at v5.13 30 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Copyright 2017 - Free Electrons 4 * 5 * Authors: 6 * Boris Brezillon <boris.brezillon@free-electrons.com> 7 * Peter Pan <peterpandong@micron.com> 8 */ 9 10#ifndef __LINUX_MTD_NAND_H 11#define __LINUX_MTD_NAND_H 12 13#include <linux/mtd/mtd.h> 14 15struct nand_device; 16 17/** 18 * struct nand_memory_organization - Memory organization structure 19 * @bits_per_cell: number of bits per NAND cell 20 * @pagesize: page size 21 * @oobsize: OOB area size 22 * @pages_per_eraseblock: number of pages per eraseblock 23 * @eraseblocks_per_lun: number of eraseblocks per LUN (Logical Unit Number) 24 * @max_bad_eraseblocks_per_lun: maximum number of eraseblocks per LUN 25 * @planes_per_lun: number of planes per LUN 26 * @luns_per_target: number of LUN per target (target is a synonym for die) 27 * @ntargets: total number of targets exposed by the NAND device 28 */ 29struct nand_memory_organization { 30 unsigned int bits_per_cell; 31 unsigned int pagesize; 32 unsigned int oobsize; 33 unsigned int pages_per_eraseblock; 34 unsigned int eraseblocks_per_lun; 35 unsigned int max_bad_eraseblocks_per_lun; 36 unsigned int planes_per_lun; 37 unsigned int luns_per_target; 38 unsigned int ntargets; 39}; 40 41#define NAND_MEMORG(bpc, ps, os, ppe, epl, mbb, ppl, lpt, nt) \ 42 { \ 43 .bits_per_cell = (bpc), \ 44 .pagesize = (ps), \ 45 .oobsize = (os), \ 46 .pages_per_eraseblock = (ppe), \ 47 .eraseblocks_per_lun = (epl), \ 48 .max_bad_eraseblocks_per_lun = (mbb), \ 49 .planes_per_lun = (ppl), \ 50 .luns_per_target = (lpt), \ 51 .ntargets = (nt), \ 52 } 53 54/** 55 * struct nand_row_converter - Information needed to convert an absolute offset 56 * into a row address 57 * @lun_addr_shift: position of the LUN identifier in the row address 58 * @eraseblock_addr_shift: position of the eraseblock identifier in the row 59 * address 60 */ 61struct nand_row_converter { 62 unsigned int lun_addr_shift; 63 unsigned int eraseblock_addr_shift; 64}; 65 66/** 67 * struct nand_pos - NAND position object 68 * @target: the NAND target/die 69 * @lun: the LUN identifier 70 * @plane: the plane within the LUN 71 * @eraseblock: the eraseblock within the LUN 72 * @page: the page within the LUN 73 * 74 * These information are usually used by specific sub-layers to select the 75 * appropriate target/die and generate a row address to pass to the device. 76 */ 77struct nand_pos { 78 unsigned int target; 79 unsigned int lun; 80 unsigned int plane; 81 unsigned int eraseblock; 82 unsigned int page; 83}; 84 85/** 86 * enum nand_page_io_req_type - Direction of an I/O request 87 * @NAND_PAGE_READ: from the chip, to the controller 88 * @NAND_PAGE_WRITE: from the controller, to the chip 89 */ 90enum nand_page_io_req_type { 91 NAND_PAGE_READ = 0, 92 NAND_PAGE_WRITE, 93}; 94 95/** 96 * struct nand_page_io_req - NAND I/O request object 97 * @type: the type of page I/O: read or write 98 * @pos: the position this I/O request is targeting 99 * @dataoffs: the offset within the page 100 * @datalen: number of data bytes to read from/write to this page 101 * @databuf: buffer to store data in or get data from 102 * @ooboffs: the OOB offset within the page 103 * @ooblen: the number of OOB bytes to read from/write to this page 104 * @oobbuf: buffer to store OOB data in or get OOB data from 105 * @mode: one of the %MTD_OPS_XXX mode 106 * 107 * This object is used to pass per-page I/O requests to NAND sub-layers. This 108 * way all useful information are already formatted in a useful way and 109 * specific NAND layers can focus on translating these information into 110 * specific commands/operations. 