at v5.13 15 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright (c) 2016-2017 Micron Technology, Inc. 4 * 5 * Authors: 6 * Peter Pan <peterpandong@micron.com> 7 */ 8#ifndef __LINUX_MTD_SPINAND_H 9#define __LINUX_MTD_SPINAND_H 10 11#include <linux/mutex.h> 12#include <linux/bitops.h> 13#include <linux/device.h> 14#include <linux/mtd/mtd.h> 15#include <linux/mtd/nand.h> 16#include <linux/spi/spi.h> 17#include <linux/spi/spi-mem.h> 18 19/** 20 * Standard SPI NAND flash operations 21 */ 22 23#define SPINAND_RESET_OP \ 24 SPI_MEM_OP(SPI_MEM_OP_CMD(0xff, 1), \ 25 SPI_MEM_OP_NO_ADDR, \ 26 SPI_MEM_OP_NO_DUMMY, \ 27 SPI_MEM_OP_NO_DATA) 28 29#define SPINAND_WR_EN_DIS_OP(enable) \ 30 SPI_MEM_OP(SPI_MEM_OP_CMD((enable) ? 0x06 : 0x04, 1), \ 31 SPI_MEM_OP_NO_ADDR, \ 32 SPI_MEM_OP_NO_DUMMY, \ 33 SPI_MEM_OP_NO_DATA) 34 35#define SPINAND_READID_OP(naddr, ndummy, buf, len) \ 36 SPI_MEM_OP(SPI_MEM_OP_CMD(0x9f, 1), \ 37 SPI_MEM_OP_ADDR(naddr, 0, 1), \ 38 SPI_MEM_OP_DUMMY(ndummy, 1), \ 39 SPI_MEM_OP_DATA_IN(len, buf, 1)) 40 41#define SPINAND_SET_FEATURE_OP(reg, valptr) \ 42 SPI_MEM_OP(SPI_MEM_OP_CMD(0x1f, 1), \ 43 SPI_MEM_OP_ADDR(1, reg, 1), \ 44 SPI_MEM_OP_NO_DUMMY, \ 45 SPI_MEM_OP_DATA_OUT(1, valptr, 1)) 46 47#define SPINAND_GET_FEATURE_OP(reg, valptr) \ 48 SPI_MEM_OP(SPI_MEM_OP_CMD(0x0f, 1), \ 49 SPI_MEM_OP_ADDR(1, reg, 1), \ 50 SPI_MEM_OP_NO_DUMMY, \ 51 SPI_MEM_OP_DATA_IN(1, valptr, 1)) 52 53#define SPINAND_BLK_ERASE_OP(addr) \ 54 SPI_MEM_OP(SPI_MEM_OP_CMD(0xd8, 1), \ 55 SPI_MEM_OP_ADDR(3, addr, 1), \ 56 SPI_MEM_OP_NO_DUMMY, \ 57 SPI_MEM_OP_NO_DATA) 58 59#define SPINAND_PAGE_READ_OP(addr) \ 60 SPI_MEM_OP(SPI_MEM_OP_CMD(0x13, 1), \ 61 SPI_MEM_OP_ADDR(3, addr, 1), \ 62 SPI_MEM_OP_NO_DUMMY, \ 63 SPI_MEM_OP_NO_DATA) 64 65#define SPINAND_PAGE_READ_FROM_CACHE_OP(fast, addr, ndummy, buf, len) \ 66 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 67 SPI_MEM_OP_ADDR(2, addr, 1), \ 68 SPI_MEM_OP_DUMMY(ndummy, 1), \ 69 SPI_MEM_OP_DATA_IN(len, buf, 1)) 70 71#define SPINAND_PAGE_READ_FROM_CACHE_OP_3A(fast, addr, ndummy, buf, len) \ 72 SPI_MEM_OP(SPI_MEM_OP_CMD(fast ? 0x0b : 0x03, 1), \ 73 SPI_MEM_OP_ADDR(3, addr, 1), \ 74 SPI_MEM_OP_DUMMY(ndummy, 1), \ 75 SPI_MEM_OP_DATA_IN(len, buf, 1)) 76 77#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP(addr, ndummy, buf, len) \ 78 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 79 SPI_MEM_OP_ADDR(2, addr, 1), \ 80 SPI_MEM_OP_DUMMY(ndummy, 1), \ 81 SPI_MEM_OP_DATA_IN(len, buf, 2)) 82 83#define SPINAND_PAGE_READ_FROM_CACHE_X2_OP_3A(addr, ndummy, buf, len) \ 84 SPI_MEM_OP(SPI_MEM_OP_CMD(0x3b, 1), \ 85 SPI_MEM_OP_ADDR(3, addr, 1), \ 86 SPI_MEM_OP_DUMMY(ndummy, 1), \ 87 SPI_MEM_OP_DATA_IN(len, buf, 2)) 88 89#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP(addr, ndummy, buf, len) \ 90 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 91 SPI_MEM_OP_ADDR(2, addr, 1), \ 92 SPI_MEM_OP_DUMMY(ndummy, 1), \ 93 SPI_MEM_OP_DATA_IN(len, buf, 4)) 94 95#define SPINAND_PAGE_READ_FROM_CACHE_X4_OP_3A(addr, ndummy, buf, len) \ 96 SPI_MEM_OP(SPI_MEM_OP_CMD(0x6b, 1), \ 97 SPI_MEM_OP_ADDR(3, addr, 1), \ 98 SPI_MEM_OP_DUMMY(ndummy, 1), \ 99 SPI_MEM_OP_DATA_IN(len, buf, 4)) 100 101#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP(addr, ndummy, buf, len) \ 