Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Linux Socket Filter Data Structures
4 */
5#ifndef __LINUX_FILTER_H__
6#define __LINUX_FILTER_H__
7
8#include <stdarg.h>
9
10#include <linux/atomic.h>
11#include <linux/refcount.h>
12#include <linux/compat.h>
13#include <linux/skbuff.h>
14#include <linux/linkage.h>
15#include <linux/printk.h>
16#include <linux/workqueue.h>
17#include <linux/sched.h>
18#include <linux/capability.h>
19#include <linux/set_memory.h>
20#include <linux/kallsyms.h>
21#include <linux/if_vlan.h>
22#include <linux/vmalloc.h>
23#include <linux/sockptr.h>
24#include <crypto/sha1.h>
25#include <linux/u64_stats_sync.h>
26
27#include <net/sch_generic.h>
28
29#include <asm/byteorder.h>
30#include <uapi/linux/filter.h>
31#include <uapi/linux/bpf.h>
32
33struct sk_buff;
34struct sock;
35struct seccomp_data;
36struct bpf_prog_aux;
37struct xdp_rxq_info;
38struct xdp_buff;
39struct sock_reuseport;
40struct ctl_table;
41struct ctl_table_header;
42
43/* ArgX, context and stack frame pointer register positions. Note,
44 * Arg1, Arg2, Arg3, etc are used as argument mappings of function
45 * calls in BPF_CALL instruction.
46 */
47#define BPF_REG_ARG1 BPF_REG_1
48#define BPF_REG_ARG2 BPF_REG_2
49#define BPF_REG_ARG3 BPF_REG_3
50#define BPF_REG_ARG4 BPF_REG_4
51#define BPF_REG_ARG5 BPF_REG_5
52#define BPF_REG_CTX BPF_REG_6
53#define BPF_REG_FP BPF_REG_10
54
55/* Additional register mappings for converted user programs. */
56#define BPF_REG_A BPF_REG_0
57#define BPF_REG_X BPF_REG_7
58#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
59#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
60#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
61
62/* Kernel hidden auxiliary/helper register. */
63#define BPF_REG_AX MAX_BPF_REG
64#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
65#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
66
67/* unused opcode to mark special call to bpf_tail_call() helper */
68#define BPF_TAIL_CALL 0xf0
69
70/* unused opcode to mark special load instruction. Same as BPF_ABS */
71#define BPF_PROBE_MEM 0x20
72
73/* unused opcode to mark call to interpreter with arguments */
74#define BPF_CALL_ARGS 0xe0
75
76/* As per nm, we expose JITed images as text (code) section for
77 * kallsyms. That way, tools like perf can find it to match
78 * addresses.
79 */
80#define BPF_SYM_ELF_TYPE 't'
81
82/* BPF program can access up to 512 bytes of stack space. */
83#define MAX_BPF_STACK 512
84
85/* Helper macros for filter block array initializers. */
86
87/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
88
89#define BPF_ALU64_REG(OP, DST, SRC) \
90 ((struct bpf_insn) { \
91 .code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
92 .dst_reg = DST, \
93 .src_reg = SRC, \
94 .off = 0, \
95 .imm = 0 })
96
97#define BPF_ALU32_REG(OP, DST, SRC) \
98 ((struct bpf_insn) { \
99 .code = BPF_ALU | BPF_OP(OP) | BPF_X, \
100 .dst_reg = DST, \
101 .src_reg = SRC, \
102 .off = 0, \
103 .imm = 0 })
104
105/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
106
107#define BPF_ALU64_IMM(OP, DST, IMM) \
108 ((struct bpf_insn) { \
109 .code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
110 .dst_reg = DST, \
111 .src_reg = 0, \
112 .off = 0, \
113 .imm = IMM })
114
115#define BPF_ALU32_IMM(OP, DST, IMM) \
116 ((struct bpf_insn) { \
117 .code = BPF_ALU | BPF_OP(OP) | BPF_K, \
118 .dst_reg = DST, \
119 .src_reg = 0, \
120 .off = 0, \
121 .imm = IMM })
122
123/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
124
125#define BPF_ENDIAN(TYPE, DST, LEN) \
126 ((struct bpf_insn) { \
127 .code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
128 .dst_reg = DST, \
129 .src_reg = 0, \
130 .off = 0, \
131 .imm = LEN })
132
133/* Short form of mov, dst_reg = src_reg */
134
135#define BPF_MOV64_REG(DST, SRC) \
136 ((struct bpf_insn) { \
137 .code = BPF_ALU64 | BPF_MOV | BPF_X, \
138 .dst_reg = DST, \
139 .src_reg = SRC, \
140 .off = 0, \
141 .imm = 0 })
142
143#define BPF_MOV32_REG(DST, SRC) \
144 ((struct bpf_insn) { \
145 .code = BPF_ALU | BPF_MOV | BPF_X, \
146 .dst_reg = DST, \
147 .src_reg = SRC, \
148 .off = 0, \
149 .imm = 0 })
150
151/* Short form of mov, dst_reg = imm32 */
152
153#define BPF_MOV64_IMM(DST, IMM) \
154 ((struct bpf_insn) { \
155 .code = BPF_ALU64 | BPF_MOV | BPF_K, \
156 .dst_reg = DST, \
157 .src_reg = 0, \
158 .off = 0, \
159 .imm = IMM })
160
161#define BPF_MOV32_IMM(DST, IMM) \
162 ((struct bpf_insn) { \
163 .code = BPF_ALU | BPF_MOV | BPF_K, \
164 .dst_reg = DST, \
165 .src_reg = 0, \
166 .off = 0, \
167 .imm = IMM })
168
169/* Special form of mov32, used for doing explicit zero extension on dst. */
170#define BPF_ZEXT_REG(DST) \
171 ((struct bpf_insn) { \
172 .code = BPF_ALU | BPF_MOV | BPF_X, \
173 .dst_reg = DST, \
174 .src_reg = DST, \
175 .off = 0, \
176 .imm = 1 })
177
178static inline bool insn_is_zext(const struct bpf_insn *insn)
179{
180 return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
181}
182
183/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
184#define BPF_LD_IMM64(DST, IMM) \
185 BPF_LD_IMM64_RAW(DST, 0, IMM)
186
187#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
188 ((struct bpf_insn) { \
189 .code = BPF_LD | BPF_DW | BPF_IMM, \
190 .dst_reg = DST, \
191 .src_reg = SRC, \
192 .off = 0, \
193 .imm = (__u32) (IMM) }), \
194 ((struct bpf_insn) { \
195 .code = 0, /* zero is reserved opcode */ \
196 .dst_reg = 0, \
197 .src_reg = 0, \
198 .off = 0, \
199 .imm = ((__u64) (IMM)) >> 32 })
200
201/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
202#define BPF_LD_MAP_FD(DST, MAP_FD) \
203 BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
204
205/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
206
207#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
208 ((struct bpf_insn) { \
209 .code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
210 .dst_reg = DST, \
211 .src_reg = SRC, \
212 .off = 0, \
213 .imm = IMM })
214
