Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright 2017 - Free Electrons
4 *
5 * Authors:
6 * Boris Brezillon <boris.brezillon@free-electrons.com>
7 * Peter Pan <peterpandong@micron.com>
8 */
9
10#ifndef __LINUX_MTD_NAND_H
11#define __LINUX_MTD_NAND_H
12
13#include <linux/mtd/mtd.h>
14
15struct nand_device;
16
17/**
18 * struct nand_memory_organization - Memory organization structure
19 * @bits_per_cell: number of bits per NAND cell
20 * @pagesize: page size
21 * @oobsize: OOB area size
22 * @pages_per_eraseblock: number of pages per eraseblock
23 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number)
24 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN
25 * @planes_per_lun: number of planes per LUN
26 * @luns_per_target: number of LUN per target (target is a synonym for die)
27 * @ntargets: total number of targets exposed by the NAND device
28 */
29struct nand_memory_organization {
30 unsigned int bits_per_cell;
31 unsigned int pagesize;
32 unsigned int oobsize;
33 unsigned int pages_per_eraseblock;
34 unsigned int eraseblocks_per_lun;
35 unsigned int max_bad_eraseblocks_per_lun;
36 unsigned int planes_per_lun;
37 unsigned int luns_per_target;
38 unsigned int ntargets;
39};
40
41#define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \
42 { \
43 .bits_per_cell = (bpc), \
44 .pagesize = (ps), \
45 .oobsize = (os), \
46 .pages_per_eraseblock = (ppe), \
47 .eraseblocks_per_lun = (epl), \
48 .max_bad_eraseblocks_per_lun = (mbb), \
49 .planes_per_lun = (ppl), \
50 .luns_per_target = (lpt), \
51 .ntargets = (nt), \
52 }
53
54/**
55 * struct nand_row_converter - Information needed to convert an absolute offset
56 * into a row address
57 * @lun_addr_shift: position of the LUN identifier in the row address
58 * @eraseblock_addr_shift: position of the eraseblock identifier in the row
59 * address
60 */
61struct nand_row_converter {
62 unsigned int lun_addr_shift;
63 unsigned int eraseblock_addr_shift;
64};
65
66/**
67 * struct nand_pos - NAND position object
68 * @target: the NAND target/die
69 * @lun: the LUN identifier
70 * @plane: the plane within the LUN
71 * @eraseblock: the eraseblock within the LUN
72 * @page: the page within the LUN
73 *
74 * These information are usually used by specific sub-layers to select the
75 * appropriate target/die and generate a row address to pass to the device.
76 */
77struct nand_pos {
78 unsigned int target;
79 unsigned int lun;
80 unsigned int plane;
81 unsigned int eraseblock;
82 unsigned int page;
83};
84
85/**
86 * enum nand_page_io_req_type - Direction of an I/O request
87 * @NAND_PAGE_READ: from the chip, to the controller
88 * @NAND_PAGE_WRITE: from the controller, to the chip
89 */
90enum nand_page_io_req_type {
91 NAND_PAGE_READ = 0,
92 NAND_PAGE_WRITE,
93};
94
95/**
96 * struct nand_page_io_req - NAND I/O request object
97 * @type: the type of page I/O: read or write
98 * @pos: the position this I/O request is targeting
99 * @dataoffs: the offset within the page
100 * @datalen: number of data bytes to read from/write to this page
101 * @databuf: buffer to store data in or get data from
102 * @ooboffs: the OOB offset within the page
103 * @ooblen: the number of OOB bytes to read from/write to this page
104 * @oobbuf: buffer to store OOB data in or get OOB data from
105 * @mode: one of the %MTD_OPS_XXX mode
106 *
107 * This object is used to pass per-page I/O requests to NAND sub-layers. This
108 * way all useful information are already formatted in a useful way and
109 * specific NAND layers can focus on translating these information into
110 * specific commands/operations.
