Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
13#include <linux/uaccess.h>
14#include <linux/gfp.h>
15#include <linux/bitops.h>
16#include <linux/hardirq.h> /* for in_interrupt() */
17#include <linux/hugetlb_inline.h>
18
19struct pagevec;
20
21static inline bool mapping_empty(struct address_space *mapping)
22{
23 return xa_empty(&mapping->i_pages);
24}
25
26/*
27 * Bits in mapping->flags.
28 */
29enum mapping_flags {
30 AS_EIO = 0, /* IO error on async write */
31 AS_ENOSPC = 1, /* ENOSPC on async write */
32 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
33 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
34 AS_EXITING = 4, /* final truncate in progress */
35 /* writeback related tags are not used */
36 AS_NO_WRITEBACK_TAGS = 5,
37 AS_THP_SUPPORT = 6, /* THPs supported */
38};
39
40/**
41 * mapping_set_error - record a writeback error in the address_space
42 * @mapping: the mapping in which an error should be set
43 * @error: the error to set in the mapping
44 *
45 * When writeback fails in some way, we must record that error so that
46 * userspace can be informed when fsync and the like are called. We endeavor
47 * to report errors on any file that was open at the time of the error. Some
48 * internal callers also need to know when writeback errors have occurred.
49 *
50 * When a writeback error occurs, most filesystems will want to call
51 * mapping_set_error to record the error in the mapping so that it can be
52 * reported when the application calls fsync(2).
53 */
54static inline void mapping_set_error(struct address_space *mapping, int error)
55{
56 if (likely(!error))
57 return;
58
59 /* Record in wb_err for checkers using errseq_t based tracking */
60 __filemap_set_wb_err(mapping, error);
61
62 /* Record it in superblock */
63 if (mapping->host)
64 errseq_set(&mapping->host->i_sb->s_wb_err, error);
65
66 /* Record it in flags for now, for legacy callers */
67 if (error == -ENOSPC)
68 set_bit(AS_ENOSPC, &mapping->flags);
69 else
70 set_bit(AS_EIO, &mapping->flags);
71}
72
73static inline void mapping_set_unevictable(struct address_space *mapping)
74{
75 set_bit(AS_UNEVICTABLE, &mapping->flags);
76}
77
78static inline void mapping_clear_unevictable(struct address_space *mapping)
79{
80 clear_bit(AS_UNEVICTABLE, &mapping->flags);
81}
82
83static inline bool mapping_unevictable(struct address_space *mapping)
84{
85 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
86}
87
88static inline void mapping_set_exiting(struct address_space *mapping)
89{
90 set_bit(AS_EXITING, &mapping->flags);
91}
92
93static inline int mapping_exiting(struct address_space *mapping)
94{
95 return test_bit(AS_EXITING, &mapping->flags);
96}
97
98static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
99{
100 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
101}
102
103static inline int mapping_use_writeback_tags(struct address_space *mapping)
104{
105 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
106}
107
108static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
109{
110 return mapping->gfp_mask;
111}
112
113/* Restricts the given gfp_mask to what the mapping allows. */
114static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
115 gfp_t gfp_mask)
116{
117 return mapping_gfp_mask(mapping) & gfp_mask;
118}
119
120/*
121 * This is non-atomic. Only to be used before the mapping is activated.
122 * Probably needs a barrier...
123 */
124static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
125{
126 m->gfp_mask = mask;
127}
128
129static inline bool mapping_thp_support(struct address_space *mapping)
130{
131 return test_bit(AS_THP_SUPPORT, &mapping->flags);
132}
133
134static inline int filemap_nr_thps(struct address_space *mapping)
135{
136#ifdef CONFIG_READ_ONLY_THP_FOR_FS
137 return atomic_read(&mapping->nr_thps);
138#else
139 return 0;
140#endif
141}
142
143static inline void filemap_nr_thps_inc(struct address_space *mapping)
144{
145#ifdef CONFIG_READ_ONLY_THP_FOR_FS
146 if (!mapping_thp_support(mapping))
147 atomic_inc(&mapping->nr_thps);
148#else
149 WARN_ON_ONCE(1);
150#endif
151}
152
153static inline void filemap_nr_thps_dec(struct address_space *mapping)
154{
155#ifdef CONFIG_READ_ONLY_THP_FOR_FS
156 if (!mapping_thp_support(mapping))
157 atomic_dec(&mapping->nr_thps);
158#else
159 WARN_ON_ONCE(1);
160#endif
161}
162
163void release_pages(struct page **pages, int nr);
164
165/*
166 * For file cache pages, return the address_space, otherwise return NULL
167 */
168static inline struct address_space *page_mapping_file(struct page *page)
169{
170 if (unlikely(PageSwapCache(page)))
171 return NULL;
172 return page_mapping(page);
173}
174
175/*
176 * speculatively take a reference to a page.
