sleep_check(void) { } 332#endif /* #else #ifdef CONFIG_PROVE_RCU */ 333 334#define rcu_sleep_check() \ 335 do { \ 336 rcu_preempt_sleep_check(); \ 337 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \ 338 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \ 339 "Illegal context switch in RCU-bh read-side critical section"); \ 340 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \ 341 "Illegal context switch in RCU-sched read-side critical section"); \ 342 } while (0) 343 344#else /* #ifdef CONFIG_PROVE_RCU */ 345 346#define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c)) 347#define rcu_sleep_check() do { } while (0) 348 349#endif /* #else #ifdef CONFIG_PROVE_RCU */ 350 351/* 352 * Helper functions for rcu_dereference_check(), rcu_dereference_protected() 353 * and rcu_assign_pointer(). Some of these could be folded into their 354 * callers, but they are left separate in order to ease introduction of 355 * multiple pointers markings to match different RCU implementations 356 * (e.g., __srcu), should this make sense in the future. 357 */ 358 359#ifdef __CHECKER__ 360#define rcu_check_sparse(p, space) \ 361 ((void)(((typeof(*p) space *)p) == p)) 362#else /* #ifdef __CHECKER__ */ 363#define rcu_check_sparse(p, space) 364#endif /* #else #ifdef __CHECKER__ */ 365 366#define __rcu_access_pointer(p, space) \ 367({ \ 368 typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 369 rcu_check_sparse(p, space); \ 370 ((typeof(*p) __force __kernel *)(_________p1)); \ 371}) 372#define __rcu_dereference_check(p, c, space) \ 373({ \ 374 /* Dependency order vs. p above. */ \ 375 typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \ 376 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \ 377 rcu_check_sparse(p, space); \ 378 ((typeof(*p) __force __kernel *)(________p1)); \ 379}) 380#define __rcu_dereference_protected(p, c, space) \ 381({ \ 382 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \ 383 rcu_check_sparse(p, space); \ 384 ((typeof(*p) __force __kernel *)(p)); \ 385}) 386#define rcu_dereference_raw(p) \ 387({ \ 388 /* Dependency order vs. p above. */ \ 389 typeof(p) ________p1 = READ_ONCE(p); \ 390 ((typeof(*p) __force __kernel *)(________p1)); \ 391}) 392 393/** 394 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable 395 * @v: The value to statically initialize with. 396 */ 397#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v) 398 399/** 400 * rcu_assign_pointer() - assign to RCU-protected pointer 401 * @p: pointer to assign to 402 * @v: value to assign (publish) 403 * 404 * Assigns the specified value to the specified RCU-protected 405 * pointer, ensuring that any concurrent RCU readers will see 406 * any prior initialization. 407 * 408 * Inserts memory barriers on architectures that require them 409 * (which is most of them), and also prevents the compiler from 410 * reordering the code that initializes the structure after the pointer 411 * assignment. More importantly, this call documents which pointers 412 * will be dereferenced by RCU read-side code. 413 * 414 * In some special cases, you may use RCU_INIT_POINTER() instead 415 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due 416 * to the fact that it does not constrain either the CPU or the compiler. 417 * That said, using RCU_INIT_POINTER() when you should have used 418 * rcu_assign_pointer() is a very bad thing that results in 419 * impossible-to-diagnose memory corruption. So please be careful. 420 * See the RCU_INIT_POINTER() comment header for details. 421 * 422 * Note that rcu_assign_pointer() evaluates each of its arguments only 423 * once, appearances notwithstanding. One of the "extra" evaluations 424 * is in typeof() and the other visible only to sparse (__CHECKER__), 425 * neither of which actually execute the argument. As with most cpp 426 * macros, this execute-arguments-only-once property is important, so 427 * please be careful when making changes to rcu_assign_pointer() and the 428 * other macros that it invokes. 