Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6
7#ifdef __KERNEL__
8
9#include <linux/mmdebug.h>
10#include <linux/gfp.h>
11#include <linux/bug.h>
12#include <linux/list.h>
13#include <linux/mmzone.h>
14#include <linux/rbtree.h>
15#include <linux/atomic.h>
16#include <linux/debug_locks.h>
17#include <linux/mm_types.h>
18#include <linux/mmap_lock.h>
19#include <linux/range.h>
20#include <linux/pfn.h>
21#include <linux/percpu-refcount.h>
22#include <linux/bit_spinlock.h>
23#include <linux/shrinker.h>
24#include <linux/resource.h>
25#include <linux/page_ext.h>
26#include <linux/err.h>
27#include <linux/page-flags.h>
28#include <linux/page_ref.h>
29#include <linux/memremap.h>
30#include <linux/overflow.h>
31#include <linux/sizes.h>
32#include <linux/sched.h>
33#include <linux/pgtable.h>
34#include <linux/kasan.h>
35
36struct mempolicy;
37struct anon_vma;
38struct anon_vma_chain;
39struct file_ra_state;
40struct user_struct;
41struct writeback_control;
42struct bdi_writeback;
43struct pt_regs;
44
45extern int sysctl_page_lock_unfairness;
46
47void init_mm_internals(void);
48
49#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
50extern unsigned long max_mapnr;
51
52static inline void set_max_mapnr(unsigned long limit)
53{
54 max_mapnr = limit;
55}
56#else
57static inline void set_max_mapnr(unsigned long limit) { }
58#endif
59
60extern atomic_long_t _totalram_pages;
61static inline unsigned long totalram_pages(void)
62{
63 return (unsigned long)atomic_long_read(&_totalram_pages);
64}
65
66static inline void totalram_pages_inc(void)
67{
68 atomic_long_inc(&_totalram_pages);
69}
70
71static inline void totalram_pages_dec(void)
72{
73 atomic_long_dec(&_totalram_pages);
74}
75
76static inline void totalram_pages_add(long count)
77{
78 atomic_long_add(count, &_totalram_pages);
79}
80
81extern void * high_memory;
82extern int page_cluster;
83
84#ifdef CONFIG_SYSCTL
85extern int sysctl_legacy_va_layout;
86#else
87#define sysctl_legacy_va_layout 0
88#endif
89
90#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91extern const int mmap_rnd_bits_min;
92extern const int mmap_rnd_bits_max;
93extern int mmap_rnd_bits __read_mostly;
94#endif
95#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96extern const int mmap_rnd_compat_bits_min;
97extern const int mmap_rnd_compat_bits_max;
98extern int mmap_rnd_compat_bits __read_mostly;
99#endif
100
101#include <asm/page.h>
102#include <asm/processor.h>
103
104/*
105 * Architectures that support memory tagging (assigning tags to memory regions,
106 * embedding these tags into addresses that point to these memory regions, and
107 * checking that the memory and the pointer tags match on memory accesses)
108 * redefine this macro to strip tags from pointers.
109 * It's defined as noop for architectures that don't support memory tagging.
110 */
111#ifndef untagged_addr
112#define untagged_addr(addr) (addr)
113#endif
114
115#ifndef __pa_symbol
116#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
117#endif
118
119#ifndef page_to_virt
120#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
121#endif
122
123#ifndef lm_alias
124#define lm_alias(x) __va(__pa_symbol(x))
125#endif
126
127/*
128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129 * instrumented C code with jump table addresses. Architectures that
130 * support CFI can define this macro to return the actual function address
131 * when needed.
132 */
133#ifndef function_nocfi
134#define function_nocfi(x) (x)
135#endif
136
137/*
138 * To prevent common memory management code establishing
139 * a zero page mapping on a read fault.
140 * This macro should be defined within <asm/pgtable.h>.
141 * s390 does this to prevent multiplexing of hardware bits
142 * related to the physical page in case of virtualization.
143 */
144#ifndef mm_forbids_zeropage
145#define mm_forbids_zeropage(X) (0)
146#endif
147
148/*
149 * On some architectures it is expensive to call memset() for small sizes.
150 * If an architecture decides to implement their own version of
151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152 * define their own version of this macro in <asm/pgtable.h>
153 */
154#if BITS_PER_LONG == 64
155/* This function must be updated when the size of struct page grows above 80
156 * or reduces below 56. The idea that compiler optimizes out switch()
157 * statement, and only leaves move/store instructions. Also the compiler can
158 * combine write statments if they are both assignments and can be reordered,
159 * this can result in several of the writes here being dropped.
160 */
161#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162static inline void __mm_zero_struct_page(struct page *page)
163{
164 unsigned long *_pp = (void *)page;
165
166 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 BUILD_BUG_ON(sizeof(struct page) & 7);
168 BUILD_BUG_ON(sizeof(struct page) < 56);
169 BUILD_BUG_ON(sizeof(struct page) > 80);
170
171 switch (sizeof(struct page)) {
172 case 80:
173 _pp[9] = 0;
174 fallthrough;
175 case 72:
176 _pp[8] = 0;
177 fallthrough;
178 case 64:
179 _pp[7] = 0;
180 fallthrough;
181 case 56:
182 _pp[6] = 0;
183 _pp[5] = 0;
184 _pp[4] = 0;
185 _pp[3] = 0;
186 _pp[2] = 0;
187 _pp[1] = 0;
188 _pp[0] = 0;
189 }
190}
191#else
192#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
193#endif
194
195/*
196 * Default maximum number of active map areas, this limits the number of vmas
197 * per mm struct. Users can overwrite this number by sysctl but there is a
198 * problem.
199 *
200 * When a program's coredump is generated as ELF format, a section is created
201 * per a vma. In ELF, the number of sections is represented in unsigned short.
202 * This means the number of sections should be smaller than 65535 at coredump.
203 * Because the kernel adds some informative sections to a image of program at
204 * generating coredump, we need some margin. The number of extra sections is
205 * 1-3 now and depends on arch. We use "5" as safe margin, here.
206 *
207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208 * not a hard limit any more. Although some userspace tools can be surprised by
209 * that.
210 */
211#define MAPCOUNT_ELF_CORE_MARGIN (5)
212#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213
214extern int sysctl_max_map_count;
215
216extern unsigned long sysctl_user_reserve_kbytes;
217extern unsigned long sysctl_admin_reserve_kbytes;
218
219extern int sysctl_overcommit_memory;
220extern int sysctl_overcommit_ratio;
221extern unsigned long sysctl_overcommit_kbytes;
222
223int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 loff_t *);
225int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 loff_t *);
227int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 loff_t *);
229/*
230 * Any attempt to mark this function as static leads to build failure
231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232 * is referred to by BPF code. This must be visible for error injection.
233 */
234int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 pgoff_t index, gfp_t gfp, void **shadowp);
236
237#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
238
239/* to align the pointer to the (next) page boundary */
240#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
241
242/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
243#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
244
245#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
246
247/*
248 * Linux kernel virtual memory manager primitives.
249 * The idea being to have a "virtual" mm in the same way
250 * we have a virtual fs - giving a cleaner interface to the
251 * mm details, and allowing different kinds of memory mappings
252 * (from shared memory to executable loading to arbitrary
253 * mmap() functions).
254 */
255
256struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258void vm_area_free(struct vm_area_struct *);
259
260#ifndef CONFIG_MMU
261extern struct rb_root nommu_region_tree;
262extern struct rw_semaphore nommu_region_sem;
263
264extern unsigned int kobjsize(const void *objp);
265#endif
266
267/*
268 * vm_flags in vm_area_struct, see mm_types.h.
269 * When changing, update also include/trace/events/mmflags.h
270 */
271#define VM_NONE 0x00000000
272
273#define VM_READ 0x00000001 /* currently active flags */
274#define VM_WRITE 0x00000002
275#define VM_EXEC 0x00000004
276#define VM_SHARED 0x00000008
277
278/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
279#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
280#define VM_MAYWRITE 0x00000020
281#define VM_MAYEXEC 0x00000040
282#define VM_MAYSHARE 0x00000080
283
284#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
285#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
286#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
287#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
288#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
289
290#define VM_LOCKED 0x00002000
291#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
292
293 /* Used by sys_madvise() */
294#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
295#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
296
297#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
298#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
299#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
300#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
301#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
302#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
303#define VM_SYNC 0x00800000 /* Synchronous page faults */
304#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
305#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
306#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
307
308#ifdef CONFIG_MEM_SOFT_DIRTY
309# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
310#else
311# define VM_SOFTDIRTY 0
312#endif
313
314#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
315#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
316#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
317#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
318
319#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
320#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
323#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
324#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
325#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
326#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
327#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
328#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
329#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
330#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331
332#ifdef CONFIG_ARCH_HAS_PKEYS
333# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
334# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
335# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
336# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
337# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
338#ifdef CONFIG_PPC
339# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
340#else
341# define VM_PKEY_BIT4 0
342#endif
343#endif /* CONFIG_ARCH_HAS_PKEYS */
344
345#if defined(CONFIG_X86)
346# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
347#elif defined(CONFIG_PPC)
348# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
349#elif defined(CONFIG_PARISC)
350# define VM_GROWSUP VM_ARCH_1
351#elif defined(CONFIG_IA64)
352# define VM_GROWSUP VM_ARCH_1
353#elif defined(CONFIG_SPARC64)
354# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
355# define VM_ARCH_CLEAR VM_SPARC_ADI
356#elif defined(CONFIG_ARM64)
357# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
358# define VM_ARCH_CLEAR VM_ARM64_BTI
359#elif !defined(CONFIG_MMU)
360# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
361#endif
362
363#if defined(CONFIG_ARM64_MTE)
364# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
365# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
366#else
367# define VM_MTE VM_NONE
368# define VM_MTE_ALLOWED VM_NONE
369#endif
370
371#ifndef VM_GROWSUP
372# define VM_GROWSUP VM_NONE
373#endif
374
375#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
376# define VM_UFFD_MINOR_BIT 37
377# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
378#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379# define VM_UFFD_MINOR VM_NONE
380#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
381
382/* Bits set in the VMA until the stack is in its final location */
383#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
384
385#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
386
387/* Common data flag combinations */
388#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
389 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
390#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
391 VM_MAYWRITE | VM_MAYEXEC)
392#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
393 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
394
395#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
396#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
397#endif
398
399#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
400#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
401#endif
402
403#ifdef CONFIG_STACK_GROWSUP
404#define VM_STACK VM_GROWSUP
405#else
406#define VM_STACK VM_GROWSDOWN
407#endif
408
409#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
410
411/* VMA basic access permission flags */
412#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
413
414
415/*
416 * Special vmas that are non-mergable, non-mlock()able.
417 */
418#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
419
420/* This mask prevents VMA from being scanned with khugepaged */
421#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
422
423/* This mask defines which mm->def_flags a process can inherit its parent */
424#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
425
426/* This mask is used to clear all the VMA flags used by mlock */
427#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
428
429/* Arch-specific flags to clear when updating VM flags on protection change */
430#ifndef VM_ARCH_CLEAR
431# define VM_ARCH_CLEAR VM_NONE
432#endif
433#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
434
435/*
436 * mapping from the currently active vm_flags protection bits (the
437 * low four bits) to a page protection mask..
438 */
439extern pgprot_t protection_map[16];
440
441/**
442 * enum fault_flag - Fault flag definitions.
443 * @FAULT_FLAG_WRITE: Fault was a write fault.
444 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
445 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
446 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
447 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
448 * @FAULT_FLAG_TRIED: The fault has been tried once.
449 * @FAULT_FLAG_USER: The fault originated in userspace.