111 */ 112struct nand_page_io_req { 113 enum nand_page_io_req_type type; 114 struct nand_pos pos; 115 unsigned int dataoffs; 116 unsigned int datalen; 117 union { 118 const void *out; 119 void *in; 120 } databuf; 121 unsigned int ooboffs; 122 unsigned int ooblen; 123 union { 124 const void *out; 125 void *in; 126 } oobbuf; 127 int mode; 128}; 129 130const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void); 131const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void); 132const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void); 133 134/** 135 * enum nand_ecc_engine_type - NAND ECC engine type 136 * @NAND_ECC_ENGINE_TYPE_INVALID: Invalid value 137 * @NAND_ECC_ENGINE_TYPE_NONE: No ECC correction 138 * @NAND_ECC_ENGINE_TYPE_SOFT: Software ECC correction 139 * @NAND_ECC_ENGINE_TYPE_ON_HOST: On host hardware ECC correction 140 * @NAND_ECC_ENGINE_TYPE_ON_DIE: On chip hardware ECC correction 141 */ 142enum nand_ecc_engine_type { 143 NAND_ECC_ENGINE_TYPE_INVALID, 144 NAND_ECC_ENGINE_TYPE_NONE, 145 NAND_ECC_ENGINE_TYPE_SOFT, 146 NAND_ECC_ENGINE_TYPE_ON_HOST, 147 NAND_ECC_ENGINE_TYPE_ON_DIE, 148}; 149 150/** 151 * enum nand_ecc_placement - NAND ECC bytes placement 152 * @NAND_ECC_PLACEMENT_UNKNOWN: The actual position of the ECC bytes is unknown 153 * @NAND_ECC_PLACEMENT_OOB: The ECC bytes are located in the OOB area 154 * @NAND_ECC_PLACEMENT_INTERLEAVED: Syndrome layout, there are ECC bytes 155 * interleaved with regular data in the main 156 * area 157 */ 158enum nand_ecc_placement { 159 NAND_ECC_PLACEMENT_UNKNOWN, 160 NAND_ECC_PLACEMENT_OOB, 161 NAND_ECC_PLACEMENT_INTERLEAVED, 162}; 163 164/** 165 * enum nand_ecc_algo - NAND ECC algorithm 166 * @NAND_ECC_ALGO_UNKNOWN: Unknown algorithm 167 * @NAND_ECC_ALGO_HAMMING: Hamming algorithm 168 * @NAND_ECC_ALGO_BCH: Bose-Chaudhuri-Hocquenghem algorithm 169 * @NAND_ECC_ALGO_RS: Reed-Solomon algorithm 170 */ 171enum nand_ecc_algo { 172 NAND_ECC_ALGO_UNKNOWN, 173 NAND_ECC_ALGO_HAMMING, 174 NAND_ECC_ALGO_BCH, 175 NAND_ECC_ALGO_RS, 176}; 177 178/** 179 * struct nand_ecc_props - NAND ECC properties 180 * @engine_type: ECC engine type 181 * @placement: OOB placement (if relevant) 182 * @algo: ECC algorithm (if relevant) 183 * @strength: ECC strength 184 * @step_size: Number of bytes per step 185 * @flags: Misc properties 186 */ 187struct nand_ecc_props { 188 enum nand_ecc_engine_type engine_type; 189 enum nand_ecc_placement placement; 190 enum nand_ecc_algo algo; 191 unsigned int strength; 192 unsigned int step_size; 193 unsigned int flags; 194}; 195 196#define NAND_ECCREQ(str, stp) { .strength = (str), .step_size = (stp) } 197 198/* NAND ECC misc flags */ 199#define NAND_ECC_MAXIMIZE_STRENGTH BIT(0) 200 201/** 202 * struct nand_bbt - bad block table object 203 * @cache: in memory BBT cache 204 */ 205struct nand_bbt { 206 unsigned long *cache; 207}; 208 209/** 210 * struct nand_ops - NAND operations 211 * @erase: erase a specific block. No need to check if the block is bad before 212 * erasing, this has been taken care of by the generic NAND layer 213 * @markbad: mark a specific block bad. No need to check if the block is 214 * already marked bad, this has been taken care of by the generic 215 * NAND layer. This method should just write the BBM (Bad Block 216 * Marker) so that future call to struct_nand_ops->isbad() return 217 * true 218 * @isbad: check whether a block is bad or not. This method should just read 219 * the BBM and return whether the block is bad or not based on what it 220 * reads 221 * 222 * These are all low level operations that should be implemented by specialized 223 * NAND layers (SPI NAND, raw NAND, ...). 224 */ 225struct nand_ops { 226 int (*erase)(struct nand_device *nand, const struct nand_pos *pos); 227 int (*markbad)(struct nand_device *nand, const struct nand_pos *pos); 228 bool (*isbad)(struct nand_device *nand, const struct nand_pos *pos); 229}; 230 231/** 232 * struct nand_ecc_context - Context for the ECC engine 233 * @conf: basic ECC engine parameters 234 * @nsteps: number of ECC steps 235 * @total: total number of bytes used for storing ECC codes, this is used by 236 * generic OOB layouts 237 * @priv: ECC engine driver private data 238 */ 239struct nand_ecc_context { 240 struct nand_ecc_props conf; 241 unsigned int nsteps; 242 unsigned int total; 243 void *priv; 244}; 245 246/** 247 * struct nand_ecc_engine_ops - ECC engine operations 248 * @init_ctx: given a desired user configuration for the pointed NAND device, 249 * requests the ECC engine driver to setup a configuration with 250 * values it supports. 