429 */ 430#define rcu_assign_pointer(p, v) \ 431do { \ 432 uintptr_t _r_a_p__v = (uintptr_t)(v); \ 433 rcu_check_sparse(p, __rcu); \ 434 \ 435 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \ 436 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \ 437 else \ 438 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \ 439} while (0) 440 441/** 442 * rcu_replace_pointer() - replace an RCU pointer, returning its old value 443 * @rcu_ptr: RCU pointer, whose old value is returned 444 * @ptr: regular pointer 445 * @c: the lockdep conditions under which the dereference will take place 446 * 447 * Perform a replacement, where @rcu_ptr is an RCU-annotated 448 * pointer and @c is the lockdep argument that is passed to the 449 * rcu_dereference_protected() call used to read that pointer. The old 450 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr. 451 */ 452#define rcu_replace_pointer(rcu_ptr, ptr, c) \ 453({ \ 454 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \ 455 rcu_assign_pointer((rcu_ptr), (ptr)); \ 456 __tmp; \ 457}) 458 459/** 460 * rcu_access_pointer() - fetch RCU pointer with no dereferencing 461 * @p: The pointer to read 462 * 463 * Return the value of the specified RCU-protected pointer, but omit the 464 * lockdep checks for being in an RCU read-side critical section. This is 465 * useful when the value of this pointer is accessed, but the pointer is 466 * not dereferenced, for example, when testing an RCU-protected pointer 467 * against NULL. Although rcu_access_pointer() may also be used in cases 468 * where update-side locks prevent the value of the pointer from changing, 469 * you should instead use rcu_dereference_protected() for this use case. 470 * 471 * It is also permissible to use rcu_access_pointer() when read-side 472 * access to the pointer was removed at least one grace period ago, as 473 * is the case in the context of the RCU callback that is freeing up 474 * the data, or after a synchronize_rcu() returns. This can be useful 475 * when tearing down multi-linked structures after a grace period 476 * has elapsed. 477 */ 478#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu) 479 480/** 481 * rcu_dereference_check() - rcu_dereference with debug checking 482 * @p: The pointer to read, prior to dereferencing 483 * @c: The conditions under which the dereference will take place 484 * 485 * Do an rcu_dereference(), but check that the conditions under which the 486 * dereference will take place are correct. Typically the conditions 487 * indicate the various locking conditions that should be held at that 488 * point. The check should return true if the conditions are satisfied. 489 * An implicit check for being in an RCU read-side critical section 490 * (rcu_read_lock()) is included. 491 * 492 * For example: 493 * 494 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock)); 495 * 496 * could be used to indicate to lockdep that foo->bar may only be dereferenced 497 * if either rcu_read_lock() is held, or that the lock required to replace 498 * the bar struct at foo->bar is held. 499 * 500 * Note that the list of conditions may also include indications of when a lock 501 * need not be held, for example during initialisation or destruction of the 502 * target struct: 503 * 504 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) || 505 * atomic_read(&foo->usage) == 0); 506 * 507 * Inserts memory barriers on architectures that require them 508 * (currently only the Alpha), prevents the compiler from refetching 509 * (and from merging fetches), and, more importantly, documents exactly 510 * which pointers are protected by RCU and checks that the pointer is 511 * annotated as __rcu. 512 */ 513#define rcu_dereference_check(p, c) \ 514 __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu) 515 516/** 517 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking 518 * @p: The pointer to read, prior to dereferencing 519 * @c: The conditions under which the dereference will take place 520 * 521 * This is the RCU-bh counterpart to rcu_dereference_check(). 522 */ 523#define rcu_dereference_bh_check(p, c) \ 524 __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu) 525 526/** 527 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking 528 * @p: The pointer to read, prior to dereferencing 529 * @c: The conditions under which the dereference will take place 530 * 531 * This is the RCU-sched counterpart to rcu_dereference_check(). 532 */ 533#define rcu_dereference_sched_check(p, c) \ 534 __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \ 535 __rcu) 536 537/* 538 * The tracing infrastructure traces RCU (we want that), but unfortunately 539 * some of the RCU checks causes tracing to lock up the system. 540 * 541 * The no-tracing version of rcu_dereference_raw() must not call 542 * rcu_read_lock_held(). 