at v5.13 32 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_PAGEMAP_H 3#define _LINUX_PAGEMAP_H 4 5/* 6 * Copyright 1995 Linus Torvalds 7 */ 8#include <linux/mm.h> 9#include <linux/fs.h> 10#include <linux/list.h> 11#include <linux/highmem.h> 12#include <linux/compiler.h> 13#include <linux/uaccess.h> 14#include <linux/gfp.h> 15#include <linux/bitops.h> 16#include <linux/hardirq.h> /* for in_interrupt() */ 17#include <linux/hugetlb_inline.h> 18 19struct pagevec; 20 21static inline bool mapping_empty(struct address_space *mapping) 22{ 23 return xa_empty(&mapping->i_pages); 24} 25 26/* 27 * Bits in mapping->flags. 28 */ 29enum mapping_flags { 30 AS_EIO = 0, /* IO error on async write */ 31 AS_ENOSPC = 1, /* ENOSPC on async write */ 32 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */ 33 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */ 34 AS_EXITING = 4, /* final truncate in progress */ 35 /* writeback related tags are not used */ 36 AS_NO_WRITEBACK_TAGS = 5, 37 AS_THP_SUPPORT = 6, /* THPs supported */ 38}; 39 40/** 41 * mapping_set_error - record a writeback error in the address_space 42 * @mapping: the mapping in which an error should be set 43 * @error: the error to set in the mapping 44 * 45 * When writeback fails in some way, we must record that error so that 46 * userspace can be informed when fsync and the like are called. We endeavor 47 * to report errors on any file that was open at the time of the error. Some 48 * internal callers also need to know when writeback errors have occurred. 49 * 50 * When a writeback error occurs, most filesystems will want to call 51 * mapping_set_error to record the error in the mapping so that it can be 52 * reported when the application calls fsync(2). 53 */ 54static inline void mapping_set_error(struct address_space *mapping, int error) 55{ 56 if (likely(!error)) 57 return; 58 59 /* Record in wb_err for checkers using errseq_t based tracking */ 60 __filemap_set_wb_err(mapping, error); 61 62 /* Record it in superblock */ 63 if (mapping->host) 64 errseq_set(&mapping->host->i_sb->s_wb_err, error); 65 66 /* Record it in flags for now, for legacy callers */ 67 if (error == -ENOSPC) 68 set_bit(AS_ENOSPC, &mapping->flags); 69 else 70 set_bit(AS_EIO, &mapping->flags); 71} 72 73static inline void mapping_set_unevictable(struct address_space *mapping) 74{ 75 set_bit(AS_UNEVICTABLE, &mapping->flags); 76} 77 78static inline void mapping_clear_unevictable(struct address_space *mapping) 79{ 80 clear_bit(AS_UNEVICTABLE, &mapping->flags); 81} 82 83static inline bool mapping_unevictable(struct address_space *mapping) 84{ 85 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags); 86} 87 88static inline void mapping_set_exiting(struct address_space *mapping) 89{ 90 set_bit(AS_EXITING, &mapping->flags); 91} 92 93static inline int mapping_exiting(struct address_space *mapping) 94{ 95 return test_bit(AS_EXITING, &mapping->flags); 96} 97 98static inline void mapping_set_no_writeback_tags(struct address_space *mapping) 99{ 100 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 101} 102 103static inline int mapping_use_writeback_tags(struct address_space *mapping) 104{ 105 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags); 106} 107 108static inline gfp_t mapping_gfp_mask(struct address_space * mapping) 109{ 110 return mapping->gfp_mask; 111} 112 113/* Restricts the given gfp_mask to what the mapping allows. */ 114static inline gfp_t mapping_gfp_constraint(struct address_space *mapping, 115 gfp_t gfp_mask) 116{ 117 return mapping_gfp_mask(mapping) & gfp_mask; 118} 119 120/* 121 * This is non-atomic. Only to be used before the mapping is activated. 122 * Probably needs a barrier... 