215#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
216 ((struct bpf_insn) { \
217 .code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
218 .dst_reg = DST, \
219 .src_reg = SRC, \
220 .off = 0, \
221 .imm = IMM })
222
223/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
224
225#define BPF_LD_ABS(SIZE, IMM) \
226 ((struct bpf_insn) { \
227 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
228 .dst_reg = 0, \
229 .src_reg = 0, \
230 .off = 0, \
231 .imm = IMM })
232
233/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
234
235#define BPF_LD_IND(SIZE, SRC, IMM) \
236 ((struct bpf_insn) { \
237 .code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
238 .dst_reg = 0, \
239 .src_reg = SRC, \
240 .off = 0, \
241 .imm = IMM })
242
243/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
244
245#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
246 ((struct bpf_insn) { \
247 .code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
248 .dst_reg = DST, \
249 .src_reg = SRC, \
250 .off = OFF, \
251 .imm = 0 })
252
253/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
254
255#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
256 ((struct bpf_insn) { \
257 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
258 .dst_reg = DST, \
259 .src_reg = SRC, \
260 .off = OFF, \
261 .imm = 0 })
262
263
264/*
265 * Atomic operations:
266 *
267 * BPF_ADD *(uint *) (dst_reg + off16) += src_reg
268 * BPF_AND *(uint *) (dst_reg + off16) &= src_reg
269 * BPF_OR *(uint *) (dst_reg + off16) |= src_reg
270 * BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
271 * BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
272 * BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
273 * BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
274 * BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
275 * BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
276 * BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
277 */
278
279#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
280 ((struct bpf_insn) { \
281 .code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
282 .dst_reg = DST, \
283 .src_reg = SRC, \
284 .off = OFF, \
285 .imm = OP })
286
287/* Legacy alias */
288#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
289
290/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
291
292#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
293 ((struct bpf_insn) { \
294 .code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
295 .dst_reg = DST, \
296 .src_reg = 0, \
297 .off = OFF, \
298 .imm = IMM })
299
300/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
301
302#define BPF_JMP_REG(OP, DST, SRC, OFF) \
303 ((struct bpf_insn) { \
304 .code = BPF_JMP | BPF_OP(OP) | BPF_X, \
305 .dst_reg = DST, \
306 .src_reg = SRC, \
307 .off = OFF, \
308 .imm = 0 })
309
310/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
311
312#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
313 ((struct bpf_insn) { \
314 .code = BPF_JMP | BPF_OP(OP) | BPF_K, \
315 .dst_reg = DST, \
316 .src_reg = 0, \
317 .off = OFF, \
318 .imm = IMM })
319
320/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
321
322#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
323 ((struct bpf_insn) { \
324 .code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
325 .dst_reg = DST, \
326 .src_reg = SRC, \
327 .off = OFF, \
328 .imm = 0 })
329
330/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
331
332#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
333 ((struct bpf_insn) { \
334 .code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
335 .dst_reg = DST, \
336 .src_reg = 0, \
337 .off = OFF, \
338 .imm = IMM })
339
340/* Unconditional jumps, goto pc + off16 */
341
342#define BPF_JMP_A(OFF) \
343 ((struct bpf_insn) { \
344 .code = BPF_JMP | BPF_JA, \
345 .dst_reg = 0, \
346 .src_reg = 0, \
347 .off = OFF, \
348 .imm = 0 })
349
350/* Relative call */
351
352#define BPF_CALL_REL(TGT) \
353 ((struct bpf_insn) { \
354 .code = BPF_JMP | BPF_CALL, \
355 .dst_reg = 0, \
356 .src_reg = BPF_PSEUDO_CALL, \
357 .off = 0, \
358 .imm = TGT })
359
360/* Function call */
361
362#define BPF_CAST_CALL(x) \
363 ((u64 (*)(u64, u64, u64, u64, u64))(x))
364
365#define BPF_EMIT_CALL(FUNC) \
366 ((struct bpf_insn) { \
367 .code = BPF_JMP | BPF_CALL, \
368 .dst_reg = 0, \
369 .src_reg = 0, \
370 .off = 0, \
371 .imm = ((FUNC) - __bpf_call_base) })
372
373/* Raw code statement block */
374
375#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
376 ((struct bpf_insn) { \
377 .code = CODE, \
378 .dst_reg = DST, \
379 .src_reg = SRC, \
380 .off = OFF, \
381 .imm = IMM })
382
383/* Program exit */
384
385#define BPF_EXIT_INSN() \
386 ((struct bpf_insn) { \
387 .code = BPF_JMP | BPF_EXIT, \
388 .dst_reg = 0, \
389 .src_reg = 0, \
390 .off = 0, \
391 .imm = 0 })
392
393/* Internal classic blocks for direct assignment */
394
395#define __BPF_STMT(CODE, K) \
396 ((struct sock_filter) BPF_STMT(CODE, K))
397
398#define __BPF_JUMP(CODE, K, JT, JF) \
399 ((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
400
401#define bytes_to_bpf_size(bytes) \
402({ \
403 int bpf_size = -EINVAL; \
404 \
405 if (bytes == sizeof(u8)) \
406 bpf_size = BPF_B; \
407 else if (bytes == sizeof(u16)) \
408 bpf_size = BPF_H; \
409 else if (bytes == sizeof(u32)) \
410 bpf_size = BPF_W; \
411 else if (bytes == sizeof(u64)) \
412 bpf_size = BPF_DW; \
413 \
414 bpf_size; \
415})
416
417#define bpf_size_to_bytes(bpf_size) \
418({ \
419 int bytes = -EINVAL; \
420 \
421 if (bpf_size == BPF_B) \
422 bytes = sizeof(u8); \
423 else if (bpf_size == BPF_H) \
424 bytes = sizeof(u16); \
425 else if (bpf_size == BPF_W) \
426 bytes = sizeof(u32); \
427 else if (bpf_size == BPF_DW) \
428 bytes = sizeof(u64); \
429 \
430 bytes; \
431})
432
433#define BPF_SIZEOF(type) \
434 ({ \
435 const int __size = bytes_to_bpf_size(sizeof(type)); \
436 BUILD_BUG_ON(__size < 0); \
437 __size; \
438 })
439