177 * If the page is free (_refcount == 0), then _refcount is untouched, and 0
178 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned.
179 *
180 * This function must be called inside the same rcu_read_lock() section as has
181 * been used to lookup the page in the pagecache radix-tree (or page table):
182 * this allows allocators to use a synchronize_rcu() to stabilize _refcount.
183 *
184 * Unless an RCU grace period has passed, the count of all pages coming out
185 * of the allocator must be considered unstable. page_count may return higher
186 * than expected, and put_page must be able to do the right thing when the
187 * page has been finished with, no matter what it is subsequently allocated
188 * for (because put_page is what is used here to drop an invalid speculative
189 * reference).
190 *
191 * This is the interesting part of the lockless pagecache (and lockless
192 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
193 * has the following pattern:
194 * 1. find page in radix tree
195 * 2. conditionally increment refcount
196 * 3. check the page is still in pagecache (if no, goto 1)
197 *
198 * Remove-side that cares about stability of _refcount (eg. reclaim) has the
199 * following (with the i_pages lock held):
200 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
201 * B. remove page from pagecache
202 * C. free the page
203 *
204 * There are 2 critical interleavings that matter:
205 * - 2 runs before A: in this case, A sees elevated refcount and bails out
206 * - A runs before 2: in this case, 2 sees zero refcount and retries;
207 * subsequently, B will complete and 1 will find no page, causing the
208 * lookup to return NULL.
209 *
210 * It is possible that between 1 and 2, the page is removed then the exact same
211 * page is inserted into the same position in pagecache. That's OK: the
212 * old find_get_page using a lock could equally have run before or after
213 * such a re-insertion, depending on order that locks are granted.
214 *
215 * Lookups racing against pagecache insertion isn't a big problem: either 1
216 * will find the page or it will not. Likewise, the old find_get_page could run
217 * either before the insertion or afterwards, depending on timing.
218 */
219static inline int __page_cache_add_speculative(struct page *page, int count)
220{
221#ifdef CONFIG_TINY_RCU
222# ifdef CONFIG_PREEMPT_COUNT
223 VM_BUG_ON(!in_atomic() && !irqs_disabled());
224# endif
225 /*
226 * Preempt must be disabled here - we rely on rcu_read_lock doing
227 * this for us.
228 *
229 * Pagecache won't be truncated from interrupt context, so if we have
230 * found a page in the radix tree here, we have pinned its refcount by
231 * disabling preempt, and hence no need for the "speculative get" that
232 * SMP requires.
233 */
234 VM_BUG_ON_PAGE(page_count(page) == 0, page);
235 page_ref_add(page, count);
236
237#else
238 if (unlikely(!page_ref_add_unless(page, count, 0))) {
239 /*
240 * Either the page has been freed, or will be freed.
241 * In either case, retry here and the caller should
242 * do the right thing (see comments above).
243 */
244 return 0;
245 }
246#endif
247 VM_BUG_ON_PAGE(PageTail(page), page);
248
249 return 1;
250}
251
252static inline int page_cache_get_speculative(struct page *page)
253{
254 return __page_cache_add_speculative(page, 1);
255}
256
257static inline int page_cache_add_speculative(struct page *page, int count)
258{
259 return __page_cache_add_speculative(page, count);
260}
261
262/**
263 * attach_page_private - Attach private data to a page.
264 * @page: Page to attach data to.
265 * @data: Data to attach to page.
266 *
267 * Attaching private data to a page increments the page's reference count.
268 * The data must be detached before the page will be freed.