450 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
451 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
452 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
453 *
454 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
455 * whether we would allow page faults to retry by specifying these two
456 * fault flags correctly. Currently there can be three legal combinations:
457 *
458 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and
459 * this is the first try
460 *
461 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and
462 * we've already tried at least once
463 *
464 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
465 *
466 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
467 * be used. Note that page faults can be allowed to retry for multiple times,
468 * in which case we'll have an initial fault with flags (a) then later on
469 * continuous faults with flags (b). We should always try to detect pending
470 * signals before a retry to make sure the continuous page faults can still be
471 * interrupted if necessary.
472 */
473enum fault_flag {
474 FAULT_FLAG_WRITE = 1 << 0,
475 FAULT_FLAG_MKWRITE = 1 << 1,
476 FAULT_FLAG_ALLOW_RETRY = 1 << 2,
477 FAULT_FLAG_RETRY_NOWAIT = 1 << 3,
478 FAULT_FLAG_KILLABLE = 1 << 4,
479 FAULT_FLAG_TRIED = 1 << 5,
480 FAULT_FLAG_USER = 1 << 6,
481 FAULT_FLAG_REMOTE = 1 << 7,
482 FAULT_FLAG_INSTRUCTION = 1 << 8,
483 FAULT_FLAG_INTERRUPTIBLE = 1 << 9,
484};
485
486/*
487 * The default fault flags that should be used by most of the
488 * arch-specific page fault handlers.
489 */
490#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
491 FAULT_FLAG_KILLABLE | \
492 FAULT_FLAG_INTERRUPTIBLE)
493
494/**
495 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
496 * @flags: Fault flags.
497 *
498 * This is mostly used for places where we want to try to avoid taking
499 * the mmap_lock for too long a time when waiting for another condition
500 * to change, in which case we can try to be polite to release the
501 * mmap_lock in the first round to avoid potential starvation of other
502 * processes that would also want the mmap_lock.
503 *
504 * Return: true if the page fault allows retry and this is the first
505 * attempt of the fault handling; false otherwise.
506 */
507static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
508{
509 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
510 (!(flags & FAULT_FLAG_TRIED));
511}
512
513#define FAULT_FLAG_TRACE \
514 { FAULT_FLAG_WRITE, "WRITE" }, \
515 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
516 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
517 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
518 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
519 { FAULT_FLAG_TRIED, "TRIED" }, \
520 { FAULT_FLAG_USER, "USER" }, \
521 { FAULT_FLAG_REMOTE, "REMOTE" }, \
522 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
523 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
524
525/*
526 * vm_fault is filled by the pagefault handler and passed to the vma's
527 * ->fault function. The vma's ->fault is responsible for returning a bitmask
528 * of VM_FAULT_xxx flags that give details about how the fault was handled.
529 *
530 * MM layer fills up gfp_mask for page allocations but fault handler might
531 * alter it if its implementation requires a different allocation context.
532 *
533 * pgoff should be used in favour of virtual_address, if possible.
534 */
535struct vm_fault {
536 const struct {
537 struct vm_area_struct *vma; /* Target VMA */
538 gfp_t gfp_mask; /* gfp mask to be used for allocations */
539 pgoff_t pgoff; /* Logical page offset based on vma */
540 unsigned long address; /* Faulting virtual address */
541 };
542 enum fault_flag flags; /* FAULT_FLAG_xxx flags
543 * XXX: should really be 'const' */
544 pmd_t *pmd; /* Pointer to pmd entry matching
545 * the 'address' */
546 pud_t *pud; /* Pointer to pud entry matching
547 * the 'address'
548 */
549 pte_t orig_pte; /* Value of PTE at the time of fault */
550
551 struct page *cow_page; /* Page handler may use for COW fault */
552 struct page *page; /* ->fault handlers should return a
553 * page here, unless VM_FAULT_NOPAGE
554 * is set (which is also implied by
555 * VM_FAULT_ERROR).
556 */
557 /* These three entries are valid only while holding ptl lock */
558 pte_t *pte; /* Pointer to pte entry matching
559 * the 'address'. NULL if the page
560 * table hasn't been allocated.
561 */
562 spinlock_t *ptl; /* Page table lock.
563 * Protects pte page table if 'pte'
564 * is not NULL, otherwise pmd.
565 */
566 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
567 * vm_ops->map_pages() sets up a page
568 * table from atomic context.
569 * do_fault_around() pre-allocates
570 * page table to avoid allocation from
571 * atomic context.
572 */
573};
574
575/* page entry size for vm->huge_fault() */
576enum page_entry_size {
577 PE_SIZE_PTE = 0,
578 PE_SIZE_PMD,
579 PE_SIZE_PUD,
580};
581
582/*
583 * These are the virtual MM functions - opening of an area, closing and
584 * unmapping it (needed to keep files on disk up-to-date etc), pointer
585 * to the functions called when a no-page or a wp-page exception occurs.
586 */
587struct vm_operations_struct {
588 void (*open)(struct vm_area_struct * area);
589 void (*close)(struct vm_area_struct * area);
590 /* Called any time before splitting to check if it's allowed */
591 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
592 int (*mremap)(struct vm_area_struct *area);
593 /*
594 * Called by mprotect() to make driver-specific permission
595 * checks before mprotect() is finalised. The VMA must not
596 * be modified. Returns 0 if eprotect() can proceed.
597 */
598 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
599 unsigned long end, unsigned long newflags);
600 vm_fault_t (*fault)(struct vm_fault *vmf);
601 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
602 enum page_entry_size pe_size);
603 vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 pgoff_t start_pgoff, pgoff_t end_pgoff);
605 unsigned long (*pagesize)(struct vm_area_struct * area);
606
607 /* notification that a previously read-only page is about to become
608 * writable, if an error is returned it will cause a SIGBUS */
609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610
611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613
614 /* called by access_process_vm when get_user_pages() fails, typically
615 * for use by special VMAs. See also generic_access_phys() for a generic
616 * implementation useful for any iomem mapping.
617 */
618 int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 void *buf, int len, int write);
620
621 /* Called by the /proc/PID/maps code to ask the vma whether it
622 * has a special name. Returning non-NULL will also cause this
623 * vma to be dumped unconditionally. */
624 const char *(*name)(struct vm_area_struct *vma);
625
626#ifdef CONFIG_NUMA
627 /*
628 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 * to hold the policy upon return. Caller should pass NULL @new to
630 * remove a policy and fall back to surrounding context--i.e. do not
631 * install a MPOL_DEFAULT policy, nor the task or system default
632 * mempolicy.
633 */
634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635
636 /*
637 * get_policy() op must add reference [mpol_get()] to any policy at
638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
639 * in mm/mempolicy.c will do this automatically.
640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 * must return NULL--i.e., do not "fallback" to task or system default
644 * policy.
645 */
646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 unsigned long addr);
648#endif
649 /*
650 * Called by vm_normal_page() for special PTEs to find the
651 * page for @addr. This is useful if the default behavior
652 * (using pte_page()) would not find the correct page.
653 */
654 struct page *(*find_special_page)(struct vm_area_struct *vma,
655 unsigned long addr);
656};
657
658static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
659{
660 static const struct vm_operations_struct dummy_vm_ops = {};
661
662 memset(vma, 0, sizeof(*vma));
663 vma->vm_mm = mm;
664 vma->vm_ops = &dummy_vm_ops;
665 INIT_LIST_HEAD(&vma->anon_vma_chain);
666}
667
668static inline void vma_set_anonymous(struct vm_area_struct *vma)
669{
670 vma->vm_ops = NULL;
671}
672
673static inline bool vma_is_anonymous(struct vm_area_struct *vma)
674{
675 return !vma->vm_ops;
676}
677
678static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
679{
680 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
681
682 if (!maybe_stack)
683 return false;
684
685 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
686 VM_STACK_INCOMPLETE_SETUP)
687 return true;
688
689 return false;
690}
691
692static inline bool vma_is_foreign(struct vm_area_struct *vma)
693{
694 if (!current->mm)
695 return true;
696
697 if (current->mm != vma->vm_mm)
698 return true;
699
700 return false;
701}
702
703static inline bool vma_is_accessible(struct vm_area_struct *vma)
704{
705 return vma->vm_flags & VM_ACCESS_FLAGS;
706}
707
708#ifdef CONFIG_SHMEM
709/*
710 * The vma_is_shmem is not inline because it is used only by slow
711 * paths in userfault.
712 */
713bool vma_is_shmem(struct vm_area_struct *vma);
714#else
715static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
716#endif
717
718int vma_is_stack_for_current(struct vm_area_struct *vma);
719
720/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
721#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
722
723struct mmu_gather;
724struct inode;
725
726#include <linux/huge_mm.h>
727
728/*
729 * Methods to modify the page usage count.
730 *
731 * What counts for a page usage:
732 * - cache mapping (page->mapping)
733 * - private data (page->private)
734 * - page mapped in a task's page tables, each mapping
735 * is counted separately
736 *
737 * Also, many kernel routines increase the page count before a critical
738 * routine so they can be sure the page doesn't go away from under them.
739 */
740
741/*
742 * Drop a ref, return true if the refcount fell to zero (the page has no users)
743 */
744static inline int put_page_testzero(struct page *page)
745{
746 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
747 return page_ref_dec_and_test(page);
748}
749
750/*
751 * Try to grab a ref unless the page has a refcount of zero, return false if
752 * that is the case.
753 * This can be called when MMU is off so it must not access
754 * any of the virtual mappings.
755 */
756static inline int get_page_unless_zero(struct page *page)
757{
758 return page_ref_add_unless(page, 1, 0);
759}
760
761extern int page_is_ram(unsigned long pfn);
762
763enum {
764 REGION_INTERSECTS,
765 REGION_DISJOINT,
766 REGION_MIXED,
767};
768
769int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
770 unsigned long desc);
771
772/* Support for virtually mapped pages */
773struct page *vmalloc_to_page(const void *addr);
774unsigned long vmalloc_to_pfn(const void *addr);
775
776/*
777 * Determine if an address is within the vmalloc range
778 *
779 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
780 * is no special casing required.
781 */
782
783#ifndef is_ioremap_addr
784#define is_ioremap_addr(x) is_vmalloc_addr(x)
785#endif
786
787#ifdef CONFIG_MMU
788extern bool is_vmalloc_addr(const void *x);
789extern int is_vmalloc_or_module_addr(const void *x);
790#else
791static inline bool is_vmalloc_addr(const void *x)
792{
793 return false;
794}
795static inline int is_vmalloc_or_module_addr(const void *x)
796{
797 return 0;
798}
799#endif
800
801extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
802static inline void *kvmalloc(size_t size, gfp_t flags)
803{
804 return kvmalloc_node(size, flags, NUMA_NO_NODE);
805}
806static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
807{
808 return kvmalloc_node(size, flags | __GFP_ZERO, node);
809}
810static inline void *kvzalloc(size_t size, gfp_t flags)
811{
812 return kvmalloc(size, flags | __GFP_ZERO);
813}
814
815static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
816{
817 size_t bytes;
818
819 if (unlikely(check_mul_overflow(n, size, &bytes)))
820 return NULL;
821
822 return kvmalloc(bytes, flags);
823}
824
825static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
826{
827 return kvmalloc_array(n, size, flags | __GFP_ZERO);
828}
829
830extern void kvfree(const void *addr);
831extern void kvfree_sensitive(const void *addr, size_t len);
832
833static inline int head_compound_mapcount(struct page *head)
834{
835 return atomic_read(compound_mapcount_ptr(head)) + 1;
836}
837
838/*
839 * Mapcount of compound page as a whole, does not include mapped sub-pages.
840 *
841 * Must be called only for compound pages or any their tail sub-pages.
842 */
843static inline int compound_mapcount(struct page *page)
844{
845 VM_BUG_ON_PAGE(!PageCompound(page), page);
846 page = compound_head(page);
847 return head_compound_mapcount(page);
848}
849
850/*
851 * The atomic page->_mapcount, starts from -1: so that transitions
852 * both from it and to it can be tracked, using atomic_inc_and_test
853 * and atomic_add_negative(-1).