111 */
112struct nand_page_io_req {
113 enum nand_page_io_req_type type;
114 struct nand_pos pos;
115 unsigned int dataoffs;
116 unsigned int datalen;
117 union {
118 const void *out;
119 void *in;
120 } databuf;
121 unsigned int ooboffs;
122 unsigned int ooblen;
123 union {
124 const void *out;
125 void *in;
126 } oobbuf;
127 int mode;
128};
129
130const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void);
131const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void);
132const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void);
133
134/**
135 * enum nand_ecc_engine_type - NAND ECC engine type
136 * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value
137 * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction
138 * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction
139 * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction
140 * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction
141 */
142enum nand_ecc_engine_type {
143 NAND_ECC_ENGINE_TYPE_INVALID,
144 NAND_ECC_ENGINE_TYPE_NONE,
145 NAND_ECC_ENGINE_TYPE_SOFT,
146 NAND_ECC_ENGINE_TYPE_ON_HOST,
147 NAND_ECC_ENGINE_TYPE_ON_DIE,
148};
149
150/**
151 * enum nand_ecc_placement - NAND ECC bytes placement
152 * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown
153 * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area
154 * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes
155 * interleaved with regular data in the main
156 * area
157 */
158enum nand_ecc_placement {
159 NAND_ECC_PLACEMENT_UNKNOWN,
160 NAND_ECC_PLACEMENT_OOB,
161 NAND_ECC_PLACEMENT_INTERLEAVED,
162};
163
164/**
165 * enum nand_ecc_algo - NAND ECC algorithm
166 * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm
167 * @NAND_ECC_ALGO_HAMMING: Hamming algorithm
168 * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm
169 * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm
170 */
171enum nand_ecc_algo {
172 NAND_ECC_ALGO_UNKNOWN,
173 NAND_ECC_ALGO_HAMMING,
174 NAND_ECC_ALGO_BCH,
175 NAND_ECC_ALGO_RS,
176};
177
178/**
179 * struct nand_ecc_props - NAND ECC properties
180 * @engine_type: ECC engine type
181 * @placement: OOB placement (if relevant)
182 * @algo: ECC algorithm (if relevant)
183 * @strength: ECC strength
184 * @step_size: Number of bytes per step
185 * @flags: Misc properties
186 */
187struct nand_ecc_props {
188 enum nand_ecc_engine_type engine_type;
189 enum nand_ecc_placement placement;
190 enum nand_ecc_algo algo;
191 unsigned int strength;
192 unsigned int step_size;
193 unsigned int flags;
194};
195
196#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) }
197
198/* NAND ECC misc flags */
199#define NAND_ECC_MAXIMIZE_STRENGTH BIT(0)
200
201/**
202 * struct nand_bbt - bad block table object
203 * @cache: in memory BBT cache
204 */
205struct nand_bbt {
206 unsigned long *cache;
207};
208
209/**
210 * struct nand_ops - NAND operations
211 * @erase: erase a specific block. No need to check if the block is bad before
212 * erasing, this has been taken care of by the generic NAND layer
213 * @markbad: mark a specific block bad. No need to check if the block is
214 * already marked bad, this has been taken care of by the generic
215 * NAND layer. This method should just write the BBM (Bad Block
216 * Marker) so that future call to struct_nand_ops->isbad() return
217 * true
218 * @isbad: check whether a block is bad or not. This method should just read
219 * the BBM and return whether the block is bad or not based on what it
220 * reads
221 *
222 * These are all low level operations that should be implemented by specialized
223 * NAND layers (SPI NAND, raw NAND, ...).
224 */
225struct nand_ops {
226 int (*erase)(struct nand_device *nand, const struct nand_pos *pos);
227 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos);
228 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos);
229};
230
231/**
232 * struct nand_ecc_context - Context for the ECC engine
233 * @conf: basic ECC engine parameters
234 * @nsteps: number of ECC steps
235 * @total: total number of bytes used for storing ECC codes, this is used by
236 * generic OOB layouts
237 * @priv: ECC engine driver private data
238 */
239struct nand_ecc_context {
240 struct nand_ecc_props conf;
241 unsigned int nsteps;
242 unsigned int total;
243 void *priv;
244};
245
246/**
247 * struct nand_ecc_engine_ops - ECC engine operations
248 * @init_ctx: given a desired user configuration for the pointed NAND device,
249 * requests the ECC engine driver to setup a configuration with
250 * values it supports.