123 */ 124static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask) 125{ 126 m->gfp_mask = mask; 127} 128 129static inline bool mapping_thp_support(struct address_space *mapping) 130{ 131 return test_bit(AS_THP_SUPPORT, &mapping->flags); 132} 133 134static inline int filemap_nr_thps(struct address_space *mapping) 135{ 136#ifdef CONFIG_READ_ONLY_THP_FOR_FS 137 return atomic_read(&mapping->nr_thps); 138#else 139 return 0; 140#endif 141} 142 143static inline void filemap_nr_thps_inc(struct address_space *mapping) 144{ 145#ifdef CONFIG_READ_ONLY_THP_FOR_FS 146 if (!mapping_thp_support(mapping)) 147 atomic_inc(&mapping->nr_thps); 148#else 149 WARN_ON_ONCE(1); 150#endif 151} 152 153static inline void filemap_nr_thps_dec(struct address_space *mapping) 154{ 155#ifdef CONFIG_READ_ONLY_THP_FOR_FS 156 if (!mapping_thp_support(mapping)) 157 atomic_dec(&mapping->nr_thps); 158#else 159 WARN_ON_ONCE(1); 160#endif 161} 162 163void release_pages(struct page **pages, int nr); 164 165/* 166 * For file cache pages, return the address_space, otherwise return NULL 167 */ 168static inline struct address_space *page_mapping_file(struct page *page) 169{ 170 if (unlikely(PageSwapCache(page))) 171 return NULL; 172 return page_mapping(page); 173} 174 175/* 176 * speculatively take a reference to a page. 177 * If the page is free (_refcount == 0), then _refcount is untouched, and 0 178 * is returned. Otherwise, _refcount is incremented by 1 and 1 is returned. 179 * 180 * This function must be called inside the same rcu_read_lock() section as has 181 * been used to lookup the page in the pagecache radix-tree (or page table): 182 * this allows allocators to use a synchronize_rcu() to stabilize _refcount. 183 * 184 * Unless an RCU grace period has passed, the count of all pages coming out 185 * of the allocator must be considered unstable. page_count may return higher 186 * than expected, and put_page must be able to do the right thing when the 187 * page has been finished with, no matter what it is subsequently allocated 188 * for (because put_page is what is used here to drop an invalid speculative 189 * reference). 190 * 191 * This is the interesting part of the lockless pagecache (and lockless 192 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page) 193 * has the following pattern: 194 * 1. find page in radix tree 195 * 2. conditionally increment refcount 196 * 3. check the page is still in pagecache (if no, goto 1) 197 * 198 * Remove-side that cares about stability of _refcount (eg. reclaim) has the 199 * following (with the i_pages lock held): 200 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg) 201 * B. remove page from pagecache 202 * C. free the page 203 * 204 * There are 2 critical interleavings that matter: 205 * - 2 runs before A: in this case, A sees elevated refcount and bails out 206 * - A runs before 2: in this case, 2 sees zero refcount and retries; 207 * subsequently, B will complete and 1 will find no page, causing the 208 * lookup to return NULL. 209 * 210 * It is possible that between 1 and 2, the page is removed then the exact same 211 * page is inserted into the same position in pagecache. That's OK: the 212 * old find_get_page using a lock could equally have run before or after 213 * such a re-insertion, depending on order that locks are granted. 214 * 215 * Lookups racing against pagecache insertion isn't a big problem: either 1 216 * will find the page or it will not. Likewise, the old find_get_page could run 217 * either before the insertion or afterwards, depending on timing. 218 */ 219static inline int __page_cache_add_speculative(struct page *page, int count) 220{ 221#ifdef CONFIG_TINY_RCU 222# ifdef CONFIG_PREEMPT_COUNT 223 VM_BUG_ON(!in_atomic() && !irqs_disabled()); 224# endif 225 /* 226 * Preempt must be disabled here - we rely on rcu_read_lock doing 227 * this for us. 228 * 229 * Pagecache won't be truncated from interrupt context, so if we have 230 * found a page in the radix tree here, we have pinned its refcount by 231 * disabling preempt, and hence no need for the "speculative get" that 232 * SMP requires. 233 */ 234 VM_BUG_ON_PAGE(page_count(page) == 0, page); 235 page_ref_add(page, count); 236 237#else 238 if (unlikely(!page_ref_add_unless(page, count, 0))) { 239 /* 240 * Either the page has been freed, or will be freed. 241 * In either case, retry here and the caller should 242 * do the right thing (see comments above). 243 */ 244 return 0; 245 } 246#endif 247 VM_BUG_ON_PAGE(PageTail(page), page); 248 249 return 1; 250} 251 252static inline int page_cache_get_speculative(struct page *page) 253{ 254 return __page_cache_add_speculative(page, 1); 255} 256 257static inline int page_cache_add_speculative(struct page *page, int count) 258{ 259 return __page_cache_add_speculative(page, count); 260} 261 262/** 263 * attach_page_private - Attach private data to a page. 264 * @page: Page to attach data to. 265 * @data: Data to attach to page. 266 * 267 * Attaching private data to a page increments the page's reference count. 