269 */
270static inline void attach_page_private(struct page *page, void *data)
271{
272 get_page(page);
273 set_page_private(page, (unsigned long)data);
274 SetPagePrivate(page);
275}
276
277/**
278 * detach_page_private - Detach private data from a page.
279 * @page: Page to detach data from.
280 *
281 * Removes the data that was previously attached to the page and decrements
282 * the refcount on the page.
283 *
284 * Return: Data that was attached to the page.
285 */
286static inline void *detach_page_private(struct page *page)
287{
288 void *data = (void *)page_private(page);
289
290 if (!PagePrivate(page))
291 return NULL;
292 ClearPagePrivate(page);
293 set_page_private(page, 0);
294 put_page(page);
295
296 return data;
297}
298
299#ifdef CONFIG_NUMA
300extern struct page *__page_cache_alloc(gfp_t gfp);
301#else
302static inline struct page *__page_cache_alloc(gfp_t gfp)
303{
304 return alloc_pages(gfp, 0);
305}
306#endif
307
308static inline struct page *page_cache_alloc(struct address_space *x)
309{
310 return __page_cache_alloc(mapping_gfp_mask(x));
311}
312
313static inline gfp_t readahead_gfp_mask(struct address_space *x)
314{
315 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
316}
317
318typedef int filler_t(void *, struct page *);
319
320pgoff_t page_cache_next_miss(struct address_space *mapping,
321 pgoff_t index, unsigned long max_scan);
322pgoff_t page_cache_prev_miss(struct address_space *mapping,
323 pgoff_t index, unsigned long max_scan);
324
325#define FGP_ACCESSED 0x00000001
326#define FGP_LOCK 0x00000002
327#define FGP_CREAT 0x00000004
328#define FGP_WRITE 0x00000008
329#define FGP_NOFS 0x00000010
330#define FGP_NOWAIT 0x00000020
331#define FGP_FOR_MMAP 0x00000040
332#define FGP_HEAD 0x00000080
333#define FGP_ENTRY 0x00000100
334
335struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
336 int fgp_flags, gfp_t cache_gfp_mask);
337
338/**
339 * find_get_page - find and get a page reference
340 * @mapping: the address_space to search
341 * @offset: the page index
342 *
343 * Looks up the page cache slot at @mapping & @offset. If there is a
344 * page cache page, it is returned with an increased refcount.
345 *
346 * Otherwise, %NULL is returned.
347 */
348static inline struct page *find_get_page(struct address_space *mapping,
349 pgoff_t offset)
350{
351 return pagecache_get_page(mapping, offset, 0, 0);
352}
353
354static inline struct page *find_get_page_flags(struct address_space *mapping,
355 pgoff_t offset, int fgp_flags)
356{
357 return pagecache_get_page(mapping, offset, fgp_flags, 0);
358}
359
360/**
361 * find_lock_page - locate, pin and lock a pagecache page
362 * @mapping: the address_space to search
363 * @index: the page index
364 *
365 * Looks up the page cache entry at @mapping & @index. If there is a
366 * page cache page, it is returned locked and with an increased
367 * refcount.
368 *
369 * Context: May sleep.
370 * Return: A struct page or %NULL if there is no page in the cache for this
371 * index.
372 */
373static inline struct page *find_lock_page(struct address_space *mapping,
374 pgoff_t index)
375{
376 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
377}
378
379/**
380 * find_lock_head - Locate, pin and lock a pagecache page.
381 * @mapping: The address_space to search.
382 * @index: The page index.
383 *
384 * Looks up the page cache entry at @mapping & @index. If there is a
385 * page cache page, its head page is returned locked and with an increased
386 * refcount.
387 *
388 * Context: May sleep.
389 * Return: A struct page which is !PageTail, or %NULL if there is no page
390 * in the cache for this index.
391 */
392static inline struct page *find_lock_head(struct address_space *mapping,
393 pgoff_t index)
394{
395 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0);
396}
397
398/**
399 * find_or_create_page - locate or add a pagecache page
400 * @mapping: the page's address_space
401 * @index: the page's index into the mapping
402 * @gfp_mask: page allocation mode
403 *
404 * Looks up the page cache slot at @mapping & @offset. If there is a
405 * page cache page, it is returned locked and with an increased
406 * refcount.