854 */
855static inline void page_mapcount_reset(struct page *page)
856{
857 atomic_set(&(page)->_mapcount, -1);
858}
859
860int __page_mapcount(struct page *page);
861
862/*
863 * Mapcount of 0-order page; when compound sub-page, includes
864 * compound_mapcount().
865 *
866 * Result is undefined for pages which cannot be mapped into userspace.
867 * For example SLAB or special types of pages. See function page_has_type().
868 * They use this place in struct page differently.
869 */
870static inline int page_mapcount(struct page *page)
871{
872 if (unlikely(PageCompound(page)))
873 return __page_mapcount(page);
874 return atomic_read(&page->_mapcount) + 1;
875}
876
877#ifdef CONFIG_TRANSPARENT_HUGEPAGE
878int total_mapcount(struct page *page);
879int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
880#else
881static inline int total_mapcount(struct page *page)
882{
883 return page_mapcount(page);
884}
885static inline int page_trans_huge_mapcount(struct page *page,
886 int *total_mapcount)
887{
888 int mapcount = page_mapcount(page);
889 if (total_mapcount)
890 *total_mapcount = mapcount;
891 return mapcount;
892}
893#endif
894
895static inline struct page *virt_to_head_page(const void *x)
896{
897 struct page *page = virt_to_page(x);
898
899 return compound_head(page);
900}
901
902void __put_page(struct page *page);
903
904void put_pages_list(struct list_head *pages);
905
906void split_page(struct page *page, unsigned int order);
907
908/*
909 * Compound pages have a destructor function. Provide a
910 * prototype for that function and accessor functions.
911 * These are _only_ valid on the head of a compound page.
912 */
913typedef void compound_page_dtor(struct page *);
914
915/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
916enum compound_dtor_id {
917 NULL_COMPOUND_DTOR,
918 COMPOUND_PAGE_DTOR,
919#ifdef CONFIG_HUGETLB_PAGE
920 HUGETLB_PAGE_DTOR,
921#endif
922#ifdef CONFIG_TRANSPARENT_HUGEPAGE
923 TRANSHUGE_PAGE_DTOR,
924#endif
925 NR_COMPOUND_DTORS,
926};
927extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
928
929static inline void set_compound_page_dtor(struct page *page,
930 enum compound_dtor_id compound_dtor)
931{
932 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
933 page[1].compound_dtor = compound_dtor;
934}
935
936static inline void destroy_compound_page(struct page *page)
937{
938 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
939 compound_page_dtors[page[1].compound_dtor](page);
940}
941
942static inline unsigned int compound_order(struct page *page)
943{
944 if (!PageHead(page))
945 return 0;
946 return page[1].compound_order;
947}
948
949static inline bool hpage_pincount_available(struct page *page)
950{
951 /*
952 * Can the page->hpage_pinned_refcount field be used? That field is in
953 * the 3rd page of the compound page, so the smallest (2-page) compound
954 * pages cannot support it.
955 */
956 page = compound_head(page);
957 return PageCompound(page) && compound_order(page) > 1;
958}
959
960static inline int head_compound_pincount(struct page *head)
961{
962 return atomic_read(compound_pincount_ptr(head));
963}
964
965static inline int compound_pincount(struct page *page)
966{
967 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
968 page = compound_head(page);
969 return head_compound_pincount(page);
970}
971
972static inline void set_compound_order(struct page *page, unsigned int order)
973{
974 page[1].compound_order = order;
975 page[1].compound_nr = 1U << order;
976}
977
978/* Returns the number of pages in this potentially compound page. */
979static inline unsigned long compound_nr(struct page *page)
980{
981 if (!PageHead(page))
982 return 1;
983 return page[1].compound_nr;
984}
985
986/* Returns the number of bytes in this potentially compound page. */
987static inline unsigned long page_size(struct page *page)
988{
989 return PAGE_SIZE << compound_order(page);
990}
991
992/* Returns the number of bits needed for the number of bytes in a page */
993static inline unsigned int page_shift(struct page *page)
994{
995 return PAGE_SHIFT + compound_order(page);
996}
997
998void free_compound_page(struct page *page);
999
1000#ifdef CONFIG_MMU
1001/*
1002 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1003 * servicing faults for write access. In the normal case, do always want
1004 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1005 * that do not have writing enabled, when used by access_process_vm.
1006 */
1007static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1008{
1009 if (likely(vma->vm_flags & VM_WRITE))
1010 pte = pte_mkwrite(pte);
1011 return pte;
1012}
1013
1014vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1015void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1016
1017vm_fault_t finish_fault(struct vm_fault *vmf);
1018vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1019#endif
1020
1021/*
1022 * Multiple processes may "see" the same page. E.g. for untouched
1023 * mappings of /dev/null, all processes see the same page full of
1024 * zeroes, and text pages of executables and shared libraries have
1025 * only one copy in memory, at most, normally.
1026 *
1027 * For the non-reserved pages, page_count(page) denotes a reference count.
1028 * page_count() == 0 means the page is free. page->lru is then used for
1029 * freelist management in the buddy allocator.
1030 * page_count() > 0 means the page has been allocated.
1031 *
1032 * Pages are allocated by the slab allocator in order to provide memory
1033 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1034 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1035 * unless a particular usage is carefully commented. (the responsibility of
1036 * freeing the kmalloc memory is the caller's, of course).
1037 *
1038 * A page may be used by anyone else who does a __get_free_page().
1039 * In this case, page_count still tracks the references, and should only
1040 * be used through the normal accessor functions. The top bits of page->flags
1041 * and page->virtual store page management information, but all other fields
1042 * are unused and could be used privately, carefully. The management of this
1043 * page is the responsibility of the one who allocated it, and those who have
1044 * subsequently been given references to it.
1045 *
1046 * The other pages (we may call them "pagecache pages") are completely
1047 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1048 * The following discussion applies only to them.
1049 *
1050 * A pagecache page contains an opaque `private' member, which belongs to the
1051 * page's address_space. Usually, this is the address of a circular list of
1052 * the page's disk buffers. PG_private must be set to tell the VM to call
1053 * into the filesystem to release these pages.
1054 *
1055 * A page may belong to an inode's memory mapping. In this case, page->mapping
1056 * is the pointer to the inode, and page->index is the file offset of the page,
1057 * in units of PAGE_SIZE.
1058 *
1059 * If pagecache pages are not associated with an inode, they are said to be
1060 * anonymous pages. These may become associated with the swapcache, and in that
1061 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1062 *
1063 * In either case (swapcache or inode backed), the pagecache itself holds one
1064 * reference to the page. Setting PG_private should also increment the
1065 * refcount. The each user mapping also has a reference to the page.
1066 *
1067 * The pagecache pages are stored in a per-mapping radix tree, which is
1068 * rooted at mapping->i_pages, and indexed by offset.
1069 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1070 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1071 *
1072 * All pagecache pages may be subject to I/O:
1073 * - inode pages may need to be read from disk,
1074 * - inode pages which have been modified and are MAP_SHARED may need
1075 * to be written back to the inode on disk,
1076 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1077 * modified may need to be swapped out to swap space and (later) to be read
1078 * back into memory.
1079 */
1080
1081/*
1082 * The zone field is never updated after free_area_init_core()
1083 * sets it, so none of the operations on it need to be atomic.
1084 */
1085
1086/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1087#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1088#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
1089#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
1090#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
1091#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1092
1093/*
1094 * Define the bit shifts to access each section. For non-existent
1095 * sections we define the shift as 0; that plus a 0 mask ensures
1096 * the compiler will optimise away reference to them.
1097 */
1098#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1099#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
1100#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
1101#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1102#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1103
1104/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1105#ifdef NODE_NOT_IN_PAGE_FLAGS
1106#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
1107#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
1108 SECTIONS_PGOFF : ZONES_PGOFF)
1109#else
1110#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
1111#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
1112 NODES_PGOFF : ZONES_PGOFF)
1113#endif
1114
1115#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1116
1117#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
1118#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
1119#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
1120#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
1121#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1)
1122#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
1123
1124static inline enum zone_type page_zonenum(const struct page *page)
1125{
1126 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1127 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1128}
1129
1130#ifdef CONFIG_ZONE_DEVICE
1131static inline bool is_zone_device_page(const struct page *page)
1132{
1133 return page_zonenum(page) == ZONE_DEVICE;
1134}
1135extern void memmap_init_zone_device(struct zone *, unsigned long,
1136 unsigned long, struct dev_pagemap *);
1137#else
1138static inline bool is_zone_device_page(const struct page *page)
1139{
1140 return false;
1141}
1142#endif
1143
1144static inline bool is_zone_movable_page(const struct page *page)
1145{
1146 return page_zonenum(page) == ZONE_MOVABLE;
1147}
1148
1149#ifdef CONFIG_DEV_PAGEMAP_OPS
1150void free_devmap_managed_page(struct page *page);
1151DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1152
1153static inline bool page_is_devmap_managed(struct page *page)
1154{
1155 if (!static_branch_unlikely(&devmap_managed_key))
1156 return false;
1157 if (!is_zone_device_page(page))
1158 return false;
1159 switch (page->pgmap->type) {
1160 case MEMORY_DEVICE_PRIVATE:
1161 case MEMORY_DEVICE_FS_DAX:
1162 return true;
1163 default:
1164 break;
1165 }
1166 return false;
1167}
1168
1169void put_devmap_managed_page(struct page *page);
1170
1171#else /* CONFIG_DEV_PAGEMAP_OPS */
1172static inline bool page_is_devmap_managed(struct page *page)
1173{
1174 return false;
1175}
1176
1177static inline void put_devmap_managed_page(struct page *page)
1178{
1179}
1180#endif /* CONFIG_DEV_PAGEMAP_OPS */
1181
1182static inline bool is_device_private_page(const struct page *page)
1183{
1184 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1185 IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1186 is_zone_device_page(page) &&
1187 page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1188}
1189
1190static inline bool is_pci_p2pdma_page(const struct page *page)
1191{
1192 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1193 IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1194 is_zone_device_page(page) &&
1195 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1196}
1197
1198/* 127: arbitrary random number, small enough to assemble well */
1199#define page_ref_zero_or_close_to_overflow(page) \
1200 ((unsigned int) page_ref_count(page) + 127u <= 127u)
1201
1202static inline void get_page(struct page *page)
1203{
1204 page = compound_head(page);
1205 /*
1206 * Getting a normal page or the head of a compound page
1207 * requires to already have an elevated page->_refcount.
1208 */
1209 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1210 page_ref_inc(page);
1211}
1212
1213bool __must_check try_grab_page(struct page *page, unsigned int flags);
1214__maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1215 unsigned int flags);
1216
1217
1218static inline __must_check bool try_get_page(struct page *page)
1219{
1220 page = compound_head(page);
1221 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1222 return false;
1223 page_ref_inc(page);
1224 return true;
1225}
1226
1227static inline void put_page(struct page *page)
1228{
1229 page = compound_head(page);
1230
1231 /*
1232 * For devmap managed pages we need to catch refcount transition from
1233 * 2 to 1, when refcount reach one it means the page is free and we
1234 * need to inform the device driver through callback. See
1235 * include/linux/memremap.h and HMM for details.
1236 */
1237 if (page_is_devmap_managed(page)) {
1238 put_devmap_managed_page(page);
1239 return;
1240 }
1241
1242 if (put_page_testzero(page))
1243 __put_page(page);
1244}
1245
1246/*
1247 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1248 * the page's refcount so that two separate items are tracked: the original page
1249 * reference count, and also a new count of how many pin_user_pages() calls were
1250 * made against the page. ("gup-pinned" is another term for the latter).