440#define BPF_FIELD_SIZEOF(type, field) \
441 ({ \
442 const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
443 BUILD_BUG_ON(__size < 0); \
444 __size; \
445 })
446
447#define BPF_LDST_BYTES(insn) \
448 ({ \
449 const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
450 WARN_ON(__size < 0); \
451 __size; \
452 })
453
454#define __BPF_MAP_0(m, v, ...) v
455#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
456#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
457#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
458#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
459#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
460
461#define __BPF_REG_0(...) __BPF_PAD(5)
462#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
463#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
464#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
465#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
466#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
467
468#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
469#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
470
471#define __BPF_CAST(t, a) \
472 (__force t) \
473 (__force \
474 typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
475 (unsigned long)0, (t)0))) a
476#define __BPF_V void
477#define __BPF_N
478
479#define __BPF_DECL_ARGS(t, a) t a
480#define __BPF_DECL_REGS(t, a) u64 a
481
482#define __BPF_PAD(n) \
483 __BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
484 u64, __ur_3, u64, __ur_4, u64, __ur_5)
485
486#define BPF_CALL_x(x, name, ...) \
487 static __always_inline \
488 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
489 typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
490 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
491 u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
492 { \
493 return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
494 } \
495 static __always_inline \
496 u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
497
498#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
499#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
500#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
501#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
502#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
503#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
504
505#define bpf_ctx_range(TYPE, MEMBER) \
506 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
507#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
508 offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
509#if BITS_PER_LONG == 64
510# define bpf_ctx_range_ptr(TYPE, MEMBER) \
511 offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
512#else
513# define bpf_ctx_range_ptr(TYPE, MEMBER) \
514 offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
515#endif /* BITS_PER_LONG == 64 */
516
517#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
518 ({ \
519 BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
520 *(PTR_SIZE) = (SIZE); \
521 offsetof(TYPE, MEMBER); \
522 })
523
524/* A struct sock_filter is architecture independent. */
525struct compat_sock_fprog {
526 u16 len;
527 compat_uptr_t filter; /* struct sock_filter * */
528};
529
530struct sock_fprog_kern {
531 u16 len;
532 struct sock_filter *filter;
533};
534
535/* Some arches need doubleword alignment for their instructions and/or data */
536#define BPF_IMAGE_ALIGNMENT 8
537
538struct bpf_binary_header {
539 u32 pages;
540 u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
541};
542
543struct bpf_prog_stats {
544 u64 cnt;
545 u64 nsecs;
546 u64 misses;
547 struct u64_stats_sync syncp;
548} __aligned(2 * sizeof(u64));
549
550struct bpf_prog {
551 u16 pages; /* Number of allocated pages */
552 u16 jited:1, /* Is our filter JIT'ed? */
553 jit_requested:1,/* archs need to JIT the prog */
554 gpl_compatible:1, /* Is filter GPL compatible? */
555 cb_access:1, /* Is control block accessed? */
556 dst_needed:1, /* Do we need dst entry? */
557 blinded:1, /* Was blinded */
558 is_func:1, /* program is a bpf function */
559 kprobe_override:1, /* Do we override a kprobe? */
560 has_callchain_buf:1, /* callchain buffer allocated? */
561 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
562 call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
563 enum bpf_prog_type type; /* Type of BPF program */
564 enum bpf_attach_type expected_attach_type; /* For some prog types */
565 u32 len; /* Number of filter blocks */
566 u32 jited_len; /* Size of jited insns in bytes */
567 u8 tag[BPF_TAG_SIZE];
568 struct bpf_prog_stats __percpu *stats;
569 int __percpu *active;
570 unsigned int (*bpf_func)(const void *ctx,
571 const struct bpf_insn *insn);
572 struct bpf_prog_aux *aux; /* Auxiliary fields */
573 struct sock_fprog_kern *orig_prog; /* Original BPF program */
574 /* Instructions for interpreter */
575 struct sock_filter insns[0];
576 struct bpf_insn insnsi[];
577};
578
579struct sk_filter {
580 refcount_t refcnt;
581 struct rcu_head rcu;
582 struct bpf_prog *prog;
583};
584
585DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
586
587#define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \
588 u32 __ret; \
589 cant_migrate(); \
590 if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
591 struct bpf_prog_stats *__stats; \
592 u64 __start = sched_clock(); \
593 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
594 __stats = this_cpu_ptr(prog->stats); \
595 u64_stats_update_begin(&__stats->syncp); \
596 __stats->cnt++; \
597 __stats->nsecs += sched_clock() - __start; \
598 u64_stats_update_end(&__stats->syncp); \
599 } else { \
600 __ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
601 } \
602 __ret; })
603
604#define BPF_PROG_RUN(prog, ctx) \
605 __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
606
607/*
608 * Use in preemptible and therefore migratable context to make sure that
609 * the execution of the BPF program runs on one CPU.