268 * The data must be detached before the page will be freed. 269 */ 270static inline void attach_page_private(struct page *page, void *data) 271{ 272 get_page(page); 273 set_page_private(page, (unsigned long)data); 274 SetPagePrivate(page); 275} 276 277/** 278 * detach_page_private - Detach private data from a page. 279 * @page: Page to detach data from. 280 * 281 * Removes the data that was previously attached to the page and decrements 282 * the refcount on the page. 283 * 284 * Return: Data that was attached to the page. 285 */ 286static inline void *detach_page_private(struct page *page) 287{ 288 void *data = (void *)page_private(page); 289 290 if (!PagePrivate(page)) 291 return NULL; 292 ClearPagePrivate(page); 293 set_page_private(page, 0); 294 put_page(page); 295 296 return data; 297} 298 299#ifdef CONFIG_NUMA 300extern struct page *__page_cache_alloc(gfp_t gfp); 301#else 302static inline struct page *__page_cache_alloc(gfp_t gfp) 303{ 304 return alloc_pages(gfp, 0); 305} 306#endif 307 308static inline struct page *page_cache_alloc(struct address_space *x) 309{ 310 return __page_cache_alloc(mapping_gfp_mask(x)); 311} 312 313static inline gfp_t readahead_gfp_mask(struct address_space *x) 314{ 315 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN; 316} 317 318typedef int filler_t(void *, struct page *); 319 320pgoff_t page_cache_next_miss(struct address_space *mapping, 321 pgoff_t index, unsigned long max_scan); 322pgoff_t page_cache_prev_miss(struct address_space *mapping, 323 pgoff_t index, unsigned long max_scan); 324 325#define FGP_ACCESSED 0x00000001 326#define FGP_LOCK 0x00000002 327#define FGP_CREAT 0x00000004 328#define FGP_WRITE 0x00000008 329#define FGP_NOFS 0x00000010 330#define FGP_NOWAIT 0x00000020 331#define FGP_FOR_MMAP 0x00000040 332#define FGP_HEAD 0x00000080 333#define FGP_ENTRY 0x00000100 334 335struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 336 int fgp_flags, gfp_t cache_gfp_mask); 337 338/** 339 * find_get_page - find and get a page reference 340 * @mapping: the address_space to search 341 * @offset: the page index 342 * 343 * Looks up the page cache slot at @mapping & @offset. If there is a 344 * page cache page, it is returned with an increased refcount. 345 * 346 * Otherwise, %NULL is returned. 347 */ 348static inline struct page *find_get_page(struct address_space *mapping, 349 pgoff_t offset) 350{ 351 return pagecache_get_page(mapping, offset, 0, 0); 352} 353 354static inline struct page *find_get_page_flags(struct address_space *mapping, 355 pgoff_t offset, int fgp_flags) 356{ 357 return pagecache_get_page(mapping, offset, fgp_flags, 0); 358} 359 360/** 361 * find_lock_page - locate, pin and lock a pagecache page 362 * @mapping: the address_space to search 363 * @index: the page index 364 * 365 * Looks up the page cache entry at @mapping & @index. If there is a 366 * page cache page, it is returned locked and with an increased 367 * refcount. 368 * 369 * Context: May sleep. 370 * Return: A struct page or %NULL if there is no page in the cache for this 371 * index. 372 */ 373static inline struct page *find_lock_page(struct address_space *mapping, 374 pgoff_t index) 375{ 376 return pagecache_get_page(mapping, index, FGP_LOCK, 0); 377} 378 379/** 380 * find_lock_head - Locate, pin and lock a pagecache page. 381 * @mapping: The address_space to search. 382 * @index: The page index. 383 * 384 * Looks up the page cache entry at @mapping & @index. If there is a 385 * page cache page, its head page is returned locked and with an increased 386 * refcount. 387 * 388 * Context: May sleep. 389 * Return: A struct page which is !PageTail, or %NULL if there is no page 390 * in the cache for this index. 391 */ 392static inline struct page *find_lock_head(struct address_space *mapping, 393 pgoff_t index) 394{ 395 return pagecache_get_page(mapping, index, FGP_LOCK | FGP_HEAD, 0); 396} 397 398/** 399 * find_or_create_page - locate or add a pagecache page 400 * @mapping: the page's address_space 401 * @index: the page's index into the mapping 402 * @gfp_mask: page allocation mode 403 * 404 * Looks up the page cache slot at @mapping & @offset. If there is a 405 * page cache page, it is returned locked and with an increased 406 * refcount. 