1251 *
1252 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1253 * distinct from normal pages. As such, the unpin_user_page() call (and its
1254 * variants) must be used in order to release gup-pinned pages.
1255 *
1256 * Choice of value:
1257 *
1258 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1259 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1260 * simpler, due to the fact that adding an even power of two to the page
1261 * refcount has the effect of using only the upper N bits, for the code that
1262 * counts up using the bias value. This means that the lower bits are left for
1263 * the exclusive use of the original code that increments and decrements by one
1264 * (or at least, by much smaller values than the bias value).
1265 *
1266 * Of course, once the lower bits overflow into the upper bits (and this is
1267 * OK, because subtraction recovers the original values), then visual inspection
1268 * no longer suffices to directly view the separate counts. However, for normal
1269 * applications that don't have huge page reference counts, this won't be an
1270 * issue.
1271 *
1272 * Locking: the lockless algorithm described in page_cache_get_speculative()
1273 * and page_cache_gup_pin_speculative() provides safe operation for
1274 * get_user_pages and page_mkclean and other calls that race to set up page
1275 * table entries.
1276 */
1277#define GUP_PIN_COUNTING_BIAS (1U << 10)
1278
1279void unpin_user_page(struct page *page);
1280void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1281 bool make_dirty);
1282void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1283 bool make_dirty);
1284void unpin_user_pages(struct page **pages, unsigned long npages);
1285
1286/**
1287 * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1288 * @page: The page.
1289 *
1290 * This function checks if a page has been pinned via a call to
1291 * a function in the pin_user_pages() family.
1292 *
1293 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1294 * because it means "definitely not pinned for DMA", but true means "probably
1295 * pinned for DMA, but possibly a false positive due to having at least
1296 * GUP_PIN_COUNTING_BIAS worth of normal page references".
1297 *
1298 * False positives are OK, because: a) it's unlikely for a page to get that many
1299 * refcounts, and b) all the callers of this routine are expected to be able to
1300 * deal gracefully with a false positive.
1301 *
1302 * For huge pages, the result will be exactly correct. That's because we have
1303 * more tracking data available: the 3rd struct page in the compound page is
1304 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1305 * scheme).
1306 *
1307 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1308 *
1309 * Return: True, if it is likely that the page has been "dma-pinned".
1310 * False, if the page is definitely not dma-pinned.
1311 */
1312static inline bool page_maybe_dma_pinned(struct page *page)
1313{
1314 if (hpage_pincount_available(page))
1315 return compound_pincount(page) > 0;
1316
1317 /*
1318 * page_ref_count() is signed. If that refcount overflows, then
1319 * page_ref_count() returns a negative value, and callers will avoid
1320 * further incrementing the refcount.
1321 *
1322 * Here, for that overflow case, use the signed bit to count a little
1323 * bit higher via unsigned math, and thus still get an accurate result.
1324 */
1325 return ((unsigned int)page_ref_count(compound_head(page))) >=
1326 GUP_PIN_COUNTING_BIAS;
1327}
1328
1329static inline bool is_cow_mapping(vm_flags_t flags)
1330{
1331 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1332}
1333
1334/*
1335 * This should most likely only be called during fork() to see whether we
1336 * should break the cow immediately for a page on the src mm.
1337 */
1338static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1339 struct page *page)
1340{
1341 if (!is_cow_mapping(vma->vm_flags))
1342 return false;
1343
1344 if (!atomic_read(&vma->vm_mm->has_pinned))
1345 return false;
1346
1347 return page_maybe_dma_pinned(page);
1348}
1349
1350#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1351#define SECTION_IN_PAGE_FLAGS
1352#endif
1353
1354/*
1355 * The identification function is mainly used by the buddy allocator for
1356 * determining if two pages could be buddies. We are not really identifying
1357 * the zone since we could be using the section number id if we do not have
1358 * node id available in page flags.
1359 * We only guarantee that it will return the same value for two combinable
1360 * pages in a zone.
1361 */
1362static inline int page_zone_id(struct page *page)
1363{
1364 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1365}
1366
1367#ifdef NODE_NOT_IN_PAGE_FLAGS
1368extern int page_to_nid(const struct page *page);
1369#else
1370static inline int page_to_nid(const struct page *page)
1371{
1372 struct page *p = (struct page *)page;
1373
1374 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1375}
1376#endif
1377
1378#ifdef CONFIG_NUMA_BALANCING
1379static inline int cpu_pid_to_cpupid(int cpu, int pid)
1380{
1381 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1382}
1383
1384static inline int cpupid_to_pid(int cpupid)
1385{
1386 return cpupid & LAST__PID_MASK;
1387}
1388
1389static inline int cpupid_to_cpu(int cpupid)
1390{
1391 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1392}
1393
1394static inline int cpupid_to_nid(int cpupid)
1395{
1396 return cpu_to_node(cpupid_to_cpu(cpupid));
1397}
1398
1399static inline bool cpupid_pid_unset(int cpupid)
1400{
1401 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1402}
1403
1404static inline bool cpupid_cpu_unset(int cpupid)
1405{
1406 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1407}
1408
1409static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1410{
1411 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1412}
1413
1414#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1415#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1416static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1417{
1418 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1419}
1420
1421static inline int page_cpupid_last(struct page *page)
1422{
1423 return page->_last_cpupid;
1424}
1425static inline void page_cpupid_reset_last(struct page *page)
1426{
1427 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1428}
1429#else
1430static inline int page_cpupid_last(struct page *page)
1431{
1432 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1433}
1434
1435extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1436
1437static inline void page_cpupid_reset_last(struct page *page)
1438{
1439 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1440}
1441#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1442#else /* !CONFIG_NUMA_BALANCING */
1443static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1444{
1445 return page_to_nid(page); /* XXX */
1446}
1447
1448static inline int page_cpupid_last(struct page *page)
1449{
1450 return page_to_nid(page); /* XXX */
1451}
1452
1453static inline int cpupid_to_nid(int cpupid)
1454{
1455 return -1;
1456}
1457
1458static inline int cpupid_to_pid(int cpupid)
1459{
1460 return -1;
1461}
1462
1463static inline int cpupid_to_cpu(int cpupid)
1464{
1465 return -1;
1466}
1467
1468static inline int cpu_pid_to_cpupid(int nid, int pid)
1469{
1470 return -1;
1471}
1472
1473static inline bool cpupid_pid_unset(int cpupid)
1474{
1475 return true;
1476}
1477
1478static inline void page_cpupid_reset_last(struct page *page)
1479{
1480}
1481
1482static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1483{
1484 return false;
1485}
1486#endif /* CONFIG_NUMA_BALANCING */
1487
1488#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1489
1490/*
1491 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1492 * setting tags for all pages to native kernel tag value 0xff, as the default
1493 * value 0x00 maps to 0xff.
1494 */
1495
1496static inline u8 page_kasan_tag(const struct page *page)
1497{
1498 u8 tag = 0xff;
1499
1500 if (kasan_enabled()) {
1501 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1502 tag ^= 0xff;
1503 }
1504
1505 return tag;
1506}
1507
1508static inline void page_kasan_tag_set(struct page *page, u8 tag)
1509{
1510 if (kasan_enabled()) {
1511 tag ^= 0xff;
1512 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1513 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1514 }
1515}
1516
1517static inline void page_kasan_tag_reset(struct page *page)
1518{
1519 if (kasan_enabled())
1520 page_kasan_tag_set(page, 0xff);
1521}
1522
1523#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1524
1525static inline u8 page_kasan_tag(const struct page *page)
1526{
1527 return 0xff;
1528}
1529
1530static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1531static inline void page_kasan_tag_reset(struct page *page) { }
1532
1533#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1534
1535static inline struct zone *page_zone(const struct page *page)
1536{
1537 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1538}
1539
1540static inline pg_data_t *page_pgdat(const struct page *page)
1541{
1542 return NODE_DATA(page_to_nid(page));
1543}
1544
1545#ifdef SECTION_IN_PAGE_FLAGS
1546static inline void set_page_section(struct page *page, unsigned long section)
1547{
1548 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1549 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1550}
1551
1552static inline unsigned long page_to_section(const struct page *page)
1553{
1554 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1555}
1556#endif
1557
1558/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1559#ifdef CONFIG_MIGRATION
1560static inline bool is_pinnable_page(struct page *page)
1561{
1562 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1563 is_zero_pfn(page_to_pfn(page));
1564}
1565#else
1566static inline bool is_pinnable_page(struct page *page)
1567{
1568 return true;
1569}
1570#endif
1571
1572static inline void set_page_zone(struct page *page, enum zone_type zone)
1573{
1574 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1575 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1576}
1577
1578static inline void set_page_node(struct page *page, unsigned long node)
1579{
1580 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1581 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1582}
1583
1584static inline void set_page_links(struct page *page, enum zone_type zone,
1585 unsigned long node, unsigned long pfn)
1586{
1587 set_page_zone(page, zone);
1588 set_page_node(page, node);
1589#ifdef SECTION_IN_PAGE_FLAGS
1590 set_page_section(page, pfn_to_section_nr(pfn));
1591#endif
1592}
1593
1594/*
1595 * Some inline functions in vmstat.h depend on page_zone()
1596 */
1597#include <linux/vmstat.h>
1598
1599static __always_inline void *lowmem_page_address(const struct page *page)
1600{
1601 return page_to_virt(page);
1602}
1603
1604#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1605#define HASHED_PAGE_VIRTUAL
1606#endif
1607
1608#if defined(WANT_PAGE_VIRTUAL)
1609static inline void *page_address(const struct page *page)
1610{
1611 return page->virtual;
1612}
1613static inline void set_page_address(struct page *page, void *address)
1614{
1615 page->virtual = address;
1616}
1617#define page_address_init() do { } while(0)
1618#endif
1619
1620#if defined(HASHED_PAGE_VIRTUAL)
1621void *page_address(const struct page *page);
1622void set_page_address(struct page *page, void *virtual);
1623void page_address_init(void);
1624#endif
1625
1626#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1627#define page_address(page) lowmem_page_address(page)
1628#define set_page_address(page, address) do { } while(0)
1629#define page_address_init() do { } while(0)
1630#endif
1631
1632extern void *page_rmapping(struct page *page);
1633extern struct anon_vma *page_anon_vma(struct page *page);
1634extern struct address_space *page_mapping(struct page *page);
1635
1636extern struct address_space *__page_file_mapping(struct page *);
1637
1638static inline
1639struct address_space *page_file_mapping(struct page *page)
1640{
1641 if (unlikely(PageSwapCache(page)))
1642 return __page_file_mapping(page);
1643
1644 return page->mapping;
1645}
1646
1647extern pgoff_t __page_file_index(struct page *page);
1648
1649/*
1650 * Return the pagecache index of the passed page. Regular pagecache pages
1651 * use ->index whereas swapcache pages use swp_offset(->private)
1652 */
1653static inline pgoff_t page_index(struct page *page)
1654{
1655 if (unlikely(PageSwapCache(page)))
1656 return __page_file_index(page);
1657 return page->index;
1658}
1659
1660bool page_mapped(struct page *page);
1661struct address_space *page_mapping(struct page *page);
1662
1663/*
1664 * Return true only if the page has been allocated with
1665 * ALLOC_NO_WATERMARKS and the low watermark was not
1666 * met implying that the system is under some pressure.
1667 */
1668static inline bool page_is_pfmemalloc(const struct page *page)
1669{
1670 /*
1671 * Page index cannot be this large so this must be
1672 * a pfmemalloc page.
1673 */
1674 return page->index == -1UL;
1675}
1676
1677/*
1678 * Only to be called by the page allocator on a freshly allocated
1679 * page.