251 * @cleanup_ctx: clean the context initialized by @init_ctx. 252 * @prepare_io_req: is called before reading/writing a page to prepare the I/O 253 * request to be performed with ECC correction. 254 * @finish_io_req: is called after reading/writing a page to terminate the I/O 255 * request and ensure proper ECC correction. 256 */ 257struct nand_ecc_engine_ops { 258 int (*init_ctx)(struct nand_device *nand); 259 void (*cleanup_ctx)(struct nand_device *nand); 260 int (*prepare_io_req)(struct nand_device *nand, 261 struct nand_page_io_req *req); 262 int (*finish_io_req)(struct nand_device *nand, 263 struct nand_page_io_req *req); 264}; 265 266/** 267 * struct nand_ecc_engine - ECC engine abstraction for NAND devices 268 * @ops: ECC engine operations 269 */ 270struct nand_ecc_engine { 271 struct nand_ecc_engine_ops *ops; 272}; 273 274void of_get_nand_ecc_user_config(struct nand_device *nand); 275int nand_ecc_init_ctx(struct nand_device *nand); 276void nand_ecc_cleanup_ctx(struct nand_device *nand); 277int nand_ecc_prepare_io_req(struct nand_device *nand, 278 struct nand_page_io_req *req); 279int nand_ecc_finish_io_req(struct nand_device *nand, 280 struct nand_page_io_req *req); 281bool nand_ecc_is_strong_enough(struct nand_device *nand); 282struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand); 283struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand); 284 285#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING) 286struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void); 287#else 288static inline struct nand_ecc_engine *nand_ecc_sw_hamming_get_engine(void) 289{ 290 return NULL; 291} 292#endif /* CONFIG_MTD_NAND_ECC_SW_HAMMING */ 293 294#if IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH) 295struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void); 296#else 297static inline struct nand_ecc_engine *nand_ecc_sw_bch_get_engine(void) 298{ 299 return NULL; 300} 301#endif /* CONFIG_MTD_NAND_ECC_SW_BCH */ 302 303/** 304 * struct nand_ecc_req_tweak_ctx - Help for automatically tweaking requests 305 * @orig_req: Pointer to the original IO request 306 * @nand: Related NAND device, to have access to its memory organization 307 * @page_buffer_size: Real size of the page buffer to use (can be set by the 308 * user before the tweaking mechanism initialization) 309 * @oob_buffer_size: Real size of the OOB buffer to use (can be set by the 310 * user before the tweaking mechanism initialization) 311 * @spare_databuf: Data bounce buffer 312 * @spare_oobbuf: OOB bounce buffer 313 * @bounce_data: Flag indicating a data bounce buffer is used 314 * @bounce_oob: Flag indicating an OOB bounce buffer is used 315 */ 316struct nand_ecc_req_tweak_ctx { 317 struct nand_page_io_req orig_req; 318 struct nand_device *nand; 319 unsigned int page_buffer_size; 320 unsigned int oob_buffer_size; 321 void *spare_databuf; 322 void *spare_oobbuf; 323 bool bounce_data; 324 bool bounce_oob; 325}; 326 327int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, 328 struct nand_device *nand); 329void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx); 330void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, 331 struct nand_page_io_req *req); 332void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, 333 struct nand_page_io_req *req); 334 335/** 336 * struct nand_ecc - Information relative to the ECC 337 * @defaults: Default values, depend on the underlying subsystem 338 * @requirements: ECC requirements from the NAND chip perspective 339 * @user_conf: User desires in terms of ECC parameters 340 * @ctx: ECC context for the ECC engine, derived from the device @requirements 341 * the @user_conf and the @defaults 342 * @ondie_engine: On-die ECC engine reference, if any 343 * @engine: ECC engine actually bound 344 */ 345struct nand_ecc { 346 struct nand_ecc_props defaults; 347 struct nand_ecc_props requirements; 348 struct nand_ecc_props user_conf; 349 struct nand_ecc_context ctx; 350 struct nand_ecc_engine *ondie_engine; 351 struct nand_ecc_engine *engine; 352}; 353 354/** 355 * struct nand_device - NAND device 356 * @mtd: MTD instance attached to the NAND device 357 * @memorg: memory layout 358 * @ecc: NAND ECC object attached to the NAND device 359 * @rowconv: position to row address converter 360 * @bbt: bad block table info 361 * @ops: NAND operations attached to the NAND device 362 * 363 * Generic NAND object. Specialized NAND layers (raw NAND, SPI NAND, OneNAND) 364 * should declare their own NAND object embedding a nand_device struct (that's 365 * how inheritance is done). 