407 * 408 * If the page is not present, a new page is allocated using @gfp_mask 409 * and added to the page cache and the VM's LRU list. The page is 410 * returned locked and with an increased refcount. 411 * 412 * On memory exhaustion, %NULL is returned. 413 * 414 * find_or_create_page() may sleep, even if @gfp_flags specifies an 415 * atomic allocation! 416 */ 417static inline struct page *find_or_create_page(struct address_space *mapping, 418 pgoff_t index, gfp_t gfp_mask) 419{ 420 return pagecache_get_page(mapping, index, 421 FGP_LOCK|FGP_ACCESSED|FGP_CREAT, 422 gfp_mask); 423} 424 425/** 426 * grab_cache_page_nowait - returns locked page at given index in given cache 427 * @mapping: target address_space 428 * @index: the page index 429 * 430 * Same as grab_cache_page(), but do not wait if the page is unavailable. 431 * This is intended for speculative data generators, where the data can 432 * be regenerated if the page couldn't be grabbed. This routine should 433 * be safe to call while holding the lock for another page. 434 * 435 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 436 * and deadlock against the caller's locked page. 437 */ 438static inline struct page *grab_cache_page_nowait(struct address_space *mapping, 439 pgoff_t index) 440{ 441 return pagecache_get_page(mapping, index, 442 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT, 443 mapping_gfp_mask(mapping)); 444} 445 446/* Does this page contain this index? */ 447static inline bool thp_contains(struct page *head, pgoff_t index) 448{ 449 /* HugeTLBfs indexes the page cache in units of hpage_size */ 450 if (PageHuge(head)) 451 return head->index == index; 452 return page_index(head) == (index & ~(thp_nr_pages(head) - 1UL)); 453} 454 455/* 456 * Given the page we found in the page cache, return the page corresponding 457 * to this index in the file 458 */ 459static inline struct page *find_subpage(struct page *head, pgoff_t index) 460{ 461 /* HugeTLBfs wants the head page regardless */ 462 if (PageHuge(head)) 463 return head; 464 465 return head + (index & (thp_nr_pages(head) - 1)); 466} 467 468unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 469 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 470unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 471 pgoff_t end, unsigned int nr_pages, 472 struct page **pages); 473static inline unsigned find_get_pages(struct address_space *mapping, 474 pgoff_t *start, unsigned int nr_pages, 475 struct page **pages) 476{ 477 return find_get_pages_range(mapping, start, (pgoff_t)-1, nr_pages, 478 pages); 479} 480unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start, 481 unsigned int nr_pages, struct page **pages); 482unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 483 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 484 struct page **pages); 485static inline unsigned find_get_pages_tag(struct address_space *mapping, 486 pgoff_t *index, xa_mark_t tag, unsigned int nr_pages, 487 struct page **pages) 488{ 489 return find_get_pages_range_tag(mapping, index, (pgoff_t)-1, tag, 490 nr_pages, pages); 491} 492 493struct page *grab_cache_page_write_begin(struct address_space *mapping, 494 pgoff_t index, unsigned flags); 495 496/* 497 * Returns locked page at given index in given cache, creating it if needed. 498 */ 499static inline struct page *grab_cache_page(struct address_space *mapping, 500 pgoff_t index) 501{ 502 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping)); 503} 504 505extern struct page * read_cache_page(struct address_space *mapping, 506 pgoff_t index, filler_t *filler, void *data); 507extern struct page * read_cache_page_gfp(struct address_space *mapping, 508 pgoff_t index, gfp_t gfp_mask); 509extern int read_cache_pages(struct address_space *mapping, 510 struct list_head *pages, filler_t *filler, void *data); 511 512static inline struct page *read_mapping_page(struct address_space *mapping, 513 pgoff_t index, void *data) 514{ 515 return read_cache_page(mapping, index, NULL, data); 516} 517 518/* 519 * Get index of the page within radix-tree (but not for hugetlb pages). 