251 * @cleanup_ctx: clean the context initialized by @init_ctx.
252 * @prepare_io_req: is called before reading/writing a page to prepare the I/O
253 * request to be performed with ECC correction.
254 * @finish_io_req: is called after reading/writing a page to terminate the I/O
255 * request and ensure proper ECC correction.
256 */
257struct nand_ecc_engine_ops {
258 int (*init_ctx)(struct nand_device *nand);
259 void (*cleanup_ctx)(struct nand_device *nand);
260 int (*prepare_io_req)(struct nand_device *nand,
261 struct nand_page_io_req *req);
262 int (*finish_io_req)(struct nand_device *nand,
263 struct nand_page_io_req *req);
264};
265
266/**
267 * struct nand_ecc_engine - ECC engine abstraction for NAND devices
268 * @ops: ECC engine operations
269 */
270struct nand_ecc_engine {
271 struct nand_ecc_engine_ops *ops;
272};
273
274void of_get_nand_ecc_user_config(struct nand_device *nand);
275int nand_ecc_init_ctx(struct nand_device *nand);
276void nand_ecc_cleanup_ctx(struct nand_device *nand);
277int nand_ecc_prepare_io_req(struct nand_device *nand,
278 struct nand_page_io_req *req);
279int nand_ecc_finish_io_req(struct nand_device *nand,
280 struct nand_page_io_req *req);
281bool nand_ecc_is_strong_enough(struct nand_device *nand);
282struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand);
283struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand);
284
285#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING)
286struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void);
287#else
288static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void)
289{
290 return NULL;
291}
292#endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */
293
294#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)
295struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void);
296#else
297static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void)
298{
299 return NULL;
300}
301#endif /* CONFIG_MTD_NAND_ECC_SW_BCH */
302
303/**
304 * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests
305 * @orig_req: Pointer to the original IO request
306 * @nand: Related NAND device, to have access to its memory organization
307 * @page_buffer_size: Real size of the page buffer to use (can be set by the
308 * user before the tweaking mechanism initialization)
309 * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the
310 * user before the tweaking mechanism initialization)
311 * @spare_databuf: Data bounce buffer
312 * @spare_oobbuf: OOB bounce buffer
313 * @bounce_data: Flag indicating a data bounce buffer is used
314 * @bounce_oob: Flag indicating an OOB bounce buffer is used
315 */
316struct nand_ecc_req_tweak_ctx {
317 struct nand_page_io_req orig_req;
318 struct nand_device *nand;
319 unsigned int page_buffer_size;
320 unsigned int oob_buffer_size;
321 void *spare_databuf;
322 void *spare_oobbuf;
323 bool bounce_data;
324 bool bounce_oob;
325};
326
327int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx,
328 struct nand_device *nand);
329void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx);
330void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx,
331 struct nand_page_io_req *req);
332void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx,
333 struct nand_page_io_req *req);
334
335/**
336 * struct nand_ecc - Information relative to the ECC
337 * @defaults: Default values, depend on the underlying subsystem
338 * @requirements: ECC requirements from the NAND chip perspective
339 * @user_conf: User desires in terms of ECC parameters
340 * @ctx: ECC context for the ECC engine, derived from the device @requirements
341 * the @user_conf and the @defaults
342 * @ondie_engine: On-die ECC engine reference, if any
343 * @engine: ECC engine actually bound
344 */
345struct nand_ecc {
346 struct nand_ecc_props defaults;
347 struct nand_ecc_props requirements;
348 struct nand_ecc_props user_conf;
349 struct nand_ecc_context ctx;
350 struct nand_ecc_engine *ondie_engine;
351 struct nand_ecc_engine *engine;
352};
353
354/**
355 * struct nand_device - NAND device
356 * @mtd: MTD instance attached to the NAND device
357 * @memorg: memory layout
358 * @ecc: NAND ECC object attached to the NAND device
359 * @rowconv: position to row address converter
360 * @bbt: bad block table info
361 * @ops: NAND operations attached to the NAND device
362 *
363 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND)
364 * should declare their own NAND object embedding a nand_device struct (that's
365 * how inheritance is done).