366 * struct_nand_device->memorg and struct_nand_device->ecc.requirements should 367 * be filled at device detection time to reflect the NAND device 368 * capabilities/requirements. Once this is done nanddev_init() can be called. 369 * It will take care of converting NAND information into MTD ones, which means 370 * the specialized NAND layers should never manually tweak 371 * struct_nand_device->mtd except for the ->_read/write() hooks. 372 */ 373struct nand_device { 374 struct mtd_info mtd; 375 struct nand_memory_organization memorg; 376 struct nand_ecc ecc; 377 struct nand_row_converter rowconv; 378 struct nand_bbt bbt; 379 const struct nand_ops *ops; 380}; 381 382/** 383 * struct nand_io_iter - NAND I/O iterator 384 * @req: current I/O request 385 * @oobbytes_per_page: maximum number of OOB bytes per page 386 * @dataleft: remaining number of data bytes to read/write 387 * @oobleft: remaining number of OOB bytes to read/write 388 * 389 * Can be used by specialized NAND layers to iterate over all pages covered 390 * by an MTD I/O request, which should greatly simplifies the boiler-plate 391 * code needed to read/write data from/to a NAND device. 392 */ 393struct nand_io_iter { 394 struct nand_page_io_req req; 395 unsigned int oobbytes_per_page; 396 unsigned int dataleft; 397 unsigned int oobleft; 398}; 399 400/** 401 * mtd_to_nanddev() - Get the NAND device attached to the MTD instance 402 * @mtd: MTD instance 403 * 404 * Return: the NAND device embedding @mtd. 405 */ 406static inline struct nand_device *mtd_to_nanddev(struct mtd_info *mtd) 407{ 408 return container_of(mtd, struct nand_device, mtd); 409} 410 411/** 412 * nanddev_to_mtd() - Get the MTD device attached to a NAND device 413 * @nand: NAND device 414 * 415 * Return: the MTD device embedded in @nand. 416 */ 417static inline struct mtd_info *nanddev_to_mtd(struct nand_device *nand) 418{ 419 return &nand->mtd; 420} 421 422/* 423 * nanddev_bits_per_cell() - Get the number of bits per cell 424 * @nand: NAND device 425 * 426 * Return: the number of bits per cell. 427 */ 428static inline unsigned int nanddev_bits_per_cell(const struct nand_device *nand) 429{ 430 return nand->memorg.bits_per_cell; 431} 432 433/** 434 * nanddev_page_size() - Get NAND page size 435 * @nand: NAND device 436 * 437 * Return: the page size. 438 */ 439static inline size_t nanddev_page_size(const struct nand_device *nand) 440{ 441 return nand->memorg.pagesize; 442} 443 444/** 445 * nanddev_per_page_oobsize() - Get NAND OOB size 446 * @nand: NAND device 447 * 448 * Return: the OOB size. 449 */ 450static inline unsigned int 451nanddev_per_page_oobsize(const struct nand_device *nand) 452{ 453 return nand->memorg.oobsize; 454} 455 456/** 457 * nanddev_pages_per_eraseblock() - Get the number of pages per eraseblock 458 * @nand: NAND device 459 * 460 * Return: the number of pages per eraseblock. 461 */ 462static inline unsigned int 463nanddev_pages_per_eraseblock(const struct nand_device *nand) 464{ 465 return nand->memorg.pages_per_eraseblock; 466} 467 468/** 469 * nanddev_pages_per_target() - Get the number of pages per target 470 * @nand: NAND device 471 * 472 * Return: the number of pages per target. 