1680 */
1681static inline void set_page_pfmemalloc(struct page *page)
1682{
1683 page->index = -1UL;
1684}
1685
1686static inline void clear_page_pfmemalloc(struct page *page)
1687{
1688 page->index = 0;
1689}
1690
1691/*
1692 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1693 */
1694extern void pagefault_out_of_memory(void);
1695
1696#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1697#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1698
1699/*
1700 * Flags passed to show_mem() and show_free_areas() to suppress output in
1701 * various contexts.
1702 */
1703#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1704
1705extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1706
1707#ifdef CONFIG_MMU
1708extern bool can_do_mlock(void);
1709#else
1710static inline bool can_do_mlock(void) { return false; }
1711#endif
1712extern int user_shm_lock(size_t, struct user_struct *);
1713extern void user_shm_unlock(size_t, struct user_struct *);
1714
1715/*
1716 * Parameter block passed down to zap_pte_range in exceptional cases.
1717 */
1718struct zap_details {
1719 struct address_space *check_mapping; /* Check page->mapping if set */
1720 pgoff_t first_index; /* Lowest page->index to unmap */
1721 pgoff_t last_index; /* Highest page->index to unmap */
1722 struct page *single_page; /* Locked page to be unmapped */
1723};
1724
1725struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1726 pte_t pte);
1727struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1728 pmd_t pmd);
1729
1730void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1731 unsigned long size);
1732void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1733 unsigned long size);
1734void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1735 unsigned long start, unsigned long end);
1736
1737struct mmu_notifier_range;
1738
1739void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1740 unsigned long end, unsigned long floor, unsigned long ceiling);
1741int
1742copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1743int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1744 struct mmu_notifier_range *range, pte_t **ptepp,
1745 pmd_t **pmdpp, spinlock_t **ptlp);
1746int follow_pte(struct mm_struct *mm, unsigned long address,
1747 pte_t **ptepp, spinlock_t **ptlp);
1748int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1749 unsigned long *pfn);
1750int follow_phys(struct vm_area_struct *vma, unsigned long address,
1751 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1752int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1753 void *buf, int len, int write);
1754
1755extern void truncate_pagecache(struct inode *inode, loff_t new);
1756extern void truncate_setsize(struct inode *inode, loff_t newsize);
1757void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1758void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1759int truncate_inode_page(struct address_space *mapping, struct page *page);
1760int generic_error_remove_page(struct address_space *mapping, struct page *page);
1761int invalidate_inode_page(struct page *page);
1762
1763#ifdef CONFIG_MMU
1764extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1765 unsigned long address, unsigned int flags,
1766 struct pt_regs *regs);
1767extern int fixup_user_fault(struct mm_struct *mm,
1768 unsigned long address, unsigned int fault_flags,
1769 bool *unlocked);
1770void unmap_mapping_page(struct page *page);
1771void unmap_mapping_pages(struct address_space *mapping,
1772 pgoff_t start, pgoff_t nr, bool even_cows);
1773void unmap_mapping_range(struct address_space *mapping,
1774 loff_t const holebegin, loff_t const holelen, int even_cows);
1775#else
1776static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1777 unsigned long address, unsigned int flags,
1778 struct pt_regs *regs)
1779{
1780 /* should never happen if there's no MMU */
1781 BUG();
1782 return VM_FAULT_SIGBUS;
1783}
1784static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1785 unsigned int fault_flags, bool *unlocked)
1786{
1787 /* should never happen if there's no MMU */
1788 BUG();
1789 return -EFAULT;
1790}
1791static inline void unmap_mapping_page(struct page *page) { }
1792static inline void unmap_mapping_pages(struct address_space *mapping,
1793 pgoff_t start, pgoff_t nr, bool even_cows) { }
1794static inline void unmap_mapping_range(struct address_space *mapping,
1795 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1796#endif
1797
1798static inline void unmap_shared_mapping_range(struct address_space *mapping,
1799 loff_t const holebegin, loff_t const holelen)
1800{
1801 unmap_mapping_range(mapping, holebegin, holelen, 0);
1802}
1803
1804extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1805 void *buf, int len, unsigned int gup_flags);
1806extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1807 void *buf, int len, unsigned int gup_flags);
1808extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1809 void *buf, int len, unsigned int gup_flags);
1810
1811long get_user_pages_remote(struct mm_struct *mm,
1812 unsigned long start, unsigned long nr_pages,
1813 unsigned int gup_flags, struct page **pages,
1814 struct vm_area_struct **vmas, int *locked);
1815long pin_user_pages_remote(struct mm_struct *mm,
1816 unsigned long start, unsigned long nr_pages,
1817 unsigned int gup_flags, struct page **pages,
1818 struct vm_area_struct **vmas, int *locked);
1819long get_user_pages(unsigned long start, unsigned long nr_pages,
1820 unsigned int gup_flags, struct page **pages,
1821 struct vm_area_struct **vmas);
1822long pin_user_pages(unsigned long start, unsigned long nr_pages,
1823 unsigned int gup_flags, struct page **pages,
1824 struct vm_area_struct **vmas);
1825long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1826 unsigned int gup_flags, struct page **pages, int *locked);
1827long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1828 unsigned int gup_flags, struct page **pages, int *locked);
1829long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1830 struct page **pages, unsigned int gup_flags);
1831long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1832 struct page **pages, unsigned int gup_flags);
1833
1834int get_user_pages_fast(unsigned long start, int nr_pages,
1835 unsigned int gup_flags, struct page **pages);
1836int pin_user_pages_fast(unsigned long start, int nr_pages,
1837 unsigned int gup_flags, struct page **pages);
1838
1839int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1840int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1841 struct task_struct *task, bool bypass_rlim);
1842
1843struct kvec;
1844int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1845 struct page **pages);
1846int get_kernel_page(unsigned long start, int write, struct page **pages);
1847struct page *get_dump_page(unsigned long addr);
1848
1849extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1850extern void do_invalidatepage(struct page *page, unsigned int offset,
1851 unsigned int length);
1852
1853void __set_page_dirty(struct page *, struct address_space *, int warn);
1854int __set_page_dirty_nobuffers(struct page *page);
1855int __set_page_dirty_no_writeback(struct page *page);
1856int redirty_page_for_writepage(struct writeback_control *wbc,
1857 struct page *page);
1858void account_page_dirtied(struct page *page, struct address_space *mapping);
1859void account_page_cleaned(struct page *page, struct address_space *mapping,
1860 struct bdi_writeback *wb);
1861int set_page_dirty(struct page *page);
1862int set_page_dirty_lock(struct page *page);
1863void __cancel_dirty_page(struct page *page);
1864static inline void cancel_dirty_page(struct page *page)
1865{
1866 /* Avoid atomic ops, locking, etc. when not actually needed. */
1867 if (PageDirty(page))
1868 __cancel_dirty_page(page);
1869}
1870int clear_page_dirty_for_io(struct page *page);
1871
1872int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1873
1874extern unsigned long move_page_tables(struct vm_area_struct *vma,
1875 unsigned long old_addr, struct vm_area_struct *new_vma,
1876 unsigned long new_addr, unsigned long len,
1877 bool need_rmap_locks);
1878
1879/*
1880 * Flags used by change_protection(). For now we make it a bitmap so
1881 * that we can pass in multiple flags just like parameters. However
1882 * for now all the callers are only use one of the flags at the same
1883 * time.
1884 */
1885/* Whether we should allow dirty bit accounting */
1886#define MM_CP_DIRTY_ACCT (1UL << 0)
1887/* Whether this protection change is for NUMA hints */
1888#define MM_CP_PROT_NUMA (1UL << 1)
1889/* Whether this change is for write protecting */
1890#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
1891#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
1892#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
1893 MM_CP_UFFD_WP_RESOLVE)
1894
1895extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1896 unsigned long end, pgprot_t newprot,
1897 unsigned long cp_flags);
1898extern int mprotect_fixup(struct vm_area_struct *vma,
1899 struct vm_area_struct **pprev, unsigned long start,
1900 unsigned long end, unsigned long newflags);
1901
1902/*
1903 * doesn't attempt to fault and will return short.
1904 */
1905int get_user_pages_fast_only(unsigned long start, int nr_pages,
1906 unsigned int gup_flags, struct page **pages);
1907int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1908 unsigned int gup_flags, struct page **pages);
1909
1910static inline bool get_user_page_fast_only(unsigned long addr,
1911 unsigned int gup_flags, struct page **pagep)
1912{
1913 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1914}
1915/*
1916 * per-process(per-mm_struct) statistics.
1917 */
1918static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1919{
1920 long val = atomic_long_read(&mm->rss_stat.count[member]);
1921
1922#ifdef SPLIT_RSS_COUNTING
1923 /*
1924 * counter is updated in asynchronous manner and may go to minus.
1925 * But it's never be expected number for users.