610 *
611 * This uses migrate_disable/enable() explicitly to document that the
612 * invocation of a BPF program does not require reentrancy protection
613 * against a BPF program which is invoked from a preempting task.
614 *
615 * For non RT enabled kernels migrate_disable/enable() maps to
616 * preempt_disable/enable(), i.e. it disables also preemption.
617 */
618static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
619 const void *ctx)
620{
621 u32 ret;
622
623 migrate_disable();
624 ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
625 migrate_enable();
626 return ret;
627}
628
629#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
630
631struct bpf_skb_data_end {
632 struct qdisc_skb_cb qdisc_cb;
633 void *data_meta;
634 void *data_end;
635};
636
637struct bpf_nh_params {
638 u32 nh_family;
639 union {
640 u32 ipv4_nh;
641 struct in6_addr ipv6_nh;
642 };
643};
644
645struct bpf_redirect_info {
646 u32 flags;
647 u32 tgt_index;
648 void *tgt_value;
649 u32 map_id;
650 enum bpf_map_type map_type;
651 u32 kern_flags;
652 struct bpf_nh_params nh;
653};
654
655DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
656
657/* flags for bpf_redirect_info kern_flags */
658#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
659
660/* Compute the linear packet data range [data, data_end) which
661 * will be accessed by various program types (cls_bpf, act_bpf,
662 * lwt, ...). Subsystems allowing direct data access must (!)
663 * ensure that cb[] area can be written to when BPF program is
664 * invoked (otherwise cb[] save/restore is necessary).
665 */
666static inline void bpf_compute_data_pointers(struct sk_buff *skb)
667{
668 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
669
670 BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
671 cb->data_meta = skb->data - skb_metadata_len(skb);
672 cb->data_end = skb->data + skb_headlen(skb);
673}
674
675/* Similar to bpf_compute_data_pointers(), except that save orginal
676 * data in cb->data and cb->meta_data for restore.
677 */
678static inline void bpf_compute_and_save_data_end(
679 struct sk_buff *skb, void **saved_data_end)
680{
681 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
682
683 *saved_data_end = cb->data_end;
684 cb->data_end = skb->data + skb_headlen(skb);
685}
686
687/* Restore data saved by bpf_compute_data_pointers(). */
688static inline void bpf_restore_data_end(
689 struct sk_buff *skb, void *saved_data_end)
690{
691 struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
692
693 cb->data_end = saved_data_end;
694}
695
696static inline u8 *bpf_skb_cb(struct sk_buff *skb)
697{
698 /* eBPF programs may read/write skb->cb[] area to transfer meta
699 * data between tail calls. Since this also needs to work with
700 * tc, that scratch memory is mapped to qdisc_skb_cb's data area.
701 *
702 * In some socket filter cases, the cb unfortunately needs to be
703 * saved/restored so that protocol specific skb->cb[] data won't
704 * be lost. In any case, due to unpriviledged eBPF programs
705 * attached to sockets, we need to clear the bpf_skb_cb() area
706 * to not leak previous contents to user space.
707 */
708 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
709 BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
710 sizeof_field(struct qdisc_skb_cb, data));
711
712 return qdisc_skb_cb(skb)->data;
713}
714
715/* Must be invoked with migration disabled */
716static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
717 struct sk_buff *skb)
718{
719 u8 *cb_data = bpf_skb_cb(skb);
720 u8 cb_saved[BPF_SKB_CB_LEN];
721 u32 res;
722
723 if (unlikely(prog->cb_access)) {
724 memcpy(cb_saved, cb_data, sizeof(cb_saved));
725 memset(cb_data, 0, sizeof(cb_saved));
726 }
727
728 res = BPF_PROG_RUN(prog, skb);
729
730 if (unlikely(prog->cb_access))
731 memcpy(cb_data, cb_saved, sizeof(cb_saved));
732
733 return res;
734}
735
736static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
737 struct sk_buff *skb)
738{
739 u32 res;
740
741 migrate_disable();
742 res = __bpf_prog_run_save_cb(prog, skb);
743 migrate_enable();
744 return res;
745}
746
747static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
748 struct sk_buff *skb)
749{
750 u8 *cb_data = bpf_skb_cb(skb);
751 u32 res;
752
753 if (unlikely(prog->cb_access))
754 memset(cb_data, 0, BPF_SKB_CB_LEN);
755
756 res = bpf_prog_run_pin_on_cpu(prog, skb);
757 return res;
758}
759
760DECLARE_BPF_DISPATCHER(xdp)
761
762static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
763 struct xdp_buff *xdp)
764{
765 /* Caller needs to hold rcu_read_lock() (!), otherwise program
766 * can be released while still running, or map elements could be
767 * freed early while still having concurrent users. XDP fastpath
768 * already takes rcu_read_lock() when fetching the program, so
769 * it's not necessary here anymore.