543 */ 544#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu) 545 546/** 547 * rcu_dereference_protected() - fetch RCU pointer when updates prevented 548 * @p: The pointer to read, prior to dereferencing 549 * @c: The conditions under which the dereference will take place 550 * 551 * Return the value of the specified RCU-protected pointer, but omit 552 * the READ_ONCE(). This is useful in cases where update-side locks 553 * prevent the value of the pointer from changing. Please note that this 554 * primitive does *not* prevent the compiler from repeating this reference 555 * or combining it with other references, so it should not be used without 556 * protection of appropriate locks. 557 * 558 * This function is only for update-side use. Using this function 559 * when protected only by rcu_read_lock() will result in infrequent 560 * but very ugly failures. 561 */ 562#define rcu_dereference_protected(p, c) \ 563 __rcu_dereference_protected((p), (c), __rcu) 564 565 566/** 567 * rcu_dereference() - fetch RCU-protected pointer for dereferencing 568 * @p: The pointer to read, prior to dereferencing 569 * 570 * This is a simple wrapper around rcu_dereference_check(). 571 */ 572#define rcu_dereference(p) rcu_dereference_check(p, 0) 573 574/** 575 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing 576 * @p: The pointer to read, prior to dereferencing 577 * 578 * Makes rcu_dereference_check() do the dirty work. 579 */ 580#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0) 581 582/** 583 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing 584 * @p: The pointer to read, prior to dereferencing 585 * 586 * Makes rcu_dereference_check() do the dirty work. 587 */ 588#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0) 589 590/** 591 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism 592 * @p: The pointer to hand off 593 * 594 * This is simply an identity function, but it documents where a pointer 595 * is handed off from RCU to some other synchronization mechanism, for 596 * example, reference counting or locking. In C11, it would map to 597 * kill_dependency(). It could be used as follows:: 598 * 599 * rcu_read_lock(); 600 * p = rcu_dereference(gp); 601 * long_lived = is_long_lived(p); 602 * if (long_lived) { 603 * if (!atomic_inc_not_zero(p->refcnt)) 604 * long_lived = false; 605 * else 606 * p = rcu_pointer_handoff(p); 607 * } 608 * rcu_read_unlock(); 609 */ 610#define rcu_pointer_handoff(p) (p) 611 612/** 613 * rcu_read_lock() - mark the beginning of an RCU read-side critical section 614 * 615 * When synchronize_rcu() is invoked on one CPU while other CPUs 616 * are within RCU read-side critical sections, then the 617 * synchronize_rcu() is guaranteed to block until after all the other 618 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked 619 * on one CPU while other CPUs are within RCU read-side critical 620 * sections, invocation of the corresponding RCU callback is deferred 621 * until after the all the other CPUs exit their critical sections. 622 * 623 * Note, however, that RCU callbacks are permitted to run concurrently 624 * with new RCU read-side critical sections. One way that this can happen 625 * is via the following sequence of events: (1) CPU 0 enters an RCU 626 * read-side critical section, (2) CPU 1 invokes call_rcu() to register 627 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section, 628 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU 629 * callback is invoked. This is legal, because the RCU read-side critical 630 * section that was running concurrently with the call_rcu() (and which 631 * therefore might be referencing something that the corresponding RCU 632 * callback would free up) has completed before the corresponding 633 * RCU callback is invoked. 634 * 635 * RCU read-side critical sections may be nested. Any deferred actions 636 * will be deferred until the outermost RCU read-side critical section 637 * completes. 638 * 639 * You can avoid reading and understanding the next paragraph by 640 * following this rule: don't put anything in an rcu_read_lock() RCU 641 * read-side critical section that would block in a !PREEMPTION kernel. 642 * But if you want the full story, read on! 643 * 644 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU), 645 * it is illegal to block while in an RCU read-side critical section. 646 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION 647 * kernel builds, RCU read-side critical sections may be preempted, 648 * but explicit blocking is illegal. Finally, in preemptible RCU 649 * implementations in real-time (with -rt patchset) kernel builds, RCU 650 * read-side critical sections may be preempted and they may also block, but 651 * only when acquiring spinlocks that are subject to priority inheritance. 