1926 */
1927 if (val < 0)
1928 val = 0;
1929#endif
1930 return (unsigned long)val;
1931}
1932
1933void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1934
1935static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1936{
1937 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1938
1939 mm_trace_rss_stat(mm, member, count);
1940}
1941
1942static inline void inc_mm_counter(struct mm_struct *mm, int member)
1943{
1944 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1945
1946 mm_trace_rss_stat(mm, member, count);
1947}
1948
1949static inline void dec_mm_counter(struct mm_struct *mm, int member)
1950{
1951 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1952
1953 mm_trace_rss_stat(mm, member, count);
1954}
1955
1956/* Optimized variant when page is already known not to be PageAnon */
1957static inline int mm_counter_file(struct page *page)
1958{
1959 if (PageSwapBacked(page))
1960 return MM_SHMEMPAGES;
1961 return MM_FILEPAGES;
1962}
1963
1964static inline int mm_counter(struct page *page)
1965{
1966 if (PageAnon(page))
1967 return MM_ANONPAGES;
1968 return mm_counter_file(page);
1969}
1970
1971static inline unsigned long get_mm_rss(struct mm_struct *mm)
1972{
1973 return get_mm_counter(mm, MM_FILEPAGES) +
1974 get_mm_counter(mm, MM_ANONPAGES) +
1975 get_mm_counter(mm, MM_SHMEMPAGES);
1976}
1977
1978static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1979{
1980 return max(mm->hiwater_rss, get_mm_rss(mm));
1981}
1982
1983static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1984{
1985 return max(mm->hiwater_vm, mm->total_vm);
1986}
1987
1988static inline void update_hiwater_rss(struct mm_struct *mm)
1989{
1990 unsigned long _rss = get_mm_rss(mm);
1991
1992 if ((mm)->hiwater_rss < _rss)
1993 (mm)->hiwater_rss = _rss;
1994}
1995
1996static inline void update_hiwater_vm(struct mm_struct *mm)
1997{
1998 if (mm->hiwater_vm < mm->total_vm)
1999 mm->hiwater_vm = mm->total_vm;
2000}
2001
2002static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2003{
2004 mm->hiwater_rss = get_mm_rss(mm);
2005}
2006
2007static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2008 struct mm_struct *mm)
2009{
2010 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2011
2012 if (*maxrss < hiwater_rss)
2013 *maxrss = hiwater_rss;
2014}
2015
2016#if defined(SPLIT_RSS_COUNTING)
2017void sync_mm_rss(struct mm_struct *mm);
2018#else
2019static inline void sync_mm_rss(struct mm_struct *mm)
2020{
2021}
2022#endif
2023
2024#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2025static inline int pte_special(pte_t pte)
2026{
2027 return 0;
2028}
2029
2030static inline pte_t pte_mkspecial(pte_t pte)
2031{
2032 return pte;
2033}
2034#endif
2035
2036#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2037static inline int pte_devmap(pte_t pte)
2038{
2039 return 0;
2040}
2041#endif
2042
2043int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2044
2045extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2046 spinlock_t **ptl);
2047static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2048 spinlock_t **ptl)
2049{
2050 pte_t *ptep;
2051 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2052 return ptep;
2053}
2054
2055#ifdef __PAGETABLE_P4D_FOLDED
2056static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2057 unsigned long address)
2058{
2059 return 0;
2060}
2061#else
2062int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2063#endif
2064
2065#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2066static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2067 unsigned long address)
2068{
2069 return 0;
2070}
2071static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2072static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2073
2074#else
2075int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2076
2077static inline void mm_inc_nr_puds(struct mm_struct *mm)
2078{
2079 if (mm_pud_folded(mm))
2080 return;
2081 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2082}
2083
2084static inline void mm_dec_nr_puds(struct mm_struct *mm)
2085{
2086 if (mm_pud_folded(mm))
2087 return;
2088 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2089}
2090#endif
2091
2092#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2093static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2094 unsigned long address)
2095{
2096 return 0;
2097}
2098
2099static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2100static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2101
2102#else
2103int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2104
2105static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2106{
2107 if (mm_pmd_folded(mm))
2108 return;
2109 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2110}
2111
2112static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2113{
2114 if (mm_pmd_folded(mm))
2115 return;
2116 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2117}
2118#endif
2119
2120#ifdef CONFIG_MMU
2121static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2122{
2123 atomic_long_set(&mm->pgtables_bytes, 0);
2124}
2125
2126static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2127{
2128 return atomic_long_read(&mm->pgtables_bytes);
2129}
2130
2131static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2132{
2133 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2134}
2135
2136static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2137{
2138 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2139}
2140#else
2141
2142static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2143static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2144{
2145 return 0;
2146}
2147
2148static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2149static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2150#endif
2151
2152int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2153int __pte_alloc_kernel(pmd_t *pmd);
2154
2155#if defined(CONFIG_MMU)
2156
2157static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2158 unsigned long address)
2159{
2160 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2161 NULL : p4d_offset(pgd, address);
2162}
2163
2164static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2165 unsigned long address)
2166{
2167 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2168 NULL : pud_offset(p4d, address);
2169}
2170
2171static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2172{
2173 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2174 NULL: pmd_offset(pud, address);
2175}
2176#endif /* CONFIG_MMU */
2177
2178#if USE_SPLIT_PTE_PTLOCKS
2179#if ALLOC_SPLIT_PTLOCKS
2180void __init ptlock_cache_init(void);
2181extern bool ptlock_alloc(struct page *page);
2182extern void ptlock_free(struct page *page);
2183
2184static inline spinlock_t *ptlock_ptr(struct page *page)
2185{
2186 return page->ptl;
2187}
2188#else /* ALLOC_SPLIT_PTLOCKS */
2189static inline void ptlock_cache_init(void)
2190{
2191}
2192
2193static inline bool ptlock_alloc(struct page *page)
2194{
2195 return true;
2196}
2197
2198static inline void ptlock_free(struct page *page)
2199{
2200}
2201
2202static inline spinlock_t *ptlock_ptr(struct page *page)
2203{
2204 return &page->ptl;
2205}
2206#endif /* ALLOC_SPLIT_PTLOCKS */
2207
2208static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2209{
2210 return ptlock_ptr(pmd_page(*pmd));
2211}
2212
2213static inline bool ptlock_init(struct page *page)
2214{
2215 /*
2216 * prep_new_page() initialize page->private (and therefore page->ptl)
2217 * with 0. Make sure nobody took it in use in between.
2218 *
2219 * It can happen if arch try to use slab for page table allocation:
2220 * slab code uses page->slab_cache, which share storage with page->ptl.
2221 */
2222 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2223 if (!ptlock_alloc(page))
2224 return false;
2225 spin_lock_init(ptlock_ptr(page));
2226 return true;
2227}
2228
2229#else /* !USE_SPLIT_PTE_PTLOCKS */
2230/*
2231 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2232 */
2233static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2234{
2235 return &mm->page_table_lock;
2236}
2237static inline void ptlock_cache_init(void) {}
2238static inline bool ptlock_init(struct page *page) { return true; }
2239static inline void ptlock_free(struct page *page) {}
2240#endif /* USE_SPLIT_PTE_PTLOCKS */
2241
2242static inline void pgtable_init(void)
2243{
2244 ptlock_cache_init();
2245 pgtable_cache_init();
2246}
2247
2248static inline bool pgtable_pte_page_ctor(struct page *page)
2249{
2250 if (!ptlock_init(page))
2251 return false;
2252 __SetPageTable(page);
2253 inc_lruvec_page_state(page, NR_PAGETABLE);
2254 return true;
2255}
2256
2257static inline void pgtable_pte_page_dtor(struct page *page)
2258{
2259 ptlock_free(page);
2260 __ClearPageTable(page);
2261 dec_lruvec_page_state(page, NR_PAGETABLE);
2262}
2263
2264#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2265({ \
2266 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2267 pte_t *__pte = pte_offset_map(pmd, address); \
2268 *(ptlp) = __ptl; \
2269 spin_lock(__ptl); \
2270 __pte; \
2271})
2272
2273#define pte_unmap_unlock(pte, ptl) do { \
2274 spin_unlock(ptl); \
2275 pte_unmap(pte); \
2276} while (0)
2277
2278#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2279
2280#define pte_alloc_map(mm, pmd, address) \
2281 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2282
2283#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2284 (pte_alloc(mm, pmd) ? \
2285 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2286
2287#define pte_alloc_kernel(pmd, address) \
2288 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2289 NULL: pte_offset_kernel(pmd, address))
2290
2291#if USE_SPLIT_PMD_PTLOCKS
2292
2293static struct page *pmd_to_page(pmd_t *pmd)
2294{
2295 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2296 return virt_to_page((void *)((unsigned long) pmd & mask));
2297}
2298
2299static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2300{
2301 return ptlock_ptr(pmd_to_page(pmd));
2302}
2303
2304static inline bool pmd_ptlock_init(struct page *page)
2305{
2306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2307 page->pmd_huge_pte = NULL;
2308#endif
2309 return ptlock_init(page);
2310}
2311
2312static inline void pmd_ptlock_free(struct page *page)
2313{
2314#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2315 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2316#endif
2317 ptlock_free(page);
2318}
2319
2320#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2321
2322#else
2323
2324static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2325{
2326 return &mm->page_table_lock;
2327}
2328
2329static inline bool pmd_ptlock_init(struct page *page) { return true; }
2330static inline void pmd_ptlock_free(struct page *page) {}
2331
2332#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2333
2334#endif
2335
2336static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2337{
2338 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2339 spin_lock(ptl);
2340 return ptl;
2341}
2342
2343static inline bool pgtable_pmd_page_ctor(struct page *page)
2344{
2345 if (!pmd_ptlock_init(page))
2346 return false;
2347 __SetPageTable(page);
2348 inc_lruvec_page_state(page, NR_PAGETABLE);
2349 return true;
2350}
2351
2352static inline void pgtable_pmd_page_dtor(struct page *page)
2353{
2354 pmd_ptlock_free(page);
2355 __ClearPageTable(page);
2356 dec_lruvec_page_state(page, NR_PAGETABLE);
2357}
2358
2359/*
2360 * No scalability reason to split PUD locks yet, but follow the same pattern
2361 * as the PMD locks to make it easier if we decide to. The VM should not be
2362 * considered ready to switch to split PUD locks yet; there may be places
2363 * which need to be converted from page_table_lock.
2364 */
2365static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2366{
2367 return &mm->page_table_lock;
2368}
2369
2370static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2371{
2372 spinlock_t *ptl = pud_lockptr(mm, pud);
2373
2374 spin_lock(ptl);
2375 return ptl;
2376}
2377
2378extern void __init pagecache_init(void);
2379extern void __init free_area_init_memoryless_node(int nid);
2380extern void free_initmem(void);
2381
2382/*
2383 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2384 * into the buddy system. The freed pages will be poisoned with pattern
2385 * "poison" if it's within range [0, UCHAR_MAX].
2386 * Return pages freed into the buddy system.
2387 */
2388extern unsigned long free_reserved_area(void *start, void *end,
2389 int poison, const char *s);
2390
2391extern void adjust_managed_page_count(struct page *page, long count);
2392extern void mem_init_print_info(void);
2393
2394extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2395
2396/* Free the reserved page into the buddy system, so it gets managed. */
2397static inline void free_reserved_page(struct page *page)
2398{
2399 ClearPageReserved(page);
2400 init_page_count(page);
2401 __free_page(page);
2402 adjust_managed_page_count(page, 1);
2403}
2404#define free_highmem_page(page) free_reserved_page(page)
2405
2406static inline void mark_page_reserved(struct page *page)
2407{
2408 SetPageReserved(page);
2409 adjust_managed_page_count(page, -1);
2410}
2411
2412/*
2413 * Default method to free all the __init memory into the buddy system.
2414 * The freed pages will be poisoned with pattern "poison" if it's within
2415 * range [0, UCHAR_MAX].
2416 * Return pages freed into the buddy system.
2417 */
2418static inline unsigned long free_initmem_default(int poison)
2419{
2420 extern char __init_begin[], __init_end[];
2421
2422 return free_reserved_area(&__init_begin, &__init_end,
2423 poison, "unused kernel");
2424}
2425
2426static inline unsigned long get_num_physpages(void)
2427{
2428 int nid;
2429 unsigned long phys_pages = 0;
2430
2431 for_each_online_node(nid)
2432 phys_pages += node_present_pages(nid);
2433
2434 return phys_pages;
2435}
2436
2437/*
2438 * Using memblock node mappings, an architecture may initialise its
2439 * zones, allocate the backing mem_map and account for memory holes in an
2440 * architecture independent manner.