770 */
771 return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
772}
773
774void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
775
776static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
777{
778 return prog->len * sizeof(struct bpf_insn);
779}
780
781static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
782{
783 return round_up(bpf_prog_insn_size(prog) +
784 sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
785}
786
787static inline unsigned int bpf_prog_size(unsigned int proglen)
788{
789 return max(sizeof(struct bpf_prog),
790 offsetof(struct bpf_prog, insns[proglen]));
791}
792
793static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
794{
795 /* When classic BPF programs have been loaded and the arch
796 * does not have a classic BPF JIT (anymore), they have been
797 * converted via bpf_migrate_filter() to eBPF and thus always
798 * have an unspec program type.
799 */
800 return prog->type == BPF_PROG_TYPE_UNSPEC;
801}
802
803static inline u32 bpf_ctx_off_adjust_machine(u32 size)
804{
805 const u32 size_machine = sizeof(unsigned long);
806
807 if (size > size_machine && size % size_machine == 0)
808 size = size_machine;
809
810 return size;
811}
812
813static inline bool
814bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
815{
816 return size <= size_default && (size & (size - 1)) == 0;
817}
818
819static inline u8
820bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
821{
822 u8 access_off = off & (size_default - 1);
823
824#ifdef __LITTLE_ENDIAN
825 return access_off;
826#else
827 return size_default - (access_off + size);
828#endif
829}
830
831#define bpf_ctx_wide_access_ok(off, size, type, field) \
832 (size == sizeof(__u64) && \
833 off >= offsetof(type, field) && \
834 off + sizeof(__u64) <= offsetofend(type, field) && \
835 off % sizeof(__u64) == 0)
836
837#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
838
839static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
840{
841#ifndef CONFIG_BPF_JIT_ALWAYS_ON
842 if (!fp->jited) {
843 set_vm_flush_reset_perms(fp);
844 set_memory_ro((unsigned long)fp, fp->pages);
845 }
846#endif
847}
848
849static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
850{
851 set_vm_flush_reset_perms(hdr);
852 set_memory_ro((unsigned long)hdr, hdr->pages);
853 set_memory_x((unsigned long)hdr, hdr->pages);
854}
855
856static inline struct bpf_binary_header *
857bpf_jit_binary_hdr(const struct bpf_prog *fp)
858{
859 unsigned long real_start = (unsigned long)fp->bpf_func;
860 unsigned long addr = real_start & PAGE_MASK;
861
862 return (void *)addr;
863}
864
865int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
866static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
867{
868 return sk_filter_trim_cap(sk, skb, 1);
869}
870
871struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
872void bpf_prog_free(struct bpf_prog *fp);
873
874bool bpf_opcode_in_insntable(u8 code);
875
876void bpf_prog_free_linfo(struct bpf_prog *prog);
877void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
878 const u32 *insn_to_jit_off);
879int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
880void bpf_prog_jit_attempt_done(struct bpf_prog *prog);
881
882struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
883struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
884struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
885 gfp_t gfp_extra_flags);
886void __bpf_prog_free(struct bpf_prog *fp);
887
888static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
889{
890 __bpf_prog_free(fp);
891}
892
893typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
894 unsigned int flen);
895
896int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
897int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
898 bpf_aux_classic_check_t trans, bool save_orig);
899void bpf_prog_destroy(struct bpf_prog *fp);
900
901int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
902int sk_attach_bpf(u32 ufd, struct sock *sk);
903int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
904int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
905void sk_reuseport_prog_free(struct bpf_prog *prog);
906int sk_detach_filter(struct sock *sk);
907int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
908 unsigned int len);
909
910bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
911void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
912
913u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
914#define __bpf_call_base_args \
915 ((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
916 (void *)__bpf_call_base)
917
918struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
919void bpf_jit_compile(struct bpf_prog *prog);
920bool bpf_jit_needs_zext(void);
921bool bpf_jit_supports_kfunc_call(void);
922bool bpf_helper_changes_pkt_data(void *func);
923
924static inline bool bpf_dump_raw_ok(const struct cred *cred)
925{
926 /* Reconstruction of call-sites is dependent on kallsyms,
927 * thus make dump the same restriction.