366 * struct_nand_device->memorg and struct_nand_device->ecc.requirements should
367 * be filled at device detection time to reflect the NAND device
368 * capabilities/requirements. Once this is done nanddev_init() can be called.
369 * It will take care of converting NAND information into MTD ones, which means
370 * the specialized NAND layers should never manually tweak
371 * struct_nand_device->mtd except for the ->_read/write() hooks.
372 */
373struct nand_device {
374 struct mtd_info mtd;
375 struct nand_memory_organization memorg;
376 struct nand_ecc ecc;
377 struct nand_row_converter rowconv;
378 struct nand_bbt bbt;
379 const struct nand_ops *ops;
380};
381
382/**
383 * struct nand_io_iter - NAND I/O iterator
384 * @req: current I/O request
385 * @oobbytes_per_page: maximum number of OOB bytes per page
386 * @dataleft: remaining number of data bytes to read/write
387 * @oobleft: remaining number of OOB bytes to read/write
388 *
389 * Can be used by specialized NAND layers to iterate over all pages covered
390 * by an MTD I/O request, which should greatly simplifies the boiler-plate
391 * code needed to read/write data from/to a NAND device.
392 */
393struct nand_io_iter {
394 struct nand_page_io_req req;
395 unsigned int oobbytes_per_page;
396 unsigned int dataleft;
397 unsigned int oobleft;
398};
399
400/**
401 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance
402 * @mtd: MTD instance
403 *
404 * Return: the NAND device embedding @mtd.
405 */
406static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd)
407{
408 return container_of(mtd, struct nand_device, mtd);
409}
410
411/**
412 * nanddev_to_mtd() - Get the MTD device attached to a NAND device
413 * @nand: NAND device
414 *
415 * Return: the MTD device embedded in @nand.
416 */
417static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand)
418{
419 return &nand->mtd;
420}
421
422/*
423 * nanddev_bits_per_cell() - Get the number of bits per cell
424 * @nand: NAND device
425 *
426 * Return: the number of bits per cell.
427 */
428static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand)
429{
430 return nand->memorg.bits_per_cell;
431}
432
433/**
434 * nanddev_page_size() - Get NAND page size
435 * @nand: NAND device
436 *
437 * Return: the page size.
438 */
439static inline size_t nanddev_page_size(const struct nand_device *nand)
440{
441 return nand->memorg.pagesize;
442}
443
444/**
445 * nanddev_per_page_oobsize() - Get NAND OOB size
446 * @nand: NAND device
447 *
448 * Return: the OOB size.
449 */
450static inline unsigned int
451nanddev_per_page_oobsize(const struct nand_device *nand)
452{
453 return nand->memorg.oobsize;
454}
455
456/**
457 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock
458 * @nand: NAND device
459 *
460 * Return: the number of pages per eraseblock.
461 */
462static inline unsigned int
463nanddev_pages_per_eraseblock(const struct nand_device *nand)
464{
465 return nand->memorg.pages_per_eraseblock;
466}
467
468/**
469 * nanddev_pages_per_target() - Get the number of pages per target
470 * @nand: NAND device
471 *
472 * Return: the number of pages per target.
473 */
474static inline unsigned int
475nanddev_pages_per_target(const struct nand_device *nand)
476{
477 return nand->memorg.pages_per_eraseblock *
478 nand->memorg.eraseblocks_per_lun *
479 nand->memorg.luns_per_target;
480}
481
482/**
483 * nanddev_per_page_oobsize() - Get NAND erase block size
484 * @nand: NAND device
485 *
486 * Return: the eraseblock size.
487 */
488static inline size_t nanddev_eraseblock_size(const struct nand_device *nand)
489{
490 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock;
491}
492
493/**
494 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN
495 * @nand: NAND device
496 *
497 * Return: the number of eraseblocks per LUN.