407 *
408 * If the page is not present, a new page is allocated using @gfp_mask
409 * and added to the page cache and the VM's LRU list. The page is
410 * returned locked and with an increased refcount.
411 *
412 * On memory exhaustion, %NULL is returned.
413 *
414 * find_or_create_page() may sleep, even if @gfp_flags specifies an
415 * atomic allocation!
416 */
417static inline struct page *find_or_create_page(struct address_space *mapping,
418 pgoff_t index, gfp_t gfp_mask)
419{
420 return pagecache_get_page(mapping, index,
421 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
422 gfp_mask);
423}
424
425/**
426 * grab_cache_page_nowait - returns locked page at given index in given cache
427 * @mapping: target address_space
428 * @index: the page index
429 *
430 * Same as grab_cache_page(), but do not wait if the page is unavailable.
431 * This is intended for speculative data generators, where the data can
432 * be regenerated if the page couldn't be grabbed. This routine should
433 * be safe to call while holding the lock for another page.
434 *
435 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
436 * and deadlock against the caller's locked page.
437 */
438static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
439 pgoff_t index)
440{
441 return pagecache_get_page(mapping, index,
442 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
443 mapping_gfp_mask(mapping));
444}
445
446/* Does this page contain this index? */
447static inline bool thp_contains(struct page *head, pgoff_t index)
448{
449 /* HugeTLBfs indexes the page cache in units of hpage_size */
450 if (PageHuge(head))
451 return head->index == index;
452 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL));
453}
454
455/*
456 * Given the page we found in the page cache, return the page corresponding
457 * to this index in the file
458 */
459static inline struct page *find_subpage(struct page *head, pgoff_t index)
460{
461 /* HugeTLBfs wants the head page regardless */
462 if (PageHuge(head))
463 return head;
464
465 return head + (index & (thp_nr_pages(head) - 1));
466}
467
468unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
469 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
470unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
471 pgoff_t end, unsigned int nr_pages,
472 struct page **pages);
473static inline unsigned find_get_pages(struct address_space *mapping,
474 pgoff_t *start, unsigned int nr_pages,
475 struct page **pages)
476{
477 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages,
478 pages);
479}
480unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
481 unsigned int nr_pages, struct page **pages);
482unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
483 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
484 struct page **pages);
485static inline unsigned find_get_pages_tag(struct address_space *mapping,
486 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages,
487 struct page **pages)
488{
489 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag,
490 nr_pages, pages);
491}
492
493struct page *grab_cache_page_write_begin(struct address_space *mapping,
494 pgoff_t index, unsigned flags);
495
496/*
497 * Returns locked page at given index in given cache, creating it if needed.
498 */
499static inline struct page *grab_cache_page(struct address_space *mapping,
500 pgoff_t index)
501{
502 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
503}
504
505extern struct page * read_cache_page(struct address_space *mapping,
506 pgoff_t index, filler_t *filler, void *data);
507extern struct page * read_cache_page_gfp(struct address_space *mapping,
508 pgoff_t index, gfp_t gfp_mask);
509extern int read_cache_pages(struct address_space *mapping,
510 struct list_head *pages, filler_t *filler, void *data);
511
512static inline struct page *read_mapping_page(struct address_space *mapping,
513 pgoff_t index, void *data)
514{
515 return read_cache_page(mapping, index, NULL, data);
516}
517
518/*
519 * Get index of the page within radix-tree (but not for hugetlb pages).
520 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
521 */
522static inline pgoff_t page_to_index(struct page *page)
523{
524 pgoff_t pgoff;
525
526 if (likely(!PageTransTail(page)))
527 return page->index;
528
529 /*
530 * We don't initialize ->index for tail pages: calculate based on
531 * head page
532 */
533 pgoff = compound_head(page)->index;
534 pgoff += page - compound_head(page);
535 return pgoff;
536}
537
538extern pgoff_t hugetlb_basepage_index(struct page *page);
539
540/*
541 * Get the offset in PAGE_SIZE (even for hugetlb pages).