520 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE) 521 */ 522static inline pgoff_t page_to_index(struct page *page) 523{ 524 pgoff_t pgoff; 525 526 if (likely(!PageTransTail(page))) 527 return page->index; 528 529 /* 530 * We don't initialize ->index for tail pages: calculate based on 531 * head page 532 */ 533 pgoff = compound_head(page)->index; 534 pgoff += page - compound_head(page); 535 return pgoff; 536} 537 538extern pgoff_t hugetlb_basepage_index(struct page *page); 539 540/* 541 * Get the offset in PAGE_SIZE (even for hugetlb pages). 542 * (TODO: hugetlb pages should have ->index in PAGE_SIZE) 543 */ 544static inline pgoff_t page_to_pgoff(struct page *page) 545{ 546 if (unlikely(PageHuge(page))) 547 return hugetlb_basepage_index(page); 548 return page_to_index(page); 549} 550 551/* 552 * Return byte-offset into filesystem object for page. 553 */ 554static inline loff_t page_offset(struct page *page) 555{ 556 return ((loff_t)page->index) << PAGE_SHIFT; 557} 558 559static inline loff_t page_file_offset(struct page *page) 560{ 561 return ((loff_t)page_index(page)) << PAGE_SHIFT; 562} 563 564extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma, 565 unsigned long address); 566 567static inline pgoff_t linear_page_index(struct vm_area_struct *vma, 568 unsigned long address) 569{ 570 pgoff_t pgoff; 571 if (unlikely(is_vm_hugetlb_page(vma))) 572 return linear_hugepage_index(vma, address); 573 pgoff = (address - vma->vm_start) >> PAGE_SHIFT; 574 pgoff += vma->vm_pgoff; 575 return pgoff; 576} 577 578struct wait_page_key { 579 struct page *page; 580 int bit_nr; 581 int page_match; 582}; 583 584struct wait_page_queue { 585 struct page *page; 586 int bit_nr; 587 wait_queue_entry_t wait; 588}; 589 590static inline bool wake_page_match(struct wait_page_queue *wait_page, 591 struct wait_page_key *key) 592{ 593 if (wait_page->page != key->page) 594 return false; 595 key->page_match = 1; 596 597 if (wait_page->bit_nr != key->bit_nr) 598 return false; 599 600 return true; 601} 602 603extern void __lock_page(struct page *page); 604extern int __lock_page_killable(struct page *page); 605extern int __lock_page_async(struct page *page, struct wait_page_queue *wait); 606extern int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 607 unsigned int flags); 608extern void unlock_page(struct page *page); 609 610/* 611 * Return true if the page was successfully locked 612 */ 613static inline int trylock_page(struct page *page) 614{ 615 page = compound_head(page); 616 return (likely(!test_and_set_bit_lock(PG_locked, &page->flags))); 617} 618 619/* 620 * lock_page may only be called if we have the page's inode pinned. 621 */ 622static inline void lock_page(struct page *page) 623{ 624 might_sleep(); 625 if (!trylock_page(page)) 626 __lock_page(page); 627} 628 629/* 630 * lock_page_killable is like lock_page but can be interrupted by fatal 631 * signals. It returns 0 if it locked the page and -EINTR if it was 632 * killed while waiting. 633 */ 634static inline int lock_page_killable(struct page *page) 635{ 636 might_sleep(); 637 if (!trylock_page(page)) 638 return __lock_page_killable(page); 639 return 0; 640} 641 642/* 643 * lock_page_async - Lock the page, unless this would block. If the page 644 * is already locked, then queue a callback when the page becomes unlocked. 645 * This callback can then retry the operation. 646 * 647 * Returns 0 if the page is locked successfully, or -EIOCBQUEUED if the page 648 * was already locked and the callback defined in 'wait' was queued. 649 */ 650static inline int lock_page_async(struct page *page, 651 struct wait_page_queue *wait) 652{ 653 if (!trylock_page(page)) 654 return __lock_page_async(page, wait); 655 return 0; 656} 657 658/* 659 * lock_page_or_retry - Lock the page, unless this would block and the 660 * caller indicated that it can handle a retry. 661 * 662 * Return value and mmap_lock implications depend on flags; see 663 * __lock_page_or_retry(). 664 */ 665static inline int lock_page_or_retry(struct page *page, struct mm_struct *mm, 666 unsigned int flags) 667{ 668 might_sleep(); 669 return trylock_page(page) || __lock_page_or_retry(page, mm, flags); 670} 671 672/* 673 * This is exported only for wait_on_page_locked/wait_on_page_writeback, etc., 674 * and should not be used directly. 675 */ 676extern void wait_on_page_bit(struct page *page, int bit_nr); 677extern int wait_on_page_bit_killable(struct page *page, int bit_nr); 678 679/* 680 * Wait for a page to be unlocked. 