498 */
499static inline unsigned int
500nanddev_eraseblocks_per_lun(const struct nand_device *nand)
501{
502 return nand->memorg.eraseblocks_per_lun;
503}
504
505/**
506 * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target
507 * @nand: NAND device
508 *
509 * Return: the number of eraseblocks per target.
510 */
511static inline unsigned int
512nanddev_eraseblocks_per_target(const struct nand_device *nand)
513{
514 return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target;
515}
516
517/**
518 * nanddev_target_size() - Get the total size provided by a single target/die
519 * @nand: NAND device
520 *
521 * Return: the total size exposed by a single target/die in bytes.
522 */
523static inline u64 nanddev_target_size(const struct nand_device *nand)
524{
525 return (u64)nand->memorg.luns_per_target *
526 nand->memorg.eraseblocks_per_lun *
527 nand->memorg.pages_per_eraseblock *
528 nand->memorg.pagesize;
529}
530
531/**
532 * nanddev_ntarget() - Get the total of targets
533 * @nand: NAND device
534 *
535 * Return: the number of targets/dies exposed by @nand.
536 */
537static inline unsigned int nanddev_ntargets(const struct nand_device *nand)
538{
539 return nand->memorg.ntargets;
540}
541
542/**
543 * nanddev_neraseblocks() - Get the total number of eraseblocks
544 * @nand: NAND device
545 *
546 * Return: the total number of eraseblocks exposed by @nand.
547 */
548static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand)
549{
550 return nand->memorg.ntargets * nand->memorg.luns_per_target *
551 nand->memorg.eraseblocks_per_lun;
552}
553
554/**
555 * nanddev_size() - Get NAND size
556 * @nand: NAND device
557 *
558 * Return: the total size (in bytes) exposed by @nand.
559 */
560static inline u64 nanddev_size(const struct nand_device *nand)
561{
562 return nanddev_target_size(nand) * nanddev_ntargets(nand);
563}
564
565/**
566 * nanddev_get_memorg() - Extract memory organization info from a NAND device
567 * @nand: NAND device
568 *
569 * This can be used by the upper layer to fill the memorg info before calling
570 * nanddev_init().
571 *
572 * Return: the memorg object embedded in the NAND device.
573 */
574static inline struct nand_memory_organization *
575nanddev_get_memorg(struct nand_device *nand)
576{
577 return &nand->memorg;
578}
579
580/**
581 * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device
582 * @nand: NAND device
583 */
584static inline const struct nand_ecc_props *
585nanddev_get_ecc_conf(struct nand_device *nand)
586{
587 return &nand->ecc.ctx.conf;
588}
589
590/**
591 * nanddev_get_ecc_nsteps() - Extract the number of ECC steps
592 * @nand: NAND device
593 */
594static inline unsigned int
595nanddev_get_ecc_nsteps(struct nand_device *nand)
596{
597 return nand->ecc.ctx.nsteps;
598}
599
600/**
601 * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step
602 * @nand: NAND device
603 */
604static inline unsigned int
605nanddev_get_ecc_bytes_per_step(struct nand_device *nand)
606{
607 return nand->ecc.ctx.total / nand->ecc.ctx.nsteps;
608}
609
610/**
611 * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND
612 * device
613 * @nand: NAND device
614 */
615static inline const struct nand_ecc_props *
616nanddev_get_ecc_requirements(struct nand_device *nand)
617{
618 return &nand->ecc.requirements;
619}
620
621/**
622 * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND
623 * device
624 * @nand: NAND device
625 * @reqs: Requirements
626 */
627static inline void
628nanddev_set_ecc_requirements(struct nand_device *nand,
629 const struct nand_ecc_props *reqs)
630{
631 nand->ecc.requirements = *reqs;
632}
633
634int nanddev_init(struct nand_device *nand, const struct nand_ops *ops,
635 struct module *owner);
636void nanddev_cleanup(struct nand_device *nand);
637
638/**
639 * nanddev_register() - Register a NAND device
640 * @nand: NAND device
641 *
642 * Register a NAND device.