473 */ 474static inline unsigned int 475nanddev_pages_per_target(const struct nand_device *nand) 476{ 477 return nand->memorg.pages_per_eraseblock * 478 nand->memorg.eraseblocks_per_lun * 479 nand->memorg.luns_per_target; 480} 481 482/** 483 * nanddev_per_page_oobsize() - Get NAND erase block size 484 * @nand: NAND device 485 * 486 * Return: the eraseblock size. 487 */ 488static inline size_t nanddev_eraseblock_size(const struct nand_device *nand) 489{ 490 return nand->memorg.pagesize * nand->memorg.pages_per_eraseblock; 491} 492 493/** 494 * nanddev_eraseblocks_per_lun() - Get the number of eraseblocks per LUN 495 * @nand: NAND device 496 * 497 * Return: the number of eraseblocks per LUN. 498 */ 499static inline unsigned int 500nanddev_eraseblocks_per_lun(const struct nand_device *nand) 501{ 502 return nand->memorg.eraseblocks_per_lun; 503} 504 505/** 506 * nanddev_eraseblocks_per_target() - Get the number of eraseblocks per target 507 * @nand: NAND device 508 * 509 * Return: the number of eraseblocks per target. 510 */ 511static inline unsigned int 512nanddev_eraseblocks_per_target(const struct nand_device *nand) 513{ 514 return nand->memorg.eraseblocks_per_lun * nand->memorg.luns_per_target; 515} 516 517/** 518 * nanddev_target_size() - Get the total size provided by a single target/die 519 * @nand: NAND device 520 * 521 * Return: the total size exposed by a single target/die in bytes. 522 */ 523static inline u64 nanddev_target_size(const struct nand_device *nand) 524{ 525 return (u64)nand->memorg.luns_per_target * 526 nand->memorg.eraseblocks_per_lun * 527 nand->memorg.pages_per_eraseblock * 528 nand->memorg.pagesize; 529} 530 531/** 532 * nanddev_ntarget() - Get the total of targets 533 * @nand: NAND device 534 * 535 * Return: the number of targets/dies exposed by @nand. 536 */ 537static inline unsigned int nanddev_ntargets(const struct nand_device *nand) 538{ 539 return nand->memorg.ntargets; 540} 541 542/** 543 * nanddev_neraseblocks() - Get the total number of eraseblocks 544 * @nand: NAND device 545 * 546 * Return: the total number of eraseblocks exposed by @nand. 547 */ 548static inline unsigned int nanddev_neraseblocks(const struct nand_device *nand) 549{ 550 return nand->memorg.ntargets * nand->memorg.luns_per_target * 551 nand->memorg.eraseblocks_per_lun; 552} 553 554/** 555 * nanddev_size() - Get NAND size 556 * @nand: NAND device 557 * 558 * Return: the total size (in bytes) exposed by @nand. 559 */ 560static inline u64 nanddev_size(const struct nand_device *nand) 561{ 562 return nanddev_target_size(nand) * nanddev_ntargets(nand); 563} 564 565/** 566 * nanddev_get_memorg() - Extract memory organization info from a NAND device 567 * @nand: NAND device 568 * 569 * This can be used by the upper layer to fill the memorg info before calling 570 * nanddev_init(). 571 * 572 * Return: the memorg object embedded in the NAND device. 573 */ 574static inline struct nand_memory_organization * 575nanddev_get_memorg(struct nand_device *nand) 576{ 577 return &nand->memorg; 578} 579 580/** 581 * nanddev_get_ecc_conf() - Extract the ECC configuration from a NAND device 582 * @nand: NAND device 583 */ 584static inline const struct nand_ecc_props * 585nanddev_get_ecc_conf(struct nand_device *nand) 586{ 587 return &nand->ecc.ctx.conf; 588} 589 590/** 591 * nanddev_get_ecc_nsteps() - Extract the number of ECC steps 592 * @nand: NAND device 593 */ 594static inline unsigned int 595nanddev_get_ecc_nsteps(struct nand_device *nand) 596{ 597 return nand->ecc.ctx.nsteps; 598} 599 600/** 601 * nanddev_get_ecc_bytes_per_step() - Extract the number of ECC bytes per step 602 * @nand: NAND device 603 */ 604static inline unsigned int 605nanddev_get_ecc_bytes_per_step(struct nand_device *nand) 606{ 607 return nand->ecc.ctx.total / nand->ecc.ctx.nsteps; 608} 609 610/** 611 * nanddev_get_ecc_requirements() - Extract the ECC requirements from a NAND 612 * device 613 * @nand: NAND device 614 */ 615static inline const struct nand_ecc_props * 616nanddev_get_ecc_requirements(struct nand_device *nand) 617{ 618 return &nand->ecc.requirements; 619} 620 621/** 622 * nanddev_set_ecc_requirements() - Assign the ECC requirements of a NAND 623 * device 624 * @nand: NAND device 625 * @reqs: Requirements 626 */ 627static inline void 628nanddev_set_ecc_requirements(struct nand_device *nand, 629 const struct nand_ecc_props *reqs) 630{ 631 nand->ecc.requirements = *reqs; 632} 633 634int nanddev_init(struct nand_device *nand, const struct nand_ops *ops, 635 struct module *owner); 636void nanddev_cleanup(struct nand_device *nand); 637 638/** 639 * nanddev_register() - Register a NAND device 640 * @nand: NAND device 641 * 642 * Register a NAND device. 