102 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 103 SPI_MEM_OP_ADDR(2, addr, 2), \ 104 SPI_MEM_OP_DUMMY(ndummy, 2), \ 105 SPI_MEM_OP_DATA_IN(len, buf, 2)) 106 107#define SPINAND_PAGE_READ_FROM_CACHE_DUALIO_OP_3A(addr, ndummy, buf, len) \ 108 SPI_MEM_OP(SPI_MEM_OP_CMD(0xbb, 1), \ 109 SPI_MEM_OP_ADDR(3, addr, 2), \ 110 SPI_MEM_OP_DUMMY(ndummy, 2), \ 111 SPI_MEM_OP_DATA_IN(len, buf, 2)) 112 113#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP(addr, ndummy, buf, len) \ 114 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 115 SPI_MEM_OP_ADDR(2, addr, 4), \ 116 SPI_MEM_OP_DUMMY(ndummy, 4), \ 117 SPI_MEM_OP_DATA_IN(len, buf, 4)) 118 119#define SPINAND_PAGE_READ_FROM_CACHE_QUADIO_OP_3A(addr, ndummy, buf, len) \ 120 SPI_MEM_OP(SPI_MEM_OP_CMD(0xeb, 1), \ 121 SPI_MEM_OP_ADDR(3, addr, 4), \ 122 SPI_MEM_OP_DUMMY(ndummy, 4), \ 123 SPI_MEM_OP_DATA_IN(len, buf, 4)) 124 125#define SPINAND_PROG_EXEC_OP(addr) \ 126 SPI_MEM_OP(SPI_MEM_OP_CMD(0x10, 1), \ 127 SPI_MEM_OP_ADDR(3, addr, 1), \ 128 SPI_MEM_OP_NO_DUMMY, \ 129 SPI_MEM_OP_NO_DATA) 130 131#define SPINAND_PROG_LOAD(reset, addr, buf, len) \ 132 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x02 : 0x84, 1), \ 133 SPI_MEM_OP_ADDR(2, addr, 1), \ 134 SPI_MEM_OP_NO_DUMMY, \ 135 SPI_MEM_OP_DATA_OUT(len, buf, 1)) 136 137#define SPINAND_PROG_LOAD_X4(reset, addr, buf, len) \ 138 SPI_MEM_OP(SPI_MEM_OP_CMD(reset ? 0x32 : 0x34, 1), \ 139 SPI_MEM_OP_ADDR(2, addr, 1), \ 140 SPI_MEM_OP_NO_DUMMY, \ 141 SPI_MEM_OP_DATA_OUT(len, buf, 4)) 142 143/** 144 * Standard SPI NAND flash commands 145 */ 146#define SPINAND_CMD_PROG_LOAD_X4 0x32 147#define SPINAND_CMD_PROG_LOAD_RDM_DATA_X4 0x34 148 149/* feature register */ 150#define REG_BLOCK_LOCK 0xa0 151#define BL_ALL_UNLOCKED 0x00 152 153/* configuration register */ 154#define REG_CFG 0xb0 155#define CFG_OTP_ENABLE BIT(6) 156#define CFG_ECC_ENABLE BIT(4) 157#define CFG_QUAD_ENABLE BIT(0) 158 159/* status register */ 160#define REG_STATUS 0xc0 161#define STATUS_BUSY BIT(0) 162#define STATUS_ERASE_FAILED BIT(2) 163#define STATUS_PROG_FAILED BIT(3) 164#define STATUS_ECC_MASK GENMASK(5, 4) 165#define STATUS_ECC_NO_BITFLIPS (0 << 4) 166#define STATUS_ECC_HAS_BITFLIPS (1 << 4) 167#define STATUS_ECC_UNCOR_ERROR (2 << 4) 168 169struct spinand_op; 170struct spinand_device; 171 172#define SPINAND_MAX_ID_LEN 4 173 174/** 175 * struct spinand_id - SPI NAND id structure 176 * @data: buffer containing the id bytes. Currently 4 bytes large, but can 177 * be extended if required 178 * @len: ID length 179 */ 180struct spinand_id { 181 u8 data[SPINAND_MAX_ID_LEN]; 182 int len; 183}; 184 185enum spinand_readid_method { 186 SPINAND_READID_METHOD_OPCODE, 187 SPINAND_READID_METHOD_OPCODE_ADDR, 188 SPINAND_READID_METHOD_OPCODE_DUMMY, 189}; 190 191/** 192 * struct spinand_devid - SPI NAND device id structure 193 * @id: device id of current chip 194 * @len: number of bytes in device id 195 * @method: method to read chip id 196 * There are 3 possible variants: 197 * SPINAND_READID_METHOD_OPCODE: chip id is returned immediately 198 * after read_id opcode. 199 * SPINAND_READID_METHOD_OPCODE_ADDR: chip id is returned after 200 * read_id opcode + 1-byte address. 