542 * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
543 */
544static inline pgoff_t page_to_pgoff(struct page *page)
545{
546 if (unlikely(PageHuge(page)))
547 return hugetlb_basepage_index(page);
548 return page_to_index(page);
549}
550
551/*
552 * Return byte-offset into filesystem object for page.
553 */
554static inline loff_t page_offset(struct page *page)
555{
556 return ((loff_t)page->index) << PAGE_SHIFT;
557}
558
559static inline loff_t page_file_offset(struct page *page)
560{
561 return ((loff_t)page_index(page)) << PAGE_SHIFT;
562}
563
564extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
565 unsigned long address);
566
567static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
568 unsigned long address)
569{
570 pgoff_t pgoff;
571 if (unlikely(is_vm_hugetlb_page(vma)))
572 return linear_hugepage_index(vma, address);
573 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
574 pgoff += vma->vm_pgoff;
575 return pgoff;
576}
577
578struct wait_page_key {
579 struct page *page;
580 int bit_nr;
581 int page_match;
582};
583
584struct wait_page_queue {
585 struct page *page;
586 int bit_nr;
587 wait_queue_entry_t wait;
588};
589
590static inline bool wake_page_match(struct wait_page_queue *wait_page,
591 struct wait_page_key *key)
592{
593 if (wait_page->page != key->page)
594 return false;
595 key->page_match = 1;
596
597 if (wait_page->bit_nr != key->bit_nr)
598 return false;
599
600 return true;
601}
602
603extern void __lock_page(struct page *page);
604extern int __lock_page_killable(struct page *page);
605extern int __lock_page_async(struct page *page, struct wait_page_queue *wait);
606extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
607 unsigned int flags);
608extern void unlock_page(struct page *page);
609
610/*
611 * Return true if the page was successfully locked
612 */
613static inline int trylock_page(struct page *page)
614{
615 page = compound_head(page);
616 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags)));
617}
618
619/*
620 * lock_page may only be called if we have the page's inode pinned.
621 */
622static inline void lock_page(struct page *page)
623{
624 might_sleep();
625 if (!trylock_page(page))
626 __lock_page(page);
627}
628
629/*
630 * lock_page_killable is like lock_page but can be interrupted by fatal
631 * signals. It returns 0 if it locked the page and -EINTR if it was
632 * killed while waiting.
633 */
634static inline int lock_page_killable(struct page *page)
635{
636 might_sleep();
637 if (!trylock_page(page))
638 return __lock_page_killable(page);
639 return 0;
640}
641
642/*
643 * lock_page_async - Lock the page, unless this would block. If the page
644 * is already locked, then queue a callback when the page becomes unlocked.
645 * This callback can then retry the operation.
646 *
647 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page
648 * was already locked and the callback defined in 'wait' was queued.
649 */
650static inline int lock_page_async(struct page *page,
651 struct wait_page_queue *wait)
652{
653 if (!trylock_page(page))
654 return __lock_page_async(page, wait);
655 return 0;
656}
657
658/*
659 * lock_page_or_retry - Lock the page, unless this would block and the
660 * caller indicated that it can handle a retry.
661 *
662 * Return value and mmap_lock implications depend on flags; see
663 * __lock_page_or_retry().
664 */
665static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm,
666 unsigned int flags)
667{
668 might_sleep();
669 return trylock_page(page) || __lock_page_or_retry(page, mm, flags);
670}
671
672/*
673 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc.,
674 * and should not be used directly.
675 */
676extern void wait_on_page_bit(struct page *page, int bit_nr);
677extern int wait_on_page_bit_killable(struct page *page, int bit_nr);
678
679/*
680 * Wait for a page to be unlocked.
681 *
682 * This must be called with the caller "holding" the page,
683 * ie with increased "page->count" so that the page won't
684 * go away during the wait..
685 */
686static inline void wait_on_page_locked(struct page *page)
687{
688 if (PageLocked(page))
689 wait_on_page_bit(compound_head(page), PG_locked);
690}
691
692static inline int wait_on_page_locked_killable(struct page *page)
693{
694 if (!PageLocked(page))
695 return 0;
696 return wait_on_page_bit_killable(compound_head(page), PG_locked);
697}
698
699int put_and_wait_on_page_locked(struct page *page, int state);
700void wait_on_page_writeback(struct page *page);
701int wait_on_page_writeback_killable(struct page *page);
702extern void end_page_writeback(struct page *page);
703void wait_for_stable_page(struct page *page);
704
705void page_endio(struct page *page, bool is_write, int err);
706
707/**
708 * set_page_private_2 - Set PG_private_2 on a page and take a ref
709 * @page: The page.