643 * This function is just a wrapper around mtd_device_register() 644 * registering the MTD device embedded in @nand. 645 * 646 * Return: 0 in case of success, a negative error code otherwise. 647 */ 648static inline int nanddev_register(struct nand_device *nand) 649{ 650 return mtd_device_register(&nand->mtd, NULL, 0); 651} 652 653/** 654 * nanddev_unregister() - Unregister a NAND device 655 * @nand: NAND device 656 * 657 * Unregister a NAND device. 658 * This function is just a wrapper around mtd_device_unregister() 659 * unregistering the MTD device embedded in @nand. 660 * 661 * Return: 0 in case of success, a negative error code otherwise. 662 */ 663static inline int nanddev_unregister(struct nand_device *nand) 664{ 665 return mtd_device_unregister(&nand->mtd); 666} 667 668/** 669 * nanddev_set_of_node() - Attach a DT node to a NAND device 670 * @nand: NAND device 671 * @np: DT node 672 * 673 * Attach a DT node to a NAND device. 674 */ 675static inline void nanddev_set_of_node(struct nand_device *nand, 676 struct device_node *np) 677{ 678 mtd_set_of_node(&nand->mtd, np); 679} 680 681/** 682 * nanddev_get_of_node() - Retrieve the DT node attached to a NAND device 683 * @nand: NAND device 684 * 685 * Return: the DT node attached to @nand. 686 */ 687static inline struct device_node *nanddev_get_of_node(struct nand_device *nand) 688{ 689 return mtd_get_of_node(&nand->mtd); 690} 691 692/** 693 * nanddev_offs_to_pos() - Convert an absolute NAND offset into a NAND position 694 * @nand: NAND device 695 * @offs: absolute NAND offset (usually passed by the MTD layer) 696 * @pos: a NAND position object to fill in 697 * 698 * Converts @offs into a nand_pos representation. 699 * 700 * Return: the offset within the NAND page pointed by @pos. 701 */ 702static inline unsigned int nanddev_offs_to_pos(struct nand_device *nand, 703 loff_t offs, 704 struct nand_pos *pos) 705{ 706 unsigned int pageoffs; 707 u64 tmp = offs; 708 709 pageoffs = do_div(tmp, nand->memorg.pagesize); 710 pos->page = do_div(tmp, nand->memorg.pages_per_eraseblock); 711 pos->eraseblock = do_div(tmp, nand->memorg.eraseblocks_per_lun); 712 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 713 pos->lun = do_div(tmp, nand->memorg.luns_per_target); 714 pos->target = tmp; 715 716 return pageoffs; 717} 718 719/** 720 * nanddev_pos_cmp() - Compare two NAND positions 721 * @a: First NAND position 722 * @b: Second NAND position 723 * 724 * Compares two NAND positions. 725 * 726 * Return: -1 if @a < @b, 0 if @a == @b and 1 if @a > @b. 727 */ 728static inline int nanddev_pos_cmp(const struct nand_pos *a, 729 const struct nand_pos *b) 730{ 731 if (a->target != b->target) 732 return a->target < b->target ? -1 : 1; 733 734 if (a->lun != b->lun) 735 return a->lun < b->lun ? -1 : 1; 736 737 if (a->eraseblock != b->eraseblock) 738 return a->eraseblock < b->eraseblock ? -1 : 1; 739 740 if (a->page != b->page) 741 return a->page < b->page ? -1 : 1; 742 743 return 0; 744} 745 746/** 747 * nanddev_pos_to_offs() - Convert a NAND position into an absolute offset 748 * @nand: NAND device 749 * @pos: the NAND position to convert 750 * 751 * Converts @pos NAND position into an absolute offset. 752 * 753 * Return: the absolute offset. Note that @pos points to the beginning of a 754 * page, if one wants to point to a specific offset within this page 755 * the returned offset has to be adjusted manually. 756 */ 757static inline loff_t nanddev_pos_to_offs(struct nand_device *nand, 758 const struct nand_pos *pos) 759{ 760 unsigned int npages; 761 762 npages = pos->page + 763 ((pos->eraseblock + 764 (pos->lun + 765 (pos->target * nand->memorg.luns_per_target)) * 766 nand->memorg.eraseblocks_per_lun) * 767 nand->memorg.pages_per_eraseblock); 768 769 return (loff_t)npages * nand->memorg.pagesize; 770} 771 772/** 773 * nanddev_pos_to_row() - Extract a row address from a NAND position 774 * @nand: NAND device 775 * @pos: the position to convert 776 * 777 * Converts a NAND position into a row address that can then be passed to the 778 * device. 