643 * This function is just a wrapper around mtd_device_register()
644 * registering the MTD device embedded in @nand.
645 *
646 * Return: 0 in case of success, a negative error code otherwise.
647 */
648static inline int nanddev_register(struct nand_device *nand)
649{
650 return mtd_device_register(&nand->mtd, NULL, 0);
651}
652
653/**
654 * nanddev_unregister() - Unregister a NAND device
655 * @nand: NAND device
656 *
657 * Unregister a NAND device.
658 * This function is just a wrapper around mtd_device_unregister()
659 * unregistering the MTD device embedded in @nand.
660 *
661 * Return: 0 in case of success, a negative error code otherwise.
662 */
663static inline int nanddev_unregister(struct nand_device *nand)
664{
665 return mtd_device_unregister(&nand->mtd);
666}
667
668/**
669 * nanddev_set_of_node() - Attach a DT node to a NAND device
670 * @nand: NAND device
671 * @np: DT node
672 *
673 * Attach a DT node to a NAND device.
674 */
675static inline void nanddev_set_of_node(struct nand_device *nand,
676 struct device_node *np)
677{
678 mtd_set_of_node(&nand->mtd, np);
679}
680
681/**
682 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device
683 * @nand: NAND device
684 *
685 * Return: the DT node attached to @nand.
686 */
687static inline struct device_node *nanddev_get_of_node(struct nand_device *nand)
688{
689 return mtd_get_of_node(&nand->mtd);
690}
691
692/**
693 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position
694 * @nand: NAND device
695 * @offs: absolute NAND offset (usually passed by the MTD layer)
696 * @pos: a NAND position object to fill in
697 *
698 * Converts @offs into a nand_pos representation.
699 *
700 * Return: the offset within the NAND page pointed by @pos.
701 */
702static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand,
703 loff_t offs,
704 struct nand_pos *pos)
705{
706 unsigned int pageoffs;
707 u64 tmp = offs;
708
709 pageoffs = do_div(tmp, nand->memorg.pagesize);
710 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock);
711 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun);
712 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
713 pos->lun = do_div(tmp, nand->memorg.luns_per_target);
714 pos->target = tmp;
715
716 return pageoffs;
717}
718
719/**
720 * nanddev_pos_cmp() - Compare two NAND positions
721 * @a: First NAND position
722 * @b: Second NAND position
723 *
724 * Compares two NAND positions.
725 *
726 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b.
727 */
728static inline int nanddev_pos_cmp(const struct nand_pos *a,
729 const struct nand_pos *b)
730{
731 if (a->target != b->target)
732 return a->target < b->target ? -1 : 1;
733
734 if (a->lun != b->lun)
735 return a->lun < b->lun ? -1 : 1;
736
737 if (a->eraseblock != b->eraseblock)
738 return a->eraseblock < b->eraseblock ? -1 : 1;
739
740 if (a->page != b->page)
741 return a->page < b->page ? -1 : 1;
742
743 return 0;
744}
745
746/**
747 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset
748 * @nand: NAND device
749 * @pos: the NAND position to convert
750 *
751 * Converts @pos NAND position into an absolute offset.
752 *
753 * Return: the absolute offset. Note that @pos points to the beginning of a
754 * page, if one wants to point to a specific offset within this page
755 * the returned offset has to be adjusted manually.
756 */
757static inline loff_t nanddev_pos_to_offs(struct nand_device *nand,
758 const struct nand_pos *pos)
759{
760 unsigned int npages;
761
762 npages = pos->page +
763 ((pos->eraseblock +
764 (pos->lun +
765 (pos->target * nand->memorg.luns_per_target)) *
766 nand->memorg.eraseblocks_per_lun) *
767 nand->memorg.pages_per_eraseblock);
768
769 return (loff_t)npages * nand->memorg.pagesize;
770}
771
772/**
773 * nanddev_pos_to_row() - Extract a row address from a NAND position
774 * @nand: NAND device
775 * @pos: the position to convert
776 *
777 * Converts a NAND position into a row address that can then be passed to the
778 * device.