652 */ 653static __always_inline void rcu_read_lock(void) 654{ 655 __rcu_read_lock(); 656 __acquire(RCU); 657 rcu_lock_acquire(&rcu_lock_map); 658 RCU_LOCKDEP_WARN(!rcu_is_watching(), 659 "rcu_read_lock() used illegally while idle"); 660} 661 662/* 663 * So where is rcu_write_lock()? It does not exist, as there is no 664 * way for writers to lock out RCU readers. This is a feature, not 665 * a bug -- this property is what provides RCU's performance benefits. 666 * Of course, writers must coordinate with each other. The normal 667 * spinlock primitives work well for this, but any other technique may be 668 * used as well. RCU does not care how the writers keep out of each 669 * others' way, as long as they do so. 670 */ 671 672/** 673 * rcu_read_unlock() - marks the end of an RCU read-side critical section. 674 * 675 * In most situations, rcu_read_unlock() is immune from deadlock. 676 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock() 677 * is responsible for deboosting, which it does via rt_mutex_unlock(). 678 * Unfortunately, this function acquires the scheduler's runqueue and 679 * priority-inheritance spinlocks. This means that deadlock could result 680 * if the caller of rcu_read_unlock() already holds one of these locks or 681 * any lock that is ever acquired while holding them. 682 * 683 * That said, RCU readers are never priority boosted unless they were 684 * preempted. Therefore, one way to avoid deadlock is to make sure 685 * that preemption never happens within any RCU read-side critical 686 * section whose outermost rcu_read_unlock() is called with one of 687 * rt_mutex_unlock()'s locks held. Such preemption can be avoided in 688 * a number of ways, for example, by invoking preempt_disable() before 689 * critical section's outermost rcu_read_lock(). 690 * 691 * Given that the set of locks acquired by rt_mutex_unlock() might change 692 * at any time, a somewhat more future-proofed approach is to make sure 693 * that that preemption never happens within any RCU read-side critical 694 * section whose outermost rcu_read_unlock() is called with irqs disabled. 695 * This approach relies on the fact that rt_mutex_unlock() currently only 696 * acquires irq-disabled locks. 697 * 698 * The second of these two approaches is best in most situations, 699 * however, the first approach can also be useful, at least to those 700 * developers willing to keep abreast of the set of locks acquired by 701 * rt_mutex_unlock(). 702 * 703 * See rcu_read_lock() for more information. 704 */ 705static inline void rcu_read_unlock(void) 706{ 707 RCU_LOCKDEP_WARN(!rcu_is_watching(), 708 "rcu_read_unlock() used illegally while idle"); 709 __release(RCU); 710 __rcu_read_unlock(); 711 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */ 712} 713 714/** 715 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section 716 * 717 * This is equivalent of rcu_read_lock(), but also disables softirqs. 718 * Note that anything else that disables softirqs can also serve as 719 * an RCU read-side critical section. 720 * 721 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh() 722 * must occur in the same context, for example, it is illegal to invoke 723 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh() 724 * was invoked from some other task. 725 */ 726static inline void rcu_read_lock_bh(void) 727{ 728 local_bh_disable(); 729 __acquire(RCU_BH); 730 rcu_lock_acquire(&rcu_bh_lock_map); 731 RCU_LOCKDEP_WARN(!rcu_is_watching(), 732 "rcu_read_lock_bh() used illegally while idle"); 733} 734 735/** 736 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section 737 * 738 * See rcu_read_lock_bh() for more information. 739 */ 740static inline void rcu_read_unlock_bh(void) 741{ 742 RCU_LOCKDEP_WARN(!rcu_is_watching(), 743 "rcu_read_unlock_bh() used illegally while idle"); 744 rcu_lock_release(&rcu_bh_lock_map); 745 __release(RCU_BH); 746 local_bh_enable(); 747} 748 749/** 750 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section 751 * 752 * This is equivalent of rcu_read_lock(), but disables preemption. 753 * Read-side critical sections can also be introduced by anything else 754 * that disables preemption, including local_irq_disable() and friends. 755 * 756 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched() 757 * must occur in the same context, for example, it is illegal to invoke 758 * rcu_read_unlock_sched() from process context if the matching 759 * rcu_read_lock_sched() was invoked from an NMI handler. 