779 * 780 * Return: the row address extracted from @pos. 781 */ 782static inline unsigned int nanddev_pos_to_row(struct nand_device *nand, 783 const struct nand_pos *pos) 784{ 785 return (pos->lun << nand->rowconv.lun_addr_shift) | 786 (pos->eraseblock << nand->rowconv.eraseblock_addr_shift) | 787 pos->page; 788} 789 790/** 791 * nanddev_pos_next_target() - Move a position to the next target/die 792 * @nand: NAND device 793 * @pos: the position to update 794 * 795 * Updates @pos to point to the start of the next target/die. Useful when you 796 * want to iterate over all targets/dies of a NAND device. 797 */ 798static inline void nanddev_pos_next_target(struct nand_device *nand, 799 struct nand_pos *pos) 800{ 801 pos->page = 0; 802 pos->plane = 0; 803 pos->eraseblock = 0; 804 pos->lun = 0; 805 pos->target++; 806} 807 808/** 809 * nanddev_pos_next_lun() - Move a position to the next LUN 810 * @nand: NAND device 811 * @pos: the position to update 812 * 813 * Updates @pos to point to the start of the next LUN. Useful when you want to 814 * iterate over all LUNs of a NAND device. 815 */ 816static inline void nanddev_pos_next_lun(struct nand_device *nand, 817 struct nand_pos *pos) 818{ 819 if (pos->lun >= nand->memorg.luns_per_target - 1) 820 return nanddev_pos_next_target(nand, pos); 821 822 pos->lun++; 823 pos->page = 0; 824 pos->plane = 0; 825 pos->eraseblock = 0; 826} 827 828/** 829 * nanddev_pos_next_eraseblock() - Move a position to the next eraseblock 830 * @nand: NAND device 831 * @pos: the position to update 832 * 833 * Updates @pos to point to the start of the next eraseblock. Useful when you 834 * want to iterate over all eraseblocks of a NAND device. 835 */ 836static inline void nanddev_pos_next_eraseblock(struct nand_device *nand, 837 struct nand_pos *pos) 838{ 839 if (pos->eraseblock >= nand->memorg.eraseblocks_per_lun - 1) 840 return nanddev_pos_next_lun(nand, pos); 841 842 pos->eraseblock++; 843 pos->page = 0; 844 pos->plane = pos->eraseblock % nand->memorg.planes_per_lun; 845} 846 847/** 848 * nanddev_pos_next_page() - Move a position to the next page 849 * @nand: NAND device 850 * @pos: the position to update 851 * 852 * Updates @pos to point to the start of the next page. Useful when you want to 853 * iterate over all pages of a NAND device. 854 */ 855static inline void nanddev_pos_next_page(struct nand_device *nand, 856 struct nand_pos *pos) 857{ 858 if (pos->page >= nand->memorg.pages_per_eraseblock - 1) 859 return nanddev_pos_next_eraseblock(nand, pos); 860 861 pos->page++; 862} 863 864/** 865 * nand_io_iter_init - Initialize a NAND I/O iterator 866 * @nand: NAND device 867 * @offs: absolute offset 868 * @req: MTD request 869 * @iter: NAND I/O iterator 870 * 871 * Initializes a NAND iterator based on the information passed by the MTD 872 * layer. 873 */ 874static inline void nanddev_io_iter_init(struct nand_device *nand, 875 enum nand_page_io_req_type reqtype, 876 loff_t offs, struct mtd_oob_ops *req, 877 struct nand_io_iter *iter) 878{ 879 struct mtd_info *mtd = nanddev_to_mtd(nand); 880 881 iter->req.type = reqtype; 882 iter->req.mode = req->mode; 883 iter->req.dataoffs = nanddev_offs_to_pos(nand, offs, &iter->req.pos); 884 iter->req.ooboffs = req->ooboffs; 885 iter->oobbytes_per_page = mtd_oobavail(mtd, req); 886 iter->dataleft = req->len; 887 iter->oobleft = req->ooblen; 888 iter->req.databuf.in = req->datbuf; 889 iter->req.datalen = min_t(unsigned int, 890 nand->memorg.pagesize - iter->req.dataoffs, 891 iter->dataleft); 892 iter->req.oobbuf.in = req->oobbuf; 893 iter->req.ooblen = min_t(unsigned int, 894 iter->oobbytes_per_page - iter->req.ooboffs, 895 iter->oobleft); 896} 897 898/** 899 * nand_io_iter_next_page - Move to the next page 900 * @nand: NAND device 901 * @iter: NAND I/O iterator 902 * 