779 *
780 * Return: the row address extracted from @pos.
781 */
782static inline unsigned int nanddev_pos_to_row(struct nand_device *nand,
783 const struct nand_pos *pos)
784{
785 return (pos->lun << nand->rowconv.lun_addr_shift) |
786 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) |
787 pos->page;
788}
789
790/**
791 * nanddev_pos_next_target() - Move a position to the next target/die
792 * @nand: NAND device
793 * @pos: the position to update
794 *
795 * Updates @pos to point to the start of the next target/die. Useful when you
796 * want to iterate over all targets/dies of a NAND device.
797 */
798static inline void nanddev_pos_next_target(struct nand_device *nand,
799 struct nand_pos *pos)
800{
801 pos->page = 0;
802 pos->plane = 0;
803 pos->eraseblock = 0;
804 pos->lun = 0;
805 pos->target++;
806}
807
808/**
809 * nanddev_pos_next_lun() - Move a position to the next LUN
810 * @nand: NAND device
811 * @pos: the position to update
812 *
813 * Updates @pos to point to the start of the next LUN. Useful when you want to
814 * iterate over all LUNs of a NAND device.
815 */
816static inline void nanddev_pos_next_lun(struct nand_device *nand,
817 struct nand_pos *pos)
818{
819 if (pos->lun >= nand->memorg.luns_per_target - 1)
820 return nanddev_pos_next_target(nand, pos);
821
822 pos->lun++;
823 pos->page = 0;
824 pos->plane = 0;
825 pos->eraseblock = 0;
826}
827
828/**
829 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock
830 * @nand: NAND device
831 * @pos: the position to update
832 *
833 * Updates @pos to point to the start of the next eraseblock. Useful when you
834 * want to iterate over all eraseblocks of a NAND device.
835 */
836static inline void nanddev_pos_next_eraseblock(struct nand_device *nand,
837 struct nand_pos *pos)
838{
839 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1)
840 return nanddev_pos_next_lun(nand, pos);
841
842 pos->eraseblock++;
843 pos->page = 0;
844 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun;
845}
846
847/**
848 * nanddev_pos_next_page() - Move a position to the next page
849 * @nand: NAND device
850 * @pos: the position to update
851 *
852 * Updates @pos to point to the start of the next page. Useful when you want to
853 * iterate over all pages of a NAND device.
854 */
855static inline void nanddev_pos_next_page(struct nand_device *nand,
856 struct nand_pos *pos)
857{
858 if (pos->page >= nand->memorg.pages_per_eraseblock - 1)
859 return nanddev_pos_next_eraseblock(nand, pos);
860
861 pos->page++;
862}
863
864/**
865 * nand_io_iter_init - Initialize a NAND I/O iterator
866 * @nand: NAND device
867 * @offs: absolute offset
868 * @req: MTD request
869 * @iter: NAND I/O iterator
870 *
871 * Initializes a NAND iterator based on the information passed by the MTD
872 * layer.
873 */
874static inline void nanddev_io_iter_init(struct nand_device *nand,
875 enum nand_page_io_req_type reqtype,
876 loff_t offs, struct mtd_oob_ops *req,
877 struct nand_io_iter *iter)
878{
879 struct mtd_info *mtd = nanddev_to_mtd(nand);
880
881 iter->req.type = reqtype;
882 iter->req.mode = req->mode;
883 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos);
884 iter->req.ooboffs = req->ooboffs;
885 iter->oobbytes_per_page = mtd_oobavail(mtd, req);
886 iter->dataleft = req->len;
887 iter->oobleft = req->ooblen;
888 iter->req.databuf.in = req->datbuf;
889 iter->req.datalen = min_t(unsigned int,
890 nand->memorg.pagesize - iter->req.dataoffs,
891 iter->dataleft);
892 iter->req.oobbuf.in = req->oobbuf;
893 iter->req.ooblen = min_t(unsigned int,
894 iter->oobbytes_per_page - iter->req.ooboffs,
895 iter->oobleft);
896}
897
898/**
899 * nand_io_iter_next_page - Move to the next page
900 * @nand: NAND device
901 * @iter: NAND I/O iterator
902 *
903 * Updates the @iter to point to the next page.