710 *
711 * Set the PG_private_2 flag on a page and take the reference needed for the VM
712 * to handle its lifetime correctly. This sets the flag and takes the
713 * reference unconditionally, so care must be taken not to set the flag again
714 * if it's already set.
715 */
716static inline void set_page_private_2(struct page *page)
717{
718 page = compound_head(page);
719 get_page(page);
720 SetPagePrivate2(page);
721}
722
723void end_page_private_2(struct page *page);
724void wait_on_page_private_2(struct page *page);
725int wait_on_page_private_2_killable(struct page *page);
726
727/*
728 * Add an arbitrary waiter to a page's wait queue
729 */
730extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter);
731
732/*
733 * Fault everything in given userspace address range in.
734 */
735static inline int fault_in_pages_writeable(char __user *uaddr, int size)
736{
737 char __user *end = uaddr + size - 1;
738
739 if (unlikely(size == 0))
740 return 0;
741
742 if (unlikely(uaddr > end))
743 return -EFAULT;
744 /*
745 * Writing zeroes into userspace here is OK, because we know that if
746 * the zero gets there, we'll be overwriting it.
747 */
748 do {
749 if (unlikely(__put_user(0, uaddr) != 0))
750 return -EFAULT;
751 uaddr += PAGE_SIZE;
752 } while (uaddr <= end);
753
754 /* Check whether the range spilled into the next page. */
755 if (((unsigned long)uaddr & PAGE_MASK) ==
756 ((unsigned long)end & PAGE_MASK))
757 return __put_user(0, end);
758
759 return 0;
760}
761
762static inline int fault_in_pages_readable(const char __user *uaddr, int size)
763{
764 volatile char c;
765 const char __user *end = uaddr + size - 1;
766
767 if (unlikely(size == 0))
768 return 0;
769
770 if (unlikely(uaddr > end))
771 return -EFAULT;
772
773 do {
774 if (unlikely(__get_user(c, uaddr) != 0))
775 return -EFAULT;
776 uaddr += PAGE_SIZE;
777 } while (uaddr <= end);
778
779 /* Check whether the range spilled into the next page. */
780 if (((unsigned long)uaddr & PAGE_MASK) ==
781 ((unsigned long)end & PAGE_MASK)) {
782 return __get_user(c, end);
783 }
784
785 (void)c;
786 return 0;
787}
788
789int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
790 pgoff_t index, gfp_t gfp_mask);
791int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
792 pgoff_t index, gfp_t gfp_mask);
793extern void delete_from_page_cache(struct page *page);
794extern void __delete_from_page_cache(struct page *page, void *shadow);
795void replace_page_cache_page(struct page *old, struct page *new);
796void delete_from_page_cache_batch(struct address_space *mapping,
797 struct pagevec *pvec);
798loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
799 int whence);
800
801/*
802 * Like add_to_page_cache_locked, but used to add newly allocated pages:
803 * the page is new, so we can just run __SetPageLocked() against it.
804 */
805static inline int add_to_page_cache(struct page *page,
806 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
807{
808 int error;
809
810 __SetPageLocked(page);
811 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
812 if (unlikely(error))
813 __ClearPageLocked(page);
814 return error;
815}
816
817/**
818 * struct readahead_control - Describes a readahead request.
819 *
820 * A readahead request is for consecutive pages. Filesystems which
821 * implement the ->readahead method should call readahead_page() or
822 * readahead_page_batch() in a loop and attempt to start I/O against
823 * each page in the request.
824 *
825 * Most of the fields in this struct are private and should be accessed
826 * by the functions below.
827 *
828 * @file: The file, used primarily by network filesystems for authentication.
829 * May be NULL if invoked internally by the filesystem.
830 * @mapping: Readahead this filesystem object.
831 * @ra: File readahead state. May be NULL.