903 * Updates the @iter to point to the next page. 904 */ 905static inline void nanddev_io_iter_next_page(struct nand_device *nand, 906 struct nand_io_iter *iter) 907{ 908 nanddev_pos_next_page(nand, &iter->req.pos); 909 iter->dataleft -= iter->req.datalen; 910 iter->req.databuf.in += iter->req.datalen; 911 iter->oobleft -= iter->req.ooblen; 912 iter->req.oobbuf.in += iter->req.ooblen; 913 iter->req.dataoffs = 0; 914 iter->req.ooboffs = 0; 915 iter->req.datalen = min_t(unsigned int, nand->memorg.pagesize, 916 iter->dataleft); 917 iter->req.ooblen = min_t(unsigned int, iter->oobbytes_per_page, 918 iter->oobleft); 919} 920 921/** 922 * nand_io_iter_end - Should end iteration or not 923 * @nand: NAND device 924 * @iter: NAND I/O iterator 925 * 926 * Check whether @iter has reached the end of the NAND portion it was asked to 927 * iterate on or not. 928 * 929 * Return: true if @iter has reached the end of the iteration request, false 930 * otherwise. 931 */ 932static inline bool nanddev_io_iter_end(struct nand_device *nand, 933 const struct nand_io_iter *iter) 934{ 935 if (iter->dataleft || iter->oobleft) 936 return false; 937 938 return true; 939} 940 941/** 942 * nand_io_for_each_page - Iterate over all NAND pages contained in an MTD I/O 943 * request 944 * @nand: NAND device 945 * @start: start address to read/write from 946 * @req: MTD I/O request 947 * @iter: NAND I/O iterator 948 * 949 * Should be used for iterate over pages that are contained in an MTD request. 950 */ 951#define nanddev_io_for_each_page(nand, type, start, req, iter) \ 952 for (nanddev_io_iter_init(nand, type, start, req, iter); \ 953 !nanddev_io_iter_end(nand, iter); \ 954 nanddev_io_iter_next_page(nand, iter)) 955 956bool nanddev_isbad(struct nand_device *nand, const struct nand_pos *pos); 957bool nanddev_isreserved(struct nand_device *nand, const struct nand_pos *pos); 958int nanddev_erase(struct nand_device *nand, const struct nand_pos *pos); 959int nanddev_markbad(struct nand_device *nand, const struct nand_pos *pos); 960 961/* ECC related functions */ 962int nanddev_ecc_engine_init(struct nand_device *nand); 963void nanddev_ecc_engine_cleanup(struct nand_device *nand); 964 965/* BBT related functions */ 966enum nand_bbt_block_status { 967 NAND_BBT_BLOCK_STATUS_UNKNOWN, 968 NAND_BBT_BLOCK_GOOD, 969 NAND_BBT_BLOCK_WORN, 970 NAND_BBT_BLOCK_RESERVED, 971 NAND_BBT_BLOCK_FACTORY_BAD, 972 NAND_BBT_BLOCK_NUM_STATUS, 973}; 974 975int nanddev_bbt_init(struct nand_device *nand); 976void nanddev_bbt_cleanup(struct nand_device *nand); 977int nanddev_bbt_update(struct nand_device *nand); 978int nanddev_bbt_get_block_status(const struct nand_device *nand, 979 unsigned int entry); 980int nanddev_bbt_set_block_status(struct nand_device *nand, unsigned int entry, 981 enum nand_bbt_block_status status); 982int nanddev_bbt_markbad(struct nand_device *nand, unsigned int block); 983 984/** 985 * nanddev_bbt_pos_to_entry() - Convert a NAND position into a BBT entry 986 * @nand: NAND device 987 * @pos: the NAND position we want to get BBT entry for 988 * 989 * Return the BBT entry used to store information about the eraseblock pointed 990 * by @pos. 991 * 992 * Return: the BBT entry storing information about eraseblock pointed by @pos. 993 */ 994static inline unsigned int nanddev_bbt_pos_to_entry(struct nand_device *nand, 995 const struct nand_pos *pos) 996{ 997 return pos->eraseblock + 998 ((pos->lun + (pos->target * nand->memorg.luns_per_target)) * 999 nand->memorg.eraseblocks_per_lun); 1000} 1001 1002/** 1003 * nanddev_bbt_is_initialized() - Check if the BBT has been initialized 1004 * @nand: NAND device 1005 * 1006 * Return: true if the BBT has been initialized, false otherwise. 1007 */ 1008static inline bool nanddev_bbt_is_initialized(struct nand_device *nand) 1009{ 1010 return !!nand->bbt.cache; 1011} 1012 1013/* MTD -> NAND helper functions. */ 1014int nanddev_mtd_erase(struct mtd_info *mtd, struct erase_info *einfo); 1015int nanddev_mtd_max_bad_blocks(struct mtd_info *mtd, loff_t offs, size_t len); 1016 1017#endif /* __LINUX_MTD_NAND_H */