681 * 682 * This must be called with the caller "holding" the page, 683 * ie with increased "page->count" so that the page won't 684 * go away during the wait.. 685 */ 686static inline void wait_on_page_locked(struct page *page) 687{ 688 if (PageLocked(page)) 689 wait_on_page_bit(compound_head(page), PG_locked); 690} 691 692static inline int wait_on_page_locked_killable(struct page *page) 693{ 694 if (!PageLocked(page)) 695 return 0; 696 return wait_on_page_bit_killable(compound_head(page), PG_locked); 697} 698 699int put_and_wait_on_page_locked(struct page *page, int state); 700void wait_on_page_writeback(struct page *page); 701int wait_on_page_writeback_killable(struct page *page); 702extern void end_page_writeback(struct page *page); 703void wait_for_stable_page(struct page *page); 704 705void page_endio(struct page *page, bool is_write, int err); 706 707/** 708 * set_page_private_2 - Set PG_private_2 on a page and take a ref 709 * @page: The page. 710 * 711 * Set the PG_private_2 flag on a page and take the reference needed for the VM 712 * to handle its lifetime correctly. This sets the flag and takes the 713 * reference unconditionally, so care must be taken not to set the flag again 714 * if it's already set. 715 */ 716static inline void set_page_private_2(struct page *page) 717{ 718 page = compound_head(page); 719 get_page(page); 720 SetPagePrivate2(page); 721} 722 723void end_page_private_2(struct page *page); 724void wait_on_page_private_2(struct page *page); 725int wait_on_page_private_2_killable(struct page *page); 726 727/* 728 * Add an arbitrary waiter to a page's wait queue 729 */ 730extern void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter); 731 732/* 733 * Fault everything in given userspace address range in. 734 */ 735static inline int fault_in_pages_writeable(char __user *uaddr, int size) 736{ 737 char __user *end = uaddr + size - 1; 738 739 if (unlikely(size == 0)) 740 return 0; 741 742 if (unlikely(uaddr > end)) 743 return -EFAULT; 744 /* 745 * Writing zeroes into userspace here is OK, because we know that if 746 * the zero gets there, we'll be overwriting it. 747 */ 748 do { 749 if (unlikely(__put_user(0, uaddr) != 0)) 750 return -EFAULT; 751 uaddr += PAGE_SIZE; 752 } while (uaddr <= end); 753 754 /* Check whether the range spilled into the next page. */ 755 if (((unsigned long)uaddr & PAGE_MASK) == 756 ((unsigned long)end & PAGE_MASK)) 757 return __put_user(0, end); 758 759 return 0; 760} 761 762static inline int fault_in_pages_readable(const char __user *uaddr, int size) 763{ 764 volatile char c; 765 const char __user *end = uaddr + size - 1; 766 767 if (unlikely(size == 0)) 768 return 0; 769 770 if (unlikely(uaddr > end)) 771 return -EFAULT; 772 773 do { 774 if (unlikely(__get_user(c, uaddr) != 0)) 775 return -EFAULT; 776 uaddr += PAGE_SIZE; 777 } while (uaddr <= end); 778 779 /* Check whether the range spilled into the next page. */ 780 if (((unsigned long)uaddr & PAGE_MASK) == 781 ((unsigned long)end & PAGE_MASK)) { 782 return __get_user(c, end); 783 } 784 785 (void)c; 786 return 0; 787} 788 789int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 790 pgoff_t index, gfp_t gfp_mask); 791int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 792 pgoff_t index, gfp_t gfp_mask); 793extern void delete_from_page_cache(struct page *page); 794extern void __delete_from_page_cache(struct page *page, void *shadow); 795void replace_page_cache_page(struct page *old, struct page *new); 796void delete_from_page_cache_batch(struct address_space *mapping, 797 struct pagevec *pvec); 798loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end, 799 int whence); 800 801/* 802 * Like add_to_page_cache_locked, but used to add newly allocated pages: 803 * the page is new, so we can just run __SetPageLocked() against it. 804 */ 805static inline int add_to_page_cache(struct page *page, 806 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask) 807{ 808 int error; 809 810 __SetPageLocked(page); 811 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask); 812 if (unlikely(error)) 813 __ClearPageLocked(page); 814 return error; 815} 816 817/** 818 * struct readahead_control - Describes a readahead request. 819 * 820 * A readahead request is for consecutive pages. Filesystems which 821 * implement the ->readahead method should call readahead_page() or 822 * readahead_page_batch() in a loop and attempt to start I/O against 823 * each page in the request. 