2441 *
2442 * An architecture is expected to register range of page frames backed by
2443 * physical memory with memblock_add[_node]() before calling
2444 * free_area_init() passing in the PFN each zone ends at. At a basic
2445 * usage, an architecture is expected to do something like
2446 *
2447 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2448 * max_highmem_pfn};
2449 * for_each_valid_physical_page_range()
2450 * memblock_add_node(base, size, nid)
2451 * free_area_init(max_zone_pfns);
2452 */
2453void free_area_init(unsigned long *max_zone_pfn);
2454unsigned long node_map_pfn_alignment(void);
2455unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2456 unsigned long end_pfn);
2457extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2458 unsigned long end_pfn);
2459extern void get_pfn_range_for_nid(unsigned int nid,
2460 unsigned long *start_pfn, unsigned long *end_pfn);
2461extern unsigned long find_min_pfn_with_active_regions(void);
2462
2463#ifndef CONFIG_NEED_MULTIPLE_NODES
2464static inline int early_pfn_to_nid(unsigned long pfn)
2465{
2466 return 0;
2467}
2468#else
2469/* please see mm/page_alloc.c */
2470extern int __meminit early_pfn_to_nid(unsigned long pfn);
2471#endif
2472
2473extern void set_dma_reserve(unsigned long new_dma_reserve);
2474extern void memmap_init_range(unsigned long, int, unsigned long,
2475 unsigned long, unsigned long, enum meminit_context,
2476 struct vmem_altmap *, int migratetype);
2477extern void memmap_init_zone(struct zone *zone);
2478extern void setup_per_zone_wmarks(void);
2479extern int __meminit init_per_zone_wmark_min(void);
2480extern void mem_init(void);
2481extern void __init mmap_init(void);
2482extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2483extern long si_mem_available(void);
2484extern void si_meminfo(struct sysinfo * val);
2485extern void si_meminfo_node(struct sysinfo *val, int nid);
2486#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2487extern unsigned long arch_reserved_kernel_pages(void);
2488#endif
2489
2490extern __printf(3, 4)
2491void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2492
2493extern void setup_per_cpu_pageset(void);
2494
2495/* page_alloc.c */
2496extern int min_free_kbytes;
2497extern int watermark_boost_factor;
2498extern int watermark_scale_factor;
2499extern bool arch_has_descending_max_zone_pfns(void);
2500
2501/* nommu.c */
2502extern atomic_long_t mmap_pages_allocated;
2503extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2504
2505/* interval_tree.c */
2506void vma_interval_tree_insert(struct vm_area_struct *node,
2507 struct rb_root_cached *root);
2508void vma_interval_tree_insert_after(struct vm_area_struct *node,
2509 struct vm_area_struct *prev,
2510 struct rb_root_cached *root);
2511void vma_interval_tree_remove(struct vm_area_struct *node,
2512 struct rb_root_cached *root);
2513struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2514 unsigned long start, unsigned long last);
2515struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2516 unsigned long start, unsigned long last);
2517
2518#define vma_interval_tree_foreach(vma, root, start, last) \
2519 for (vma = vma_interval_tree_iter_first(root, start, last); \
2520 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2521
2522void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2523 struct rb_root_cached *root);
2524void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2525 struct rb_root_cached *root);
2526struct anon_vma_chain *
2527anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2528 unsigned long start, unsigned long last);
2529struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2530 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2531#ifdef CONFIG_DEBUG_VM_RB
2532void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2533#endif
2534
2535#define anon_vma_interval_tree_foreach(avc, root, start, last) \
2536 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2537 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2538
2539/* mmap.c */
2540extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2541extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2542 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2543 struct vm_area_struct *expand);
2544static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2545 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2546{
2547 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2548}
2549extern struct vm_area_struct *vma_merge(struct mm_struct *,
2550 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2551 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2552 struct mempolicy *, struct vm_userfaultfd_ctx);
2553extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2554extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2555 unsigned long addr, int new_below);
2556extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2557 unsigned long addr, int new_below);
2558extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2559extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2560 struct rb_node **, struct rb_node *);
2561extern void unlink_file_vma(struct vm_area_struct *);
2562extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2563 unsigned long addr, unsigned long len, pgoff_t pgoff,
2564 bool *need_rmap_locks);
2565extern void exit_mmap(struct mm_struct *);
2566
2567static inline int check_data_rlimit(unsigned long rlim,
2568 unsigned long new,
2569 unsigned long start,
2570 unsigned long end_data,
2571 unsigned long start_data)
2572{
2573 if (rlim < RLIM_INFINITY) {
2574 if (((new - start) + (end_data - start_data)) > rlim)
2575 return -ENOSPC;
2576 }
2577
2578 return 0;
2579}
2580
2581extern int mm_take_all_locks(struct mm_struct *mm);
2582extern void mm_drop_all_locks(struct mm_struct *mm);
2583
2584extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2585extern struct file *get_mm_exe_file(struct mm_struct *mm);
2586extern struct file *get_task_exe_file(struct task_struct *task);
2587
2588extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2589extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2590
2591extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2592 const struct vm_special_mapping *sm);
2593extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2594 unsigned long addr, unsigned long len,
2595 unsigned long flags,
2596 const struct vm_special_mapping *spec);
2597/* This is an obsolete alternative to _install_special_mapping. */
2598extern int install_special_mapping(struct mm_struct *mm,
2599 unsigned long addr, unsigned long len,
2600 unsigned long flags, struct page **pages);
2601
2602unsigned long randomize_stack_top(unsigned long stack_top);
2603
2604extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2605
2606extern unsigned long mmap_region(struct file *file, unsigned long addr,
2607 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2608 struct list_head *uf);
2609extern unsigned long do_mmap(struct file *file, unsigned long addr,
2610 unsigned long len, unsigned long prot, unsigned long flags,
2611 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2612extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2613 struct list_head *uf, bool downgrade);
2614extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2615 struct list_head *uf);
2616extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2617
2618#ifdef CONFIG_MMU
2619extern int __mm_populate(unsigned long addr, unsigned long len,
2620 int ignore_errors);
2621static inline void mm_populate(unsigned long addr, unsigned long len)
2622{
2623 /* Ignore errors */
2624 (void) __mm_populate(addr, len, 1);
2625}
2626#else
2627static inline void mm_populate(unsigned long addr, unsigned long len) {}
2628#endif
2629
2630/* These take the mm semaphore themselves */
2631extern int __must_check vm_brk(unsigned long, unsigned long);
2632extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2633extern int vm_munmap(unsigned long, size_t);
2634extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2635 unsigned long, unsigned long,
2636 unsigned long, unsigned long);
2637
2638struct vm_unmapped_area_info {
2639#define VM_UNMAPPED_AREA_TOPDOWN 1
2640 unsigned long flags;
2641 unsigned long length;
2642 unsigned long low_limit;
2643 unsigned long high_limit;
2644 unsigned long align_mask;
2645 unsigned long align_offset;
2646};
2647
2648extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2649
2650/* truncate.c */
2651extern void truncate_inode_pages(struct address_space *, loff_t);
2652extern void truncate_inode_pages_range(struct address_space *,
2653 loff_t lstart, loff_t lend);
2654extern void truncate_inode_pages_final(struct address_space *);
2655
2656/* generic vm_area_ops exported for stackable file systems */
2657extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2658extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2659 pgoff_t start_pgoff, pgoff_t end_pgoff);
2660extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2661
2662/* mm/page-writeback.c */
2663int __must_check write_one_page(struct page *page);
2664void task_dirty_inc(struct task_struct *tsk);
2665
2666extern unsigned long stack_guard_gap;
2667/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2668extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2669
2670/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2671extern int expand_downwards(struct vm_area_struct *vma,
2672 unsigned long address);
2673#if VM_GROWSUP
2674extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2675#else
2676 #define expand_upwards(vma, address) (0)
2677#endif
2678
2679/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2680extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2681extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2682 struct vm_area_struct **pprev);
2683
2684/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2685 NULL if none. Assume start_addr < end_addr. */
2686static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2687{
2688 struct vm_area_struct * vma = find_vma(mm,start_addr);
2689
2690 if (vma && end_addr <= vma->vm_start)
2691 vma = NULL;
2692 return vma;
2693}
2694
2695static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2696{
2697 unsigned long vm_start = vma->vm_start;
2698
2699 if (vma->vm_flags & VM_GROWSDOWN) {
2700 vm_start -= stack_guard_gap;
2701 if (vm_start > vma->vm_start)
2702 vm_start = 0;
2703 }
2704 return vm_start;
2705}
2706
2707static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2708{
2709 unsigned long vm_end = vma->vm_end;
2710
2711 if (vma->vm_flags & VM_GROWSUP) {
2712 vm_end += stack_guard_gap;
2713 if (vm_end < vma->vm_end)
2714 vm_end = -PAGE_SIZE;
2715 }
2716 return vm_end;
2717}
2718
2719static inline unsigned long vma_pages(struct vm_area_struct *vma)
2720{
2721 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2722}
2723
2724/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2725static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2726 unsigned long vm_start, unsigned long vm_end)
2727{
2728 struct vm_area_struct *vma = find_vma(mm, vm_start);
2729
2730 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2731 vma = NULL;
2732
2733 return vma;
2734}
2735
2736static inline bool range_in_vma(struct vm_area_struct *vma,
2737 unsigned long start, unsigned long end)
2738{
2739 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2740}
2741
2742#ifdef CONFIG_MMU
2743pgprot_t vm_get_page_prot(unsigned long vm_flags);
2744void vma_set_page_prot(struct vm_area_struct *vma);
2745#else
2746static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2747{
2748 return __pgprot(0);
2749}
2750static inline void vma_set_page_prot(struct vm_area_struct *vma)
2751{
2752 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2753}
2754#endif
2755
2756void vma_set_file(struct vm_area_struct *vma, struct file *file);
2757
2758#ifdef CONFIG_NUMA_BALANCING
2759unsigned long change_prot_numa(struct vm_area_struct *vma,
2760 unsigned long start, unsigned long end);
2761#endif
2762
2763struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2764int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2765 unsigned long pfn, unsigned long size, pgprot_t);
2766int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2767 unsigned long pfn, unsigned long size, pgprot_t prot);
2768int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2769int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2770 struct page **pages, unsigned long *num);
2771int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2772 unsigned long num);
2773int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2774 unsigned long num);
2775vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2776 unsigned long pfn);
2777vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2778 unsigned long pfn, pgprot_t pgprot);
2779vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2780 pfn_t pfn);
2781vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2782 pfn_t pfn, pgprot_t pgprot);
2783vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2784 unsigned long addr, pfn_t pfn);
2785int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2786
2787static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2788 unsigned long addr, struct page *page)
2789{
2790 int err = vm_insert_page(vma, addr, page);
2791
2792 if (err == -ENOMEM)
2793 return VM_FAULT_OOM;
2794 if (err < 0 && err != -EBUSY)
2795 return VM_FAULT_SIGBUS;
2796
2797 return VM_FAULT_NOPAGE;
2798}
2799
2800#ifndef io_remap_pfn_range
2801static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2802 unsigned long addr, unsigned long pfn,
2803 unsigned long size, pgprot_t prot)
2804{
2805 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2806}
2807#endif
2808
2809static inline vm_fault_t vmf_error(int err)
2810{
2811 if (err == -ENOMEM)
2812 return VM_FAULT_OOM;
2813 return VM_FAULT_SIGBUS;
2814}
2815
2816struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2817 unsigned int foll_flags);
2818
2819#define FOLL_WRITE 0x01 /* check pte is writable */
2820#define FOLL_TOUCH 0x02 /* mark page accessed */
2821#define FOLL_GET 0x04 /* do get_page on page */
2822#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2823#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2824#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2825 * and return without waiting upon it */
2826#define FOLL_POPULATE 0x40 /* fault in page */
2827#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2828#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
2829#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2830#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2831#define FOLL_MLOCK 0x1000 /* lock present pages */
2832#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2833#define FOLL_COW 0x4000 /* internal GUP flag */
2834#define FOLL_ANON 0x8000 /* don't do file mappings */
2835#define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2836#define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2837#define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2838#define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2839
2840/*
2841 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2842 * other. Here is what they mean, and how to use them:
2843 *
2844 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2845 * period _often_ under userspace control. This is in contrast to
2846 * iov_iter_get_pages(), whose usages are transient.
2847 *
2848 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2849 * lifetime enforced by the filesystem and we need guarantees that longterm
2850 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2851 * the filesystem. Ideas for this coordination include revoking the longterm
2852 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2853 * added after the problem with filesystems was found FS DAX VMAs are
2854 * specifically failed. Filesystem pages are still subject to bugs and use of
2855 * FOLL_LONGTERM should be avoided on those pages.
2856 *
2857 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2858 * Currently only get_user_pages() and get_user_pages_fast() support this flag
2859 * and calls to get_user_pages_[un]locked are specifically not allowed. This
2860 * is due to an incompatibility with the FS DAX check and
2861 * FAULT_FLAG_ALLOW_RETRY.
2862 *
2863 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2864 * that region. And so, CMA attempts to migrate the page before pinning, when
2865 * FOLL_LONGTERM is specified.
2866 *
2867 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2868 * but an additional pin counting system) will be invoked. This is intended for
2869 * anything that gets a page reference and then touches page data (for example,
2870 * Direct IO). This lets the filesystem know that some non-file-system entity is
2871 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2872 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2873 * a call to unpin_user_page().
2874 *
2875 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2876 * and separate refcounting mechanisms, however, and that means that each has
2877 * its own acquire and release mechanisms:
2878 *
2879 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2880 *
2881 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2882 *
2883 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2884 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2885 * calls applied to them, and that's perfectly OK. This is a constraint on the
2886 * callers, not on the pages.)
2887 *
2888 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2889 * directly by the caller. That's in order to help avoid mismatches when
2890 * releasing pages: get_user_pages*() pages must be released via put_page(),
2891 * while pin_user_pages*() pages must be released via unpin_user_page().