201 * SPINAND_READID_METHOD_OPCODE_DUMMY: chip id is returned after 202 * read_id opcode + 1 dummy byte. 203 */ 204struct spinand_devid { 205 const u8 *id; 206 const u8 len; 207 const enum spinand_readid_method method; 208}; 209 210/** 211 * struct manufacurer_ops - SPI NAND manufacturer specific operations 212 * @init: initialize a SPI NAND device 213 * @cleanup: cleanup a SPI NAND device 214 * 215 * Each SPI NAND manufacturer driver should implement this interface so that 216 * NAND chips coming from this vendor can be initialized properly. 217 */ 218struct spinand_manufacturer_ops { 219 int (*init)(struct spinand_device *spinand); 220 void (*cleanup)(struct spinand_device *spinand); 221}; 222 223/** 224 * struct spinand_manufacturer - SPI NAND manufacturer instance 225 * @id: manufacturer ID 226 * @name: manufacturer name 227 * @devid_len: number of bytes in device ID 228 * @chips: supported SPI NANDs under current manufacturer 229 * @nchips: number of SPI NANDs available in chips array 230 * @ops: manufacturer operations 231 */ 232struct spinand_manufacturer { 233 u8 id; 234 char *name; 235 const struct spinand_info *chips; 236 const size_t nchips; 237 const struct spinand_manufacturer_ops *ops; 238}; 239 240/* SPI NAND manufacturers */ 241extern const struct spinand_manufacturer gigadevice_spinand_manufacturer; 242extern const struct spinand_manufacturer macronix_spinand_manufacturer; 243extern const struct spinand_manufacturer micron_spinand_manufacturer; 244extern const struct spinand_manufacturer paragon_spinand_manufacturer; 245extern const struct spinand_manufacturer toshiba_spinand_manufacturer; 246extern const struct spinand_manufacturer winbond_spinand_manufacturer; 247 248/** 249 * struct spinand_op_variants - SPI NAND operation variants 250 * @ops: the list of variants for a given operation 251 * @nops: the number of variants 252 * 253 * Some operations like read-from-cache/write-to-cache have several variants 254 * depending on the number of IO lines you use to transfer data or address 255 * cycles. This structure is a way to describe the different variants supported 256 * by a chip and let the core pick the best one based on the SPI mem controller 257 * capabilities. 258 */ 259struct spinand_op_variants { 260 const struct spi_mem_op *ops; 261 unsigned int nops; 262}; 263 264#define SPINAND_OP_VARIANTS(name, ...) \ 265 const struct spinand_op_variants name = { \ 266 .ops = (struct spi_mem_op[]) { __VA_ARGS__ }, \ 267 .nops = sizeof((struct spi_mem_op[]){ __VA_ARGS__ }) / \ 268 sizeof(struct spi_mem_op), \ 269 } 270 271/** 272 * spinand_ecc_info - description of the on-die ECC implemented by a SPI NAND 273 * chip 274 * @get_status: get the ECC status. Should return a positive number encoding 275 * the number of corrected bitflips if correction was possible or 276 * -EBADMSG if there are uncorrectable errors. I can also return 277 * other negative error codes if the error is not caused by 278 * uncorrectable bitflips 279 * @ooblayout: the OOB layout used by the on-die ECC implementation 280 */ 281struct spinand_ecc_info { 282 int (*get_status)(struct spinand_device *spinand, u8 status); 283 const struct mtd_ooblayout_ops *ooblayout; 284}; 285 286#define SPINAND_HAS_QE_BIT BIT(0) 287#define SPINAND_HAS_CR_FEAT_BIT BIT(1) 288 289/** 290 * struct spinand_ondie_ecc_conf - private SPI-NAND on-die ECC engine structure 291 * @status: status of the last wait operation that will be used in case 292 * ->get_status() is not populated by the spinand device. 