824 * 825 * Most of the fields in this struct are private and should be accessed 826 * by the functions below. 827 * 828 * @file: The file, used primarily by network filesystems for authentication. 829 * May be NULL if invoked internally by the filesystem. 830 * @mapping: Readahead this filesystem object. 831 * @ra: File readahead state. May be NULL. 832 */ 833struct readahead_control { 834 struct file *file; 835 struct address_space *mapping; 836 struct file_ra_state *ra; 837/* private: use the readahead_* accessors instead */ 838 pgoff_t _index; 839 unsigned int _nr_pages; 840 unsigned int _batch_count; 841}; 842 843#define DEFINE_READAHEAD(ractl, f, r, m, i) \ 844 struct readahead_control ractl = { \ 845 .file = f, \ 846 .mapping = m, \ 847 .ra = r, \ 848 ._index = i, \ 849 } 850 851#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 852 853void page_cache_ra_unbounded(struct readahead_control *, 854 unsigned long nr_to_read, unsigned long lookahead_count); 855void page_cache_sync_ra(struct readahead_control *, unsigned long req_count); 856void page_cache_async_ra(struct readahead_control *, struct page *, 857 unsigned long req_count); 858void readahead_expand(struct readahead_control *ractl, 859 loff_t new_start, size_t new_len); 860 861/** 862 * page_cache_sync_readahead - generic file readahead 863 * @mapping: address_space which holds the pagecache and I/O vectors 864 * @ra: file_ra_state which holds the readahead state 865 * @file: Used by the filesystem for authentication. 866 * @index: Index of first page to be read. 867 * @req_count: Total number of pages being read by the caller. 868 * 869 * page_cache_sync_readahead() should be called when a cache miss happened: 870 * it will submit the read. The readahead logic may decide to piggyback more 871 * pages onto the read request if access patterns suggest it will improve 872 * performance. 873 */ 874static inline 875void page_cache_sync_readahead(struct address_space *mapping, 876 struct file_ra_state *ra, struct file *file, pgoff_t index, 877 unsigned long req_count) 878{ 879 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 880 page_cache_sync_ra(&ractl, req_count); 881} 882 883/** 884 * page_cache_async_readahead - file readahead for marked pages 885 * @mapping: address_space which holds the pagecache and I/O vectors 886 * @ra: file_ra_state which holds the readahead state 887 * @file: Used by the filesystem for authentication. 888 * @page: The page at @index which triggered the readahead call. 889 * @index: Index of first page to be read. 890 * @req_count: Total number of pages being read by the caller. 891 * 892 * page_cache_async_readahead() should be called when a page is used which 893 * is marked as PageReadahead; this is a marker to suggest that the application 894 * has used up enough of the readahead window that we should start pulling in 895 * more pages. 896 */ 897static inline 898void page_cache_async_readahead(struct address_space *mapping, 899 struct file_ra_state *ra, struct file *file, 900 struct page *page, pgoff_t index, unsigned long req_count) 901{ 902 DEFINE_READAHEAD(ractl, file, ra, mapping, index); 903 page_cache_async_ra(&ractl, page, req_count); 904} 905 906/** 907 * readahead_page - Get the next page to read. 908 * @rac: The current readahead request. 909 * 910 * Context: The page is locked and has an elevated refcount. The caller 911 * should decreases the refcount once the page has been submitted for I/O 912 * and unlock the page once all I/O to that page has completed. 913 * Return: A pointer to the next page, or %NULL if we are done. 914 */ 915static inline struct page *readahead_page(struct readahead_control *rac) 916{ 917 struct page *page; 918 919 BUG_ON(rac->_batch_count > rac->_nr_pages); 920 rac->_nr_pages -= rac->_batch_count; 921 rac->_index += rac->_batch_count; 922 923 if (!rac->_nr_pages) { 924 rac->_batch_count = 0; 925 return NULL; 926 } 927 928 page = xa_load(&rac->mapping->i_pages, rac->_index); 929 VM_BUG_ON_PAGE(!PageLocked(page), page); 930 rac->_batch_count = thp_nr_pages(page); 931 932 return page; 933} 934 935static inline unsigned int __readahead_batch(struct readahead_control *rac, 936 struct page **array, unsigned int array_sz) 937{ 938 unsigned int i = 0; 939 XA_STATE(xas, &rac->mapping->i_pages, 0); 940 struct page *page; 