760 */ 761static inline void rcu_read_lock_sched(void) 762{ 763 preempt_disable(); 764 __acquire(RCU_SCHED); 765 rcu_lock_acquire(&rcu_sched_lock_map); 766 RCU_LOCKDEP_WARN(!rcu_is_watching(), 767 "rcu_read_lock_sched() used illegally while idle"); 768} 769 770/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 771static inline notrace void rcu_read_lock_sched_notrace(void) 772{ 773 preempt_disable_notrace(); 774 __acquire(RCU_SCHED); 775} 776 777/** 778 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section 779 * 780 * See rcu_read_lock_sched() for more information. 781 */ 782static inline void rcu_read_unlock_sched(void) 783{ 784 RCU_LOCKDEP_WARN(!rcu_is_watching(), 785 "rcu_read_unlock_sched() used illegally while idle"); 786 rcu_lock_release(&rcu_sched_lock_map); 787 __release(RCU_SCHED); 788 preempt_enable(); 789} 790 791/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */ 792static inline notrace void rcu_read_unlock_sched_notrace(void) 793{ 794 __release(RCU_SCHED); 795 preempt_enable_notrace(); 796} 797 798/** 799 * RCU_INIT_POINTER() - initialize an RCU protected pointer 800 * @p: The pointer to be initialized. 801 * @v: The value to initialized the pointer to. 802 * 803 * Initialize an RCU-protected pointer in special cases where readers 804 * do not need ordering constraints on the CPU or the compiler. These 805 * special cases are: 806 * 807 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or* 808 * 2. The caller has taken whatever steps are required to prevent 809 * RCU readers from concurrently accessing this pointer *or* 810 * 3. The referenced data structure has already been exposed to 811 * readers either at compile time or via rcu_assign_pointer() *and* 812 * 813 * a. You have not made *any* reader-visible changes to 814 * this structure since then *or* 815 * b. It is OK for readers accessing this structure from its 816 * new location to see the old state of the structure. (For 817 * example, the changes were to statistical counters or to 818 * other state where exact synchronization is not required.) 819 * 820 * Failure to follow these rules governing use of RCU_INIT_POINTER() will 821 * result in impossible-to-diagnose memory corruption. As in the structures 822 * will look OK in crash dumps, but any concurrent RCU readers might 823 * see pre-initialized values of the referenced data structure. So 824 * please be very careful how you use RCU_INIT_POINTER()!!! 825 * 826 * If you are creating an RCU-protected linked structure that is accessed 827 * by a single external-to-structure RCU-protected pointer, then you may 828 * use RCU_INIT_POINTER() to initialize the internal RCU-protected 829 * pointers, but you must use rcu_assign_pointer() to initialize the 830 * external-to-structure pointer *after* you have completely initialized 831 * the reader-accessible portions of the linked structure. 832 * 833 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no 834 * ordering guarantees for either the CPU or the compiler. 835 */ 836#define RCU_INIT_POINTER(p, v) \ 837 do { \ 838 rcu_check_sparse(p, __rcu); \ 839 WRITE_ONCE(p, RCU_INITIALIZER(v)); \ 840 } while (0) 841 842/** 843 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer 844 * @p: The pointer to be initialized. 845 * @v: The value to initialized the pointer to. 846 * 847 * GCC-style initialization for an RCU-protected pointer in a structure field. 848 */ 849#define RCU_POINTER_INITIALIZER(p, v) \ 850 .p = RCU_INITIALIZER(v) 851 852/* 853 * Does the specified offset indicate that the corresponding rcu_head 854 * structure can be handled by kvfree_rcu()? 855 */ 856#define __is_kvfree_rcu_offset(offset) ((offset) < 4096) 857 858/** 859 * kfree_rcu() - kfree an object after a grace period. 860 * @ptr: pointer to kfree for both single- and double-argument invocations. 861 * @rhf: the name of the struct rcu_head within the type of @ptr, 862 * but only for double-argument invocations. 863 * 864 * Many rcu callbacks functions just call kfree() on the base structure. 865 * These functions are trivial, but their size adds up, and furthermore 866 * when they are used in a kernel module, that module must invoke the 867 * high-latency rcu_barrier() function at module-unload time. 868 * 869 * The kfree_rcu() function handles this issue. Rather than encoding a 870 * function address in the embedded rcu_head structure, kfree_rcu() instead 871 * encodes the offset of the rcu_head structure within the base structure. 872 * Because the functions are not allowed in the low-order 4096 bytes of 873 * kernel virtual memory, offsets up to 4095 bytes can be accommodated. 