904 */
905static inline void nanddev_io_iter_next_page(struct nand_device *nand,
906 struct nand_io_iter *iter)
907{
908 nanddev_pos_next_page(nand, &iter->req.pos);
909 iter->dataleft -= iter->req.datalen;
910 iter->req.databuf.in += iter->req.datalen;
911 iter->oobleft -= iter->req.ooblen;
912 iter->req.oobbuf.in += iter->req.ooblen;
913 iter->req.dataoffs = 0;
914 iter->req.ooboffs = 0;
915 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize,
916 iter->dataleft);
917 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page,
918 iter->oobleft);
919}
920
921/**
922 * nand_io_iter_end - Should end iteration or not
923 * @nand: NAND device
924 * @iter: NAND I/O iterator
925 *
926 * Check whether @iter has reached the end of the NAND portion it was asked to
927 * iterate on or not.
928 *
929 * Return: true if @iter has reached the end of the iteration request, false
930 * otherwise.
931 */
932static inline bool nanddev_io_iter_end(struct nand_device *nand,
933 const struct nand_io_iter *iter)
934{
935 if (iter->dataleft || iter->oobleft)
936 return false;
937
938 return true;
939}
940
941/**
942 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O
943 * request
944 * @nand: NAND device
945 * @start: start address to read/write from
946 * @req: MTD I/O request
947 * @iter: NAND I/O iterator
948 *
949 * Should be used for iterate over pages that are contained in an MTD request.
950 */
951#define nanddev_io_for_each_page(nand, type, start, req, iter) \
952 for (nanddev_io_iter_init(nand, type, start, req, iter); \
953 !nanddev_io_iter_end(nand, iter); \
954 nanddev_io_iter_next_page(nand, iter))
955
956bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos);
957bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos);
958int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos);
959int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos);
960
961/* ECC related functions */
962int nanddev_ecc_engine_init(struct nand_device *nand);
963void nanddev_ecc_engine_cleanup(struct nand_device *nand);
964
965/* BBT related functions */
966enum nand_bbt_block_status {
967 NAND_BBT_BLOCK_STATUS_UNKNOWN,
968 NAND_BBT_BLOCK_GOOD,
969 NAND_BBT_BLOCK_WORN,
970 NAND_BBT_BLOCK_RESERVED,
971 NAND_BBT_BLOCK_FACTORY_BAD,
972 NAND_BBT_BLOCK_NUM_STATUS,
973};
974
975int nanddev_bbt_init(struct nand_device *nand);
976void nanddev_bbt_cleanup(struct nand_device *nand);
977int nanddev_bbt_update(struct nand_device *nand);
978int nanddev_bbt_get_block_status(const struct nand_device *nand,
979 unsigned int entry);
980int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry,
981 enum nand_bbt_block_status status);
982int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block);
983
984/**
985 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry
986 * @nand: NAND device
987 * @pos: the NAND position we want to get BBT entry for
988 *
989 * Return the BBT entry used to store information about the eraseblock pointed
990 * by @pos.
991 *
992 * Return: the BBT entry storing information about eraseblock pointed by @pos.
993 */
994static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand,
995 const struct nand_pos *pos)
996{
997 return pos->eraseblock +
998 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) *
999 nand->memorg.eraseblocks_per_lun);
1000}
1001
1002/**
1003 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized
1004 * @nand: NAND device
1005 *
1006 * Return: true if the BBT has been initialized, false otherwise.
1007 */
1008static inline bool nanddev_bbt_is_initialized(struct nand_device *nand)
1009{
1010 return !!nand->bbt.cache;
1011}
1012
1013/* MTD -> NAND helper functions. */
1014int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo);
1015int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len);
1016
1017#endif /* __LINUX_MTD_NAND_H */