2892 *
2893 * Please see Documentation/core-api/pin_user_pages.rst for more information.
2894 */
2895
2896static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2897{
2898 if (vm_fault & VM_FAULT_OOM)
2899 return -ENOMEM;
2900 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2901 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2902 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2903 return -EFAULT;
2904 return 0;
2905}
2906
2907typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2908extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2909 unsigned long size, pte_fn_t fn, void *data);
2910extern int apply_to_existing_page_range(struct mm_struct *mm,
2911 unsigned long address, unsigned long size,
2912 pte_fn_t fn, void *data);
2913
2914extern void init_mem_debugging_and_hardening(void);
2915#ifdef CONFIG_PAGE_POISONING
2916extern void __kernel_poison_pages(struct page *page, int numpages);
2917extern void __kernel_unpoison_pages(struct page *page, int numpages);
2918extern bool _page_poisoning_enabled_early;
2919DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2920static inline bool page_poisoning_enabled(void)
2921{
2922 return _page_poisoning_enabled_early;
2923}
2924/*
2925 * For use in fast paths after init_mem_debugging() has run, or when a
2926 * false negative result is not harmful when called too early.
2927 */
2928static inline bool page_poisoning_enabled_static(void)
2929{
2930 return static_branch_unlikely(&_page_poisoning_enabled);
2931}
2932static inline void kernel_poison_pages(struct page *page, int numpages)
2933{
2934 if (page_poisoning_enabled_static())
2935 __kernel_poison_pages(page, numpages);
2936}
2937static inline void kernel_unpoison_pages(struct page *page, int numpages)
2938{
2939 if (page_poisoning_enabled_static())
2940 __kernel_unpoison_pages(page, numpages);
2941}
2942#else
2943static inline bool page_poisoning_enabled(void) { return false; }
2944static inline bool page_poisoning_enabled_static(void) { return false; }
2945static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2946static inline void kernel_poison_pages(struct page *page, int numpages) { }
2947static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2948#endif
2949
2950DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2951static inline bool want_init_on_alloc(gfp_t flags)
2952{
2953 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2954 &init_on_alloc))
2955 return true;
2956 return flags & __GFP_ZERO;
2957}
2958
2959DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2960static inline bool want_init_on_free(void)
2961{
2962 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2963 &init_on_free);
2964}
2965
2966extern bool _debug_pagealloc_enabled_early;
2967DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2968
2969static inline bool debug_pagealloc_enabled(void)
2970{
2971 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2972 _debug_pagealloc_enabled_early;
2973}
2974
2975/*
2976 * For use in fast paths after init_debug_pagealloc() has run, or when a
2977 * false negative result is not harmful when called too early.
2978 */
2979static inline bool debug_pagealloc_enabled_static(void)
2980{
2981 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2982 return false;
2983
2984 return static_branch_unlikely(&_debug_pagealloc_enabled);
2985}
2986
2987#ifdef CONFIG_DEBUG_PAGEALLOC
2988/*
2989 * To support DEBUG_PAGEALLOC architecture must ensure that
2990 * __kernel_map_pages() never fails
2991 */
2992extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2993
2994static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2995{
2996 if (debug_pagealloc_enabled_static())
2997 __kernel_map_pages(page, numpages, 1);
2998}
2999
3000static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3001{
3002 if (debug_pagealloc_enabled_static())
3003 __kernel_map_pages(page, numpages, 0);
3004}
3005#else /* CONFIG_DEBUG_PAGEALLOC */
3006static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3007static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3008#endif /* CONFIG_DEBUG_PAGEALLOC */
3009
3010#ifdef __HAVE_ARCH_GATE_AREA
3011extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3012extern int in_gate_area_no_mm(unsigned long addr);
3013extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3014#else
3015static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3016{
3017 return NULL;
3018}
3019static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3020static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3021{
3022 return 0;
3023}
3024#endif /* __HAVE_ARCH_GATE_AREA */
3025
3026extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3027
3028#ifdef CONFIG_SYSCTL
3029extern int sysctl_drop_caches;
3030int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3031 loff_t *);
3032#endif
3033
3034void drop_slab(void);
3035void drop_slab_node(int nid);
3036
3037#ifndef CONFIG_MMU
3038#define randomize_va_space 0
3039#else
3040extern int randomize_va_space;
3041#endif
3042
3043const char * arch_vma_name(struct vm_area_struct *vma);
3044#ifdef CONFIG_MMU
3045void print_vma_addr(char *prefix, unsigned long rip);
3046#else
3047static inline void print_vma_addr(char *prefix, unsigned long rip)
3048{
3049}
3050#endif
3051
3052void *sparse_buffer_alloc(unsigned long size);
3053struct page * __populate_section_memmap(unsigned long pfn,
3054 unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3055pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3056p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3057pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3058pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3059pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3060 struct vmem_altmap *altmap);
3061void *vmemmap_alloc_block(unsigned long size, int node);
3062struct vmem_altmap;
3063void *vmemmap_alloc_block_buf(unsigned long size, int node,
3064 struct vmem_altmap *altmap);
3065void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3066int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3067 int node, struct vmem_altmap *altmap);
3068int vmemmap_populate(unsigned long start, unsigned long end, int node,
3069 struct vmem_altmap *altmap);
3070void vmemmap_populate_print_last(void);
3071#ifdef CONFIG_MEMORY_HOTPLUG
3072void vmemmap_free(unsigned long start, unsigned long end,
3073 struct vmem_altmap *altmap);
3074#endif
3075void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3076 unsigned long nr_pages);
3077
3078enum mf_flags {
3079 MF_COUNT_INCREASED = 1 << 0,
3080 MF_ACTION_REQUIRED = 1 << 1,
3081 MF_MUST_KILL = 1 << 2,
3082 MF_SOFT_OFFLINE = 1 << 3,
3083};
3084extern int memory_failure(unsigned long pfn, int flags);
3085extern void memory_failure_queue(unsigned long pfn, int flags);
3086extern void memory_failure_queue_kick(int cpu);
3087extern int unpoison_memory(unsigned long pfn);
3088extern int sysctl_memory_failure_early_kill;
3089extern int sysctl_memory_failure_recovery;
3090extern void shake_page(struct page *p, int access);
3091extern atomic_long_t num_poisoned_pages __read_mostly;
3092extern int soft_offline_page(unsigned long pfn, int flags);
3093
3094
3095/*
3096 * Error handlers for various types of pages.
3097 */
3098enum mf_result {
3099 MF_IGNORED, /* Error: cannot be handled */
3100 MF_FAILED, /* Error: handling failed */
3101 MF_DELAYED, /* Will be handled later */
3102 MF_RECOVERED, /* Successfully recovered */
3103};
3104
3105enum mf_action_page_type {
3106 MF_MSG_KERNEL,
3107 MF_MSG_KERNEL_HIGH_ORDER,
3108 MF_MSG_SLAB,
3109 MF_MSG_DIFFERENT_COMPOUND,
3110 MF_MSG_POISONED_HUGE,
3111 MF_MSG_HUGE,
3112 MF_MSG_FREE_HUGE,
3113 MF_MSG_NON_PMD_HUGE,
3114 MF_MSG_UNMAP_FAILED,
3115 MF_MSG_DIRTY_SWAPCACHE,
3116 MF_MSG_CLEAN_SWAPCACHE,
3117 MF_MSG_DIRTY_MLOCKED_LRU,
3118 MF_MSG_CLEAN_MLOCKED_LRU,
3119 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3120 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3121 MF_MSG_DIRTY_LRU,
3122 MF_MSG_CLEAN_LRU,
3123 MF_MSG_TRUNCATED_LRU,
3124 MF_MSG_BUDDY,
3125 MF_MSG_BUDDY_2ND,
3126 MF_MSG_DAX,
3127 MF_MSG_UNSPLIT_THP,
3128 MF_MSG_UNKNOWN,
3129};
3130
3131#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3132extern void clear_huge_page(struct page *page,
3133 unsigned long addr_hint,
3134 unsigned int pages_per_huge_page);
3135extern void copy_user_huge_page(struct page *dst, struct page *src,
3136 unsigned long addr_hint,
3137 struct vm_area_struct *vma,
3138 unsigned int pages_per_huge_page);
3139extern long copy_huge_page_from_user(struct page *dst_page,
3140 const void __user *usr_src,
3141 unsigned int pages_per_huge_page,
3142 bool allow_pagefault);
3143
3144/**
3145 * vma_is_special_huge - Are transhuge page-table entries considered special?
3146 * @vma: Pointer to the struct vm_area_struct to consider
3147 *
3148 * Whether transhuge page-table entries are considered "special" following
3149 * the definition in vm_normal_page().
3150 *
3151 * Return: true if transhuge page-table entries should be considered special,
3152 * false otherwise.
3153 */
3154static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3155{
3156 return vma_is_dax(vma) || (vma->vm_file &&
3157 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3158}
3159
3160#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3161
3162#ifdef CONFIG_DEBUG_PAGEALLOC
3163extern unsigned int _debug_guardpage_minorder;
3164DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3165
3166static inline unsigned int debug_guardpage_minorder(void)
3167{
3168 return _debug_guardpage_minorder;
3169}
3170
3171static inline bool debug_guardpage_enabled(void)
3172{
3173 return static_branch_unlikely(&_debug_guardpage_enabled);
3174}
3175
3176static inline bool page_is_guard(struct page *page)
3177{
3178 if (!debug_guardpage_enabled())
3179 return false;
3180
3181 return PageGuard(page);
3182}
3183#else
3184static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3185static inline bool debug_guardpage_enabled(void) { return false; }
3186static inline bool page_is_guard(struct page *page) { return false; }
3187#endif /* CONFIG_DEBUG_PAGEALLOC */
3188
3189#if MAX_NUMNODES > 1
3190void __init setup_nr_node_ids(void);
3191#else
3192static inline void setup_nr_node_ids(void) {}
3193#endif
3194
3195extern int memcmp_pages(struct page *page1, struct page *page2);
3196
3197static inline int pages_identical(struct page *page1, struct page *page2)
3198{
3199 return !memcmp_pages(page1, page2);
3200}
3201
3202#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3203unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3204 pgoff_t first_index, pgoff_t nr,
3205 pgoff_t bitmap_pgoff,
3206 unsigned long *bitmap,
3207 pgoff_t *start,
3208 pgoff_t *end);
3209
3210unsigned long wp_shared_mapping_range(struct address_space *mapping,
3211 pgoff_t first_index, pgoff_t nr);
3212#endif
3213
3214extern int sysctl_nr_trim_pages;
3215
3216#ifdef CONFIG_PRINTK
3217void mem_dump_obj(void *object);
3218#else
3219static inline void mem_dump_obj(void *object) {}
3220#endif
3221
3222/**
3223 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3224 * @seals: the seals to check
3225 * @vma: the vma to operate on
3226 *
3227 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3228 * the vma flags. Return 0 if check pass, or <0 for errors.
3229 */
3230static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3231{
3232 if (seals & F_SEAL_FUTURE_WRITE) {
3233 /*
3234 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3235 * "future write" seal active.
3236 */
3237 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3238 return -EPERM;
3239
3240 /*
3241 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3242 * MAP_SHARED and read-only, take care to not allow mprotect to
3243 * revert protections on such mappings. Do this only for shared
3244 * mappings. For private mappings, don't need to mask
3245 * VM_MAYWRITE as we still want them to be COW-writable.
3246 */
3247 if (vma->vm_flags & VM_SHARED)
3248 vma->vm_flags &= ~(VM_MAYWRITE);
3249 }
3250
3251 return 0;
3252}
3253
3254#endif /* __KERNEL__ */
3255#endif /* _LINUX_MM_H */