874 * If the offset is larger than 4095 bytes, a compile-time error will 875 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can 876 * either fall back to use of call_rcu() or rearrange the structure to 877 * position the rcu_head structure into the first 4096 bytes. 878 * 879 * Note that the allowable offset might decrease in the future, for example, 880 * to allow something like kmem_cache_free_rcu(). 881 * 882 * The BUILD_BUG_ON check must not involve any function calls, hence the 883 * checks are done in macros here. 884 */ 885#define kfree_rcu(ptr, rhf...) kvfree_rcu(ptr, ## rhf) 886 887/** 888 * kvfree_rcu() - kvfree an object after a grace period. 889 * 890 * This macro consists of one or two arguments and it is 891 * based on whether an object is head-less or not. If it 892 * has a head then a semantic stays the same as it used 893 * to be before: 894 * 895 * kvfree_rcu(ptr, rhf); 896 * 897 * where @ptr is a pointer to kvfree(), @rhf is the name 898 * of the rcu_head structure within the type of @ptr. 899 * 900 * When it comes to head-less variant, only one argument 901 * is passed and that is just a pointer which has to be 902 * freed after a grace period. Therefore the semantic is 903 * 904 * kvfree_rcu(ptr); 905 * 906 * where @ptr is a pointer to kvfree(). 907 * 908 * Please note, head-less way of freeing is permitted to 909 * use from a context that has to follow might_sleep() 910 * annotation. Otherwise, please switch and embed the 911 * rcu_head structure within the type of @ptr. 912 */ 913#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__, \ 914 kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__) 915 916#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME 917#define kvfree_rcu_arg_2(ptr, rhf) \ 918do { \ 919 typeof (ptr) ___p = (ptr); \ 920 \ 921 if (___p) { \ 922 BUILD_BUG_ON(!__is_kvfree_rcu_offset(offsetof(typeof(*(ptr)), rhf))); \ 923 kvfree_call_rcu(&((___p)->rhf), (rcu_callback_t)(unsigned long) \ 924 (offsetof(typeof(*(ptr)), rhf))); \ 925 } \ 926} while (0) 927 928#define kvfree_rcu_arg_1(ptr) \ 929do { \ 930 typeof(ptr) ___p = (ptr); \ 931 \ 932 if (___p) \ 933 kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \ 934} while (0) 935 936/* 937 * Place this after a lock-acquisition primitive to guarantee that 938 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies 939 * if the UNLOCK and LOCK are executed by the same CPU or if the 940 * UNLOCK and LOCK operate on the same lock variable. 941 */ 942#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE 943#define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */ 944#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 945#define smp_mb__after_unlock_lock() do { } while (0) 946#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */ 947 948 949/* Has the specified rcu_head structure been handed to call_rcu()? */ 950 951/** 952 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu() 953 * @rhp: The rcu_head structure to initialize. 954 * 955 * If you intend to invoke rcu_head_after_call_rcu() to test whether a 956 * given rcu_head structure has already been passed to call_rcu(), then 957 * you must also invoke this rcu_head_init() function on it just after 958 * allocating that structure. Calls to this function must not race with 959 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation. 960 */ 961static inline void rcu_head_init(struct rcu_head *rhp) 962{ 963 rhp->func = (rcu_callback_t)~0L; 964} 965 966/** 967 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()? 968 * @rhp: The rcu_head structure to test. 969 * @f: The function passed to call_rcu() along with @rhp. 970 * 971 * Returns @true if the @rhp has been passed to call_rcu() with @func, 972 * and @false otherwise. Emits a warning in any other case, including 973 * the case where @rhp has already been invoked after a grace period. 974 * Calls to this function must not race with callback invocation. One way 975 * to avoid such races is to enclose the call to rcu_head_after_call_rcu() 976 * in an RCU read-side critical section that includes a read-side fetch 977 * of the pointer to the structure containing @rhp. 978 */ 979static inline bool 980rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f) 981{ 982 rcu_callback_t func = READ_ONCE(rhp->func); 983 984 if (func == f) 985 return true; 986 WARN_ON_ONCE(func != (rcu_callback_t)~0L); 987 return false; 988} 989 990/* kernel/ksysfs.c definitions */ 991extern int rcu_expedited; 992extern int rcu_normal; 993 994#endif /* __LINUX_RCUPDATE_H */