293 */ 294struct spinand_ondie_ecc_conf { 295 u8 status; 296}; 297 298/** 299 * struct spinand_info - Structure used to describe SPI NAND chips 300 * @model: model name 301 * @devid: device ID 302 * @flags: OR-ing of the SPINAND_XXX flags 303 * @memorg: memory organization 304 * @eccreq: ECC requirements 305 * @eccinfo: on-die ECC info 306 * @op_variants: operations variants 307 * @op_variants.read_cache: variants of the read-cache operation 308 * @op_variants.write_cache: variants of the write-cache operation 309 * @op_variants.update_cache: variants of the update-cache operation 310 * @select_target: function used to select a target/die. Required only for 311 * multi-die chips 312 * 313 * Each SPI NAND manufacturer driver should have a spinand_info table 314 * describing all the chips supported by the driver. 315 */ 316struct spinand_info { 317 const char *model; 318 struct spinand_devid devid; 319 u32 flags; 320 struct nand_memory_organization memorg; 321 struct nand_ecc_props eccreq; 322 struct spinand_ecc_info eccinfo; 323 struct { 324 const struct spinand_op_variants *read_cache; 325 const struct spinand_op_variants *write_cache; 326 const struct spinand_op_variants *update_cache; 327 } op_variants; 328 int (*select_target)(struct spinand_device *spinand, 329 unsigned int target); 330}; 331 332#define SPINAND_ID(__method, ...) \ 333 { \ 334 .id = (const u8[]){ __VA_ARGS__ }, \ 335 .len = sizeof((u8[]){ __VA_ARGS__ }), \ 336 .method = __method, \ 337 } 338 339#define SPINAND_INFO_OP_VARIANTS(__read, __write, __update) \ 340 { \ 341 .read_cache = __read, \ 342 .write_cache = __write, \ 343 .update_cache = __update, \ 344 } 345 346#define SPINAND_ECCINFO(__ooblayout, __get_status) \ 347 .eccinfo = { \ 348 .ooblayout = __ooblayout, \ 349 .get_status = __get_status, \ 350 } 351 352#define SPINAND_SELECT_TARGET(__func) \ 353 .select_target = __func, 354 355#define SPINAND_INFO(__model, __id, __memorg, __eccreq, __op_variants, \ 356 __flags, ...) \ 357 { \ 358 .model = __model, \ 359 .devid = __id, \ 360 .memorg = __memorg, \ 361 .eccreq = __eccreq, \ 362 .op_variants = __op_variants, \ 363 .flags = __flags, \ 364 __VA_ARGS__ \ 365 } 366 367struct spinand_dirmap { 368 struct spi_mem_dirmap_desc *wdesc; 369 struct spi_mem_dirmap_desc *rdesc; 370}; 371 372/** 373 * struct spinand_device - SPI NAND device instance 374 * @base: NAND device instance 375 * @spimem: pointer to the SPI mem object 376 * @lock: lock used to serialize accesses to the NAND 377 * @id: NAND ID as returned by READ_ID 378 * @flags: NAND flags 379 * @op_templates: various SPI mem op templates 380 * @op_templates.read_cache: read cache op template 381 * @op_templates.write_cache: write cache op template 382 * @op_templates.update_cache: update cache op template 383 * @select_target: select a specific target/die. Usually called before sending 384 * a command addressing a page or an eraseblock embedded in 385 * this die. Only required if your chip exposes several dies 