832 */
833struct readahead_control {
834 struct file *file;
835 struct address_space *mapping;
836 struct file_ra_state *ra;
837/* private: use the readahead_* accessors instead */
838 pgoff_t _index;
839 unsigned int _nr_pages;
840 unsigned int _batch_count;
841};
842
843#define DEFINE_READAHEAD(ractl, f, r, m, i) \
844 struct readahead_control ractl = { \
845 .file = f, \
846 .mapping = m, \
847 .ra = r, \
848 ._index = i, \
849 }
850
851#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
852
853void page_cache_ra_unbounded(struct readahead_control *,
854 unsigned long nr_to_read, unsigned long lookahead_count);
855void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
856void page_cache_async_ra(struct readahead_control *, struct page *,
857 unsigned long req_count);
858void readahead_expand(struct readahead_control *ractl,
859 loff_t new_start, size_t new_len);
860
861/**
862 * page_cache_sync_readahead - generic file readahead
863 * @mapping: address_space which holds the pagecache and I/O vectors
864 * @ra: file_ra_state which holds the readahead state
865 * @file: Used by the filesystem for authentication.
866 * @index: Index of first page to be read.
867 * @req_count: Total number of pages being read by the caller.
868 *
869 * page_cache_sync_readahead() should be called when a cache miss happened:
870 * it will submit the read. The readahead logic may decide to piggyback more
871 * pages onto the read request if access patterns suggest it will improve
872 * performance.
873 */
874static inline
875void page_cache_sync_readahead(struct address_space *mapping,
876 struct file_ra_state *ra, struct file *file, pgoff_t index,
877 unsigned long req_count)
878{
879 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
880 page_cache_sync_ra(&ractl, req_count);
881}
882
883/**
884 * page_cache_async_readahead - file readahead for marked pages
885 * @mapping: address_space which holds the pagecache and I/O vectors
886 * @ra: file_ra_state which holds the readahead state
887 * @file: Used by the filesystem for authentication.
888 * @page: The page at @index which triggered the readahead call.
889 * @index: Index of first page to be read.
890 * @req_count: Total number of pages being read by the caller.
891 *
892 * page_cache_async_readahead() should be called when a page is used which
893 * is marked as PageReadahead; this is a marker to suggest that the application
894 * has used up enough of the readahead window that we should start pulling in
895 * more pages.
896 */
897static inline
898void page_cache_async_readahead(struct address_space *mapping,
899 struct file_ra_state *ra, struct file *file,
900 struct page *page, pgoff_t index, unsigned long req_count)
901{
902 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
903 page_cache_async_ra(&ractl, page, req_count);
904}
905
906/**
907 * readahead_page - Get the next page to read.
908 * @rac: The current readahead request.
909 *
910 * Context: The page is locked and has an elevated refcount. The caller
911 * should decreases the refcount once the page has been submitted for I/O
912 * and unlock the page once all I/O to that page has completed.
913 * Return: A pointer to the next page, or %NULL if we are done.
914 */
915static inline struct page *readahead_page(struct readahead_control *rac)
916{
917 struct page *page;
918
919 BUG_ON(rac->_batch_count > rac->_nr_pages);
920 rac->_nr_pages -= rac->_batch_count;
921 rac->_index += rac->_batch_count;
922
923 if (!rac->_nr_pages) {
924 rac->_batch_count = 0;
925 return NULL;
926 }
927
928 page = xa_load(&rac->mapping->i_pages, rac->_index);
929 VM_BUG_ON_PAGE(!PageLocked(page), page);
930 rac->_batch_count = thp_nr_pages(page);
931
932 return page;
933}
934
935static inline unsigned int __readahead_batch(struct readahead_control *rac,
936 struct page **array, unsigned int array_sz)
937{
938 unsigned int i = 0;
939 XA_STATE(xas, &rac->mapping->i_pages, 0);
940 struct page *page;
941
942 BUG_ON(rac->_batch_count > rac->_nr_pages);
943 rac->_nr_pages -= rac->_batch_count;
944 rac->_index += rac->_batch_count;
945 rac->_batch_count = 0;
946
947 xas_set(&xas, rac->_index);
948 rcu_read_lock();
949 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
950 if (xas_retry(&xas, page))
951 continue;
952 VM_BUG_ON_PAGE(!PageLocked(page), page);
953 VM_BUG_ON_PAGE(PageTail(page), page);
954 array[i++] = page;
955 rac->_batch_count += thp_nr_pages(page);
956
957 /*
958 * The page cache isn't using multi-index entries yet,
959 * so the xas cursor needs to be manually moved to the
960 * next index. This can be removed once the page cache
961 * is converted.