941 942 BUG_ON(rac->_batch_count > rac->_nr_pages); 943 rac->_nr_pages -= rac->_batch_count; 944 rac->_index += rac->_batch_count; 945 rac->_batch_count = 0; 946 947 xas_set(&xas, rac->_index); 948 rcu_read_lock(); 949 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) { 950 if (xas_retry(&xas, page)) 951 continue; 952 VM_BUG_ON_PAGE(!PageLocked(page), page); 953 VM_BUG_ON_PAGE(PageTail(page), page); 954 array[i++] = page; 955 rac->_batch_count += thp_nr_pages(page); 956 957 /* 958 * The page cache isn't using multi-index entries yet, 959 * so the xas cursor needs to be manually moved to the 960 * next index. This can be removed once the page cache 961 * is converted. 962 */ 963 if (PageHead(page)) 964 xas_set(&xas, rac->_index + rac->_batch_count); 965 966 if (i == array_sz) 967 break; 968 } 969 rcu_read_unlock(); 970 971 return i; 972} 973 974/** 975 * readahead_page_batch - Get a batch of pages to read. 976 * @rac: The current readahead request. 977 * @array: An array of pointers to struct page. 978 * 979 * Context: The pages are locked and have an elevated refcount. The caller 980 * should decreases the refcount once the page has been submitted for I/O 981 * and unlock the page once all I/O to that page has completed. 982 * Return: The number of pages placed in the array. 0 indicates the request 983 * is complete. 984 */ 985#define readahead_page_batch(rac, array) \ 986 __readahead_batch(rac, array, ARRAY_SIZE(array)) 987 988/** 989 * readahead_pos - The byte offset into the file of this readahead request. 990 * @rac: The readahead request. 991 */ 992static inline loff_t readahead_pos(struct readahead_control *rac) 993{ 994 return (loff_t)rac->_index * PAGE_SIZE; 995} 996 997/** 998 * readahead_length - The number of bytes in this readahead request. 999 * @rac: The readahead request. 1000 */ 1001static inline size_t readahead_length(struct readahead_control *rac) 1002{ 1003 return rac->_nr_pages * PAGE_SIZE; 1004} 1005 1006/** 1007 * readahead_index - The index of the first page in this readahead request. 1008 * @rac: The readahead request. 1009 */ 1010static inline pgoff_t readahead_index(struct readahead_control *rac) 1011{ 1012 return rac->_index; 1013} 1014 1015/** 1016 * readahead_count - The number of pages in this readahead request. 1017 * @rac: The readahead request. 1018 */ 1019static inline unsigned int readahead_count(struct readahead_control *rac) 1020{ 1021 return rac->_nr_pages; 1022} 1023 1024/** 1025 * readahead_batch_length - The number of bytes in the current batch. 1026 * @rac: The readahead request. 1027 */ 1028static inline size_t readahead_batch_length(struct readahead_control *rac) 1029{ 1030 return rac->_batch_count * PAGE_SIZE; 1031} 1032 1033static inline unsigned long dir_pages(struct inode *inode) 1034{ 1035 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >> 1036 PAGE_SHIFT; 1037} 1038 1039/** 1040 * page_mkwrite_check_truncate - check if page was truncated 1041 * @page: the page to check 1042 * @inode: the inode to check the page against 1043 * 1044 * Returns the number of bytes in the page up to EOF, 1045 * or -EFAULT if the page was truncated. 1046 */ 1047static inline int page_mkwrite_check_truncate(struct page *page, 1048 struct inode *inode) 1049{ 1050 loff_t size = i_size_read(inode); 1051 pgoff_t index = size >> PAGE_SHIFT; 1052 int offset = offset_in_page(size); 1053 1054 if (page->mapping != inode->i_mapping) 1055 return -EFAULT; 1056 1057 /* page is wholly inside EOF */ 1058 if (page->index < index) 1059 return PAGE_SIZE; 1060 /* page is wholly past EOF */ 1061 if (page->index > index || !offset) 1062 return -EFAULT; 1063 /* page is partially inside EOF */ 1064 return offset; 1065} 1066 1067/** 1068 * i_blocks_per_page - How many blocks fit in this page. 1069 * @inode: The inode which contains the blocks. 1070 * @page: The page (head page if the page is a THP). 1071 * 1072 * If the block size is larger than the size of this page, return zero. 1073 * 1074 * Context: The caller should hold a refcount on the page to prevent it 1075 * from being split. 1076 * Return: The number of filesystem blocks covered by this page. 1077 */ 1078static inline 1079unsigned int i_blocks_per_page(struct inode *inode, struct page *page) 1080{ 1081 return thp_size(page) >> inode->i_blkbits; 1082} 1083#endif /* _LINUX_PAGEMAP_H */