386 * @cur_target: currently selected target/die 387 * @eccinfo: on-die ECC information 388 * @cfg_cache: config register cache. One entry per die 389 * @databuf: bounce buffer for data 390 * @oobbuf: bounce buffer for OOB data 391 * @scratchbuf: buffer used for everything but page accesses. This is needed 392 * because the spi-mem interface explicitly requests that buffers 393 * passed in spi_mem_op be DMA-able, so we can't based the bufs on 394 * the stack 395 * @manufacturer: SPI NAND manufacturer information 396 * @priv: manufacturer private data 397 */ 398struct spinand_device { 399 struct nand_device base; 400 struct spi_mem *spimem; 401 struct mutex lock; 402 struct spinand_id id; 403 u32 flags; 404 405 struct { 406 const struct spi_mem_op *read_cache; 407 const struct spi_mem_op *write_cache; 408 const struct spi_mem_op *update_cache; 409 } op_templates; 410 411 struct spinand_dirmap *dirmaps; 412 413 int (*select_target)(struct spinand_device *spinand, 414 unsigned int target); 415 unsigned int cur_target; 416 417 struct spinand_ecc_info eccinfo; 418 419 u8 *cfg_cache; 420 u8 *databuf; 421 u8 *oobbuf; 422 u8 *scratchbuf; 423 const struct spinand_manufacturer *manufacturer; 424 void *priv; 425}; 426 427/** 428 * mtd_to_spinand() - Get the SPI NAND device attached to an MTD instance 429 * @mtd: MTD instance 430 * 431 * Return: the SPI NAND device attached to @mtd. 432 */ 433static inline struct spinand_device *mtd_to_spinand(struct mtd_info *mtd) 434{ 435 return container_of(mtd_to_nanddev(mtd), struct spinand_device, base); 436} 437 438/** 439 * spinand_to_mtd() - Get the MTD device embedded in a SPI NAND device 440 * @spinand: SPI NAND device 441 * 442 * Return: the MTD device embedded in @spinand. 443 */ 444static inline struct mtd_info *spinand_to_mtd(struct spinand_device *spinand) 445{ 446 return nanddev_to_mtd(&spinand->base); 447} 448 449/** 450 * nand_to_spinand() - Get the SPI NAND device embedding an NAND object 451 * @nand: NAND object 452 * 453 * Return: the SPI NAND device embedding @nand. 454 */ 455static inline struct spinand_device *nand_to_spinand(struct nand_device *nand) 456{ 457 return container_of(nand, struct spinand_device, base); 458} 459 460/** 461 * spinand_to_nand() - Get the NAND device embedded in a SPI NAND object 462 * @spinand: SPI NAND device 463 * 464 * Return: the NAND device embedded in @spinand. 465 */ 466static inline struct nand_device * 467spinand_to_nand(struct spinand_device *spinand) 468{ 469 return &spinand->base; 470} 471 472/** 473 * spinand_set_of_node - Attach a DT node to a SPI NAND device 474 * @spinand: SPI NAND device 475 * @np: DT node 476 * 477 * Attach a DT node to a SPI NAND device. 478 */ 479static inline void spinand_set_of_node(struct spinand_device *spinand, 480 struct device_node *np) 481{ 482 nanddev_set_of_node(&spinand->base, np); 483} 484 485int spinand_match_and_init(struct spinand_device *spinand, 486 const struct spinand_info *table, 487 unsigned int table_size, 488 enum spinand_readid_method rdid_method); 489 490int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val); 491int spinand_select_target(struct spinand_device *spinand, unsigned int target); 492 493#endif /* __LINUX_MTD_SPINAND_H */