962 */
963 if (PageHead(page))
964 xas_set(&xas, rac->_index + rac->_batch_count);
965
966 if (i == array_sz)
967 break;
968 }
969 rcu_read_unlock();
970
971 return i;
972}
973
974/**
975 * readahead_page_batch - Get a batch of pages to read.
976 * @rac: The current readahead request.
977 * @array: An array of pointers to struct page.
978 *
979 * Context: The pages are locked and have an elevated refcount. The caller
980 * should decreases the refcount once the page has been submitted for I/O
981 * and unlock the page once all I/O to that page has completed.
982 * Return: The number of pages placed in the array. 0 indicates the request
983 * is complete.
984 */
985#define readahead_page_batch(rac, array) \
986 __readahead_batch(rac, array, ARRAY_SIZE(array))
987
988/**
989 * readahead_pos - The byte offset into the file of this readahead request.
990 * @rac: The readahead request.
991 */
992static inline loff_t readahead_pos(struct readahead_control *rac)
993{
994 return (loff_t)rac->_index * PAGE_SIZE;
995}
996
997/**
998 * readahead_length - The number of bytes in this readahead request.
999 * @rac: The readahead request.
1000 */
1001static inline size_t readahead_length(struct readahead_control *rac)
1002{
1003 return rac->_nr_pages * PAGE_SIZE;
1004}
1005
1006/**
1007 * readahead_index - The index of the first page in this readahead request.
1008 * @rac: The readahead request.
1009 */
1010static inline pgoff_t readahead_index(struct readahead_control *rac)
1011{
1012 return rac->_index;
1013}
1014
1015/**
1016 * readahead_count - The number of pages in this readahead request.
1017 * @rac: The readahead request.
1018 */
1019static inline unsigned int readahead_count(struct readahead_control *rac)
1020{
1021 return rac->_nr_pages;
1022}
1023
1024/**
1025 * readahead_batch_length - The number of bytes in the current batch.
1026 * @rac: The readahead request.
1027 */
1028static inline size_t readahead_batch_length(struct readahead_control *rac)
1029{
1030 return rac->_batch_count * PAGE_SIZE;
1031}
1032
1033static inline unsigned long dir_pages(struct inode *inode)
1034{
1035 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1036 PAGE_SHIFT;
1037}
1038
1039/**
1040 * page_mkwrite_check_truncate - check if page was truncated
1041 * @page: the page to check
1042 * @inode: the inode to check the page against
1043 *
1044 * Returns the number of bytes in the page up to EOF,
1045 * or -EFAULT if the page was truncated.
1046 */
1047static inline int page_mkwrite_check_truncate(struct page *page,
1048 struct inode *inode)
1049{
1050 loff_t size = i_size_read(inode);
1051 pgoff_t index = size >> PAGE_SHIFT;
1052 int offset = offset_in_page(size);
1053
1054 if (page->mapping != inode->i_mapping)
1055 return -EFAULT;
1056
1057 /* page is wholly inside EOF */
1058 if (page->index < index)
1059 return PAGE_SIZE;
1060 /* page is wholly past EOF */
1061 if (page->index > index || !offset)
1062 return -EFAULT;
1063 /* page is partially inside EOF */
1064 return offset;
1065}
1066
1067/**
1068 * i_blocks_per_page - How many blocks fit in this page.
1069 * @inode: The inode which contains the blocks.
1070 * @page: The page (head page if the page is a THP).
1071 *
1072 * If the block size is larger than the size of this page, return zero.
1073 *
1074 * Context: The caller should hold a refcount on the page to prevent it
1075 * from being split.
1076 * Return: The number of filesystem blocks covered by this page.
1077 */
1078static inline
1079unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1080{
1081 return thp_size(page) >> inode->i_blkbits;
1082}
1083#endif /* _LINUX_PAGEMAP_H */