928 */
929 return kallsyms_show_value(cred);
930}
931
932struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
933 const struct bpf_insn *patch, u32 len);
934int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
935
936void bpf_clear_redirect_map(struct bpf_map *map);
937
938static inline bool xdp_return_frame_no_direct(void)
939{
940 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
941
942 return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
943}
944
945static inline void xdp_set_return_frame_no_direct(void)
946{
947 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
948
949 ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
950}
951
952static inline void xdp_clear_return_frame_no_direct(void)
953{
954 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
955
956 ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
957}
958
959static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
960 unsigned int pktlen)
961{
962 unsigned int len;
963
964 if (unlikely(!(fwd->flags & IFF_UP)))
965 return -ENETDOWN;
966
967 len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
968 if (pktlen > len)
969 return -EMSGSIZE;
970
971 return 0;
972}
973
974/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
975 * same cpu context. Further for best results no more than a single map
976 * for the do_redirect/do_flush pair should be used. This limitation is
977 * because we only track one map and force a flush when the map changes.
978 * This does not appear to be a real limitation for existing software.
979 */
980int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
981 struct xdp_buff *xdp, struct bpf_prog *prog);
982int xdp_do_redirect(struct net_device *dev,
983 struct xdp_buff *xdp,
984 struct bpf_prog *prog);
985void xdp_do_flush(void);
986
987/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
988 * it is no longer only flushing maps. Keep this define for compatibility
989 * until all drivers are updated - do not use xdp_do_flush_map() in new code!
990 */
991#define xdp_do_flush_map xdp_do_flush
992
993void bpf_warn_invalid_xdp_action(u32 act);
994
995#ifdef CONFIG_INET
996struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
997 struct bpf_prog *prog, struct sk_buff *skb,
998 u32 hash);
999#else
1000static inline struct sock *
1001bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
1002 struct bpf_prog *prog, struct sk_buff *skb,
1003 u32 hash)
1004{
1005 return NULL;
1006}
1007#endif
1008
1009#ifdef CONFIG_BPF_JIT
1010extern int bpf_jit_enable;
1011extern int bpf_jit_harden;
1012extern int bpf_jit_kallsyms;
1013extern long bpf_jit_limit;
1014
1015typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
1016
1017struct bpf_binary_header *
1018bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1019 unsigned int alignment,
1020 bpf_jit_fill_hole_t bpf_fill_ill_insns);
1021void bpf_jit_binary_free(struct bpf_binary_header *hdr);
1022u64 bpf_jit_alloc_exec_limit(void);
1023void *bpf_jit_alloc_exec(unsigned long size);
1024void bpf_jit_free_exec(void *addr);
1025void bpf_jit_free(struct bpf_prog *fp);
1026
1027int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1028 struct bpf_jit_poke_descriptor *poke);
1029
1030int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1031 const struct bpf_insn *insn, bool extra_pass,
1032 u64 *func_addr, bool *func_addr_fixed);
1033
1034struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
1035void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
1036
1037static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
1038 u32 pass, void *image)
1039{
1040 pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
1041 proglen, pass, image, current->comm, task_pid_nr(current));
1042
1043 if (image)
1044 print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
1045 16, 1, image, proglen, false);
1046}
1047
1048static inline bool bpf_jit_is_ebpf(void)
1049{
1050# ifdef CONFIG_HAVE_EBPF_JIT
1051 return true;
1052# else
1053 return false;
1054# endif
1055}
1056
1057static inline bool ebpf_jit_enabled(void)
1058{
1059 return bpf_jit_enable && bpf_jit_is_ebpf();
1060}
1061
1062static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1063{
1064 return fp->jited && bpf_jit_is_ebpf();
1065}
1066
1067static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1068{
1069 /* These are the prerequisites, should someone ever have the
1070 * idea to call blinding outside of them, we make sure to
1071 * bail out.
1072 */
1073 if (!bpf_jit_is_ebpf())
1074 return false;
1075 if (!prog->jit_requested)
1076 return false;
1077 if (!bpf_jit_harden)
1078 return false;
1079 if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
1080 return false;
1081
1082 return true;
1083}
1084
1085static inline bool bpf_jit_kallsyms_enabled(void)
1086{
1087 /* There are a couple of corner cases where kallsyms should
1088 * not be enabled f.e. on hardening.
1089 */
1090 if (bpf_jit_harden)
1091 return false;
1092 if (!bpf_jit_kallsyms)
1093 return false;
1094 if (bpf_jit_kallsyms == 1)
1095 return true;
1096
1097 return false;
1098}
1099
1100const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
1101 unsigned long *off, char *sym);
1102bool is_bpf_text_address(unsigned long addr);
1103int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
1104 char *sym);
1105
1106static inline const char *
1107bpf_address_lookup(unsigned long addr, unsigned long *size,
1108 unsigned long *off, char **modname, char *sym)
1109{
1110 const char *ret = __bpf_address_lookup(addr, size, off, sym);
1111
1112 if (ret && modname)
1113 *modname = NULL;
1114 return ret;
1115}
1116
1117void bpf_prog_kallsyms_add(struct bpf_prog *fp);
1118void bpf_prog_kallsyms_del(struct bpf_prog *fp);
1119
1120#else /* CONFIG_BPF_JIT */
1121
1122static inline bool ebpf_jit_enabled(void)
1123{
1124 return false;
1125}
1126
1127static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
1128{
1129 return false;
1130}
1131
1132static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
1133{
1134 return false;
1135}
1136
1137static inline int
1138bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
1139 struct bpf_jit_poke_descriptor *poke)
1140{
1141 return -ENOTSUPP;
1142}
1143
1144static inline void bpf_jit_free(struct bpf_prog *fp)
1145{
1146 bpf_prog_unlock_free(fp);
1147}
1148
1149static inline bool bpf_jit_kallsyms_enabled(void)
1150{
1151 return false;
1152}
1153
1154static inline const char *
1155__bpf_address_lookup(unsigned long addr, unsigned long *size,
1156 unsigned long *off, char *sym)
1157{
1158 return NULL;
1159}
1160
1161static inline bool is_bpf_text_address(unsigned long addr)
1162{
1163 return false;
1164}
1165
1166static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
1167 char *type, char *sym)
1168{
1169 return -ERANGE;
1170}
1171
1172static inline const char *
1173bpf_address_lookup(unsigned long addr, unsigned long *size,
1174 unsigned long *off, char **modname, char *sym)
1175{
1176 return NULL;
1177}
1178
1179static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
1180{
1181}
1182
1183static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
1184{
1185}
1186
1187#endif /* CONFIG_BPF_JIT */
1188
1189void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
1190
1191#define BPF_ANC BIT(15)
1192
1193static inline bool bpf_needs_clear_a(const struct sock_filter *first)
1194{
1195 switch (first->code) {
1196 case BPF_RET | BPF_K:
1197 case BPF_LD | BPF_W | BPF_LEN:
1198 return false;
1199
1200 case BPF_LD | BPF_W | BPF_ABS:
1201 case BPF_LD | BPF_H | BPF_ABS:
1202 case BPF_LD | BPF_B | BPF_ABS:
1203 if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
1204 return true;
1205 return false;
1206
1207 default:
1208 return true;
1209 }
1210}
1211
1212static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
1213{
1214 BUG_ON(ftest->code & BPF_ANC);
1215
1216 switch (ftest->code) {
1217 case BPF_LD | BPF_W | BPF_ABS:
1218 case BPF_LD | BPF_H | BPF_ABS:
1219 case BPF_LD | BPF_B | BPF_ABS:
1220#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
1221 return BPF_ANC | SKF_AD_##CODE
1222 switch (ftest->k) {
1223 BPF_ANCILLARY(PROTOCOL);
1224 BPF_ANCILLARY(PKTTYPE);
1225 BPF_ANCILLARY(IFINDEX);
1226 BPF_ANCILLARY(NLATTR);
1227 BPF_ANCILLARY(NLATTR_NEST);
1228 BPF_ANCILLARY(MARK);
1229 BPF_ANCILLARY(QUEUE);
1230 BPF_ANCILLARY(HATYPE);
1231 BPF_ANCILLARY(RXHASH);
1232 BPF_ANCILLARY(CPU);
1233 BPF_ANCILLARY(ALU_XOR_X);
1234 BPF_ANCILLARY(VLAN_TAG);
1235 BPF_ANCILLARY(VLAN_TAG_PRESENT);
1236 BPF_ANCILLARY(PAY_OFFSET);
1237 BPF_ANCILLARY(RANDOM);
1238 BPF_ANCILLARY(VLAN_TPID);
1239 }
1240 fallthrough;
1241 default:
1242 return ftest->code;
1243 }
1244}
1245
1246void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
1247 int k, unsigned int size);
1248
1249static inline int bpf_tell_extensions(void)
1250{
1251 return SKF_AD_MAX;
1252}
1253
1254struct bpf_sock_addr_kern {
1255 struct sock *sk;
1256 struct sockaddr *uaddr;
1257 /* Temporary "register" to make indirect stores to nested structures
1258 * defined above. We need three registers to make such a store, but
1259 * only two (src and dst) are available at convert_ctx_access time
1260 */
1261 u64 tmp_reg;
1262 void *t_ctx; /* Attach type specific context. */
1263};
1264
1265struct bpf_sock_ops_kern {
1266 struct sock *sk;
1267 union {
1268 u32 args[4];
1269 u32 reply;
1270 u32 replylong[4];
1271 };
1272 struct sk_buff *syn_skb;
1273 struct sk_buff *skb;
1274 void *skb_data_end;
1275 u8 op;
1276 u8 is_fullsock;
1277 u8 remaining_opt_len;
1278 u64 temp; /* temp and everything after is not
1279 * initialized to 0 before calling
1280 * the BPF program. New fields that
1281 * should be initialized to 0 should
1282 * be inserted before temp.
1283 * temp is scratch storage used by
1284 * sock_ops_convert_ctx_access
1285 * as temporary storage of a register.
1286 */
1287};
1288
1289struct bpf_sysctl_kern {
1290 struct ctl_table_header *head;
1291 struct ctl_table *table;
1292 void *cur_val;
1293 size_t cur_len;
1294 void *new_val;
1295 size_t new_len;
1296 int new_updated;
1297 int write;
1298 loff_t *ppos;
1299 /* Temporary "register" for indirect stores to ppos. */
1300 u64 tmp_reg;
1301};
1302
1303#define BPF_SOCKOPT_KERN_BUF_SIZE 32
1304struct bpf_sockopt_buf {
1305 u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
1306};
1307
1308struct bpf_sockopt_kern {
1309 struct sock *sk;
1310 u8 *optval;
1311 u8 *optval_end;
1312 s32 level;
1313 s32 optname;
1314 s32 optlen;
1315 s32 retval;
1316};
1317
1318int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
1319
1320struct bpf_sk_lookup_kern {
1321 u16 family;
1322 u16 protocol;
1323 __be16 sport;
1324 u16 dport;
1325 struct {
1326 __be32 saddr;
1327 __be32 daddr;
1328 } v4;
1329 struct {
1330 const struct in6_addr *saddr;
1331 const struct in6_addr *daddr;
1332 } v6;
1333 struct sock *selected_sk;
1334 bool no_reuseport;
1335};
1336
1337extern struct static_key_false bpf_sk_lookup_enabled;
1338
1339/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
1340 *
1341 * Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
1342 * SK_DROP. Their meaning is as follows:
1343 *
1344 * SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
1345 * SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
1346 * SK_DROP : terminate lookup with -ECONNREFUSED
1347 *
1348 * This macro aggregates return values and selected sockets from
1349 * multiple BPF programs according to following rules in order:
1350 *
1351 * 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
1352 * macro result is SK_PASS and last ctx.selected_sk is used.
1353 * 2. If any program returned SK_DROP return value,
1354 * macro result is SK_DROP.
1355 * 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
1356 *
1357 * Caller must ensure that the prog array is non-NULL, and that the
1358 * array as well as the programs it contains remain valid.
1359 */
1360#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
1361 ({ \
1362 struct bpf_sk_lookup_kern *_ctx = &(ctx); \
1363 struct bpf_prog_array_item *_item; \
1364 struct sock *_selected_sk = NULL; \
1365 bool _no_reuseport = false; \
1366 struct bpf_prog *_prog; \
1367 bool _all_pass = true; \
1368 u32 _ret; \
1369 \
1370 migrate_disable(); \
1371 _item = &(array)->items[0]; \
1372 while ((_prog = READ_ONCE(_item->prog))) { \
1373 /* restore most recent selection */ \
1374 _ctx->selected_sk = _selected_sk; \
1375 _ctx->no_reuseport = _no_reuseport; \
1376 \
1377 _ret = func(_prog, _ctx); \
1378 if (_ret == SK_PASS && _ctx->selected_sk) { \
1379 /* remember last non-NULL socket */ \
1380 _selected_sk = _ctx->selected_sk; \
1381 _no_reuseport = _ctx->no_reuseport; \
1382 } else if (_ret == SK_DROP && _all_pass) { \
1383 _all_pass = false; \
1384 } \
1385 _item++; \
1386 } \
1387 _ctx->selected_sk = _selected_sk; \
1388 _ctx->no_reuseport = _no_reuseport; \
1389 migrate_enable(); \
1390 _all_pass || _selected_sk ? SK_PASS : SK_DROP; \
1391 })
1392
1393static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
1394 const __be32 saddr, const __be16 sport,
1395 const __be32 daddr, const u16 dport,
1396 struct sock **psk)
1397{
1398 struct bpf_prog_array *run_array;
1399 struct sock *selected_sk = NULL;
1400 bool no_reuseport = false;
1401
1402 rcu_read_lock();
1403 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1404 if (run_array) {
1405 struct bpf_sk_lookup_kern ctx = {
1406 .family = AF_INET,
1407 .protocol = protocol,
1408 .v4.saddr = saddr,
1409 .v4.daddr = daddr,
1410 .sport = sport,
1411 .dport = dport,
1412 };
1413 u32 act;
1414
1415 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1416 if (act == SK_PASS) {
1417 selected_sk = ctx.selected_sk;
1418 no_reuseport = ctx.no_reuseport;
1419 } else {
1420 selected_sk = ERR_PTR(-ECONNREFUSED);
1421 }
1422 }
1423 rcu_read_unlock();
1424 *psk = selected_sk;
1425 return no_reuseport;
1426}
1427
1428#if IS_ENABLED(CONFIG_IPV6)
1429static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
1430 const struct in6_addr *saddr,
1431 const __be16 sport,
1432 const struct in6_addr *daddr,
1433 const u16 dport,
1434 struct sock **psk)
1435{
1436 struct bpf_prog_array *run_array;
1437 struct sock *selected_sk = NULL;
1438 bool no_reuseport = false;
1439
1440 rcu_read_lock();
1441 run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
1442 if (run_array) {
1443 struct bpf_sk_lookup_kern ctx = {
1444 .family = AF_INET6,
1445 .protocol = protocol,
1446 .v6.saddr = saddr,
1447 .v6.daddr = daddr,
1448 .sport = sport,
1449 .dport = dport,
1450 };
1451 u32 act;
1452
1453 act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
1454 if (act == SK_PASS) {
1455 selected_sk = ctx.selected_sk;
1456 no_reuseport = ctx.no_reuseport;
1457 } else {
1458 selected_sk = ERR_PTR(-ECONNREFUSED);
1459 }
1460 }
1461 rcu_read_unlock();
1462 *psk = selected_sk;
1463 return no_reuseport;
1464}
1465#endif /* IS_ENABLED(CONFIG_IPV6) */
1466
1467static __always_inline int __bpf_xdp_redirect_map(struct bpf_map *map, u32 ifindex, u64 flags,
1468 void *lookup_elem(struct bpf_map *map, u32 key))
1469{
1470 struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
1471
1472 /* Lower bits of the flags are used as return code on lookup failure */
1473 if (unlikely(flags > XDP_TX))
1474 return XDP_ABORTED;
1475
1476 ri->tgt_value = lookup_elem(map, ifindex);
1477 if (unlikely(!ri->tgt_value)) {
1478 /* If the lookup fails we want to clear out the state in the
1479 * redirect_info struct completely, so that if an eBPF program
1480 * performs multiple lookups, the last one always takes
1481 * precedence.
1482 */
1483 ri->map_id = INT_MAX; /* Valid map id idr range: [1,INT_MAX[ */
1484 ri->map_type = BPF_MAP_TYPE_UNSPEC;
1485 return flags;
1486 }
1487
1488 ri->tgt_index = ifindex;
1489 ri->map_id = map->id;
1490 ri->map_type = map->map_type;
1491
1492 return XDP_REDIRECT;
1493}
1494
1495#endif /* __LINUX_FILTER_H__ */